
Getting Started with the webMethods Application
Platform API

Version 9.10

April 2016

This document applies to webMethods Application Platform Version 9.10 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2016 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: AP-API-GS-910-20160415

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Getting Started with the webMethods Application Platform API Version 9.10 3

Table of Contents

About this Guide.. 5

Document Conventions...5

Online Information... 6

Introduction to the Application Platform API..7

About Application Platform API... 8

Using the Application Platform API... 9

Publishing POJOs as OSGi Services.. 10

Injecting Service Dependencies into Other Services...12

Looking up Services from the OSGi Registry.. 14
Configuring POJO Services Dynamically... 15

Exposing POJO classes as Integration Server Assets..16

Generating Tests with the Application Platform Integration Test Framework......................... 18
Non-Parameterized Tests... 19
Parameterized Tests... 20
Test Class Annotations...21
Examples of Using the Application Platform Integration Test Framework................................ 22

Adding Single Sign-On Authentication to Application Platform Projects................................24
Web Application Layer Security... 24
OSGi Service Layer Security... 25

Declarative Security...27
Dynamic Runtime Security.. 28

M
Even Header

Getting Started with the webMethods Application Platform API Version 9.10 4

M
Odd Header

Getting Started with the webMethods Application Platform API Version 9.10 5

About this Guide

This guide describes webMethods Application Platform API services. It provides
reference information for developers who want to build additional functionality on top
of their Application Platform projects.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

M
Even Header

Getting Started with the webMethods Application Platform API Version 9.10 6

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 7

1 Introduction to the Application Platform API

■ About Application Platform API .. 8

M
Even Header

Introduction to the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 8

About Application Platform API
webMethods Application Platform API enables you to build additional functionality to
your Application Platform projects. You can use the Application Platform API to execute
the following tasks:

Publish plain old Java objects (POJOs) as OSGi Services.

Inject service dependencies into other services.

Look up services from the OSGi registry.

Expose POJO classes as Integration Server assets.

Generate tests with the Application Platform integration test framework.

Enable authentication and authorization by adding single sign-on functionality.

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 9

2 Using the Application Platform API

■ Publishing POJOs as OSGi Services .. 10

■ Injecting Service Dependencies into Other Services ... 12

■ Looking up Services from the OSGi Registry .. 14

■ Exposing POJO classes as Integration Server Assets .. 16

■ Generating Tests with the Application Platform Integration Test Framework 18

■ Adding Single Sign-On Authentication to Application Platform Projects 24

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 10

Publishing POJOs as OSGi Services
Use the following annotations to publish POJOs as OSGi services.

@Service

Use this annotation to mark a POJO class to be exposed as an OSGi service. Specify
@Service on the class type.

For example:
@Service(name = "my-service", init = "start", destroy = "stop", ranking = "10",
interfaces = { "com.example.MyInterface" }, properties = { @Property(key =
"key1", values = {1, 2, 3}, valueType = "java.lang.Integer") })
public class MyService implements MyInterface {
}

interface MyInterface {
}

The following table lists the properties of @Service:

Property Default Value Description

name Simple name of
the annotated
class

String Optional. The name of the bean backing
this service. If you do not specify a value, this
property defaults to the simple name of the bean
class.

value Simple name of
the annotated
class

String Optional. An alternative way to specify
the name of the service bean. This property
is useful when you do not specify any other
aributes.

ranking 0 Integer Optional. The ranking value to be
published as the service.ranking property for this
service to distinguish.

init "" String Optional. The method to invoke when the
bean that backs the service is initialized.

destroy "" String Optional. The method to invoke when the
bean that backs the service is destroyed.

interfaces The fully
qualified name
(FQN) of the
annotated class

String List Optional. The list of interfaces, under
which the service will be published. If you do
not specify a value for this property, the service

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 11

Property Default Value Description
will only be published under the name of the
implementation class.

dependsOn "" String Optional. Used to express a dependency
on another component that must be fully
initialized before this service can be initialized
and exported.

properties {} String Optional. The list of service properties to
be published with the service.

@Property

Use this annotation to declare the properties for the service. You can add more than one
value for the key. Optionally, you can also specify the type of the key and the type of the
values.

The following table lists the properties of @Property:

Property Default Value Description

key "" String Required. The name or
key of the property.

values {} Sting List Required. The values
to be associated with the
property name.

valueType java.lang.Sring String Optional. The type of
the values of this property.

The following example shows the GreeterImpl POJO class registered as an OSGi service
under the name "greeter-impl", as well as two interfaces and one service property.
public interface IGreeter {
 public String greetMe(String name);
}

@Service(
 name="greeter-impl",
 interfaces = {"com.example.osgi.greet.api.IGreeter",
"org.osgi.service.cm.ManagedService"},
 properties = {@Property(key="service.pid", val-
ues="com.example.osgi.greet")}
)
public class GreeterImpl implements IGreeter, ManagedService {
 @Override
 public String greetMe(String name) {
 return "Hello, " + name;

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 12

}
}

Injecting Service Dependencies into Other Services
Use the following annotation to inject service dependencies into other services.

@ServiceReference

Use this annotation to inject a service from the runtime registry into another service
being published (using the @Service annotation). This provides a form of dependency
injection, in which the injected dependency is another POJO/bean already published in
the runtime as an OSGi service.

You must specify a seer method to set the injected POJO reference in the same class
that accompanies the field declaration. This is the class that contains the @ServiceReference
annotation.

The following table lists the properties of @ServiceReference:

Property Default Value Description

id "" String Required. A unique identifier for this
service reference. The specified id must not be in
conflict with any other implicit or explicit @Service
annotation name aribute value.

interfaces {} String List Required if the filter property is not
specified, otherwise it is optional. The interfaces
that the service reference proxy should implement
when it is wired in from the service registry. A
service that implements these interfaces must be
available in the registry. At least one interface
or class name must be specified for this service
reference.

filter "" String Required if the interfaces property is not
specified, otherwise it is optional. An OSGi filter
expression that constrains the service registry
lookup to only those services that match the
given filter. The filter string is in the following
format: (property-name = value). For example,
(asynchronous-delivery=true) restricts the service
lookup to those services that have a property with
name asynchronous-delivery that is set to true.

timeout 5000 ms Integer Optional. The amount of time (in
milliseconds) to wait for a backing service to

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 13

Property Default Value Description
become available when an operation is invoked.
If no matching service becomes available
within this timeout period, an unchecked
ServiceUnavailableException is thrown.

componentName "" String Optional. A convenient shortcut for
specifying a filter expression that matches the
property named org.eclipse.gemini.blueprint.bean.name
that is automatically advertised for beans,
published with the @Service annotation.

dependsOn "" String Optional. Specifies that the service reference
should not be looked up in the service registry
until the named dependent bean has been
instantiated.

availability Availability.
OPTIONAL

ServiceReference.Availability Optional. Indicates the
requirement for the availability of this service
reference. By default, the reference is treated as
an optional requirement. If set to MANDATORY, then
the @Service registration will only succeed if the
referenced service is already available.

Important: Do not declare a mandatory reference to
a service that is also exported by the same
bundle. This can cause application context
creation to fail through either deadlock or
timeout.

The following example shows the GreeterImpl class published as an OSGi service that
depends on the ResourceUtil class that is in turn published as another OSGi service.
@Service(name = “greeter-impl”, interfaces =
{ “com.example.osgi.greet.api.IGreeter”,
 “org.osgi.service.cm.ManagedService” }, properties =
{ @Property(key = “service.pid”, values = “com.example.osgi.greet”) })

public class GreeterImpl implements IGreeter, ManagedService {
 public static final String KEY_HELLO = “hello”;
 private String key = KEY_HELLO;

 @ServiceReference(id = “resourceUtilRef”, interfaces =
{“com.example.osgi.greet.impl.ResourceUtil”})
 ResourceUtil resUtil;

 public void setResUtil(ResourceUtil resUtil) {
 this.resUtil = resUtil;
 }

 ...

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 14

}

@Service
public class ResourceUtil {
 ...
}

Looking up Services from the OSGi Registry

Class and Description

com.softwareag.applatform.sdk.ServiceUtil

A helper class that provides utility methods when working with OSGi services. Use
this class to look up registered services.

Public API Methods in ServiceUtil Class

The following table lists the public API methods in ServiceUtil class:

Method Name Return
Type

Method Arguments Description

getService T ServletContext
servletCtxClass<T>
serviceCls

Returns the
instance of the
OSGi service of
type serviceCls
from the specified
ServletContext. This
method looks for
an instance of
BundleContext in
the ServletContext
under the aribute
name osgi-
bundlecontext and
use the obtained
BundleContext
to look up the
service.

getService T Class<T>
serviceClsBundleContext
bundleCtx

Gets the OSGi
service of given
serviceCls type
using the given
BundleContext. If
no service of the

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 15

Method Name Return
Type

Method Arguments Description

serviceCls type is
registered, this
method returns a
null value.

getBundleContext BundleContext Class<?> bundleCls Gets the
BundleContext
from the bundle
containing the
given class.
If there is no
BundleContext
specified, this
method returns a
null value.

getService T Class<T> serviceCls Gets the OSGi
service for the
given service
class type. If no
service of the
specified type is
registered, this
method returns a
null value.

Configuring POJO Services Dynamically
Application Platform enables you to dynamically configure a published POJO service by
using the @Service annotation. For more information about the @Service annotation, see
"Publishing POJOs as OSGi Services" on page 10.

For information about how to enable dynamic service configuration in Application
Platform projects, see webMethods Application Platform User’s Guide.

The following table outlines the related API documentation:

Class and Description

org.osgi.service.cm.ManagedService

For information, see the OSGi documentation.

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 16

The following methods must be implemented from the ManagedService interface:

Method
Name

Return
Type

Method Arguments Description

update void java.util.Dictionary<java.
lang.String,?>
properties

For information
about the
updated method,
see the OSGi
documentation.

Exposing POJO classes as Integration Server Assets
This section describes the annotations you can use for exposing POJO classes as
Integration Server assets.

@ExposeToIS

This annotation is used to identify a class that contains one or more methods to
be exposed as Integration Server services. It is combined with the @Service and
@ExposedMethod annotations to support the presentation of methods in a Java POJO
as IS services. Since the generated Integration Server assets assume that the Java class
is registered in OSGi as a service, this annotation must be used with the @Service
annotation.

For example:
@ExposeToIS(packageName="OrdersService")
public class OrdersServiceImpl implements OrdersService {
}

The following table lists the properties of @ExposeToIS:

Property Default Value Description

packageName "" String Optional. The name of the Integration
Server package where services from this class
are created. Note that this is the name of an
Integration Server package, not a Java package.
If no value is provided, when the Integration
Server service is generated, the value of the
@Service.name property will be used as the
Integration Server package name.

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 17

@ExposedMethod

This annotation identifies a method to be exposed as an Integration Server service. It is
valid only on public methods. Since Integration Server does not support service name
overloading, there are restrictions on exposing methods from a Java class. If the exposed
Java class defines methods using overloaded names, only one method with a given name
can be exposed.

This annotation has no properties.

For example:
@ExposedMethod
public String createReceipt(Order inOrder) {
}

Example of Using the @ExposeToIS and the @ExposedMethod Annotations

In the following example the OrdersServiceImpl class implements the OrdersService interface,
which declares several methods, including @ExposeToIS and @ExposeToIS. When this
POJO is published in an Application Platform project, several artifacts are created in the
Integration Server namespace.

As a result of the packageName property, an Integration Server package, named
OrdersService is created, if necessary. Based on the name of the Java package, where the
OrdersService interface is defined, a folder, named 'com.softwareag.demp.orders.api', is
created. This folder is located in the new Integration Server package.

Each of the exposed methods creates an Integration Server service in the new folder.
The service name matches the exposed method name. The signatures for these new IS
services match the method signatures. For example, the orderReceipt service signature
includes a String output and one input of type Document, named inItem, where the
document structure matches the properties of the Order POJO.
package com.softwareag.demo.orders.impl;

@Service(name="RegisteredOrdersService", interfac-
es={"com.softwareag.demo.orders.api.OrdersService"})
@ExposeToIS(packageName="OrdersService")
public class OrdersServiceImpl implements OrdersService {

 @Override
 @ExposedMethod
 public float calculateCharge(LineItem inItem) {

 }

 @Override
 @ExposedMethod
 public String createReceipt(Order inOrder) {
...
 }
 }

public interface OrdersService {
 public String createReceipt(Order inOrder);
 public float calculateCharge(LineItem inItem);
 ...

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 18

}

If the packageName property is omied from this example code, the package in the
Integration Server namespace will be named RegisteredOrdersService, based on the @Service
annotation.

Generating Tests with the Application Platform Integration
Test Framework
This section describes the main classes and annotations that you should use when you
develop JUnit tests in the Application Platform integration test framework. The classes
are available in the Application Platform API Libraries classpath container.

For more information about the Application Platform API Libraries container, see
webMethods Application Platform User’s Guide.

For more information about JUnit testing, including classes and annotations, see the
JUnit website at hp://junit.org.

Class and Description

com.softwareag.applatform.sdk.test.framework.AppPlatformIntegrationTest

An abstract base class, from which your test classes can inherit in order to use the
JUnit runner.

com.softwareag.applatform.sdk.test.framework.IntegrationTestRunner

The main class that drives the Application Platform integration test framework.

com.softwareag.applatform.sdk.test.framework.AppPlatformIntegrationTestWithParameters

A convenience abstract base class that your test classes can inherit from when
you create parameterized tests.

com.softwareag.applatform.sdk.test.framework.ParameterizedIntegrationTestRunner

A custom JUnit runner that supports running parameterized tests in the
Application Platform integration test framework.

Annotation and Description

com.softwareag.applatform.sdk.annotations.TestBundle

A required class-level annotation that must be specified on every test class that
should be executed within the Application Platform integration test framework.

http://junit.org

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 19

Annotation and Description

com.softwareag.applatform.sdk.annotations.RunOnServer

Used to specify the details of the server, on which the bundle that hosts the test
class exists and the test class is executed.

Non-Parameterized Tests
Use the following classes when you create non-parameterized tests.

AppPlatformIntegrationTest

The com.softwareag.applatform.sdk.test.framework.AppPlatformIntegrationTest class is an abstract
base class, from which your test classes can inherit in order to use the JUnit runner.

This class provides no-op implementations for the following methods, which can be
overridden:

Annotation Name Method Name

@BeforeClass setupClass

@AfterClass destroyClass

@Before setup

@After Destroy

IntegrationTestRunner

The com.softwareag.applatform.sdk.test.framework.IntegrationTestRunner class is the main class that
drives the Application Platform integration test framework. This class is a custom JUnit
runner class and it is activated through the JUnit @RunWith annotation.

If you use the AppPlatformIntegrationTest class as the base class of your tests, you do not
have to use the IntegrationTestRunner class directly in your tests. You need to use the
IntegrationTestRunner class only if your test class already extends from another base class
and it cannot extend from AppPlatformIntegrationTest.

The IntegrationTestRunner class performs the following key steps:

1. Validates that the test class contains the @TestBundle annotation with the bundle
symbolic name and the bundle version, if it is specified.

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 20

2. Initiates a JMS client connection to the configured server by using the details from
the @RunOnServer annotation, if specified. If the @RunOnServer annotation is not
specified, the class uses the default values.

3. Verifies that the bundle that contains the test class is deployed and active on the
running server.

4. Executes the annotated @Test methods in the test class by making a JMX call to the
actual test class that is hosted in the project bundle.

5. Captures success and failure messages of the test run and reports them to the JUnit
and the Console view in Designer.

6. Terminates the JMX client connection when the test class is executed.

Parameterized Tests
Use the following classes when you create parameterized tests.

AppPlatformIntegrationTestWithParameters

The com.softwareag.applatform.sdk.test.framework.AppPlatformIntegrationTestWithParameters class is a
convenience abstract base class, from which your test classes can inherit when you create
parameterized tests.

This class provides no-op implementations for the following methods, which can be
overridden:

Annotation Name Method Name

@BeforeClass setupClass

@AfterClass destroyClass

@Before setup

@After Destroy

ParameterizedIntegrationTestRunner

The com.softwareag.applatform.sdk.test.framework.ParameterizedIntegrationTestRunner class is a
custom JUnit runner that supports running parameterized tests in the Application
Platform integration test framework. This class is activated through the @RunWith
annotation.

If you use the AppPlatformIntegrationTestWithParameters class as the base class of your
tests, you do not have to use this class directly in your test class. You need to use the

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 21

ParameterizedIntegrationTestRunner class only if your test class already extends from another
base class and it cannot extend from AppPlatformIntegrationTestWithParameters.

The ParameterizedIntegrationTestRunner class performs the following key steps:

1. Validates that the test class contains the @Parameters annotation on a method that
provides the test data.

2. For each set of parameters in the test data, creates an instance of the other child
runner that is responsible for running the test methods in the test class.

3. Sets the name of the test by using the name aribute of the @Parameters annotation.

4. Executes the child test runner.

Test Class Annotations
Use the following annotations for the test classes you create for your Application
Platform integration tests.

@TestBundle

The @TestBundle annotation is a required class-level annotation. You must specify this
annotation on every test class that should be executed within the Application Platform
integration test framework.

The following table lists the properties of @TestBundle:

Property Name Default Value Description

symbolicName The project
name of the
corresponding
Application
Platform
project.

String Required. The symbolic name of the
bundle that contains this test class when it is
deployed to the configured server runtime.
This value corresponds to the Bundle-
SymbolicName OSGi header value.

version 1.0.0 String Optional. The version of the bundle that
hosts the corresponding test class. This value
corresponds to the Bundle-Version OSGi
header value.

@RunOnServer

Use the @RunOnServer annotation to specify the details of the server, on which the
bundle hosting the test class exists, and where the test class is executed. Do not use
@RunOnServer if the configured server uses the same default values, as the default values
of the annotation. The default values of @RunOnServer correspond to the default values of
a local Integration Server instance. However, if any of the server properties are different

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 22

from the default values, you must specify the @RunOnServer annotation at the test class
level.

Note: If you are using My webMethods Server, note that its default JMX port value
is different.

The following table lists the properties of @RunOnServer:

Property Name Default Value Description

host localhost String Optional. The host name of the server,
on which the Application Platform project
bundle is deployed.

jmxPort 8075 Integer Optional. The JMX port of the
configured server.

username Administrator String Optional. The JMX client connection
username.

pwd manage String Optional. The JMX client connection
password.

timeout 15000 Integer Optional. The JMX client connection
timeout value in milliseconds.

Examples of Using the Application Platform Integration Test
Framework
This section provides examples of a non-parameterized and a parameterized test in the
Application Platform integration test framework.

Example of a Non-Parameterized Test

The following example shows the GreeterImpl class published as an OSGi service that
depends on the ResourceUtil class that is in turn published as another OSGi service.

In the example, the test class for the GreeterImpl class verifies that the IGreeter API
implementation is correctly registered as an OSGi service and is accessible using the
ServiceUtil class.

The @TestBundle annotation specifies the symbolic name of the project bundle that
contains this test class.

The @RunOnServer annotation is explicitly specified. However, it is not required, as it uses
the default values.

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 23

The test class inherits from the AppPlatformIntegrationTest class and it implicitly uses the
IntegrationTestRunner JUnit custom runner.
@TestBundle(symbolicName="greeter-service")
@RunOnServer(host="localhost", jmxPort=8075, username="Administrator",
pwd="manage")
public class GreeterImplTest extends AppPlatformIntegrationTest {
 @Test
 public void testGreeterServiceRegistered() throws Exception {
 IGreeter greeter = ServiceUtil.getService(IGreeter.class);
 assertNotNull(greeter);

 String result = greeter.greetMe("test");
 assertNotNull(result);
 assertTrue(result.contains("test"));
 assertTrue(greeter instanceof GreeterImpl);
 System.out.println("Passed!");
 }
}

Example of a Parameterized Test

The following example shows a simple parameterized test that runs in the Application
Platform integration test framework. The example consists of the following parts:

A simple POJO class, named Hello. This class returns a greeting string for a provided
input name.

A JUnit test that tests the Hello class. The test uses the @Parameters annotation and the
Application Platform parameterized integration test support.

public class Hello {
 String name;
 Hello(String name) {
 this.name = name;
 }
 String greet() {
 return String.format("Hello, %s", name == null ? "Guest!" : name);
 }
}

@TestBundle(symbolicName = "HelloBundle")
@RunOnServer(jmxPort = 8075)
public class HelloTest extends AppPlatformIntegrationTestWithParameters {
 @Parameters(name = "test-{index}-with-name-{0}")
 public static Iterable<Object[]> data() {
 return Arrays.asList(new Object[][] { { "abc", "Hello, abc" },
 { null, "Hello, Guest!" } });
 }

 @Parameter(0)
 public String name;
 @Parameter(1)
 public String greeting;

 @Test
 public void test() {
 String result = new Hello(name).greet();
 System.out.println("Got result: " + result + " for input name: " + name);
 assertEquals(greeting, result);

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 24

 }
}

Adding Single Sign-On Authentication to Application
Platform Projects
Application Platform supports SSO authentication. To add SSO to your Application
Platform projects, you can use the available security filter, class, or annotation, which are
described here. The class and the annotation are available in the Application Platform
API Libraries classpath container.

For more information about the Application Platform API Libraries container, see
webMethods Application Platform User’s Guide.

Web Application Layer Security
The following table describes the properties and values of the security filter that you add
in the web.xml file.

For information about how to enable SSO in your Application Platform web projects by
adding the security filter, see webMethods Application Platform User’s Guide.

Filter and Description

com.softwareag.applatform.security.filter.AppPlatformSecurityFilter

A servlet filter that is added to the web.xml file of the required Application
Platform web project. Supports SSO functionality for web applications.

The following table lists the properties of AppPlatformSecurityFilter:

Property Value Description

realm AppPlatformRealm

This is the only valid value.

String Required. The
Application Platform realm.

nextauthMethod Valid values:

BASIC

Basic authentication.

CLIENT_CERT

Authentication with client
certificate.

String Required. The next
authentication method to try
if the current authentication
request fails. For detailed
information about the possible
values, see the Java EE
documentation, provided by
Oracle.

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 25

Property Value Description

FORM

Form authentication.
Requires aributes for user
name and the password, as
follows:

j_username

j_password

roleNamesAllowed Depends on the runtime
server, as follows:

For Integration Server the
roles must be equivalent to
the roles in the Integration
Server access control list
(ACL). For information
about the ACL, see
webMethods Integration Server
Administrator’s Guide.

For My webMethods
Server the roles must be
equivalent to the applicable
Security Realm container.
For information about
Security Realm containers,
see Administering My
webMethods Server.

String List Optional. A comma-
separated list of allowed user
roles. Users are authenticated
when they have one of the
listed roles.

formLoginPage String Optional. The address of
the login page when using the
form authentication type.

formErrorPage String Optional. The address
of the error page that displays
when the form authentication
fails.

OSGi Service Layer Security
The following tables describe the class and annotation that are provided by the
Application Platform API for implementing security at the OSGi service layer. When

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 26

you implement OSGi service layer security, you can add one of the following types of
SSO to your application:

Declarative security, in which the users that are allowed to have access to the
application are determined statically.

For more information about the declarative security mechanism, see "Declarative
Security" on page 27.

Dynamic runtime security, in which the users that are allowed to have access to the
application are determined dynamically.

For more information about the dynamic runtime security mechanism, see "Dynamic
Runtime Security" on page 28.

For information about how to enable SSO in your Application Platform projects by
adding SSO to the OSGi service layer, see webMethods Application Platform User’s Guide.

Class and Description

com.softwareag.applatform.security.SecurityContext

A class that provides a set of methods that are backed by the internal authorization
service. Before the target method is invoked, an instance of this class is injected
in any field of the same type that is defined in the @Service and @Secure annotated
class.

You can query the role and subject information for the currently logged user by using
the following methods in the SecurityContext class:

Method Name Return Value Method Parameters Description

isUserInRole Boolean String. The role name. Checks if the
current user has
the given role.

isUserInRoles Boolean String or string list.
An array of role
names.

Checks if the
current user has
all the given roles.

currentSubject javax.security.
auth.Subject

 Returns the
JAAS subject
representation of
the current user.

getBackingSubject org.apache.
shiro.subject.
Subject

 Obtains the
backing security

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 27

Method Name Return Value Method Parameters Description
instance of the
user.

isAuthenticated Boolean Checks if the
current user is
authenticated.

Annotation and Description

com.softwareag.applatform.security.Secure

A marker annotation that indicates that the Application Platform service is
secured and requires an authenticated subject when its methods are invoked. This
annotation is used together with the @Service annotation at the type or class level.

For information about the @Service annotation, see "Publishing POJOs as OSGi
Services" on page 10.

Declarative Security
Application Platform enables you to add declarative security to POJOs that are
published as OSGi services by using the @Service annotation. To add security to POJOs
that are published as OSGi services, you can use the @Secure annotation, together
with a set of common Java EE security annotations. Application Platform supports
the following common Java EE security annotations, which you can use at the class or
method level:

@DenyAll

@PermitAll

@RolesAllowed

The following sample code shows an implementation of declarative security in an
OSGi service. The @Secure annotation indicates that the AdderService service is secure. By
default, invocation of the service methods is denied with the @DenyAll annotation. The
@RolesAllowed annotation allows invocation of the add method by users with Admin or
Developer role.
@Service
@Secure
@DenyAll
public class AdderService {

 @RolesAllowed({"Admin", "Developer"})
 public float add(float x, float y) {
 return x + y;
 }
}

M
Even Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 28

Dynamic Runtime Security
Application Platform enables you to implement dynamic runtime authentication and
authorization, in which the roles allowed for a user are not known in advance. To add
dynamic runtime security, you can use the SecurityContext class. If the SecurityContext field
type is specified in the class and gets injected at runtime, you must add the @Secure
annotation to the corresponding Application Platform POJO service class.

The following sample code shows an implementation of dynamic runtime security in an
OSGi service, where:

A POJO class, named GreeterImpl, implements the IGreeter interface. The IGreeter
interface is marked as secure with the @Secure annotation.

The @DenyAll annotation at the class level denies access to all methods at runtime.

The @RolesAllowed annotation overrides the @DenyAll annotation for the greetMe
method for users that have Administrators or Developers role.

The logCurrentSubject method uses the secContext field to retrieve the Java
Authentication and Authorization Service (JAAS) Subject representation of the
currently logged in user. The secContext field is of type SecurityContext and it is injected
at runtime before the logCurrentSubject method is invoked with a valid instance.

After the logCurrentSubject method retrieves the JAAS Subject, it prints the instance
details of the associated Principal.

@Service
@Secure
@DenyAll
public class GreeterImpl implements IGreeter {

 public static final String KEY_HELLO = "hello";
 private String key = KEY_HELLO;

 @ServiceReference(id = "resourceUtilRef", interfaces =
 { "com.example.osgi.greet.impl.ResourceUtil" })
 ResourceUtil resUtil;

//injected at method invocation time
 private SecurityContext secContext;

 @Override
 @RolesAllowed({ "Administrators", "Developers" })
 public String greetMe(String name) {
 logCurrentSubject();
 return greetMe(name, Locale.getDefault());
 }
private void logCurrentSubject() {
 Subject subj = secContext.currentSubject();
 if (subj != null) {
 Set<SagUserPrincipal> users = subj.getPrincipals(SagUserPrincipal.class);
 if (users != null) {
 for (SagUserPrincipal sup : users) {
 System.out.println("Current logged in user is " + sup.getName());
 }
 }

M
Odd Header

Using the Application Platform API

Getting Started with the webMethods Application Platform API Version 9.10 29

 } else {
 System.err.println("No authenticated subject found!");
 }
 }
}

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Introduction to the Application Platform API
	About Application Platform API

	Using the Application Platform API
	Publishing POJOs as OSGi Services
	Injecting Service Dependencies into Other Services
	Looking up Services from the OSGi Registry
	Configuring POJO Services Dynamically

	Exposing POJO classes as Integration Server Assets
	Generating Tests with the Application Platform Integration Test Framework
	Non-Parameterized Tests
	Parameterized Tests
	Test Class Annotations
	Examples of Using the Application Platform Integration Test Framework

	Adding Single Sign-On Authentication to Application Platform Projects
	Web Application Layer Security
	OSGi Service Layer Security
	Declarative Security
	Dynamic Runtime Security

