
Instant Pages Customization
Using a Proportional (Non-Fixed) Font
in Web Pages

Controlling Instant Display Properties

Code Transformations

 Creating a New Code Transformation

 Applying a New Transformation to all Screens

 Applying a New Transformation to a Screen Group

Manipulating Individual Host Fields

 Positioning Specific Fields

 Formatting Specific Fields

 Replacing a Field’s Text

 Replacing a Field with a Web Element, Adding a Web Element

Manipulating Host Characters

Manipulating Host Keys

Improving Transitions between Screens

Using a Proportional (Non-Fixed) Font in Web Pages
By default, ApplinX uses a monospaced, fixed font (Courier New) for displaying instant HTML pages.
However, it is possible to use a proportional (non-fixed) font, to achieve a more modern, Web-like look &
feel. Since the rendering of the HTML screen is based on absolute positioning, using a proportional font
usually does not damage the correct alignment of the host fields (although some data may appear
misaligned).

 To use a proportional font in Web pages (JSP & .NET):

For Instant HTML Pages

In the file \css\styles_instant.css, change the following classes to use a proportional font of your
choice, for example:

1

Instant Pages CustomizationInstant Pages Customization

#gx_screenArea
{
 position:relative;
 font-family: "Verdana";
 height:0px; /* make scrolling when needed*/
}
#gx_screenArea input,
#gx_screenArea select {
 font-family: "Verdana";
 position:absolute
}

Or:

For Generated Pages

In the file \css\styles_generated.css, in a similar manner as for instant HTML pages, change all the
classes that use the font "courier new" to a proportional font.

Controlling Instant Display Properties
It is possible to set various display properties of instant HTML pages, such as colors, fonts, etc. This is
usually done in order to apply a Web look & feel to the ApplinX Web application.

Most of these settings are done in the style sheet file. Specific settings are set in other files. Refer to the
relevant tasks for more details.

 To control instant display properties (JSP and .NET):

1. The css\styles_instant.css file contains all CSS classes used for rendering instant HTML pages.
Change them as necessary to affect the colors and fonts used for the pages.

2. To find out which CSS class is used for a specific element or field in the instant HTML page, it is
possible to use the Browser view source option to view the generated HTML source, and then look
for the element and extract its CSS classes.

Note:
This style sheet applies only to instant HTML pages. For modifying the styles used for generated
web pages (JSP, ASPX), use the \css\styles_generated.css file.

Code Transformations
A Code Transformation (or Code Transform) is a code class (written in Java, C# or VB.NET for JSP or
.NET frameworks respectively), that is executed on all host screens or on a specific group of screens (i.e.
an ApplinX Screen Group) and modifies the rendered instant HTML page for the current host screen it is
executed on.

Refer to

Creating a New Code Transformation

2

Controlling Instant Display PropertiesInstant Pages Customization

Applying a New Transformation to all Screens

Applying a New Transformation to a Screen Group

Manipulating Individual Host Fields

Positioning Specific Fields

Formatting Specific Fields

Replacing a Field’s Text

Replacing a Field with a Web Element, Adding a Web Element

Manipulating Host Characters

Manipulating Host Keys

Creating a New Code Transformation
In most cases, transformations are defined using the Transformation Wizard . However, when due to
limited flexibility, it is not be possible to define certain required transformations using the wizard,
complement the wizard-defined Transformation entities with code-defined Transformation classes.

Creating a new Instant transformation is carried out by using the provided template transformations
(UserTagTransform1 , UserCompletionTransform1 , UserHostKeysTagTransform).

UserTagTransform1 contains events for each individual rendering event and should be used for new
transformations that manipulate specific tags (input fields, output fields, GUI elements, etc.) - for
example, adding images or repositioning fields.

UserCompletionTransform1 is called upon completion of the entire rendering process and should
be used for new transformations that manipulate the entire rendered HTML - for example, a
transformation that converts a host menu screen to a list of hyperlinks.

 To create a new transformation (JSP):

1. Copy one of the template transformations from \web-inf\classes\transforms and rename the file and
the class:

public class SampleTransform extends GXTagListener{

2. Add code in the relevant stub methods.

3. To apply the transformation, see the tasks Applying a New Transformation to all Screens and
Applying a New Transformation to a Screen Group.

 To create a new transformation (.NET):

1. Copy one of the template transformations from the transforms directory and rename the file and the
class:

3

Instant Pages CustomizationCreating a New Code Transformation

public class SampleTransform: GXTagListener

2. Add code in the relevant stub methods.

3. To apply the transformation, see the Applying a New Transformation to all Screens and Applying a
New Transformation to a Screen Group.

Applying a New Transformation to all Screens
This task applies an existing transformation. To create a new transformation, see the task Creating a New
Transformation.

 To apply a new transformation to all host screens (JSP):

In the file web-inf\classes\contexts\GXInstantLogicContext.java, uncomment the code in the function
registerInstantTransforms and register the new transformation class:

public void registerInstantTransforms() {
 GXRenderConfig instantConfig = getGXAppConfig().getInstantConfig();
 instantConfig.addTagListener(new UserTagTransform1());
 // add here more transform registrations
}

UserTagTransform1 being the name of the new transformation class.

 To apply a new transformation to all host screens (.NET):

In the file GXInstantLogicWebForm.cs, uncomment the code in the function
registerInstantTransforms and register the new transformation class:

public virtual void registerInstantTransforms() {
 gx_appConfig.InstantConfig.addTagListener(new UserTagTransform1());
 // add here more transform registrations
}

UserTagTransform1 being the name of the new transformation class.

Applying a New Transformation to a Screen Group
This task applies an existing transformation. To create a new transformation, refer to Creating a New
Transformation.

It is possible to apply a transformation only for a specific Screen Group (or several Screen Groups). For
example, a transformation that handles the command line field should be applied to the screen group of all
screens containing this field.

 To apply a new transformation to a screen group (JSP):

1. If the screen group has its own generated Web page, add the registration function to the file
web-inf\classes\contexts\screenGroupName.java, to the function
registerInstantTransforms:

4

Applying a New Transformation to all ScreensInstant Pages Customization

public void registerInstantTransforms() {
super.registerInstantTransforms();
GXRenderConfig instantConfig = getGXAppConfig().getInstantConfig();
 instantConfig.addTagListener(new MyTagTransform());
 instantConfig.addCompletionListener(new MyCompletionTransform());
}

Where MyTagTransform is the name of the new transformation class and
MyCompletionTransform is the name of a new completion transformation class.

2. If the screen group does not have its own generated Web page, register it in
web-inf\classes\contexts\GXInstantLogicContext.java, and add code that will register it only for the
appropriate screen group:

public void registerInstantTransforms() {
GXRenderConfig instantConfig = getGXAppConfig().getInstantConfig();
try {
if (getGXSession().getScreen().isMemberOf("MyScreenGroup")) {
 instantConfig.addTagListener(new MyTagTransform());
 instantConfig.addCompletionListener(new MyCompletionTransform());
}
} catch (GXGeneralException e) {}
}

Where MyScreenGroup is the name of the screen group, MyTagTransform is the name of a
new tag transformation class and MyCompletionTransform is the name of a new completion
transformation class.

3. It is also possible to add code in the transformation class itself that will activate it only for the
appropriate screen group(s).

 To apply a new transformation to a screen group (.NET):

1. If the screen group has its own generated Web page, add the registration function to the file
screenGroupName.aspx.cs, to the function registerInstantTransforms :

public override void registerInstantTransforms() {
base.registerInstantTransforms();
gx_appConfig.InstantConfig.addTagListener(new MyTagTransform ());
gx_appConfig.InstantConfig.addCompletionListener(new MyCompletionTransform());
}

Where MyTagTransform is the name of the new transformation class and
MyCompletionTransform is the name of a new completion transformation class.

2. If the screen group does not have its own generated web page, register it in web-
GXInstantLogicWebForm.cs, and add some code that will register it only for the appropriate screen
group:

public virtual void registerInstantTransforms() {
if (gx_session.getScreen().isMemberOf("MyScreenGroup")) {
 gx_appConfig.InstantConfig.addTagListener(new MyTagTransform ());
gx_appConfig.InstantConfig.addCompletionListener(new MyCompletionTransform());
}
}

5

Instant Pages CustomizationApplying a New Transformation to a Screen Group

Where MyScreenGroup is the name of the screen group, MyTagTransform is the name of a
new tag transformation class and MyCompletionTransform is the name of a new completion
transformation class.

3. It is also possible to add code in the transformation class itself that will activate it only for the
appropriate screen group(s).

Manipulating Individual Host Fields
The following tasks handle manipulation of specific host fields. The common methodology for such
manipulation is identifying the screen groups including these fields, mapping the relevant fields as
application fields and writing custom transformations for handling the mapped fields. See also Instant
Web Application Development Methodology.

Note:
It is possible to carry out basic manipulation of fields using the Transformation Wizard.

Positioning Specific Fields

It is possible to reposition a specific field in a different position in the Web page (instead of in its original
host position). It is also possible to display a field in one of the template sections.

Note:
It is recommended to map the fields as application fields. Refer to the Instant Web Application
Development Methodology section for general instructions on mapping fields to screen groups.

Note:
It is possible to carry out basic manipulation of fields using the Transformation Wizard, Text to Text
transformation or Input Field to Text Field transformation (detailed in the Transformations).

 To position a specific field:

1. To reposition a field, create a new tag transformation and register it to the relevant screen group(s) or
to all screens. Refer to Creating a New Transformation, Applying a New Transformation to all
Screens and Applying a New Transformation to a Screen Group.

2. In the transformation class, add code that will reposition the field in the appropriate method. It will
usually be onNewLabel (for output fields) or onNewTextField (for input fields):

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {
 label.setPosition(new com.sabratec.util.GXPosition(3,30));
 }
}

Where MyAppField is the name of the mapped application field to reposition and 3,30 is the new
position, in host units.

.NET

6

Manipulating Individual Host FieldsInstant Pages Customization

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {
 label.setPosition(new com.sabratec.util.GXPosition(3,30));
 }
}

Where MyAppField is the name of the mapped application field to reposition and 3,30 is the new
position, in host units.

Formatting Specific Fields

It is possible to display specific host fields in specific styles. For example, displaying the message line
field in a large, red font. This is done using the style sheet (CSS) classes.

Note:
It is recommended to map the fields as application fields. Refer to the Instant Web Application
Development Methodologysection for general instructions on mapping fields to screen groups.

Note:
It is possible to carry out basic manipulation of fields using the Transformation Wizard, Text to Text
transformation or Input Field to Text Field transformation (detailed in the Transformations).

 To format a specific field:

1. Create a new tag transformation and register it to the relevant screen group(s) or to all screens. Refer
to Creating a New Transformation, Applying a New Transformation to all Screens and Applying a
New Transformation to a Screen Group.

2. In the transformation class, add code that will reposition the field in the appropriate method. It will
usually be onNewLabel (for output fields) or onNewTextField (for input fields). The following
code demonstrates replacing a field with a hyperlink:

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {
label.removeAttribute("class"); //Needed for removing all css classes
 label.setAttribute("class","MyCSSClass");
}
}

Where MyAppField is the name of the mapped application field to format and MyCSSClass is
the name of the CSS class that contains the required formatting.

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {
label.removeAttribute("class"); //Needed for removing all css classes
 label.setAttribute("class","MyCSSClass");
 }
}

Where MyAppField is the name of the mapped application field to format and MyCSSClass is
the name of the CSS class that contains the required formatting.

7

Instant Pages CustomizationFormatting Specific Fields

Replacing a Field’s Text

It is possible to replace the original host text of a specific field with other text.

Note:
It is recommended to map the fields as application fields. Refer to the Instant Web Application
Development Methodologysection for general instructions on mapping fields to screen groups.

Note:
It is possible to carry out basic manipulation of fields using the Transformation Wizard, Text to Text
transformation.

Create a new tag transformation and register it to the relevant screen group(s) or to all screens. Refer to
Creating a New Transformation, Applying a New Transformation to all Screens and Applying a New
Transformation to a Screen Group.

In the transformation class, add code that will replace the field’s text. It will usually be onNewLabel (for
output fields) or onNewTextField (for input fields):

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {
 String text = label.getContent().trim();
 if (text.equalsIgnoreCase("HostText1")) {
 label.setText("NewText1");
 } else if (text.equalsIgnoreCase("HostText2")) {
 label.setText("NewText2");
 }
 //...
}

Where MyAppField is the name of the mapped application field that its text is to be replaced,
HostText1, HostText2 are two original host texts and NewText1, newText2 are two new
texts.

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {
 String text = label.getContent().Trim();
 if (text == "HostText1") {
 label.setText("NewText1");
 } else if (text == "HostText2") {
 label.setText("NewText2");
 }
 //...
 }
}

Where MyAppField is the name of the mapped application field that its text is to be replaced,
HostText1, HostText2 are two original host texts and NewText1, newText2 are two new
texts.

8

Replacing a Field’s TextInstant Pages Customization

Replacing a Field with a Web Element, Adding a Web Element

It is possible to replace a specific field with a Web element such as a button, a hyperlink, an image etc.

Note:
It is recommended to map the fields as application fields. Instant Web Application Development
Methodology section for general instructions on mapping fields to screen groups.

Note:
It is possible to carry out basic manipulation of fields using the Transformation Wizard, Text to Hyperlink
transformation or Text to Image transformation or Text to Button transformation.

 To replace a field with a Web element:

1. Create a new tag transformation and register it to the relevant screen group(s) or to all screens. Refer
to Creating a New Transformation, Applying a New Transformation to all Screens and Applying a
New Transformation to a Screen Group.

2. In the transformation class, add code that will reposition the field in the appropriate method. It will
usually be onNewLabel (for output fields) or onNewTextField (for input fields). The
following code demonstrates replacing a field with a hyperlink:

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getId().equalsIgnoreCase("MyAppField")) {
GXILinkTag myLink = com.sabratec.applinx.presentation.tags.html.GXHtmlTagFactory.instance().newLink("Software AG");
 myLink.setTarget("http://www.softwareag.com/");
 event.getScreenTagModel().replace(label, myLink);
 }
}

Where MyAppField is the name of the mapped application field to replace.

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getId() == "MyAppField") {
GXILinkTag myLink = com.sabratec.applinx.presentation.tags.html.GXHtmlTagFactory.instance().newLink("Software AG");
 myLink.setTarget("http://www.softwareag.com/");
 e.getScreenTagModel().replace(label, myLink);
 }
}

Where MyAppField is the name of the mapped application field to replace.

Manipulating Host Characters
It is possible to manipulate host characters, for example, removing unnecessary characters such as dots (.)
or dashes (-), and replacing them with other text or HTML elements, etc.

Note:
It is possible to carry out basic manipulation of fields using the Transformation Wizard, Text to Text
transformation.

 To handle host characters:

9

Instant Pages CustomizationManipulating Host Characters

Create a new tag transformation and register it to the relevant screen group(s) or to all screens. Refer
to Creating a New Transformation, Applying a New Transformation to all Screens and Applying a
New Transformation to a Screen Group.

In the transformation class, add code that will manipulate the host characters as required. It will
usually be onNewLabel (for output fields) or onNewTextField (for input fields). The following
code demonstrates removing dashes (-):

JSP

public void onNewLabel(GXRenderEvent event, GXILabelTag label) {
if (label.getContent().indexOf("--") > -1) {
 String text = label.getText();
 text = com.sabratec.util.GXStringUtil.replaceAll(text,"-","");
 label.setText(text);
 }
}

.NET

public override void onNewLabel(GXRenderEvent e, GXILabelTag label) {
if (label.getContent().IndexOf("--") > -1) {
String txt = label.getText();
 txt = com.sabratec.util.GXStringUtil.replaceAll(txt,"-","");
 label.setText(txt);
 }
}

Manipulating Host Keys
It is possible to change the way host keys are displayed, add additional host keys and remove host keys.

 To manipulate host keys

Refer to the commented sample code in any ApplinX new application,
UserHostKeysTagTransform.java/cs/vb.

Improving Transitions between Screens
Wrapping the GXPlaceHolder component in the template page with a Partial Page rendering
capablility control such as a gx:div, will reduce the traffic between the web application server and the user
client , since only the Instant part of the page will be transferred rather than the whole page. This will
result in a slightly better performance and smoother transition between screens.

 JSP:

1. In the Template.JSP file, find the following control:

<gx:placeholder id="GXPagePlaceHolder">Design time page content</gx:placeholder>

2. Place a gx:div tag around the GXPagePlaceHolder :

<gx:div id="instantPanel">
 <gx:placeholder id="GXPagePlaceHolder">Design time page content</gx:placeholder>
 </gx:div>

10

Manipulating Host KeysInstant Pages Customization

3. Override the default behavior of each PF button on your keyboard. In js/userExits.js, change the
globalOnKeyDown function to be of the following structure, where the if statement is before the
activateifexists JavaScript code:

function globalOnKeyDown(gx_event){
 // use win.<SOMETHING> to access the page tags
 // for example: win.document.GX_form
 var win = gx_event.window;
 // if the key a PF key or ENTER
 if ((gx_event.keyCode>111 && gx_event.keyCode<124) || gx_event.keyCode==13){
 // Update only the instantPanel part of the page
 gx_updatePagePart(’instantPanel’);
 }
 // activate page scope function if exits
 activateIfExists(gx_event,gx_event.window.pageOnKeyDown); //gx_event.cancel();
 // for cancel the event
}

 .NET:

1. In the Template.master file, find the following control:

<asp:ContentPlaceHolder ID="GXPagePlaceHolder" runat="server"/>

2. Place a div tag around the GXPagePlaceHolder :

<div
 runat="server" id="instantPanel"> <asp:ContentPlaceHolder
 ID="GXPagePlaceHolder" runat="server"/>
</div>

3. Override the default behavior of each PF button on your keyboard. In js/userExits.js, change the
globalOnKeyDown function to be of the following structure, where the if statement is before the
activateifexists JavaScript code:

function globalOnKeyDown(gx_event){
 // use win.<SOMETHING> to access the page tags
 // for example: win.document.GX_form
 var win = gx_event.window;
 // if the key a PF key or ENTER
 if ((gx_event.keyCode>111 && gx_event.keyCode<124) || gx_event.keyCode==13){
 // Update only the instantPanel part of the page
 gx_updatePagePart(’instantPanel’);
 }
 // activate page scope function if exits
 activateIfExists(gx_event,gx_event.window.pageOnKeyDown); //gx_event.cancel();
 // for cancel the event
}

11

Instant Pages CustomizationImproving Transitions between Screens

	Instant Pages Customization
	Using a Proportional (Non-Fixed) Font in Web Pages
	
	For Instant HTML Pages
	For Generated Pages

	Controlling Instant Display Properties
	Code Transformations
	Creating a New Code Transformation
	Applying a New Transformation to all Screens
	Applying a New Transformation to a Screen Group
	Manipulating Individual Host Fields
	Positioning Specific Fields
	Formatting Specific Fields
	Replacing a Field's Text
	JSP
	.NET

	Replacing a Field with a Web Element, Adding a Web Element

	Manipulating Host Characters
	
	JSP
	.NET

	Manipulating Host Keys
	Improving Transitions between Screens

