5 software~

webMethods Unit Test Framework Help

Version 10.5

October 2019

WEBMETHODS

This document applies to webMethods Test Suite 10.5 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2017-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: GWM-WWST-105-20220525

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

ADOoUt this GUIE.....cuiiiiiiitiitttcttt bbb bbb bbb bbb b bbb bene 5
Document CONVENLIONS.........cciiiiiiiiiiiiiiciicc e s 6
1 Unit Test FIamewWoOrK.... e e s e sanas 9
OVOTVICW ...ttt a st nea 10
Terms and CONCEPLS........cceueieieieieieieece s 10
CaPabILIties......cucueeiecececiccccc s 13
Server Definition.........ccoiiiiiiiiiiiii s 14
ENVITONIMENT....oiiiiiiiiiiic et 14
WHhat it iS MOt 15
2 Working with Unit Test FrameworkK.........iiiiiniiiiiiniiniiiiicnnnnnsncnsssssnssne 17
Opening the Unit Test Framework Perspective..........cccccccciviviiiiiiiniiiinniiicccciees 18
LayOULb.ooic e 18
Test Suite Preferences...... ..o 19
3 Creating a Test SUite.... ettt sssssse s ssssssssssssssssssessssessssaes 23
Before YOU BeGIN.......oovoviiiiiiiiice e 24
To Create @ Test SUILe.........ccovuiiviiiiiiiii s 24
Creating a Sample Test SUIte..........cccoeiiiiiiiiiiiiii e 24
4 AddIng Test Cases.....uuvririrrerinirinirinsisinsiinsiisniissisissesisississssissessssssisssestssssssssssssssssssssssssssssssssssessanes 27
Adding @ Test Case.........ceueieieieieieieieeee s 28
Test Details.......ccoiiiiiiiiiic e 28
Service Details.........ccoiviiiiiiiiiiiii s 28
INPULS ot 28
Expected OULPUL........coovi s 29
Output COMPATISON......cuiiiiieieiciii bbb 29
5 GeNerating TeStS.....cciicnirnirinriiniiniisniinsinsststnisessetssisessestssssessssssssstssssessssssssssssssesssssssssssssssssonss 31
Generating Tests Suites using Service Execution Results............cccccoviiiiiniiiiinniiinnnnn. 32
6 IMIOCKS ..ottt e s e s s e e e e s 35
USING MOCKS....c.oiiiiiiiiiiicc s s 36
Sample MOCK FACIOTYcooiiiiiiiiiiiiiciciieccc et 37
Mocks beyond Unit TESHNG........cccouvuiuiiiriiiiiiiiicicc e 38
7 AdVanced OPiONS.....iiiirntiiniiiiiiiiieiiieissesnsessssssesssssssssssssssssssssssssssssssssssessasssens 39
Pipeline FilteT.......oooveveiiciicieie s 40
COMPATALOTS....cueeieiii s 40
Client MOCK FaCtOTY ..o s 40

webMethods Unit Test Framework Help 10.5 i

Table of Contents

XPath EXPIeSSIONS.......cucueieieieieieieieieteiete ettt s 41
8 Test Suite INternals.......cuiiveiiniiuiniiniiiiitnincniniiintssasssses 43
Test SUILE INEEIMIALS......cccieieieeiieieieeeee ettt ettt et e ste et e s et e eseessessesseessensessesnsensensas 44
9 JAVa UNIt TESES....ciriiiiiiiiiiiiiiinininisiniiscssessessscstssssssssstssssssssssessssasssssssesssssssssssssssssssesssssssassssessssssss 45
JAVA UNIE TOSES.ceiiiiiiiciiieeecee ettt e e tee e et e e s e tr e e e bae e e e tbae e e ssaaeeessseaesnssaeeennssaesnnsenes 46
10 EX@CULING T@SES..uvovieereiictiteneiictitcnitctneeiteseestsseseeesssese e ssssesessssssssessssssssssssssssssssssssssssssssssess 49
Executing Test Cases.........ccovveveieieiiiiiiiiieeee s 50
Executing Test SUILeS.........coeveiiieieiiie s 50
Debugging Java Code..........cceuiiiieieiiiiiieieicee s 50
Continuous INteGration..........cccveveiiiiieieiie s 51
11 Code Coverage ANaLYSiS.....ciieiinnisnisinisinsiinniesssisnssesnssesissississsiisiesssssssssssssssssssssess 57
Running a Coverage ANalysis.........ccccciviiiiiiiiiiiiiiiiiiic s 58
Viewing Code Coverage ANalysis........cccoiiiiiniiiiiiiiiniiiiiiiiicc s 59
Viewing Mock Event Details..........ccocccciiiiiiiiiiniiiiiiiiiccccc s 60
Defining the Coverage SCOPE........cccouiuiiiiiiiiiiiiiiic s 61
Coverage Analysis in Headless Mode...........cccocovniiininiiiiiniiiniciccc s 62
12 SeIVICE USAZE..uccueiireriereiireintiinsiiseiteissssessesesssesssessssessssessssssssssssssesssssssssssssssssssssesssesssssssssessssssess 63
WIMSEIVICEIMOCK SEIVICES.....ccuieteeeieiietieiieitesieeetetestestesetesestesseessesesseessessessesssessessessesssessessessesssenes 64
RELEIEINICES.c.veeeieeietieeteteee ettt ettt ettt et e b et e et e st et e ebe e st e st asseessessesseessessassassaassansassasssansarsenseessanses 65

iv webMethods Unit Test Framework Help 10.5

About this Guide

| DOoCUMENT CONVENLIONS ..oeviiiiii et e e e e e e e e e e e e e e e e e e et b eeeeeeeeeeaenaanaas

webMethods Unit Test Framework Help 10.5

This guide provides information on service testing options of Integration Server using webMethods
Test Suite. The scope of this document is to introduce the suite, design and execute test cases.

Itis assumed that the user is familiar with the standard build and test tools such as, Ant and JUnit.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies service names and locations in the format folder.subfolder.service, AP]ls,
Java classes, methods, properties.

Italic Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires credentials for Software AG's Product Support
site Empower. If you do not have Empower credentials, you must use the TECHcommunity

website.

webMethods Unit Test Framework Help 10.5

http://documentation.softwareag.com
http://documentation.softwareag.com

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us
a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG TECHcommunity
website at http://techcommunity.softwareag.com. You can:

® Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.

m Access articles, code samples, demos, and tutorials.

m Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

m Link to external websites that discuss open standards and web technology.

webMethods Unit Test Framework Help 10.5 7

mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

webMethods Unit Test Framework Help 10.5

1 Unit Test Framework

B OVEBIVIEBW ittt ettt oottt e e e e 4okttt e e e e e e e et e ettt e e e e e bbb e et e e e e e e e nnnnes 10
T =T 4 g 5= T Lo IO o] Tot =] o) S 10
LT O o =1 o | =SSP 13
B Server DEfiNITIONoeiiiiiiiice e 14
T = 01V (0] o1 4= o SO PPT P TPUPPPPPPPPR 14
B WAL IT IS MO oo e e e e e s e e e e e e e s e e e e e e e e e e e annnnees 15

webMethods Unit Test Framework Help 10.5 9

1 Unit Test Framework

Overview

Test Suite is an Eclipse based testing tool that allows developers to create unit tests for their
development. These tests improve the overall development quality and provide a mechanism to
create automated tools for continuous integration and delivery.

Test Suite provides the following functionalities:

® Provides service unit testing and regression testing tools that allows service developers to
assemble unit tests without the need for additional development

® Enables integration with JUnit to leverage a standard unit testing framework, which already
works well with Continuous Integration tools

® Enables ease of use for test development
m Provides a Java API for advanced users to create JUnit test cases

® Provides a user interface that is integrated in Software AG Designer. Software AG Designer
ensures that users do not switch between tools for services development and corresponding
test cases

®m Provides a mechanism to repeatedly execute the service with same inputs and compare the
results with an expected set of outputs

® Provides a framework for mocking service execution for steps that cannot be executed during
the testing. For details, see “Using Mocks ” on page 36

Terms and Concepts

This section provides information on the terms and concepts used to understand Test Suite.

Services

The webMethods Integration Server hosts packages that contain services and related files. The
server contains several packages.

For example, Packages that contain built-in services, which can be invoked from services or client
applications and services that demonstrate features of the webMethods Integration Platform.

You can create additional packages to hold the services that your developers create. Developers
can create services that perform functions, such as, integrating your business systems with those
of your partners, retrieving data from legacy systems, and accessing and updating databases.

Integration Server provides an environment for the orderly, efficient, and secure execution of
services. It decodes client requests, identifies the requested services, invokes the services, passes
data to them in the expected format, encodes the output produced by the services, and returns
output to the clients.

10 webMethods Unit Test Framework Help 10.5

1 Unit Test Framework

Pipeline

Pipeline refers to the data structure in which input and output values are maintained for a flow
service. It allows services in the flow to share data.

The pipeline holds the input and output for a flow service

Flow Service

y

INVOKE Purch:LogPO

input ——

output ——

input ——

A4

INVOKE Purch:CreditAuth

output —

input ——

v

INVOKE Purch:ConvertDate

output —»

input —

!

INVOKE Purch:SendPO

output —

The Pipeline

ONum:46-77135
Name : Kings Sport
Phone:201-887-1544
TNum:128824993554
Acct 128824993554
Total:5732.78
Qty:20
ButhNum:TWS9123554
Date:04/04/99
Item:PK88B01-NS
OrderDate:19950404
Ship:UPS Ground
Terms: 30N
Freight:65.00

Status:Received

webMethods Unit Test Framework Help 10.5

"

1 Unit Test Framework

Pipeline starts with the input to the flow service and collects inputs and outputs from subsequent
services in the flow. The service in the flow has access to all data in the pipeline at that point.

Unit Testing

Test Suite uses the concepts of service execution, pipeline data, and the open source JUnit testing
framework to provide unit testing functionality for Integration Server Flow and Java services. Test
Suite provides the ability to create a suite of tests consisting of individual test cases. Each test case
defines a service to be tested, the type of test to be performed, and provides a user interface to
define input data to the test case through the pipeline. When the service execution is completed,
the pipeline output is validated against the expected output defined in the test case.

Test Case

A test case is a unit of testing for a service that provides:
® service to be tested

® inputs to the service

® expected output from the service

A test case can also define expected output from a service as an exception or error. The service
returns the defined errors when incorrect data is sent to it.

Test Suite

A test suite is one or more test cases grouped together. Test suites are used to organize test cases
into sets of related tests. For example, a service may provide a variety of capabilities based upon
the inputs provided to it. A complete test suite should include test cases that provide inputs that
fully test all of the possible outputs of the service, including errors or exceptions.

Mock

Mocks provide a means of simulating interaction with resources that are unavailable or the data
provided by these resources or systems is not consistent for test purposes. Mocks also have a
lifetime that can either be limited to the test case in which they are defined or applied to all of the
test cases that follow within a test suite from the point of the definition.

Mock intercept can control the session, user, and server based on the scope setting. If the scope is
set to session, the test sessions will be affected by the mock. It is recommended to set the scope to
session for most users. If the scope is set to user, all the sessions for the particular user will be
affected by the mock. If the scope is set to server, all user sessions will be affected by the mock.
Mocks can be enabled or disabled for test case or test suite execution.

12 webMethods Unit Test Framework Help 10.5

1 Unit Test Framework

Service Mock

A service mock is used to replace the call to a service with a call to a different service. Any call to
the mocked service is intercepted and the alternate service defined in the mock is called instead.
The output of the mocked service is then returned to the calling service. This kind of mock is useful
when the output of the mocked service needs to be dynamic based on some logic that can be
created in the service.

Exception Mock

An exception mock is used to return an error or exception to the calling service and can be useful
for testing error handling in a service. As with the other mocks described, any call to the service
defined in the mock is intercepted and the exception defined in the mock is returned instead. This
kind of mock is useful to simulate behavior that can cause exceptions in the normal flow.

Factory Mock

A factory mock is used when a call to a service produce multiple different outputs based on the
provided input. A factory mock is implemented as a Java class. Any call to the class defined in a
factory mock is intercepted and the input is passed to the factory which evaluates the input and
returns the appropriate results. While both the factory mock and the service mock options provide
dynamic output simulation, the factory mock does not require an extra test service to be created
on the server and relies on a lightweight java implementation.

Capabilities

Test Suite has following capabilities:
® Unit testing

® Mock testing

m Regression testing

m Code coverage

Unit testing

Test Suite is a unit-testing tool. You can design, build, and execute unit test cases using Eclipse
User Interface. You can also execute the test cases externally using Ant scripts.

Mock testing

Mocking is a feature that mimics the functionality of services that are dependent on external
resources. When a test case encounters a service that is mocked, it executes the service.

webMethods Unit Test Framework Help 10.5 13

1 Unit Test Framework

Regression testing

You can save the test cases, along with their inputs and outputs, in xml files. Run the reusable
artifacts to ensure that the latest changes do not reintroduce the errors fixed in the earlier versions.
Code coverage

Unit Test Framework records and analyzes the flow steps and map actions of your flow service(s)
that are executed during a test launch. It helps you to identify the untested steps and improve the
corresponding tests.

Server Definition

Integration Server preferences in Designer describe the connection to Test Suite.

Designer always uses the active default Integration Server definition for Test Suite. Secure
connection option in default server definition indicates whether the session will be opened through
HTTP or HTTPS. In Designer, navigate to Window > Preferences > Software AG > Integration
Server to add, edit, and update connection configurations. For details, see webMethods Service
Development Help.

Unit Test Framework can also connect to a remote Integration Server through a proxy server. In
Designer, navigate to Window > Preferences > General > Network Connections to provide the
proxy server's settings.

The editor does not always require an active connection to test development. But some of the
introspection features that allow service lookup and service signature are not available if a
connection is not available and so, the user should enter them manually.

Environment

Option Description

Hardware No additional hardware is required other than the ones that are already in
Requirements use for Integration Server and Software AG Designer.

Software Developer Installation Requirements

Requirements

® Unit Test Framework Eclipse plug-in (Designer > Services > Unit Test
Framework)

® WmServiceMock package for Integration Server (Integration Server or
Microservices Runtime Packages > Unit Test Framework)

Unit Test Framework Software AG Designer plug-in can work with both Local
and Remote Integration Server.

Continuous Integration Installation Requirements

14 webMethods Unit Test Framework Help 10.5

1 Unit Test Framework

Option Description

®m WmServiceMock package for Integration Server (Integration Server or
Microservices Runtime Packages > Unit Test Framework)

® Unit Test Framework libraries (Infrastructure > Libraries > Unit Test
Framework Libraries)

® Ant Build tool 1.7 (optional)
m JDK 1.8 or later

Version This suite depends on open source products like Ant and JUnit.
Compatibilities . .

Following are the supported versions:

® Ant: 1.7

m JUnit: 4.11

Unit Test Framework works with all the currently supported General
Availability (GA) versions of Integration Server and Software AG Designer.

What it is not

m Test Suite is not an integration or system test platform. However, this suite is used to mock
the application dependencies and simulate the integration or system test.

m Test Suite is not a performance-testing tool. It cannot be used for performance, load, or volume
testing.

webMethods Unit Test Framework Help 10.5 15

1 Unit Test Framework

16 webMethods Unit Test Framework Help 10.5

2 Working with Unit Test Framework

m Opening the Unit Test Framework Perspective

m Test Suite Preferences

webMethods Unit Test Framework Help 10.5

17

2 Working with Unit Test Framework

Opening the Unit Test Framework Perspective

Software AG Designer provides a Unit Test Framework perspective that contains the views, editors,
and tabs needed to build test suites and other supporting elements.

1.

2.

In Designer, select Windows > Open Perspective > Other.

In the Open Perspective dialog box, select Unit Test Framework and click OK.

Designer switches to Unit Test Framework perspective.

Layout

The figure below shows various components of Software AG Designer with a test suite file open
for editing.

= WmServiceMockSamples,

AW code/source

(B resources/test/source

\ JRE System Libeary [jv Project
WrnTestSuite Libraries,
\ Referenced Libraries
£ code
[
= pub Support
(= resources Libraries
& test
(= data
4 [setup

)

2.

¥ pub_math_mubtiphylnts_input.xml
A pub_math_rmultiphydnts_outputacenl
K| vf_addlints_inputaml

| vf_addlnts_outputxml

s wmTestSuitexm|

B wmTestSuitel sml

£ wmTestSuite xml
i wmTestSuitedaml
build. properties

buildaml Test Suite
manifest.bak
ranifest.vd e

pub_math_addints_input.aml
pub_math_addlnts_outputaml
WmerviceMackSamples build xmllsunch

it wTestSuite3aml

= WmTestSuiteExecutor

webMethods Test Suite

+ webMethods Suite.

The Suite parameters are descnbed here. Test Suite Panel

Mame: TS_wmTestSuitedaml

Description: Auto Generated from Temnplate

Filter Browse...
webMethods Test Suite

The test cases are managed in this section.

Mare options, like executing test cases or the suite, are available in the context menu for each of the
items below.

a & TC_multiplylnts

= mocks
v pub.math:multiphdnts Mocks
Test Case
Test Editor

Use the following icons on the toolbar to tailor the layout.

Icon

Description

Service Details
Specify the properties for service to be invoked in this section.
Service: pub.math: multiphyints Browse...|
Invoke Type: | invoke -
Service Input
Inputs
The inputs to the service should be defined in this section.
File: resources/test/setup/pub_math_multiplyints_inputami | Browse...| | Edit
Service Qutput
Expected Output
The expected output from the service chould be defined in this section.
Type: | file -
File: resources/test/setup/pub_math_multiphints_outputaml Browse... | |Edit
Fields: r 1
XPath Value Q

Allows you to place the Master and Details views next to each other, master
on the right and details on the left.

Allows you make the master appear at the top of the display, and the details
view gets aligned underneath it.

Allows you to toggle the display between the master and details views, each
occupying the entire display. Click again to return to the original layout .

18

webMethods Unit Test Framework Help 10.5

2 Working with Unit Test Framework

Test Suite Preferences

To display the preferences dialog box, select Window>Preferences>Sotware AG>webMethods
TestSuite.

Advanced

The Advanced preferences control other behaviors of Test Suite.

Preference Description

Use Relative Makes file name references relative to the Eclipse project containing the test
Paths in suite rather than using the full path. Using relative names helps in executing
Filenames tests when the test suite and data files are moved between environments and

systems. This option is enabled by default.

Allow Comparator Controls the display of the field that allows the selection of the comparator
Configuration and does not allow/disallow this during execution.

Allow client side Enables the option of creating client side factory object that do not need to be

mock factory deployed on the server before executing test cases. This option controls the

objects display of the field that controls whether the mock factory objects are needed
on the server or can be pushed during the execution of the tests.

Display all fields Enables additional fields in the Expected Output section of a test case. This
in the expression option is useful if you want to check several output conditions together.
editor

Allow editing of Enables editing of the XML source for the test suite. This option requires that
XML (Effective the open test suite file is closed and reopened before its behavior reflects in
after reopen) the editor.

Allow scope Enables scope selection for the mock. The default setting of unchecked is
selection for appropriate for most test case scenarios.
mocks

Confirm delete of Enables the display of a confirmation dialog box for every mock service or
single objects data entry delete.

Confirm delete of Enables the display of a confirmation dialog box when you delete multiple
multiple objects mock service or data entries.

Confirm service Enables the display of a confirmation dialog box when you paste a test services.
paste

Code Coverage

The advanced code coverage preferences controls the behaviors of code coverage execution in
Test Suite.

webMethods Unit Test Framework Help 10.5 19

2 Working with Unit Test Framework

Preference Description

Include Execution Generates an additional Execution Model report during code coverage
Model Report in execution in Test Suite.

Code Coverage

Execution

Include Service Generates an additional Service Level Coverage report during code coverage
Level Covergae execution in Test Suite.

Report in Code

Coverage

Execution

Include Launch Enables you to debug a Java code during the code coverage execution in Test
Code Coverage Suite.

Execution in

Debug Mode

License

The License preferences provide the license related information of Test Suite.

Preference Description

License file Allows you to select the license file for Test Suite.

Check License Allows you to check the validity of the license file.

Editor

The Editor preference allows you to list the packages to load tot he service browser. connection
to webMethods Integration Server.

Preference Description

Package Filter ~ Optional. Allows you to optionally enter a comma-separated list of packages
for Test Suite to load to the service browser. When a large number of packages
exist on the Integration Server, this feature loads only those services for which
test cases are developed and thereby conserves memory in Test Suite.

Validation

The Validation preferences describe when and how Test Suite should validate the information
that you enter.

20 webMethods Unit Test Framework Help 10.5

2 Working with Unit Test Framework

Preference Description

Validate on Save Allows Test Suite to validate the test suite prior to saving it to the file system.
This option is enabled by default.

Validate before Allows Test Suite to perform validation of the test suite prior to switching
switching mode from the XML editor mode to the test suite editor.

Validate against Allows Test Suite to validate the test suite against the XML schema. This is
schema useful if you use the XML Source tab to enter details of one or more test cases
in the suite. This option is enabled by default.

webMethods Unit Test Framework Help 10.5 21

2 Working with Unit Test Framework

22 webMethods Unit Test Framework Help 10.5

3 Creating a Test Suite

m Before You Begin

m To Create a Test Suite

m Creating a Sample Test Suite

webMethods Unit Test Framework Help 10.5

23

3 Creating a Test Suite

Before You Begin

Before creating a test suite, ensure that you organize the required test cases and data files in a test
folder.

If the test cases are packaged in the Integration Server package, it provides a common source
location for all related assets. You can import the package on eclipse workspace.

Example: Consider that the test cases are created in the resources test folder of the Integration
Server package.

While any organizational structure that conforms to Integration Server package structure can be
used, the following example provides a useful approach for organizing test cases in your
environment. For ease of organization, follow the steps below:

1. Right click the Resources directory and create a subdirectory under it called test.
2. Right-click the test directory and create two additional folders data and setup.

3. Add the test suites to the setup directory and organize the data directory using subdirectories
for each test suite to contain the input data files for the test cases comprising a test suite.

To Create aTest Suite

Follow the below steps to create a test suite:

1. Navigate to resources>test>setup folder.
2. Select File>New> Test Suite.

3. On the webMethods TestSuite screen, enter the folder path that contains the test suite setup
files, provide a file name, and a suite name.

4. Click Finish.

You can now start creating the test cases.

Creating a Sample Test Suite

Designer allows you to create sample Test Suite projects.

1. Navigate to resources> test>setup folder.
2. Select File>New> Test Suite Example.

3. On the Sample wmTestSuite Project screen, enter the project name and location. You can
choose to use the default values.

24 webMethods Unit Test Framework Help 10.5

3 Creating a Test Suite

This Test Suite familiarises you on building test cases.

webMethods Unit Test Framework Help 10.5 25

3 Creating a Test Suite

26 webMethods Unit Test Framework Help 10.5

4 Adding Test Cases

B AJAING 8 TESE CASE ..ottt e e e e e e e e e e e et r et e e e e e e r e eeas 28
B TESEDELAIS ..ottt e e e e e e e 28
B SErVICE DELAIIS ...ooiiiiiiii e 28
I [0T o U 28
I e q o T=To (=10 [@ 111 o U | AP T P PPPRRPR 29
B OULPUL COMPATISON iiiiiiiiiiiiiii ettt e e e et e e e e e e s e e e e e e e s et e e e e e e e e e s annnbneeeeas 29

webMethods Unit Test Framework Help 10.5 27

4 Adding Test Cases

Adding aTest Case

Adding a test case involves the following steps:

1. Adding required test details. See “Test Details” on page 28.
2. Adding the required service details. See “Service Details” on page 28.
3. Defining inputs to services. See “Inputs” on page 28.

4. Defining the expected output. See “Expected Output” on page 29.

Test Detalils

To add test cases:
m Right click on the webMethods Test Suite section.

The Test Details section appears in the details area to the right side of the display. Provide a
name and description for the test case.

Service Details

After creating the test details, you can now select the service to be tested.

1. Click Browse in the Service Details section to enable searching for the service within the
Integration Server.

Note:
You can narrow the search by entering a package name or service name and the service

browser will restrict the display to only those packages or services matching the search
criteria entered.

2. Click - to refresh or set additional options for service browser.

Inputs

Test Suite looks at the service signature for services in the Integration Server. When defining the
inputs to the service selected in “Service Details” on page 28

m Click Edit to modify the values of the input parameters and click OK to save the changes.

m C(Click Save... to save the file in the location designated for the input data after defining the
input.

m Click Load to import a saved input data.

m Click Browse to add a saved file as the input to the service.

28 webMethods Unit Test Framework Help 10.5

4 Adding Test Cases

Expected Output

The final step in defining a test case is to complete the Expected Output section. Expected Output
can be in the form of data returned from the service or an exception returned from the service.

Use the class browser to define an exception or error output from the service. Click Browse to
display the classes and select the proper exception class to use.

To define the data output from the service, use the following methods:

m Use XPath expressions to define which data elements in the output data should be evaluated.

1. Copy the XPath expressions from Software AG Designer. To copy the XPath expression,
right click on the variable in the Results area when executing the service within Software
AG Designer and select Copy.

LI.:I
FEE]

2. Click | T |, , or | B | and paste the copied value into the XPath field.

An entry for the variable selected is created. However, it in most cases it is not required to
edit them as the webMethods paths are 0 index based whereas XPath expressions are 1
index based.

3. Enter the expected output for the field in the Value field.

You can select AND, OR, parentheses, and operators from the drop-down lists to create
complex evaluations of the output.

m Useregular expressions to evaluate the output returned from the service. The regular expression
should be placed in the Value field preceded and followed by "/" character.

Output Comparison

Unit Test Framework allows you to select predefined or customize the output comparison to
compare service results and check the destination table to confirm the operation executed
successfully.

Prerequisite

For the Output Comparison section to appear on the webMethods TestSuite screen, ensure
that you select the Display all comparators option on the Preferences dialog box. To select
Allow Comparator Configuration, navigate to Window > Preferences > Sotware AG >
webMethods TestSuite > Advanced.

1. On the Output Comparison section, select Comparator Type.

2. Select one of the following options:

webMethods Unit Test Framework Help 10.5 29

4 Adding Test Cases

Select... To...
Default Compare the actual and expected service result without any
filter.

Ignore Namespace Ignore the namespace prefix from the service results.

Prefix
For example, for a field value demotest:employee in the actual

result, where demotest is the namespace prefix, Unit Test
Framework ignores the namespace and uses employee for
comparison.

Use Field Alias Specify which fields in the service result should be compared.

You have to provide a field alias for the field in the actual
result that you want to Unit Test Framework to compare
against in the expected output.

For example, for a field value demotest: employee in the actual
result, you can assign a 1002 as the field alias. Then, Unit Test
Framework uses 1002 instead of demotest:employee for
comparison.

Click ‘E/ to add the list of fields to compare.

=] (g
Click ‘E/, or Iﬂ/ to edit or delete the entries.

Custom Specify a custom comparator for expected output other than
provided with the plug-in.

30 webMethods Unit Test Framework Help 10.5

5 Generating Tests

m Generating Tests Suites using Service Execution Results

webMethods Unit Test Framework Help 10.5

31

5 Generating Tests

Generating Tests Suites using Service Execution Results

Test Suite allows you to generate tests from the details of recently run services present in the Result

view. Using the Generate Test icon on the Results view, you can export the available service
invoke or run details to form a unit test and save in a Test Suite.

Ensure that you have installed the Test Suite Designer plugin.

1. Inthe Service Development perspective, navigate to the Results view of recently run services
and select the service for which you want to generate a test.

Note:
For details on viewing the Results view, see the Software AG Designer Online Help.

2. Click -
3. In the Export Pipeline dialog box, provide the following details and click Finish.

Type Function

Container Specifies the project or directory location of the Test Suite.

Ensure that you use an organizational structure that
conforms to Integration Server package structure.

Ensure that the specified project exists in the workspace.
TestSuite Specifies the name of the TestSuite file.

Use Overwrite to rebuilt the Test Suite. This overwrites the
existing Test Suite.

Use Append to append to the existing Test Suite.

Note:
Ensure that you provide the filename with the extension.
For example, wmTestSuite.xml.

Input Specifies the service input file location.
Note:
You can choose to retain the default value.
Output Specifies the expected output file location.
Note:

You can choose to retain the default value.

The Test Suite is created at the specified location.

32 webMethods Unit Test Framework Help 10.5

5 Generating Tests

4. Double click the newly created Test Suite.

The test details are displayed. You can edit the test details. To edit the test details, see .

webMethods Unit Test Framework Help 10.5 33

5 Generating Tests

34 webMethods Unit Test Framework Help 10.5

6 Mocks

m Using Mocks

m Sample Mock Factory

m Mocks beyond Unit Testing

webMethods Unit Test Framework Help 10.5

35

6 Mocks

Using Mocks

Mocks are used when resources that a service may require to properly execute may not be available
when a test case or test suite is developed or executed. Mocks provide a means of simulating
interaction with resources that are unavailable.

To create a mock

1. Expand the test case for which you want to define the mock, right click on Mocks and select

Add.

2. Click Browse and use the Service Browser to select the service to be mocked.

3. Enter the first few characters of the service name to reduce the list. Click to refresh the list and
access preferences for the Service Browser.

4. Select the required Lifetime.

Valid selections are test (mock is effective only for the selected test case) and suite (mock will
be effective for all of the test cases that follow in the test suite).

5. Select the required Type.

Following are the valid selections:

Type Function

pipeline Intercepts the service and returns the specified pipeline (for
details on creating or editing pipeline data see “Inputs” on
page 28).

service Intercepts the service and substitutes the selected service with
a call (for details on working with the Service Browser, see
“Service Details” on page 28).

exception Intercepts the service and returns an exception (for details on
selecting exception classes, see “Expected Output” on
page 29).

factory Intercepts a call to the mocked service and returns the data

6. Select the scope.

based on the input (for details on creating a mock factory, see
“Sample Mock Factory” on page 37).

It is recommended to use the session scope for most purposes. To allow the scope selection,
select the corresponding preference.

36

webMethods Unit Test Framework Help 10.5

6 Mocks

Sample Mock Factory

The following code snippet illustrates the minimum requirements for creating a mock factory.
The factory class and any other classes should be designed to evaluate the input data to the factory
and return data relevant to that input in an IData format. The example below returns static data.

package com.wm.ps.serviceMock.samples;

import
import
import
import
import
public
{

com.wm.app.b2b.server.BaseService;
com.wm.app.b2b.server.invoke.ServiceStatus;
com.wm.data.IData;

com.wm.data.IDataFactory;
com.wm.ps.serviceMock.MockDataFactory;

class SampleMockDataFactory implements MockDataFactory

private static final long serialVersionUID = 2L;

public IData createData(BaseService baseService, IData pipeline,

Serv

{
ID

iceStatus serviceStatus)

ata[] results = new IData[]{IDataFactory.create(new Object[][]{

{"originationSource","W"},
{"bizType" , "RT"} ,
{"lockExpirationDate","20050427"},
{"floatLoanIndicator","Y"},
{"uwFinalDecisionCode","0"},
{"uwDecisionExpiryDate","20050427"},
{"canDate","20050427"},
{"loanCloseStatusType","T"},
{"fileReceivedAtRocDate","20050221"},
{"loanReadyToFundIndicator","P"},
{"regisDate","20051221"},
{"loanSubmitToUwDate","20050427"},
{"loanNumber","0000000001"},
{"branch","TOTAL ADVANTEDGE LLC "},
{"underwritingDecisionCode","0"},
{"underwritingDecisionExpirationDate",'"20050427"},
{"lockDate","20051220"},
{"lockIndicator","Y"},
{"tmoLoanStageCode","3"},
{"tmoLoanStageDate","20050427"},
{"product","C30 "1,
{"borrowerFirstName",6". "},
{"borrowerLastName","XX "1,
{"propertyAddress","937 S MEYER "1,
{"propertyCity","TUCSON "},
{"propertyState","AZ"},
{"propertyZip","85701"}

3}
IData output = IDataFactory.create(new Object[][]{{"results", results}});
return IDataFactory.create(new Object[][]{{"getPotentialDuplicatesOutput",
output}});
b

3

webMethods Unit Test Framework Help 10.5 37

6 Mocks

Mocks beyond Unit Testing

Although Test Suite added the ability to mock service calls in Integration Server for unit testing,
the feature is so powerful that its use cannot be limited to unit testing alone. One common case is
to use the mocking capability to provide flow service instrumentation.

Using the wm.ps.serviceMock:loadMock service in the WmServiceMock package, any service can be
mocked with an alternate service or class. The new service or Java class code can invoke any
operations and then invoke the original mocked service. The mocking framework is intelligent
enough to detect recursion and, as such, provides an instrumentation capability.

Mocks can be used to design test cases. A service being tested can also itself be mocked with other
code. In such a scenario, the mocked test service can be replaced with other code that can execute
pre and post-test operations. This can provide some basic functional testing capabilities for Test
Suite.

38 webMethods Unit Test Framework Help 10.5

7 Advanced Options

B PIPEINE RO i 40
T @0 o 1] 0= U= 1 (0] = 40
T O 11T o) 1Y o Tor S = T o 40
B XPath EXPrESSIONSuuuiiiiiiiiiiiiiiiiiiti bbb abasa e bbb sbsbaessbessssssesssssssssssssnssnneees 41

webMethods Unit Test Framework Help 10.5 39

7 Advanced Options

Pipeline Filter

The execution of test cases is initiated as a client to the Integration Server hosting the services to
be tested. For this reason, the inputs supplied to the service during execution and the expected
outputs need to be serialized over the client-server interaction. If the input or output pipeline
contains non-serializable objects, these objects are either lost or seen incorrectly during test
execution. In addition, the service input needs to be more dynamic in nature than the static pipeline
setup in the test case. Pipeline Filter helps to resolve these issues.

The Pipeline Filter is set once for the entire suite and provides a callback mechanism for the test
developer to inject code that can modify various pipeline objects during execution. The Pipeline
Filter is a class that implements the com.wm.ps.test.PipelineFilter interface and enables a user to add,
remove, or change variables in the pipeline that are created from files, as pipelines created from
files may not be able to persist custom java objects. The output pipeline from a service can also be
filtered using the appropriate method. Only one such instance of the implementing class is created
for the test suite and the name of test case is passed as a parameter.

The pipeline filter can be setup for the test suite in the main panel for the suite parameters.

Comparators

Comparator provides an extension that can be used to extend, enhance, or replace the standard
comparison of expected output.

Each test suite can have its comparator that can be specified from the user interface.
Custom comparators are Java classes that implement the com.wm.ps.test.ResultsValidator interface.

Comparators also provide a mechanism to execute operations pre and post service execution.
Using comparators you can build some basic functional testing capability. For example, if a service
writes to a database table, a comparator can compare the results from the service and check the
destination table to confirm the operation executed successfully. You can also specify filters while
comparing.

Client Mock Factory

The benefit of using a mock factory object as opposed to a service is that it provides a light-weight
alternative that does not require the creation of a new service on the server.

Test Suite provides an option to dynamically push the classes needed for supporting the mock
factory on the server during test execution. This option can be used to avoid the need for frequent
restart when Java objects are changing. Once stabilized, it would be helpful to deploy the code to
the server as this feature is experimental in nature and will only work if the dependency tree is
not too complex. Using the user interface, you can set the option to dynamically push the objects
to the server.

If the option is disabled, enable the corresponding preference as discussed in the Advanced section.

40 webMethods Unit Test Framework Help 10.5

7 Advanced Options

webMethods expression JXPath equivalent

S Bereedion[lf@remeatig)]

!
L | =
idlssishy 0] LG

PosRequest/ns:Log/ns:Transaction[0]/@Flag
PosRequest/ns:Log/ns:Transaction[0]/ns:BUnit[0]/ns:ID/*body [Reyefrare

XPath Expressions

The XPath expressions used in the expected output panel are different from the usual webMethods
path expressions. As mentioned in the “Expected Output” on page 29 section, the indices start at
1 instead of the 0 based webMethods indices.

Test Suite uses JXPath for evaluating XPath expressions. For details on JXPath expressions, visit
http://commons.apache.org/jxpath/. Special characters such as '@ and "' in the name have special
meaning in JXPath expressions hence, you should use special syntax variant to use these characters
in variable name.

webMethods Unit Test Framework Help 10.5 41

http://commons.apache.org/proper/commons-jxpath/

7 Advanced Options

42

webMethods Unit Test Framework Help 10.5

8 Test Suite Internals

B TESE SUITE INTEINAIS oeniieieie e e e ettt e e e e e e e e e e e

webMethods Unit Test Framework Help 10.5

43

8 Test Suite Internals

Test Suite Internals

In Software AG Designer, test suite editor provides a user interface to graphically and quickly
develop test cases for Integration Server services. The test suite and the test cases are saved in an
XML file. The Software AG Designer editor allows editing the XML source directly, provided that
the user is aware of the format and the associated schema.

It is not recommended to edit the XML file as it is error-prone. It provides the option to automate
the creation of test cases automatically by using code to generate the XML file directly. One such
use case is the scenario where service inputs and outputs have been captured in an environment
and test cases have to be generated to use these files for regression testing.

A sample XML test suite file in its simplified form can be as shown in the figure below:

<?xml version="1.0" encoding="UTF-8"?>
<webMethodsTestSuite description=
"Sample tests for the WmServiceMockSamples implementation" name="Sample Tests">
<webMethodsTestCase description=
"Duplicate Check Success with IData results" name="Duplicate Check Success
With Results">
<mock folder="wmServiceMockSamples.data.services"
name="getPotentialDuplicates">
<pipeline filename="resources/test/data/
mockDupCheckOutputResults.xml" />

</mock>
<service folder="wmServiceMockSamples.services" name="getDuplicatelLoans">
<input>
<file filename="resources/test/data/dupCheckInput.xml"/>
</input>
<expected>

<file filename="resources/test/data/
dupCheckSuccessWithResults.xml"/>
</expected>
</service>
</webMethodsTestCase>
<webMethodsTestCase description=
"Duplicate Check Failure handled by the catch block" name="Duplicate Check
Catch Block">
<mock folder="wmServiceMockSamples.data.services"
name="getPotentialDuplicates">
<exception class="java.lang.IllegalArgumentException"
message="Bad argument"/>

</mock>
<service folder="wmServiceMockSamples.services" name="getDuplicatelLoans">
<input>
<file filename="resources/test/data/dupCheckInput.xml"/>
</input>
<expected>

<exception class="java.lang.IllegalArgumentException"
message="Bad argument"/>
</expected>
</service>
</webMethodsTestCase>
</webMethodsTestSuite>

44 webMethods Unit Test Framework Help 10.5

9 Java Unit Tests

N = V= T O o V1 A 1T (TP

webMethods Unit Test Framework Help 10.5

45

9 Java Unit Tests

Java Unit Tests

Test Suite Java API allows you to create pure JUnit test cases that can provide the same features
that a user interface driven codeless test cases do.

The change when creating a Test Suite JUnit test case from the traditional test case is that the
implementing class extends com.wm.ps.test. WmTestCase instead of junit.framework.TestCase.
com.wm.ps.test WmTestCase does extend the junit.framework.TestCase. The two important methods that
are needed for creating test cases using the java API are:

m invokeService — The method to invoke a service on the server

®m mockService — There are various variants of this method that allow the user to setup a mock
for a service on the server.

A sample JUnit test case is provided here:

package com.wm.ps.serviceMock.samples;
import com.wm.data.x;
import com.wm.ps.test.x;
public class DuplicateCheckTest extends WmTestCase
{
public void testDupCheckCatchBlock() throws Exception
{
IData 1input = IDataFactory.create(new Object[][]{
{Il'L-ienTypell, I|1I|}’
{"borrowerSSN", "111-11-1111"},
{"propertyAddress", "937 S Meyer"},
{"propertyZip", "85701"}
1)

String exceptionText = "Bad argument";
mockService ("wmServiceMockSamples.data.services",
"getPotentialDuplicates", new
IllegalArgumentException(exceptionText));
try
{
invokeService ("wmServiceMockSamples.services",
"getDuplicateLoans", 1input);
assertFalse(true); //Control getting here means failure
}
catch (Exception e)
{
assertTrue(e.getMessage() .endsWith(exceptionText));
}
}
public void testDupCheckSucessWithResults() throws Exception
{
IData 1input = IDataFactory.create(new Object[][]{
{"HenType" , ||1||} ,
{"borrowerSSN", "111-11-1111"},
{"propertyAddress", "937 S Meyer"},
{"propertyZip", "85701"}
1)

IData mockOutput =
WmTestSuiteUtils.getIDataFromFile("resources/test/data/

46 webMethods Unit Test Framework Help 10.5

9 Java Unit Tests

mockDupCheckOutputResults.xml") ;

mockService ("wmServiceMockSamples.data.services", "getPotentialDuplicates",

mockOutput) ;

IData output = invokeService("wmServiceMockSamples.services",
"getDuplicatelLoans",
input) ;

IDataCursor outCursor = output.getCursor();

IData response = IDataUtil.getIData(outCursor, "response'");

IDataCursor responseCursor = response.getCursor();

String creationTime = IDataUtil.getString(responseCursor, "@creationTime");
assertNotNull(creationTime) ;

assertEquals (28, creationTime.length());

IData[] duplicatelLoans = IDataUtil.getIDataArray(responseCursor,
"duplicatelLoans");

assertEquals(duplicatelLoans.length, 1);

webMethods Unit Test Framework Help 10.5 47

9 Java Unit Tests

48 webMethods Unit Test Framework Help 10.5

10 Executing Tests

B EXECULING TESE CASES ..ooiiiiiiiiiiiiii ettt ettt e e e e et e e e e e e e e e e e e e e nnnees
B EXECULING TESE SUIES ..ooviiiiiiiii e e e e e e e e e e e et e e e e e e e e e eraennan s
B Debugging JaVva COUEccoiiiiiiiii i e e e e e e e e e e e e e et e e eaaaeae
B CONtNUOUS INEEQIATIONuuiiiiiiiiieiiieeeieeeeeeeeeeeeeeeeeeeeeeeeeeseeseessaeseeessesssassssssesssseessnssnneseeeeees

webMethods Unit Test Framework Help 10.5

49

10 Executing Tests

Executing Test Cases

To execute test cases created with Test Suite, right click in the webMethods Tests section and select
one of the following options:

® Run Tests - executes the selected test case, using the mocks that are defined for the test case.

® RunTestwith Mocks Disabled - executes the selected test case by disabling the mocks defined
for the test case.

m Disable Test - marks test case as disabled. Tests are not executed until it is enabled again.

m Disable Mocking in Tests - marks mocks defined for selected test as disabled. Mocks are not
executed until they are enabled again.

m Add - adds another test case to the suite.
m Insert - inserts another test case to the suite after the selected test case.

B Remove - removes the selected test case from the suite.

Executing Test Suites

To execute test suites created using Test Suite, right click in the webMethods Tests section and
select one of the following options:

= Run Suite - executes the selected test suite, using the mocks that are defined for the test suite.

= Run Suite with Mocks Disabled- executes the selected test suite by disabling the mocks
de-fined for the test suite.

m Disable Suite - marks test suite as disabled. The test suite is not executed until it is enabled
again.

m Disable Mocking in Suite - marks mocks defined for this suite as disabled. Mocks are not
executed until they are enabled again.

= Shift Up or Shift Down - changes the order of test cases in the test suite by shifting the selected
test case up or down in the test suite.

Debugging Java Code

Various components in Test Suite rely on Java code.
Example: Java mock factory and pipeline filter classes.

Use the Debug menu to debug a Java code. The support library jar files also have source code
associated with them. Debugging into the source can be helpful to understand the internals of the
test execution or to enhance capabilities new features like custom comparators.

50 webMethods Unit Test Framework Help 10.5

10 Executing Tests

Continuous Integration

Software AG Designer allows you to create a Test Suite Executor project which provides a default
Ant script (run-composite-runner.xml) to start with continuous integration setup. When you
execute the Ant script, it invokes the Test Suite projects in headless mode. After the successful
execution, the script generates the test reports and code coverage reports. You can use the Jenkins
JUnit and HTML Publisher plugins to view these reports in Jenkins.

Creating a Test Suite Executor

Software AG Designer allows you to create Test Suite executor projects and execute tests in headless
mode.

Perform the following steps to create a sample test suite executor using the default files.

1. Select File>New> Test Suite Executor.

2. On the Test Suite Executor Project screen, enter the project name, folder path that contains
the test suite setup files, and the file system. You can choose to use the default values.

3. Click Finish.

Project contains default Ant build targets and properties to drive the tests.

Configuring a Test Suite Executor

Software AG Designer allows you to configure Test Suite Executor after you have successfully
created the projects.

Perform the following steps to configure a sample test suite using the default files.

1. To initiate the tests, use the ant build file, run-composite-runner.xml and ant target,
composite-runner-all-tests.

2. Modify the properties file, run-test-suites.properties to specify project locations and setting
up target Integration Server definition.

3. Specity the following properties in the run-test-suites.properties file.

Server Information

Name Description

webMethods.integrationServer.name Specifies the Integration Server host name.
For example: localhost, 127.0.0.1

webMethods.integrationServer.port Specifies the Integration Server port.

webMethods Unit Test Framework Help 10.5 51

10 Executing Tests

Name Description

For example: 5555
webMethods.integrationServer.userid Specifies the Integration Server user name.
For example: Administrator, Developer
webMethods . integrationServer.password Specifies the Integration Server user password.
For example: manage

webMethods.integrationServer.ssl Specifies the Integration Server port uses SSL
connection or normal.

For example: false or true

watt.net.proxyHost Specifies the hostname or the IP address of a
Proxy server.

For example:
watt.net.proxyHost=webcache.example.com

watt.net.proxyPort Specifies the port number of the proxy server.
The default value is 80.

For example: watt.net.proxyPort=8080

watt.net.proxyUser Specifies the name of a user account on the
proxy server.

watt.net.proxyPass Specifies the password for the username set
using watt.net.proxyUser.

watt.net.secureProxyHost Specifies the hostname or the IP address of the
proxy server to be used in SSL connections.

For example:
watt.net.secureProxyHost=webcache.example.com

watt.net.secureProxyPort Specifies the port number of a proxy server to
be used in SSL connections.

For example: watt.net.secureProxyPort=443

watt.net.secureProxyUser Specifies the name of a user account on the
proxy server.

watt.net.secureProxyPass Specifies the password for the username set
using watt.net.secureProxyUser.

http.nonProxyHosts Specifies the list of hosts that should be
accessed directly, bypassing the proxy. This

52 webMethods Unit Test Framework Help 10.5

10 Executing Tests

Name

Description

Project Information

Name

is a pattern separated by '|' character, which
can also have * for wildcards.

Any host matching one of these patterns is
accessed through direct connection, bypassing
the proxy.

For example:

httpnonProxyHosts=" foo.com |localhost |127.* | [:1]”
indicates that every host in the foo.com
domain and localhost should be accessed
directly even if a proxy server is specified.

Description

webMethods. home

webMethods.test.setup.location

Specifies the product installation location.
For example: C\:\ \ SoftwareAG

Specifies multiple project locations (absolute
directory path) in

$AbsoluteProjectLocation1,\
$AbsoluteProjectLocation2, \
$AbsoluteProjectLocation3

format. In this case, a Test Suite Executor
searches for all available and valid Test Suite
files in these directories.

For example:

C:/SoftwareAG/IntegrationServer/instances/
default/packages/SampleTestSuite,),.

C:/_gitRepo/packages/SampleTestSuitel

It executes specific and multiple Test Suite
files by specifying it in the following format:

$AbsoluteProjectLocation1;
$RelativeTestSuitePathl,\
$AbsoluteProjectLocation2;

$RelativeTestSuitePath2

webMethods Unit Test Framework Help 10.5

53

10 Executing Tests

Name

Description

For example :

C:/SoftwareAG/IntegrationServer/instances/
default/packages/
SampleTestSuite;resources/test/setup/
wmTestSuite.xml,\

C:/_gitRepo/packages/
SampleTestSuitel;resources/test/setup/
wmTestSuite.xml

webMethods . test. setup.external.classpath. layout Specifies the relative paths within the projects

webMethods.test.profile.result.location

Note:

where the required classes or jar files are
expected to be present in a Test Suite Executor
project build-classpath. For example, when
third-party libraries or Mockfactory classes
are referred from the Tests, specify the
locations where these are stored at, so that
executor can load these dependencies during
headless tests. Append the default comma
separated list if required.

Default value:

resources/test/classes,resources/java/
classes,resources/test/jars,resources/
java/jars,resources/jars

Specifies the absolute directory location where
the reports are stored.

For example:

C:/git_sources/GitRepo3/
WmTestSuiteExecutor/test/reports/

Alternatively, you can also use the ant build file run-test-suites.xml and target runall-
test. Test Suite Executor cleans and builds the projects included in target runall-test, then
searches for the TestSuites and executes. List of projects can be included within runall-test
target (under dirset contents). Reports are generated at the following default location:
$basedir/test/reports. To use runall-test, the test projects or packages has to conform to
the default project layout. Refer to the SampleTestSuite for the default project layout.

Important:

It is recommended not to customize the code coverage report resources and the Ant build
file artifacts of the Test Suite Executor project directly, Instead:

54

webMethods Unit Test Framework Help 10.5

10 Executing Tests

® Import the available Ant targets in use to any new Ant build files and reuse them, which
prevents any conflicts during the migration of the Test Suite Executor project artifacts
to the latest fixes or new releases.

m Keep the Test Suite Executor artifacts in sync with the fix or release version of the
product in use to avoid compatibility issues.

m Recreate the Test Suite Executor project in Designer, which distributes compatible
resources.

View JUnit Test Results and Code Coverage Reports

When you execute the Ant script (run-composite-runner.xml) from the Test Suite Executor project,
the build process generates the JUnit reports and code coverage reports. You can find these reports
in the folder defined by the webMethods. test.profile.result.location property in the run-test-
suites.properties file.

View JUnit reports

The Ant script invokes the headless test execution build which generates JUnit reports in XML and
HTML formats.

When the JUnit report is... Then...

XML The Ant script invokes the headless test execution build which
generates the XML report in the location as defined by the
webMethods.test.profile.result.location property in the run-
test-suites.properties file.

Use the JUnit test report extension of your continuous integration
tool to view the test report. For example, the Jenkins JUnit plugin.
This plugin provides a graphical representation of the historical
test results and a web interface to view test reports and track
failures.

HTML The Ant script invokes the headless test execution build which
creates the html folder containing a HTML report. The build
process creates the html folder in the location as defined by the
webMethods.test.profile.result.location property in the
runtest-suites.properties file.

Use a plugin supported by your continuous integration tool to
publish the test report. For example, the Jenkins HTML Publisher.

View code coverage report

The Ant script invokes the headless test execution build which generates the code coverage report
when the webMethods. test.setup.profile.mode property is set to Coverage in the run-
testsuites.properties file.

webMethods Unit Test Framework Help 10.5 55

10 Executing Tests

The build process generates the wmcodecoverage folder in the same location as defined by the
webMethods. test.profile.result.location property in the run-test-suites.properties file and
saves the code coverage report inside the wmcodecoverage folder.

To publish the code coverage report, you can use a plugin supported by your continuous integration
tool. For example, the Jenkins HTML Publisher. You can use any supported application server to
view the code coverage reports in your web browser. For example, Node]Js or Tomcat. To view
the report, you must copy the wmcodecoverage folder to the application server.

56 webMethods Unit Test Framework Help 10.5

11 Code Coverage Analysis

B RUNNING @ COVErage ANAIYSISoiiiiiiiiiiiiiii ettt e e e e e e 58
B Viewing Code Coverage ANAIYSISuuuiiiiiiieiiiieiiie e ee e e e e et e e e e e e e eaaananas 59
B Viewing Mock EVENt DELAIISuiiiiiiiiieii e e 60
B Defining the COVErage SCOPEcooeiiiii i 61
B Coverage Analysis in HEadleSS MOUEcooiiiiiiiiiiiiiiiiieeee et 62

webMethods Unit Test Framework Help 10.5 57

11 Code Coverage Analysis

Running a Coverage Analysis

Unit Test Framework allows you to record and analyze which flow steps and map actions of your
flow service(s) are executed during a particular test launch. It helps to identify untested steps and
improve the corresponding tests.

Pre-requisites:

Before running the test coverage analysis, activate the wM Code Coverage Agent. You can activate
the wM Code Coverage Agent either through Designer or Integration Server startup script or
Microservices Runtime startup script.

m Through Designer
Perform one of the following steps to activate the wM Code Coverage Agent:
® On the Package Navigator, right-click the default Integration Server instance, and select
wM Code Coverage Agent > Activate.

OR

1. In Designer, navigate to Window > Preferences > Software AG > Integration Server,
and select the default server.

2. Click wM Code Coverage Agent.

3. On the wM Code Coverage Agent Settings dialog, select Activate.

m Through the Integration Server startup script or Microservices Runtime startup script.
Perform one of the following steps to activate the wM Code Coverage Agent:
m Integration Server

m [If Integration Server launches using the Tanuki Java service wrapper in the startup
script, configure the Java agent in custom_ wrapper.cnf as follows:
wrapper .java.additional.400=-javaagent: $IntegrationServer_packages_location/WmServiceMock/
resources/int/utf-agent.jar=1log=1level=INFO.

Replace $IntegrationServer_packages_location with the absolute path of Integration
Server packages.

Note:

Software AG recommends that any new custom properties added to
custom_wrapper.conf be assigned a number of 400 or higher to prevent conflicts
with properties added by Software AG.

m [fIntegration Server launches without using a wrapper, configure the Java agent settings
in the Integration Server_directory/bin/setenv.bat(sh) file as follows:
JAVA_OPTS="-javaagent: S$IntegrationServer_packages_location /WmServiceMock
/resources/int/utf-agent.jar=1log=level=INFO".

58 webMethods Unit Test Framework Help 10.5

11 Code Coverage Analysis

Replace $IntegrationServer_packages_location with the absolute path of Integration
Server packages.

®m Microservices Runtime

If Microservices Runtime launches using the startup script, configure the Java agent settings
in the Integration Server_directory/bin/setenv.bat(sh) file as follows:

B PROFILER_ENABLED=false

B JAVA_PROFILER_OPTS="-javaagent: $IntegrationServer_packages_location
/WmServiceMock/resources/int/utf-agent.jar=1log=1level=INFO".

Replace $IntegrationServer_packages_location with the absolute path of Integration
Server packages.

To run a test coverage analysis

1. In the webMethods Tests section, right click and select WM Code Coverage Tools.

2. Select one of the following:

®m Run Suite: executes the selected test suite.
®m Run Suite with Mocks disabled: executes the selected test suite with Mocks disabled.
®m Run Tests: executes the selected test case.
®m Run Tests with Mocks disabled: executes the selected test case with Mocks disabled.

The test or suite coverage analysis appear as a graphical data under the wM Code Coverage
view.

You can generate code coverage reports using the default maximum memory size specified in
Integration Server. This report effectively handles the Test Suite containing more number of lines
of code and test cases for a service. If a service comprises an exceptionally high number of lines
of code or tests executed in a single test execution session, Integration Server must upgrade the
default maximum memory size.

Viewing Code Coverage Analysis

After you run the test, wM Code Coverage view displays a detailed coverage report of the test
session.

The tested flow steps and map actions or Services appear in green and the untested flow steps
and map actions appear in red.

To view the code coverage analysis

1. On the wM Code Coverage view, perform one of the following:

webMethods Unit Test Framework Help 10.5 59

11 Code Coverage Analysis

Click...

To..

Full Packages View

Service Level View

Execution Model View

Exclude System
Packages

Show All Entries

Hide Missed Entries

Hide Covered Entries

Represent elements under the corresponding Packages and Service
namespace. This View provides detailed coverage analysis of the flow
steps and map actions of all the individual service(s) under test in the
test suite.

Represent only Invoked Services as elements under corresponding
Packages. This view provides the coverage analysis of only the services
invoked during the test case or test suite execution.

Exclude System Packages:
Hides all the Integration Server Core Packages from the Report.

Represent elements based on invocation hierarchy. This View provides
individual test coverage analysis of the flow steps and map actions
of the individual service(s) involved in the test case.

Hides all the Integration Server Core Packages from the Report. This
option is selected by default and depends on Service Level View.

Displays full coverage details.

This is default selection.

Hides the untested parts of test coverage
This does not effect the Coverage percentage.
Hides the tested parts of test coverage.

This does not effect the Coverage percentage.

Viewing Mock Event Details

After you run the test, wM Code Coverage view displays the details of all the mock events during
the test execution session. This view highlights the list of the mocked services, mock types, test

case name, and the result.

To view the mock event details

1. On the wM Code Coverage view, select the Mock Events View from the drop-down menu

item.

Note:

= The Full Packages View and the Service Level View highlights the specific services
if pipeline, exception or factory type of mocking is detected. The views also show the
number of times a particular service is mocked.

m The Execution Model View highlights the services that contains service type of the
mocking. Here, the view renders the mock service details in the execution chain instead

60

webMethods Unit Test Framework Help 10.5

11 Code Coverage Analysis

of the mocked service. The view also shows the details of the actual service that is
mocked.

Defining the Coverage Scope

Unit Test Framework allows you to edit and redefine the scope of a test coverage session. To
achieve this, you can edit an existing launch configuration or create one. You can select packages
that you want to include under the coverage purview. Flow elements and services belonging to
the selected packages determine the coverage percentage.

To create a launch configuration

1. In the webMethods Tests section, right click and select wM Code Coverage Tools.
2. Click Code Coverage Launch Configurations....

3. On the Code Coverage Launch Configurations box, select wM Code Coverage and click to
add a new launch configuration.

4. Enter a name in the Name field and a project name in Project field.

5. On the Test tab, enter the following information:

Field Description

Project Specifies the project name for..... You can click Browse... to select
from the

Test Suite Specifies the test suite path. You can click Search... to select from a

list of valid test suite files in the specified Project.

Test Method Optional. Specifies the test name. You can click Search... to fetch the
list of tests from the specified test suite. If this field is left blank, all
the tests are selected.

6. On the Project Filter tab, perform the following

Field Description

Server Node Specifies the server node name. You can select the Default server node
to list all the available packages from the server.

Profiler Scope Defines the scope of coverage analysis for the launch. You can select
the required packages from the list.

7. Click wM Code Coverage Tools.

The coverage analysis appear as a graphical data under the wM Code Coverage view.

webMethods Unit Test Framework Help 10.5 61

11 Code Coverage Analysis

Coverage Analysis in Headless Mode

Test Suite Executor (see “Creating a Test Suite Executor” on page 51) provides the Ant build file
run-composite-runner.xml with necessary tasks and properties to start a test. Use the task
composite-runner-all-tests for headless test execution to generate code coverage analysis report.

Specity the following properties:

Name Description

webMethods.test.setup.profile.mode Set to Coverage to generate coverage
report. Set to None for regular test
execution.

webMethods. test.scope.packages Specifies the list of comma separated target

Integration Server package names. This
Defines the full scope for the coverage
analysis and percentage calculation.

Example:
SampleTestSuite,SampleTestSuitel

webMethods. test . profile. result. includeExecutionModelReport Set to true to generate the Execution Model
code coverage report.

Set to false (default) to generate the regular
code coverage report.

webMethods. test. profile. result.includeServicelevelReport Set to true to generate the Service Level
code coverage report.

Set to false (default) to generate the regular
code coverage report.

62 webMethods Unit Test Framework Help 10.5

12 Service Usage

B VWMSEIVICEMOCK SEIVICES ...ieniee ittt ettt e e e e e e e e e e e e e e raanaes 64
I o CY (S (<Y g [o <Y PR 65
webMethods Unit Test Framework Help 10.5 63

12 Service Usage

WmServiceMock Services

The services in the WmServiceMock package deal with the mocking aspects of testing. These
services provide a way to enable or disable mocks for individual services or server-wide.

wm.ps.serviceMock:loadMock

Sets up mocking for a service.

Inputs scope session, user, or server. The default is session.

service The name of the service to be mocked. No validation is performed on the
name of the server or its existence.

mockObject The mockObject is an object type. The behavior of the mock is controlled
by the type of the actual object.

Inputs java.lang.String The name of the
alternate service to
mock the mocked
service with.

java.lang.Exception The exception to be
thrown for the
mocked service.

com.wm.data.IData The fixed pipeline to
return for the mocked
service

com.wm.ps.serviceMock.MockDataFactory The implementation
of the factory objects

that creates the
dynamic pipeline for
the mocked service.

parms Optional document containing all extra parameters for the alternate
service. This parameter is only needed when mocking a service with an
alternate service and the alternate service needs additional inputs.

Outputs None

wm.ps.serviceMock:clearMock

Removes mocking for a service.

Inputs scope session, user or server. The default is session.

service ~ The name of the service to be mocked. No validation is performed on the
name of the server or its existence.

64 webMethods Unit Test Framework Help 10.5

12 Service Usage

wm.ps.serviceMock:clearMock

Outputs None

wm.ps.serviceMock:clearAllMocks

Removes mocking for all services.

Inputs None

Outputs None

wm.ps.serviceMock:suspendMocks

Suspends mocking for all services.

Inputs None

Outputs None

wm.ps.serviceMock:resumeMocks

Resumes mocking for all services, for which it was suspended.

Inputs None

Outputs None

wm.ps.serviceMock:getMockedServices

Retrieves the list of services that are currently mocked in all the scopes.

Inputs None

Outputs mockedServices The list of services that are currently mocked in the session,
user, Or server scope.

References

m Javadoc API Reference - The javadoc reference for the Test Suite java API. This is useful for
advanced Test Suite features as well as creating pure java unit tests for Integration Server
services.

m |XPath— Documentation for JXPath API

webMethods Unit Test Framework Help 10.5 65

http://commons.apache.org/proper/commons-jxpath/

12 Service Usage

66

webMethods Unit Test Framework Help 10.5

	Table of Contents
	About this Guide
	Document ​Conventions

	1 Unit ​Test ​Framework
	Overview
	Terms ​and ​Concepts
	Capabilities
	Server ​Definition
	Environment
	What ​it ​is ​not

	2 Working ​with ​Unit ​Test ​Framework
	Opening ​the ​Unit ​Test ​Framework ​Perspective
	Layout
	Test ​Suite ​Preferences

	3 Creating ​a ​Test ​Suite
	Before ​You ​Begin
	To ​Create ​a ​Test ​Suite
	Creating ​a ​Sample ​Test ​Suite

	4 Adding ​Test ​Cases
	Adding ​a ​Test ​Case
	Test ​Details
	Service ​Details
	Inputs
	Expected ​Output
	Output ​Comparison

	5 Generating ​Tests
	Generating ​Tests ​Suites ​using ​Service ​Execution ​Results

	6 Mocks
	Using ​Mocks
	Sample ​Mock ​Factory
	Mocks ​beyond ​Unit ​Testing

	7 Advanced ​Options
	Pipeline ​Filter
	Comparators
	Client ​Mock ​Factory
	XPath ​Expressions

	8 Test ​Suite ​Internals
	Test ​Suite ​Internals

	9 Java ​Unit ​Tests
	Java ​Unit ​Tests

	10 Executing ​Tests
	Executing ​Test ​Cases
	Executing ​Test ​Suites
	Debugging ​Java ​Code
	Continuous ​Integration

	11 Code ​Coverage ​Analysis
	Running ​a ​Coverage ​Analysis
	Viewing ​Code ​Coverage ​Analysis
	Viewing ​Mock ​Event ​Details
	Defining ​the ​Coverage ​Scope
	Coverage ​Analysis ​in ​Headless ​Mode

	12 Service ​Usage
	WmServiceMock ​Services
	References

