

1 ©2016 Software AG. All rights reserved.

TESTING

Version 0.1 | 25.07.2016

 – Testing

2 ©2016 Software AG. All rights reserved.

TABLE OF CONTENTS

1 Introduction 4

2 Types of testing 4

2.1 Functional 4

2.1.1 Recommendations 4

2.2 Performance 5

2.2.1 Recommendations 5

2.3 Smoke 6

2.3.1 Recommendations 7

2.4 Soak 7

2.4.1 Recommendations 7

2.5 Stress 7

2.5.1 Recommendations 8

2.6 Fail over 8

2.6.1 Recommendations 8

2.7 Backup/restore/archive/purge 9

2.7.1 Recommendations 10

2.8 Throughput 10

2.8.1 Recommendations 10

2.9 Security 11

 – Testing

3 ©2016 Software AG. All rights reserved.

2.9.1 Recommendations 11

2.10 Other 11

2.10.1 Intrusion 11

2.10.2 Accessibility 11

2.10.3 HCI 12

3 Scope of testing 12

3.1.1 Recommendations 12

4 Environment requirements 12

4.1.1 Recommendations 13

5 Testing methodology 13

5.1.1 Recommendations 14

6 How to measure 14

6.1 Metrics 14

6.1.1 Recommendations 15

6.2 Tools 16

7 The importance of test data 16

7.1 Volume 16

7.2 Error rate 17

8 Conclusions 17

 – Testing

4 ©2016 Software AG. All rights reserved.

1 Introduction

The goal of testing is to ensure that the application or environment under test will behave as designed and

in a predictable manner, through all phases of the Production life-cycle.

Functional testing is commonly performed on enterprise software, whereas other types of testing are often

either not given the appropriate time and resources to execute them properly, or are totally neglected; a

good example of the latter being testing restoring the environment after a backup.

Some types of testing, such as performance and security, require specialist knowledge, which is often not

available within a small organization.

This document will describe many of the different test types and some of the recommendations involved in

carrying out these tests.

2 Types of testing

2.1 Functional

The goal of functional testing is to ensure that the mechanical aspects of the application work as designed.

It is usually organized and led by the QA team, in the QA environment, and will often employ end users to

do the testing. The tests are generated from the ‘Function Specification’ documents and are designed to

execute every path through the application.

Complete functional testing should not only test the ‘happy path’ through the application, but also the error

and ‘edge’ cases; something that is often skipped.

The QA environment is often a scaled down version of the production environment, without high availability

and in many cases on a lower class of machines. Otherwise, the architecture of the environment used to

test the application should be functionally similar..

2.1.1 Recommendations

 Developers often use ‘Use Cases’ to create the application. Leverage these as the input

for your functional tests.

 – Testing

5 ©2016 Software AG. All rights reserved.

 If there are no Use Cases, create them from the functional specifications. Use cases can

be just a small snippet of functionality, or functions that span a complete activity. You can

also join smaller Use Cases together to create a larger Use Case.

 Functional testing is not only used for UI driven applications; All applications should go

through a functional testing phase.

2.2 Performance

Performance testing is intended to prove that the application, once in Production, will meet stated

performance goals, ideally defined as Service Level Agreements (SLAs).

The Performance test environment must behave identically to the Production environment and thus is

usually designed to be identical. In cases where the performance environment is not the same as

Production, maybe due to budgetary constraints linked to the scale of the Production environment, special

care must be taken to prove that the results of the performance tests are valid.

 Needs to be based on strictly defined SLAs, not vague generalizations

 End user network speed and latency may come into play

 Are there higher performance options available

 Network interfaces

 Caching

 SSD

 MWS and UM

 Effects of encryption on performance

 If possible measure without

2.2.1 Recommendations

 Test on an identical system to that which will be deployed in Production. This includes the

number of servers in a cluster, load balancers, database size, network interfaces, storage

and many more factors.

 Anything but the simplest performance testing probably requires specialist knowledge.

This knowledge includes the application, network, storage, database and testing

techniques, to name a few; oftentimes there is nobody on the team with complete

knowledge of all the required aspects, so it is important to build the extended performance

testing team from subject matter experts (SMEs) drawn from other parts of the

organization.

 – Testing

6 ©2016 Software AG. All rights reserved.

 When a performance problem is found, break the application into small pieces and

performance test each piece separately.

 Take note of whether the results are within a narrow band, and consistent, or whether

there is a wide variation in values. Focus on making the variations as small as possible

before moving on to the next snippet.

 The lowest values you can achieve from each snippet can be added together to give you

the best case scenario.

 The worst case scenario can be approximated by summing the longest times.

 Read section 7, The importance of test data.

 Performance goals must be quantifiable and measurable.

 Understand the limitations of infrastructure elements, such as network and disk interfaces.

 Understand how any products use the infrastructure: for instance, a cluster of Universal

Messaging servers share their state across the network, as does the Task Engine.

 Use strict change control to ensure that a record is kept of any changes. There is nothing

worst that making ad-hoc modifications to the system, but getting worst results, then

finding that you cannot reproduce the previous, better, results.

 Ensure that a record is kept of all system settings, application and product parameters.

Log any changes made to these in the change log.

 Consider all factors when trying to track down a problem, for instance, is the use of

encryption slowing the system.

 Tune the JVM before running any performance tests on the application.

 When testing a UI driven application, remember to take the fact that the user’s client

machine, and the network to that machine, may be sub-optimal into account.

 Build Test Cases from developer or QA Use Cases. As with Use Cases, multiple Test

Cases can be joined to make a more complex test

2.3 Smoke

In the U.S., a Smoke test is a very simple test of passing a few transactions through the system and

checking that everything works (i.e., no smoke appears).

In other areas of the world it sometimes means the same as a Stress test (load the system until it starts to

smoke).

Smoke tests can be end to end, or just a small portion of the system; for example, a section of code that

has been changed.

 – Testing

7 ©2016 Software AG. All rights reserved.

2.3.1 Recommendations

 These tests must use reasonably realistic data sets.

2.4 Soak

A soak test extends the time of normal tests to prove that the system will be stable over long periods of

time. Sometimes a reasonably heavy load is applied for the duration, other more sophisticated tests will

vary the load over the time period as may be expected in real life.

A soak test should be an end-to-end test of the whole application, including any maintenance that is

normally performed while the system is running, such as live backups or data synchronization. If reports

are run on the system at night, then include these runs in the test scenario.

Soak tests are not usually shorter than 4 hours, often 8 hours to simulate a work day, but can extend to a

week or more.

What you are looking for in a soak test is a depletion of resources that either results in failure of all or part

of the system, or a gradual decrease in performance. A decrease in performance may indicate database

tables which are not correctly indexed, garbage collection thrashing or many other woes.

2.4.1 Recommendations

 It is important to include these tests as part of the schedule, with sufficient time to retest if

the system fails.

 After the test, continue to monitor the system to see how long it takes for all the used

resources to be released.

 It is best to test with normal volumes, or anticipated peak sustained volumes.



2.5 Stress

When stress testing you are measuring what happens when the system, or part of it, are subjected to

extreme load. The goal is to take the system to the point of failure. By doing this we can identify the

weakest links in the system.

 – Testing

8 ©2016 Software AG. All rights reserved.

When in Production, we can then monitor the weak links for signs that they are getting near to failure and

take action to prevent it. If the point at which a component fails is close to normal operating volumes the

information can be used to improve the performance of that component – be aware, once this is done it will

move the failure point somewhere else.

An important part of a stress test is to find out how the system moves into failure. Is it gradual or

catastrophic; and most importantly, is it predictable?

2.5.1 Recommendations

 Stress testing should be combined with, or driven by the volumes produced in Fail Over

testing; e.g. in failing one node in a two node system, the load on the remaining node will

double. It should be a joint IT/Business decision as to how many nodes may fail without

affecting overall performance.

 Do not just put a normal heavy load on a system and call it stress testing.

2.6 Fail over

Fail over tests check the resilience of the system to full or partial failures of components. The scope can be

as small as losing a single server out of a large cluster, to losing an entire data center. Fail over tests

should anticipate different types of system failure, from systems which are still ‘alive’, but unable to process

data, to systems that are totally unavailable. Ideally all possible combinations of system failure should be

tested, but in a complex environment this is impossible. In these cases one should test the most likely

combinations, possibly based on previous experience of real life failures.

An important element in failure testing is not just that the remaining systems continue to work, but that the

load from the failed system(s) can be transferred to the working systems without impacting performance. In

a multi-node cluster a decision must be made as to how many nodes are allowed to fail before

performance is impacted. Conversely, tests can be executed to discover at what point a failing cluster

begins to affect performance. This is useful when defining maintenance procedures, as it will also show

how many nodes can be intentionally be taken out of service; for example, when doing a rolling upgrade.

2.6.1 Recommendations

 Define a minimum acceptable level of service.

 This may change depending upon business conditions (e.g. weekends vs busy times).

 – Testing

9 ©2016 Software AG. All rights reserved.

 Establish how many servers can fail, while still keeping within the level of service.

 Discover at what point a partial system will fail to keep up with transaction processing and

start to back up, or lose transactions.

 Discover which elements have most impact if they fail.

 Discover which components lose, or buffer data when they fail without being able to

transfer these data to a working node.

 Calculate, or establish through testing, the minimum number of nodes required to handle

full load

 Make sure that people understand that when architecting for resilience, the servers under

normal conditions will be underutilized.

 Do not forget that systems do not run well at 100% utilization. In a 2 node system average

resource utilization should be at 45% or less on each server; so that if one node fails and

the load is shifted to the remaining server the resource utilization will be less than 100%.

 It is not only CPU utilization that we have to worry about when transferring load from a

failed component. It is very likely that all resources on the remaining servers will be

impacted in some way; CPU, disk I/O, network bandwidth, threads, connection pools, to

name a few.

2.7 Backup/restore/archive/purge

These elements, in practice, are rarely tested, although they are essential to the long term health of a

system.

It is true that most organizations would consider backing up file systems and databases to be part of their

normal regime, but how many times do they check that restoring these backups actually result in a working

and consistent system?

Archiving and purging of data is also often required to ensure optimal performance. Exercising these

functions to ensure that they not only work, but that they can complete within a defined maintenance widow

is also important. All too often these functions are not attempted until so much data has accumulated that

performance is severely impacted. By this time there may be so much data to archive/purge that the

purging process cannot keep up with the data which is being added on a daily basis.

 Does a restore recreate a functional system?

 Use of restore for resetting test environment

 Can a backup be created in the available maintenance window

 How long does it take to do a restore

 Are there any manual steps

 – Testing

10 ©2016 Software AG. All rights reserved.

 What about inflight data

 What about archiving

 Crosses over into DevOps

 When does the volume of stored data start to affect performance

2.7.1 Recommendations

 Test both the backup and restore processes

 Test data archive/purge processes

 Use proper data

 Check whether additional, temporary indexes would help with archive/purge

2.8 Throughput

Throughput testing ensures that normal, expected, peak business loads can be processed comfortably by

the system. Not all business cases have the requirement that all transactions are handled immediately,

some systems are designed to intentionally buffer peak loads in order to spread the load out over a period

of time.

 Note that throughput, soak and stress testing are different

 Projected volumes

 Limits

2.8.1 Recommendations

 Understand the expectations of the business, whether real-time, or load spreading is the

norm. This will often hinge on SLAs the business has defined with its end users.

 Different types of peaks occur, usually following the business cycle. For instance, Fridays

can be busy as people try to wrap up the incomplete work of that week; end of quarter and

end of year may have different load profiles. Make sure that all valid profiles are

considered.

 If possible, ensure that automated testing tools have the ability to adjust the load over the

duration of a test to match the anticipated load profile.

 If maintenance procedures overlap with (hopefully light) business use, also check that the

system will perform to requirements with these two functions running in parallel.

 – Testing

11 ©2016 Software AG. All rights reserved.

2.9 Security

Added layers of complexity, such as SSL, can negatively impact performance. They can also necessitate

more round trips between different servers to perform the same functions as a system without these types

of security.

2.9.1 Recommendations

 Testing a system without target security implementations in place can be considered, at

best, a smoke test. All realistic testing, whether for performance, or functional reasons

must be performed with the appropriate security in place.

 It is often necessary to involve people who understand how to implement and diagnose

problems with security. Do not assume that the testing team is knowledgeable in the

subject.

 Different security certificates may be required for the testing system, with the correct chain

of trust.

2.10 Other

There are many other types of testing, of which the main ones that come to mind are intrusion, accessibility

and HCI (Human Computer Interface).

2.10.1 Intrusion

For highly secure applications, such as in the finance and military realms, protecting data from

unauthorized access is critical, but don’t discount this type of check for even basic applications. For the

most sensitive systems 3rd party verification of the end to end environment may be required. Unless you

have experience in this field it is better to let the experts handle it.

2.10.2 Accessibility

Accessibility deals with ensuring that the application can be used by people with impairments, or those

who work in other languages. For some (especially government) applications, these are requirements

which have to be met. For other applications it is a courtesy to your user base.

 – Testing

12 ©2016 Software AG. All rights reserved.

2.10.3 HCI

Users of your application may not always be local to your servers, running the latest and greatest hardware

or software, or viewing the results on large screen monitors. If appropriate make sure that your testing is

run using similar end systems to those that your end users have. Often there are many different devices;

the use of tablets and even smartphones for accessing applications is becoming commonplace, alongside

the more traditional monitor. Make sure that screen layouts and amount of data rendered is appropriate for

all devices.

3 Scope of testing

As mentioned earlier, end to end testing should not be the first thing that you attempt. It is much better to

start small and work up. Understanding the behavior of different modules will also enable you to

understand where problems may lay in the larger system. For instance, if the best achievable time for a

database call is 10 seconds when executed at the module level, it will not magically become 5 seconds

when running an end to end test. It is possible to calculate best case end to end performance figures by

taking the best case times from each module and summing them. The same applies to worst case

numbers.

3.1.1 Recommendations

 As the scope increases, other expertise may be required to both run the tests and

understand the results, such as database, or load balancer experts.

 Start small with modular testing, then combine modules into larger groups until you are

eventually running end to end tests.

 Make sure that the most comprehensive tests include external factors, such as 3rd parties,

or dependent systems provided by other parts of your organization. In the event that this

is impossible, stubs must be introduced to the test harnesses that can faithfully reproduce

the behavior of the external systems, and are also able to supply or consume the

expected peak loads.

4 Environment requirements

Test environments and their complexity are very dependent upon the scope of the tests. It is common to

execute modular and functional tests on scaled down environments, whereas end to end performance

should be on a mirror of the production environment.

 – Testing

13 ©2016 Software AG. All rights reserved.

Always aim to run tests on an environment which is sufficient for, or better than, that required for that

particular part of the test plan.

An environment to support comprehensive testing of a large system will be very expensive; it is likely that

many reasons will be given why scaled down systems should suffice. If the proper systems cannot be

acquired, it is essential that you are able to convey to the system owners what additional risks this

introduces.

4.1.1 Recommendations

 Use the correct environment for the task at hand.

 Look for potential risks and communicate them

 Document the environment and configuration parameters in case the tests need to be

repeated at a later date.

 In a brand new project consider using the ‘real’ production environment to run your

performance tests.

 For end to end testing consider that the environment may extend outside of your local

application realm.

 For high availability testing more than one data center may be involved.

5 Testing methodology

To be valuable, testing must be accurate, comprehensible and repeatable. There are many testing

methodologies, just as there are many development methodologies, the important thing is to choose one

and stick with it; otherwise comparing results from different test runs is very difficult, or impossible.

One of the main things that will help with this goal is automation, both in setting up the environment and

running the tests. Ideally, installation of the environment is running one or more scripts, which do

everything from installing the products, to configuring them. In this way you can ensure that if you have to

rebuild the environment it can be easily reproduced. This may be important if after many changes you

cannot replicate previous results. A product such as Command Central can definitely help. We have used

CC to set up large, 24 node, clusters with almost the push of a single button.

As with the environment setup, performance testing should also be fully automated. In this way results

from previous testing runs may be directly compared.

Tools are available for automating functional and other types of testing, although the cost benefit ratio may

not be as high.

It is important to understand, and have agreement on, the scope of influence you have on the overall

project. Project go-live dates are usually set without regard for whether the testing is successful or not.

What would happen if you cannot prove that the system can meet the required SLAs before the go live

 – Testing

14 ©2016 Software AG. All rights reserved.

date? What if you can prove that the system does not meet the SLAs? Are you able to stop the system

going into production, or is your input only advisory? These are decisions that are best made before testing

is started.

5.1.1 Recommendations

 Automate

 Automate

 Automate

 Make detailed change control an integral part of your process

 Test reports should contain detailed specifications of both hardware and software

configuration for that specific test.

 Archive the environment setup and test scripts in case they are needed later.

6 How to measure

Metrics are the cornerstone of any testing process. If the correct metrics are not available it may be

impossible to prove your test case. The test case itself should define the target goal and the metrics

required to prove compliance to this goal. A common mistake is to base your testing on metrics that you

have, rather than the metrics that you need.

There is a balance to be made when collecting metrics. Often collection of the metrics can affect the

results themselves. Consider a profiling tool. When collecting the data the tool has to interrogate many

areas of the code, which all takes CPU cycles, which on a heavily loaded CPU will make fewer cycles

available to do useful work, thus slowing down the application.

With this in mind, care should be taken to not ‘over instrument’ an application; this includes setting the

logging level too high.

Don’t forget that diagnostics and performance measurements are two different things, just as rehearsal

and performance are for a musician. When diagnosing problems you want the maximum amount of

information that will allow you to identify the cause, at the expense of affecting the performance. However,

when performance testing you should keep the metrics as lightweight as possible. Keep in mind that the

metrics that you choose for performance testing should also be part of the production monitoring metrics,

as these will show when production is under stress.

6.1 Metrics

 – Testing

15 ©2016 Software AG. All rights reserved.

The actual metrics you collect will change dependent on what you are trying to prove. You may need

metrics that are not available by default and you will have to either find a way to instrument the system to

provide these, or use existing metrics in combination to generate them.

Don’t forget that many metrics you will need are not all SAG product based. The operating system, storage

systems, databases and many other external sources may need to be part of your dataset.

Be careful that you understand both what the metric is telling you, as well as any possible limitations with

the collected data. For instance, CPU load statistics in a VM may only be showing you the resources used

by that VM. Your application may only be using 20% of CPU, whereas another VM may be using 80% of

the raw hardware power. The reason that your CPU is showing 20% utilization is that it can’t get any more

CPU cycles, not because it is lightly loaded. Monitoring the physical hardware that hosts the VMs can

show you things like this.

When collecting metrics there are 3 values you should be interested in, maximum, minimum and mean. As

described earlier, when measuring response times, the min and max will help you establish best and worst

possible times; but they will also show you the amount of variability in your responses. The goal should be

to reduce the amount of variance as much as possible.

In some cases neither the product, nor external tools can provide a needed metric. In this case one of your

only options may be to insert some code in your application that will write an entry to the logs.

Log files can also be useful in other cases. MWS writes a timestamp in the log for each http request, along

with the request details. These can be used to make ad-hoc measurements across different functions by

subtracting the timestamps. When using timestamps be careful when comparing across servers, as the

timestamps are probably not synchronized.

6.1.1 Recommendations

 Do not rely on one test run for your results. Make several runs and evaluate your entire

result set

 If an individual set of test run results feel wrong, they probably are wrong. Explore why.

 Repeatability is key

 More complex test scenarios are more difficult to understand. Simple is often better.

 Your job in testing is to prove that you cannot make the system fail the test, not to prove

that it can pass the test. Don’t look the other way if you see a potential problem; it will be

the first one they find when you put the system into production.

 Ensure that you actually understand what the test results are telling you.

 Testing is an iterative task; test, tune/fix, repeat.

 Change one thing at a time.

 Use change management. Nothing is worse than not being able to reproduce that stellar

result at a later date.

 Use modular optimization before attempting to optimize a complex system

 – Testing

16 ©2016 Software AG. All rights reserved.

6.2 Tools

There is no ‘one tool’ that will collect all the metrics you need. Some products are better than others at

providing information; for instance, MWS makes a huge amount of information available through its JMX

interface. Integrating collection tools with automated testing systems can also sometimes be a challenge.

Testing tools such as Load Runner and Silk Performer can be found at many customers, but they are

expensive for very large deployments. In these cases a combination of different tools can be used. In one

engagement, where we were testing response times for 15,000 end users, we used 3,000 highly

instrumented users for the main metrics, 10,000 cheaper licenses for a broad brush monitoring approach

and 2,000 users driven through JMeter just to add the required load. This approach worked well.

When using tools to create load it is important to also monitor the machines which are creating the load to

ensure that you are not running out of resources there, and consequently artificially throttling the potential

peak load.

In addition to tools to drive load, you will need tools to collect the metrics. These will change, dependent

upon your test cases, but include:

 vmstat

 top

 iostat

 Windows performance tools

 Virtual machine monitoring tools

 Database monitoring tools

 Tools internal to the SAG product stack

 … and many more

7 The importance of test data

Without proper test data, test results can be considered dubious at best.

Ideal test data would match the volume, diversity, content and error rate of production data. We will look at

each of these aspects.

7.1 Volume

Volume is particularly important when conducting performance tests. Resubmitting data part way through a

test can cause databases, or browsers to use cached information, which will be accessed faster than if the

data has to be read from other data stores. For long running tests this can be a challenge.

 – Testing

17 ©2016 Software AG. All rights reserved.

If possible use redacted production data, i.e. production data with any ‘sensitive’ fields, such as account

numbers, or government issued ID numbers, replaced with a random string; while taking into account the

next section on ‘Diversity’ of data.

7.2 Error rate

 Unrealistic data proves nothing

 Base data on type of testing

 Performance testing should use a typical mix of data as would be seen in a

production environment

 Stress testing may use worst case data

 Large messages

 Include erroneous data

 In real life proportions

 Steps for establishing and executing a test plan

 What type of testing

 End goals or SLAs

 Audience for results

 Environment required

 Expertise required

 Test cases

 Metrics to prove test cases

 Data required

 Tools required

 Test harness

 Run tests

 Sanity check results

8 Conclusions

Testing covers many different aspects of the business system life-cycle.

The reason that we test is to reduce business risk. Identifying these risks allows us to reduce as many of

them as is practically possible. But eliminating all risks is not possible, so it is important, at the conclusion

of any type of testing, to flag the remaining known risks to the system owners, so that they are aware of

which risks remain.

 – Testing

18 ©2016 Software AG. All rights reserved.

ABOUT SOFTWARE AG

The digital transformation is changing enterprise IT landscapes from inflexible application silos to modern software platform-driven IT architectures which

deliver the openness, speed and agility needed to enable the digital real-time enterprise. Software AG offers the first end-to-end Digital Business

Platform, based on open standards, with integration, process management, in-memory data, adaptive application development, real-time analytics and

enterprise architecture management as core building blocks. The modular platform allows users to develop the next generation of application systems to

build their digital future, today. With over 45 years of customer-centric innovation, Software AG is ranked as a leader in many innovative and digital

technology categories. Learn more at www.SoftwareAG.com.

© 2016 Software AG. All rights reserved. Software AG and all Software AG products are either trademarks or registered trademarks of Software AG.

Other product and company names mentioned herein may be the trademarks of their respective owners

1 ©2019 Software AG. All rights reserved.

WEBMETHODS SUITE UPGRADE
TESTING

PERFORMED BY

SOFTWARE AG SUITE INTEGRATION QA

2 ©2019 Software AG. All rights reserved.

CONTENTS

1 Introduction 3

2 Types of Upgrade Testing in SIQA 3

2.1 Promotion Testing 3

2.1.1 Types of Verification 3

2.1.2 Supported paths 4

2.1.3 Environment 4

2.2 Platform Testing 5

2.3 Upgrade Guide Verification testing Error! Bookmark not defined.

3 SIQA Upgrade Test Bed 6

3.1 Test Bed 6

3.1.1 Test Bed overview 6

3.1.2 Source of Test Bed 7

3.2 Upgrade procedure 7

3.2.1 Source Data 9

3.2.2 Executing Test Bed Scenarios 9

4 Customer Support Error! Bookmark not defined.

5 Future Roadmap Error! Bookmark not defined.

3 ©2019 Software AG. All rights reserved.

1 Introduction

Upgrading is the process of replacing a product with a newer version of the same product to bring the

system up to date or to improve its characteristics. Upgrade allows the customer to move to the latest

and stable version of the product and leverage on the new and improved features.

Suite Integration QA team performs the upgrade testing of the entire suite. The validation covers all the

supported paths and most of the supported platforms.

The document illustrates the comprehensive practices involved during the entire course of

upgrade/migrate testing carried out by SIQA for different versions of products.

2 Types of Upgrade Testing in SIQA

2.1 Promotion Testing

2.1.1 Types of Verification

Upgrade testing is performed regularly as part of the promotion process. SIQA has been testing the

upgrade since 9.5 release. The complete promotion testing is automated. The following are executed as

part of the Upgrade Testing,

Figure 1: Types of Testing

 Database: Verifying data is not lost/corrupted after migration to the newer version.

 Migration Utility: Verifying the logs of migration utilities provided by the products and making

sure that there is no error in the process of file system migration

 Configurations: Verifying configurations migrated to new version.

Types of
verification

Database Migration
Utility Configurations Assets Integration New

Features

4 ©2019 Software AG. All rights reserved.

 Assets: Build assets in the source environment. Verifying that assets in the source are migrated

completely and reliably to the new version.

 Integration: Building complex E2E Integration scenarios involving multiple products in the source

environment. Verifying the scenarios in the newer version after migration

 New Features: Verifying new features of the newer version.

2.1.2 Supported paths

SIQA tests upgrade of all supported direct paths to the latest release. Refer to

https://documentation.softwareag.com/ and search on “supported paths” in the left search box.

2.1.3 Environment

The following environments are upgraded and verified,

 Clustered Environment (MWS, IS and UM are in cluster)

 Product X = Other products

Figure 2: Clustered Migration

5 ©2019 Software AG. All rights reserved.

 Single Node Environment

Figure 3: Single Node Migration

2.2 Platform Testing

SIQA tests the upgrade in different platforms. Automated test bench and Manual Testing is covered in

platform testing. For AIX and Solaris, the migration is carried out manually and using Migration utility

Platforms covered are,

 Windows Server 2016,

 Linux RHEL7,

 AIX and

 Solaris

6 ©2019 Software AG. All rights reserved.

The below table summarizes the platform, environment and Database types tested in the SIQA Upgrade

Testing suite for directly supported upgrade paths to the latest release,

Platform
Database
Type

Migration
Via:

Environment

RHEL7 Oracle
Migration

Utility
Single Node

Windows SQLServer
Migration

Utility
Single Node

Windows SLServer
Command

Central
Single Node

Windows

AIX

Solaris

Oracle

DB2

Oracle

Migration

Utility

Clustered

Single Node

Single Node

RHEL Oracle
Command

Central
Clustered

Table 1: SIQA Upgrade Test Coverage

3 SIQA Upgrade Test Bed

3.1 Test Bed

3.1.1 Test Bed overview

The below diagram represents products covered in Upgrade Test Bed.

7 ©2019 Software AG. All rights reserved.

 Figure 4: Products Coverage

3.1.2 Source of Test Bed

The test bed for upgrade testing has been created considering all the aspects of Upgrade and products in

the Installer Suite. The following are the source of the test bed,

 Developer User cases for new features and functionality testing

 Customer issue triaging

 Interaction Matrix between Products

 Professional services

 Customer inputs

 Pre-Sales Demo

 Solution book

 Community Forums

3.2 Upgrade procedure

8 ©2019 Software AG. All rights reserved.

This section covers detailed upgrade procedure followed during our validation. The process is carried

out in the following ways:

1. Using migration utilities and DB scripts

a. Taking a backup of file system and DB.

b. Installing the target version i.e. latest release.

c. Data base migration: DB Migration Scripts are provided by the products. The target

version can have additional tables and columns.

d. File system migration using migration utilities: The products that support migration has

an inbuilt migration utility that migrates the file system.

e. Validation

i. Migration logs

ii. DCC Log

2. Using Command Central template

a. Taking a backup of file system and DB

b. Single click migration using command central template. Both Database and File system

migration takes place in single click. The migration takes place in the order products are

mentioned in the migration template. Below is a snippet of the migration template.

9 ©2019 Software AG. All rights reserved.

c. Validation

i. Command Central log

ii. Verify servers are up and running

3.2.1 Source Data

Data, Configuration and Asset information are collected from source and stored. This stored information

is validated in target.

3.2.2 Executing Test Bed Scenarios

3.2.2.1 webM Product Testing; The following products are tested

 Basic Validation: Verifies whether the servers are up and running

Basic Validation (Servers up and running)

Integration Server

My webMethods Server

Universal Messaging

10 ©2019 Software AG. All rights reserved.

Analytic Engine

Infrastructure Data Collector

WebService Data Collector

API Gateway

API Portal

OneData

MashZone

Terracotta

 Integration Server: IS configurations and deployed packages in source are verified in target.

 Cloud Streams: Verifies Cloud Stream package with the Sales Force Adapters.

Cloud Streams
Enabling Cloud Stream Connections

 Provider connectors and connection names inside connectors

Update UserName and Password and Enable connection

Creating/Verifying/Deleting account in SalesForce

Import Cloud streams project from
base release workspace and verify

Created a JDBC Connection Pool for CloudStreams

Integration Server

 Common Directory Service

ISInternal, ISCoreAudit, Central User DB connectivity

Existing Scheduler Service

JMS connection Alias

JNDI connection Alias

Extended settings

MWS SAML resolver

Trigger Management

Primary ports

User Management

Caching

Logging

Running IS services (Custom and inbuilt)

Package Management

JDBC Adapters

11 ©2019 Software AG. All rights reserved.

 My webMethods Server: Assets and configurations in source are verified in target.

My webMethods Server
 User Management (Users/Roles/Groups)

Source Tasks.

Source Task Instances and its functionalities

(Count/State/Attachments/Assignment/Events)

Creating new Task Instances

 Directory Services

Date and time

CAF applications

Skins and Shells

 Process Engine: Business Process data in source are verified in target.

Process Engine
Configurations in WmPrt Package

Source Business Processes

Source Process Instances (Count/States)

Starting new Process Instances

Verifying state of the existing Source Process Instances

 Optimize: The optimize environment exported from source is imported in target and verified.

Optimize
Import Optimize Environment in MWS

Configure Imported Environment in MWS

Deploy Imported Environment in MWS

Configure IS and AE servers in MWS System Settings

Verify existing rule violation present

Create new process Instance to verify rule violation

Verifying Overview Configuration Count and Name,

Business Data Count, EventMaps and KPIs

Check status in Process Analytics page

Check for Errors

New violation Rules

Around 15 itracs have been automated

 Infrastructure Data Collector: Functionalities and configurations are verified.

12 ©2019 Software AG. All rights reserved.

Infrastructure Data Collector
Discovering Assets IS

Discovering Assets MWS

Check the UM Relam KPIs in the Analytic Overview

Check the UM Interface KPIs in the Analytic Overview

 Rules Engine: Rules deployed in source are verified in target.

Rules Engine
Source Rules project in IS and MWS

Running a process model to trigger Rules

Verifying decision tables in MWS

Editing the decision tables in MWS and hot deploying it to IS

Editing the deployed Event Rules in MWS and hot deploying it to
IS

 OneData: Functionalities and database configurations are verified.

OneData
Starting One Data

Source Users and Allocated Roles

Updating connections for PRD, STG

Verifying existing objects, column structure of Object,
 Constraint, mapping profile

 Command Central: Basic Command Central UI verification after migration.

Command Central
Command Central Migration from lower version to latest release.

Other supported products and DB migration
 using composite templates.

Verify running status of servers.

Verify filters in environments, instances, installations.

Access IS, MWS from CCE UI.

Monitor KPIs

Verify IS and MWS ports.

Adding keys, manifests, reports, repositories, environments

 etc to migrated CCE environment.

Validating instances, installations, keys, manifests, reports.

Starting and stopping of servers from CCE UI.

13 ©2019 Software AG. All rights reserved.

 CentraSite: Publishing assets from designer to Centrasite is verified.

CentraSite
Verify Roles for User

Add CentraSite Connection to Desginer

Publish project to centrasite from Designer

 Platform Manager: Verifies all products are present in SPM

Platform Manager
Login to SPM

Verifying installation of products

(Deployer, Optimize Engine, Data Collector, Rules Engine,
Process Engine)

 Active Transfer: Verifying the roles, ports, and assets.

Active Transfer

Source MFT Users and MFT Administrator Roles

MFT Ports

MFT Processing Rules

MFT Schedule Events

MFT IS Services

 Trading Network: Trading Network transactions executed in source and verified in target.

Trading Network

TN DB Connectivity

Source TN transaction

Initiating New TN transactions
Editing migrated document attribute, adding new document

attribute
Source Processing rules

New Processing Rules

Business Monitoring

14 ©2019 Software AG. All rights reserved.

 Business Console: UI is verified.

Business Console

Source Business process in SBP

Source Process instances (Count and state)

Source Tasks and Task Instances (Count and state)

Verifying the SBP pages

3.2.2.2 Integration testing

 BPM Integration Scenarios: These scenarios cover integration between Integration Server,

Process Engine, Task Engine, Rules Engine, Universal Messaging, My webMethod Severs,

Optimize.

BPM Integration Scenarios
Simple process

Complex process with Joins, Gateways,
Swim lanes, pools, error handler, time out, boundary events etc

JMS Triggered process by publishing a doc

JMS Triggered process with a service call

Process with tasks

Process with Rules

Task implementations like events, assignments,
attachments, notifications

Sub Process, Sub Process with loops

Child Process

Callable process

Process instances and Task instance with all possible states

(Cancelled/Error/Suspended/Expired/Continued/Completed)

Suspend and Resume Process

Resubmit the process

Stop the Process

Debug process and sub process

Logged fields and Errors

Part of Customer E2E Scenarios and Pre-Sales Demo

 API Management: API with all the policies and applications are created in Source gateway and

published to Portal. These are verified in target by invoking APIs.

15 ©2019 Software AG. All rights reserved.

API Management
API Gateway

Global Analytics

REST API Analytics

SOAP API Analytics

ODATA API Analytics

WebSocket API Analytics

API Portal

Invoke and verify REST, SOAP, ODATA, WebSocket APIs.

Authentication Types (Basic, OAuth, JWT)

Operations (Get, Post etc)

Policies (Transport, Identify & Access, Request Processing,

 Routing, Traffic Monitoring, Response Processing) by invoking
APIs from portal.

Applications by invoking APIs from portal.

 IOT: Integration Scenarios between Apama, Terracotta, MashZoneNG, Universal Messaging and

Integration server are covered.

IOT Integration Scenarios
Create cache in Terracotta using Apama projects.

Send events from Apama to add and delete cache in Terracotta.

Lexmark a customer scenario.

JnJ a customer scenario

Json support in MashzoneNG

Apama Cluster Correlator

Apama, terracotta, MashzoneNg using static cache.

Accessing IS WSDL from Apama

Calling IS Flow Serivce returning XML content in
MashZone NextGen Dashboard

Calling IS Flow Serivce returning CSV content in
MashZone NextGen Dashboard

Apama_JDBC_MZNG (Add JDBC Driver and Data Source)

