
ApplinX User Guide

Web Application Development

Version 9.10

April 2016

This document applies to ApplinX Version 9.10.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2001-2016 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: APX-UG-ADVDEV-910-20160402

Table of Contents

I Introduction and Concepts .. 1
1 What are ApplinX for JSP and .NET Web Applications ... 3
2 Development Methods .. 5

Host Driven Development ... 6
Instant Driven Development .. 6
Server-Side Event Driven Development .. 6

3 ApplinX Frameworks' Key Features ... 7
4 Class Hierarchy ... 11

Class Hierarchy - .NET Framework ... 12
Class Hierarchy - ApplinX Framework for JSP .. 19

5 The Framework's Basic Life cycle .. 15
6 Web Page Structure ... 17
7 Pop-Up Manager ... 19
8 Instant Solution ... 21

Instant Web Application Development Methodology 22
Instant Features .. 23

9 Class Hierarchy - Working with Procedures ... 25
II Working with ApplinX Frameworks .. 29

10 Configuring your Web Application ... 33
11 General Application Customization .. 37

Customizing the Default Template .. 38
Creating a New Template .. 39
Activating an Application Map from a Menu .. 41
Using ApplinX Repository Folders' Structure to Organize Web Pages 41
Controlling the Connection Properties from the Code 42
Handling Flickering of Screens .. 42
Waiting for Screens, using Wait Conditions .. 43
Customizing the Host Keys ... 44
Activating the Screen Locker ... 48
Natural UNIX: Integrating a Login Page in the Web Application 48
Implementing & Controlling JavaScript Events using the gx_event
Object .. 49
Retrieving Data from Fields Outside the Modal Window Currently
Displayed ... 50
ApplinX Server Load Balancing ... 51
Enabling Modal Windows for Mobile Devices .. 52
Retrieving the Host Printer Device Name from a Database and Setting the
ApplinX Printlet to Work with that Device ... 52
Customize ApplinX Framework Session Error Handling 52
Customize the Web Application's Error Page .. 54

12 Transferring Natural Data to/from the Host ... 55
Transferring Data using ActiveX .. 56
Transferring Data without using ActiveX .. 57

iii

Activating a Natural Command ... 58
13 Instant Pages Customization ... 59

Using a Proportional (Non-Fixed) Font in Web Pages 60
Controlling Instant Display Properties .. 61
Code Transformations .. 61
Creating a New Code Transformation ... 62
Applying a New Transformation to all Screens ... 63
Applying a New Transformation to a Screen Group 64
Manipulating Individual Host Fields .. 65
Manipulating Host Characters ... 70
Manipulating Host Keys .. 71
Improving Transitions between Screens .. 71

14 Emulation Behavior Tasks ... 75
Customizing the Background Check for Host Screen Changes 76
Enabling the User to Control the Font Size .. 77
Opening Multiple Web Sessions .. 77
Printing a Capture of the Host Screen ... 78
Enabling Sending Dup and FieldMark Characters to the Host 79

15 Page Customization ... 81
Generating a Framework Page for a Screen ... 82
Creating Designed Web Pages ... 82
Using Web Application Controls in Generated Pages 86
Partial Page Rendering ... 87
Creating a Button / Hyperlink for Submitting a Host Key 88
Creating a Button / Hyperlink for Executing a Path Procedure 89
Collect all Modified Page Fields into an ApplinX Request 90
Exporting Data to an MS Office Application (Excel, Word) 92
Building an External Login Page .. 93
Collecting Data from Multiple Host Screens ... 94
Binding Procedure Outputs to an ApplinX Framework Based Web
Page .. 94
Updating Data in Multiple Host Screens ... 97
Activating a Server Side Function from JavaScript .. 99
Mapping Keyboard Keys to User Actions in Individual Pages 100
Handling the Screen Locker on the Page Level .. 101
Navigating between Input Fields ... 102
Retrieving Browser Information .. 103
Validating your Data .. 103
Handling Web Application Windows using the gx_windows Object 104
Working with Cookies .. 106
Working with JavaScript User Exits ... 106
Retrieving HTML Objects using gx_getElement .. 107
Using the Calendar Component in Generated Pages 108
Replacing Static Host ConfirmationMessage with JavaScript Confirmation
Pop-up Box ... 108

Web Application Developmentiv

Web Application Development

Opening an Independent Pop-up Box that doesn't have a Corresponding
Host Screen ... 110

16 Working with Tables .. 115
Creating a Page with a Table .. 116
Adding the Sorting Capability to a Screen-Based Table 117
Adding the Sorting Capability to a Procedure based Table 120
Changing Table Layout for Instant HTML Pages .. 122
Retrieving Values from a Selected Row within a Table 122
Customizing the Table's Display .. 125

17 Transferring Files (FTP) ... 129
FTP Configuration .. 130
Opening the File Transfer Dialog Box .. 130
Using FTP to Upload Files .. 131
Using FTP to Download Files ... 132

18 Printlet Servlet Redirector for ApplinX ... 135
19 Framework Management .. 137

Upgrading a JSP Web Application ... 138
Deploying an ApplinX Web Application (JSP) .. 138
Upgrading a .NET Web Application .. 142
Deploying an ApplinX Web Application (.NET) ... 142
Disconnecting the Host Session Correctly ... 143

III Troubleshooting the Framework ... 145
20 Performance Monitoring .. 147
21 JavaScript Logger Engine ... 149
22 Debugging/Analyzing the Web Application's Code ... 151

IV ApplinX Development API References ... 153
23 Web Application Configuration Parameters ... 155

Session Parameters ... 156
Instant Parameters .. 157
General ... 158
Logoff ... 159
Generated Pages ... 160
Window .. 160
Emulation ... 161
Natural upload/download ... 162
Log .. 163
Performance Monitor ... 163
Macro .. 163
Single Sign On .. 164
FTP .. 165
CSS Classes ... 165

24 Base Object ... 167
25 Server Side API (Java/.NET) .. 169

General ... 170
ApplinX Tables API .. 194

vWeb Application Development

Web Application Development

ApplinX Browser Windows API .. 200
JSP API .. 203

26 Client Side (JavaScript) .. 205
ApplinX Server Actions .. 206
Navigating between Input Fields ... 208
Tables .. 209
Design ... 210
Keyboard Mapping .. 211
ApplinX Web Application Event .. 213
Browser Related Functions ... 214
JavaScript Logging ... 214
Page Validation ... 215
ApplinX Web Application Windows ... 216
HTML Controls .. 219
Web Application Configurations ... 220
Functionality ... 221
Screen Locker .. 223
User Exits .. 223

27 HTML Emulation ... 227
Default Keyboard Mapping ... 228

28 Printing .. 229
Printer Session API ... 230
ApplinX Printer Applet .. 230

Web Application Developmentvi

Web Application Development

I Introduction and Concepts

What are ApplinX for JSP and .NET Frameworks

Development Methods

ApplinX Frameworks' Key Features

Class Hierarchy

The Framework's Basic Life cycle

Web Page Structure

Pop-up Manager

Instant Solution

Class Hierarchy - Working with Procedures

1

2

1 What are ApplinX for JSP and .NET Web Applications

The ApplinX Framework for ASP .NET and the ApplinX Framework for JSP are fully functional
Web applications. The ASP .NET Framework runs under the .NET Framework (CLR) and IIS and
the Framework for JSP runs under J2EE application servers (refer to Recommended Software).
The ApplinX Frameworks use the ApplinX Base Object, to communicate with the ApplinX Server.

Immediately upon installing ApplinX ASP.NET Framework or ApplinX for JSP Framework, you
possess a fully functional Web application. A completely structuredWeb application is prepared,
and there is no need to add even one line of code.

These frameworks serve as excellent platforms for advanced development, as you combine the
ApplinX entities and functions to your Web development platform.

3

4

2 Development Methods

■ Host Driven Development ... 6
■ Instant Driven Development .. 6
■ Server-Side Event Driven Development ... 6

5

The ApplinX Framework contains three development methods:

Host Driven Development

In this development method the Web application is developed in a framework driven manner,
which means all activity is performed by the ApplinX Web application and you have the ability
to make changes within the framework flow.

The use of this methodology is accomplished when inheriting from GXDefaultLogicContext
(JSP)/GXDefaultLogicWebForm (.NET) , which includes host keys' handling, and in general, an
automatic workflow with the ability to make changes using user exits.

Instant Driven Development

In this development mode, most host screens remain as Instant HTML pages, meaning they are
generated on the fly byApplinX Framework, without generating specificWeb pages (JSP orASPX)
for individual screens. Thus, the development process is quicker and simpler, and maintenance
efforts are significantly reduced.

Customization of the instant pages is done using Instant Transformationsand using ScreenGroups.
Often, there isn't even a need to identify individual screens. Server transformations defined using
the Transformation wizard in ApplinX Designer will be displayed in the instant pages. The page
used in the kind of development is GXInstantLogicContext (JSP) /GXInstantLogicWebForm (.NET) ,
which contains Instant Transformations registration.

Server-Side Event Driven Development

The ApplinX framework exposes another methodology for development. You may use this
methodology by changing inheritances for the project pages toGXBasicContext (JSP)/GXBasicWeb-
Form (.NET). This methodology is accomplished by using server-side buttons and the use of the
framework API's as "building blocks" (gx functions).

ApplinX Procedures Development: The ApplinX framework allows you to minimize the logic in
the application classes. In this case, the framework's purpose is to serve as a controller/viewer,
using Web pages with dynamic tags/controls. Most of the logic development is performed using
flow procedures, which accept and return simple parameters/data structures. After developing
the flow procedure, the ApplinX Add-in generates procedure client classes (which should not be
modified) and aWeb page (you can customize to suit your needs), which is bound, bi-directionally
into the Web page using the code class, and binding functionality. Refer toWorking with Proced-
ures.

Web Application Development6

Development Methods

3 ApplinX Frameworks' Key Features

ApplinX Framework for JSP is based on Java and JSP frameworks standards. ApplinX Framework
for .NET is built upon ASP.NET and is available both for C# and for VB.NET. The frameworks
provide the following features:

Screen Access API using ApplinX Base Object

The Base Object supports retrieval and manipulation of host entities such as screens, fields and
so on as objects, as well as communicationwith the host using requests (for executing a navigation
path or sending a host key) and error handling using exceptions. Refer to Base Object.

Separation of logic

Separation of logic and creation of reusable, self-contained components. Each page contains its
own logic, and common logic is encapsulated in components or "building blocks".

Code Transformations

In addition to the server transformations defined using the Transformations wizard, the instant
component exposes anAPIwhich enables using code transformations. These code transformations
allow full flexibility to manipulate the HTML output and implement functionality not provided
when using the transformation wizard.

"Building Blocks"

Common framework functionality is divided into easy-to-usemethods or "building blocks". These
building blocks are customizable and can be modified and overridden by the developer.

Server HTML Controls

The framework uses standard HTML controls/tags as server controls, allowing straight forward
binding to standard HTML. In JSP the framework uses gx HTML tags. In .NET the framework
uses HTML controls.

7

Visual designers

Using Eclipse 4.5 (for ApplinX Framework for JSP) or Visual Studio/Express Edition (for .NET)
provides a visual designer for your application Web pages.

Separation between data, logic and view.

Pages can be designed by graphical designers or Web designers and easily bound to ApplinX
elements. The pages contain only presentation and visual display code, while code implementing
logic and data is written in the "code behind" of the page.

Developer's intervention points in the default workflow of the framework.

ApplinX offers several "user exits" that can be customized for the entire project or per specific
pages.

Direct navigation menus

Direct navigationmenus usingApplinXNavigationMaps.Webmenus supportingdirect navigation
to screens in the host application can be easily implemented using ApplinX Maps.

Built-in support for host windows

"Modal" host windows can be displayed as Web pop-up windows using a built-in, fully custom-
izable framework mechanism.

Host Tables

ApplinX Tables can be easily bound to .NET HTML Table or .NET DataGrid control (.NET) or to
an HTML table tag (JSP) and displayed in any desired format (such as graphs) or exported to ex-
ternal tools such as Microsoft Excel.

Integration with Visual Studio .NET and Eclipse.

Easy creation of newApplinXWeb applications. ApplinX Add-In generates Procedure Clients for
ApplinX Procedures.

Clustering support

Both JSP and .NET frameworks support clustering in the relevant environments.

Organization and modularity

Integration with ApplinX folders structure for hierarchically organizing Web pages.

JSP Tag Library

Included with the new ApplinX Framework for JSP is a ready-to-use HTML tag library. The tag
library is easy to learn since it uses standard HTML tags and attributes. The tag library contains

Web Application Development8

ApplinX Frameworks' Key Features

dynamic content and attributes, while not containing any <%%> codewithin. All the tags, dynamic
content and attributes aremanaged by the TagsAccessor object, which you can access in the context
Java class. You can easily expand the tag library for new tags and new tags' attributes.

Working in Software AG's Designer to develop an ApplinX for JSP Framework Project

It is recommended to develop the ApplinX Framewor for JSP using Software AG's Designer. The
advantages of working with IDE (Integrated Development Environment):

■ The Web server (e.g. Tomcat) is run within the IDE.
■ Embedded Java compiler for the context Java classes
■ Auto-complete code based editors (such as JSP and JAVA)
■ Debugging
■ and more...

9Web Application Development

ApplinX Frameworks' Key Features

10

4 Class Hierarchy

■ Class Hierarchy - .NET Framework ... 12
■ Class Hierarchy - ApplinX Framework for JSP ... 19

11

Class Hierarchy - .NET Framework

System.Web.UI.Page
Com.sabratec.dotnet.web.GXScreenBasedWebForm

GXBasicWebForm
GXDefaultLogicWebForm

or
GXInstantLogicWebForm

YOUR_PAGE.aspx.cs/vb
YOUR_PAGE.aspx

System.Web.UI.Page is the top-level ASP.NET class. All aspx pages should inherit from it directly/in-
directly.

This class contains the life cycle mentioned in The Framework Lifecycle.

GXScreenBasedWebForm is an ApplinX ASP.NET framework class that contains all the objects and
functionality needs for the ApplinX framework.

Note: It does not perform any logic when inheriting from this class. It only provides the
functionality.

GXBasicWebForm is the top-level class in your project. All pages in your ApplinX ASP.NET
framework project should inherit from this class directly or indirectly. It allows you to declare
configuration for all project pages, since all the pages inherit from it. In this class you should add
project level code (events/user exits, overriding ApplinX framework gx functions). This class does
not perform any logic.

GXDefaultLogicWebForm is a class that performs the defaultApplinX framework logic: attaching/con-
necting, check synchronization, sending the fields when submitted by keyboard keys, jumping to
the next page (instant/generated), filling the page fields and error handling.

All ApplinX JavaScript functionality is added to a page when inheriting from this page. Refer to
Host Driven Development method.

GXInstantLogicWebForm is a class that contains all configuration parameters of Instant HTML
rendering, and the registration of instant transformations.

Your Page.aspx.cs(vb) is the code behind a specific Web page. You should add logic only for the
specific page. Should inherit from GXBasicWebForm/GXDefaultLogicWebForm.

Your Page.aspx contains the design of a Web page.

Note: Strong names are used with ApplinX .NET framework assemblies.

Web Application Development12

Class Hierarchy

Class Hierarchy - ApplinX Framework for JSP

com.sabratec.j2ee.framework.web.GXWebPageContext
 ↩
com.sabratec.applinx.j2ee.framework.web.GXScreenBasedJspContext
 GXBasicContext
 GXDefaultLogicContext
 or
 GXInstantLogicContext
 <YOUR_PAGE>.java
 ↩
(contains)<YOUR_PAGE>.jsp

com.sabratec.j2ee.framework.web.GXWebPageContext is the top-level context class. All context java
classes should extend from it directly/indirectly. It contains access to all the JSP objects: request,
response, session, application,Writer and additional Sabratec JSP objects (non host related): logger,
tagsAccessor and window.

All of the objects can be accessed by the get<OBJECT_NAME> method.

This class contains the life cycle mentioned in The Framework Lifecycle.

Each JSP page contains a reference to a context class which can be referred as <YOUR_PAGE>.java

com.sabratec.applinx.j2ee.framework.web.GXScreenBasedJspContext is an ApplinX Framework for JSP
class that contains all the objects and functionality needs for the ApplinX Framework. It contains
access to GXWebAppConfig and GXSession, using the get<OBJECT_NAME> method, and access
to all the framework building blocks ("gx_" function).

Note: It does not perform any logic using this context class. It only provides the functionality.

GXBasicContext is the top-level context class in your project. All java context classes in your JSP
Web application project should extend from this class directly or indirectly. It allows you to declare
general code and user exits for all project pages, since all the context classes extend from it. In this
class you should add project level code (events/user exits, overriding ApplinX framework gx
functions). This class does not perform any logic.

GXDefaultLogicContext is a class that performs the default ApplinX framework logic: attaching/con-
necting, check synchronization, sending the fields when submitted by keyboard keys, jumping to
the next page (instant/generated), filling the page fields and error handling.

All ApplinX JavaScript functionality is added to a page when using this context. Refer to Host
Driven Development method.

<Your Page>.java is the context class for a specific Web page. You should add logic only for the
specific page. Should extend from GXBasicContext/GXDefaultLogicContext.

13Web Application Development

Class Hierarchy

<Your Page>.jsp contains the design of aWeb page with static HTML and tags from the HTML tags
library. The JSP framework should declare in the gx:html root tag, which is the context class.

Web Application Development14

Class Hierarchy

5 The Framework's Basic Life cycle

The framework is built upon a concept of a page life cycle,which is a general concept and not related
to ApplinX host applications directly. The life cycle of a page is declared by the top context class:

JSP: com.sabratec.j2ee.framework.web.GXWebPageContext.

.NET: System.Web.UI.Page

Each page decides which is its class by declaring the root node: <gx:html
gx_context="<CONTEXT_CLASS>"> and closing it with </gx:html> as the end tag.

Each dynamic tag should be setwith a prefix of "gx:" for example: <gx:input id="CustomerId"/>.
The <CONTEXT_CLASS> is initialized and starts the page Life cycle:

■ gx_onInit (JSP) /OnInit (.NET) :

Used to initialize page and/or project settings, and register to events. For example setting the
ApplinX configuration and registering classes to user exits.

■ gx_onLoad (JSP) /OnLoad (.NET) :

Used to fill the tagswith run-time data fromdata sources. Host datawill be used in lower inher-
itance level to fill the tags with host data. Page.IsPostBack (.NET)/ gx_isPostBack (JSP) can de-
termine if the page is first called, or submitted back to itself.

■ Post back:

Performed automatically by the framework. Each page is submitted to itself using server side
buttons/links:

15

JSP:

<gx:input id= myBtn onserverclick= <FUNC_NAME> />
<gx:a id= myLinkBtn onserverclick= <FUNC_NAME> >Send

.NET:

<input id="myBtn" runat="server" onserverclick="< FUNC_NAME>"/>
<a id="myLinkBtn" runat="server" onserverclick="<FUNC_NAME>">Send ↩

The <FUNC_NAME>will be activated automatically upon a user click, and it will be used to perform
update actions, re-queries or jumping to another page using redirect. In the context class the
developer should hold a function in the format:

Public void <SERVER_FUNC>(){
 // code in response to the server click event.
} ↩

Can be also fired using JavaScript using: gx_postBack("<SERVER_FUNC>");

public void <SERVER_FUNC>(Object sender,EventArgs e){
 // code in response to the server click event.
} ↩

In JSP the event can also be fired using JavaScript: gx_postBack("<SERVER_FUNC>");
■ gx_preRender (JSP) / PreRender event (.NET):

Used to add logic after any post back event for example: refilling the page.
■ Controls/Tags rendering:

The dynamic tags are rendered with runtime content and attributes manipulation performed
by the tagsAccessor in the previous stages of the life cycle.

■ gx_onUnload(JSP)/OnUnload (.NET):

Occurs when the page ends. Used to release any relevant resources.
■ gx_onError (JSP)/Error event (.NET):

Used for capturing errors. Any known thrown or runtime error is captured and can be analyzed
by the developer.

Web Application Development16

The Framework's Basic Life cycle

6 Web Page Structure

The topURL of the framework is z_container.jsp /aspxwhich is a servlet/HTTP handler that creates
a frameset with the relevant page components.

Framesets are used in the framework as follows:

■ ApplinX framework contains a huge amount of JavaScript. Using a frameset, the JavaScript files
are loaded only once, within the frameset, when the Web session starts. Further more, when
using HTTPS in the Web application, JavaScripts are not cached in the browser and this caused
slower response time. As the JavaScript files are loaded only once when using framesets, this
performance problem no longer exists.

The frameset listens to the onLoad event of the displayed frame, and listens to any event occurring
in the displayed frame (keydown, focus, etc.). Refer to Configuring your Framework and to the
JavaScript Logger Engine.

■ The frameset contains additional features (each feature is in a different frame): JavaScript logger,
Printlet (optional) and ActiveX (optional).

■ The frameset contains two frames for displaying Web pages in the following cases:
■ Usage of modal windows - Opens a window when there is one in the host, loaded from the
inactive frame.

■ Natural data transfer - Used for opening upload/download windows, and for displaying
upload/download status.

■ Prevent page refresh effect - The inactive frame becomes the active frame, only after the page
is loaded.

■ The two frames constantly switch from active to inactive between themselves, while submitting
the data from one to the other.

17

Modal windows also workwith a frameset, but only with two display frames (all the other frames
are only used in the main browser).

Refer to Configuring your Web Application and to Web Application Configuration Parameters.

Web Application Development18

Web Page Structure

7 Pop-Up Manager

One of the biggest problems in session based host-to-Web applications is managing pop-up win-
dows since Web applications window events are not related to server-side code. The Pop-up
WindowManager'smain aim is to solve this problem, by providing a clear API formanaging pop-
up Web windows on the server and client-side.

This feature provides the following solutions:

■ Two objects (gx_window and gx_window.opener), with the same methods on the server and
client-side, for opening, closing, refreshing, updating etc. Web windows.

■ Natural integration within the ApplinX framework, so when a host window is recognized, a
proportionate matching Web window is opened.

■ The window object is independent from the ApplinX JavaScript engine.
■ Different pages for instant windows (instantWin.jsp (JSP) /instantWin.aspx (.NET)), for different
designs (without page templates for example).

■ Provides server-side events for client-side events, as follows:
■ Server-side code event for the pop-upwindow close event, to allow synchronization with the
host.

■ Server-side code event for main window close event, to allow closing the host session.
■ Main window refresh event called when the pop-up window is closed (can be canceled).

■ ApplinX framework provides User Exits for canceling Web window openings (when you are
not interested in displaying a host window as aWeb window), or changing the default opening
window size.

■ ApplinX framework provides User Exits (gx_changeNextForm) for opening a non-host window
as a Web window.

■ Pop-up windows are modal, so the user cannot perform any action on the main window, which
may cause synchronization problems.

19

■ Allows you to perform updates from a pop-up window to the main window using client-side
code, server-side code or main window refreshing.

■ Solves the browser "flickering" affect. After pressing a host key, causing a minor change to the
screen, the screen will display this minor change, without seemingly reloading the entire page
(i.e. without the user seeing the "flicker" affect).

This feature uses a frameset file (gx_container.jsp (JSP)/gx_container.aspx (.NET)) to perform submits
from the left part of the frameset to the right part, and back. Thisway, first the Submit is performed,
and then if the host contains a window, it will be opened as a Web window. The gx_window
represents the pop-up windows' API. Each gx_window object has access to its opener window
which is also a gx_window object, and this way a pop-up window can access, modify, etc. its
openerwindowboth on the client and server-side. For example, gx_window.opener.refreshPage(),
will refresh the opening page if the current window is an opener.

Web Application Development20

Pop-Up Manager

8 Instant Solution

■ Instant Web Application Development Methodology ... 22
■ Instant Features .. 23

21

The instant solution offers amethodology for developingWeb enabling applications by providing
the instant API and a variety of features that accelerate development.

Instant Web Application Development Methodology

Following are some theoretical guidelines regarding development of ApplinX InstantWebApplic-
ations, using Instant Transformations and Screen Groups. For practical guidelines and tasks, refer
to Getting Started with an ApplinX Instant Web Application.

■ A Transformation (or Transform) is a code class (written in Java for the ApplinX Framework
for JSP, and in C# or VB.NET for the .NET framework), that is executed on all host screens or
on a specific group of screens (i.e. an ApplinX Screen Group) andmodifies the rendered instant
HTML page for the current host screen it is executed on.

Transformations can be used to:
■ Manipulate individual host fields:

For example, display a title field in an underlined, blue font or display an image instead of a
description field.

■ Manipulate entire screens:

For example, convert menu screens to a list of hyperlinks.
■ Manipulate host characters:

For example, remove all unnecessary dots (.) or dashes (-) from the screen.
■ Using transformations: Transformations should be used to manipulate all screens in the host
application or groups of screens (using Screen Groups). To manipulate the contents of specific,
individual screens, the recommended methodology is to identify the screen(s), generate a Web
page for it (JSP or ASPX) and modify the generated page contents as necessary. Using a trans-
formation for an individual screen ismore complicated and unnatural, and therefore not recom-
mended.

■ Identifying screens: As a result, in order to use transformations it is not necessary to identify
individual screens, but only screen groups (if needed), or not identify anything. This way, de-
velopment effort is reduced and future maintenance becomes simpler.

■ Mapping Fields to Screen Groups: The recommendedmethodology is tomap all host fields that
are common to several screens to a screen group that will be associated (implicitly or explicitly)
with these screens. For example, an error message and title can be mapped to a screen group
that will apply to all screens (or to specific screens), and should not be mapped repeatedly to
individual screens. (Note that it is possible to override the mapping definition of the Screen
Group in individual screens in which the field appears in a different position). If such mapping
is not possible, refer to the fields according to their position or a unique identifier (such as pre-
ceding text).

Web Application Development22

Instant Solution

■ Manipulating fields: Once fields aremapped to a screen group, it is possible towrite Transform-
ations manipulating them.

■ Manipulating entire screens: Once screen groups have been defined for the relevant screens, it
is possible to write a transformation that is executed for these screen groups. For example, in
order to convert amenu screen into a list of hyperlinks, create a ScreenGroup that will implicitly
apply to all menu screens in the host application, and then create a transformation that will be
executed for the Menu screen group and will do the required conversion. Note that it is not re-
commended to create transformations for individual screens, but rather generate Web pages
for them.

■ Manipulate host characters: Manipulation of host characters usually applies to all screens in the
host application, so the recommended methodology is to write a transformation that will ma-
nipulate the characters as desired and will be registered for all host screens. When not using
the methodology above, it is also possible to create a screen group for the relevant screens and
register the transformation only for the screen group.

Instant Features

Absolute HTML Rendering

The instant methodology renders the HTML tags in absolute terms. Rendering the HTML tags in
absolute terms prevents indentation problems when trying to add or change elements or style
sheets such as GUI elements, hostwindows and different fonts. In this version, each tag is rendered
with corresponding top/left attributes which places the tag in the browser, in an exact position.
The main advantage of this approach is that changing/adding tags/style sheets doesn't affect the
neighboring tags of the modified tag. In addition, rendering in absolute terms saves the need to
render empty spaces and only the relevant fields with content are rendered and not the entire
screen. This significantly improves bandwidth performance since the HTML is much smaller.

Instant Rendering API

The instant component opens the instant solution as anAPI. It provides you the abilities to register
as many transformations (which are standard code classes) as you require. These transformations
can manipulate the HTML output by adding, removing, replacing and changing the screen tag
model using a rich library of tags and an easy-to-use API.

23Web Application Development

Instant Solution

24

9 Class Hierarchy - Working with Procedures

JSP

com.sabratec.j2ee.framework.web.GXWebPageContext
com.sabratec.applinx.j2ee.framework.web.GXAbstractProceduresPageContext
<YOUR_PAGE>.java
(^ contains)<YOUR_PAGE>.jsp

com.sabratec.j2ee.framework.web.GXWebPageContext : refer to Class Hierarchy - Framework
description.

com.sabratec.applinx.j2ee.framework.web.GXAbstractProceduresPageContext is an ApplinX for
JSP procedure class that contains all the objects and functionality needed forworkingwith proced-
ures. It contains access to GXWebAppConfig, using the get<OBJECT_NAME>method, and access
to all the framework building blocks ("gx_" function), that can bind the request and response of a
procedure into a JSP page.

Note: It does not perform any logic using this class - it only provides the functionality.

<Your Page>.java Contains logic that executes the relevant procedures, fills the page with the
procedure response, and responds to server-side events in order to send user typed data to pro-
cedures, and jump to the next relevant page.

<Your Page>.jsp: refer to Class Hierarchy - Framework description. Each JSP page contains a ref-
erence to a context class which can be referred as <YOUR_PAGE>.java.

25

.NET

System.Web.UI.Page
com.sabratec.dotnet.framework.web.GXAbstractProceduresWebForm
<YOUR_PAGE>.cs
<YOUR_PAGE>.aspx

System.Web.UI.Page is the top-level ASP.NET class. All aspx pages should inherit from it dir-
ectly/indirectly. This class contains the life cycle mentioned in The Framework Lifecycle.

com.sabratec.dotnet..framework.web.GXAbstractProceduresWebForm is an ApplinX ASPX pro-
cedure class that contains all the objects and functionality needed for working with procedures.
It contains access to GXWebAppConfig, and access to all the framework building blocks ("gx_"
function), that can bind the request and response of a procedure into a JSP page.

Note: It does not perform any logic using this class - it only provides the functionality.

<Your Page>.cs: Contains logic that executes the relevant procedures, fills the page with the pro-
cedure response, and responds to server-side events in order to send user typed data to procedures,
and jump to the next relevant page.

<Your Page>.aspx: refer to Class Hierarchy - Framework description.

GXAbstractProceduresPageContext / GXAbstractProceduresWebForm

Package: com.sabratec.applinx.j2ee.framework.web

Contains gx "building blocks" that automate the process of working with procedures. All JSP
procedure pages should inherit from this class.

gx_fillTable(GXISelfSerializable[] entities)

Accepts a request object array returned from a procedure, converts it into a GXITable entity, and
fills the table tag with data according to the gx tags ID. Refer to Working with Tables for more
details.

Note: All types of Applinx Data Structure attributes are supported by gx_fillTable.

gx_fillForm(GXISelfSerializable entity)

Accepts a response object/internal entity (of the response object) returned from a procedure, and
fills the gx tags with data according to the entity field and the gx tags Id's.

Note: Binding is performed only for the top-level fields of the passed entity.

If the root level of the passed entity contains an entity array, it is also performs gx_fillTable.

Note: All types of Applinx Data Structure attributes are supported by gx_fillForm.

Web Application Development26

Class Hierarchy - Working with Procedures

gx_prepareEntity(GXISelfSerializable entity)

Accepts an initialized request entity (new) / internal entity (of the request object), and fills it with
data from the JSP page. Only the root of the passed entity level is filled.

Note: All types of Applinx Data Structure attributes are supported by gx_prepareEntity.

27Web Application Development

Class Hierarchy - Working with Procedures

28

II Working with ApplinX Frameworks

Configuring Your Web ApplicationWeb Application
Configuration

Customizing the Default TemplateGeneral Application
Customization

Creating a New Template

Activating an Application Map from a Menu

Using ApplinX Repository Folders' Structure to Organize Web Pages

Controlling the Connection Properties from the Code

Handling Flickering of Screens

Waiting for Screens, using Wait Conditions

Customizing the Host Keys

Activating the Screen Locker

Natural UNIX: Integrating a Login Page in the Web Application

Implementing & Controlling JavaScript Events using the gx_event Object

Retrieving Data from Fields Outside theModalWindowCurrently Displayed

ApplinX Server Load Balancing

Retrieving the Host Printer Device Name from a Database and Setting the
ApplinX Printlet to Work with that Device

Customize ApplinX Framework Session Error Handling

Customize the Web Application's Error Page

Transferring Data using ActiveXTransferring Natural
Data to/from the Host

Transferring Data without using ActiveX

Activating a Natural Command

Using a Proportional (Non-Fixed) Font in Web PagesInstant Pages
Customization

Controlling Instant Display Properties

Code Transformations

29

Creating a New Code Transformation

Applying a New Transformation to all Screens

Applying a New Transformation to a Screen Group

Manipulating Individual Host Fields

Positioning Specific Fields

Formatting Specific Fields

Replacing a Field's Text

Replacing a Field with a Web Element, Adding a Web Element

Manipulating Host Characters

Manipulating Host Keys

Improving Transitions between Screens

Customizing the Background Check for Host Screen ChangesEmulation Behavior
Tasks

Enabling the User to Control the Font Size

Opening Multiple Web Sessions

Printing a Capture of the Host Screen

Enabling Sending Dup and FieldMark Characters to the Host

Generating a Framework Page for a ScreenPage Customization

Creating Designed Web Pages

Using Web Application Controls in Generated Pages

Partial Page Rendering

Creating a Button / Hyperlink for Submitting a Host Key

Creating a Button / Hyperlink for Executing a Navigation Path

Collect all Modified Page Fields into an ApplinX Request

Exporting Data to an MS Office Application (Excel, Word)

Building an External Login Page

Collecting Data fromMultiple Host Screens

Binding Procedure Outputs to an ApplinX Framework Based Web Page

Updating Data in Multiple Host Screens

Activating a Server Side Function from JavaScript

Mapping Keyboard Keys to User Actions in Individual Pages

Handling the Screen Locker on the Page Level

Navigating between Input Fields

Retrieving Browser Information

Validating your Data

Handling Web Application Windows using the gx_windows Object

Working with Cookies

Web Application Development30

Working with ApplinX Frameworks

Working with JavaScript User Exits

Retrieving HTML Objects using gx_getElement

Using the Calendar Component in Generated Pages

Replacing Static Host Confirmation Messages with JavaScript Confirmation
Pop-up Box

Opening an Independent Pop-up Box that doesn't have a Corresponding Host
Screen

Creating a Page with a TableWorking with Tables

Adding the Sorting Capability to a Screen-Based Table

Adding the Sorting Capability to a Procedure-Based Table

Changing Table Layout for Instant HTML Pages

Retrieving Values from a Selected Row within a Table

Customizing the Table's Display

FTP ConfigurationTransferring Files (FTP)

Using FTP to Upload Files

Using FTP to Download Files

Printlet Servlet
Redirector for ApplinX

Upgrading an Existing JSP Web ApplicationFramework
Management

Deploying an ApplinX Web Application (JSP)

Upgrading an Existing .NET Web Application

Deploying an ApplinX Web Application (.NET)

Disconnecting the Host Session Correctly

Performance MonitoringTroubleshooting your
Framework

JavaScript Logger Engine

Investigating the Web Application's Code

31Web Application Development

Working with ApplinX Frameworks

32

10 Configuring your Web Application

ApplinX provides aWeb based configuration editorwhere you can configure framework paramet-
ers. These parameters are saved in config/gx_appConfig.xml file. Refer to Web Application Con-
figuration Parameters for a list of the parameters, and to the help in the Configuration Editor.

Note: These parameters can be manually configured in the gx_appConfig.xml file.

To configure the framework:

1 Open a new browser and run your Web application.

33

2 Click on the Configuration link. The Configuration Editor will be displayed.

The left side of the window displays the nodes. Clicking on a plus sign expands the node and
displays all the parameters in this node. Click on a parameter/node to display the relevant
Javadoc on the right side of the window.

3 Expand and collapse the various nodes as necessary to change the framework parameters.

4 Click Save to save your changes.

5 Click Close to return to the Web application.

Note: When using Eclipse, in order to implement the framework configuration changes, in
both the design and runtime Eclipse environments, select the config\gx_appConfig.xml
configuration file in your project folder.

Note: In IE8 and above, when opening a new tab in the browser and navigating to your
Web application, the same ApplinX session will be used in both tabs.

Troubleshooting .Net Configuration

In .Net, when attempting to save the changes made in the Configuration Editor, you may receive
an error message: Access denied. In order to resolve this problem, follow these instructions:

Web Application Development34

Configuring your Web Application

1. Click on Click here for configuration details.

2. Open Windows Explorer and right-click on the config directory in your Web application
(<YourWebApp>\config).

3. Select Sharing and Security... and then select the Security tab.

4. Click Add....

5. If you are working with a network/active directory, you need to change the location and select
the server name/computer name.

6. Add the IIS process user, typically called ASPNET, to the list of object names that it is possible
to select. Click Check Names to locate the defined user. This is relevant for IIS 5.1. For any
other IIS, refer to http://support.microsoft.com/kb/895967 for the correct user name and permis-
sions.

7. ClickOK.

8. AddModify andWrite permissions to the folder where the configuration is located. ClickOK.

9. Restart IIS.

10. In the Framework Configuration Editor, re-save your configuration.

35Web Application Development

Configuring your Web Application

http://support.microsoft.com/kb/895967

36

11 General Application Customization

■ Customizing the Default Template ... 38
■ Creating a New Template .. 39
■ Activating an Application Map from a Menu .. 41
■ Using ApplinX Repository Folders' Structure to Organize Web Pages .. 41
■ Controlling the Connection Properties from the Code .. 42
■ Handling Flickering of Screens ... 42
■ Waiting for Screens, using Wait Conditions ... 43
■ Customizing the Host Keys ... 44
■ Activating the Screen Locker ... 48
■ Natural UNIX: Integrating a Login Page in the Web Application ... 48
■ Implementing & Controlling JavaScript Events using the gx_event Object ... 49
■ Retrieving Data from Fields Outside the Modal Window Currently Displayed ... 50
■ ApplinX Server Load Balancing .. 51
■ Enabling Modal Windows for Mobile Devices .. 52
■ Retrieving the Host Printer Device Name from a Database and Setting the ApplinX Printlet to Work with that
Device ... 52
■ Customize ApplinX Framework Session Error Handling ... 52
■ Customize the Web Application's Error Page .. 54

37

Customizing the Default Template

EveryApplinXWeb application contains a template filewhich is used by all the pages. It is possible
to override parts of the default template by using placeholders. These placeholders are defined in
the template and can be overridden with customized content on generated pages and generate
screen groups. Using placeholders in the template provides flexibility on the overall look and feel
of individual pages. For example, if the template supplies the users with links on the left side of
the page and on a specific page, it is required that these links be removed, the template's default
content can be overridden for that page section, with customized content for that particular page.
Refer to the Composite demo, template.jsp/template.master and login.jsp/aspx.

To create a custom template for a screen/screen group (JSP):

1 Generate a Web page for the screen/screen group (refer to Generating a Framework Page for
a Screen/Screen Group).

2 For each template part that you would like to design for this screen/screen group, ensure that
the area that is to be overridden is enclosed by a gx:placeholder tag. For example, if you
would like to change the page header, implement the following in the template.jsp file.

<gx:placeholder id="<TemplatePlaceHolderID>">
.
.

<your page header JSP code>
.
.

</gx:placeholder>

3 Server side functions referred by the template.jsp file will have to be placed in the GXBasic-
Context.java file.

4 In the jsp file that was generated for the screen/screen group (generatedpage.jsp), override a
template placeholder by adding your content and enclosing it within a gx:content tag, setting
the attribute ContentPlaceHolderIDwith the ID of the template place holder previously
defined.

<gx:content ContentPlaceHolderID="<TemplatePlaceHolderID>">
.
.

<YOUR CONTENT HERE>
.
.

</gx:content>

Web Application Development38

General Application Customization

To create a custom template for a screen/screen group (.NET):

1 Generate a Web page for the screen/screen group (refer to Generating a Framework Page for
a Screen/Screen Group).

2 For each template part that you would like to design for this screen/screen group, ensure that
the area that is to be overridden is enclosed by a asp:contentplaceholder tag. For example,
if you would like to change the page header, implement the following in the template.master
file.

<asp:contentplaceholder id="<TemplatePlaceHolderID>" runat="server" >
.
.

Links section
.
.

</asp:contentplaceholder>

3 Server side functions referred by the template.master file will have to be placed in the tem-
plate.master.cs/vb file.

4 In the aspx file that was generated for the screen/screen group (generatedpage.aspx), override
a template placeholder by adding your content and enclosing it within a asp:Content tag,
setting the attribute ContentPlaceHolderIDwith the ID of the template place holder previously
defined.

<asp:Content ID="<tagID>" ContentPlaceHolderID="<TemplatePlaceHolderID>" ↩
runat="server">
 .
 .
 <YOUR CONTENT HERE>
 .
 .
</asp:Content>

Creating a New Template

During the process of creating a newWeb application, you are requested to select a template. By
default, these templates are ready to use Web site designs. You can create a template and add it
to the list of available templates.

Design Tips

■ Before making changes in the css files, it is highly recommended to backup these files.

39Web Application Development

General Application Customization

■ Changing colors in the css files can effect the entire look and feel of the application, therefore it
is recommended to test the changes on a few different screens.

■ Rather than changing existing classes tomeet the template requirements, try adding new classes
of your own.

■ Instant pages rely on absolute positioning defined in the styles_Instant.css. Do not change pos-
ition style attributes in the css files.

■ Pages generatedwith absolute positioning: changing position attributes in the style_generated.css
file may cause them not to display properly (this can be overcome in design time).

■ Remember that changes made to one css file will usually need to be implemented to all three
css files, if both generated pages and instant pages are to have the same look and feel.

To create a new template:

1 Create a newWeb application using one of the built-in templates.

2 Design the template.jsp/template.master file as desired.

Ensure that the template includes:

JSP: <gx:placeholder id="PagePlaceHolder"/> tag.

.NET: <asp:ContentPlaceHolder ID="GXPagePlaceHolder" runat="server"/> tag.

This tag's position on the screen can vary and can be placed wherever you wish. Removing
this tag means that screen content for generated and instant pages will not be displayed.

3 Package the template and place it in the installation directory, so that it will be displayed
when using the Create newWeb Application wizard:

1. Create a new directory in the Templates directory in the ApplinX installation folder. The
name of the directory will be the name of the template displayed in the NewWeb Applic-
ation wizard.

2. Within this directory create a commondirectory and a java/dotnet (according to the template
you created) directory. Within the common directory, create a css and images directory:

3. In the css folder place all the css files that you modified/created.

Web Application Development40

General Application Customization

4. In the images folder place all the image files that you modified/created in the template file
or in the css files.

5. In the common folder place the image that the wizard will display as a preview of this
template. The image size should be 630x400pixels and the name of the image file must be
thumbnail.jpg.

6. Place the template file in the relevant java/dotnet folder.

Activating an Application Map from a Menu

Navigationmenus, are very common inWeb applications. They provide a direct, quick navigation
to any page in the application. In ApplinX Web applications, navigation menus can be used to
directly access any available screen in the host application, thus eliminating the need of using the
original menu screens in the host while fully preserving their functionality. This is achieved using
the applicationmap. Eachmenu optionwill be an accessible host screen, and clicking it will invoke
the ApplinX application's map with the screen's name as its parameter.

Refer to the Composite demo, template.jsp/template.master.cs in which the proposals/customers
links set a hidden field with the desired screen name and invoke a server side function
(beforePaneMenuBtn_Click) that performs the navigation to the desired screen (refer to /GXBasic-
Context.jsp/template.master.cs).

Using ApplinX Repository Folders' Structure to Organize Web Pages

ApplinX Web application's Web pages can be hierarchically organized according to the folder
structure of the screens they represent. For example, if the screenMainMenu resides in the folder
general\menu_screens in the ApplinX repository, it can reside under the directory \root
folder\general\menu_screens in the Web application.

To use ApplinX repository folder structure to organize Web pages:

1 Refer to Configuring your Framework and access the Framework Configuration Editor.

2 Ensure that the Use Folders check box in theGeneral node is selected. The field Virtual dir-
ectory is displayed.

3 Enter the name of the virtual directory of theWeb application. For example: CompositeDemo.

4 To generate a Web page into a specific folder:

1. Create a directory structure under the root folder of the Web application that corresponds
to the folder structure of the ApplinX repository.

41Web Application Development

General Application Customization

2. You can either select the directory within the generation wizard (JSP only), or you can
move the generated pages to the relevant directory (JSP and .Net).

Controlling the Connection Properties from the Code

ApplinX allows passing various connection parameters from the code in order to control the
configuration of the application.

For example: Controlling from the code if the application will work against a trace file.

Refer to the Composite demo (with/without a trace file).

.NET:

gx_appConfig.SessionConfig.addVariable(GXBaseObjectConstants.GX_VAR_REPLAY_FILE,null);

// to cancel the replay file configured

JSP:

getGXAppConfig().getSessionConfig().addVariable(GXBaseObjectConstants.GX_VAR_REPLAY_FILE,null);

// to cancel the replay file configured

For a list of possible connection variables, see GXBaseObjectConstant class.

For code sample, see Composite Demo Application: "Login" path procedure - ApplinX repository
Login.aspx / Login.aspx.cs - .NET Login.jsp / WEB-INF/classes/contexts/Login.java - JSP

Handling Flickering of Screens

It is necessary to use the Flickering of Host Sessions feature when one of the following happens:

■ In the browser, a blank screen (empty screen) is displayed when navigating between two host
screens.

■ In the browser you are required to submit the [ENTER] key (or any other key) twice in order to
navigate to the next host screen.

The initial need for Flicker arises when specific host screens are received 'split' between several
buffers of data. Thus ApplinX Server needs to be informed to wait an additional amount of time

Web Application Development42

General Application Customization

for the complete screen to arrive. This additional amount of time is defined (in milliseconds) in
the Flicker parameter in the Application Configuration dialog box.

The flicker setting applies to the entire ApplinX application, meaning that if the flicker is set to
500ms, after each host transaction the flicker time will be added to the communication time. In
other words, the entire application will be 'slowed down' by the flicker time. Therefore this value
should only be set for the entire application according to the guidelines detailed in Handling
Flickering of Screens. Also refer to Waiting for Screens using Wait Conditions and to the Perform
background check for host screen changesparameter in theConfigurationEditor for further details.

Waiting for Screens, using Wait Conditions

Wait conditions are used to handle specific 'problematic' screens that requirewaiting an additional
amount of time for the complete screen to arrive. Refer toHandling Flickering of Screens for further
details regarding using the wait conditions.

To add a wait condition that waits for a specific screen in the application:

JSP

In GXBasicContext.java, in the method gx_postSendKey, add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
//An example of adding a wait condition in a page that waits for specific screens ↩
according to the key sent.
if(gx_context.getGXForm().get_HostKeys().equalsIgnoreCase("[PF3]")
&& ↩
gx_context.getGXSession().getScreen().getName().equalsIgnoreCase("CustomerDetails"))
{
 sr.addWaitCondition(new GXWaitForScreen("MainMenu",50000,0));
 gx_context.getGXSession().getScreen(sr);
}

.NET

In GXBasicWebForm.cs, in the method user_postSendKeys, add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
//An example of adding a wait condition in a page that waits for specific screens ↩
according to the key sent.
if(gx_form.HostKeys.Equals("[PF3]")
&& gx_session.getScreen().getName()=="CustomerDetails")
{
 sr.addWaitCondition(new GXWaitForScreen("MainMenu",50000,0));
 gx_session.getScreen(sr);
}

43Web Application Development

General Application Customization

To apply a flicker setting to a certain action:

JSP

In GXBasicContext.java, in the method gx_postSendKey, add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
if(gx_context.getGXForm().get_HostKeys().equalsIgnoreCase("[enter]")
&& ↩
gx_context.getGXSession().getScreen().getName().equalsIgnoreCase("CustomerDetails"))
{
 long lTimeout = 50000;//millisecond
 long lFlicker = 750;//millisecond
 sr.addWaitCondition(new GXWaitHostQuiet(lTimeout,lFlicker));
 gx_context.getGXSession().getScreen(sr);
}

.NET

In GXBasicWebForm.cs, in the method user_postSendKeys, add the following code:

GXGetScreenRequest sr = new GXGetScreenRequest();
if(gx_form.HostKeys.Equals("[enter]")
&& gx_session.getScreen().getName()=="CustomerDetails1")
{

long lTimeout = 50000;//millisecond
long lFlicker = 750;//millisecond
sr.addWaitCondition(new GXWaitHostQuiet(lTimeout,lFlicker));
gx_session.getScreen(sr);

}

Customizing the Host Keys

It is possible to display the host keys for the current host screen (analyzed by ApplinX Server ac-
cording to the defined host keys patterns) asWeb buttons, hyperlinks or in other advanced formats
(images, etc.). In addition, it is possible to fully customize the host keys using the GXIHostKey-
sTagUserExit interface (adding buttons, removing links, changing captions and more). To make
complex changes to the control, such as adding a row/column, implement the interfaceGXIHostKey-
sTagUserExit as necessary.

Refer to Host Keys for configuring a host key pattern.

To display and customize the host keys:

1 By default, after defining a host key pattern, the analyzed keys are displayed as hyperlinks
in the Web application.

Web Application Development44

General Application Customization

2 Todisplay the keys as buttons, refer toConfiguring your Framework and access the Framework
Configuration Editor. Select Buttons in the Host keys field in the Instant node.

3 Customization of the host keys' appearance (colors, fonts etc.) is done in the style sheets
(css\styles_instant.css and css\styles_generated.css), in the gx_hky class.

4 For advanced customization, it is possible to use theHost Keys' control. By using the template
option of the control, it is possible to write a custom template for displaying the host keys.
The following code is usually placed in one of the template jsp/aspx files and displays a dif-
ferent image for each host key; the image name is determined according to its caption. In ad-
dition, the keys are positioned vertically:

JSP

<gx:hostKeys vertical="true" border="0" keyType="template">
 <a href="#" onclick="gx_SubmitKey('$(ACTION)')" ↩
title="$(ACTION)-$(CAPTION)">

</gx:hostKeys>

.NET

<gx:GXHostKeysControl runat="server" vertical="true" border="0" ↩
KeyType="Template">
 <a href="#" onclick="gx_SubmitKey('$(ACTION)')" ↩
title="$(ACTION)-$(CAPTION)">

</gx:GXHostKeysControl>

In addition, add the following import statement to the file containing the control: <%@ Register
TagPrefix="gx" Namespace="com.sabratec.dotnet.framework.web.controls"
Assembly="GXDotnet" %>

To fully customize the host keys control:

1 JSP

. In the GXBasicContent.java file, the gx_onInitmethod, add the following line:

getGXAppConfig().setHostKeysTagUserExit(new ↩
transforms.UserHostKeysTagTransform());

.NET

: In the GXBasicWebForm file, the OnInit method, add the following line:

45Web Application Development

General Application Customization

gx_appConfig.setHostKeysTagUserExit(new transforms.UserHostKeysTagTransform());

2 In your Web application, transforms directory, open the userHostKeysTagTransform file (when
upgrading your application, copy the file from the relevant framework type new application)
and implement the onHostKeysComplete interface.

For example JSP:

public void onHostKeysComplete(GXITableTag hostKeysTableTag, GXIScreen screen) {

 super.onHostKeysComplete(hostKeysTableTag, screen);

 /*
 // add link
 addLink("Host help","gx_SubmitKey('[pf1]')");

 //get all tags
 GXITag[] tags = getHostKeysTags();

 for (int index=0; index<tags.length; index++){
 //get tag
 GXITag tag = tags[index];

 if (tag instanceof GXILinkTag){ // or GXIButtonTag or GXHtmlString ↩
(for type="template")
 GXILinkTag link = (GXILinkTag) tag;

 // change tag text
 if (link.getText().indexOf("Prev") >= 0){
 link.setText("Previous");
 }

 //remove tag
 if (link.getText().indexOf("Pagedn") >= 0){
 removeTag(link);
 }
 }
 }
 */

 }

Web Application Development46

General Application Customization

For example .NET

public override void onHostKeysComplete(GXITableTag hostKeysTableTag, GXIScreen ↩
screen)
 {
 /*
 base.onHostKeysComplete(hostKeysTableTag, screen);

 //add link
 addLink("Host help", "gx_SubmitKey('[pf1]')");

 //get all tags
 GXITag[] tags = getHostKeysTags();

 //loop on controls in hostKeys array
 foreach (GXITag tag in tags)
 {
 if (tag is GXILinkTag) // or GXIButtonTag or GXHtmlString (for ↩
type="template")
 {
 //get link
 GXILinkTag link = (GXILinkTag)tag;

 // change control text
 if (link.getText().IndexOf("Prev") >= 0)
 {
 link.setText("Previous");
 }

 //remove control
 if (link.getText().IndexOf("Pagedn") >= 0)
 {
 removeTag(link);
 }
 }
 }
 */
 }

For complete description of the Host Keys control properties, see Host Keys Component.

Sample code can be found in the Instant Demo application. Template.jsp , template.master (.NET) -
contains an example for using the Host Keys control.

47Web Application Development

General Application Customization

Activating the Screen Locker

The ApplinX Framework contains a built-in feature of a screen locker. The purpose of a screen
locker is to indicate to the user bymeans of amessage, that the application is processing his request,
and blocks him from interfering with the current process by repressing a button/link or keyboard
PF/ENTER.

To activate the screen locker:

1 Refer toConfiguring yourWebApplication and access the FrameworkConfiguration Editor.
In theGeneral node, select Use screen locker.

2 Use the width/height percentages in the file template/screenLocker.htm to control the location
of the message.

3 Replace the text "Please wait" with an alternative text/image as required.

Note: When adding a link in the page that performs a JavaScript action it is highly recom-
mended to use onclick event and not the href attribute. Using the href attribute will cause
the screen locker to be activated.

It is also possible to control the screen locker on the Web page level (refer toHandling the Screen
Locker on the Page Level).

Natural UNIX: Integrating a Login Page in the Web Application

When the Natural UNIX host requires separate connection for each individual user together with
support of password changing/expiring, the ApplinX Framework provides a suitable Login Page
to be used in your Web application. The Login page should be displayed before attempting to
connect to the host. In this page the user is required to enter the user name and password. Only
after the user name and password are authenticated by the host, the connection to the host ismade.
The look and feel of the Login page can be edited and changed to suit your Web application. The
login page logic is implemented within the ApplinX Framework.

Note: The hostLogin page is provided with your Web application but can also be created
using the Base Object. Refer to the Start>Programs>Software AG ApplinX>Documenta-
tion>ApplinX Development API for further information.

To use the Login page:

■ Edit the index.jsp/index.aspx file and instead of gxfirstpage.jsp/gxfirstpage.aspx,
enter hostLogin.jsp/hostLogin.aspx, or refer your end users to this page.

Web Application Development48

General Application Customization

Implementing & Controlling JavaScript Events using the gx_event Object

TheApplinX JavaScript engine provides a cross browser event object that enables creating dynamic
web pages. The gx_event object is created within the Javascript engine. Whenever an event is
triggered it is passed to the user Exit functions (/js/userExits.js) and from there to the page-level
function (if one exists).

gx_event enables handling browser events such as OnKeyDown. The following example will
cancel the OnKeyDown event whenever the [Enter] key is pressed on a certain text area ("myTex-
tArea"), prevent the page from being submitted and manually add a newline character to the text
area value:

Assume your JSP/ASPX page has the following input:

<textarea row="5" id="myTextArea" ></textarea>

Add the following pageOnKeyDown function to your generated page

function pageOnKeyDown(gx_event){
...
var win = gx_event.window;
if (gx_event.keyCode==13 && gx_event.element.id=="myTextArea"){
gx_event.cancel();
GXBrowserUtil.getElement("myTextArea").value += "\r\n"

}
...
}

Refer to the API:

■ GXEvent_Object

■ GXEvent.keyCode

■ GXEvent.additionalKey

■ GXEvent.element

49Web Application Development

General Application Customization

Retrieving Data from Fields Outside the Modal Window Currently Displayed

Relevant data, such as host messages or errors, may sometimes appear in the area outside the
currently displayed modal window frame. To retrieve these messages/errors it is necessary to re-
trieve the entire screen content rather than just the modal window content. This can be achieved
by writing the following method:

Java

private String getMessgeOutsideWindow(int MessageRow, int MessageCol){
 try {
 // Create a Screen Request the would ignore modal window definition
 GXGetScreenRequest gsr = new GXGetScreenRequest();
 ↩
gsr.addVariable(GXBaseObjectConstants.GX_VAR_HOST_WINDOW_ENABLED,"false");

 // Get the current screen from ApplinX server using the Screen request
 GXIScreen screen = getGXSession().getScreen(gsr);

 // Return Field content according to the specified position
 GXPosition pos = new GXPosition(MessageRow, MessageCol);
 return screen.getFields().getFieldByPosition(pos).getContent();

 } catch (GXGeneralException e) {
 return null;
 }
}

.NET

private string getMessgeOutsideWindow(int MessageRow, int MessageCol)
{

// Create a Screen Request the would ignore modal window definition
GXGetScreenRequest gsr = new GXGetScreenRequest();
gsr.addVariable(GXBaseObjectConstants.GX_VAR_HOST_WINDOW_ENABLED, "false");

// Get the current screen from ApplinX server using the Screen request
GXIScreen screen = gx_session.getScreen(gsr);

// Return Field content according to the specified position
GXPosition pos = new GXPosition(MessageRow, MessageCol);
return screen.getFields().getFieldByPosition(pos).getContent();

}

Note: This method can be added to GXBasicContext or to a generated page's code class.

Web Application Development50

General Application Customization

ApplinX Server Load Balancing

When you have several ApplinX servers and want new sessions to always be created on the least
busiest server, determine this using the GXLoadBalancer class.

To perform load balancing

1 From within the relevant application in the new JSP directory, openWEB-INF\classes\con-
texts\GXBasicContext.

2 Add the necessary statements:

JSP

import com.sabratec.ci.GXLoadBalancer

.NET

using com.sabratec.dotnet.ci;

3 Within the file, locate the gx_initSessionConfigmethod and place the following code:

/// ApplinX Server Load Balancing ////////////////////////////////
GXWebAppConfig gx_appConfig = getGXAppConfig();

GXLoadBalancer lb = new GXLoadBalancer();
// Add server URLs. Example:
// lb.addServerURL("applinx://localhost:2323");
lb.addServerURL("applinx://<ApplinXServer1>:<portNumber>");
lb.addServerURL("applinx://<ApplinXServer2>:<portNumber>");
lb.addServerURL("applinx://<ApplinXServer3>:<portNumber>");
lb.addServerURL("applinx://<ApplinXServer4>:<portNumber>");

// Replace ApplinXServerX with the server name
// Replace portNumber with the appropriate ApplinX server port number.

String availableServer = lb.getAvailableServer();
gx_appConfig.getSessionConfig().setServerURL(availableServer);

51Web Application Development

General Application Customization

Enabling Modal Windows for Mobile Devices

By default, modal windows are disabled for mobile devices such as iPad and iPhone (seeWindow
> Enable modal windows underWeb Application Configuration Parameters). This behavior can be
overridden with the user exit within the userExit.js file. See code snippet below:

// sample code of to check if modal window is supported.

function gx_IsSupportingModalWindow(){
var ua = navigator.userAgent;
if (ua){
return !((ua.indexOf("iPad")>-1)
|| (ua.indexOf("iPhone")>-1)
|| (ua.indexOf("Mobile")>-1)
|| (ua.indexOf("Android")>-1));
}
return true;
}

Retrieving the Host Printer Device Name from a Database and Setting the
ApplinX Printlet to Work with that Device

Connecting to a host printer queue requires users to supply a device name. The device provides
the host information as to which printer queue to associate each user. Usually, each user or IP
address has a pre-defined device name. This data can be stored in a database and retrieved before
creating the printer session in the ApplinX web application.

Customize ApplinX Framework Session Error Handling

The default behavior of the ApplinX Framework when it encounters an ApplinX session error is
to redirect the user to the error.jsp page. This page will specify the error code andwill also provide
a description of the error. For example: If, for some reason, the ApplinX session has been discon-
nected, pressing a PF key in the web application will result in the following error:

Web Application Development52

General Application Customization

However, in some cases you may want to capture these errors and perform a different action. The
following example will demonstrate how the default ApplinX method can be overridden with
new functionality.

For example, upon receiving a 5001 error, you may want the web application to automatically try
to re-establish a connection to the host.

JSP

To do this, add the following code to the GXBasicContext class:

// Override the gx_handleSessionError with additional functionality
public void gx_handleSessionError(GXGeneralException ex){
try{
// Is the error code 5001?
if (ex.getErrorCode()== 5001){
// Try to re-establish a connection to the host
getResponse().sendRedirect("gxfirstpage.jsp");
}
else{ // Otherwise, perform the default behavior
super.gx_handleSessionError(ex);
}

}
catch (IOException e){
// TODO : Handle Failed page redirection

}
}

.NET

To do this, add the following code to the GXBasicContext class:

53Web Application Development

General Application Customization

public override void ↩
gx_handleSessionError(com.sabratec.applinx.baseobject.GXGeneralException err)
{
 if (err.getErrorCode() == 5001)
 {
 // Try to re-establish a connection to the host
 Response.Redirect("gxfirstpage.aspx");
 }
 else
 { // Otherwise, perform the default behavior
 base.gx_handleSessionError(err);
 }
}

Customize the Web Application's Error Page

One may want to customize the Web application's error page for any number of reasons. These
reasons may include providing the error page in non-English languages, or to change the look
and feel of the page or add additional messages.

The look and feel of the page can easily be customized by changing the layout of the error.jsp
page. Changing the page's dynamic content can be achieved by editing the error.java file.

The error.java/Error.apsx.cs/vb file contains an example for translating a specific error message to
another language, according to the user's locale setting. In order to activate this functionality un-
comment theCustomizeErrorHandlingmethod andun-comment the call to CustomizeErrorHand-
ling in gx_onLoad in the error.java file (JSP) or Page_Load in the error.aspx.cs file (.Net).

Web Application Development54

General Application Customization

12 Transferring Natural Data to/from the Host

■ Transferring Data using ActiveX ... 56
■ Transferring Data without using ActiveX ... 57
■ Activating a Natural Command ... 58

55

The host sometimes requires uploading/downloading files. Part of the process can be performed
automatically by defining to work with an ActiveX component or when setting the download to
Automatic mode (relevant whenworkingwithMozilla browsers, as it is not possible to workwith
an ActiveX component with this browser). These settings can be configured in the Framework
Configuration Editor, in theNatural upload/download node.

Note: It is required to define Natural Transfer Support in the Host Properties, Options tab.

Transferring Data using ActiveX

Notes:

1. ActiveXwill work only if you haveMicrosoft .NET Framework version 3.5/4.0 installed on your
machine.

2. The site using theActiveX needs to be defined as a “trusted site”. UnderTools > InternetOptions
> Security, click Custom level and under ActiveX controls and plug-ins > Allow Scriptlets
check Enable.

■ Downloading Data
■ Uploading Data
■ Configuring the Security Tab for Internet Explorer

Downloading Data

When the host refers to a specific file name, the file will be downloaded automatically (silently).

When the host does not specify the file name and location, a Windows dialog box will indicate
where the file should be saved .

It is possible to determine that the filewill automatically overwrite an existing file (without requiring
the user to confirm this action). This setting can be configured in the Framework Configuration
Editor, in the Natural upload/download node.

Uploading Data

When the host provides a name, the file is uploaded automatically (silently).

When the host does not provide a name the Windows File selection dialog box is displayed so
that you can select the file to be uploaded.

Web Application Development56

Transferring Natural Data to/from the Host

Configuring the Security Tab for Internet Explorer

To install the the ActiveX control on Internet Explorer you will need to configure the security tab.

To adjust ActiveX settings for Internet Explorer

1 Open Internet Explorer.

2 Click the Toolsmenu, and then click Internet Options.

3 On the Security tab, choose Trusted site and add the site to the trusted site list.

4 Click onCustom level and scroll down the Security Settings list until you seeActiveX controls
and plug-ins.

5 For Automatic prompting for ActiveX controls, click Enable.

6 Scroll down toDownload signed ActiveX controls and click Enable or Prompt.

7 Scroll down to Run ActiveX controls and plug-ins and click Enable or Prompt.

8 Scroll down toScriptActiveX controlsmarked safe for scripting and clickEnable orPrompt.

9 Scroll down to Automatic prompting for ActiveX controls and click Enable, ClickOK, and
then clickOK again.

After you have completed these steps, log on to the application to run it again.

Transferring Data without using ActiveX

■ Downloading Data
■ Uploading Data

Downloading Data

When the host refers to a specific file name, the download will start automatically, and when the
downloading process has been completed, an Open/Save browser dialog box is displayed.

When the host does not specify the file name and location, the ApplinX Download dialog box is
displayed where you specify the file name and extension (It is possible to determine that this
screenwill not be displayed and that the downloadwill start automatically by selectingAutomatic
download in theNatural upload/download node of theFramework Configuration Editor). Once
the downloading process is completed, an Open/Save dialog box is displayed.

57Web Application Development

Transferring Natural Data to/from the Host

Uploading Data

The ApplinX Upload dialog box is displayed. Browse and select a file to upload and then click
Upload. When the host provides a name, a message is displayed with the requested file name

Uploading Large Files (more than 4MB)

JSP

When uploading files using JSP, you may need to allocate additional memory to yourWeb server.
This is a Web Server limitation and not ApplinX.

.NET

When uploading files using .NET add the following line to your web.config file as a child of
<system.web>:

<httpRuntime executionTimeout="90" maxRequestLength="4096"
useFullyQualifiedRedirectUrl="false" minFreeThreads="8"
minLocalRequestFreeThreads="4" appRequestQueueLimit="100"/>

Note that the default value of the maxRequestLength attribute is 4096 (4MB). Change the value
to suit your needs.

Activating a Natural Command

When using ActiveX in the framework for Natural Data Transfer (see Configuration Editor),
Natural commands of type OS/DOS are executed on the browser machine automatically by the
ApplinX Framework. When not using ActiveX the command is not handled

Web Application Development58

Transferring Natural Data to/from the Host

13 Instant Pages Customization

■ Using a Proportional (Non-Fixed) Font in Web Pages ... 60
■ Controlling Instant Display Properties .. 61
■ Code Transformations .. 61
■ Creating a New Code Transformation .. 62
■ Applying a New Transformation to all Screens ... 63
■ Applying a New Transformation to a Screen Group .. 64
■ Manipulating Individual Host Fields ... 65
■ Manipulating Host Characters .. 70
■ Manipulating Host Keys .. 71
■ Improving Transitions between Screens ... 71

59

Using a Proportional (Non-Fixed) Font in Web Pages

Controlling Instant Display Properties

Code Transformations

Creating a New Code Transformation

Applying a New Transformation to all Screens

Applying a New Transformation to a Screen Group

Manipulating Individual Host Fields

Positioning Specific Fields

Formatting Specific Fields

Replacing a Field's Text

Replacing a Field with a Web Element, Adding a Web Element

Manipulating Host Characters

Manipulating Host Keys

Improving Transitions between Screens

Using a Proportional (Non-Fixed) Font in Web Pages

By default, ApplinX uses a monospaced, fixed font (Courier New) for displaying instant HTML
pages. However, it is possible to use a proportional (non-fixed) font, to achieve a more modern,
Web-like look & feel. Since the rendering of the HTML screen is based on absolute positioning,
using a proportional font usually does not damage the correct alignment of the host fields (although
some data may appear misaligned).

To use a proportional font in Web pages (JSP & .NET):

■ For Instant HTML Pages

In the file \css\styles_instant.css, change the following classes to use a proportional font of
your choice, for example:

#gx_screenArea
{

position:relative;
font-family: "Verdana";
height:0px; /* make scrolling when needed*/

}
#gx_screenArea input,
#gx_screenArea select {

font-family: "Verdana";
position:absolute

}

Web Application Development60

Instant Pages Customization

Or:

For Generated Pages

In the file \css\styles_generated.css, in a similar manner as for instant HTML pages, change all
the classes that use the font "courier new" to a proportional font.

Controlling Instant Display Properties

It is possible to set various display properties of instant HTML pages, such as colors, fonts, etc.
This is usually done in order to apply a Web look & feel to the ApplinX Web application.

Most of these settings are done in the style sheet file. Specific settings are set in other files. Refer
to the relevant tasks for more details.

To control instant display properties (JSP and .NET):

1 The css\styles_instant.css file contains all CSS classes used for rendering instant HTML pages.
Change them as necessary to affect the colors and fonts used for the pages.

2 To find out which CSS class is used for a specific element or field in the instant HTML page,
it is possible to use the Browser view source option to view the generated HTML source, and
then look for the element and extract its CSS classes.

Note: This style sheet applies only to instant HTML pages. For modifying the styles
used for generated web pages (JSP, ASPX), use the \css\styles_generated.css file.

Code Transformations

A Code Transformation (or Code Transform) is a code class (written in Java, C# or VB.NET for
JSP or .NET frameworks respectively), that is executed on all host screens or on a specific group
of screens (i.e. an ApplinX Screen Group) and modifies the rendered instant HTML page for the
current host screen it is executed on.

Refer to

■ Creating a New Code Transformation
■ Applying a New Transformation to all Screens
■ Applying a New Transformation to a Screen Group
■ Manipulating Individual Host Fields

61Web Application Development

Instant Pages Customization

■ Positioning Specific Fields
■ Formatting Specific Fields
■ Replacing a Field's Text
■ Replacing a Field with a Web Element, Adding a Web Element
■ Manipulating Host Characters
■ Manipulating Host Keys

Creating a New Code Transformation

In most cases, transformations are defined using the Transformation Wizard . However, when
due to limited flexibility, it is not be possible to define certain required transformations using the
wizard, complement thewizard-definedTransformation entitieswith code-definedTransformation
classes.

Creating a new Instant transformation is carried out by using the provided template transformations
(UserTagTransform1, UserCompletionTransform1, UserHostKeysTagTransform).

UserTagTransform1 contains events for each individual rendering event and should be used for
new transformations that manipulate specific tags (input fields, output fields, GUI elements, etc.)
- for example, adding images or repositioning fields.

UserCompletionTransform1 is called upon completion of the entire rendering process and should
be used for new transformations that manipulate the entire rendered HTML - for example, a
transformation that converts a host menu screen to a list of hyperlinks.

To create a new transformation (JSP):

1 Copy one of the template transformations from \web-inf\classes\transforms and rename the
file and the class:

public class SampleTransform extends GXTagListener{

2 Add code in the relevant stub methods.

3 To apply the transformation, see the tasks Applying a New Transformation to all Screens
and Applying a New Transformation to a Screen Group.

To create a new transformation (.NET):

1 Copy one of the template transformations from the transforms directory and rename the file
and the class:

public class SampleTransform: GXTagListener

Web Application Development62

Instant Pages Customization

2 Add code in the relevant stub methods.

3 To apply the transformation, see the Applying a New Transformation to all Screens and
Applying a New Transformation to a Screen Group.

Applying a New Transformation to all Screens

This task applies an existing transformation. To create a new transformation, see the taskCreating
a New Transformation.

To apply a new transformation to all host screens (JSP):

■ In the file web-inf\classes\contexts\GXInstantLogicContext.java, uncomment the code in the
function registerInstantTransforms and register the new transformation class:

public void registerInstantTransforms() {
GXRenderConfig instantConfig = getGXAppConfig().getInstantConfig();
instantConfig.addTagListener(new UserTagTransform1());

// add here more transform registrations
}

UserTagTransform1 being the name of the new transformation class.

To apply a new transformation to all host screens (.NET):

■ In the file GXInstantLogicWebForm.cs, uncomment the code in the function
registerInstantTransforms and register the new transformation class:

public virtual void registerInstantTransforms() {
gx_appConfig.InstantConfig.addTagListener(new UserTagTransform1());
// add here more transform registrations

}

UserTagTransform1 being the name of the new transformation class.

63Web Application Development

Instant Pages Customization

Applying a New Transformation to a Screen Group

This task applies an existing transformation. To create a new transformation, refer to Creating a
New Transformation.

It is possible to apply a transformation only for a specific ScreenGroup (or several ScreenGroups).
For example, a transformation that handles the command line field should be applied to the screen
group of all screens containing this field.

To apply a new transformation to a screen group (JSP):

1 If the screen group has its own generated Web page, add the registration function to the file
web-inf\classes\contexts\screenGroupName.java, to the function registerInstantTransforms:

public void registerInstantTransforms() {
super.registerInstantTransforms();
GXRenderConfig instantConfig = getGXAppConfig().getInstantConfig();

instantConfig.addTagListener(new MyTagTransform());
instantConfig.addCompletionListener(new MyCompletionTransform());

}

Where MyTagTransform is the name of the new transformation class and
MyCompletionTransform is the name of a new completion transformation class.

2 If the screen group does not have its own generated Web page, register it in web-
inf\classes\contexts\GXInstantLogicContext.java, and add code that will register it only for the
appropriate screen group:

public void registerInstantTransforms() {
GXRenderConfig instantConfig = getGXAppConfig().getInstantConfig();
try {
if (getGXSession().getScreen().isMemberOf("MyScreenGroup")) {

instantConfig.addTagListener(new MyTagTransform());
instantConfig.addCompletionListener(new MyCompletionTransform());

}
} catch (GXGeneralException e) {}
}

Where MyScreenGroup is the name of the screen group, MyTagTransform is the name of a new
tag transformation class and MyCompletionTransform is the name of a new completion
transformation class.

3 It is also possible to add code in the transformation class itself that will activate it only for the
appropriate screen group(s).

Web Application Development64

Instant Pages Customization

To apply a new transformation to a screen group (.NET):

1 If the screen group has its own generated Web page, add the registration function to the file
screenGroupName.aspx.cs, to the function registerInstantTransforms:

public override void registerInstantTransforms() {
base.registerInstantTransforms();
gx_appConfig.InstantConfig.addTagListener(new MyTagTransform ());
gx_appConfig.InstantConfig.addCompletionListener(new MyCompletionTransform());
}

Where MyTagTransform is the name of the new transformation class and
MyCompletionTransform is the name of a new completion transformation class.

2 If the screen group does not have its own generatedweb page, register it inweb- GXInstantLo-
gicWebForm.cs, and add some code that will register it only for the appropriate screen group:

public virtual void registerInstantTransforms() {
if (gx_session.getScreen().isMemberOf("MyScreenGroup")) {

gx_appConfig.InstantConfig.addTagListener(new MyTagTransform ());
gx_appConfig.InstantConfig.addCompletionListener(new MyCompletionTransform());
}
}

Where MyScreenGroup is the name of the screen group, MyTagTransform is the name of a new
tag transformation class and MyCompletionTransform is the name of a new completion
transformation class.

3 It is also possible to add code in the transformation class itself that will activate it only for the
appropriate screen group(s).

Manipulating Individual Host Fields

The following tasks handle manipulation of specific host fields. The common methodology for
such manipulation is identifying the screen groups including these fields, mapping the relevant
fields as application fields and writing custom transformations for handling the mapped fields.
See also Instant Web Application Development Methodology.

Note: It is possible to carry out basicmanipulation of fields using the TransformationWizard.

65Web Application Development

Instant Pages Customization

Positioning Specific Fields

It is possible to reposition a specific field in a different position in the Web page (instead of in its
original host position). It is also possible to display a field in one of the template sections.

Note: It is recommended to map the fields as application fields. Refer to the Instant Web
Application Development Methodology section for general instructions on mapping fields
to screen groups.

Note: It is possible to carry out basicmanipulation of fields using the TransformationWizard,
Text to Text transformation or Input Field to Text Field transformation (detailed in the
Transformations).

To position a specific field:

1 To reposition a field, create a new tag transformation and register it to the relevant screen
group(s) or to all screens. Refer to Creating a New Transformation, Applying a New Trans-
formation to all Screens and Applying a New Transformation to a Screen Group.

2 In the transformation class, add code that will reposition the field in the appropriate method.
It will usually be onNewLabel (for output fields) or onNewTextField (for input fields):

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {

label.setPosition(new com.sabratec.util.GXPosition(3,30));
}

}

Where MyAppField is the name of the mapped application field to reposition and 3,30 is the
new position, in host units.

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {

label.setPosition(new com.sabratec.util.GXPosition(3,30));
}

}

Where MyAppField is the name of the mapped application field to reposition and 3,30 is the
new position, in host units.

Web Application Development66

Instant Pages Customization

Formatting Specific Fields

It is possible to display specific host fields in specific styles. For example, displaying the message
line field in a large, red font. This is done using the style sheet (CSS) classes.

Note: It is recommended to map the fields as application fields. Refer to the Instant Web
Application Development Methodologysection for general instructions on mapping fields
to screen groups.

Note: It is possible to carry out basic manipulation of fields using the Transformation
Wizard, Text to Text transformation or Input Field to Text Field transformation (detailed
in the Transformations).

To format a specific field:

1 Create a new tag transformation and register it to the relevant screen group(s) or to all screens.
Refer to Creating a New Transformation, Applying a New Transformation to all Screens
and Applying a New Transformation to a Screen Group.

2 In the transformation class, add code that will reposition the field in the appropriate method.
It will usually be onNewLabel (for output fields) or onNewTextField (for input fields). The
following code demonstrates replacing a field with a hyperlink:

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {
label.removeAttribute("class"); //Needed for removing all css classes

label.setAttribute("class","MyCSSClass");
}
}

Where MyAppField is the name of the mapped application field to format and MyCSSClass is
the name of the CSS class that contains the required formatting.

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {
label.removeAttribute("class"); //Needed for removing all css classes

label.setAttribute("class","MyCSSClass");
}

}

Where MyAppField is the name of the mapped application field to format and MyCSSClass is
the name of the CSS class that contains the required formatting.

67Web Application Development

Instant Pages Customization

Replacing a Field's Text

It is possible to replace the original host text of a specific field with other text.

Note: It is recommended to map the fields as application fields. Refer to the Instant Web
Application Development Methodologysection for general instructions on mapping fields
to screen groups.

Note: It is possible to carry out basicmanipulation of fields using the TransformationWizard,
Text to Text transformation.

Create a new tag transformation and register it to the relevant screen group(s) or to all screens.
Refer to Creating a New Transformation, Applying a New Transformation to all Screens and
Applying a New Transformation to a Screen Group.

In the transformation class, add code that will replace the field's text. It will usually be onNewLabel
(for output fields) or onNewTextField (for input fields):

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {

String text = label.getContent().trim();
if (text.equalsIgnoreCase("HostText1")) {

label.setText("NewText1");
} else if (text.equalsIgnoreCase("HostText2")) {

label.setText("NewText2");
}
//...

}

Where MyAppField is the name of the mapped application field that its text is to be replaced,
HostText1, HostText2 are two original host texts and NewText1, newText2 are two new texts.

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {

String text = label.getContent().Trim();
if (text == "HostText1") {

label.setText("NewText1");
} else if (text == "HostText2") {

label.setText("NewText2");
}
//...

}
}

Web Application Development68

Instant Pages Customization

Where MyAppField is the name of the mapped application field that its text is to be replaced,
HostText1, HostText2 are two original host texts and NewText1, newText2 are two new texts.

Replacing a Field with a Web Element, Adding a Web Element

It is possible to replace a specific field with aWeb element such as a button, a hyperlink, an image
etc.

Note: It is recommended to map the fields as application fields. Instant Web Application
Development Methodology section for general instructions on mapping fields to screen
groups.

Note: It is possible to carry out basic manipulation of fields using the Transformation
Wizard, Text toHyperlink transformation or Text to Image transformation or Text to Button
transformation.

To replace a field with a Web element:

1 Create a new tag transformation and register it to the relevant screen group(s) or to all screens.
Refer to Creating a New Transformation, Applying a New Transformation to all Screens
and Applying a New Transformation to a Screen Group.

2 In the transformation class, add code that will reposition the field in the appropriate method.
It will usually be onNewLabel (for output fields) or onNewTextField (for input fields). The
following code demonstrates replacing a field with a hyperlink:

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {
GXILinkTag myLink = ↩
com.sabratec.applinx.presentation.tags.html.GXHtmlTagFactory.instance().newLink("Software ↩
AG");
 myLink.setTarget("http://www.softwareag.com/");
 event.getScreenTagModel().replace(label, myLink);
 }
}

Where MyAppField is the name of the mapped application field to replace.

69Web Application Development

Instant Pages Customization

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {
GXILinkTag myLink = ↩
com.sabratec.applinx.presentation.tags.html.GXHtmlTagFactory.instance().newLink("Software ↩
AG");
 myLink.setTarget("http://www.softwareag.com/");
 e.getScreenTagModel().replace(label, myLink);
 }
}

Where MyAppField is the name of the mapped application field to replace.

Manipulating Host Characters

It is possible to manipulate host characters, for example, removing unnecessary characters such
as dots (.) or dashes (-), and replacing them with other text or HTML elements, etc.

Note: It is possible to carry out basicmanipulation of fields using the TransformationWizard,
Text to Text transformation.

To handle host characters:

■ Create a new tag transformation and register it to the relevant screen group(s) or to all screens.
Refer to Creating a New Transformation, Applying a New Transformation to all Screens
and Applying a New Transformation to a Screen Group.

In the transformation class, add code that will manipulate the host characters as required. It
will usually be onNewLabel (for output fields) or onNewTextField (for input fields). The fol-
lowing code demonstrates removing dashes (-):

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getContent().indexOf("--") > -1) {

String text = label.getText();
text = com.sabratec.util.GXStringUtil.replaceAll(text,"-","");

label.setText(text);
}

}

Web Application Development70

Instant Pages Customization

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getContent().IndexOf("--") > -1) {
String txt = label.getText();

txt = com.sabratec.util.GXStringUtil.replaceAll(txt,"-","");
label.setText(txt);

}
}

Manipulating Host Keys

It is possible to change the way host keys are displayed, add additional host keys and remove host
keys.

To manipulate host keys

■ Refer to the commented sample code in anyApplinXnewapplication,UserHostKeysTagTrans-
form.java/cs/vb.

Improving Transitions between Screens

Wrapping the GXPlaceHolder component in the template page with a Partial Page rendering
capablility control such as a gx:div, will reduce the traffic between the web application server and
the user client , since only the Instant part of the page will be transferred rather than the whole
page. This will result in a slightly better performance and smoother transition between screens.

JSP:

1 In the Template.JSP file, find the following control:

<gx:placeholder id="GXPagePlaceHolder">Design time page content</gx:placeholder> ↩

2 Place a gx:div tag around the GXPagePlaceHolder :

71Web Application Development

Instant Pages Customization

<gx:div id="instantPanel">
 <gx:placeholder id="GXPagePlaceHolder">Design time page ↩
content</gx:placeholder>
 </gx:div> ↩

3 Override the default behavior of each PF button on your keyboard. In js/userExits.js, change
the globalOnKeyDown function to be of the following structure, where the if statement is before
the activateifexists JavaScript code:

function globalOnKeyDown(gx_event){
 // use win.<SOMETHING> to access the page tags
 // for example: win.document.GX_form
 var win = gx_event.window;
 // if the key a PF key or ENTER
 if ((gx_event.keyCode>111 && gx_event.keyCode<124) || ↩
gx_event.keyCode==13){
 // Update only the instantPanel part of the page
 gx_updatePagePart('instantPanel');
 }
 // activate page scope function if exits
 activateIfExists(gx_event,gx_event.window.pageOnKeyDown); ↩
//gx_event.cancel();
 // for cancel the event
} ↩

.NET:

1 In the Template.master file, find the following control:

<asp:ContentPlaceHolder ID="GXPagePlaceHolder" runat="server"/> ↩

2 Place a div tag around the GXPagePlaceHolder:

<div
 runat="server" id="instantPanel"> <asp:ContentPlaceHolder
 ID="GXPagePlaceHolder" runat="server"/>
</div> ↩

3 Override the default behavior of each PF button on your keyboard. In js/userExits.js, change
the globalOnKeyDown function to be of the following structure, where the if statement is before
the activateifexists JavaScript code:

Web Application Development72

Instant Pages Customization

function globalOnKeyDown(gx_event){
 // use win.<SOMETHING> to access the page tags
 // for example: win.document.GX_form
 var win = gx_event.window;
 // if the key a PF key or ENTER
 if ((gx_event.keyCode>111 && gx_event.keyCode<124) || ↩
gx_event.keyCode==13){
 // Update only the instantPanel part of the page
 gx_updatePagePart('instantPanel');
 }
 // activate page scope function if exits
 activateIfExists(gx_event,gx_event.window.pageOnKeyDown); ↩
//gx_event.cancel();
 // for cancel the event
} ↩

73Web Application Development

Instant Pages Customization

74

14 Emulation Behavior Tasks

■ Customizing the Background Check for Host Screen Changes ... 76
■ Enabling the User to Control the Font Size ... 77
■ Opening Multiple Web Sessions ... 77
■ Printing a Capture of the Host Screen .. 78
■ Enabling Sending Dup and FieldMark Characters to the Host ... 79

75

ApplinX HTML Emulation provides a ready to use, fully functional Web emulation. It is part of
ApplinX installation and is available in JSP and .NET. It is a thin-client Web application and uses
JavaScript and HTML for configuration and fine-tuning.

To install a new HTML emulation refer to the Framework Manager or to the Eclipse Plug-
in/Visual Studio documentation. The emulation template is based on the new_application Web
application. It is possible to configure various features in the Framework Configuration Editor in
the Emulation node. All the emulation features are relevant both for instant and generated pages
(that inherit from GXDefaultLogicContext) unless otherwise displayed in the Emulation node in
the Framework Configuration Editor. Detailed below are some tasks which require configuring
a number of parameters.

Customizing the Background Check for Host Screen Changes

Use the user exits in userExit.js.

GXHostScreenChecker.hostScreenSeqCheckBeforeRefresh(isDirty) > returns boolean

This user exit method is used to perform additional queries for this feature. For example to check
whether the data on the screen is saved. If it is not saved, return false to stop the browser from
refreshing to prevent data loss.)

Example:

/**
* userExists.js prompt user if the screen is dirty
*/

function GXHostScreenChecker.hostScreenSeqCheckBeforeRefresh(isDirty) {
//check
if (isDirty) {

//ask & get answer from user...
alert("Host screen was updated. Data entered will be lost");

return false; //stop refreshing
}
return true; //continue refreshing

}

GXHostScreenChecker.hostScreenSeqCheckSetTimer(ticks) > returns times

This user exit method is used to change the times for the checker timer. The user gets the current
setting time and can return a different value. For example: the user finds 3, 6, 12, 24 too frequent,
so in order to increase the time intervals he can return time*3 which results in 9, 18, 36, 72)

Example:

Web Application Development76

Emulation Behavior Tasks

/**
* userExists.js reset the timer
*/
function GXHostScreenChecker.hostScreenSeqCheckSetTimer(ticks) {

return ticks*3;
}

Enabling the User to Control the Font Size

It is possible to enable the user to control the font size used in the Web application. Font sizes
between 10 and 24px are possible (10, 12, 14...24px).

To enable user control of the font size:

1 Copy the plus/minus links from the header section in the HTML emulation.

2 Set these links to call the gx_increaseFontSize() or the gx_changeFontSize(<desired size
in pixels>)JavaScript functions and the gx_decreaseFontSize() JavaScript function.

Example:

<input type="button" value="+" onclick="gx_increaseFontSize(12);" />

3 Refer to Configuring your Framework and access the Framework Configuration Editor. In
the Instant node, Font size field, select the Dynamic by resolution option from the drop-
down list.

Refer to the API:

■ gx_increaseFontSize

■ gx_decreaseFontSize

■ gx_changeFontSize

Opening Multiple Web Sessions

A known problem of Web servers is that it is not possible to open multiple Web sessions (against
the sameWeb application) from the sameWeb window (in a portal application for example). The
ApplinX session is dependant on theweb session, therefore it is problematic to openmultiple host
sessions using ApplinX Framework. To overcome this problem ApplinX provides an ActiveX
component, which creates a new IE process whenever a newWeb window is required.

In index.aspx/jsp (in the emulation_template folder) uncomment the following line:

77Web Application Development

Emulation Behavior Tasks

<OBJECT ID="gx_emulationComponent" ↩
CLASSID="CLSID:FE93BC5E-332E-41D7-9B36-EA36265998CA" ↩
CODEBASE="z_lib\GXOsApi.CAB#version=1,0,0,0"></OBJECT>

Note: The following function already exists in the index.aspx/jsp file. Notice the use that the
function does with the "gx_emulationComponent" object.

function connect(){
 var newUrl = ↩
"z_resourceReader.aspx?res=pages/z_openFull.htm&gx_page=gxfirstpage.aspx";
 if (window.gx_emulationComponent){
 // If the ActiveX was loaded use it to open a new
 // Internet Explorer window with its own IE process.
 gx_openNewBrowser(newUrl);
 }
 else{
 // If the ActiveX wasn't enabled open a window normally
 location.href=newUrl;
 }
}

Printing a Capture of the Host Screen

As inmost terminal emulators, alsoApplinX enables printing a snapshot of the current host screen.
By executing a JavaScript function a pop-up screen appears enabling users to print the current
screen. This window, unlike the Instant screen, does not include any changes (such as transform-
ations) in the screen.

To enable users to print a capture of the host screen:

■ Add a button/link to the application's Master page (template.jsp/template.master.cs). You can
place it anywhere you see fit. Set it to call gx_printScreen().

Example

<input type="button" id="printButton" onClick="gx_printScreen();" />

Refer to the API:

■ gx_printScreen

Web Application Development78

Emulation Behavior Tasks

Enabling Sending Dup and FieldMark Characters to the Host

Dup and FieldMark are special mainframe characters. In instant and generated pages, a user can
send to the host a not printable character in specific input fields.

To enable sending Dup and FieldMark characters to the host:

1 Refer to Configuring your Framework and access the Framework Configuration Editor. In
the Emulation node, select the Support Dup and FieldMark host keys check box.

2 In the Keyboard mapping node, map two keys, for example:

Host action key: [dup]; Press a keyboard combination: CTRL+D

Host action key: [fieldmark]; Press a keyboard combination: CTRL+F

3 You can also perform this mapping using JavaScript:

function pageOnLoad(){
gx_engine.addKeyBoardMapping(

GXAdditionalKey.CTRL,
68 /* Character 'd' Ascii code */ ,
gx_dup(),
true);

}

4 When pressing CTRL+D (dup) the field will be marked with an asterisk ("*") and the cursor
will move to the next field.

When pressing CTRL+F (fieldMark) the field will be marked with a semi colon (";").

Refer to the API:

■ gx_fieldmark

■ gx_dup

79Web Application Development

Emulation Behavior Tasks

80

15 Page Customization

■ Generating a Framework Page for a Screen ... 82
■ Creating Designed Web Pages .. 82
■ Using Web Application Controls in Generated Pages .. 86
■ Partial Page Rendering ... 87
■ Creating a Button / Hyperlink for Submitting a Host Key .. 88
■ Creating a Button / Hyperlink for Executing a Path Procedure ... 89
■ Collect all Modified Page Fields into an ApplinX Request ... 90
■ Exporting Data to an MS Office Application (Excel, Word) .. 92
■ Building an External Login Page ... 93
■ Collecting Data from Multiple Host Screens .. 94
■ Binding Procedure Outputs to an ApplinX Framework Based Web Page ... 94
■ Updating Data in Multiple Host Screens ... 97
■ Activating a Server Side Function from JavaScript ... 99
■ Mapping Keyboard Keys to User Actions in Individual Pages .. 100
■ Handling the Screen Locker on the Page Level .. 101
■ Navigating between Input Fields ... 102
■ Retrieving Browser Information ... 103
■ Validating your Data ... 103
■ Handling Web Application Windows using the gx_windows Object ... 104
■ Working with Cookies ... 106
■ Working with JavaScript User Exits ... 106
■ Retrieving HTML Objects using gx_getElement ... 107
■ Using the Calendar Component in Generated Pages .. 108
■ Replacing Static Host Confirmation Message with JavaScript Confirmation Pop-up Box 108
■ Opening an Independent Pop-up Box that doesn't have a Corresponding Host Screen 110

81

Generating a Framework Page for a Screen

Refer to:

■ Generating a JSP Page from a Screen
■ Generating a .NET Page from a Screen

Creating Designed Web Pages

■ Creating Designed Web Pages (JSP)
■ Creating Designed Web Pages (.NET)

Creating Designed Web Pages (JSP)

Creating New JSP Pages

The ApplinX Framework for JSP provides an easy and simple way to develop a Web page based
onhost screen(s). Thismethod is especially advantageouswhen the design of the pages is performed
by a third party and all you have to do is just "bind" the HTML to ApplinX.

To create a new JSP page:

1 Create a new JSP page and name it <SCREEN_NAME>.jsp. You can copy its content from
template.jsp.

2 Import the tag library. The line can be copied from template.jsp.

3 Create a new java context class under classes\contexts and name it <SCREEN_NAME>.java.
Copy the file content from template.java. Ensure that you change the class name to
<SCREEN_NAME>.

4 Set the inheritance to GXDefaultLogicContext/GXBasicContext according to the development
method.

5 Design the JSP page any way you like, or by pasting the third party HTML.

6 Declare <gx:form> opener and closer tags as the form tags.

7 If you require to bind an AppField to a dynamic tag:

■ Add a prefix of gx: to the closer and end of the tag, or "/" closer for example, <gx:span
id="span1"></gx:span> or <gx:input id="input1"/>

■ Add an ID attribute: id="<APPFIELD_NAME>" to the tagwhich equals the AppField name
you want the field to bind to.

Web Application Development82

Page Customization

■ Make sure all the attributes are with "".
■ The "class" attribute on the tag should be replaced with cssClass (reserved word in Java).

Any Java IDE that supportsWeb applications should auto-complete for the tag attributes. For any
missing attributes or tags, you can expand the HTML tags library. The Tags library list can be
viewed in the classes\tags folder, or GXTags.tld file under WEB-INF folder.

Note: A gx tag should be well formed just like an XML node.

Tags Library Attributes

In order to work with ApplinX Framework the new page context class should extend from
GXDefaultLogicContext or GXBasicContext.

If you are using a context class for the JSP page, change the inheritance of the new context class,
to GXDefaultLogicContext or GXBasicContext.

If you are not using a context class for the JSP page, set the context to GXDefaultLogicContext or
GXBasicContext, by setting it in the gx:html : <gx:html
gx_context="contexts.GXDefaultLogicContext"

How It Works

The filling-in of fields is performed at run time since each tag can get its content dynamically,
which allows the ApplinX Framework engine to set content for the tags, without writing any code
in them. The tag library allows you to view the JSP page on any other HTML editor, and redesign
the page without worrying about the host logic.

Working with GXBasicContext (JSP)

If you decided to use GXBasicContext, change each link/button that performs any logic to
"<gx:input ... " or "<g:a ..." and add an onserverclick attribute,with a function name (without
"()") in the context class of the JSP page. The context class should contain a public function with
this name without any parameters.

Note: When inheriting fromGXBasicContext, you should call the method gx_attach() in the
load event of your code class.

For example: In <myPage>.JSP:

<gx:html gx_context="contexts.myPage">

...

<gx:input id="myBtn" onserverclick="myBtn_click"/>

In classes\contexts/<myPage>.java

83Web Application Development

Page Customization

Public void myBtn_click(){

}

You can use ApplinX Framework "building blocks" gx functions in the triggered function. For
example: gx_doSubmitKeyLogic("[enter]"), to send the field with an ENTER and jump to the
next page.

Working with GXDefaultLogicWebForm (.NET)/ GXDefaultLogicContext (JSP)

If you decide to use GXDefaultLogic, and the designed page buttons/links should be PF keys, add
javascript:gx_SubmitKey('[<HOST_KEY>]') for each button/link. Combining new server-side
buttons along with GXDefaultLogicWebForm is also possible. When adding a new server-side
button, ApplinX .NET does not interfere in the new event and it can be used for other purposes,
or with paths/building blocks to perform any logic.

Creating Designed Web Pages (.NET)

Generating with ApplinX

Similar to the ASP/JSP Framework, ApplinX can generate for every screen aWeb page in the .NET
environment. You can implement this by employing the ApplinX Designer.

To add a file to the project (after generating it):

1 Click on the project explorer top bar, click show all files.

2 Select the new generated file, right-click and select include in project.

3 You can choose to add a code behind file to the generated page if you selectYes for the prompt
of the VS.NET.

4 After the new file is added to your project, change the inheritance of the code behind class to
GXDefaultLogicWebForm.

How It Works

Unlikewhat occurs in theASP/JSP framework,ApplinXuses theHTML control feature ofASP.NET,
and generates an aspx page with standard HTML tags without any <%%> calls. The filling-in of
fields is performed at run time since each generated tag is generated with the attribute runat =
"server", which allows the ApplinX Framework engine to access the tags, without writing any
code inside them. The generated HTML controls allow you to view the Web page on the .NET
designer or any other HTML editor, and redesign the page without worrying about the host logic.

Web Application Development84

Page Customization

Creating a New .NET Web Form using VS.NET

The ApplinX ASP.NET framework provides another simple and easy way to develop a Web page
based on host screen(s). This method is especially advantageous when the design of the pages is
performed by a third party and all you have to do is just "bind" the HTML to ApplinX.

To create a new designed Web form using VS.NET:

1 Create a newWeb form and name it <SCREEN_NAME>.aspx.

2 Design it any way you like, or by pasting the third party HTML.

3 Declare <form id="GX_form" runat = "server" > as the main form, only if you would like to in-
herit from GXDeafultLogicWebForm.

4 Right-click on the VS.NET designer or add the attribute "Runat = "server"" to the tag for every
HTML field you want to bind to ApplinX. Add an id attribute: "id="<APPFIELD_NAME>""
to the tag which equals the AppField name you want the field to bind to.

In order to work with ApplinX Framework the newWeb page should inherit from
GXDefaultLogicWebForm or GXBasicWebForm.

If you are using a code behind for the Web page, change the inheritance of the newWeb form,
from System.Web.UI.Page to GXDefaultLogicWebForm or GXBasicWebForm.

If you are not using a code behind for the Web page, the inheritance is declared in the first line
<%@ Page ... Inherits="GX..." %>. You need to change the inheritance to
GXDefaultLogicWebForm or GXBasicWebForm.

Working with GXBasicWebForm (.NET)

If you decide to use GXBasicWebForm, change each link/button that performs any logic to runat
= "server", and use the .NET designer to create a function behind the button, by double-clicking
on it. You can use ApplinX Framework "building blocks" gx functions to build the new page logic.
For example: gx_doSubmitKeyLogic("[enter]"), to send the field with an enter and jump to the
next page.

Note: When inheriting from GXBasicWebForm, you should call the method gx_attach() in
the load event of your code class.

For example:

In <myPage>.ASPX:

... <input id="myBtn" type="button" runat="server"/>

In <myPage>.aspx.cs

Public void myBtn_click(){

85Web Application Development

Page Customization

}

Using Web Application Controls in Generated Pages

ApplinX Frameworks support replacement of unprotected fields with a GUI element such as a
combo box, radio button or checkbox. Replacing an unprotected field can be achieved by using a
transformation (typically in Instant pages) or directly in generated pages, using the following
code:

.NET:

ApplinX .NET framework supports the following .NET controls:

<select id=<APP_FIELD_NAME>
runat=server><option value="<HOST-VALUE>"> Display Value </option></select>

<gx:GXCheckBox id="<APP_FIELD_NAME>" runat=server
 checkedValue="<CHECKED-VALUE>" uncheckedValue="<UNCHECKED-VALUE>"
 />
<asp:RadioButtonList id="<APP_FIELD_NAME>" runat="server">
<asp:ListItem Value="<HOST-VALUE>">Display value</asp:ListItem>
<asp:ListItem Value="<HOST-VALUE2>">Display value2</asp:ListItem>
</asp:RadioButtonList> ↩

The gx:Checkbox tag requires users to add a tag registration statement at the top of the page as
follows: <%@ Register TagPrefix="gx"
Namespace="com.sabratec.dotnet.framework.web.controls" Assembly="GXDotnet" %>

Note: When adding the attribute multiple="true" the combobox will be mapped to the
values of a multiple field.

Note: Only checkbox GUI elements need to be configured in the ApplinX Designer.

JSP:

ApplinX Framework for JSP supports the following JSP tags:

<gx:select
 id=<APP_FIELD_NAME>><option value="<HOST-VALUE>"> Display Value ↩
</option></gx:select>

Web Application Development86

Page Customization

<gx:checkbox id="<APP_FIELD_NAME>" checkedValue="<CHECKED-VALUE>" ↩
uncheckedValue="<UNCHECKED-VALUE>"
 />
<gx:radioButtonList id="<APP_FIELD_NAME>" runat="server">
<gx:radioButton value="<HOST-VALUE>">Display value</gx:radioButton>
 <gx:radioButton value="<HOST-VALUE2>">Display value2</gx:radioButton>
 </gx:radioButtonList>

Note: When adding the attribute multiple="true" the combobox will be mapped to the
values of a multiple field.

Partial Page Rendering

Partial Page Rendering (PPR) is a feature that allows a part of a page to be redrawn rather than
having to reload the entire page. Partial Page Rendering offers significant benefits as it improves
application performance as well as provides more direct feedback when users perform actions.
You can add server side buttons/links and perform logic on the target server function, and as a
result update only a part of the page. Do not use this feature if the action triggers navigation to a
different web page.

Do not call getResponse.sendRedirect() (JSP) /Response.Redirect (.NET),
gx_handleHostResponse in the target function.

Typical use: Paging, sorting, collecting aggregated data from a few screens into the same web
page, and more.

Note: Call the gx_updatePagePartmethod with the ID of the panel to be updated.

1. Add a button/link which performs a server side action (refer to Creating a Button/Hyperlink
for Submitting a Host Key).

2. Create a wrapping tag to the web page in the area you want to update:

JSP

<gx:div id="tableArea">
...
</gx:div>

87Web Application Development

Page Customization

.NET

<div id="tableArea" runat="server">
...
</div>

3. Add the following JavaScript code to the link/button:

... onclick="gx_updatePagePart('tableArea')"

... onserverclick="Btn_Clicked" ...

Creating a Button / Hyperlink for Submitting a Host Key

To create a button / link for submitting a host key (JSP):

1 Add a button or a hyperlink to a page, with the attribute

onserverclick="<name_of_server_side_function>":

<gx:a id="mylink" onserverclick="mylink_ServerClick">Top</gx:a>

2 In the Code-behind of the page, add an "onServerClick" function of the following form:

 public void mylink_ServerClick(){
 gx_doSubmitKeyLogic("[pf3]"); } ↩

To create a button / link for submitting a host key (.NET):

1 Add a button or a hyperlink to a page, with the attribute

runat="server": <a href="" runat="server" id="myLink"
onserverclick="myLink_ServerClick">

2 In the code-behind of the page, add an "onServerClick" function of the following form:

private void myLink_ServerClick(object sender,
System.EventArgs e) { gx_doSubmitKeyLogic("[pf3]");

}

To create a button / link for submitting a host key (JavaScript):

■ Add a button or a hyperlink to a page with the attribute:

Web Application Development88

Page Customization

onclick="gx_SubmitKey([keyValue])":
Back

Sample code can be found in the Composite demo: BrowseProposals.jsp/cs containing links that
submit [pf4] and [pf3].

Refer to the API:

■ gx_SubmitKey

■ gx_SubmitKeyInPos

■ gx_SetCursorPos

■ gx_systemRequest

■ SubmitCustomKey

Creating a Button / Hyperlink for Executing a Path Procedure

To create a button / link for executing a navigation path (JSP):

1 Add a button or a hyperlink to a page, with the attribute
onServerClick="<name_of_server_side_function>":

<gx:a id="myLink" onserverclick="myLink_ServerClick">Top</gx:a>

2 In the code-behind of the page, add an "onServerClick" function of the following form:

public void myLink_ServerClick(){
try {
GXPathRequest req = new GXPathRequest("<path_name>");

req.addVariable("<PathInputVariable1>","<value1>");
req.addVariable("<PathInputVariable2>","<value2>");

// ... add additional input values
getGXSession().executePath(req);

gx_handleHostResponse();
} catch(GXGeneralException err){
//handle error
}
}

To create a button / link for executing a navigation path (.NET):

1 Add a button or a hyperlink to a page, with the attribute

runat="server":

89Web Application Development

Page Customization

2 In the code-behind of the page, add an "onServerClick" function of the following form:

private void myLink_ServerClick(object sender,
System.EventArgs e) {

try {
GXPathRequest req = new GXPathRequest("<path_name>");

req.addVariable("<PathInputVariable1>","<value1>");
req.addVariable("<PathInputVariable2>","<value2>");

// ... add additional input values
gx_session.executePath(req);

gx_handleHostResponse();
} catch(GXGeneralException err){
//handle error
}
}

To create a button / link for executing a navigation path (JavaScript):

■ Add a button or a hyperlink to a page with the attribute:

onclick="gx_ExecPath('<path name>')"
Top Men

Sample code can be found in the Composite demo Web application: login.jsp/cs - containing a
button that executes a login path.

Collect all Modified Page Fields into an ApplinX Request

The framework is able to perform automatic actions against the host, by using a simple API. One
of the common tasks is to collect all the modified fields from the Web page into a GXSendKeyRe-
quest / GXPathRequest object, add/remove fields from it, and send it to the host.

To collect all modified page fields into an ApplinX request (JSP)

■ import com.sabratec.applinx.baseobject.*;

// collect all modified fields from the page, along with [enter] key
GXSendkeysRequest req = gx_prepareSendKeysRequest("[enter]");

// collect all modified fields from the page that
// matches the current screen, along with the specified path name
//GXPathRequest req = gx_preparePathRequest("<PATH NAME>");

Web Application Development90

Page Customization

// modify/add a field to the request
req.addInputField("<SOME FIELD>","<SOME VALUE>");

// send the request to the host
getGXSession().sendKeys(req);

// for path execution
// getGXSession().executePath(req);

if (getGXSession().getScreen().getName().equals("<SOME SCREEN NAME>")){
// performs page actions

}
else{

// jump to the relevant page
gx_handleHostReponse();

}

To collect all modified page fields into an ApplinX request (.NET)

■ Using com.sabratec.applinx.baseobject;

// collect all modified fields from the page, along with [enter] key
GXSendkeysRequest req = gx_prepareSendKeysRequest("[enter]");

// collect all modified fields from the page that
// matches the current screen, along with the specified path name
//GXPathRequest req = gx_preparePathRequest("<PATH NAME>");

// Modify/add a field to the request
req.addInputField("<SOME FIELD>","<SOME VALUE>");

// send the request to the host
gx_session.sendKeys(req);

// for path execution
//gx_session.executePath(req);

if (gx_session.getScreen().getName() == "<SOME SCREEN NAME>"){
// performs page actions

}
else{

// jump to the relevant page
gx_handleHostReponse();

}

91Web Application Development

Page Customization

Exporting Data to an MS Office Application (Excel, Word)

ApplinX data can be easily exported to an MS Office application, such as an Excel spreadsheet as
detailed in this example. It is possible to modify the styling and formatting that will be displayed
in Excel. This modification can be done in the HTML tags of the JSP file (For example, if you want
to add a border to a table, in the excel.jsp file, add to the table tag: <table border=1>).

Note: The solution provided below is an applicative solution. The following solution can
be implemented to export data in other formats (such as CSV or Word documents). An
additional example can be found in the Composite Demo, in which the HTML table is ex-
ported to an Excel document.

To export an ApplinX Table to an Excel Spreadsheet (JSP):

1 Define a Web page and a java class bound to it. Add the desired gx tags for the Excel data.
For example: <gx:table id="myTable"/><gx:span id="excelData"/>

2 In the java class, extend GXBasicContext. In the function gx_onLoad define the page's content
type as Excel:

getResponse().reset();
getResponse().setContentType("application/vnd.ms-excel");
getResponse().addHeader("Content-Disposition","attachment; filename=\"" +
gx_table.getName() + ".xls\"");

3 Attach to ApplinX: gx_attach();

4 Get the ApplinX host screen data:

GXITable gx_table = getSession().getScreen().getTables()[0];

5 Fill the gx tags with the retrieved data: getTagAccesor().setTagContent("excelData",xlStr);
getTagsAccesor().setTagTable("excelTable,gx_Table);

6 This code is generic and the page can be invoked from any other page requiring export to
Excel.

Sample code can be found in the Composite Demo Application:

■ WEB-INF\classes\contexts\excel.java - Changing theHTTP response content-type to Excel and
filling the HTML table.

■ \excel.jsp - returning the spreadsheet by invoking excel.java.
■ \BrowseProposals.jsp - invoking excel.jsp upon clicking an image.

Web Application Development92

Page Customization

To export an ApplinX Table to an Excel Spreadsheet (.NET):

1 Define a page that extends GXBasicWebForm. Add a table to the page (with an runat="server"
attribute). In the function Page_Load define the page's content type as Excel:

Response.ContentType = "application/vnd.ms-excel";
Response.AddHeader("content-disposition","attachment; filename=\"" +
gx_table.getName() + ".xls\"");

2 Attach to ApplinX: gx_attach();

3 Get the ApplinX host screen data:

GXITable gx_table = gx_session.getScreen().getTables()[0];

4 Bind the DataTable to the DataGrid: DataGrid1.DataSource = dt; DataGrid1.DataBind();

5 This code is generic and the page can be invoked from any other page that it is required to
export to Excel.

Sample code can be found in the Composite DemoApplication: \excel.aspx - binding an ApplinX
table to the Excel spreadsheet and returning it. \BrowseProposals.aspx - invoking excel.aspx upon
clicking an image.

Building an External Login Page

An external login means a login Web page that is not connected to the host when the page is
loaded. It allows displaying the typed user name as the ApplinX session ID within the Designer.

To create such a page:

1 Create a login path usingApplinX. This path should login to the host application (by supplying
the user ID and password) and navigate from the first screen of the host application to the
main menu screen of the application (or any other screen that appears after logging in).

2 Set the code class for your login page to inherit from GXBasicWebForm
(.NET)/GXBasicContext(JSP).

3 Initialize the session configuration object with the typed user name and (optional) the typed
password (for securing the ApplinX session from other users).

4 Use the framework building block gx_connect to create a new session.

5 Execute the path method of the base object.

6 Add error handling as needed, for example: disconnect if login failed.

7 Navigate to the next matching page (gx_handleHostResponse).

93Web Application Development

Page Customization

For code sample see Composite Demo Application: common/Login.aspx / Login.aspx.cs - .NET
Login.jsp / WEB-INF/classes/contexts/common/Login.java - JSP

Collecting Data from Multiple Host Screens

It is a common task to collect data from multiple host screens. ApplinX enables you to do this by
using a path procedure that navigates through the host screens and collects different types of data
to be retrieved as procedure's output. The retrieved data can then be used either in a Web Ser-
vice/Procedure Client or be bound to web controls defined in an ApplinX Framework based web
page.

To collect data from multiple host screens

1 Create a Path procedure which navigates through several host screens and map host data as
procedure output.

2 Associate the procedure you created with a procedure group.

3 The procedure group can be used in one of the following ways:

1. Web service - wsdl file can be found at the following URL: http://<ApplinX Server ma-
chine>:2380/wsstack/services/<ApplinXApplicationName>.<Procedure groupname>?wsdl

2. Procedure Client - It is possible to generate a code client into your own .NET/Java project.
The generated code will include:
■ Classes for ApplinX defined types (Data Structure entities) used by the procedure group
methods (associated procedures).

■ Methods that execute the procedure group methods (associated procedures).
■ A service that handles ApplinX server connectivity.

Binding Procedure Outputs to an ApplinX Framework Based Web Page

It is possible to bind Procedure outputs to several controls on a web page so that the appropriate
controls are displayed on the web page. In order to be able to do this with minimum code, follow
these steps:

1. Make sure your procedure's outputs are well defined for web page binding:

a. Text and Text array outputs will easily bind to a text control (Input or Span for example) in
a web page providing this control has the appropriate ID attribute (see examples below).

Web Application Development94

Page Customization

b. Data structure arrays can be used to bind data to a Table control on a web page providing
that the table has the same ID as the array name and contains controls (Input, Span, TD, SE-
LECT tags) with IDs similar to the data structure's attribute names (see example below).

2. Associate the procedure with a Procedure Group in order to be able to generate a Procedure
Client into your project (if you haven't already done so).

3. If you have made changes to your procedure inputs/outputs, re-generate the Procedure Client
into your project in order for the changes to take effect.

4. Create a Fill method that executes the procedure and fills the Form with the data provided by
the procedure's response.

Example

The following example displays the procedure output (example: myProcedure):

The procedure output contains an Array (named Customers) of CustomerDetails type which we
defined earlier. This type has several attributes (first name, last name....). It also contains a single
Text output (named MSG) used to retrieve messages from the host during execution. Assuming

95Web Application Development

Page Customization

we wish to display the Customers Array in a table and the host message in a SPAN tag, this is
what the controls look like in the JSP/ASPX page:

JSP

<gx:span id="MSG"></gx:span>

<gx:table id="Customers" clas="gx_tbl" cellspacing=...>
<tr>

<th>ID</th>
<th>First Name</th>
......
<th>Birth Date</th>

</tr>
<tr>

<td><gx:span id="customerID"></gx:span>/td>
<td><gx:span id="firstName"></gx:span></td>
.......
<td><gx:span id="birthday"></gx:span></td>

</tr>
</gx:table>

.NET

All relevant controls must have a "runat='server'" attribute

</gx:span>

<table id="Customers" runat="server" clas="gx_tbl" cellspacing=...>
<tr>

<th>ID</th>
<th>First Name</th>
....
<th>Birth Date</th>

</tr>
<tr>

<td>/td>
<td></td>
.....
<td></td>

</tr>
</table>

After associating the procedure (in the above example: <myProcedure>) with a procedure group
(in the example: <myGRP>) and generating a Procedure Client, execute the procedure client and
fills the web page with relevant data:

In the page's code behind (located at \WEB-INF\classes\contexts\), add a function (example:
myFillMethod), executing the procedure client and filling the page with the path's output:

Web Application Development96

Page Customization

Fill a Form from an open ApplinX Web Session:

JSP

public void myFillMethod (){
 <myProcedure>Request req = new <myProcedure>Request();
 <myProcedure>Response res = ↩
(<myProcedure>Response)getGXSession().executeProcedure(req);
 gx_fillForm(res);
}

.NET

public void myFillMethod (){
<myProcedure>Request req = new <myProcedure>Request();
<myProcedure>Response res = (<myProcedure>Response)gx_session.executeProcedure(req);

gx_fillForm(res);
}

When Should my Fill method be executed?

Determining when to execute the Fill method depends on the Page behavior. This functionality
can be added to a method, triggered by a button's onClick event to fill data on the screen. We
could override the default gx_fillForm method to add some data to the screen when the page is
initially loaded, by executing and retrieving data for other host screens. These are just two examples.
This method can be executed by any server side page event.

Note:

■ Make sure your fill method doesn't collide with the page's gx_fillForm method. If you execute
yourmethod before the gx_fillFormmethod has been executed some of data may be lost. In this
case, check screen fields and output field names. If you find matches, change one of them.

■ Output names are case sensitive. Make sure web controls are named appropriately , otherwise,
they will not be filled.

Updating Data in Multiple Host Screens

It is a common task to update/enter data inmultiple host screens using a singleWeb page. ApplinX
enables you to do this by using a path procedure for updating the data on the screens (refer to
Creating a Path Procedure), and calling your own server side functions to bind the path's input
variables to the fields defined in each of the host screens. This data is often presented using Web
tabs.

97Web Application Development

Page Customization

To update data in multiple host screens

1 Create/Record a Path Procedure which updates/enters data in multiple host screens.

2 In the JSP/ASPXfile, add controls to allowusers enter the input data required by the procedure.
Consider the following:

■ gx:input controls, with an identical ID as the input attributes name, will make it easy for
you to track which JSP/ASPX control should be assigned to which input variable.

■ Using Data structures will require you to generate a procedure client in order for the
framework to properly recognize the structure defined in APX repository.

3 Create a server side execution method and a Link/Button on the JSP/ASPX page that will
trigger the function(refer to Creating a Button / Hyperlink for Executing a Path Procedure).
Refer to ModifyProposal1.java/aspx.cs.

To update data in multiple host screens (JSP):

1 Create aWebpage (JSP) for the first screen of the path procedure, containing fields representing
each input field in the procedure, for example:

<gx:input id="StockValueGroup" type="text" maxlength="1" size="1"/>

2 In the page's code behind (located in \WEB-INF\classes\contexts\), create a doSavemethod,
executing the path procedure with the procedure's input:

public void doSave(){ GXPathRequest req = new GXPathRequest ();
 req.addVariable("Input1", ↩
getTagsAccesor().getTagContent("StockValueGroup"));
 req.addVariable("Input2","Input2Value");
 req.addVariable("Input3","Input3Value"); GXPathResponse res =
 getGXSession().executePath(req); gx_handleHostResponse(res); } ↩

To update data in multiple host screens (.NET):

1 Create aWeb page (JSP) for the first screen of the collection path, containing fields representing
the fields appearing in all accumulated host screens, for example:

<input id="StockValueGroup" type="text" maxlength="1" size="1" runat="server">

2 In the page's code behind (.aspx.cs or .aspx.vb), create a doSavemethod executing the path
procedure with the procedure's input:

Web Application Development98

Page Customization

public void doSave(object sender,EventArgs args)
{

try
{

GXPathRequest req = new GXPathRequest ();
req.addVariable("Input1", StockValueGroup.Text));
req.addVariable("Input2","Input2Value");
req.addVariable("Input3","Input3Value");
...
GXPathResponse res = gx_session.executePath(req);
gx_handleHostResponse(res);

}
catch (GXGeneralException ge)
{

gx_handleSessionError();
}

}

Sample code can be found in the Composite demo Web application. ModifyProposal1.aspx
/ModifyProposal1.aspx.csis a pagewhich contains tabs displaying data collected frommultiple
host screens, with the ability to update the data (online only).

Activating a Server Side Function from JavaScript

In some cases it is required to activate a server side function after performing a number of client
side actions such as validation, hierarchical-menus, etc. In order to do so, perform the task detailed
below.

To activate a server side function from JavaScript (JSP):

■ gx_postBack('<SERVER FUNCTION NAME>');

To activate a server side function from JavaScript (.NET):

1 Add a hidden button to the page:

<input type="button" runat="server" id="MyBtn" style="display:none"
onserverclick="<SERVER FUNCTION NAME>">

2 The command to execute it from JavaScript:

GXBrowserUtil.getElement("MyBtn").click();

99Web Application Development

Page Customization

Mapping Keyboard Keys to User Actions in Individual Pages

Page specific actions can bemapped to a keyboard key (or to a combination of two keyboard keys)
using the following JavaScript in the page.

function pageOnLoad(){
gx_engine.addKeyBoardMapping(GXAdditionalKey.<the additional key>, GXKeyCodes.<the ↩
key to which the event is attached>,myJSFunction,<determines whether to override ↩
existing mapping>,[myJSBoolFunc]);
}

function myJSFunction(){
 // enter your code
}

// this function is optional and can be left out - See examples
function myJSBoolFunc(){
 if (...)
 return true; // myJSFunction will not be executed
 else
 return false; // myJSFunction will be executed
}

Examples

// Map [+] to the JavaScript function addClient();
// addClient function will override any default functionality
// associated with the [+] key
gx_AddKeyBoardMapping(GXAdditionalKey.NONE,GXKeyCodes.PLUS,addClient,true);

//Map shift+ESC -> javaScript:logoffUser();
gx_AddKeyBoardMapping(GXAdditionalKey.SHIFT,GXKeyCodes.ESC,logoffUser,false);

//map ctrl+TAB -> javaScript:printPage();
gx_AddKeyBoardMapping(GXAdditionalKey.CTRL,GXKeyCodes.TAB,printPage,false);

// Map [ENTER] to the JavaScript function dropClient();
// dropClient will be performed if Javascript function confirmFunc
// returns false
gx_AddKeyBoardMapping(GXAdditionalKey.NONE,GXKeyCodes.ENTER,dropClient,true,confirmFunc);

Available Constants

Additional Keys

GXAdditionalKey.NONE

Web Application Development100

Page Customization

GXAdditionalKey.CTRL

GXAdditionalKey.ALT

GXAdditionalKey.SHIFT

GXKeyCodes.F3GXKeyCodes.HOMEGXKeyCodes.BACKSPACE

GXKeyCodes.F4GXKeyCodes.LEFTGXKeyCodes.TAB

GXKeyCodes.F5GXKeyCodes.UPGXKeyCodes.ENTER

GXKeyCodes.F6GXKeyCodes.RIGHTGXKeyCodes.SHIFT

GXKeyCodes.F7GXKeyCodes.DOWNGXKeyCodes.CTRL

GXKeyCodes.F8GXKeyCodes.PLUSGXKeyCodes.ALT

GXKeyCodes.F9GXKeyCodes.INSERTGXKeyCodes.CAPSLOCK

GXKeyCodes.F10GXKeyCodes.DELETEGXKeyCodes.ESC

GXKeyCodes.F11GXKeyCodes.F1GXKeyCodes.PAGEUP

GXKeyCodes.F12GXKeyCodes.F2GXKeyCodes.PAGEDOWN

GXKeyCodes.END

Key Codes

Refer to the API:

■ Keyboard Mapping

Handling the Screen Locker on the Page Level

The purpose of a screen locker is to indicate to the user bymeans of amessage, that the application
is processing his request, and blocks him from interfering with the current process by repressing
a button/link or keyboard PF/ENTER. The Screen Locker feature is typically implemented for the
whole application (Refer to Activating the Screen Locker). Sometimes it is necessary to initiate a
screen-lock or disable the screen locker for a specific page.

For example, in the following code, the page contains a link to the Software AG web site, and the
Href attribute executes a JavaScript function: openWin(). If we do not disable the Screen Locker,
the applicationwill be locked and the userwill not understand the reason that it is locked.However,
as thewindowopened (in this example, the SoftwareAGweb site) is not related to the application,
the screen will not become unlocked. Therefore, in such a case, disabling the screen locker, allows
the user to carry on working. First, ensure that you have configured the relevant parameter in the
Framework Configuration Editor.

101Web Application Development

Page Customization

<script>
function openWin(){

gx_disableScreenLocker();
window.open('http://www.softwareag.com,'newWin',

'width=300,height=300,top=10,left=0');
}

</script>

Software AG

Refer to the API:

gx_lockScreen(): used to lock the web page so that no additional host keys/links/ buttons can be
pressed until the page is unlocked.

gx_unlockScreen(): used to unlock a web page.

gx_disableScreenLocker()/gx_enableScreenLocker(): used to disable/enable the screen locker.
Designed to lock the screen while the client is waiting for a new application screen.

Navigating between Input Fields

By default the framework offers using the Up arrow key, Down arrow key and Tab key to navigate
between inputs. It is possible to define additional navigation options such as moving to the first
or last element in a page, moving to the next input field, moving to the first or last input field in
the screen.

The following example moves the cursor to the next input element whenever the right arrow key
is pressed on the keyboard. Add the following function to any generated page or even to the
master page (template.jsp /template.master.cs) in your web application.

function pageOnKeyDown(gx_event){
// activate page scope function if exits
activateIfExists(gx_event,gx_event.window.pageOnKeyDown);

if (gx_isValidInputElement(gx_event.element)){
if (gx_event.keyCode== GXKeyCodes.RIGHT){

gx_jumpToNextInput(gx_event.element);
}

}

}

Refer to the API:

■ gx_home

■ gx_end

Web Application Development102

Page Customization

■ gx_newLine

■ gx_jumpToNextInput

■ gx_jumpToPrevInput

Retrieving Browser Information

Theweb application is sometimes required to be cross browser compatible.While most JavaScript
code runs well on all browsers, there are some subtle differences between how different browsers
handle the same JavaScript code. Therefore it is important to determine the browser used. The
ApplinX JavaScript engine provides several functions to retrieve the browser information.

Example for dealing with cross-browser JavaScript

function myFunction(){
if (GXBrowserUtil.isIE()){ // is the client using Internet Explorer
if (GXBrowserUtil.isIE7()){ // is it IE version 7 (or above)?

doThis();
}
else{ // it is IE6 (or lower)
doThat();
}
}
if (GXBrowserUtil.isMozilla ()){ // is the client using Firefox?

doSomethingElse();
}
}

Refer to the API:

■ GXBrowserUtil.isIE

■ GXBrowserUtil.isIE7

■ GXBrowserUtil.isMozilla

Validating your Data

ApplinX Web enablement sends information to the host screen. Therefore, the host application
validation continues to validate the data in the same way as when using a standard emulation.
However, to enhance existing validations and to be more user friendly, it is possible to use Web
page validations, which validate the data before sending the information to ApplinX and then to
the host. A typical example for such a case is when merging several host screens into a single web
page.

103Web Application Development

Page Customization

Additional usages include:

■ Required-fields validation.
■ String format validation (email, date etc.)
■ Numeric/alphanumeric field validation.

GXValidator represents an array of validators, used to validate the form's data before submitting
it to the host.

The following example is automatically added to every JSP/ASPX page generated from ApplinX
(as a commented example). This validator checks that "Field_A" has a value. Otherwise, it returns
an error message.

var pageValidator = new function(){
this.validateField = function(inputField){
if (inputField.name == "FIELD_A"){
if (inputField.value == ""){
return "Field cannot be empty";

}
}
// ...

}
}

function pageOnLoad(){ // register validator function
GXValidator.registerValidator(pageValidator);

}

The form is validated when submitted. The returned message is reflected in the "errormsg" div
located in the master page (template.jsp /template.master.cs). Once a validator indicates invalid
data, an error message will appear in the web page and the form will not be submitted.

Refer to the API:

■ GXValidator.registerValidator

■ GXValidator.clearValidators

Handling Web Application Windows using the gx_windows Object

Whenworkingwith pop-upwindows, the interaction between the pop-upwindowand the parent
window needs to be defined, in order to ensure continuous and smooth workflowwhen working
withwindows. For example, ApplinX Framework uses the gx_window object to automatically open
pop-up windows, reflecting host application window screens. In addition it is also possible to
open windows to perform other actions which are not related to the application, such as opening
a window or a different web page. The JavaScript gx_window object encapsulates the web page

Web Application Development104

Page Customization

window object with additional ApplinX functionality enabling developers to perform JavaScript
actions without disrupting the ApplinX JavaScript workflow. When using ApplinX Frameworks,
it is recommended to use the gx_window object.

The following example demonstrates how to open a pop up window from the main window and
fill in an input element on the main page from data taken from the pop up page. In addition, the
child window JavaScript function handles the screen locker of the parent page.

Main Window HTML and Script:

<script>
function getData(){
gx_window.open("myData.jsp",200,300,0,0) ;

// .NET
// gx_window.open("myData.ASPX",200,300,0,0);

}
</script>

<input id="myInput" value=" "/>
open Win

Pop-up Window HTML and Script

function setMainWindowInput(){
// Set the value of an Input on the main window

gx_window.getOpener().
gx_window.setField("myInput","someValue");

// Unlock the main window before closing the pop up
gx_window.getOpener().gx_unlockScreen();

// Close the pop up window
gx_window.close();

}

close Win

Refer to the API:

■ gx_window.open

■ gx_window.resizeTo

■ gx_window.moveTo

■ gx_window.setField

■ gx_window.close

■ gx_window.getOpener

105Web Application Development

Page Customization

Working with Cookies

You may want to store user information and adjust the ApplinX Web Application to each user's
needs. This information can be stored in cookies. ApplinX JavaScript Engine provides developers
with easy to use JavaScript functions to set and get Cookie values. You can create new cookies
and use the values to further meet user requirements. The ApplinX HTML Emulation template
Application makes use of cookies to store the user's last choice of font-size, style sheet preference
and screen resolution.

The following example will demonstrate how you can check if the user has a preferred style sheet.
If not, a default value will be set and the document style sheet reference changed. The following
code can be added to the instant page in the Emulation template application:

function pageOnLoad(){
//Check if cookie doesn't exist
if (!gx_getCookie(GXLAFHandler.COLOR_CSS_COOKIE)){
// set the cookie value, so that the next page that loads
// automatically uses the styles_black css file

gx_setCookie(GXLAFHandler.COLOR_CSS_COOKIE,
"css/styles_black.css");

// Set the current page to use that File as well
document.styleSheets[0].href =

gx_getCookie(GXLAFHandler.COLOR_CSS_COOKIE);
}

}

Refer to the API:

■ gx_getCookie

■ gx_setCookie

Working with JavaScript User Exits

The user exits file is located in the js directory of your web application. All the global events re-
gistered in the globalOnLoad function allow users to add JavaScript functionality to the default
framework behavior. Any code placed in these global functions will effect the whole application
and therefore must be handled with caution. Each global function contains a the following line:
activateIfExists(gx_event,gx_event.window.functionName); This line of codewill execute the user
function, functionName, if indeed the function exists on the page.

For Example: Assuming you have a text area on your web page, whenever you press the enter
key, the page will be submitted to the host rather than just add a new line to the text area. Adding
the following function to a generated JSP/ASPX, that contains a text Area input control, in the

Web Application Development106

Page Customization

ApplinX web application will cause this function to automatically execute whenever a keyboard
key is pressed.

// When a keyboard key is pressed check if "enter" was pressed and if the event ↩
originated in
// "myTextArea". If so, Prevent the form submitting by canceling the event and ↩
manually add newline
// to the textArea value
function pageOnKeyDown(gx_event){
 if (gx_event.keyCode == GXKeyCodes.ENTER &&
 gx_event.element.id == "myTextArea"){
 gx_event.element.value += "\r\n";
 gx_event.cancel();
 }
}
If you wish to implement this behavior to all text areas in your web application ↩
add the following code to the globalOnKeyDown function in the userExits.js file
// When a keyboard key is pressed check if "enter" was pressed and if the event ↩
originated in a
// TextArea. If so, Prevent the form submitting by canceling the event and manually ↩
add newline
// to the textArea value
function globalOnKeyDown (gx_event){
 // activate page scope function if exits
 activateIfExists(gx_event,gx_event.window.pageOnKeyDown);
 if (gx_event.keyCode == GXKeyCodes.ENTER &&
 gx_event.element.tagName == "TEXTAREA"){
 gx_event.element.value += "\r\n";
 gx_event.cancel();
 }
}

Refer to the API:

■ User Exits

Retrieving HTML Objects using gx_getElement

AsApplinXworks with HTML frames, you need to be sure that youworkwith the current HTML
document object model (DOM). It is therefore recommended to use the gx_getElement function
(instead of the window.getElement JavaScript function.

The following example demonstrates how to retrieve amessage received from the host and launch
it as an alert message when the page is loaded. Add the following to any generated page:

107Web Application Development

Page Customization

function pageOnLoad(){
// Get the message from the "Message" SPAN
var msg = gx_getElement("MessageSpan").innerHTML;
// If the message contains something other than spaces ()
if (msg.replace(/ /g, "")!=""){
// launch an alert message and replace any with space
alert(msg.replace(/ /g, " "));

}
}

Using the Calendar Component in Generated Pages

ApplinX provides the functionality to add a calendar component. In Instant pages this is done
using transformations and in generated pages this is done using JavaScript code as demonstrated
in the following examples.

In this example, when choosing a date from the calendar, it will be populated in a 'MM-dd-yyyy'
format. .e.g. 12-31-2008.

<input maxlength="10" id="birthDate" />

In this example, when choosing a date from the calendar, it will populate three input fields, each
having its own format:

Day: <input maxlength="10" id="day" />
Month: <input maxlength="10" id="Month" />
Year: <input maxlength="10" id="Year" />
<a href="#" onclick="gx_showCalendar('Select a ↩
Date','Month','MM','year','yy','day','dd');">

Replacing Static Host Confirmation Message with JavaScript Confirmation
Pop-up Box

Replacing static host confirmation messages (such as: "Are you sure? (Y/N)__") with JavaScript
confirmation pop-up box provides a moreWeb oriented look and feel to the application function-
ality.

Web Application Development108

Page Customization

To replace the confirmation message with a JavaScript confirmation pop-up box

1 Within the generated page's Java/C#/VB code create a method ("myConfirmMethod") that
executes host logic that submits the data entered in the JSP page to the current host screen
and performs the confirmation in the screen that follows.

2 Add the following function:

JSP:

function confirmSubmit(){
if (confirm('Are you sure?'){

gx_postBack('MyConfirmMethod'); // Execute a server side method
}
else{

// do nothing
}

}

.NET

Add the following button:

<input runat="server" type="button" id="confirmButton" value="GO" ↩
onserverclick="MyConfirmMethod" style="display:none" />

Then add the following JavaScript:

function confirmSubmit(){
if (confirm('Are you sure?')){
gx_getElement("confirmButton").click();

}
else{

// do nothing
}

}

3 Execute this function in any JavaScript event on the page.

For example:

109Web Application Development

Page Customization

<input type="button" value="Save" onClick="confirmSubmit();" >

You can even override the PF-key used to submit the data to perform this confirmation. For
further details about setting keyboardmappings using JavaScript refer toMappingKeyboard
Keys to User Actions in Individual Pages.

Opening an Independent Pop-up Box that doesn't have a Corresponding
Host Screen

ApplinXweb applications handle host applicationmodalwindowsby opening themodalwindow's
corresponding JSP/ASPX page in a pop-up window. The main window is automatically locked,
and any attempt by the user to interact with it just results in the pop-up window receiving the
focus. In order to create a pop-up window (JSP/ASPX) that behaves the same way but has no cor-
responding host screen, carry out the following steps:

JSP

1 Add a new Java class to the contexts package that extends the GXBasicContext class (in this
example we'll refer to it as ExamplePopUp.java):

2 Create a new JSP file in your project. The initial JSP code looks like this:

<%@ page extends="com.sabratec.j2ee.framework.web.GXJspServlet"%>
<%@ taglib uri="com/sabratec/j2ee/framework/tags" prefix="gx"%>
<%@ page contentType="text/html; charset=utf-8"%>
<gx:page gx_context="contexts.ExamplePopUp">
<html>
<head>
<title>Insert title here</title>

</head>
<body >
<gx:form>
...
</gx:form>

</body >
</html>
</gx:page>

Note: Set the gx_context attribute of the gx:page tag to the newly created Java class.

3 Edit your code class: Override ExamplePopUp.java onLoad event method:

Web Application Development110

Page Customization

public void gx_onLoad(){
try {
gx_attach();

}catch (GXGeneralException e) {
gx_handleSessionError(e);

}
super.gx_onLoad();

}

Note: The gx_attach call is required, even when no interaction is made with the host
application. It allows the framework to treat this window like any other host modal
window. Thismeans that thewindowwill always stay in focus and the parent window
will be "locked" until the window is closed.

4 There are a number of options to close the window:

■ The Browser's Close button (the X button). The window closes and the main screen is re-
freshed.

■ Calling the JavaScript gx_window.close() function. Thewindow closes and themain screen
is refreshed.

■ To avoid the refresh effect you can handle the window closing with a server side method
that will allow you to cancel the refresh in addition to enabling setting values in inputs or
labels on the main screen and performing host related operations such as, sending host
keys or executing path procedures. In order to do this add a server sidemethod that handles
the window closing functionality:

public void doClose(){
// Cancel Parent page refresh upon closing the window
getGXWindow().getOpenerWindow().cancelRefresh();

// Set value of either an input or a label on the parent screen
//getGXWindow().getOpenerWindow().setField("<input or label ID>", "<value>");

// Close the window
getGXWindow().close();
}

5 In the page from which you wish to invoke the pop-up, add the following HTML code:

111Web Application Development

Page Customization

<input type="button" value="openWin"
onclick="gx_window.open('<Path>ExamplePopUp.jsp','myPopUp','')"/>

Regarding the path, if ExamplePopUp.jsp is not within the root directory of the web applica-
tion, an absolute path should be added (for example: "myDirectory/ExaplePopUp.jsp").

.NET

1 Add a newWeb Form (including a code class) to theweb application (call it ExamplePopUp.as-
px) . Open the code class .NET created and specify that the new class should inherit from
GXBasicWebFrom rather than from System.Web.UI.Page..

2 Edit your code class: Override ExamplePopUp.java onLoad event method:

protected void Page_Load(object sender, EventArgs e)
 {
 gx_attach();
} ↩

Note: The gx_attach call is required, even when no interaction is made with the host
application. It allows the framework to treat this window like any other host modal
window. Thismeans that thewindowwill always stay in focus and the parent window
will be "locked" until the window is closed.

3 There are a number of options to close the window:

■ The Browser's Close button (the X button). The window closes and the main screen is re-
freshed.

■ Calling the JavaScript gx_window.close() function. Thewindow closes and themain screen
is refreshed.

■ To avoid the refresh effect you can handle the window closing with a server side method
that will allow you to cancel the refresh in addition to enabling setting values in inputs or
labels on the main screen and performing host related operations such as, sending host
keys or executing path procedures. In order to do this add a server sidemethod that handles
the window closing functionality:

public void doClose(object sender, EventArgs e)
{

// Cancel Parent page refresh upon closing the window
gx_window.getOpenerWindow().cancelRefresh();
// Set value of either an input or a label on the parent screen
//getGXWindow().getOpenerWindow().setField("<input or label ID>", "<value>");

// Close the window
gx_window.close();

}

Web Application Development112

Page Customization

4 In the page from which you wish to invoke the pop-up, add the following HTML code:

<input type="button" value="Open Win" onclick=
"gx_window.open('<path>/ExamplePopUp.aspx','myPopUp','')" />

Regarding the path, if ExamplePopUp.aspx is not within the root directory of the web applic-
ation, an absolute path should be added (for example: "myDirectory/ExaplePopUp.aspx").

113Web Application Development

Page Customization

114

16 Working with Tables

■ Creating a Page with a Table ... 116
■ Adding the Sorting Capability to a Screen-Based Table ... 117
■ Adding the Sorting Capability to a Procedure based Table .. 120
■ Changing Table Layout for Instant HTML Pages ... 122
■ Retrieving Values from a Selected Row within a Table ... 122
■ Customizing the Table's Display .. 125

115

Creating a Page with a Table

Tables are a part of the Screen editor now, and no longer exist as stand alone entity. In order to
define a screen based table, open the screen and click the table tab then click the "Create table"
link, ApplinX will automatically create a table that contains all multiple fields on the screen.

The framework provides extra functionality in terms of displaying the mapped table entity. The
framework will automatically map a declared screen table to an HTML table with the same ID.
The ApplinX Framework will duplicate the first data row with real values from the host. Child
elements of the row (such as td/input) are bound to the relevant application field according to the
ID attributes.

When generating aWebpage for a screen containing a table, code representing the table is generated
automatically. When creating a page manually, it is necessary to create a table and bind it to the
ApplinX Table.

To create a page with a table (JSP):

1 In the Web page corresponding to the screen containing the ApplinX Table, add an HTML
table with an ID that is the name of either an ApplinX screen table or the output variable of
a procedure (usually a data structure array) representing the Table: <gx:table id="<ApplinX
Table name>"> Where <ApplinX Table name> is the name of the ApplinX Table/Variable
name.

2 Add a representation for the table headers:

<tr>
<th> Item Number </th>
<th> Item Description </th>

</tr>

3 Add one row representing the table's data. The ID's should correspond to the names of the
ApplinX table columns/data structure attributes, however the order of the columns does not
have to be the same:

<tr>
<td id="<column1_name>">dummy data</td>
<td><input id="<column2_name>" size="10" value="sample data"></td>

</tr>
</gx:table>

4 Design the headers and sample columns as required. The sample row serves as a template,
and is duplicated in runtime for all the rows of the table.

5 It is possible to change specific rows or cells during the row duplication process.

Web Application Development116

Working with Tables

6 For more options, refer toWorking with Tables.

To create a page with a table (.NET):

1 In the Web page corresponding to the screen containing the ApplinX Table, add an HTML
table with an ID that is the name of either an ApplinX screen table or the output variable of
a procedure (usually a data structure array) representing the Table:<table id="<ApplinX
Table name>" runat="server"> . Where <ApplinX Table name> is the name of the ApplinX
Table.

2 Add a representation for the table headers:

<tr>
<th> Item Number </th>
<th> Item Description </th>

</tr>

3 Add one row representing the table's data. The ID's should correspond to the names of the
ApplinX table columns/data structure attributes, however the order of the columns does not
have to be the same:

<tr>
 <td id="<column1_name>">dummy data</td>
 <td><input id="<column2_name>" size="10" runat="server" value="sample ↩
data"></td>
</tr>
</Table>

4 Design the headers and sample columns as desired. The sample row serves as a template,
and is duplicated in runtime for all the rows of the table.

5 It is possible to change specific rows or cells during the row duplication process.

6 For more options, refer toWorking with Tables.

Sample code can be found in the Composite demo: BrowseProposals.jsp/aspx - a page containing
an HTML table bound to an ApplinX screen table.

Adding the Sorting Capability to a Screen-Based Table

It is possible to use theApplinX TableAPI to add server-side sorting capabilities toApplinX Tables
in generated Web pages.

To add the sorting capability to a table (JSP):

1 Generate a JSP page for the host screen, containing the table (using the option generate code).

117Web Application Development

Working with Tables

2 In the generated JSP page, add two hidden gx:input elements. They will be used to pass the
values of the sorted column andwill determinewhether the sorting order should be ascending
or descending:

<gx:input type="hidden" id="sortCol"/>
<gx:input type="hidden" id="isAsc"/>

3 In the generated JSP page, add the following JavaScript function. It will set the selected values
into the hidden input fields and submit the page:

<script>
function sort(colName,isAscending){
document.getElementById('sortCol').value = colName;

document.getElementById('isAsc').value = isAscending;
gx_postBack('sort');

}
</script>

4 In the JSP code of the table, add calls to the JavaScript function in the headers of all columns
that should be sorted columns:

<th>
Item Name

<img src="images/up.gif" onclick="sort('ItemName','true');"
style="cursor:hand"/>
<img src="images/down.gif" onclick="sort('ItemName','false');"
style="cursor:hand"/>
</th>

Where 'ItemName' in the sort function sort('ItemName','true'); is the name of the column in
the ApplinX table definition. The images for the arrows (up.gif and down.gif) can be copied
from the Sabrafood /images folder.

5 In the generated code class of the page (web-inf\classes\contexts\screenName.java) add
the sort function. It will retrieve the values from the request, perform the sort function and
build the new sorted table:

public void sort(){
GXITable gx_table = null;
try {
gx_table

= getGXSession().getScreen().getTables()[0];
} catch (GXGeneralException e) {
gx_handleSessionError(e);
return;
}

boolean isAscending = false;
if ("true".equals(getRequest().getParameter("isAsc"))){
isAscending = true;

Web Application Development118

Working with Tables

}
gx_table.sort(getRequest().getParameter("sortCol"),isAscending);
getTagsAccesor().setTagTable("ItemsListTable",gx_table,getGXAppConfig().getTableBuildConfig(),this);
}

Where "ItemsListTable" in the function
getTagsAccesor().setTagTable("ItemsListTable",gx_table,getGXAppConfig().getTableBuildConfig(),this);
is the name of the gx:table tag in the JSP page.

To add the sorting capability to a table (.NET):

1 Generate an ASPX page for the host screen containing the table (using the option generate
code).

2 In the generated ASPX page, add two hidden input elements. They will be used to pass the
values of the sorted column and determine whether the sorting order should be ascending
or descending:

<input runat="server" type="hidden" id="sortCol"/>
<input runat="server" type="hidden" id="isAsc"/> ↩

3 In the generated ASPX page, add a hidden button that will submit the form when clicking
the sort commands:

<input runat="server" type="button" id="sortBtn" style="display:none" ↩
onserverclick="sort"/>

4 In the generated ASPX page, add the following JavaScript function. It will set the selected
values into the hidden input fields and submit the page:

<script>
function sort(colName,isAscending){
document.getElementById('sortCol').value = colName;
document.getElementById('isAsc').value = isAscending;
document.getElementById('sortBtn').click();
}
</script>

5 In theASPX code of the table, add calls to the JavaScript function in the headers of all columns
that should be sorted columns:

119Web Application Development

Working with Tables

<th>
Item Name

<img src="images/down.gif"
 onclick="sort('ItemName','false');" style="cursor:hand"/> </th> ↩

Where 'ItemName' in the sort function sort('ItemName','true'); is the name of the column
in the ApplinX table definition. The images for the arrows (up.gif and down.gif) can be
copied from the Sabrafood /images folder.

6 In the generated code class of the page (screenName.aspx.cs) add the sort function. It will get
the values from the request, perform the sort function and build the new sorted table:

public void sort(Object sender, EventArgs e) {
GXITable gx_table = gx_session.getScreen().getTables()[0];
 bool isAscending = Boolean.Parse(Request["isAsc"]);
 gx_table.sort(Request["sortCol"],isAscending);
 ↩
GXTablesHandler.fillHtmlTableFromGXTable(ItemsListTable,gx_table,this,gx_appConfig.TableBuildConfig);
 }

Where "ItemsListTable" in the function
GXTablesHandler.fillHtmlTableFromGXTable(ItemsListTable,gx_table,this,gx_appConfig.TableBuildConfig);
is the name of the table element in the ASPX page.

Sample code can be found in theCompositeDemoApplication: BrowseProposals.jsp/aspx - contains
a screen-based table with sorting capabilities.

Adding the Sorting Capability to a Procedure based Table

It is possible to use theApplinX TableAPI to add server-side sorting capabilities toApplinX Tables
in generatedWeb pages. Usually aWeb page displaying a procedure-based table (a table that was
collected from several host screens using a navigation path) only collects the table from the host
the first time it is loaded, and uses a Web session variable to store ('cache') the table for later use.
It is also possible to add a button to refresh the table contents updated from the host. This method
saves time and resources, and improves overall performance.

To add a sorting capability to a procedure-based table (using a Web session variable) (JSP):

1 Perform steps 1-4 of the task Adding the Sorting Capability to a Screen-Based Table.

2 In the generated code class of the page (web-inf\classes\contexts\screenName.java), override
the function gx_fillTable in the following way. It will get the table from the session variable
or from the host (if it is the first time) and display the table:

Web Application Development120

Working with Tables

public void gx_fillTable() throws GXGeneralException{
GXITable gx_table = (GXITable)getSession().getAttribute("ApplinXTableName ");
 if (gx_table == null){
 // executes the procedure and returns a response from which the table ↩
can be extracted
 // procedure output - data structure array representing the table
 // Table Name - a string to be assigned to the gx_table name attribute.
 <procedure method Request> req = new CollectAllCustomersRequest();
 <procedure method Response> res = (<procedure method ↩
Response>)getGXSession().executeProcedure(req);
 GXITable gx_table = GXBindUtil.entityArrayToGXITable(res.get<procedure ↩
output>(),"<Table Name>");
 if (gx_table == null){
 return;
 }
 getSession().setAttribute("ApplinXTableName ",gx_table);
 }
// fill the html table with gx_table results
getTagsAccesor().setTagTable("TableTagName",gx_table,getGXAppConfig().getTableBuildConfig(),this);
}

Where TableTagName is the name of the gx:table tag in the generated JSP page.

3 Perform step 6 of the task Adding the Sorting Capability to a Screen-Based Table.

To add a sorting capability to a procedure-based table (using a Web session variable) (.NET):

1 Perform steps 1-4 of the task Adding the Sorting Capability to a Screen-Based Table.

2 In the generated code class of the page (screenName.apsx.cs), override the function gx_fillTable
in the following way. It will get the table from the session variable or from the host (if it is
the first time) and display the table:

public override void gx_fillTable() {
 GXITable gx_table = (GXITable)Session["ApplinXTableName "];
 if (gx_table == null) {
 // executes the procedure and returns a response from which the table ↩
can be extracted
 // procedure output - data structure array representing the table
 // Table Name - a string to be assigned to the gx_table name attribute.
 <procedure method Request> req = new CollectAllCustomersRequest();
 <procedure method Response> res = (<procedure method ↩
Response>)getGXSession().executeProcedure(req);
 GXITable gx_table = GXBindUtil.entityArrayToGXITable(res.get<procedure ↩
output>(),"<Table Name>");
 if (gx_table == null){
 return;
 }
 Session["ApplinXTableName"] = gx_table;
// fill the html table with gx_table results

121Web Application Development

Working with Tables

GXTablesHandler.fillHtmlTableFromGXTable(TableTagName,gx_table,gx_appConfig.TableBuildConfig);
}

Where TableTagName is the name of the gx:table tag in the generated ASPX page.

3 Perform step 6 of the task Adding the Sorting Capability to a Screen-Based Table.

Changing Table Layout for Instant HTML Pages

ApplinX Tables are created in instant HTML pages using the instant Renderer. By default, the
ApplinX host tables, as defined in the repository are displayed as HTML tables. Instant table set-
tings, along with other instant settings should be defined in GXInstantLogicContext (JSP)/ GXIn-
stantLogicWebForm (.NET) For more information regarding the instant table properties refer to the
ApplinX Development API Javadoc (can be found in Start>Program>Software AG ApplinX>Doc-
umentation>ApplinX Development API, in the com.sabratec.applinx.presentation.trans-
forms.GXTableConfig class.

Retrieving Values from a Selected Row within a Table

You may want to retrieve a value from a specific row within a table (in a generated Web page).
For example the selected row number, or some of the cell values that are in the selected row. Once
retrieved, you can use these values for getting further details from another screen, or any other
source (such as a database query, within an external web service).

A common scenario is when selecting a table row by activating a server side function that executes
a path procedure with a unique ID contained in the HTML table row. In order to return a value
from the table to a server side function, it is recommended to use the "selectedKey" hidden control,
automatically added by APX framework to all server side tables (runat=server in .NET or gx:table
tag in JSP). (See the JSP and .NET table examples below). and then use these values later on in
their VB/C#/Java code. (see C#/Java code examples below) The gx_selectKey() function stores the
proper row values in the table's hidden control. (see the selectTableRow JavaScript function below)

To retrieve values from a selected row

1 First decide which value/s you wish to retrieve from the selected row. Unless specified other-
wise this selected key variable will hold the index number of the row that was selected.
However, you can set the framework to store values from the selected row, from a cell/s. This
example sets the customerID column as the key that will be retrieved.

Add the following line to your gx_filltable or any other server side function used to fill the
table.

Web Application Development122

Working with Tables

Java Code

public void gx_fillTable() throws GXGeneralException

 // when a row is selected the customerID value will be stored as the ↩
table(Customers) selected key
 getTagsAccesor().addTableKeyColumn("Customers", "CustomerID");

}

C# code

public override void gx_fillTable()
{

 // when a row is selected the customerID value will be stored as the ↩
table(Customers) selected key
 GXTablesHandler.addKeyColumn(Customers, "customerID");

}

2 The gx_selectKey(elem) function will store the value of the key of the selected row in the
selected key variable. The gx_selectKey function should be triggered from each row. In the
following example, after selecting the row, a server side function (selectCustomer) is triggered.

JSP

<script>
function selectTableRow(elem){
gx_selectKey(elem);

//Triggering a server side function
gx_postBack("selectCustomer");

}
</script>
.
.
.
<gx:table class="gx_tbl" id="Customers" >

<tr>
<th>ID</th>
<th>Lastname</th>
<th>Firstname</th>
<th>Birth date</th>

</tr>
<tr style="cursor: pointer;" onclick="selectTableRow(this); ">

<td id="customerID"></td>
<td id="lastName"></td>

123Web Application Development

Working with Tables

<td id="firstName"></td>
<td id="birthday"></td>

</tr>
</table>

.NET

<script>
function selectTableRow(elem){
gx_selectKey(elem);

//Clicking on a button that executes a server side function
gx_getElement('SelectCustBtn').click();

}
</script>
.
.
.
<input type="button" id="SelectCustBtn" runat="server"

onserverclick="selectCustomer" style="display: none" />
<table runat="server" class="gx_tbl" id="Customers" >

<tr>
<th width="68" nowrap="nowrap">ID</th>
<th width="75" nowrap="nowrap">Lastname</th>
<th width="69" nowrap="nowrap">Firstname</th>
<th width="81" nowrap="nowrap">Birth date</th>

</tr>
<tr style="cursor: pointer;" onclick="selectTableRow(this); ">

<td runat="server" id="customerID"></td>
<td runat="server" id="lastName"></td>
<td runat="server" id="firstName"></td>
<td runat="server" align="center" id="birthday"></td>

</tr>
</table>

3 The following server side function retrieves the selected key and adds it as a variable to a
path request in order to get the customer's details (CustomerSelect path).

Java Code

public void selectCustomer() {
 try {
 GXPathRequest pathRequest = new GXPathRequest("CustomerSelect");
 // Get the Customer table selected key and pass it to the request
 pathRequest.addVariable("Selected_Customer_ID",
 ↩
getTagsAccesor().getTableSelectedKey("Customers"));
 GXPathResponse pathResponse = getGXSession().executePath(pathRequest);
 gx_handleHostResponse();

Web Application Development124

Working with Tables

 } catch (GXGeneralException gge) {
 getLogger().errorLog("gx general exception in go to select customer.", gge);
 }
}

C# code

public void selectCustomer(object sender, EventArgs args)
{
 try
 {
 GXPathRequest pathRequest = new ↩
GXPathRequest("CustomerSelect");
 // Get the Customer table selected key and pass it to the ↩
request
 pathRequest.addVariable("Selected_Customer_ID",
 ↩
GXTablesHandler.getTableSelectedKey(Customers));
 GXPathResponse pathResponse = ↩
gx_session.executePath(pathRequest);
 gx_handleHostResponse();
 }
 catch (GXGeneralException ex)
 {
 gx_handleSessionError(ex);
 }
}

Refer to the API:

■ gx_selectKey

■ gx_getSelectedKey

■ gx_isTableKeySelected

■ gx_markRow

Customizing the Table's Display

The display of a table in generated web pages can be customized. For example, in a host table
which displays the customer's address, you may want to add an additional conlumn with a link
that opens a new browser window with a map of that address.

ApplinX Framework provides three methods that you can use to change the table display:

■ gx_changeTr: For making changes on the table row level
■ gx_changeTd: For making changes on the table cell level

125Web Application Development

Working with Tables

■ gx_changeControl: For making changes on a specific control within a table cell.

In the following example the gx_changeControlmethod is used to apply a dynamic onClick at-
tribute to a hyperlink/Span according to the specific customer address.

JSP

1. Add a column to the table (ensure that you add a suitable header).

<td align="center">

</td>

2. Override the gx_changeControlmethod to add anOnClick attributewith a dynamic JavaScript
call.

public void gx_changeControl(int ColIndex, Element td, Element ctrl,
GXITableRow row)
{
 String ctrlId = ctrl.getAttribute("id");
 if (ctrlId != null && ctrlId.indexOf("Gmaps") >= 0){
 String _address = row.getItemContent("HouseNumber").trim();
 _address += " " + row.getItemContent("Street").trim();
 _address += "," + row.getItemContent("City").trim();
 _address += "," + row.getItemContent("Country").trim();
 ctrl.setAttribute("onclick","window.open('http://maps.google.com/?q=" ↩
+ _address + "','gmaps');");
 }
 }

.NET

1. Add a column to the table (ensure that you add a suitable header).

<td align="center">

</td>

2. Override the gx_changeControlmethod to add an OnClick attribute with a dynamic call.

Web Application Development126

Working with Tables

public override void gx_changeControl(int ColIndex, HtmlTableCell td, Control ↩
ctrl, GXITableRow row)
{
 string ctrlId = ctrl.ID;
 if (ctrlId != null && ctrlId.IndexOf("Gmaps") >= 0)
 {
 string _address = row.getItemContent("HouseNumber").Trim();
 _address += " " + row.getItemContent("Street").Trim();
 _address += "," + row.getItemContent("City").Trim();
 _address += "," + row.getItemContent("Country").Trim();

 ((HtmlGenericControl)ctrl).Attributes["onclick"] = ↩
"window.open('http://maps.google.com/?q=" + _address + "','gmaps');";
 }
 else
 {
 base.gx_changeControl(ColIndex, td, ctrl, row);
 }
}

Refer to theCompositeDemo, BrowseCustomers1 page. to the gx_changeTDandgx_changeControl
methods.

127Web Application Development

Working with Tables

128

17 Transferring Files (FTP)

■ FTP Configuration .. 130
■ Opening the File Transfer Dialog Box ... 130
■ Using FTP to Upload Files ... 131
■ Using FTP to Download Files ... 132

129

In ApplinX Framework, it is possible to transfer files from the client to the host or from the host
to the client, using the FTP dialog screens. The HTML emulation contains a link in the footer that
opens an FTP Web dialog box.

FTP Configuration

To upload/download files using the FTP option, you need to configure a number of parameters
in the Framework Configuration Editor.

FTP Configuration:

1 Open a new browser and run your Web application.

2 Click on the Framework Configuration link. The Configuration Editor will be displayed.

3 Expand the FTP node.

4 Select theHost type.

5 Enter theHost address.

6 Click Save to save your changes.

7 Click Close to return to the Web application.

8 When working with an application which is not an HTML emulation, add an element such
as a link or a button which when clicked will call the gx_openFtpDialog() JavaScript function
(in an HTML emulation this is built-in).

Refer to Using FTP to Upload Files and Using FTP to Download Files.

Opening the File Transfer Dialog Box

To work with an application which is not an HTML emulation, add an element, such as a link or
a button, to your master page (template.jsp/template.master.cs) or to any generated page. Place it
in a suitable location. Set the link to call gx_openFtpDialog();.

Web Application Development130

Transferring Files (FTP)

Example:

<input type="button" id="FTPtButton" value="FTP" onClick="gx_openFtpDialog();" />

Refer to the API:

■ gx_openFtpDialog

Using FTP to Upload Files

To upload files:

1 Configure the FTP parameters as detailed in FTP Configuration.

2 Open the ApplinX HTML Emulation and run your Web application.

3 Click on the upload image to display the Upload dialog box.

4 Click on the Upload button. The File Upload screen will be displayed.

5 Enter the User name and Password (mandatory).

6 Enter the name of the file you would like to upload (Remote file). (Mandatory).

7 Click Browse... to enter the location and file name of the uploaded file.

8 Fill in the host property fields (these fields are optional and differ according to the configured
host):

AS/400 Hosts:

1. Select the data representation type: ASCII, EBCDIC, IMAGE, DBCS_EBCDIC, EBCS_EB-
CDIC or CCSID.

2. Select the structure of the data that is to be transferred: File or Record.

3. Select the mode Stream or Block to determine whether records are transmitted record-by-
record or as a continuous stream of bytes.

Mainframe Hosts:

1. Select the data representation type: ASCII, EBCDIC, IMAGE, UNICODE 2 B or UNICODE
2 L.

2. In the Record format field, specify the type of records in the data set: Fixed, Variable or
Undefined.

3. In the LRECL field, specify the logical record length (in bytes).

4. In the Block size field specify the physical length of the data (in bytes).

131Web Application Development

Transferring Files (FTP)

5. In the Primary field specify the number of tracks or blocks initially allocated to the data
set.

6. In the Secondary field specify the number of tracks or blocks if the primary allocation is
exceeded.

9 It is possible to enter a user defined command in the Command field.

10 Click Upload. The upload process may take some time and is dependant on the size of the
file and the connection.

11 A message will be displayed indicating that the upload was successfully completed. If there
is a failure when uploading the file, an error message will appear.

Using FTP to Download Files

To download:

1 Configure the FTP parameters as detailed in FTP Configuration.

2 Open the ApplinX HTML Emulation and run your Web application.

3 Click on the download image to display the Download dialog box.

4 Click on the Download button. The File Download screen will be displayed.

5 Enter the User name and Password (mandatory).

6 Enter the path and file name of the source file that is to be downloaded (mandatory).

7 Fill in the host property fields (these fields are optional and differ according to the configured
host):

AS/400 Hosts:

1. Select the data representation type: ASCII, EBCDIC, IMAGE, DBCS_EBCDIC, EBCS_EB-
CDIC or CCSID.

2. Select the structure of the data that is to be transferred: File or Record.

3. Select the mode Stream or Block to determine whether records are transmitted record-by-
record or as a continuous stream of bytes.

Mainframe Hosts:

1. Select the data representation type: ASCII, EBCDIC, IMAGE, UNICODE 2 B or UNICODE
2 L.

2. In the Record format field, specify the type of records in the data set: Fixed, Variable or
Undefined.

Web Application Development132

Transferring Files (FTP)

3. In the LRECL field, specify the logical record length (in bytes).

4. In the Block size field specify the physical length of the data (in bytes).

5. In the Primary field specify the number of tracks or blocks initially allocated to the data
set.

6. In the Secondary field specify the number of tracks or blocks if the primary allocation is
exceeded.

8 It is possible to enter a user defined command in the Command field.

9 When the file is a text file, it is possible to determine whether you would like to convert the
downloaded file to Windows text mode, DOS text mode or UNIX text mode.

10 ClickDownload. The Windows File Download window will be displayed enabling you to
save or open the file. If there is a failure when downloading the file, an error message will
appear.

133Web Application Development

Transferring Files (FTP)

134

18 Printlet Servlet Redirector for ApplinX

ApplinX supports printer sessions on AS/400 andmainframe hosts. ApplinX connects to the host,
retrieves the print buffers and analyzes them. The host handles the printer's queue and the con-
nection of printer sessions to display sessions. ApplinX connects to the host as a printer session
to receive the print buffers and allows you to work with them.

One of the ways you can print with ApplinX is using the default behavior of an emulator, where
ApplinX sends all print jobs to the client's machine by means of an applet that runs on the client's
browser. It is a signed applet, as it is Java code and it invokes the client machine's print dialog,
which requires permissions that exceed regular applet permissions. Once the applet is signed it
can only address the server where the applet originated, and therefore requires that the Web
server and ApplinX server are on the same machine. When it is not possible to have the Web
server and ApplinX server on the same machine, it is necessary to use the Printlet Servlet Redir-
ector for ApplinX.

The Printlet Servlet Redirector for ApplinX enables connection of the printlet to the Web server
machine through the public HTTP/S port. The printlet server URL is defined as the URL of the
Redirector Servlet instead of theApplinX serverURL. In thisway the Servlet Redirector forApplinX
redirects the data coming from the Printlet to ApplinX server and vice versa.

In the current implementation, this solution does not support architectures with load balancing
or clustering, as all communication of the printlet must go through the same Web session of the
same Web server machine.

Note: This feature is currently available for the ApplinX Framework for JSP only.

To install and activate the Printlet Servlet Redirector for ApplinX

1 Activate the Redirector:

135

1. Edit the web.xml file located under your web project (<web_dir>\WEB-INF\) as follows:
Copy the commented section labeled "Listeners" from \new jsp\new_application\WEB-
INF\web.xml to your web.xml and uncomment the listener tag.

<listener>
<listener-class>
com.sabratec.util.net.redirector.http.servlet.GXRedirectorServletSessionListener
</listener-class>
</listener>

2. Add the following tags:

 <context-param>
<param-name>GXServerURL</param-name>
<param-value>applinx://localhost:2323</param-value>
<description>ApplinX server URL</description>
</context-param> ↩

Change the server URL to point at the machine where ApplinX is running.

3. Edit the run_printlet.jsp file which is in your Web application root directory: Change the
param serverURL to http://<web_server_name>:8080/<web_app>/z_redirector.jsp

4. Restart the Web server.

2 Make sure that in your architecture, that the same IP address (or machine name) of the Web
server, where the servlet redirector is enabled, is used for the following:

1. Calling the page run_printlet.jsp in the browser.

2. web_server_name set in the printlet parameters (in run_printlet.jsp).

Web Application Development136

Printlet Servlet Redirector for ApplinX

19 Framework Management

■ Upgrading a JSP Web Application ... 138
■ Deploying an ApplinX Web Application (JSP) .. 138
■ Upgrading a .NET Web Application ... 142
■ Deploying an ApplinX Web Application (.NET) ... 142
■ Disconnecting the Host Session Correctly ... 143

137

Upgrading a JSP Web Application

Note: Close all instances of Eclipse before commencing with the upgrade process. After the
upgrade process has been completed, reopen Eclipse and refresh the project.

To upgrade an existing web application:

1 In the ApplinX Explorer, right-click on the relevant application and selectWeb Application
Manager... .TheWeb Application Manager Wizard is displayed.

2 Select Upgrade an existing Web application. ClickNext. TheWeb Application Folder screen
is displayed.

3 Locate and select the folder of the Web application to be upgraded, or the Eclipse project
where the application is located. It is highly recommended to backup the Web application
before upgrading. ClickNext.

4 TheWizard Summary screen is displayed.

5 Click Finish. The Console area indicates whether the process succeeded or failed.

Deploying an ApplinX Web Application (JSP)

To deploy the Web application:

1 Right-click on the relevant application and selectDeployment Manager for J2EE.... The De-
ployment Manager wizard is displayed.

Web Application Development138

Framework Management

2 Ensure that the ApplinX Web application option is selected.

3 Click Next. The Select ApplinX Application screen is displayed.

139Web Application Development

Framework Management

4 Select whether to deploy a new application or HTML emulation, or a project fromwithin the
workbench, or a project from a different location.

5 Select Include source files to include the Java files as well as the compiled classes. ClickNext.
The Select Package Parameters screen is displayed.

6 Select the J2EE server type, the WAR file name and the destination folder where the output
file will be placed.

7 Click Next. The Select Target ApplinX Server screen is displayed.

Web Application Development140

Framework Management

8 In this screen, Enter the ApplinX server and the port with which the Web application will
connect. Also enter the ApplinX application name.

9 Click Finish.

10 In the console area, it is possible to see whether the process succeeded or failed. The WAR
file created should be placed in your Web server directory.

Consider changing the following for production use:

1 Change the framework logging according to your needs either by accessing the "Framework
Configuration Editor" or in config/gx_logConfig.xml file. For example:

<category additivity="false" name="com.sabratec">
<level value=" ERROR"/> <!-- Sets the log to Errors only -->
<appender-ref ref="FRAMEWORK_LOG"/>

</category>

Possible values are:

■ INFO - Normal
■ WARN - Warnings

141Web Application Development

Framework Management

■ ERROR - Errors only
■ DEBUG - Debug

2 Disable the Performance monitor either by accessing the "Framework Configuration Editor"
or in config/gx_appConfig.xml file set the WritePerformanceLog to false (this is the default
configuration).

3 Disable the Javascript log using the config/gx_clientConfig.xml by setting LogLevel to 0 and
ShowLogConsole to false (this is the default configuration).

4 Remove "Framework Configuration Editor" link from index page: delete the folder z_admin
and remove the link to "configuration editor" from the index page.

Upgrading a .NET Web Application

To upgrade an existing Web application:

1 In the ApplinX Explorer, right-click on the relevant application and selectWeb Application
Manager... .TheWeb Application Manager Wizard is displayed.

2 Select Upgrade an existing Web application. ClickNext. TheWeb Application Folder screen
is displayed.

3 Locate and select the folder of theWeb application to be upgraded. It is highly recommended
to backup the Web application before upgrading. ClickNext.

4 TheWizard Summary screen is displayed.

5 Click Finish. The Console area indicates whether the process succeeded or failed.

Deploying an ApplinX Web Application (.NET)

Whendeploying anApplinX application that also consists of aWeb application, for examplewhen
moving from the development environment to the production environment, the deployment
consists of two parts: deploying the ApplinX application and entities and deploying the Web ap-
plication.

Note: ApplinX Framework supports .NET clustering in a Web farm environment.

To deploy the Web application:

1 Copy the entire Web application into a temporary working folder.

Web Application Development142

Framework Management

2 In the config/gx_logConfig.xmlfile edit the Logger settings according to your needs (enable/dis-
able the log, target path and log level). For example:

<logger name="com.sabratec">
<level value="INFO"/> <!"sets the log to normal mode
<appender-ref ref="FRAMEWORK_LOG"/>

</logger>

When you do not require the performance log, ensure that the last two category nodes in the
XML file are commented.

3 Change the definition of designMode in config/gx_appConfig.xml to "false".

4 Change the definition of the serverURL and applicationName in config/gx_appConfig.xml to
the target server.

5 Copy the updated folder to the relevant Web server.

6 Map this folder as a virtual directory under the server.

Disconnecting the Host Session Correctly

When running the Web application in a browser there are times (such as when closing a tab, ter-
minating a browser process etc.) that the browser close function is not triggered. Therefore, one
cannot assume thatwhen clicking the "X" closewindowbutton that the sessionwill be disconnected.
To assure disconnecting the session, it is recommended to set a timeout (in the ApplinX Design-
er>Host configuration tab, Connection timeout field) that will automatically disconnect the session
after the predefined amount of time passes.

It is highly recommended to train the user to logoff from the application using the Logoff link.
Optionally, In both .NET and JSP, it is possible to configure an event class which notifies when a
session ends.

To customize the logoff process from the code:

■ JSP: See HttpSessionListener .

.NET: See usage of global.asax in ASP.NET documentation

143Web Application Development

Framework Management

144

III Troubleshooting the Framework

Performance Monitoring

JavaScript Logger Engine

Investigating the Web Application's Code

145

146

20 Performance Monitoring

Performancemonitoring provides the ability to trace the performance of all sessions/single sessions,
and save them to a CSV (Excel) file.

This feature monitors the process of an instant/generated page, from pressing a host key until the
result page is fully loaded. Themonitoring includes browser performance,Web server performance
and ApplinX server/host performance.

The monitoring includes:

■ The entire wait time the user waits between pressing an action key, until receiving the HTML
result of the target screen - Total Request.

■ The entire time that theWeb server processed the user request (including ApplinX server & the
host response times) - Total Server Side.

■ The send key response time - SendKeys.
■ The HTML page loading time - Client Load .
■ Important ApplinX actions such as attaching to ApplinX server, creating the instant page
(Generate Instant), updating controls from the host screen, updating tables (when tables exist),
detaching from ApplinX server.

147

148

21 JavaScript Logger Engine

The JavaScript logger engine is used to log JavaScript errors (primarily) aswell as to debug specific
modules of the JavaScript engine. The engine logs JavaScript errors which occur to users of the
Web application. These errors are logged to the framework JavaScript log, with the following user
information: Session ID, IP, browser details.

Each line in the log displays a timestamp, module name, log level, and the message.

Logging JavaScript Errors

The JavaScript logger engine automatically logs JavaScript errors to a log text file on the server
(logs/javascript_log.txt).

Note: Applications created in ApplinX versions prior to 5.2.4 this file should be replaced/ed-
ited (if changesweremade)with the config/gx_logConfig.xml file from the newapplication/con-
fig directory of the relevant framework type jsp/c#/vb.

Debugging JavaScript Modules

The JavaScript Logger Engine can be used by ApplinX developers to debug specific modules of
the JavaScript engine (The JavaScript engine core, Emulation,modalwindows, type ahead,Natural
data transfer), by displaying the information in the log console (or writing to the server log when
the log console is not shown).

To configure the JavaScript log console, configure parameters in the config/gx_clientConfig.xml file
as follows:

149

<engineConfig
logLevel="3" <- 3-activate debug mode (0-Error , 1-Warnings , 2-Massage , 3-Debug)
debugModules=:z_engine.js,z_emulator.js,z_window.js,z_typeAhead,z_ndt.js" <- which ↩
modules to debug
showLogConsole="true" <- show/hide the log console
/>

Note: The log text file also logs any error/debug (when active) messages when the browser
is refreshed, when the system is disconnected, when clicking on theWrite to server log
button in the log console (if the log console is displayed) and when the log console's size
reaches 5k (to avoid reducing the speed of the browser).

Example:

Whenever myFunc is executed the Boolean variable "myBool" is evaluated. If the value received
is "false", a message is logged in the debug log stating that there is a problem.

function myFunc(){
var myBool = false;
doSomthing(myBool);
if (!myBool){
GXLog.debug("myModule","Something went terribly wrong!!");

}
return myBool;

}

Ensure to set the config/gx_clientConfig.xml as detailed above.

Refer to the API:

■ GXLog.debug(moduleName, message)

■ GXLog.warning(moduleName, message)

■ GXLog.error(moduleName, message)

Web Application Development150

JavaScript Logger Engine

22 Debugging/Analyzing the Web Application's Code

It is possible to use the ApplinX framework log to analyze and debug the code in the Web applic-
ation. This is implemented by making changes in the config/gx_logConfig.xml file.

To define the messages that will be displayed in the framework log:

1 Open config/gx_logConfig.xml.

2 Uncomment the following section:

JSP:

<!--category additivity="false" name="<Category-Name>">
<level value="info"/>
<appender-ref ref="FRAMEWORK_LOG"/>
</category
-->

.NET

<!-- logger additivity="false" name="<Category-Name>">
<level value="info"/>
<appender-ref ref="FRAMEWORK_LOG"/>
</logger
-->

3 Change the level tag value to either: info, error, warning, or debug.

4 Change the <Category-Name> to a meaningful value. This will make it easier for you to find
log entries at a later time.

5 Restart your web server, in order for the changes to take effect.

151

6 To write to the log file from anywhere in your code, make sure that the call looks similar to
the following (depending on the log level):

GXLog.info("Category-Name","<Message>");
GXLog.error("Category-Name","<Message>");
GXLog.warning("Category-Name","<Message>");
GXLog.debug("Category-Name","<Message>");

Web Application Development152

Debugging/Analyzing the Web Application's Code

IV ApplinX Development API References

Web Application Configuration

Base Object

Server Side API (Java/.NET)

Client Side (JavaScript)

HTML Emulation

Printing

153

154

23 Web Application Configuration Parameters

■ Session Parameters ... 156
■ Instant Parameters ... 157
■ General ... 158
■ Logoff .. 159
■ Generated Pages .. 160
■ Window ... 160
■ Emulation ... 161
■ Natural upload/download ... 162
■ Log ... 163
■ Performance Monitor .. 163
■ Macro .. 163
■ Single Sign On .. 164
■ FTP .. 165
■ CSS Classes .. 165

155

ApplinX provides aWeb based configuration editorwhere you can configure framework paramet-
ers. These parameters are saved in the config/gx_appconfig.xmlfile. A description of each parameter
appears in the Javadoc on the right side of the window (click on a parameter/node to display the
relevant Javadoc).

Note: These parameters can be manually configured in the config/gx_appconfig.xml file.

This chapter covers the following topics:

Session Parameters

DescriptionParameter

The ApplinX server URL. By default it is applinx://localhost:2323. For secured
SSL socket: applinxs://localhost:23443.

Server URL

The name of the ApplinX application.Application name

The Session ID in theweb server. Can be set according to the connecting IP address
(IPv4 and IPv6 address formats are supported) or by an allocated session ID. It

Session ID

is also possible to set the Web Session ID from the code (in the GXBasicContext
(JSP)/GXBasicWebForm (.NET) file), overriding the option selected here.

The password required to access a specific session on the ApplinX server. Can
be set according to the connecting IP address or by an allocated session ID. It is

Password

also possible to set the password from the code (in the GXBasicContext
(JSP)/GXBasicWebForm (.NET) file), overriding the option selected here.

Additional

The description of the session in ApplinX server. This description appears in the
list of sessions inApplinXAdministrator. The information entered can be dynamic

Description

and may include tokens such as: $(SESSION_ID): Represents the Web server
session ID. $(IP): Represents the user IP address. $(BY_APPLINX): Represents
the ApplinX session ID.

The connection pool name used to get a session. When a connection pool name
is stated, the framework will connect to the connection pool instead of using a
new session.

Connection Pool

The host user name. Relevant for SSH and Natural-Unix protocols only.Host user name

The host password. Relevant for SSH and Natural-Unix protocols only.Host password

Determine whether to show intermediate host screens. Relevant for Natural Set
Control N command.

Show Intermediate
screens

Web Application Development156

Web Application Configuration Parameters

Instant Parameters

DescriptionParameter

It is possible to change the default font size to a different size (in pixels). Since the
change affects the rendering process performed by the framework on the Web server,

Font size

this setting is not part of the CSS style sheet file (unlike other font settings), but instead
it is included in the server-side instant configuration parameters. Note: Changing the
font sizes for generated Web pages is done in the CSS style sheet node. The possible
values include the different pixel possibilities as well as "Dynamic by Resolution". The
HTML emulation recognizes user resolution and dynamically changes the css name
according to the matching resolution. The resolution can be either 640x480, 800x600,
1024x768 or 1280x1024 pixels. The resolution may also depend on the host resolution
(80 or 132 characters). The best-fit functionality is configured by default in the emulation
template in all frameworks. It is used by the renderer to calculate the top/left according
to each tag's position.

Sets the font family to be used for instant rendering. It is used for proportion calculation
to best fit specific fonts for Japanese &Arabic applications. For Japanese the best fitted

Font family

fixed fonts are: "MS Mincho" or "MS Gothic" For Arabic the best fitted fixed font is:
"Courier". For other languages the best fitted font is "CourierNew",which is by default
declared in the CSS files. Defining the font here will override the CSS definition.

Sets the row height to be used for instant rendering. This height is calculated relatively
to the row's font size. The default row height is set to 53% (153% of the font size). For

Row spacing

example: When the font size is set to 13px, and using the default row height value of
53%, the row height will be:13*1.53 =19.89= ~20px.

Determines whether to display all the colors as they are displayed in the host
(background & foreground), display only the background colors or not display any
colors at all.

Color mode

The type of the rendered host keys.Host keys

Determines that the HTML tags will be positioned from right to left. The usage is in
Hebrew/Arabic applications when using non-fixed font, to ensure alignment to the
right. By default the tags are positioned from left to right.

Render tags from
right

Determines whether to render emulation attributes in text fields. Emulation attributes
are special ApplinX attributes that start with "gx_" and are added to the rendered text

Render emulation
behavior

field tag. These attributes provide additional information to the ApplinX JavaScript
engine, which changes the behavior of the text fields. The attributes are:

■ Automatic skipping (gx_autoSkip) -will cause the text field to skip to the neighboring
text field, once it is filled with content.

■ Data type (gx_dt) - The data type of the field. SeeGXBaseObjectConstants for possible
data types.

■ Right adjustment (gx_ra) - AS/400 right adjust.
■ Automatic ENTER (gx_au) - AS/400 automatic enter.

157Web Application Development

Web Application Configuration Parameters

DescriptionParameter

Determineswhether the relevant transformation (such as displaying tables, or displaying
the graphical window frame) is enabled.

Enable displaying
tables

Determineswhether the relevant transformation (such as displaying tables, or displaying
the graphical window frame) is enabled.

Enable displaying
graphical window
frames

Used to define that a specific area of the host screen will be rendered as HTML in
Instant HTML pages by specifying the area's boundaries and in this way hide certain

Define render area

portions of the screen. By default, the entire screen is configured to be rendered to the
HTML output. When setting the area to be rendered, tags positioned outside the
rendered area will not be available for query execution on the screen tag model. The
rendered area also affects the rendered top/left attributes of the tag. The top/left tag
will be calculated relatively to the starting position of the rendered area.

General

DescriptionParameter

Determines whether the Web application folder structure should be the same folder
structure as configured in the ApplinX repository. Relevant for screens only. This is

Use Folders - virtual
directory

recommended when the Web application contains a large number of designed Web
pages.

Virtual directory: Determines the virtual directory used for the project. Should be
without any slashes.Needs to be set only if UseFolders is true. For a site (with domain)
the value should be empty string.

For example:

■ If the web application URL is <http://localhost:8080/myApp/index.jsp>, the virtual
directory is "myApp".

■ Also for a web site http://myWebsite/myApp/index.jsp
<http://mywebsite/myApp/index.jsp> , the virtual directory is "myApp".

■ If for example I have two folders
<http://localhost:8080/myApp/mysubApp/index.jsp>, the virtual directory is
"myApp/mySubApp".

The purpose of a screen locker is to indicate that the application is processing your
request, and that you are blocked from interfering with the current process by

Use screen locker

repressing a button/link or keyboard PF/ENTER. To activate the screen locker first
select the Use screen locker check box and then access the template/screenLocker.htm
file anduse thewidth/height percentages to control the location of themessage. Replace
the text "Please wait" with an alternative text/image as required. Refer to the
documentation for further details.

Web Application Development158

Web Application Configuration Parameters

DescriptionParameter

Determines whether to use alternate colors for every other row in a table. Use
AlternateCssName to control the alternate css name.

Alternate rowcolors

This feature prevents the displayed page from flickering every time the page is
submitted. This affect is prevented by using two separate frames, while only one is

Prevent page
refresh effect

visible at each stage. These frames continuously switch between being active and
passive each time a page is submitted. The active frame is displayed, and every time
a page is submitted, the frame becomes the passive frame, in this way preventing the
flickering affect. When the modal window feature is enabled in the Framework
Configuration Editor or the 'Enable Natural-Data-transfer support' is enabled in the
host, this feature is automatically enabled even if this parameter is not selected.

Determines whether to continuously check in the background for changes in the host
screen. If the host screen has changed, the browser is refreshed and a JavaScript event

Perform
background check

is triggered. As the server is checked continuously, more server resources are requiredfor host screen
changes for this. By default, the server is checked every 3, 6, 12 and then every 24 seconds.

These intervals can be customized using user exits (refer to theApplinX documentation
for further details).

Logoff

DescriptionParameter

Determines whether to log off from the host session when the browser is
closed. It is recommended to define a session timeout in theApplinXDesigner

Disconnect host sessionwhen
browser is closed

(Application Properties dialog box>Host tab, Non-activity timeout) to ensure
logging off from a session.

The confirmation message which is displayed by default is displayed in this
field. You can change the message as you see fit.

Display the following
confirmation message

Set to true to display amessage indicating to the user that the session is about
to be disconnected. This message will be displayed towards the end of the

Prompt user before session
time-out

Non-activity timeout period (defined in theApplication PropertiesHost tab).
The userwill be able to select to resume or quit the session.When not selecting
either of these options, the userwill be logged off automatically. It is possible
to customize the relevant prompt page (template/logoffPrompt.htm).

Defines a termination path to use when the user logs off by either closing
the browser, or clicking the logoff link (activates logoff.jsp/aspx).

Termination path

159Web Application Development

Web Application Configuration Parameters

Generated Pages

DescriptionParameter

Determines whether the protected fields in the host will be read only in the Web
application (when gx_fillForm is called). Dynamically disable CSS: The css class

Reflect host protected -
Dynamically disable CSS

that is used to give a different look to a read-only input field, which becomes
read-only according to the value of the ReflectHostProtected parameter.

Determines whether the field foreground color in the Web application will be
the same as the field foreground color in the host. The relevant css classes are in
css/styles_generated.css file.

Reflect foreground colors

Determines whether the field background color in the Web application will be
the same as the field background color in the host. The relevant css classes are
in css/styles_generated.css file. /css_colors folder in the emulation template.

Reflect backgroundcolors

Determines whether the fields' maximum length attribute in the host will be the
maximum length attribute in the input fields in the Web application. This saves

Reflect maximum field
length

you thework ofmanually adding this attribute to each input fieldwhendesigning
the page.

Determineswhether to add emulation attributes in text fields. Emulation attributes
are special ApplinX attributes that startwith "gx_" and are added to the rendered

Reflect emulation
behavior

text field tag. These attributes provide additional information to the ApplinX
JavaScript engine, which changes the behavior of the text fields. The attributes
are:

■ gx_autoSkip -will cause the text field to skip to the neighboring text field, once
it is filled with content.

■ gx_dt - The data type of the field. See GXBaseObjectConstants for possible data
types.

■ gx_ra - AS/400 right adjust
■ gx_au - AS/400 automatic enter

Window

DescriptionParameter

Determines whether to activate ApplinX pop-up manager and
transform recognized host windows to Web pop-up windows.

Note: This feature is disabled by default for mobile devices such
as iPad, iPhone, Android etc. You can override this behavior

Enablemodalwindows - openedwindow
top, openedwindow left, openedwindow
attributes, Host key to send when the
window is closed

with a function provided in userExits.js. See Enabling Modal
Windows for Mobile Devices

Web Application Development160

Web Application Configuration Parameters

DescriptionParameter

Determines that the pop-up window is opened in the center of
the screen.

Set window position to center

Determines that the pop-up window is opened in a specific
position.

Set window specific position

Determines the opened window's attributes when using the
method gx_window.open

Opened window attributes

Determines the key to send to the host when the modal window
is closed

Host key to send when the window is
closed

Emulation

DescriptionParameter

Determineswhether to enable the user to type continuously, withoutwaiting
for the browser to display the next page. This feature uses an ActiveX

Support type ahead

component (works in IE only). This feature does not work when a modal
window is open, or during the process of opening/closing a pop-upwindow.

DupandFieldMark are specialMainframe characters. In Instant andgenerated
pages, a user can send to the host a non printable character in specific input
fields.

Support Dup and FieldMark
host keys

Set when the PF keys in the browser are enabled. Default value: true.Use keyboard PF keys

Determines whether the TAB key navigates between the input (unprotected)
fields of the screen only, or also between additional buttons and hyperlinks
in the Web page.

Tab on input fields only

Determines whether or not the cursor will automatically move to the next
input field once the current input field is filled with text (applies to all input
fields).

When the autoSkipAllFields property is set to "true" and IME (Input
Method Editor) input is on, the cursor moved to the next field when the end

Automatic skip for all input
fields

of the field is reached. After pressingENTER, the IME characters are selected
and the number of characters is compared with the maximum length of the
field. If the number of characters is more then themaximum length, the extra
characters are deleted and the cursor moves to the next field.

Determines whether it will be possible to type non-numeric characters in
numeric input fields. The type of the field is a property of the host fieldwhich
the input field is based on.

Block illegal characters in
host numberic fields

Determines whether when moving the cursor to the following field (using
the arrows or TAB key), the field contentwill be selected and then overwritten

Select content when focus on
input field

or the text will not be selected and when typing, the text will be inserted in
the field.

Displays a blinking caret in input fields. Internet Explorer only.Show blinking caret

161Web Application Development

Web Application Configuration Parameters

DescriptionParameter

Some hosts contain definitions determining that certain fields should blink.
This feature enables these fields to blink in the browser. This is not supported
in generated pages.

Show host blinking fields

Determines whether the caret's position should be at the end of the input
fields.

Place caret at end of field

Determineswhether the paste behavior of textwill be as in terminal emulators,
that once a field is filled, the remaining text is pasted in the following field

Use paste behavior as in
terminal emulators

orwhether the textwill be pasted in a single field. Only supported in Internet
Explorer.

Natural upload/download

DescriptionParameters

Defining to use the ActiveX component, enables the work flow's behavior to
be identical to that of Entire Connection. This is relevant for Internet Explorer
only.

Note:

Use ActiveX for Natural
data transfer (IE only)

1. ActiveX will work only if you have Microsoft .NET Framework version
3.5/4.0 installed on your machine.

2. The site using the ActiveX needs to be defined as a “trusted site”. Under
Tools > Internet Options > Security, clickCustom level and underActiveX
controls and plug-ins > Allow Scriptlets check Enable.

Determines whether to automatically start downloading a file, when the first
download screen is displayed.When not selected, amessage appears informing

Automatically start
download

you that the host requires you to download a Natural file. If there is a record
count from the download, it will be displayed on the page.

According to the selected radio button, determines whether to download the
file as awhole, orwhether to download the file in blocks, appending each block

Download file in one
go/Download file in blocks

to the existing file. This parameter is typically set when expecting to download
large files and is only relevant when working with ActiveX and with a non
Natural Unix protocol which supports Natural data transfer.

Enables defining the default file extension: TXT or CSV.Default file extension

Web Application Development162

Web Application Configuration Parameters

Log

DescriptionParameters

The log is written to this file.File name

Selecting this check box determines whether when restarting the Web server, the
log file will be overwritten or a new file will be created.

Append to existing file

The contents of the log file are as detailed as this property defines, where every
level includes the levels above it. For example, the Debug level also logs Normal,

Log level

Warnings and Errors Only levels. Available values: "Normal", "Warnings", "Errors
only" and "Debug" (by default Normal is selected).

Determines the number of backups saved before overwriting the old log files. For
example: 10 means "save the last 10 log files, in addition to the current one, then
start to overwrite".

Log history

Starts a new log file after the current file has been filled to the maximum file size.Max. file size

Performance Monitor

DescriptionParameters

Determines whether to create a performance log.Enable performance monitoring

The log is written to this file.File name

When selected, creates a performance log for each session.Write performance log per session ID

Determineswhether to trace all sessions or only the session specified
here.

Trace sessions

Short descriptionmeans that the information is displayed in a tabular
structure. Detailed description displays the information as a
paragraph.

Description

Macro

DescriptionParameters

The user macros file will be saved according to the user name, therefore it should be a
unique ID of the Web user. The User name can be according to the IP Address, it can be

User name

cookie based, or set in the code. By default it is configured to IP Address, which is a
good ideawhen the user's IP is constant.When selecting the cookie based option,ApplinX
will assign a cookie to the end user, and will read the macro according to the cookie.
Macros will be lost when you delete your cookies. To enable this option you should set
SaveUserNameLocally to true. SelectOther to use a session variable which was saved

163Web Application Development

Web Application Configuration Parameters

DescriptionParameters

according to the login page user name, or to use the Windows name (relevant for .NET
only) (Request.ServerVariables["AUTH_USER"])

Determines the folder on the server where the macros will be saved.Macros folder

Determineswhether to encrypt themacro. Recommended to usewhen themacro includes
user names and/or passwords. When changing this setting, existing macros will no

Encrypt macro
file

longer function. The existing macros will be deleted from the macros folder when
recording new macros.

Single Sign On

DescriptionParameters

Determines whether to activate the single sign option.Enable Single SignOn

Determines the method to use to recognize the sign on screen. According
to the screen name. Automatically recognize the user name and password
fields. Set from the code.

SignOn screen recognition

The name of the SignOn screen, when recognizing the signOn screen
according to the screen's name.

Screen name

Returns the application field name which determines the user name field.Define application field names

User/Password retrieving:

Determines the type of user/password retriever to use:Source

■ Based on information retrieved from an HTTP request.
■ Based on information retrieved from an HTTP session.
■ Set in the code.

User parameter name

SignOn execution:

Determines what happens once the SignOn is recognized:Type

■ Using an action key (enter an action key).
■ Executing a path (enter a path name) .
■ Set in the code.

Enter the action key that is to be activatedAction key

Web Application Development164

Web Application Configuration Parameters

FTP

DescriptionParameters

Sets the type of the remote FTP host. Possible values are: Mainframe AS400 Other - for any
other kind ByApplinx -when the FTP host is the same as the host used in the current ApplinX
session.

Host type

Sets the IP address of the remote FTP host.Host address

CSS Classes

DescriptionParameters

Instant only

The CSS class of window frame.Window frame CSS class

The CSS class of the host keysHost keys CSS class

The CSS class of the table tag.Table CSS class

Table Odd rows CSS

Sets if to render intensified css class for intensified host fields.Render intensified CSS class

Sets if to render the application field css class.Render application field CSS class

Generated & Instant

Table even rows CSS class

Determines whether to render an intensified css class for intensified
host fields.

Render intensified CSS class

Determines whether to render a css class for application fieldsRender application field CSS class

Table even rows CSS class

Defines an external css request parameter name. Used for portal
integration. A portal application may provide to the framework as a

External CSS file parameter name

query string a css URL as follows: http://?cssurl= ("cssurl" will be the
value of the field in this case)

165Web Application Development

Web Application Configuration Parameters

166

24 Base Object

Refer to the Base Object API in the ApplinX API Specification. The API includes documentation
for all Base Object packages and classes, several utility classes and the ApplinX Load Balancer.

167

168

25 Server Side API (Java/.NET)

■ General ... 170
■ ApplinX Tables API .. 194
■ ApplinX Browser Windows API ... 200
■ JSP API ... 203

169

General

■ User Exits
■ GXIClientBaseObject
■ ApplinX Abstract Web Classes - gx Building Blocks
■ GXIScreenBasedForm
■ Instant Component
■ Host Keys Component
■ Printer Control (.NET only)
■ Useful JavaScript Functions

User Exits

An event is a procedure of the framework engine that informs you that a certain process occurred,
and consequently allows you to capture this event and add your own code. The ApplinX events
are called by the ApplinX framework building blocks.

■ gx_preConnect
■ gx_postConnect
■ gx_preSendKeys
■ gx_postSendKeys
■ gx_screenSeqMismatch
■ gx_changeNextForm
■ gx_preSyncHostWithForm
■ gx_preFillForm
■ gx_postFillForm
■ gx_downloadFile
■ gx_getNdtDefaultDownloadFileName
■ gx_isSupportedFeature
■ isUsingactiveX()

gx_preConnect

Occurs before gx_connect, gx_attach.

JSP

Use event.isNewSession() to ascertain if it is before attach or connect.

Use event.getSessionConfig() to change the connection to the ApplinX server parameters.

Capture the event for the whole project from GXBasicContext, or from a certain page, in
YOUR_PAGE.java, OnInit function.

For example, adding a device name:

Web Application Development170

Server Side API (Java/.NET)

}
public void gx_preConnect(GXIHostPageContext gx_context,GXPreConnectEvent event){

if (event.isNewSession()){
event.getSessionConfig().addVariable(GXBaseObjectConstants.GX_VAR_DEVICE_NAME,"MY_DEVICE"));
}
}

.NET

Use e.newSession to ascertain if it is before attach or connect.

Use e.sessionConfig to change the connection to the ApplinX server parameters.

Capture the event for the whole project from GXBasicWebForm, or from a certain page, in
YOUR_PAGE.aspx.cs, OnInit function.

For example, adding a device name:

protected override void OnInit(EventArgs e){
 base.OnInit(e);
 this.gx_preConnect += new GXPreConnectEventHandler(user_preConnect);
 ...
}
protected void user_preConnect(object sender,GXPreConnectEventArgs e){
 if (e.newSession){
e.sessionConfig.Variables = new GXVariable[] {new ↩
GXVariable(com.sabratec.applinx.baseobject.GXBaseObjectConstants.GX_VAR_DEVICE_NAME,"MY_DEVICE")};
 }
}

gx_postConnect

Occurs after gx_connect, gx_attach.

JSP

Use event.isNewSession() to ascertain if it is after attach or connect.

For example, skip messages screen, for all the project pages (in GXBasicContext):

171Web Application Development

Server Side API (Java/.NET)

public void gx_postConnect(GXIHostPageContext gx_context,GXPostConnectEvent event){

if(gx_context.getGXSession().getScreen().getName().equals("MESSAGE_SCREEN")){

gx_context.getGXSession().executePath("SKIP_MESSAGES_PATH");
}
}

.NET

Use e.newSession to ascertain if it is after attach or connect.

For example, skip messages screen, for all the project pages (in GXBasicWebForm):

protected override void OnInit(EventArgs e){
base.OnInit(e);
this.gx_postConnect += new GXPostConnectEventHandler(user_postConnect);

...
}
protected void user_postConnect(object sender,GXPostConnectEventArgs e){

if (gx_session.getScreen().getName() == "MESSAGE_SCREEN"){
gx_session.executePath("SKIP_MESSAGES_PATH");

}
}

gx_preSendKeys

Occurs before gx_processHostKeyRequest(GXSendKeysRequest sendKeyRequest), which is activ-
ated from a browser PF key, if ENTER is pressed, or JavaScript command gx_SubmitKey(key).

JSP

Use event.getSendKeyRequest to change the send key request to the ApplinX server.

For example:

public void gx_preSendKeys(GXIHostPageContext gx_context,GXPreSendKeyEvent event){
if(event.getSendKeyRequest().getKeys().equals("[enter]")){

event.getSendKeyRequest().setKeys("[pf3]");
}
}

.NET

Use e.sendKeyRequest to change the send key request to the ApplinX server.

For example:

Web Application Development172

Server Side API (Java/.NET)

protected override void OnInit(EventArgs e){
base.OnInit(e);
this.gx_preSendKeys += new GXPreSendKeyEventHandler(user_preSendKeys);
...

}
protected void user_preSendKeys(object sender,GXPreSendKeyEventArgs e){

if (e.sendKeyRequest.getKeys() == "[enter]"){
e.sendKeyRequest.setKeys("[pf3]");

}
}

gx_postSendKeys

Occurs after gx_processHostKeyRequest(GXSendKeysRequest sendKeyRequest), which is activated
from a browser PF key, if [ENTER] is pressed, or a JavaScript command gx_SubmitKey(key).

JSP

 // used for performing actions after send keys
 public void gx_postSendKey(GXIHostPageContext ↩
gx_context,GXPostSendKeyEvent event)throws GXGeneralException{
 if (gx_context.getGXSession().getScreen().getName().equals(↩
"DisplayMessage")){
 getGXSession().sendKeys("[enter]");
}
 }

.NET

protected override void OnInit(EventArgs e){
base.OnInit(e);
this.gx_postSendKeys += new GXPostSendKeyEventHandler(user_postSendKeys);
...

}

protected void user_postSendKeys(object sender,GXPostSendKeyEventArgs e){

if (gx_session.getScreen().getName() == "DisplayMessage"){
gx_session.sendKeys("[enter]");

}
}

173Web Application Development

Server Side API (Java/.NET)

gx_screenSeqMismatch

Occurs if the form sequence screen number is different from the gx_session sequence screen
number.

JSP

Use event.setSendToHost to send the data to the host in any case.

For example:

public void gx_screenSeqMismatch(GXIHostPageContext ↩
gx_context,GXScreenSeqMismatchEvent event){
 if ↩
(gx_context.gx_getForm(gx_context.getGXSession().getScreen().getName()).equals(gx_context.getGXForm().getFormName()){

 event.setSendToHost(true);
 }
}

.NET

Use e.sendToHost to send the data to the host.

For example:

protected override void OnInit(EventArgs e){
base.OnInit(e);
this.gx_screenSeqMismatch += new ↩
GXIScreenSeqMismatchEventHandler(user_screenSeqMismatch);
}
protected void user_screenSeqMismatch(object sender,GXIScreenSeqMismatchEventArgs e){
 if (gx_getForm(gx_session.getScreen().getName()) == gx_form.FormName){
 e.sendToHost = true;
 }
}

gx_changeNextForm

Occurs before loading next page, by gx_handleHostResponse. Use e.nextForm to change the next
page.

For example:

Web Application Development174

Server Side API (Java/.NET)

JSP

 public void gx_changeNextForm(GXIHostPageContext gx_context,GXChangeNextFormEvent ↩
event)throws GXGeneralException{
 if (gx_context.getGXSession().getScreen().getName.equals("SCREEN_A")){

 event.setNextForm("SCREEN_B.jsp");
}
 }

.NET

protected override void OnInit(EventArgs e){
this.gx_changeNextForm += new GXChangeNextFormEventHandler(user_changeNextForm);
}
protected void user_changeNextForm(object sender,GXChangeNextFormEventArgs e){

if (gx_session.getScreen().getName == "SCREEN_A"){
e.nextForm = "SCREEN_B.aspx";

}
}

gx_preSyncHostWithForm

Occurs before gx_syncHostWithForm, and its use is to add parameters to the map path that is ex-
ecuted by the framework. The map path in the framework is declared in:

JSP: GXBasicContext : gx_appConfig.setMapPath("<APPLINX MAP PATH NAME>");

.NET : GXBasicWebForm : gx_appConfig.MapPath = "<APPLINX MAP PATH NAME>"

For example:

JSP

 public void gx_preSyncHostWithForm(GXIHostPageContext ↩
gx_context,GXPreSyncHostWithFormEvent event)throws GXGeneralException{
event.getNavigateRequest().addVariable("CUSTOMER_ID", ↩
gx_context.getRequest().getparameter("CUSTOMER_ID"));
 }

175Web Application Development

Server Side API (Java/.NET)

.NET

 protected override void OnInit(EventArgs e){
this.gx_preSyncHostWithForm +=new ↩
GXPreSyncHostWithFormEventHandler(user_preSyncHostWithForm);
}
protected void user_preSyncHostWithForm(object sender,GXPreSyncHostWithFormEventArgs ↩
e){
e.navigateRequest.addVariable("CUSTOMER_ID", Request.QueryString["CUSTOMER_ID"];
}

gx_preFillForm

Occurs before gx_fillForm() or gx_fillForm(GXIScreensCollection screen).

Use this user exit to fill in additional fieldswhose contents are not received directly from the current
host screen.

For example:

JSP

 public void gx_preFillForm(GXIHostPageContext gx_context)throws ↩
GXGeneralException{
gx_context.getTagsAccesor().setTagContent("UserNameTitle",gx_context.getSession.getAttribute("UserName"));
 }

.NET

protected override void OnInit(EventArgs e){
this.gx_preFillForm +=new EventHandler(user_preFillForm);
}
protected void user_preFillForm(object sender,EventArgs e){
UserNameTitle.Text = Session["UserName"];

}

Web Application Development176

Server Side API (Java/.NET)

gx_postFillForm

Occurs after gx_fillForm() or gx_fillForm(GXIScreenCollection screens). Use this user exit
to override the field data received from the host screen.

For example

JSP

public void gx_postFillForm(GXIHostPageContext gx_context)throws GXGeneralException{
gx_context.getTagsAccesor().setTagContent("CustomerID",gx_context.getSession.getAttribute("CustomerID"));

}

.NET

protected override void OnInit(EventArgs e){
this.gx_postFillForm +=new EventHandler(user_postFillForm);
}
protected void user_postFillForm(object sender,EventArgs e){

CustomerID.Text = Session["CustomerID"];
}

gx_downloadFile

Use this user exit to manipulate the content of a Natural downloaded file and change the content
to formats such as RTF, CSV or to any other desired format.

For example

JSP

In GXBasicContext:

public void gx_downloadFile(String fileName, byte[] bytes) throws IOException {

 String fileContent = new String(bytes); // create a string from the bytes
 // manipulate here the fileContent
 super.gx_downloadFile(fileName, fileContent.getBytes()); // call super ↩
to continue with the download. Works for both ActiveX/Non ActiveX. In ActiveX mode ↩
binary content is not supported.
 }

.NET

In GXBasicWebForm:

177Web Application Development

Server Side API (Java/.NET)

Visual Basic

Public Overrides Sub gx_downloadFile(ByVal fileName As String, ByVal bytes As Byte())
 Dim encoding As New System.Text.ASCIIEncoding '' create a bytes to string ↩
ASCII converter
 Dim fileContent As String = encoding.GetString(bytes) '' convert the bytes ↩
into String
 '' manipulate here the fileContent
 MyBase.gx_downloadFile(fileName, encoding.GetBytes(fileContent)) '' call ↩
base method to continue with the download. Works for both ActiveX/Non ActiveX. In ↩
ActiveX mode binary content is not supported.
 End Sub

C#

 public override void gx_downloadFile(string fileName, byte[] bytes)
 {
 System.Text.ASCIIEncoding encoding = new System.Text.ASCIIEncoding(); ↩
// create a bytes to string ASCII converter
 string fileContent = encoding.GetString(bytes); // convert the bytes ↩
into String
 // manipulate here the fileContent
 base.gx_downloadFile(fileName, encoding.GetBytes(fileContent)); // call ↩
base method to continue with the download. Works for both ActiveX/Non ActiveX. In ↩
ActiveX mode binary content is not supported.
 }

gx_getNdtDefaultDownloadFileName

Use this user exit to manipulate/modify the name of a downloaded Natural file.

For example:

JSP

In GXBasicContext:

Web Application Development178

Server Side API (Java/.NET)

@Override
public String gx_getNdtDefaultDownloadFileName(String fileName, String workingFile) {

if("D5".equals(workingFile)){
return "NewFileName.txt";

}
return super.gx_getNdtDefaultDownloadFileName(fileName, workingFile);

}

.NET

Visual Basic

Public Overrides Function gx_getNdtDefaultDownloadFileName(ByVal fileName As String, ↩
ByVal workingFile As String) As String

 If ("D7".Equals(workingFile)) Then
 Return "C:\\temp\\NewFileName.csv"

 Else
 Return MyBase.gx_getNdtDefaultDownloadFileName(fileName, workingFile)
 End If

 End Function

C#

public override string gx_getNdtDefaultDownloadFileName(string fileName, string ↩
workingFile)
 {
 if ("D7".Equals(workingFile))
 {
 return "C:\\temp\\NewFileName.csv";
 }
 return base.gx_getNdtDefaultDownloadFileName(fileName, workingFile);
 }

gx_isSupportedFeature

Method gx_isSupportedFeature indicateswhether a particular feature is supported by the browser.
Currently the only supported feature IDs are:

■ html.inputtypes.date for the HTML5 calendar feature
■ html.inputtypes.month for the HTML5 calendar feature with month format
■ browser.window.support for modal window support on mobile devices

Additionally, a tag is available under Java and .NET to determine whether a feature is supported.
Sample code for calling the method and examples of using the tag are given below.

179Web Application Development

Server Side API (Java/.NET)

JSP

Method example:

try {
 boolean isSup = ↩
gx_isBrowserSupportingFeature(GXIBrowserSupportedFeatures.HTML_INPUT_TYPE_DATE);
 } catch (GXUnsupportedFeatureException e) {
 GXLog.debug(this, "Feature detection not already initialized...");
 }

Tag example:

<gx:isFeatureSupported id="html.inputtypes.date" attributeName="dateSupported"/>
<%
 Boolean feature = (Boolean)request.getAttribute("dateSupported");
 if (feature != null){
 out.print("Browser is supporting feature 'html.inputtypes.date' : "+ ↩
feature);
 } else {
 out.print("Feature detection not already initialized...");
 }
%> ↩

or more simply:

<%=dateSupported %>

.NET

Visual Basic

Method example:

Try
Dim sup As Boolean

sup = gx_isBrowserSupportingFeature("html.inputtypes.date")

Catch ex As Exception
GXLog.debug(Me.GetType(), "Feature detection not already initialized...")

End Try

Tag example:

Web Application Development180

Server Side API (Java/.NET)

<%@ Register Assembly="GXDotnet" ↩
Namespace="com.sabratec.dotnet.framework.web.controls" TagPrefix="gx" %>

<gx:GXIsFeatureSupported runat="server" featureID="html.inputtypes.date" ↩
attributeName="isSupportDateHTML5" />

<%
 Dim res
 res = HttpContext.Current.Items("isSupportDateHTML5");
 if res IsNothing Then
 Dim feature As Boolean
 feature = CType(res,Boolean)
 Response.Write("Browser is supporting feature 'html.inputtypes.date' ↩
: "& feature)
 Else
 Response.Write("Feature detection not correctly initialized...")
 End If

%>

or more simply:

<%=dateSupported %>

C#

Method example:

try
{

bool b = gx_isSupportedFeature("html.inputtypes.date");
}
catch (Exception ex)
{

GXLog.debug(this.GetType(), "Feature detection not already initialized...");
}

Tag example:

<%@ Register Assembly="GXDotnet" ↩
Namespace="com.sabratec.dotnet.framework.web.controls" TagPrefix="gx" %>

<gx:GXIsFeatureSupported runat="server" featureID="html.inputtypes.date" ↩
attributeName="isSupportDateHTML5" />

<%
 Boolean feature = (Boolean) HttpContext.Current.Items["isSupportDateHTML5"];

 if (feature != null){

181Web Application Development

Server Side API (Java/.NET)

 Response.Write("Browser is supporting feature 'html.inputtypes.date' : "+ feature);

 } else {
 Response.Write("Feature detection not correctly initialized...");
 }
%>

Or more simply:

<%= HttpContext.Current.Items["isSupportDateHTML5"]%>

isUsingactiveX()

Use this user exit to manipulate/modify the name of a downloaded Natural file. To implement
the method gx_getNdtDefaultDownloadFileName for automatic download, use the property
isUsingactiveX(). This property indicates if the process is using ActiveX or not, and changes the
logic accordingly.

For example:

public String gx_getNdtDefaultDownloadFileName(String filename, String workingFile) {

 if (workingFile.equals("D7")){
 return "C:\\temp\\MyFile.csv";

}
 if (!isUsingActiveXControl()){
 return "Natural_"+workingFile+".csv";
 }
 return super.gx_getNdtDefaultDownloadFileName(fileName, workingFile);
} ↩

GXIClientBaseObject

JSP

GXIClientBaseObject(getGXSession)

Package:com.sabratec.applinx.baseobject The new ApplinX base object. See Base Object
documentation.

.NET

GXIClientBaseObject (gx_session)

Namespace: com.sabratec.applinx.baseobject

Web Application Development182

Server Side API (Java/.NET)

ApplinX Abstract Web Classes - gx Building Blocks

JSP

GXScreenBasedJspContext

Package: com.sabratec.applinx.j2ee.framework.web

ApplinX API context class, which your project context classes extend from, contains the required
logic for ApplinX framework.

.NET

GXScreenBasedWebForm

Namespace: com.sabratec.dotnet.framework.web

ApplinX ASP.NET API page, which your project pages inherits from, contains the required logic
for ApplinX framework.

The ApplinX abstract Web classes contain the following functions:

■ gx_attach()
■ gx_connect()
■ gx_disconnect()
■ gx_fillForm()
■ gx_fillForm(GXIScreenCollection screens)
■ gx_fillFormFields()
■ gx_fillTable()
■ gx_handleHostResponse()
■ gx_handleSessionError(GXGeneralException)
■ gx_syncFormWithHost()
■ gx_syncHostWithForm()
■ gx_prepareSendKeysRequest(string keys)
■ gx_preparePathRequest(string pathName)
■ gx_doSubmitKeyLogic(string keys); gx_doSubmitKeyLogic(string keys, GXCursor cur)
■ gx_doSelectRowLogic(actionField); gx_doSelectRowLogic(actionField, actionValue); gx_doSelectRow-
Logic(actionField, actionValue, actionKey)
■ gx_setField(String fieldName,GXIField field) (JSP); gx_setField(Control ctrl,GXIField field) (.NET)
■ gx_isFormGenerated(String formName)
■ gx_getNextFormName()
■ gx_loadForm(String formName)
■ gx_isFormSyncWithHost()
■ gx_getForm (String screenName)
■ gx_processHostKeyRequest(GXSendKeysRequest sendKeyRequest)

183Web Application Development

Server Side API (Java/.NET)

■ gx_doCloseWindow(String hostKey)

gx_attach()

Use this function to attach to a session based on getGXAppConfig().getSessionConfig()
(JSP)/gx_appConfig.SessionConfig (.NET) declarations. If the user is already attached (from the
previous page), it will use the same session.

This function is called automaticallywhen inheriting fromGXDefaultLogicContext(JSP)/GXDefault-
LogicWebForm(.NET) .

Note: It is not necessary to detach as this is done automatically by the framework.

gx_connect()

Use this function to connect to a session based on getGXAppConfig().getSessionConfig()
(JSP)/gx_appConfig.SessionConfig (.NET) declarations.

gxfirstpage.java (JSP)/gxfirstpage.aspx.cs(vb) (.NET) is the class that activates this function
by default.

gx_disconnect()

Use this function to disconnect a session based on getGXAppConfig().getSessionConfig()
(JSP)/gx_appConfig.SessionConfig (.NET) declarations.

logoff.java (JSP)/logoff.aspx.cs(vb) (.NET) is the class that activates this function by default.

gx_fillForm()

This function calls gx_fillTables and gx_fillFormFields. Called when the page is loaded
automaticallywhen inheriting from GXDefaultLogicContext(JSP)/GXDefaultLogicWebForm (.NET).
This function is called when staying in the same screen after sending keys, when calling
gx_handleHostResponse.

gx_fillForm(GXIScreenCollection screens)

Uses the values of the application fields in the screens of the path response to fill the page.

For example:

Web Application Development184

Server Side API (Java/.NET)

JSP

GXPathResponse res =getGXSession().executePath("collect_customer_data");
gx_fillForm(res.getScreens()); ↩

.NET

GXPathResponse res =gx_session.executePath("collect_customer_data");
gx_fillForm(res.getScreens());

gx_fillFormFields()

This function is called automatically by gx_fillForm. It fills the page with values from the current
screen. The decision, which fields to update, is determined by
getGXAppConfig().getFieldTypesInUse() (JSP) /gx_appConfig.FieldTypesInUse() (.NET) .

gx_fillTable()

In JSP, this function is called automatically by gx_fillForm. It will automatically call the
getTagsAccessor().setTagTablemethod. It can be overridden in order to customize the table
created to be based on a path, or to add user events.

In .NET, this function is called automatically by gx_fillForm. It checks if a control with the same
ID as the ApplinX table is related to the current screen. If this control is an HTML table, it will
automatically call the GXTablesHandler fillHtmlTableFromGXTablemethod. If the control is a
DataGrid it will convert the host table into a DataTable object and bind it to the DataGrid. It can
be overridden in order to customize the table created to be based on a path, or to add user events.

gx_handleHostResponse()

This function is called to synchronize between the Web application screen to the host screen. This
function calls gx_fillFormwhen the screen/page was not changed, otherwise redirects to the
matching page for the new host screen.

gx_handleSessionError(GXGeneralException)

This function loads the default ApplinX error page gx_appConfig.getErrorForm. It can be over-
ridden to change error handling.

185Web Application Development

Server Side API (Java/.NET)

gx_syncFormWithHost()

This function checks to seewhether the current pagematches the current host screen (this function
is not relevant for Instant pages). When they do not match, the framework redirects to the
matching page. Use this if you want your application to work in the traditional host oriented ap-
proach.

gx_syncHostWithForm()

This function checks to see whether the host matches the current page screen (this function is not
relevant for Instant pages). When they do not match, the framework calls the map declared in
getGXAppConfig().getMapName() (JSP)/gx_AppConfig.MapName (.NET) , and executes it in order
to navigate to the matching host screen. Use this if you want your application to work in a Web
oriented approach, that is, the Web application decides what page to load (by links), and not the
host.

This feature handlesWeb-host synchronization, and allows theApplinXWeb application to support
the Back button in the browser. To implement this, it is necessary to include all the screens that
are in your newWeb application in the Map path.

gx_prepareSendKeysRequest(string keys)

Returns GXSendKeysRequest object, with the string keys typed as the argument values. Use this
function to retrieve from the current page a GXSendKeyRequest object with all the fields from the
page, and the current position of the cursor. For example, when you add a server-side button that
is intended to send all fields followed by the [ENTER] key:

JSP:

getGXSession().sendKeys(gx_prepareSendKeysRequest("[enter]"));

.NET:

gx_session.sendKeys(gx_prepareSendKeysRequest("[enter]"));

gx_preparePathRequest(string pathName)

Returns GXPathRequest object with the pathName. Use this function to retrieve from the current
page a GXPathRequest object with all the fields from the page. For example, when you add a
server-side button that is intended to execute a path with all fields from the current screen and
execute the path:

JSP:

getGXSession().executePath(gx_preparePathRequest("path_login"));

Web Application Development186

Server Side API (Java/.NET)

.NET:

gx_session.executePath(gx_preparePathRequest("path_login"));

gx_doSubmitKeyLogic(string keys); gx_doSubmitKeyLogic(string keys, GXCursor cur)

Use this function when working with server side buttons and needing to perform a simple PF key
action, or a PF key actionwith cursor focusing. Perform the entire process of sendKeys and navigate
to the next page.

GXCursor is in the package com.sabratec.applinx.baseobject.

gx_doSelectRowLogic(actionField); gx_doSelectRowLogic(actionField, actionValue); gx_doSelectRowLogic(ac-
tionField, actionValue, actionKey)

Use this function when working within a page that contains an HTML table control/tag which is
bound to anApplinX host table, and you need to perform a simple row selection action in a server-
side click event.

This function performs the following process of selecting a host row in a screen that contains a
host table: sends all the screen fields, selects a row in the action field (actionField), with the action
value ("X", "1" etc.) and navigates to the next page.

Use the first function (gx_doSelectRowLogic(actionField)) when the selection column is cursor-
sensitive and there is no need to place an action value in it.

Use the second function (gx_doSelectRowLogic(actionField, actionValue)) when an action
value is required.

Use the third function (gx_doSelectRowLogic(actionField, actionValue, actionKey)) when
the action key is not the [ENTER] key.

gx_setField(String fieldName,GXIField field) (JSP); gx_setField(Control ctrl,GXIField field) (.NET)

This function is called for each field in the screen when gx_fillForm is called.

JSP

This function can be overridden to affect the look-and-feel of a gx tag according to the data in the
host field.

For example:

187Web Application Development

Server Side API (Java/.NET)

public void gx_setField(String tagId,GXIField field){
super.gx_setField(); the default behavior
if (!field. IsVisible()){

getTagsAccesor().setTagVisible(tagId,false);
}
}

.NET

This function can be overridden to affect the look-and-feel of a control according to the data in
the host field.

For example:

public override void gx_setField(Control ctrl,GXIField field){
base.gx_setField(Control ctrl, GXIField field); the default behavior
if (!field. IsVisible())

ctrl.Visible = false;
}
}

gx_isFormGenerated(String formName)

Returns boolean.

Determines if a page exists, so that the engine can redirect to that page.

gx_getNextFormName()

Returns string.

The name of the next form to load according to the current host screen. Can be SCREEN_NAME.jsp
or instant.jsp for JSP and SCREEN_NAME.aspx or instant.aspx for .NET.

gx_loadForm(String formName)

Loads the given form. Keeps the host session open when redirecting to the target form.

JSP

Uses response sendRedirect.

.NET

Uses response redirect.

Web Application Development188

Server Side API (Java/.NET)

gx_isFormSyncWithHost()

Returns boolean.

Indicates whether the host screen name matches the current page name.

gx_getForm (String screenName)

Returns string.

Returns the matching page for a given host screen.

JSP

By default it is <SCREEN_NAME>.jsp. Can be overridable to send a few host screens to the same
page.

For example:

public gx_getForm(String screenName){
If (screenName.equals("SCREEN_A") || screenName.equals("SCREEN_B"){

return "PAGE_A.jsp";
}
return super.gx_getForm(screenName); // for default

}

.NET

By default it is SCREEN_NAME.aspx. Can be overridable to send a few host screens to the same page.

For example:

Protected override gx_getForm (String screenName){
If (screenName == "SCREEN_A" || screenName == "SCREEN_B"){

Return "PAGE_A.aspx";
}
return base. gx_getForm (screenName); // for default
}

189Web Application Development

Server Side API (Java/.NET)

gx_processHostKeyRequest(GXSendKeysRequest sendKeyRequest)

This function is activated from a browser PF key or when [ENTER] is pressed, or
javascript:gx_SubmitKey(key).

gx_processHostKeyRequest(GXSendKeysRequest sendKeyRequest)

Executes the given send keys request, and throws the relevant event:

gx_preSendKey

gx_postSendKey

This function can be overridden in order to use customized code with the relevant action key.

gx_doCloseWindow(String hostKey)

Properly closes the current host window. Use this function when a pop-up window is closed by
the user, in the gx_closeWindow event. Accept a parameter of a host key to send to the host in order
to close the host window.

GXIScreenBasedForm

(gx_form - .NET)

(getGXForm() - JSP)

Package: com.sabratec.applinx.framework

The ApplinX.NET and JSP pages are handled as the interface GXIScreenBasedForm. This interface
is passed to the framework engine in order to fill the fields, read the fields values and get form
details. All the interface methods are overridable and can be used to customize the page fields'
update and returned values.

■ getAppFieldContent(String fieldName)
■ getHostFieldContent(GXPosition pos)
■ getMultipleFieldContent(String fieldName, int index)
■ getFieldTypesInUse() setAppField(GXIField field)
■ setHostField(GXIField field)
■ setMultipleField(GXIField field)
■ SeqScreenNumber
■ CursorPosition
■ FormName

Web Application Development190

Server Side API (Java/.NET)

■ HostKeys

getAppFieldContent(String fieldName)

Returns to the host (from the page) the value of an AppField.

getHostFieldContent(GXPosition pos)

Returns to the host (from the page) the value of a host field by position.

getMultipleFieldContent(String fieldName, int index)

Returns to the host (from the page) the value of a multiple AppField. Only the relevant methods
will be called according to the value of gx_appConfig.

getFieldTypesInUse() setAppField(GXIField field)

Sets the value of a page field from an AppField.

setHostField(GXIField field)

Sets the value of a page field from a host field.

setMultipleField(GXIField field)

Sets the value of a page field fromAppField, overridable. The calls for the three functions depend
on a call to gx_fillForm, and the value of gx_appConfig.getFieldTypesInUse().

SeqScreenNumber

Returns the page sequential screen number.

CursorPosition

Returns the name of the field that is focused on, in the page.

191Web Application Development

Server Side API (Java/.NET)

FormName

Returns the current page name.

HostKeys

Returns the PF key pressed in the browser.

Instant Component

Use the following control to display the ApplinX instant HTML page. The Instant component is
included in instant.aspx/jsp and in a generated page for a screen group. Refer to the Instant API
Javadoc in the ApplinX API Specification. The instant configuration may be modified within the
framework in the class GXInstantLogicContext (JSP)/ GXInstantLogicWebForm (.NET). For the
configuration options see the class com.sabratec.applinx.presentation.GXRenderConfig in the
ApplinX Development API Javadoc.

Host Keys Component

TheHost Keys custom tag allows developers to control the dynamic host keys collection in various
common options and custom templates. This control allows creating complex UI, based on the
host keys, without any code. This component is useful for creating a fast, advanced UI in a Web
enabling application by combining it anywhere in the framework template. The host keys collection
is rendered inside a container which may be a standard HTML table. This component can be fully
customized using the GXIHostKeysTagUserExit interface. Refer to Customizing the Host Keys.

The custom tag contains the following attributes:

■ KeyType
■ cssClass(JSP)/Class(.NET)
■ Vertical
■ Additional Attributes

KeyType

May be Links, Buttons or Template.

Determines the way each host will be displayed. When defined to be displayed as Template, the
tag's inner HTML should contain the HTML text that will be rendered for each host key. The
HTML textmay contain the tokens: $(ACTION) and $(CAPTION) for dynamic replacements. Action
being the name of the function key itself, that will be sent to the host (for example - [ENTER],
[PF5], [PA2]) and Caption, the text associated with the function key (written below or next to the
function key name).

Web Application Development192

Server Side API (Java/.NET)

cssClass(JSP)/Class(.NET)

Determines the css class of the rendered HTML for the host keys.

Vertical

Determines how the host keys are displayed.

Possible values: true, false. When set to false, the host keys will be displayed horizontally.

Additional Attributes

In order to control theHTML table container of the host keys, all the standardHTML table attributes
are supported: width, height, cellspacing, cellpadding and border.

Example of use:

Render the host keys vertically, as a custom tag in beforemainpane.

For example:

JSP

<gx_host:hostKeys vertical="true" keyType="Template" cssClass="blueButton">

</gx_host:hostKeys>

.NET

<gx:GXHostKeysControl runat="server" vertical="true" keyType="Template" ↩
Class="blueButton">

 </gx:GXHostKeysControl>

Printer Control (.NET only)

This control generates a java applet tag for the ApplinX printlet. Refer to the ApplinX Printer
Applet. Included within the run_printlet.aspx file.

193Web Application Development

Server Side API (Java/.NET)

Useful JavaScript Functions

■ user_prePostBack
■ gx_postBack(<SERVER-SIDE-FUNCTION-NAME>) (JSP only)

user_prePostBack

Occurs before a page is posted back to the server side. Can be triggered from both a server side
button or keyboard PF key/ENTER. Add it to the relevant page in order to carry out validation
checks.

For example:

<script>
function user_prePostBack(){

if (isValid()){ // isValid() is a user function that checks validity
return false;

}
return true;
}
<script>

gx_postBack(<SERVER-SIDE-FUNCTION-NAME>) (JSP only)

Used for submitting the page and activating the specified function in the associated context class.
The specified function should be a public function with no parameter and no return value.

ApplinX Tables API

■ Class Methods for the Table Entity - JSP
■ Classes for the Table Entity - .NET
■ GXITableEvents (JSP)

Web Application Development194

Server Side API (Java/.NET)

■ GXITableEvents (.NET)

Class Methods for the Table Entity - JSP

■ getTagsAccessor().setTagTable
■ getTableSelectedKey(String tagId); getTableSelectedKeys(String tagId)
■ addTableKeyColumn(String tagId,String keyCol)
■ GXTableBuildConfig

getTagsAccessor().setTagTable

Package: com.sabratec.dotnet.framework.web.tables

Methods:

setTagTable(String tagId,GXITable gx_table);

setTagTable(String tagId,GXITable gx_table,GXITableEvents events);

setTagTable(String tagId,GXITable gx_table,GXITableEvents events, GXTableBuildConfig
config);

Return type: none

Description: Sets for the table TagId a GXITable object, for duplication by each row in the HTML
table according to the data in gx_table.

Optional parameters:

GXITableEventsEvents: user listener that allows customizing theHTML table at runtime, according
to the host data. For example, changing the background color to red for certain rows when the
content of a certain field in the current row is negative.

getTableSelectedKey(String tagId); getTableSelectedKeys(String tagId)

Returns String/String[]

Returns the value of the key column(s) when performing a row selection server-side event in the
HTML table. Can be used to send the index to the correct multiple application fields or to activate
a path that searches for the correct line by the key value.

195Web Application Development

Server Side API (Java/.NET)

addTableKeyColumn(String tagId,String keyCol)

Adds key column to the HTML gx:table. When a row is selected in the HTML gx:table, the
primary key(s) of the row will be retrieved using the method: getTableSelectedKey/
getTableSelectedKeys.

GXTableBuildConfig

Description: This method is the configuration parameter for building the HTML table.

The ApplinX Frameworks also activates these APIs automatically, when inheriting from GXBasic-
Context/GXDefaultLogicContext.

Classes for the Table Entity - .NET

■ GXDataConverter
■ GXTablesHandler

GXDataConverter

Namespace: com.sabratec.dotnet

GXTableToDataTable - Static Method

Parameters: GXITable object

Return type: System.Data.DataTable

Description:Gets aGXITable object returned fromApplinX server through gx_session, and converts
it to a DataTable object.

Example ©#):

Using com.sabratec.dotnet;

Using com.sabratec.applinx.baseobject.tables;

...
public override void gx_buildTable(){
GXITable gx_table = gx_session.getTables()[0];
DataTable dt = GXDataConverter.GXTableToDataTable(gx_table);
Datagrid1.DataSource = dt;
Datagrid1.DataBind();
}

Web Application Development196

Server Side API (Java/.NET)

GXTablesHandler

Namespace: com.sabratec.dotnet.framework.web.tables

fillHtmlTableFromGXTable - Static Method

fillHtmlTableFromGXTable(HtmlTable table,GXITable gx_table);

fillHtmlTableFromGXTable(HtmlTable table,GXITable gx_table,GXITableEvents events);

fillHtmlTableFromGXTable(HtmlTable table,GXITable gx_table,GXITableEvents events,
GXTableBuildConfig config);

Return type: none

Description Gets a .NET HTML table object, and a GXITable object, and duplicates each row in
the HTML table according to the data in gx_table.

Optional parameters: GXITableEvents Events: user listener that allows customizing the HTML
table at runtime, according to the host data. For example, changing the background color to red
for certain rows when the content of a certain field in the current row is negative.

Thismethod is the configuration parameter for building theHTML table. TheApplinX framework
also activates these APIs automatically, when inheriting from GXDefaultLogicWebForm.

Note: This is an example of how to use the tables API.

Using com.sabratec.dotnet.framework.web.tables;

Using com.sabratec.applinx.baseobject.tables;

addKeyColumn - Static Method

addKeyColumn(HtmlTable table,string keyCol);

Description: Add key column to the HTML table. When a row is selected in the HTML table, the
primary key(s) of the row will be retrieved using the method: getTableSelectedKey/
getTableSelectedKeys.

197Web Application Development

Server Side API (Java/.NET)

getTableSelectedKey/ getTableSelectedKeys - Static Method

Description: Returns the value of the key column(s) when performing a row selection server-side
event in the HTML table. Can be used to send the index to the correct multiple application fields,
or to activate a path that searches for the correct line by the key value.

GXITableEvents (JSP)

Package: com.sabratec.J2EE.framework.web.tables Interface for eventswhen theHTML table rows
are duplicated with run-time data.

Methods:

■ gx_changeTr(int RowIndex,Element tr,GXITableRow row);
■ gx_changeTd(int ColIndex, Element td,GXITableRow row);
■ gx_changeControl(int ColIndex, Element td,Control ctrl,GXITableRow row);

gx_changeTr(int RowIndex,Element tr,GXITableRow row);

Occurs when each new table row (TR) with run-time data is created. Allows you to customize the
TR according to the current host row.

gx_changeTd(int ColIndex, Element td,GXITableRow row);

Occurs when each new table cell TD with run-time data is created. Allows you to customize the
table data TD according to the current host row.

gx_changeControl(int ColIndex, Element td,Control ctrl,GXITableRow row);

Occurswhen each new control inside a TDwith run-time data is created. Allows you to customize
the controls according to the current host row.

GXITableEvents (.NET)

NameSpace: com.sabratec.dotnet.framework.web.tables Interface for events when the HTML
table rows are duplicated with run-time data.

Methods:

■ gx_changeTr(int RowIndex, HtmlTableRow tr, GXITableRow row);
■ gx_changeTd(int ColIndex, HtmlTableCell td, GXITableRow row);

Web Application Development198

Server Side API (Java/.NET)

■ gx_changeControl(int ColIndex, HtmlTableCell td, Control ctrl, GXITableRow row);

gx_changeTr(int RowIndex, HtmlTableRow tr, GXITableRow row);

Occurs when new table rows (TR) with run-time data, are created. Allows you to customize the
TR according to the current host row.

gx_changeTd(int ColIndex, HtmlTableCell td, GXITableRow row);

Occurs when each new table cell TD with run-time data is created. Allows you to customize the
table data TD according to the current host row.

gx_changeControl(int ColIndex, HtmlTableCell td, Control ctrl, GXITableRow row);

Occurswhen each new control inside a TDwith run-time data is created. Allows you to customize
the controls according to the current host row.

Example:

'' in the code behind of the designed table web page
public override void gx_fillTable()
{
GXTablesHandler.fillHtmlTableFromGXTable(CustomerReportHtmlTable, ↩
gx_session.getTables()[0], this);
}

public void gx_changeControl(int colIndex,HtmlTableCell td, Control ctrl, GXITableRow ↩
 row){
// a link inside a TD will get its value from the Subject // // column
if (ctrl is HtmlAnchor){
((HtmlAnchor)ctrl).InnerHtml = row.getItemContent("Subject");
 }
 }
public void gx_changeTd(int colIndex,HtmlTableCell td,GXITableRow row) {
 // a table with a red host row will get a marked row css class.
if (((GXFieldTableCell)row.getItem("Subject")).getFGColor() == ↩
GXBaseObjectConstants.GX_FIELD_COLOR_LIGHT_RED){
td.Attributes["class"] = "marked_row";
 }
 }

public void gx_changeTr(int rowIndex, HtmlTableRow tr, GXITableRow row){
 // a row with dashed in the Subject field will be disabled
 if (row.getItemContent("Subject").IndexOf("----") > -1){
 tr.Visible = false;
 }
 }

199Web Application Development

Server Side API (Java/.NET)

ApplinX Browser Windows API

■ gx_window/getGXWindow() Methods (Client-side and Server-side)
■ Pop-Up Window Configuration
■ Pop-up Windows User Exits

gx_window/getGXWindow() Methods (Client-side and Server-side)

JSP:

GXIWindow (getGXWindow())

Package: com.sabratec.applinx.framework.web.windows

.NET:

GXIWindow (gx_window).

Namespace: com.sabratec.applinx.framework.web.windows

■ loadPage(String pageName)
■ loadPageFull(String pageName)
■ close()
■ open(String pageName, int Width, int height)
■ addCommand(String command)
■ resizeTo(int width, int height)
■ refreshPage()
■ cancelRefresh()
■ setField(String fldName,String fldVal)
■ isOpener()
■ isWindow()
■ moveTo(int posx, int posy)

loadPage(String pageName)

Loads the given page name in the current window, or its opener. The loading is done inside the
frameset.

Web Application Development200

Server Side API (Java/.NET)

loadPageFull(String pageName)

Loads the given page name in the current window, or its opener. The loading is done outside the
frameset.

close()

Closes the referred window(gx_window or gx_window.opener).

Note: When performing a set of actions, ensure this method is the last one, because any line
after it will not be executed.

open(String pageName, int Width, int height)

Opens the specified page name, with the given width and height.

addCommand(String command)

Allows you to add a JavaScript function to be executed.

resizeTo(int width, int height)

Allows you to resize the window (for example, if the host window was changed).

refreshPage()

Calls the server-side gx_refreshWindow(GXBasicContext)(JSP)/gx_refreshWindow(inGXBasicWeb-
Form) (.NET) event, which can be used to update the form field.

cancelRefresh()

By default when a window is closed, the opener is refreshed (Good for instant). You can cancel
this behavior in specific functions by calling: gx_window.opener.cancelRefresh()

setField(String fldName,String fldVal)

Allows you to return a field from the pop-up window to the main window using server or client-
side code.

201Web Application Development

Server Side API (Java/.NET)

isOpener()

If true, means that the current window is a main window.

isWindow()

If true, means that the current window is a pop-up window.

moveTo(int posx, int posy)

Allows you to position the window (for example, if the host window was changed).

Pop-Up Window Configuration

When activating the pop-up manager, there are various configurations that the developer can
configure. These can be configured in the Framework Editor, Window node.

Changing the default size of the frame columns

The pop-up manager is based on a frameset, one frame is always visible and the other isn't. In the
development stage the developer may want to make the invisible frame also be visible. A typical
case may be for a design time error that is not shown. To make the invisible frame visible, you are
required to change the size of the frame columns in config/gx_clientConfig.xml engineConfig
parameters, defaultFrameColumns="100%", change 100% to a different suitable number.

Pop-up Windows User Exits

The following user exits will be called only when the pop-up window manager is activated:

■ gx_preOpenWin
■ gx_refreshWindow ()
■ gx_closeWindow ()

gx_preOpenWin

Occurs prior to a pop-up window display, which is opened by the framework before a host win-
dow's appearance. Used for controlling if and how to open the pop-up window.

JSP

Use event.setWidth (jsp), event.setHeight to control the size of the opened window.

Use event.setPosX(jsp), event.setPosY(jsp) to control the position of the opened window.

Use event.setLoadAsWindow(false) to cancel the opening of the pop-upwindow (will be opened
as a main page).

Web Application Development202

Server Side API (Java/.NET)

.NET

Use e.Width, e.Height to control the size of the opened window.

Use e.PosX, e.PosY to control the position of the opened window.

Use e.LoadAsWindow = false to cancel the opening of the pop-up window (will be opened as a
main page).

gx_refreshWindow ()

Occurs in the main window page whenever the user closes a pop-up window using the X button.
Allows the developer to update the page when this event occurs. By default, calls gx_fillForm.

gx_closeWindow ()

Occurs in the pop-upwindowpagewhenever the user closes a pop-upwindowusing the X button.
Allows the developer to send an exit key (PF3 for example) to the host so that theWeb application
will be synchronized with the host application. Typical usage: gx_doCloseWindow("[PF3]").

JSP API

Refer to the JSP tags API in the ApplinX API Specification.

203Web Application Development

Server Side API (Java/.NET)

204

26 Client Side (JavaScript)

■ ApplinX Server Actions ... 206
■ Navigating between Input Fields ... 208
■ Tables ... 209
■ Design ... 210
■ Keyboard Mapping ... 211
■ ApplinX Web Application Event ... 213
■ Browser Related Functions .. 214
■ JavaScript Logging .. 214
■ Page Validation ... 215
■ ApplinX Web Application Windows .. 216
■ HTML Controls .. 219
■ Web Application Configurations .. 220
■ Functionality ... 221
■ Screen Locker ... 223
■ User Exits .. 223

205

ApplinX Server Actions

Refer to the following tasks for further details on implementing these functions:

■ Creating a Button / Hyperlink for Submitting a Host Key
■ Enabling Sending Dup and FieldMark Characters to the Host

gx_SubmitKey(key)

Submits a PF key to the host.

parameters

key
The key to submit.

Example:

"[ENTER]", "[PF3]" ↩

gx_SubmitKeyInPos(pos, keyName)

Sets the position of the cursor and then submits a PF key to the host.

Parameters

pos
The host screen position fromwhich to send the host key. In a standard 24X80 host screen, the
position can be any number between 1 and 1920.

keyName
The host key to send to the host.

For example

"[ENTER]"

Web Application Development206

Client Side (JavaScript)

SubmitCustomKey()

Prompts the user to specify a host key (for example "[PF3]") and submits it to the host.

gx_SetCursorPos(pos)

Sets the position from which the next PF key will be sent. In a standard 24X80 host screen, the
position can be any number between 1 and 1920.

gx_ExecPath(pathName)

Executes an ApplinX Path Procedure for navigation purposes. When a folder is not specified,
ApplinX server looks for the path in the directory of the current host screen. If the path cannot be
found in the directory of the current host screen, ApplinX server looks for the path in the root
directory. When a folder is specified, it needs to be relative to the root directory.

Parameters

pathName
The path to execute (case-sensitive).

For example:

ExecPath("gotoMainMenu")
ExecPath("Common/gotoMainMenu") ↩

gx_systemRequest()

Prompts the client to type in the system request and then submits it to the host. Equivalent to
gx_SubmitKey("[sysreq]").

gx_fieldmark()

Places the Field Mark symbol in the currently selected input field, and moves the cursor to the
next unprotected position. Handling of the symbol is dependent on the application program.
Equivalent to gx_SubmitKey("[fieldmark]").

207Web Application Development

Client Side (JavaScript)

gx_dup()

Simulates pressing the MainFrame duplicate (Dup) key. A duplicate symbol ("*") will appear in
the currently selected input. Upon submitting the form, APX server will send the dup command.
This only works on host fields that allow duplicating (in the host application). The host should
support this functionality as well.

Navigating between Input Fields

Refer to the following task for further details on implementing these functions:

■ Navigating between Input Fields

gx_home()

Moves to the first input element on the page. Equivalent to gx_SubmitKey("[home]").

gx_end()

Moves to last input element on the page. Equivalent to gx_SubmitKey("[end]").

gx_newLine()

Moves to the first input field you find in the rows below. Equivalent to gx_SubmitKey("[newline]").

gx_jumpToNextInput(currTextBox)

Sets the cursor on the next input field on the screen, relative to currTextBox.

For example:

<input type="button"
 onclick="gx_jumpToNextInput(this)"... ↩

Web Application Development208

Client Side (JavaScript)

gx_jumpToPrevInput(currTextBox)

Sets the cursor on the previous input field on the screen, relative to currTextBox

For example:

<input type="button"
onclick="gx_jumpToPrevInput(this)"... ↩

Tables

Refer to the following tasks for further details on implementing these functions:

■ Retrieving Values from a Selected Row within a Table

gx_selectKey(elem)

Each table in a generated page keeps track of the selected row in the HTML table by a hidden
field, which is added automatically.

This JavaScript function, when called inside a table row, updates this hidden field with the row
number (by default) or row key to keep track of the selected row on the server-side.

Can be inserted by an on click event on a table row (tr) or a link/button placed inside a table cell.

Parameters

elem
Any element inside a table row (including the TR element itself).

gx_getSelectedKey(tableName)

Returns the selected key after gx_selectKey was called.

Parameters

tableName
The name/ID of the HTML table whose selected value we want to retrieve.

209Web Application Development

Client Side (JavaScript)

gx_isTableKeySelected(tableName)

Query if a row was selected. Used for validation to force a row selection.

Possible values: true/false

parameters

tableName
The name of the HTML table.

gx_markRow(obj,selectedRowCss)

Can be called in a table row (tr) event. This function marks the clicked row with the selected row
css class name.

Can be used by ApplinX css: gx_markRow(this,"gx_tbl_selected")

Parameters

obj
The table row object selected.

RowCss
The css class to use to change the selected row.

Design

Refer to the following tasks for further details on implementing these functions:

■ Enabling the User to Control the Font Size

gx_changeCss()

Toggles between the display styles specified in the web application configuration (In Emulation
node>Color Set).

Web Application Development210

Client Side (JavaScript)

gx_changeCssExact(cssName)

Sets the display style to the specified style sheet.

Parameters

cssName
Style sheet URL.

gx_increaseFontSize()

Increases the font size used in the Web application. This function is called by the plus link in the
page footer. The maximum font size is 20px. Refer to Enabling the User to Control the Font Size.

gx_decreaseFontSize()

Decreases the font size used in the Web application. This function is called by the minus link in
the page footer. The minimum font size is 7px. Refer to Enabling the User Control the Font Size.

gx_changeFontSize(size)

Changes the font size used in the Web application to the specified size.

Parameters

size
An integer. The new font size in pixels.

Keyboard Mapping

Refer to the following tasks for further details on implementing these functions:

■ Mapping Keyboard Keys to User Actions in Individual Pages

gx_AddKeyboardMapping(additionalKey,keyCode,functionElement,overrideExisting,cancelMapFunction)

This function allows developers to attach JavaScript functions to specific keyboard keystrokes.

Parameters

additionalKey
Possible values : 0-none, 1-CTRL, 2-ALT, 3-SHIFT

keyCode
An integer. The ASCII code of the pressed key. For example: Enter = 13

211Web Application Development

Client Side (JavaScript)

functionElement
The JavaScript element to execute.

overrideExisting
A boolean parameter indicating whether to override the existing XML keyboard mapping
definition (gx_keyboardmapping.xml) .

cancelMapFunction
Optional. A function element that returns either true or false, determining whether to execute
the keyboard mapping function or not. True, cancels the mapped function and False executes
the function.

Examples

When CTRL+ESC are pressed, executes a confirm function(myConfirmFunc). When confirmed,
performs the myLogoff function.

gx_AddKeyboardMapping(1,27,myLogoff,true,myConfirmFunc)

When CTRL+ESC are pressed, executes the myLogoff function.

gx_AddKeyboardMapping(1,27,doLogoff,true)

Overrides the default PF3 action with a do-nothing action (void(0)).

gx_AddKeyboardMapping(0,27,void(0),true)

Note on Enter Key Recognition

A distinction is made between the two Enter keys (on numeric keypad and the main keyboard),
using the following line in the configuration file keyboardMapping.XML:

<GXKeyboardMapping additionalKey="0" keyCode="numpadENTER" ↩
targetFunction="[Function]"/> ↩

Note: This applies only to the following browsers: Firefox 29 and above; Chrome; Internet
Explorer 11.

Web Application Development212

Client Side (JavaScript)

ApplinX Web Application Event

What is GXEvent?

GXEvent is a Wrapper for a browser event. This wrapper provides a cross browser event object.

Refer to the following task for further details on implementing these functions:

■ Implementing & Controlling JavaScript Events using the gx_event Object

Properties

GXEvent.keyCode

Sets or retrieves the Unicode key code associated with the key that caused the event.

GXEvent.additionalKey

An integer representing the key that was pressed in addition to the key that triggered the event.
Possible values: 0-none, 1-CTRL, 2-ALT, 3-SHIFT

GXEvent.element

Retrieves the element that fired the event.

Methods

GXEvent.cancel()

Cancels the event and stops it from bubbling further up the hierarchy of event handlers.

ApplinX Web Application Event Example

The following example will cancel the OnKeyDownwhenever the [ENTER] key is pressed in a spe-
cific text area ("myTextArea"), prevent the page from being submitted andmanually add a newline
to the text area value:

Add the following to globalOnKeyDown function in the userExits.js file:

213Web Application Development

Client Side (JavaScript)

function globalOnKeyDown(gx_event){
.........
var win = gx_event.window;

if (gx_event.keyCode==13 && gx_event.element.id=="myTextArea"){
gx_event.cancel();
GXBrowserUtil.getElement("myTextArea").value += "\r\n"

}
.........
}

Assume your JSP/ASPX page has the following input: <textarea row="5" id="myTextArea"
></textarea>

Browser Related Functions

Refer to the following task for further details on implementing these functions:

■ Retrieving Browser Information

GXBrowserUtil.isIE()

Boolean. Retrieves whether or not the browser is Microsoft Internet Explorer.

GXBrowserUtil.isIE7()

Boolean. Retrieves whether or not the browser is Microsoft Internet Explorer 7 or higher.

GXBrowserUtil.isMozilla()

Boolean. Retrieves whether or not the browser is Mozilla Firefox.

JavaScript Logging

GXLog is used to handle client side JavaScript logging. While mostly used by the ApplinX web
application JavaScript engine, users can also add their own log messages. Refer to JavaScript
Logger Engine for further details.

Web Application Development214

Client Side (JavaScript)

GXLog.debug(moduleName, message)

Adds a log message only when in debug mode.

Parameters

moduleName
This parameter can be an empty string. However, in order tomake logmessagesmore distinct-
ive in the log, it is recommended to add a unique value to the engineConfig debugModules
property in config/gx_clientConfig.xml and then use that value as the moduleName for debugging
the JavaScript.

message
The log message.

GXLog.warning(moduleName, message)

Adds a log message only when in Warning mode.

GXLog.error(moduleName, message)

Adds a log message only when in Error mode.

Page Validation

GXValidator represents an array of validators, used to validate the form's data before submitting
it to the host.

Refer to the following task for further details on implementing these functions:

■ Validating your Data

GXValidator.registerValidator(Validator)

Adds a validator to the array.

215Web Application Development

Client Side (JavaScript)

GXValidator.clearValidators()

Clears the validator array.

Page Validation Example

The following example is automatically added to every JSP/ASPX page generated by ApplinX:

var pageValidator = new function(){
this.validateField = function(inputField){
if (inputField.name == "FIELD_A"){
if (inputField.value == ""){
return "Field cannot be empty";

}
}
// ...

}
}
function pageOnLoad(){ // register validator function
GXValidator.registerValidator(pageValidator);

}

This validator checks that "Field_A" has a value. Otherwise, it returns an error message.

ApplinX Web Application Windows

What is gx_window JavaScript class?

GXWindow interacts with ApplinX framework's server side gx_window(.NET)/getGXWindow()
(JSP). In addition, gx_window can perform actions on the browser side using the following
methods:

Refer to the following task for further details on implementing these functions:

■ Handling Web Application Windows using the gx_windows Object

Web Application Development216

Client Side (JavaScript)

gx_window.open(page,width,height,left,top)

Locks the current main window, opens a new pop-up window and loads the document specified
by a given URL (page).

Parameters

page
A page name (including relative folders) to load into the pop-up window.

width
The window's width.

height
The window's height.

left
An integer. The position of the window's left edge, in relation to the desktop.

top
An integer. The position of the window's top edge, in relation to the desktop.

gx_window.resizeTo(width,height)

Sets the size of the window to the specified width and height values.

gx_window.moveTo(posX,posY)

Moves the screen position of the upper-left corner of the window to the specified posX and posY
position.

gx_window.setField(fldName,fldVal)

Sets the value or InnerHTML property of field fldName, to the specified fldVal.

gx_window.close()

Closes the window. If the main window is closed the host session will be disconnected.

217Web Application Development

Client Side (JavaScript)

gx_window.getOpener()

In pop-up windows, retrieves the parent window element.

gx_window.loadPageFull(PageName)

Loads a URL. The PageName represents the URL of the document that is to be loaded.

gx_window.loadPage(PageName)

Loads a URL. The PageName represents the URL of the document that is to be loaded.

ApplinX Web Application Windows Example

Main Window HTML and Script

<script>
function getData(){

gx_window.open("myData.jsp",200,300,0,0) ;

// .NET
// gx_window.open("myData.ASPX",200,300,0,0);

}
</script>

<input id="myInput" value=" "/>
open Win

Pop-Up Window

function setMainWindowInput(){
// Set the value of an Input on the main window

gx_window.getOpener().
gx_getElement("myInput").value="someValue";

// Unlock the main window before closing the pop up
gx_window.getOpener().gx_unlockScreen();

// Close the pop up window
gx_window.close();

}

close Win

Web Application Development218

Client Side (JavaScript)

HTML Controls

gx_updatePagePart(panelId)

This functionality can only be used once this feature has been selected in the Framework Config-
uration Editor. This feature is used for updating a specific part of the page (can only be used once
within a single page). This is useful when sorting/scrolling within host tables or working with
tabs. Call this function just before a submitting a key to the host.

Parameters

panelId
The server side control ID, whose content we wish to update.

gx_isValidInputElement (inputElement)

Boolean. Returns "true" if inputElement is either a combo box, text area or an input tag of the fol-
lowing type: radio, check box, password or text. Otherwise returns "false".

Parameters

inputElement
The input field to validate.

gx_getElement(elemId)

Similar to document.getElementById("id"), this function retrieves the required HTML object
from the active frame according to its identifier (elemtId).

gx_eraseEOF()

Removes text from an input field, leaving only the text before the cursor.

gx_showCalendar(Title,dateFieldName1,Format1,dateFieldName2,Format2, dateFieldName3,Format3)

Displays the calendar window, attaches it to a specific input or inputs (up to three inputs: day,
month and year) and sets the format the selected date will be displayed with.

Parameters

Title
Calendar window title.

dateFieldName1/dateFieldName2/dateFieldName3
An Input field used to display the date (or part of it).

219Web Application Development

Client Side (JavaScript)

Format1/Format2/Format3
The format in which the date will be displayed.

The fields dateFieldName2/dateFieldName3 and Format2/Format3 are optional and required
only when there is more than one date field and date format.

Examples

<img onclick="gx_showCalendar('Select a date','BirthDate','MM-dd-yy')"... ↩

<img onclick="gx_showCalendar('Select a date','day','dd' ,month,'MM', ↩
'year','yyyy')...

Possible date format examples:

MMM, d, yyyy - March 22, 2009

dd/MM/yy - 22/03/09

MM-yyyy - 03-2009

Web Application Configurations

gx_getCookie(name)

Retrieves the value of the cookie <name>.

Parameters

name
The name of the cookie.

GXLAFHandler.COLOR_CSS_COOKIE
Saves the user preferred Style sheet.

GXLAFHandler.FONT_SIZE_COOKIE
Saves the user preferred font-size for Instant pages

GXLAFHandler.RESOLUTION_COOKIE
Saves the user's screenwidth (this is usefulwhen developers set the Instant configuration's
font-size node to "Dynamic by screen resolution").

Web Application Development220

Client Side (JavaScript)

gx_setCookie(name, value)

Sets the value in a specific (<name>) cookie.

Parameters

name
The name of the cookie.

GXLAFHandler.COLOR_CSS_COOKIE
Saves the user preferred Style sheet.

GXLAFHandler.FONT_SIZE_COOKIE
Saves the user preferred font-size for Instant pages

GXLAFHandler.RESOLUTION_COOKIE
Saves the user's screenwidth (this is usefulwhen developers set the Instant configuration's
font-size node to "Dynamic by screen resolution").

value
The value to be set to the cookie.

Functionality

Refer to the following tasks for further details on implementing these functions:

■ Printing a Capture of the Host Screen
■ Opening the File Transfer Dialog Box
■ Deploying the Printlet

gx_printScreen()

Opens a customized print screen Web page that contains a text representation of the current host
screen. This is used in order to print a snapshot of the current host screen.

gx_openFtpDialog

Opens the file transfer dialog box.

221Web Application Development

Client Side (JavaScript)

gx_openNewBrowser (url)

Opens a new browser window with its own process. Useful when you need to open multiple
sessions from the same Web application. The ApplinX emulation component ActiveX Object in
the current page needs to be uncommented (see index.jsp/aspxpage in theHTMLemulation demo).

Parameters

url
The URL destination of the new window.

gx_hidePrinter/gx_showPrinter()

Hides/shows the Printlet window/frame. Will only work if the ApplinX application is printer en-
abled. Refer to Deploying the Printletfor more details about ApplinX printers.

gx_postBack(func)

Use this function to execute server side functionality.

Parameters

func
A string. The server side function name to be executed.

Example

Create a button in your JSP page that when clicked runs a server side function called
myServersideFunc:

<gx:input type="button" value="GO!" onserverclick=" myServersideFunc" />

The server side code must have a method like this:

public void myServersideFunc(){
.........

}

Web Application Development222

Client Side (JavaScript)

Screen Locker

The ApplinX framework contains a built-in feature of a screen locker. The purpose of a screen
locker is to indicate to the user by means of a message, that the application is processing your re-
quest, and that you are blocked from interferingwith the current process by repressing a button/link
or keyboard PF/ENTER.

Refer to the following tasks for further details on implementing these functions:

■ Activating the Screen Locker
■ Handling the Screen Locker on the Page Level

gx_lockScreen(); gx_unlockScreen()

Locks/unlocks the screen locker. Can be used from client-side code to activate/cancel the screen
locker. When the screen locker is locked, no additional host keys/links/buttons can be pressed
until the screen locker is unlocked.

gx_disableScreenLocker(); gx_enableScreenLocker()

Disables/Enables the screen locker ("Please wait" message) before/after redirecting to a new page.

Usage: When the target page downloads a file, screen locking is not needed. Without using the
following functionality the current page will get "stuck" with the "Please wait" message, which
causes a lock on the page.

// Disable the screen locker
 gx_disableScreenLocker();
 // redirect to the excel download page, which opens a save/open/cancel window ↩
dialog
 location.href = "excel.jsp"; // or "excel.aspx"
 // Enable the screen locker after 2 seconds for the next page actions
 window.setTimeout(gx_enableScreenLocker,2000);

User Exits

The user exits file is located in the js directory of your web application. It allows you to add func-
tionality to your pages without disrupting the framework's events.

223Web Application Development

Client Side (JavaScript)

Registering Events

gx_engine.registerEvent

Registering an event to a page means that the function is executed when the event bubbles up to
the document level.

gx_engine.registerEvent(GXEventType.FOCUS,globalOnBlur);

gx_engine.attachInputTagsEvent

Registering an event to an inputmeans that the function is executedwhen the input fires the event:

gx_engine.attachInputTagsEvent (GXEventType.FOCUS, globalInputOnFocus);

gx_engine.setLabelFocusFunction

This function sets the LabelFocus function:

■ labelFocus: This function is executed when the label is clicked.
■ labelBlur: This function is executed once the label has been clicked once and then another object
became in focus.

gx_engine.setLabelFocusFunction(labelFocus,labelBlur);

Global Functions

Code placed in these global functions affects the whole application and therefore must be used
carefully.

For example (taken from userExits.js):

function globalOnLoad(gx_event){
// use win.<SOMETHING> to access the page tags
// for example: win.document.GX_form
var win = gx_event.window;

// activate page scope function if exits
activateIfExists(gx_event,gx_event.window.pageOnLoad);

.........
}

Notice that every global function contains the line:
activateIfExists(gx_event,gx_event.window.functionName)which executes the user functions:

Web Application Development224

Client Side (JavaScript)

<functionName> (pageOnLoad in this case), if indeed the function exists on the page. This enables
running the mentioned function (in the example above: pageOnLoad) in a specific page.

For Example: Adding the following function to a generated JSP/ASPX in the ApplinX web applic-
ation will cause this function to automatically execute whenever the page is loaded and pop-up
the alert message:

function pageOnLoad(){
alert("Hello World!!");

}

Available User Exits

DescriptionPage level functionGlobal function

Occurs immediately after a page is loaded.pageOnLoadglobalOnLoad

Occurs when a keyboard key is pressed.pageOnKeyDownglobalOnKeyDown

Occurs when the user presses an alphanumeric key.pageOnKeyPressglobalOnKeyPress

Occurs when a keyboard key is released.pageOnKeyUpglobalOnKeyUp

Occurs when an object gets focus.pageOnFocusglobalOnFocus

Occurs when an object loses focus.pageOnBlurglobalOnBlur

225Web Application Development

Client Side (JavaScript)

226

27 HTML Emulation

■ Default Keyboard Mapping .. 228

227

Every framework folder (JSP/.NET) contains the emulation template folder, which is based on the
new application. The emulation template turns on all the emulation behavior and contains css
files for different resolutions and color sets.

Install the emulation template in the same way as the ApplinX new Application in the relevant
environment: JSP/.NET. Refer to Creating an ApplinX Web Application.

Default Keyboard Mapping

The following keyboard list is the defaultmapping from the keyboard to host keyswhen installing
a newWeb application:

PF1-PF12F1-F12

PF13-PF24SHIFT+F1-SHIFT+F12

Pageup, pagednPage Up, Page Down

All hosts

PA1-PA12CTRL+F1-CTRL+F12

PF7Page Up

PF8Page Down

AttentionESC

Mainframe only

Field Plus+

AttentionESC

SYSREQ (System request)SHIFT+ESC

AS/400 only

P1-P12F1-F12

P13-P20SHIFT+F1- SHIFT +F8

BS2000 only

Web Application Development228

HTML Emulation

28 Printing

■ Printer Session API .. 230
■ ApplinX Printer Applet ... 230

229

Printer Session API

ApplinX supports printer sessions only on AS/400 and mainframe hosts. It connects to the host,
retrieves the print buffers and analyzes them. The host handles the printer's queue and the con-
nection of printer sessions to display sessions. ApplinX connects to the host as a printer session
to receive the print buffers and allows you to work with them.

The printer solution of ApplinX has two implementations. The first is by way of the Application
Programming Interface (API), which reflects the data returned into the programming environment.
From there, the data is sent to databases, email, Web or desktop applications.

The second option is the default behavior of an emulator, where ApplinX sends all print jobs to
the client's machine by means of a printer applet that runs on the client's browser.

See Javadoc under ApplinX API Specification.

ApplinX Printer Applet

ApplinX supports printer sessions only on AS400 and mainframe hosts. It connects to the host,
retrieves the print buffers and analyzes them. The host handles the printer's queue and the con-
nection of printer sessions to display sessions. ApplinX connects to the host as a printer session
to receive the print buffers and allows you to work with them.

The printer solution of ApplinX has two implementations. The first is by way of the Application
Programming Interface (API). The second option is the default behavior of an emulator, where
ApplinX sends all print jobs to the client's machine by means of an applet that runs on the client's
browser. The applet runs on the supported browsers using the Java plug-in technology. It is a
signed applet, because it is Java code and it invokes the clientmachine's print dialog,which requires
permissions that exceed regular applet permissions. Once the applet is signed it can only address
a server where the applet originated, so ensure that theWeb server and ApplinX server are on the
same machine or failing this, use the ApplinX Redirector .

Printer Applet Parameters

The printer applet receives parameters. The following lists describe the parameters and a brief
description of each. They are all optional except for serverURL, application and device name/as-
sociate device name (mainframe only).

The printer applet is activated using the page run_printlet.aspx (default). The page's name can be
changed, or the printer control (which generates an applet tag) from it can be moved to any other
page.

■ Connection Parameters

Web Application Development230

Printing

■ Specific Printer Device Parameter
■ Print Mode
■ Print to File
■ Print Data Retrieval Parameters
■ Applet Parameters
■ Buffer Analysis Parameters
■ Data Stream
■ Print Format Parameters
■ Fit-to-Page Format Parameters

Connection Parameters

The connection parameters customize the connection to the ApplinX server.

DescriptionConnection Parameter

The user's ID (obligatory).userid

The user's password. The password that connects the user to theApplinX
server.

password

A textual string describing theApplinX SessionID attached to the instance
of the ABO. Helpful to distinguish users in the ApplinX Administrator.

description

The method is set by
setServerURL("applinx://<serveraddress>:<serverport>") Secured SSL

serverURL

socket: setServerURL("applinxs://<serveraddress>:<serverport>") Note:
Memory sharing method is not suitable.

The ApplinX application name. By default, it is the default application
of the ApplinX server.

application

The name of the printer device as defined in the host.device_name

The name of the display device (on the host) that the printer should
connect to. Note: Applicable for Mainframes only. The host handles the
linkage of printer session to the display device.

associate_device_name

The name of the queue where messages about printing are sent. Note:
Applicable for AS400 only.

message_queue

The name of the library where messages about printing are sent. Note:
Applicable for AS400 only.

message_lib

The host address where the printer device is defined.host_address

The host port that the printer device is defined to work with.host_port

The number of times to try to reconnect to ApplinX server.auto_reconnect_number_of_tries

The interval between each attempt to reconnect to the ApplinX server.auto_reconnect_time_interval

Disconnects the previous session and creates a new session in caseswhere
the networkwas disconnected and the userwas still connected toApplinX
server.

disconnect_previous_session

231Web Application Development

Printing

Specific Printer Device Parameter

The Specific Printer Device parameter printer_device, allows you to set the applet to print silently
to a specific printer without invoking a print dialog first. Specify one of the following values:

The value "<default>" indicates that the applet should print to the default printer silently.

The value "<First Selected Printer>" indicates that the Print dialog is displayed the first time you
print in the current session. The applet will print silently to this printer in additional print jobs in
the same session.

The value of the parameter is the name of a specific printer. This printer must appear on the list
of available printers on the computer where the applet will run.

As the page that invokes the applet is a Web page, the same page is executed for all users. If you
require different settings for selective users, change the parameter value accordingly.

Print Mode

The print mode determines whether the printing layout is graphical or defined by the printer.
When defined by the printer, all Print Format and Fit-to-Page Format parameters are ignored. The
layout must be defined by the printer when the print data includes transparent commands. The
print mode feature is only supported when using Microsoft JVM.

Possible values are False (default), indicating that the printing layout is graphical or True,
indicating that the printer will define the layout.

bypass_gdi

Print to File

DescriptionPrint to File Parameter

The file name to which you want to print the job. It is possible to add a
time stamp to the file name (%t), creating a new file for each print job.

output_file_name

When True, print jobs in the same session are added to the same file.
By default false.

append_to_file

When using the options print_as_text and append_to_file, a few print
jobs may be printed to the same text file. When this happens, the text

printjob_separator_text

set to the parameter "printjob_separator_text" will be printed to the file
between consequent print jobs.

Whenusing the option to append_to_file, a fewprint jobsmay be printed
to the same text file.When this happens, they can be separated by adding
a new line between consequent print jobs.

printjob_separator_add_new_line

Determineswhether the jobwill be printed to a file (true) or to the printer
(false-default).

print_as_text

Web Application Development232

Printing

Print Data Retrieval Parameters

DescriptionPrint Data Retrieval Parameter

The time to wait for each job to end (default 1 minute).wait

The time in between requests to determine the end of a print job.sleep

Applet Parameters

DescriptionApplet Parameters

Advises the applet how much and what to write to the log. Values can be normal
(default) or debug.

loglevel

Setting the value to true displays the graphic user interface of the applet. If it is false,
the log of the applet can still be viewed via the browser Java console (default: true).

enable_presentation

Buffer Analysis Parameters

DescriptionBuffer Analysis Parameters

Sets lines per page. Usually, set according to the host's definition
(default value equals 66 or if value is set to "0"). However, you can

lines_per_page

override this according to your requirements. Page is cut when it
reaches the number of lines per page.

Sets characters per line. Usually, set according to the host's
definition (default value equals 80 or if value is set to "0". However,

characters_per_line

you can override this according to your requirements. Line is cut
when it reaches the number of characters per line.

It is possible to define that when the last page of a print job is blank,
this page will not be printed.

exclude_last_page_if_empty

It is possible to define that when the last line of a print job is blank,
this line will not be printed.

exclude_last_line_if_empty

By default, the value of this parameter is false, printing the blank
page. By default at the end of a printing job, the Printlet sends the

do_not_add_form_feed_at_end_of_job

from feed command to the printer. To disable this option, set this
parameter to TRUE.

Determines whether to print Shift-In and Shift-Out as spaces.
Possible values: true, false. By default: TRUE.

do_not_print_siso_as_space

Treats carriage return as a new line. By default, set to FALSE.treat_carriage_return_as_new_line

The contents of the print jobwill not be saved tomemory, therefore
it will not be possible to retrieve the contents using

Do_not_return_print_buffers

getOriginalBuffer. By default the contents are saved to the buffer
(FALSE). Change the value to TRUE so as not to save the contents.

233Web Application Development

Printing

Data Stream

Throughout the printed data, transparent commands may appear. The applet is capable of
identifying these transparent commands (this feature is applicable to LU3, 3270 protocol). These
transparent commands, such as PCL commands, are analyzed by the front end printer and are
identified by the textual characters which appear at the beginning and end of these commands
(the textual characters can be one or two characters). The following two parameters are used to
identify the textual characters. When these parameters are not defined, and the data includes
transparent commands, the commands will be printed as part of the regular data. In order for the
commands to be sent to the printer, bypass_gdi parameter must be set to TRUE.

DescriptionParameter

Defines one or two characters used to identify the beginning of the transparent
commands.

transparent_start_trigger

Defines one or two characters used to identify the end of the transparent
commands.

transparent_end_trigger

Print Format Parameters

DescriptionPrint Parameters

Default font name is Courier New.font_name

Default font size is 10.font_size

Default is not bold (false).font_bold

Default is not italics (false).font_italic

Any negative number results in the best-fit print job. Density is
determined according to the font size. Zero value sets CPI/LPI values as

CPI(characters per inch),
LPI(lines per inch)

defined in the host (default). If dynamic settings are on, the value of
CPI/LPI parameters is ignored. Positive number results in amanual fixed
value, as follows: LPI: 4, 5.3, 6, 6.3, 8, 8.5, 9.6, 12, 24, 48 CPI: 5, 10, 12, 13.33,
15, 17.14, 20, 26.66

Set margins for a page (default = 0).left_margin

Set margins for a page (default = 0).top_margin

Fit-to-Page Format Parameters

Sometimes print jobs can vary between portrait and landscape format, or the host settings may
not fit the current printers used by the end users. So you may use dynamic settings to squeeze
print jobs into the correct page dimensions. Dynamic settings include the changing of the font and
CPI/LPI settings according to the number of rows and columns in a print job.

By default, the font size is set by the parameter font_size. If the parameter
change_font_size_by_chars_per_line is set to true, the printer applet dynamically reduces the font
size (if necessary) for every print job, according to the number of characters in the longest line of

Web Application Development234

Printing

the first page. Theminimum size of font is set by the parameter minimal_font_size. If the minimal
font size still doesn't fit, and the parameter change_orientation_by_chars_per_line is set to true,
the printer applet sets the orientation to Landscape, and sets the font back to font_size. If it still
does not fit, it reduces the font size again until it fits the page.

Theparameter check_each_page_separately indicateswhether the font should be checked separately
for each page in the print job.

DescriptionParameters

Forces specific orientation: portrait or landscape (default: use_host
(applies the host orientation definitions)). This option does not
function in MSJVM.

orientation_type

Searches for the longest line on the page, checks if the characters
in the line fit into the page dimensions. If negative, will change

change_font_size_by_chars_per_line

font accordingly. If minimal_font_size is empty, the applet will not
reduce the font size (default: false). Ensure that you defined the
characters_per_line parameter.

Automatically changes the orientation to landscapewhen text does
not fit in portrait page (default: false). Ensure that you defined the
characters_per_line parameter.

change_orientation_by_chars_per_line

The minimum size of font is set by this parameter. Must be set in
order for change_font_size_by_chars_per_line to work.

minimal_font_size

Indicates whether the font should be checked separately for each
page in the print job (default: false).

check_each_page_separately

When you set the right margin, you limit the printable area of the
page. If you use dynamic font settings then the applet will squeeze

right_margin

in within the printable area. Note: When dynamic font settings are
disabled, the font size and CPI/LPI are fixed values. The right
margin is ignored as these fixed values take precedence.

When you set the bottom margin, you limit the printable area of
the page. If you use dynamic font settings then the applet will

bottom_margin

squeeze in within the printable area. Note: When dynamic font
settings are disabled, the font size and CPI/LPI are fixed values.
The right margin is ignored as these fixed values take precedence.

Percentage of font size, to use as best fit row proportion. Used in
cases where a print job has a relatively small number of lines. The

best_fit_row_proportion

printlet will increase the proportion of the row gradually (so it still
fits the page). Example value: 130%.

235Web Application Development

Printing

236

	Web Application Development
	Table of Contents
	I Introduction and Concepts
	1 What are ApplinX for JSP and .NET Web Applications
	2 Development Methods
	Host Driven Development
	Instant Driven Development
	Server-Side Event Driven Development

	3 ApplinX Frameworks' Key Features
	4 Class Hierarchy
	Class Hierarchy - .NET Framework
	Class Hierarchy - ApplinX Framework for JSP

	5 The Framework's Basic Life cycle
	6 Web Page Structure
	7 Pop-Up Manager
	8 Instant Solution
	Instant Web Application Development Methodology
	Instant Features
	Absolute HTML Rendering
	Instant Rendering API

	9 Class Hierarchy - Working with Procedures

	II Working with ApplinX Frameworks
	10 Configuring your Web Application
	11 General Application Customization
	Customizing the Default Template
	Creating a New Template
	Activating an Application Map from a Menu
	Using ApplinX Repository Folders' Structure to Organize Web Pages
	Controlling the Connection Properties from the Code
	Handling Flickering of Screens
	Waiting for Screens, using Wait Conditions
	Customizing the Host Keys
	Activating the Screen Locker
	Natural UNIX: Integrating a Login Page in the Web Application
	Implementing & Controlling JavaScript Events using the gx_event Object
	Retrieving Data from Fields Outside the Modal Window Currently Displayed
	ApplinX Server Load Balancing
	Enabling Modal Windows for Mobile Devices
	Retrieving the Host Printer Device Name from a Database and Setting the ApplinX Printlet to Work with that Device
	Customize ApplinX Framework Session Error Handling
	Customize the Web Application's Error Page

	12 Transferring Natural Data to/from the Host
	Transferring Data using ActiveX
	Downloading Data
	Uploading Data
	Configuring the Security Tab for Internet Explorer

	Transferring Data without using ActiveX
	Downloading Data
	Uploading Data

	Activating a Natural Command

	13 Instant Pages Customization
	Using a Proportional (Non-Fixed) Font in Web Pages
	Controlling Instant Display Properties
	Code Transformations
	Creating a New Code Transformation
	Applying a New Transformation to all Screens
	Applying a New Transformation to a Screen Group
	Manipulating Individual Host Fields
	Positioning Specific Fields
	Formatting Specific Fields
	Replacing a Field's Text
	Replacing a Field with a Web Element, Adding a Web Element

	Manipulating Host Characters
	Manipulating Host Keys
	Improving Transitions between Screens

	14 Emulation Behavior Tasks
	Customizing the Background Check for Host Screen Changes
	Enabling the User to Control the Font Size
	Opening Multiple Web Sessions
	Printing a Capture of the Host Screen
	Enabling Sending Dup and FieldMark Characters to the Host

	15 Page Customization
	Generating a Framework Page for a Screen
	Creating Designed Web Pages
	Creating Designed Web Pages (JSP)
	Creating New JSP Pages

	Creating Designed Web Pages (.NET)
	Generating with ApplinX
	Creating a New .NET Web Form using VS.NET

	Using Web Application Controls in Generated Pages
	Partial Page Rendering
	Creating a Button / Hyperlink for Submitting a Host Key
	Creating a Button / Hyperlink for Executing a Path Procedure
	Collect all Modified Page Fields into an ApplinX Request
	Exporting Data to an MS Office Application (Excel, Word)
	Building an External Login Page
	Collecting Data from Multiple Host Screens
	Binding Procedure Outputs to an ApplinX Framework Based Web Page
	Updating Data in Multiple Host Screens
	Activating a Server Side Function from JavaScript
	Mapping Keyboard Keys to User Actions in Individual Pages
	Handling the Screen Locker on the Page Level
	Navigating between Input Fields
	Retrieving Browser Information
	Validating your Data
	Handling Web Application Windows using the gx_windows Object
	Working with Cookies
	Working with JavaScript User Exits
	Retrieving HTML Objects using gx_getElement
	Using the Calendar Component in Generated Pages
	Replacing Static Host Confirmation Message with JavaScript Confirmation Pop-up Box
	Opening an Independent Pop-up Box that doesn't have a Corresponding Host Screen

	16 Working with Tables
	Creating a Page with a Table
	Adding the Sorting Capability to a Screen-Based Table
	Adding the Sorting Capability to a Procedure based Table
	Changing Table Layout for Instant HTML Pages
	Retrieving Values from a Selected Row within a Table
	Customizing the Table's Display

	17 Transferring Files (FTP)
	FTP Configuration
	Opening the File Transfer Dialog Box
	Using FTP to Upload Files
	Using FTP to Download Files

	18 Printlet Servlet Redirector for ApplinX
	19 Framework Management
	Upgrading a JSP Web Application
	Deploying an ApplinX Web Application (JSP)
	Upgrading a .NET Web Application
	Deploying an ApplinX Web Application (.NET)
	Disconnecting the Host Session Correctly

	III Troubleshooting the Framework
	20 Performance Monitoring
	21 JavaScript Logger Engine
	22 Debugging/Analyzing the Web Application's Code

	IV ApplinX Development API References
	23 Web Application Configuration Parameters
	Session Parameters
	Instant Parameters
	General
	Logoff
	Generated Pages
	Window
	Emulation
	Natural upload/download
	Log
	Performance Monitor
	Macro
	Single Sign On
	FTP
	CSS Classes

	24 Base Object
	25 Server Side API (Java/.NET)
	General
	User Exits
	gx_preConnect
	gx_postConnect
	gx_preSendKeys
	gx_postSendKeys
	gx_screenSeqMismatch
	gx_changeNextForm
	gx_preSyncHostWithForm
	gx_preFillForm
	gx_postFillForm
	gx_downloadFile
	gx_getNdtDefaultDownloadFileName
	gx_isSupportedFeature
	isUsingactiveX()

	GXIClientBaseObject
	ApplinX Abstract Web Classes - gx Building Blocks
	gx_attach()
	gx_connect()
	gx_disconnect()
	gx_fillForm()
	gx_fillForm(GXIScreenCollection screens)
	gx_fillFormFields()
	gx_fillTable()
	gx_handleHostResponse()
	gx_handleSessionError(GXGeneralException)
	gx_syncFormWithHost()
	gx_syncHostWithForm()
	gx_prepareSendKeysRequest(string keys)
	gx_preparePathRequest(string pathName)
	gx_doSubmitKeyLogic(string keys); gx_doSubmitKeyLogic(string keys, GXCursor cur)
	gx_doSelectRowLogic(actionField); gx_doSelectRowLogic(actionField, actionValue); gx_doSelectRowLogic(actionField, actionValue, actionKey)
	gx_setField(String fieldName,GXIField field) (JSP); gx_setField(Control ctrl,GXIField field) (.NET)
	gx_isFormGenerated(String formName)
	gx_getNextFormName()
	gx_loadForm(String formName)
	gx_isFormSyncWithHost()
	gx_getForm (String screenName)
	gx_processHostKeyRequest(GXSendKeysRequest sendKeyRequest)
	gx_doCloseWindow(String hostKey)

	GXIScreenBasedForm
	getAppFieldContent(String fieldName)
	getHostFieldContent(GXPosition pos)
	getMultipleFieldContent(String fieldName, int index)
	getFieldTypesInUse() setAppField(GXIField field)
	setHostField(GXIField field)
	setMultipleField(GXIField field)
	SeqScreenNumber
	CursorPosition
	FormName
	HostKeys

	Instant Component
	Host Keys Component
	KeyType
	cssClass(JSP)/Class(.NET)
	Vertical
	Additional Attributes

	Printer Control (.NET only)
	Useful JavaScript Functions
	user_prePostBack
	gx_postBack(<SERVER-SIDE-FUNCTION-NAME>) (JSP only)

	ApplinX Tables API
	Class Methods for the Table Entity - JSP
	getTagsAccessor().setTagTable
	getTableSelectedKey(String tagId); getTableSelectedKeys(String tagId)
	addTableKeyColumn(String tagId,String keyCol)
	GXTableBuildConfig

	Classes for the Table Entity - .NET
	GXDataConverter
	GXTableToDataTable - Static Method

	GXTablesHandler
	fillHtmlTableFromGXTable - Static Method
	addKeyColumn - Static Method
	getTableSelectedKey/ getTableSelectedKeys - Static Method

	GXITableEvents (JSP)
	gx_changeTr(int RowIndex,Element tr,GXITableRow row);
	gx_changeTd(int ColIndex, Element td,GXITableRow row);
	gx_changeControl(int ColIndex, Element td,Control ctrl,GXITableRow row);

	GXITableEvents (.NET)
	gx_changeTr(int RowIndex, HtmlTableRow tr, GXITableRow row);
	gx_changeTd(int ColIndex, HtmlTableCell td, GXITableRow row);
	gx_changeControl(int ColIndex, HtmlTableCell td, Control ctrl, GXITableRow row);

	ApplinX Browser Windows API
	gx_window/getGXWindow() Methods (Client-side and Server-side)
	loadPage(String pageName)
	loadPageFull(String pageName)
	close()
	open(String pageName, int Width, int height)
	addCommand(String command)
	resizeTo(int width, int height)
	refreshPage()
	cancelRefresh()
	setField(String fldName,String fldVal)
	isOpener()
	isWindow()
	moveTo(int posx, int posy)

	Pop-Up Window Configuration
	Pop-up Windows User Exits
	gx_preOpenWin
	gx_refreshWindow ()
	gx_closeWindow ()

	JSP API

	26 Client Side (JavaScript)
	ApplinX Server Actions
	gx_SubmitKey(key)
	gx_SubmitKeyInPos(pos, keyName)
	SubmitCustomKey()
	gx_SetCursorPos(pos)
	gx_ExecPath(pathName)
	gx_systemRequest()
	gx_fieldmark()
	gx_dup()

	Navigating between Input Fields
	gx_home()
	gx_end()
	gx_newLine()
	gx_jumpToNextInput(currTextBox)
	gx_jumpToPrevInput(currTextBox)

	Tables
	gx_selectKey(elem)
	gx_getSelectedKey(tableName)
	gx_isTableKeySelected(tableName)
	gx_markRow(obj,selectedRowCss)

	Design
	gx_changeCss()
	gx_changeCssExact(cssName)
	gx_increaseFontSize()
	gx_decreaseFontSize()
	gx_changeFontSize(size)

	Keyboard Mapping
	gx_AddKeyboardMapping(additionalKey,keyCode,functionElement,overrideExisting,cancelMapFunction)

	ApplinX Web Application Event
	Properties
	GXEvent.keyCode
	GXEvent.additionalKey
	GXEvent.element

	Methods
	GXEvent.cancel()

	ApplinX Web Application Event Example

	Browser Related Functions
	GXBrowserUtil.isIE()
	GXBrowserUtil.isIE7()
	GXBrowserUtil.isMozilla()

	JavaScript Logging
	GXLog.debug(moduleName, message)
	GXLog.warning(moduleName, message)
	GXLog.error(moduleName, message)

	Page Validation
	GXValidator.registerValidator(Validator)
	GXValidator.clearValidators()
	Page Validation Example

	ApplinX Web Application Windows
	gx_window.open(page,width,height,left,top)
	gx_window.resizeTo(width,height)
	gx_window.moveTo(posX,posY)
	gx_window.setField(fldName,fldVal)
	gx_window.close()
	gx_window.getOpener()
	gx_window.loadPageFull(PageName)
	gx_window.loadPage(PageName)
	ApplinX Web Application Windows Example
	Main Window HTML and Script
	Pop-Up Window

	HTML Controls
	gx_updatePagePart(panelId)
	gx_isValidInputElement (inputElement)
	gx_getElement(elemId)
	gx_eraseEOF()
	gx_showCalendar(Title,dateFieldName1,Format1,dateFieldName2,Format2, dateFieldName3,Format3)

	Web Application Configurations
	gx_getCookie(name)
	gx_setCookie(name, value)

	Functionality
	gx_printScreen()
	gx_openFtpDialog
	gx_openNewBrowser (url)
	gx_hidePrinter/gx_showPrinter()
	gx_postBack(func)

	Screen Locker
	gx_lockScreen(); gx_unlockScreen()
	gx_disableScreenLocker(); gx_enableScreenLocker()

	User Exits
	Registering Events
	gx_engine.registerEvent
	gx_engine.attachInputTagsEvent
	gx_engine.setLabelFocusFunction

	Global Functions
	Available User Exits

	27 HTML Emulation
	Default Keyboard Mapping

	28 Printing
	Printer Session API
	ApplinX Printer Applet
	Printer Applet Parameters
	Connection Parameters
	Specific Printer Device Parameter
	Print Mode
	Print to File
	Print Data Retrieval Parameters
	Applet Parameters
	Buffer Analysis Parameters
	Data Stream
	Print Format Parameters
	Fit-to-Page Format Parameters

