
Universal Messaging Reference Guide

Version 10.1

October 2017

This document applies to Universal Messaging Version 10.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: NUM-RG-101-20171103

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Universal Messaging Reference Guide Version 10.1 3

Table of Contents

Overview... 5

Glossary.. 7

API Documentation (Javadoc etc.) for Developers using the Client APIs............................... 15

M
Even Header

Universal Messaging Reference Guide Version 10.1 4

M
Odd Header

Universal Messaging Reference Guide Version 10.1 5

Overview

The Reference Guide contains the following sections:

Glossary

The Javadoc for the Client APIs

M
Even Header

Universal Messaging Reference Guide Version 10.1 6

M
Odd Header

Glossary

Universal Messaging Reference Guide Version 10.1 7

1 Glossary

This glossary provides an overview of technical terms used in the product
documentation.

ACL

Universal Messaging's Access Control List (ACL) controls client connection requests and
subsequent Universal Messaging operations. By default, a realm will always perform
access control checks.

The Universal Messaging realm has an ACL associated with it. The ACL contains a list
of subjects and the operations that each subject can perform on the realm.

Each channel, queue and service also has an associated ACLs that defines subjects and
the operations the subjects can perform. Each type of acl entry has a number of flags that
can be set to true or false in order to specify whether the subject can or can't perform the
operation.

Channel

A channel is the distribution mechanism for an asynchronous publish/subscribe
messaging model.

In this model, the publisher and consumer of an event (or "message") are decoupled, but
are both connected to a common channel which exists within the Universal Messaging
realm server.

The publisher publishes its data as events to the channel. As messages arrive on a
channel, the server automatically sends them to all consumers subscribed to the channel.

Universal Messaging supports multiple publishers and consumers on a single channel.

Note: the terms "channel" and "topic" are used interchangeably throughout this
documentation.

Consumer

A consumer is a Universal Messaging client that receives events from a Universal
Messaging channel, queue or datagroup.

Note: the terms "consumer" and "subscriber" are used interchangeably throughout this
documentation.

DataGroup

Universal Messaging DataGroups provide a very lightweight grouping structure that
allows developers to manage user subscriptions remotely and transparently.

DataGroups provide an alternative to channels/topics for publish/subscribe. DataGroups
are essentially groups of consumers to which publishers can send events; more

M
Even Header

Glossary

Universal Messaging Reference Guide Version 10.1 8

specifically, DataGroup members are either individual consumers or other (nested)
DataGroups. A consumer which is a member of a DataGroup is known as a DataStream.

Messages published to a DataGroup will be sent to all members of the group. There can
be multiple publishers associated with a single DataGroup, and DataGroup membership
can be managed by any Universal Messaging client that has permissions to do so.

DataGroups are designed to support large numbers of consumers whose subscriptions
are typically fluid in nature. The addition or removal of consumers from DataGroups
can be entirely transparent from the consumer perspective.

An Example DataGroup Structure

Imagine a Foreign Exchange organization that provides different tiers of currency price
data to users on different desks at their various customers. Valued customer desks might
be provided with gold level data, while less valued desks might receive silver or bronze
tiered data:

EURUSD_Gold

Customer_Desk_A

User1

User2

Customer_Desk_B

User3

User4

EURUSD_Silver

Customer_Desk_C

User5

Customer_Desk_D

User6

EURUSD_Bronze

GBPUSD_Gold

Customer_Desk_A

User1

User2

A suitable DataGroup structure to represent this arrangement might be to create eight
DataGroups:

EURUSD_Gold

EURUSD_Silver

M
Odd Header

Glossary

Universal Messaging Reference Guide Version 10.1 9

EURUSD_Bronze

GBPUSD_Gold

Customer_Desk_A

Customer_Desk_B

Customer_Desk_C

Customer_Desk_D

Then, structure these DataGroups as follows:

EURUSD_Gold

Customer_Desk_A

Customer_Desk_B

EURUSD_Silver

Customer_Desk_C

Customer_Desk_D

EURUSD_Bronze

GBPUSD_Gold

Customer_Desk_A

Price data would be published directly to the four DataGroups EURUSD_Gold,
EURUSD_Silver, EURUSD_Bronze and GBPUSD_Gold (though, optimally, a publisher
may well choose not to publish to the empty DataGroup EURUSD_Bronze). By virtue of
this structure, prices published to EURUSD_Gold, for example, will be delivered to both
the DataGroups Customer_Desk_A and Customer_Desk_B.

End user clients with DataStream-enabled sessions can be added to arbitrary
DataGroups - and thus receive data from those DataGroups. So, for example, adding
User1 and User2 as DataStream members of the DataGroup Customer_Desk_A, both
users would, by virtue of the above structure, receive price data via their inherited
membership of both EURUSD_Gold and GBPUSD_Gold.

Dynamic Changes

Let us now assume that our organization decides to upgrade the level of EURUSD price
data sent to users on Customer_Desk_C from silver to gold.

Achieving this with DataGroups is extremely simple. All we need to do is remove the
Customer_Desk_C DataGroup from the EURUSD_Silver DataGroup, and add it to the
EURUSD_Gold DataGroup instead, resulting in the following new structure:

EURUSD_Gold

Customer_Desk_A

Customer_Desk_B

M
Even Header

Glossary

Universal Messaging Reference Guide Version 10.1 10

Customer_Desk_C

EURUSD_Silver

Customer_Desk_D

EURUSD_Bronze

GBPUSD_Gold

Customer_Desk_A

Even More Dynamic Changes

Let's take our example a lile further. Assume that the publisher of the gold EURUSD
price data stops for some reason, and that the organization decides customers who were
receiving this data should, for the time being, fall back to silver EURUSD level prices
instead.

One way of doing this would be to move the three DataGroups Customer_Desk_A,
Customer_Desk_B and Customer_Desk_C out of the EURUSD_Gold DataGroup and
into the EURUSD_Silver DataGroup.

An even simpler way, however, would be to just move the EURUSD_Gold DataGroup
itself into the EURUSD_Silver DataGroup, resulting in the following structure:

EURUSD_Silver

EURUSD_Gold

Customer_Desk_A

Customer_Desk_B

Customer_Desk_C

Customer_Desk_D

EURUSD_Bronze

GBPUSD_Gold

Customer_Desk_A

This structure could be used while the gold level publisher of EURUSD prices remains
inactive. Once the publisher of the gold level data restarts, the EURUSD_Gold
DataGroup can be removed from the EURUSD_Silver DataGroup (for if it were not
removed, the users expecting gold level EURUSD prices would now receive both gold
and silver level prices).

Other Notes

It is typical (though not necessary) for a process which publishes data to DataGroups
to be independent of the process that manages DataGroup structures and DataGroup
membership of end-user DataStreams. This allows the logic for these two very different
responsibilities to be separated.

M
Odd Header

Glossary

Universal Messaging Reference Guide Version 10.1 11

DataStream

A Universal Messaging client (typically, but not necessarily, a simple consumer) may
initialise a DataStream-enabled session, making it eligible for membership in one or
more DataGroups. Such a client is considered a DataStream.

Note that DataStreams do not determine the DataGroups of which they are members;
their membership is determined by clients with the appropriate permissions (see
DataGroup).

Dictionary

Event Dictionaries provide an accessible and flexible way to store any number of
message properties for delivery within a Universal Messaging event.

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Filtering allows subscribers to receive only specific subsets of a channel's events by
applying the server's advanced filtering capabilities to the contents of each event's
dictionary.

Enterprise Manager

Universal Messaging's Enterprise Manager is a powerful GUI management tool that
allows you to control, configure and administer all aspects of any Universal Messaging
realm or clusters of realms.

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within the realm namespace are displayed in a tree
structure under the realm node itself. It is also possible to connect to and view multiple
Universal Messaging realm servers from a single Enterprise Manager instance.

Enterprise Manager is completely implemented using the Universal Messaging
Management API, so any of its features can be easily integrated into bespoke or 3rd
party systems management services.

Event (Message)

An event is the message object in which a publisher inserts data to be published. Events
are published to either a Universal Messaging channel, queue or datagroup. From there,
it is passed on to consumers. Events are language agnostic, which means that clients
using different languages can interact seamlessly.

An event may be a simple byte array or contain more complex structures such as
dictionaries, Google Protocol Buffers, JSON or JMS events.

Note: the terms "event" and "message" are used interchangeably throughout this
documentation.

M
Even Header

Glossary

Universal Messaging Reference Guide Version 10.1 12

Filtering

Universal Messaging provides a server side filtering engine that allows only events
meeting certain criteria to be delivered to consumers.

Standard filtering, as defined by JMS, allows events to be evaluated based on the
value of the dictionary keys prior to delivering the event to the consumer. Universal
Messaging supports not only standard filtering, but also filtering based on arrays and
nested dictionaries contained within event dictionaries. There is no limit to the depth of
nested properties that can be filtered.

Universal Messaging events can contain not only an event dictionary and a tag, but also
a byte array payload of data. Universal Messaging consequently supports a yet more
advanced form of filtering based on the content of the byte array data itself. In addition,
filtering is possible based on time and consumer location.

Fragmentation

Although there is no specific limit to the size of events that can be published to
Universal Messaging, from a network perspective it is usually more efficient to publish
several smaller messages than one large one.

Publishers using the Universal Messaging Enterprise APIs can choose to transparently
fragment large events into smaller chunks for publishing. The Universal Messaging
client API will transparently reconstitute the event at delivery.

Forever IFrame

Forever IFrame is a technique which allows a web server to stream data into a client
browser. This is done through a hidden inline frame in the page source which is
declared to be infinitely long. It is one of many push technologies under the umbrella
term Comet.

Universal Messaging's API for JavaScript supports Forever IFrame, allowing it to
communicate with a server using this delivery mode.

LongPolling

LongPolling is a technique which allows a web browser running as a client to
asynchronously receive updates from a server machine. It is one of many push
technologies under the umbrella term Comet.

Universal Messaging's API for JavaScript supports LongPolling, allowing it to
communicate with a server using this delivery mode.

Publisher

A publisher is a Universal Messaging client that sends data/messages as events to a
Universal Messaging channel, queue or datagroup.

Note: the terms "publisher" and "sender" are used interchangeably throughout this
documentation.

M
Odd Header

Glossary

Universal Messaging Reference Guide Version 10.1 13

Subject

A subject corresponds to the user information for a publisher or subscriber's realm
connection. Subjects are used when defining ACLs.

A subject is comprised of a username and a host:

The username component of the subject is the name of the user taken from either the
operating system of the machine they are connecting from, or the certificate name if
they are using an SSL protocol.

The host component of the subject is either the IP address or the hostname of the
machine from which they are connecting.

The subject takes the form of username@host; for example:
johnsmith@192.168.1.2

Topic

A topic is a JMS term which translates directly to a Universal Messaging channel.
Consequently, the terms "channel" and "topic" are used interchangeably throughout this
documentation.

Queue

A queue is much like a channel; the primary difference is that only one consumer can
read any individual event from a queue. Consumed events are immediately removed
from the queue, and are no longer available for consumption by any other consumer.
Thus, a queue guarantees that each event is delivered only once.

If more than one consumer is subscribed to a queue, then queued events are distributed
amongst consumers in a round-robin fashion.

Realm

A Universal Messaging realm is the name given to a single Universal Messaging server.
Universal Messaging realms can support multiple network interfaces, optionally
supporting different Universal Messaging protocols. Each such interface is represented
by a URL, known as an RNAME. Thus a single realm server can have more than one
RNAME.

Each Universal Messaging realm defines a namespace of its own resources (such as
channels and queues), but it is possible to merge the namespaces of multiple realms into
one large federated namespace for transparent client access to resources on different
realms.

Universal Messaging also provides the ability to create clusters of realms that share
common resources within the namespace.

M
Even Header

Glossary

Universal Messaging Reference Guide Version 10.1 14

RNAME

An RNAME is used by Universal Messaging Clients to specify how a connection should
be made to a Universal Messaging realm server. The URL describes a particular interface
on the Universal Messaging realm server.

WebSockets

WebSocket is a technology for providing full-duplex connections over a TCP socket
within the web browser. The WebSocket API is currently being developed by W3C and
the protocol standardised by IETF.

Universal Messaging's API for JavaScript currently supports WebSockets for all browsers
which implement the standard.

M
Odd Header

API Documentation (Javadoc etc.) for Developers using the Client APIs

Universal Messaging Reference Guide Version 10.1 15

2 API Documentation (Javadoc etc.) for Developers
using the Client APIs

The Universal Messaging documentation set includes API documentation for Enterprise
Client APIs, Web Client APIs and Mobile Client APIs.

The API documentation for the client APIs is available in the HTML version of this
document.

	Table of Contents
	Overview
	Glossary
	API Documentation (Javadoc etc.) for Developers using the Client APIs

