5 software~

Universal Messaging Developer Guide

Version 10.1

October 2017

This document applies to Universal Messaging Version 10.1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: NUM-DG-101-20171103

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

Universal Messaging Client Development..........ccnsssssens 13
ENLEIPIISE APIS......oeeiecccrerereces e se e s s e s s s sss e s sssnanesesesssnsnenenes 15
Overview of the Enterprise ClIent APIS..........cccoviiicericeee e 16
Enterprise Developer's Guide for Java.............cocceiiiiiiiceiiccceseee e 17
GENEIAl FRAMUIES........ceieeeicccee ettt 17
Creating @ SESSION........ccoviieereiiicce e 17

EVBNES. . 18

EVENE DICHONAMES......cvveieeeeceees et 18

ChaNNE! JOINS......covuiiiieiiere e 18

Google Protocol BUITETS........c.ccueueiiiicicices ettt 21

Publish / Subscribe Using Channels/TOPICS...........ccuuevrieireiirriereiseieseeeseeeees 26
Creating @ Channel.........c.ccvuiveiiiccce e 26

Finding @ ChanNEL...........coucueiiiiiicreccce et 28
Publishing events to @ Channel.............ccvriice s 28
Sending XML DOm ODjJECES.......ccvviiicieiisiicesseee s 30
ASYNChroNOUS SUDSCIHDET.........c.ciieitiieiiiececre et 30
Channel BEIATON. ..ot 31
Batched SUDSCHIDE. ..o 32
BatChed FiNG.......ooieceeeecece et 33

Durable channel consumers and named ODJECIS...........cooevivneninnces 33

NAMEd ODJECES......cucveieiiicecte e 35

Event Fragmentation.............covvviiiiisccce e 36

The Merge Engine and Event Deltas.............ccvivnieninniencceeesiee s 36

Priority MESSAQING........cvoviviiereiriiietctesstere e 37

Publish / Subscribe Using DataStreams and DataGroups.............ccocecevviviveercreneseeecnnnn, 38
DataStre@mMLISIENE ..o 39
Creating and Deleting DataGroups..........cocericeeenieeee s 39
Managing DataGroup Membership............ccocccviiiiceeiiccee e 40
DataGroup Conflation AFDULES........coveereerrricerrrees e 42
DataGroups Event PUBLIShING.........ccceiiicicieiccss e 44
DataStream Event PUbliShiNg..........cccoviiiiieiiccccscce e 45

PriOrity MESSAGING. ...vvueeerirciriseieiciee e 45
MESSAGE QUEBUES........eeireircriireie et 46
Creating @ QUEBUE..........cuiiecie e 46

FiNdiNG @ QUEUE. ... 48

QUEUE PUDIISN......o.eic e 48
Asynchronous Queue CONSUMING.........creireiireniireeisese e seseseenses 49
Synchronous Queue CONSUMING.........cruuiereieriireerieireeie e 50
Asynchronous Transactional Queue CONSUMING.........cevieeerirrererirerireenerereeeeereeees 51
Synchronous Transactional Queue CONSUMING........ccvvueurirruririnirireerieineee e 52

Universal Messaging Developer Guide Version 10.1 3

Table of Contents

Queue Browsing / PEEKING.........c.cuiurimiiriieieinseieeississe e 53
ReqUESt RESPONSE......cviiiirc s 55
Event Fragmentation.............covvviiiiiicc e 55
Provider fOr JMS.......ooeee e 56
Overview of the Provider for JMS..........cooiiiereeece s 56
JMSAdmin: Sample application for creating realm resources..........c.ccoeveeecveenrienes 57
JMS Client SSL Configuration............cveeenenienreeses e, 59
Application Server Integration (JBOSS)..........ccoceiviiiieiiiiieeieess et 61
JMS Message / Event Mapping........ccccoceueeiiiceesiccee e 63
JMS Message Type CONVEISION.........cvuieeeririiriiieiriseiseeieistiei e 64
FanOUL ENQINE.......cciueiiicceeseee et 67
Resource Adapter for JMS...........cooieeeeee e, 70
Support for XA TranSactionS..........ccoveeeerniinesrseee s seseees 70
BasiC AUtNENTICALION. ... "
OVBIVIBW. ...ttt 4
Client-side AUthENEICAtION.........ccoviiieer e 71
Server-side AUhENtICALION.coviiriierere e 73
COAE EXAMPIES.....ocviieiecteteieiectete ettt bbb bbbt bbbt 76
PUD/SUD ChanNEIS........cooiieeeeireccees st 76
Java Client: Channel PUDIISNET...........ccoiviiccrcenes e 76
Java Client: Transactional Channel PUbliSher............cccocovieniinnicnirncns 77
Java Client: Asynchronous Channel CONSUMET............ccveriniecnienneirenieens 77
Java Client: Synchronous Channel CONSUMET...........ccceuevriieeeererisiiseeseennans 77
Java Client: Asynchronous Named Channel Consumer............cccoccuevevrevevcunan. 78
Java Client: Synchronous Named Channel CONSUMET...........ccceevrrieerereririnenee. 78
Java Client: XML Channel PUDIISNET............cccccvirrirnincereeeeee s 79
Java Client: Asynchronous XML Channel CONSUMET...........ccccovevevererricrerevennnn. 79
Java Client: Event Delta DElIVErY..........ccocvieiiricneeseesieseeses 79
Java Client; Batching Server Calls.............cccovivveeeiiiicceescece e 80
Java Client; Batching Subscribe Calls..........ccccoveieiiviiiieeeieecee e, 80
PUD/SUD Datagroups........c.cvuiveeiiririiiriieei s 80
Java Client: DataStream LiStener...........cccouvvirrirninninneesesseesseseees 80
Java Client: DataGroup Publishing with Conflation.............cccccevvvivieeniiirennnn, 81
Java Client: DataGroup Manager...........cccovereriinnienieneeeeeseeeeeens 81
Java Client; Delete DataGroup.........cccoeevvricvcreiniceee s 82
Java Client; DataGroup Delta DEliVEIY.........ccccoueueveiiviieicescece e, 82
MESSAGE QUEBUES.......covieiiriiiet bbb 82
Java Client: Queue PUDIISREr. ... 82
Java Client: Transactional Queue Publisher...........ccccooivninnnniicces 82
Java Client: Asynchronous Queue CONSUMET...........cccoveveerrireereeninireseeeneens 83
Java Client: Asynchronous Transactional Queue CONSUMET...........ccvvrevveriennes 83
Java Client: Synchronous Queue CONSUMET............ccovvvirnienienreieseeiseeens 84
Java Client: Synchronous Transactional Queue Consumer............cccccoeeeeerunne. 84
Java Client: Peek events on @ QUEUE...........ccuvvevriiieinieirescescese s 84
Java Client: Requester - Request/RESPONSE..........cccvvviiecveiiiniiececeeeeeevevnans 85

Universal Messaging Developer Guide Version 10.1 4

Table of Contents

Java Client: Responder - ReqUeSt/RESPONSE.........cccvvrveerirririeieerenereeeninens 85
AdMINISIFALION APLL......coceiieeicieeses s 85
Java Client: Add a Queue ACL ENtry........ccoveeievnienieneeee s 85
Java Client: Modify a Channel ACL ENtry........cocvricnennisniencseeieis 86
Java Client: Delete a Realm ACL ENtry......cccoovvvceiiceicceeseecee e, 86
Java Client: Add a Schedule to a Universal Messaging Realm................c......... 87
Java Client: Simple authentication SErver...........cccoovvveeviccenesccee e 87
Java Client; Monitor realms for cluster creation, and cluster events................... 87
Java Client: Monitor realms for client connections coming and going................. 87
Java Client: Copy a channel and its events............cccoovvncncvnienens 88
Java Client: Monitor the remote realm log and audit file.............ccocvevriercnnnn, 88
Java Client; Export a realm 10 XML.........cccoooeeriiiiiieeeeecee e 88
Java Client: Import a realm's configuration information.............cccoeevvivninnn. 89
Java Client: Console-based Realm MOnitor...........coverrninncnnesreeeene 89
Java Client: Realm MONItOr...........coccviirirrceee e 89
Java Client: Create CIUSTET........ccovviiireesc e 92
Java Client; Create Security GroUP.........cocceeviviiecess s 93
Java Client: Add Security Group SUbject..........cccceviiiieiiiccec e 93
Java Client: Delete Security Group SUDJECE...........coviiviirniinereeene 93
Java Client; Delete Security GroUP........ccoveeeiiiiecees e 93
Provider fOr JMS........cooce e 94
Using the AMQP ProtoCol...........coouiiiiiiiireeseeesieseeeieene 94
Java Client: JMS BytesMessage PUDISher ..., 96
Java Client; JMS BytesMessage SUDSCHDE...........cccooeeceiviiecceececce e, 96
Java Client: JMS MapMessage PUbIIShEr ... 97
Java Client: JMS MapMessage SUbSCHDET...........ccccevviviricei e 97
Java Client: JMS ObjectMessage Publisher...........c.cccooeecennicccenccceee, 98
Java Client: JMS ObjectMessage SUDSCIIDET............ccvriinierircrees 98
Java Client: JMS StreamMessage Publisher.............cccooveevviccceniscceiennn, 98
Java Client: JMS StreamMessage SUbSCHDET..........ccoceeviiiceiccecce e 99
Java Client: JMS BytesMessage Queue Publisher.............cccccoonivninninninn. 99
Java Client: JMS BytesMessage Queue SubScriber............ccccovvvnirreriinennee. 100
Java Client: JMS QUEUE BIOWSET..........cccrvururiririeieiiiesiesce e 100
Channel / Queue / Realm Management..............ccvevninieneinnieneseeneeis 100
Java Client: Creating @ Channel...........cccovcceeivvicceisccesr e, 100
Java Client; Deleting @ Channel...........ccccevviviceeieceiceeceee e 101
Java Client: Creating @ QUEUE..........coveuriiiiiiiieceee e 101
Java Client: Deleting @ QUEUE..........coveuriiiririrreeeeesee e 102
Java Client: Create @ Channel JOin..........cccoevivninncnsesceseeeeeis 102
Java Client: Delete @ Channel Join..........coovveerniecnnnseeees s 102
Java Client: Purge events from a channel........c.ccccoccevvvccennsccceses 103
Java Client: Find the event id of the last event............cccoovvviiiicninnennn, 103
Java Client: Add a realm to another realm...........cccccovvveeennccencce, 103
Java Client; Multiplex @ SESSION.........ccccvvieereiiicee e, 104
Client APl Package DocuUmENtation.............cccccuiveiniicrcieieiecce e 104

Universal Messaging Developer Guide Version 10.1 5

Table of Contents

Enterprise Developer's Guide for CH.......coviieerccessee s 104
GENETAl FEATUMES.covieeeiciice e 104
Creating @ SESSION........c.cciiieiiiiceccte et bbb 104
Universal Messaging EVENES.........coiiceeeeee s 105
EVENt DICHONAIES.vireeicieicieiseee e 105
ChanNEl JOINS........cocieiiieiieie e 106
Google Protocol BUFFETS...........ceiiirie e 107
Publish / Subscribe using Channel TOPICS........couceeveviviccerseceee e 108
Publish / Subscribe Using Channels/TOPICS..........ccceeueiviercreeieiecee e 108
Creating @ Channel..........c.cviii e 108
Finding @ ChannEl...........ccvviiiiiiciieiccee e 109
How to publish events to @ Channel...........cccccooeieiicccceccccee e 109
ASYNChrONOUS SUDSCIIDET ..o 110
Channel HErator........c.ovieieree s 111
Batched SUDSCHIDE. ..o 112
BatChed FiNG.......ovieceeee et 113
Durable channel consumers and named ODJECtS...........ccocevevvecceniscec e 113
NAMEA ODJECES......cuiviviiiiitcte et bbb 115
The Merge Engine and Event Deltas...........ccooiencinisnicsescescesien 115
Priority MESSAQING........cvvevireriiiiiicieeii ettt 116
Publish / Subscribe using Datastreams and Datagroups...........cccccevveveireeniceencrenennns 117
Publish / Subscribe Using DataStreams and DataGroups...........ccccoeevreeereninenenne. 117
DataStrEAMLISIENEY ... 118
Creating and Deleting DataGroups.........ccccvvvevcverereniieciee e 118
Managing DataGroup Membership...........ccveeriirinieniereseeses s 119
DataGroup Conflation AHFDULES........c.cccueveiriccerr e, 121
DataGroups Event PUBIISNING.........cccociiiiiicecccce e 123
DataStream Event PUBISHING...........cviiiiiiicceessee 123
Priority MESSAQING........cvvevireriiiiiicieeii ettt 123
MESSAGE QUBUES. ..ottt 124
MeSSAGE QUEBUES.........cueriiiiiiitre bbb 124
Creating @ QUEUE..........cuoiieeicieeceee e 124
FINAING @ QUEUE. ... 125
QUEUE PUDIISN........ocvivieciicc e 125
Asynchronous Queue CONSUMING..........cuireurerrerimirerirnisesiseses e sessesesssses 127
Synchronous QUEUE CONSUMING.........curvirreirrereeieieeereeeseeeeereesesee s 127
Asynchronous Transactional Queue CONSUMING.........coueeerirerieerniienieireeiseneieens 128
Synchronous Transactional Queue CoONSUMING.........cvvvrreriieerrirnenieseeieerereeseneis 129
Queue Browsing / PEEKING.........coeuiieieiiiriieieiseisse et 131
Code EXaMPIES fOr CA.....iicere et 132
Publish / Subscribe using Channel TOPICS..........cocouvviieeeriecee s 132
C++ Client: Channel PUDIISher............ccooieieececeee s 132

C++ Client: Transactional Channel PUblISher...........ccccovvvvicnnnniccesnnas 132

C++ Client: Asynchronous Channel CONSUMET..........cccoveveveiviveierceesiseieeeenn, 133

C++ Client: Synchronous Channel CONSUMET..........cccovvvecveeniieccceeeecennee 133

Universal Messaging Developer Guide Version 10.1 6

Table of Contents

C++ Client: Asynchronous Named Channel CONSUMET..........ccccevvireeceninninnnns 133
C++ Client: Synchronous Named Channel Consumer..........c.cooooeeevivvicnnen 134
C++ Client: Event Delta DeliVErY.........ccceiieeieeececcece e 134
C++ Client: Batching Server Calls.........covviiiiniceeseseceees 135
C++ Client: Batching Subscribe Calls..........ccccovviieeviiiiicessceeees e, 135
Publish / Subscribe using Datastreams and Datagroups............cccceeevvevecveeiseenee. 135
C++ Client: DataStream LIStENer........ccccovvierrnieecesseee s 135
C++ Client: DataGroup Publishing with Conflation...............cccoeevevviiceennnnns 136
C++ Client: DataGroup Manager...........cccccuvvieceeviiiieiecee e 136
C++ Client: Delete DataGroup......ccccveceeerrinieesssiseee s 136
C++ Client: DataGroup Delta DeliVErY.......cccvvvvevcveiiiecce e 137
MESSAGE QUEBUES.......ceeerieiiieicieie ettt 137
C++ Client: Queue PUDIISNE...........ccoiierrcccce s 137
C++ Client: Transactional Queue PUbIISher............cccovvrncnninnencs 137
C++ Client: Asynchronous Queue CONSUMET............covruririeinirnnereeneereinnneens 138
C++ Client: Synchronous Queue CONSUMET...........ccriieriinirieernieireeieeneieeens 138
C++ Client: Peek Events 0n @ QUEUE.........c.ooeueucrrereeireenee e 138
AdMINISIrAION APL......cuoiiee e 139
C++ Client: Add a Queue ACL ENtry.......cocvieniciiec s 139
C++ Client: Modify @ Channel ACL ENfry........ccccoeeviveiceeieecee e 139
C++ Client: Delete a Realm ACL ENfry.......cceeviiicceeecccee e 140
C++ Client: Monitor realms for client connections coming and going............... 140
C++ Client: Console-based Realm Monitor...........ccocvirnernesncescenenn, 140
C++ Client: Remove Node ACL.........ccoveirriieiereese e 140
Ct ClIeNt: AUINSEIVET ... 141
Channel / Queue / Realm Management.............cocveenrnienennceneeseneeseees 141
C++ Client: Creating @ Channel............cccoceivviiiccecccceeeeee s 141
C++ Client: Deleting @ Channel..........cocviiiniieeeeene 141
C++ Client: Creating @ QUEUE........cc.cveiieirieireecescese s 142
C++ Client: Deleting @ QUEUE........c.cuveieeirirece e 142
C++ Client: Create Channel Join..........ccverrniiesrnnces e, 142
C++ Client: Delete @ Channel Join..........ccoevirnnnneseeeees 143
C++ Client: Purge Events From @ Channel.............cccoovveeviviviccesceccreennns 143
C++ Client: Create QUEUE JOIN..........ccccvvirieernricceese s 143
C++ Client: Delete QUEUE JOIN.........ovieiieirereerceses e 144
PrEIEQUISIEES.eiiii ettt bbb 144
PrEIEGUISIEES...v.vvieeeeeeteisieeete ettt 144
Client SSL Configuration............cccerviiiiiceisicceee e 145
Environment Setup : WINAOWS...........cceveiiicececcce e 146
Environment SELUP : LINUX........vveeeririiccssecee s 147
Enterprise Developer's Guide for CH...........cccoviicieiccce s 148
GENETAl FEATUMES. ..ot 148
Creating @ Session fOr CH..........coiiiircee 148
Universal Messaging EVENES..........cocciviiiceicccce e 149
Universal Messaging Event Dictionaries...........ccocovvvvrceeeeeeeeeeeeeee e 149

Universal Messaging Developer Guide Version 10.1 7

Table of Contents

ChanNEl JOINS.......cuoiiiieieieiecee ettt 150
Publish / Subscribe using Channel TOPICS........coveevivviccesve e 152
Creating @ ChanNEl.........c.cocuiuiueiiicce et 152
Finding @ Channel...........coiiiiie e 152
Publishing Events t0 @ Channel..............cccevviiiiieicccce s 153
Subscribe Asynchronously t0 @ Channel............cccoovceeiieccceecceece e, 154
SYNCNIONOUS CONSUMETS........vvriiriiiiiirieieieie e 155
Batched SUDSCHIDE. ..o 156
BatChed FiN.......coeeceeeee s 157
UsSINg DUrable ODJECLS. ..o 157
Durable Channel Consumers and Named Objects (Deprecated)..........ccccevvvveneeee. 160
The Merge Engine and Event Deltas...........cccoovvvvvviviicccssceecce s 162
Event Fragmentation...........ccveicricses s 164
Consuming @ JMS Map MESSAQE.........ccceverriiireieiririseee s 164
Priority MESSAQING.cviviiiiieirisiri sttt 164
Publish / Subscribe using Datastreams and Datagroups...........cccoeoevvireernnneeseninnnns 165
Publish / Subscribe Using DataStreams and DataGroups............cccceevvvercvcvernnnnnn. 165
Enabling DataGroups and Receiving Event Callbacks............ccccocevervvivircrereininnee. 166
DataStreamLISIENET.........c.ceeereeces e 166
Managing DatagroUpS........cccvviiiecueiiiiiieesss et 167
Creating and Deleting DataGroups...........ccocueuevericreeneseeee s, 167
Managing DataGroup Membership...........ccvevvrienieninneneseceeens 168
DataGroup Conflation AMBDULES........c.ccceveiiiicce e 169
Publishing t0 DatagroUps........cccceiiiiiniiiieie st 172
DataGroups Event PUDIISNING.........ccviiiiirceseseees e 172
DataStream Event Publishing.........c.cccovvceiiniccsssecere e 172

Priority MeSSAQING......cviviieriririiirissr s 172
MESSAGE QUEBUES........ovieiiciieic bbb 173
MESSAGE QUEBUES.......coeieiiiieiir it 173
Creating @ QUEBUE..........cuvvieece et 173
FiNdING @ QUEUE. ... 174
Publishing events t0 @ QUEUE...........ccvveirieiriirree e 175
Asynchronously Consuming @ QUEUE............coururiririinnienceene e 176
Synchronously Consuming @ QUEUE.............cvveirieinieirnieseese s 176
Asynchronous Transactional Queue ConSUMPLION..........cccccrrieerernnenneereeenenns 177
Synchronous Transactional Queue ConsSUMPLION........ccovrvieerierncesieeeereieins 178
Browse (Peek) a Universal Messaging QUEUE............ccocvieinieeinieenenicnceneieis 180
REQUESE RESPONSE. ...t 181
Event Fragmentation...........ccoovviiiiiccccc s 182
Basic AUthENtICALION.cciericcce s 182
OVBIVIBW. ...ttt bbbttt 182
Prerequisites for Basic Authentication..............cccccovveeeeiieiccesecece e, 182
Client-side AUthENtICAtION........ccovovierrsccee s 183
Server-side AUthENtICALION.cviiririircre s 185
Google ProtoCol BUITETS........c.ccciueiiiiieciccese ettt et 185

Universal Messaging Developer Guide Version 10.1 8

Table of Contents

EXAMIPIES. ...ttt 186
Publish / Subscribe using Channel TOPICS..........cccvuviicereriecee s 186
PUDIISh / SUDSCIIDE. ..o 186
Channel PUBLSNET.........c.cviieeeessecre e 187
Transactional Channel PUDIISHET ... 187
Asynchronous Channel CONSUMET.............ccoceeviicecrereiniiece e, 187
Synchronous Channel CONSUMET ..o 188
Asynchronous Named Channel CONSUMET..........ccccovvvveeeniiereceeeseeese s 188
Synchronous Named Channel CONSUMET..........ccccevivieceeiieceeece e, 189
Event Delta DElVETY..........cviiricceesiese s 189
Batching Server CallS..........c.cceiviiiiceiccecee et 189
Batching Subscribe Calls........cccoviiiviieriiecceeeee e 190
Publish / Subscribe using Datastreams and Datagroups..........ccccceevvrieeennnenenne 190
DataStream LISIENET ..o s 190
DataGroup Publishing with Conflation............ccccevvivieeiniccceeieecce e 190
DataGroup MaNAGET.........couiieiiieiriciriee e 191
Delete DataGroUD......cvviceceeri ettt 191
DataGroup Delta DEIIVEIY.........ccovviuiuereiiceece et 192
MeESSAGE QUEBUES.........veriiiiiictre bbb 192
QUEUE PUDIISNET ... s 192
Transactional Queue PUDIISNET.............ccccorieririeresse s 192
Asynchronous QUEUE CONSUMET............ccuiuerrimeirmiereriieeriseisieieesssee e 193
Synchronous QUEUE CONSUMET...........cuueurirrereiirerireireeisesie e essessseees 193
Peek Events 0N @ QUEUE..........ccveieririeircece s 193
Requester - ReqQUESY/RESPONSE.cucvveireeiririricesrsseees s 194
Responder - ReQUESHRESPONSE.........c.vivcveiiiriice e 194
MyChannels.Nirvana APL............ccoviiieiiicceeeeece e 195
MyChannels.Nirvana DataGroup Publisher............cccoocviininicncnnc, 195
MyChannels.Nirvana Queue PUDIIShET.............cccoovrrrinnnneeeenees 195
MyChannels.Nirvana Topic PUDIISNET............c.ccccveviviiceiscccee e 195
MyChannels.Nirvana DataGroup LiStener.............ccvivnienienncneeneens 195
MyChannels.Nirvana Queue CONSUMET...........ccvuirrerireerieirieisinsieeseseeeeeeeenees 195
MyChannels.Nirvana Topic SUDSCHIDET..........cccccviiceeiscce e 195

RX TOPIC SUDSCHIDEN......cuviieicieirisrece st 196

RX QUEUE CONSUMET.........cuiiriiiireirieinicieiseseise et snses 196

RX DataGroup LISIENET.........cocevviieiiereeecce e 196
AdMINISIALION APL......coiiieiicee s 196
Add @ QUEUE ACL ENHrY....c.ceeiieirieireereiree e 196
Modify @ Channel ACL ENry.......cccoceviiceiecececee e 197
Delete @ Realm ACL ENtry.......ccviiniiiceecsees e 197
Monitor realms for client connections coming and going........ccccceveeveevirennnee 197
Export a realm t0 XML.......cooiiiiiiiie s 198
Import a realm's configuration information..............cocceveinenninenc, 198
Console-based Realm MONItOF............corririnreresee e 198
Simple authentiCation SEIVET...........cccccueiiicicrcee e 199

Universal Messaging Developer Guide Version 10.1 9

Table of Contents

Set CONAINET ACL......oviiecieieiereee e 199
Difference between 2 realms..........cccvevrierinncecee s 203
Channel / Queue / Realm Management.............cccveeirnienseneeneeseseneneens 203
Creating @ Channel...........cvrree e 203
Deleting @ Channel..........cccviccieecce e 204
Creating @ QUEUE........c.ovireiieieee s 204
Deleting @ QUEUE........c.vuviiiceiceiee e 205

Create Channel JOiN.........coriircrees s 205

Delete @ Channel JOiN...........ccoirrirrinesese e 205
MUHIPIEX @ SESSION......coeeeiieieirierrteee ettt 205

Purge Events From a Channel............ccccccvviiecieiciecce e 206

Create QUEUE JOIN.......c.oieiieieiecee e 206

Delete QUEUE JOIN........oieurirrieicieirs et 206
PrEIEQUISIEES.....vviiececte ettt bbbt b b 207
CH PIErQUISIEES.......ceeviviveriiictctete ettt bbb 207

C# Client SSL Configuration.............ceieeericiriiieeiniesseseesees s 208
Globally ACCESSIDIE DLLS.........cceviveieiiiircieiersectee ettt 210
MESSAGING APl rerers 211
MyChannels.Nirvana API: Creating and Disposing of @ Session............c..ccccvneeenes 211
MyChannels.Nirvana APIL: ProdUCENS..........cccccereinicecesrseees s 211
MyChannels.Nirvana APL: CONSUMETS............cceviiviriieereieieesece e 212
MyChannels.Nirvana API: Reactive EXIENSIONS..........cccovivnieriinicnee, 212
Enterprise Developer's Guide for VBA..........ccooiciiicces s 213
PUDIISH / SUDSCIIDE.eveeiicee s 213
PUDIISh/SUDSCIIDE.ccviiiciciee e 213
SUDSCHDING TASKS.......civiveiriiicctctestee et 213
Subscribing t0 @ Channel...........cc.coooiieiiiiiecceeee e 213
PUDISNING TaSKS.........evevieciiiicisicisis e 215
Creating @ SESSION........ccvivivireiicce e e 215

Finding @ ChannEl...........coceueiiiiiieiceeccc e 215
Universal Messaging EVENtS.........cccviinecesis e 216
Publishing Events t0 @ Channel...........cccccvvicceniccceescee e 216

LEAIM MOTE..... ettt 216
EVENE ProPerti€s.......co vt 216

How the RTD Server WOrKS..........ccoevirieninceseesee s 217

Setting the RTD Throttle Interval...........ccoccvviiceiiieceeceecee s 217

Internal EVeNnt ProCeSSING.ceviiriierieeeesie s 218
Universal Messaging RTD Server Internal QUEUES...........cccvvvvrererineriinininnines 219
OnChange() Event Using RTD.......cccceiiiiceenece e 219
PrEIEGUISIEES. .. vttt bbbt 220
Enterprise Developer's Guide for PYthON.........ccccoviicciiiccce e 220
Enterprise Client DEVEIOPMENL.........ccccoviiuiiiiiiccee et 221
Environment Configuration.............cvrinseeseeesees e 221
Creating @ SESSION........ccvvviveiiiiectce e 222
Subscribing to a Channel/Topic or QUEUE...........covevvireriirrieeree e 222

Universal Messaging Developer Guide Version 10.1 10

Table of Contents

DataStream - Receiving DataGroup EVENts...........occvienicniincccscres 223
Publishing Events to a Channel or QUEUE.............ceveuriirninriere e 224

Writing an Event t0 @ DataGroup...........cccoeueiecviieniecccee et 224
Asynchronous EXCeption LIStENET............cooieirinienieneeeses e 224
Synchronously Requesting EVENES.........cccovcciiiicccs s 225

Sample APPLICALIONS.........c.cciuiiereiicctete e 226
Publish / Subscribe using Channel TOPICS...........cvirnirriireeieeseseies 226
Channel PUBISREr. ..o 226
Asynchronous Channel SUbSCHDET............cccceviiecceicccee s 226

Channel ETAtON. ..o 226

Publish / Subscribe using Datastreams and Datagroups............cccceevvvereresireenen. 226
DataGroup PUBIShET.........cccuiicictee e 226

DataStream LIStENEr........ccverieeer e 226

MESSAGE QUEBUES........oeeeiiciiereiree i 227

QUEUE PUDIISNET ..ot 227
Asynchronous QUEUE CONSUMET............ccuiuerrimeureeireriieisiseiseeieessseeseeise e 227
Synchronous QUeUE REAET.............oceuvieirieirrrce e 227

PYINON ODJECES......ceiviviieiicctcte ettt bbb 227
Universal Messaging EVENES. ..o 227

EVENt DICHONAIES.viveiciicieisieece s 228

APl Language COMPANSONS........coccuiiverereteiieietete st sesebe s s sebesss s se s sesesenas 228
Mobile ClENt APIS.........cveirriirrincsinssses s s s sssssass 231
Client APLfOr IPRONE........coiieiccee et 232
iPhone Developer's GUIAE........ccviieivcieieiiiciete ettt 232
Client API fOr ANAIOId........c.eveiireirieieiee e 233
Android DeVeloper's GUIAE..........cvueueueiriricieieesseee s 233

L L= O 11T 0 o T 235
Overview Of WED ClIENt APIS.........ooiirieceresee st 236
Web Developer's Guide for JAaVasCHipt...........cccceereiiciceieiieeee e 236
OVEIVIBW. ...ttt ettt ns ettt 236
Server Configuration for JavaScript.........ccccvvieeiiccccecs s 237
Server Configuration for HTTP DEliVEIY........cccoviieeiiiicceeeeeceeees e 237

Server Configuration for HTTPS DeliVery.........cccoiririinicnercceseeeee, 238

Serving From Another WEDSEIVEN ... 238

Web Client Development in JAaVaSCripl..........ccoovceriviiiiceicecce e 240
Creating @ SESSION......c.cvieericirieiritei b 240
PUDISh/SUDSCIIDE TaSKS.......ceevieeiieiricieiccres e 241
Overview of using Publish/SUbSCIDE..........cccccviviiveeiicecee e 241

Using a Universal Messaging Channel............ccceverinnnneneneeene 241

Subscribing t0 @ Channel...........ccovviieiieccecee e 242

Publishing Events t0 @ Channel............ccccoviiiceenicccceeccee e 243
Transactional PUBISh............ccoriieeccese s 243

DataStream - Receiving DataGroup Events.........cccccvvvicevviicccces e, 244

MesSage QUEUE TaSKS.........ceurueiiiriricirieieieieiseee et 245

Universal Messaging Developer Guide Version 10.1 1"

Table of Contents

Overview of using Message QUEUES..............ccuueurieireneeinieesseieeeees 245

USING @ QUBUE.......oieeiciiceecee e 245
Subscribing t0 @ QUEUE...........ceiieirieiece e 246
Publishing Events t0 @ QUEUE...........ccoveuiiiririirercec s 246
Asynchronous Transactional Queue CONSUMING..........ccvirrerirenienereennienns 247
JAVASCIIPE ODJECES. ..ottt 248
Universal Messaging EVENES.........coiiceeeeee s 248
Universal Messaging Event ANDULES.........ccocceiiieccss e, 249
EVENE DICHONAMES.ttt 250
OptimMiIzING TAFOUGNPUL. ..o 250
The Merge Engine and Event Deltas..........ccccceiviveccessiccs e 250
JavaScript Communication Drivers and Protocols............ccccoceeeiniccceiscccee e 253
CoOMMUNICALION DIIVEIS........coeerieieiireieieisiriseeieisisse et 253
WebSocket Delivery MOGE..........ccccviiceiece s 269
WebSocket over @ FOrwWard PrOXY.........cccceueiiiciereiiiecee e 271
WebSocket 0ver @ REVEISE PrOXY.........cccovieuriiiriiienieireieiciesieisesee s 272
Comet Streaming Delivery MOde..........ccccviiciiicceee e 274
Comet LongPolling Delivery Mode...........cccooeiueeniieiicceieceeee e 274
Comet Forever IFrame Delivery Mode..........cooeriininniencneeeseee, 275
Example: Implementing a Simple Pub/Sub Client.............cccccoviviviieiniceccescece, 275
Web Developer's Guide for SIlVErlight...........cccceiiiiiiiccce e 278
Developing and Deploying Silverlight Applications.............ccocvirnieniincniens 278
EXAMIPIES .. ettt 279
Live STOCK ChaM........oveeceecece s 279
LiVE SEOCK INQICES. ...t 282
Simple Chat ROOM.......c.cviiieieiiiieccs et 284
Web Developer's Guide fOr Java..........ccoceceiiiiiiiciceceece et 287
Web Developer's Guide fOr Java........c.ovceerniccnnsccs s 287
Deploying Java Applications using Java Web Start............ccccoovevvviceiiicccs, 287
Applet Javascript Bridge EXample.........ccoovviiiiiccece e 288

Universal Messaging Developer Guide Version 10.1 12

Universal Messaging Client Development

Client APIs are available for a wide range of languages at the enterprise level. APIs are
also available for building applications for Web-based and mobile device scenarios.

We provide the client API documentation under the following main headings:
m '"Enterprise Client APIs" on page 16

m "Web Client APIs" on page 236

B "Mobile Client APIs" on page 231

Universal Messaging Developer Guide Version 10.1

13

Universal Messaging Developer Guide Version 10.1

14

Enterprise APlIs

1 Enterprise APls

B Overview of the Enterprise ClIent APISccieiiicceeee s 16
m Enterprise Developer's Guide fOr Java ..o, 17
m Enterprise Developer's Guide fOr CH ... e 104
m Enterprise Developer's GUIde fOr CH ..o 148
m Enterprise Developer's Guide for VBA ..o 213
m Enterprise Developer's Guide for PYthoN ..o 220
B APl Language COMPANSONSccouiiueueiiiieiescieieiit ettt sse st er bbb 228

Universal Messaging Developer Guide Version 10.1 15

Enterprise APlIs

Overview of the Enterprise Client APls

Our Universal Messaging Enterprise APIs allow developers to implement real-time
publish/subscribe functionality into enterprise-class applications using a range of
languages:

Java

The Universal Messaging Java Client API is our fully-featured enterprise-class client
API:

m "Enterprise Developer's Guide for Java" on page 17: developing Java
applications/systems that will use Universal Messaging

m Java Client API: the entire Universal Messaging Java client API

C++

The Universal Messaging C++ Client API is our fully-featured enterprise-class client
API for C++ developers:

m "Enterprise Developer's Guide for C++" on page 104: developing C++
applications/systems that will use Universal Messaging

m C++ Client APL: the entire Universal Messaging C++ client API
C# .NET

The Universal Messaging C# Client API is our fully-featured enterprise-class client API
for C# developers:

m "Enterprise Developer's Guide for C#" on page 148
m C# Client API : the entire Universal Messaging C# .NET client API
Excel VBA

Our VBA API allows Microsoft Office applications such as Microsoft Excel to publish
and subscribe to Universal Messaging channels, and to asynchronously receive
events in realtime:

m "Enterprise Developer's Guide for VBA" on page 213
Python

The Universal Messaging Python Client API utilises the C++ API to provide an
enterprise-class API for Python developers:

m "Enterprise Developer's Guide for Python" on page 220

See Universal Messaging's "Language APl Comparison Grid" on page 228 for an
overview of basic differences between each API.

Universal Messaging Developer Guide Version 10.1 16

Enterprise APlIs

Enterprise Developer's Guide for Java

This guide describes how to develop and deploy Enterprise-class Java applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

General Features

Creating a Session

To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session nSession object, which is effectively your logical and physical
connection to a Universal Messaging Realm. The steps below describe session creation.

1. Create a nSessionAttributes object with the RNAME value of your choice

String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

2. Call the create method on nSessionFactory to create your session

Session mySession=nSessionFactory.create (nsa)

Alternatively, if you require the use of a session reconnect handler
(nReconnectHandler) to intercept the automatic reconnection attempts, pass an
instance of that class too in the create method:

public class myReconnectHandler implements nReconnectHandler{

//implement tasks associated with reconnection

}
myReconnectHandler rhandler=new myReconnectHandler () ;
nSession mySession=nSessionFactory.create(nsa, rhandler);

3. [Initialise the session object to open the connection to the Universal Messaging Realm

mySession.init () ;

To enable the use of DataGroups and to create an nDataStream , you should pass an
instance of nDataStreamListener to the init call.
public void SimpleStreamListener implements nDataStreamlListener{

//implement onMessage callback for nDataStreamListener callbacks
}

nDataStreamListener myListener = new SimpleStreamListener () ;
nDataStream myStream = mySession.init (myListener) ;

After initialising your Universal Messaging session, you will be connected to the
Universal Messaging Realm. From that point, all functionality is subject to a Realm ACL
check. If you call a method that requires a permission your credential does not have, you
will receive an nSecurityException.

Universal Messaging Developer Guide Version 10.1 17

Enterprise APlIs

Events

A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging channel or queue. It is stored by the server and then passed to
consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Event Dictionary (see "Event Dictionaries" on page 18).

Each nConsumeEvent object has an nEventAtrributes object associated with it which
contains all available meta data associated with the event

Constructing an Event

In this Java code snippet, we construct our Universal Messaging Event object
(nConsumeEvent), and, in this example, pass a byte array data into the constructor:

nConsumeEvent evt = new nConsumeEvent ("String", "Hello World".getBytes());

Event Dictionaries

Universal Messaging Event Dictionaries (nEventProperties) provide an accessible and
flexible way to store any number of message properties for delivery within an event (for
related information, see "Events" on page 18).

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's dictionary.

Event dictionaries can facilitate the automated purging of data from channels through
the use of Publish Keys.

Constructing an Event

In this code snippet, we assume we want to publish an event containing the definition of
a bond, say, with a name of "bond1":

nEventProperties props = new nEventProperties();

props.put ("bondname", "bondl") ;

props.put ("price", 100.00);

nConsumeEvent evt = new nConsumeEvent ("atag", props);

channel.publish (evt) ;

Note that in this example code, we also create a new Universal Messaging Event object
(nConsumeEvent, see "Events" on page 18) to make use of our Event Dictionary
(nEventProperties).

Channel Joins

Joining a channel to another channel or queue allows you to set up content routing so
that events published to the source channel will be passed on to the destination channel/

Universal Messaging Developer Guide Version 10.1 18

Enterprise APlIs

queue automatically. Joins also support the use of filters, thus enabling dynamic content
routing.

Please note that while channels can be joined to both channels and queues, queues
cannot be used as the source of a join.

Channels can be joined using the Enterprise Manager GUI or programmatically.

When creating a join there is one compulsory option and two optional ones. The
compulsory option is the destination channel. The optional parameters are the
maximum join hops and a filter to be applied to the join.

Note: For a description of the general principles involved in creating channel
joins, see the section Creating Channel Joins in the Administration Guide. The
description details the usage based on the Enterprise Manager, but the same
general principles apply if you are using the APL

Hop Count

Joins have an associated hop count, which can optionally be defined when the join is
created. The hop count allows a limit to be put on the number of subsequent joins an
event can pass through if published over this join. If a hop count is not defined for a join,
it will default to 10.

The hop count is the number of intermediate stores between the source channel and the
final destination. As an example, imagine we have 10 channels named "channel0" to
"channel9" and all these channels are joined sequentially. When we publish to channel
0, if the join from channel0 to channell has a hop count of 5 then the event will be
found on channel0 (the source channel), channels 1 to 5 (the intermediate channels) and
channel6 (the endpoint).

Loop Detection

Joins allow the possibility of defining a loop of joined channels. To prevent channels
receiving multiple copies of the same event, Universal Messaging implements loop
detection on incoming events. To illustrate this, imagine a simple example with two
channels (channel0 and channell) and we create a loop by joining channel0 to channell
and channell to channel0. If we publish to channel0 the event will also be published to
channell over the join. But channell is joined to channel0 too, so now the event would
get published to channel0 again. Without loop detection, this cycle would repeat until
the maximum hop count has been reached.

To prevent this, Universal Messaging detects when a message which has already been
published to a channel or queue and will not publish it a second time.
Multiple Path Delivery

Universal Messaging users can define multiple paths over different network protocols
between the same places in Universal Messaging. Universal Messaging guarantees that
the data always gets delivered once and once only.

Universal Messaging Developer Guide Version 10.1 19

Enterprise APlIs

Creating Channel Joins

Channel joins can be created using the nmakechanjoin join sample application which
is provided in the bin directory of the Universal Messaging installation. For further
information on using this example please see the Make Channel Join example page.

Universal Messaging joins are created as follows:

//Obtain a reference to the source channel

nChannel mySrcChannel = mySession.findChannel (nca);

//Obtain a reference to the destination channel

nChannel myDstChannel = mySession.findChannel (dest);
//create the join

mySrcChannel.joinChannel (myDstChannel, true, jhc, SELECTOR) ;

Channel joins can also be deleted. Please see the Delete Channel Join example for more
information.

Archive Joins

It is possible to archive messages from a given channel by using an archive join. To
perform an archive join, the destination must be a queue in which the archived messages
will be stored. An example of this can be seen below:

Since this is an archive join, all events matching the optional selector parameter(all
events if no selector is specified) will be put into the archive queue, by design this
includes all duplicate events published to the source.

nChannelAttributes archiveAtr = new nChannelAttributes();
archiveAtr.setName (rchanName) ;

nQueue archiveQueue = mySession.findQueue (archiveAtr) ;
mySrcChannel.joinChannelToArchive (archiveQueue) ;

Inter-Cluster Joins

Inter-cluster joins are added and deleted in almost exactly the same way as normal joins.
The only differences are that the two clusters must have an inter-cluster connection

in place, and that since the clusters do not share a namespace, ech channel must be
retrieved from nodes in their respective clusters, rather than through the same node. For
example :

nChannel clusterlchanl = realmNodel.findChannel (channelattributesl) ;

nChannel cluster2chanl = realmNoded.findChannel (channelattributes?2);
clusterlchanl.joinChannel (cluster2chanl) ;

Inter-Cluster joins can also be created through the Enterprise Manager.

Interest Propagation
Overview

Universal Messaging offers the ability to forward data received on one independent
realm or cluster to many other independent realms or clusters, which may reside in
geographically distinct locations. Traditionally this is done using the Join mechanism,
which will forward all events from one channel to another.

Universal Messaging Developer Guide Version 10.1 20

Enterprise APlIs

There is an alternative mechanism, namely Interest Propagation. This mechanism
expands upon the functionality provided by joins by providing the ability to forward
events only when there are subscribers to a channel of the same name on the remote
realm or cluster. Forwarding only events which have an active subscription reduces the
number of events and bandwidth used on these links.

Realms and clusters keep track of interest on remote realms that they have a direct
connection to. This means that beyond the initial setup of a channel, no further
configuration is required.

Managing Remote Interest

Managing interest on a remote realm is done programmatically using the Universal
Messaging Administrative APL. Each channel present on a realm or cluster can be linked
to a pair of attributes canSend and canReceive.

Enabling the canReceive attribute on a channel of a realm or cluster will enable this realm
or cluster to receive information on the given channel from other directly connected
realms or clusters that have a channel of the same name. The realm or cluster notifies all
connected realms when this attribute changes for a given channel.

Data is only forwarded from a realm or cluster to a remote realm or cluster if all of the
following conditions are met:

® A channel with the same name exists on the remote realm or cluster, and
®m the canReceive flag is enabled for the remote channel, and
m there is an active subscription present on the remote channel

Enabling the canSend attribute on a channel in a realm or cluster will enable this realm
or cluster to begin forwarding data to other realms or clusters it is aware of. Data is
forwarded to every realm which the source realm is aware of that has a channel with the
same name and is able to receive the event (it has the canReceive flag enabled and has an
interested subscriber).

Sample Usage

All installations of Universal Messaging come with a sample application called
interestmanagerutility. This is an application which takes a series of commands to manage
the interest properties for a given set of realms.

Google Protocol Buffers

Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and
this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the

Universal Messaging Developer Guide Version 10.1 21

Enterprise APlIs

serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffers in Java, C++ and Python, and third party
libraries provide support for many other languages including .NET, Perl, PHP etc.
Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer events through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in Universal Messaging, allowing

for server-side filtering of Google Protocol Buffer events, which can be sent on
resources just like a normal Universal Messaging Event. The server side filtering of
messages is achieved by providing the server with a description of the data structures
(constructed at the .proto compile time, using the standard protobuf compiler and the
--descriptor_set_out option). The default location the server looks in for descriptor

files is /plugins/ProtobufDescriptors and this can be configured through the Enterprise
Manager. The server will monitor this folder for changes, and the frequency of these
updates can be configured through the Enterprise Manager. The server can then extract
the key value pairs from the binary Protobuf message, and filter message delivery based
on user requirements.

To create an nProtobuf event, simply build your protocol buffer as normal and pass it
into the nProtobuf constructor along with the message type used (see the programmatic
example below).

Example.Builder example = Example.newBuilder () ;
example.setEmail ("example@email.com") ;

example.setName ("Name") ;

example.setAddressl ("Norton Foldgate");
example.setHouseNumber (1) ;

byte[] buffer = example.build() .toByteArray();
nProtobufEvent evt = new nProtobufEvent (buffer, "example") ;
myChannel .publish (evt) ;

nProtobuf events are received by subscribers in the normal way.

public void go (nConsumeEvent evt) ({
if (evt instanceof nProtobufEvent) {

totalMsgs++;

// Get the data of the message

byte[] buffer = evt.getEventDatal();

if (((nProtobufEvent) evt) .getTypeName () .equals ("BidOffer")) {
BidOffer bid = null;
bid = BidOffer.parseFrom(buffer);
VAN //

Universal Messaging Developer Guide Version 10.1 22

Enterprise APlIs

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the Enterprise Manager is not running on the same machine as the server.

The Enterprise Manager is able to parse the protocol buffer message and display the
contents, rather than the binary data.

All descriptors will be automatically synced across the cluster if the channel is cluster-
wide.
Configuring Universal Messaging for use with Protocol Buffers

Protocol buffers have their own section in the Enterprise Manager Config panel.

806 Universal Messaging Enterprise Manager
@) Universal Messaging Enterprise Realm Details
» @ Clusters Name: umserver
v @ Realms Realm UpTime: 300:51:14.728
Last Update: Mon Jul 28 15:08:59 BST 2014
v () umserver
» [Data Groups @ stawus | @8 Monitoring | 2 Security | 5 Comms | @ Realms {EGonfig]) Scheduler| e INDI
1 EmbeddedMessageDefinitionsTest Parameter) Value
) NonEmbeddedMessageDefinitionsTest ‘_‘L“':Td?:‘;e]“?:;'m Properties z?zip
™ bish » [Client Timeout Values Group
> fxdemo » [Cluster Config Group
> naming » [Comet Config Group
» [Connection Config Group
» (1] Data Stream Config Group
» [Environment Config Group
» [Event Storage Group
» [Fanout Values Group
» [Global Values Group
» [Inter-Realm Comms Config Group
» [JVM Management Group
» [Join Config Group
» [Logging Config Group
» [MQTTConfig Group
» [Plugin Config Group
- o
CacheEventFilter true
FilterProtobufEvents true
MaximumProtobufBuilders 4
MinimumProtobufBuilders 2
ProtobufDescriptorsinputDir C:\SoftwareAG \nirvana\server\nirvana/plugins/ProtobufDescriptors
ProtobufDescriptorsOutputDir C:\SoftwareAG \nirvana\server\nirvana plugins /htdocs/
UpdateDescriptorsinterval 60000
useChannelLeve|ProtobufCache true
» [Proxy Forward Config Group
» [RecoveryDaemon Group
» [Thread Pool Config Group
» [TransactionManager Group

These are explained via their tooltips.

UseChannelLevelProtobufCache indicates whether the descriptors are set against

the channel, or put into a folder (see "Legacy Google Protobuf Support" below).
UpdateDescriptorInterval, the maximum and minimum builder numbers, and the input
and output directories only apply for the legacy option.

FilterProtobufEvents is set to true by default, and must be set to true to enable filtering
of protobuf events.

If nested messages need to be filtered on, then GlobalValues ->
ExtendedMessageSelectors, must be set to true. Again this is now enabled by default but
will not be enabled in installs upgraded from older versions.

Protobuf with the Enterprise Manager

When creating a channel via the Enterprise Manager, there is a protobuf descriptor
section on the create dialogue. Clicking "Set..." here brings up a file dialogue where a
descriptor file (generated when the protobuf is compiled, as described above) can be

Universal Messaging Developer Guide Version 10.1 23

Enterprise APlIs

selected. Multiple descriptor files can currently only be set programmatically, not via the
Enterprise Manager.

r © © 1
@& 00O Add channel to realm umserver

Channel Attributes

Channel Name: |

Channel Type: Transient

Ak

Channel TTL:

Channel Capacity:

Parent Realm: Umserver

ik

Dead Event Store: i

Use JMS Engine: Use Merge Engine:
Storage Properties: Edit...
Protobuf Descriptor: Set...

Channel Keys

Select Key To Edit: = MNew
Key Properties
Key Name:
| Depth: | Save Delete i
| |
OK Cancel t

Any channel with an associated descriptor can be snooped in the normal way.
Enterprise Manager will use the descriptor to deserialise the message, and will show the
contents of that message in the event details.

Programmatic example

//Create a realm node (this is standard administration API connection)
realm = new nRealmNode (new nSessionAttributes (testServer.getDefaultAdapter())):;
realm.waitForEntireNameSpace () ;

//Create a channel with the descriptors.

Path path =Paths.get ("../../changeManagement/test/protobuf/SAGTester.fds") ;
byte[] bytes = Files.readAllBytes (path);
byte[][] descriptors = new byte[l] [bytes.length];

descriptors[0]=bytes;
myAttribs.setProtobufDescriptorSets (descriptors) ;
myChannel = nsession.createChannel (myAttribs) ;

Universal Messaging Developer Guide Version 10.1 24

Enterprise APlIs

Then we can publish using the protobuf serialised as usual, along with the "name" of the
protobuf message type.

nProtobufEvent pbe = new nProtobufEvent (tester.toByteArray (), "SAGTester"):;
myChannel .publish (pbe) ;

You can then use Universal Messaging style message filters, as you would for normal

m

events. e.g. "Name="test".

Updating the Google Protocol Buffer

The protocol buffer definition files associated with a store (i.e. a channel or a queue) can
be updated without requiring the store to be deleted and re-created. Once updated, all
filtering will be done with the new protobuf definitions.

The definitions can be updated either programmatically or via the Enterprise Manager.
Updating Buffer Definitions in Enterprise Manager
To update the protocol buffer definitions for a store, proceed as follows:

1. In the Enterprise Manager, select the store whose descriptors you wish to update,
and right click on it.

2. Select "Update Protocol Buffers" from the dropdown menu.

3. On the file select page, select the file or files which contain the descriptors you wish
to set on this store (multi-select is enabled for loading multiple file descriptor sets).
Then click "Open".

4. The new protobuf definitions will now be applied to the store.
Updating Buffer Definitions Programmatically

Stores have a method updateProtobufDescriptors (byte[][] descriptors). This
takes an array of the descriptors to be applied to the channel. After calling this method,
the new descriptors will be loaded and will be used for filtering on the channel from that
point onwards. The code for performing this can be seen below.

nChannel myChannel = session.findChannel (channelAttributes) ;
myChannel .updateProtobufDefinitions (descriptors?2) ;

This APl is available via the client API. The Admin API is not required in order to
perform these operations.

Legacy protocol Buffer support

These nProtobufEvents are integrated seamlessly in Universal Messaging, allowing

for server-side filtering of Google Protocol Buffer events, which can be sent on
resources just like normal Universal Messaging events. The server side filtering of
messages is achieved by providing the server with a description of the data structures
(constructed at the .proto compile time, using the standard protobuf compiler and the
--descriptor_set_out option). The default location the server looks in for descriptor

files is /plugins/ProtobufDescriptors and this can be configured through the Enterprise
Manager. The server will monitor this folder for changes, and the frequency of these
updates can be configured through the Enterprise Manager. The server can then extract

Universal Messaging Developer Guide Version 10.1 25

Enterprise APlIs

the key value pairs from the binary Protobuf message and filter message delivery based
on user requirements.

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the Enterprise Manager is not running on the same machine as the server. To
enable this, the server outputs a descriptor set to a configurable directory (by default the
htdocs directory for the realm) and this can then be made available through a file plugin
etc. The directory can be changed through the Enterprise Manager. The Enterprise
Manager can then be configured to load this file using -DProtobufDescSetURL and then
the contents of the protocol buffers can be parsed.

Publish / Subscribe Using Channels/Topics

Publish / Subscribe is one of several messaging paradigms available in Universal
Messaging. Universal Messaging Channels are a logical rendezvous point for publishers
(producers) and subscribers (consumers) or data (events).

Universal Messaging DataStreams and DataGroups provide an alternative style of
Publish/Subscribe where user subscriptions can be managed remotely on behalf of
clients (see "Publish / Subscribe Using DataStreams and DataGroups" on page 38).

Universal Messaging Channels equate to Topics if you are using the Universal
Messaging Provider for JMS.

Under the publish / subscribe paradigm, each event is delivered to each subscriber once
and only once per subscription, and is not typically removed from the channel as a result
of the message being consumed by an individual client.

This section demonstrates how Universal Messaging pub / sub works in Java.

Creating a Channel

Channels can be created programmatically as detailed below, or they can be created
using the Enterprise Manager.

In order to create a channel, first of all you must create an nSession object, which is
effectively your logical and physical connection to a Universal Messaging realm. This is
achieved by using an RNAME for your Universal Messaging realm when constructing
the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

nSession mySession=nSessionFactory.create (nsa) ;
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession' we can then begin creating the channel
object. Channels have an associated set of attributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the channel, the attributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them.

Universal Messaging Developer Guide Version 10.1 26

Enterprise APlIs

To create a channel, we do the following:

nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents (0) ;

cattrib.setTTL(0) ;

cattrib.setType (nChannelAttributes.PERSISTENT TYPE) ;
cattrib.setName ("mychannel") ;

nChannel myChannel=mySession.createChannel (cattrib) ;

Now we have a reference to a Universal Messaging channel within the realm.

Setting User and Group Permissions during Channel Creation

User and a group permissions can be created using the factory methods defined in the
nStorePermission class.

For example, a user permission can be created with

nStorePermission.createForUser (<username>, <host>, <permission mask>)

or

nStorePermission.createForUser (<subject>, <permission mask>)

where <username> and <host> are String parameters, <subject> is a String in the format
"<username>@<host>" and <permission_mask> is a long representing the mask for the
corresponding user/group.

The permission mask must be generated using the nStorePermissionGenerator class. The
utility provides methods for building channel permissions from an EnumSet. The
following enumeration is defined:

®m nChannelStorePermission - for all permissions that can be applied on a channel

Here is an example for generating the permission mask:

long channelPermission = nStorePermissionGenerator.getChannelPermissions
(EnumSet.of (nChannelStorePermission.MANAGE, nChannelStorePermission.PUBLISH,
nChannelStorePermission.PURGE)) ;

The Client API contains the following method which is accessible from a session
instance:

createChannel (nChannelAttributes attributes, long initialEid,
Collection<nStorePermission> channelPermissions)

The method for creating multiple stores is overloaded and accepts collection with
permissions that can be applied to the corresponding store. Here is an example:

create (nChannelAttributes[] attr, Collection<Collection<nStorePermission>> permissionsList)

The permissions for each store are also a collection, since multiple permissions can be
applied on a single store during creation. If the create procedure fails for one of the
stores, the others are created successfully. The reason for the failure can be found using
the methods defined in the nCreateResult class which is used as a returned value for each
store when multiple channels are requested to be created from the client.

If applying the requested permissions fails when attempting to create a single channel,
an nSecurityException is thrown containing the name of the subject for which the operation
has failed. For example, if the client tries to grant permissions for a group which

Universal Messaging Developer Guide Version 10.1 27

Enterprise APlIs

does not exist, the operation will fail and the channel will not be created. The client is
authorized to grant permissions on store creation only for existing groups.

Here is a code sample illustrating the usage for creating a channel:

long userPermission = nStorePermissionGenerator.getChannelPermissions (
EnumSet.of (nChannelStorePermission.MANAGE, nChannelStorePermission.PUBLISH)) ;
long secondUserPermission = nStorePermissionGenerator.getChannelPermissions (
EnumSet.of (nChannelStorePermission.PUBLISH, nChannelStorePermission.PURGE)) ;
nStorePermission firstPermission = nStorePermission.createForUser (
"user", "127.0.0.1", userPermission);
nStorePermission secondPermission = nStorePermission.createForUser (
"username@127.0.0.1", secondUserPermission) ;
Collection<nStorePermission> channelPermissions =
Arrays.asList (firstPermission, secondPermission) ;
nChannelAttributes channelAttributes = new nChannelAttributes ("channelToCreate") ;
session.createChannel (channelAttributes, 0, channelPermissions);

Finding a Channel

In order to find a channel programmatically you must create your nSession object, which
is effectively your logical and physical connection to a Universal Messaging realm. This
is achieved by using the correct RNAME for your Universal Messaging realm when
constructing the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

nSession mySession=nSessionFactory.create (nsa) ;
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession’, we can then try to find the channel object.
Channels have an associated set of attributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the channel, the attributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To find a channel previously created, we do the following:

nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setName ("mychannel") ;
nChannel myChannel=mySession.findChannel (cattrib) ;

This returns a reference to a Universal Messaging channel within the realm.

Publishing events to a Channel

There are 2 types of publish available in Universal Messaging for channels:
m 'Reliable Publish" on page 29

B '"Transactional Publish" on page 29

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Universal Messaging Developer Guide Version 10.1 28

Enterprise APlIs

Transactional Publish involves creating a transaction object to which events are published,
and then committing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the channel has been located, an event must be constructed prior to a publish call being
made to the channel.

For reliable publish, there are a number of method prototypes on a channel that allow us
to publish different types of events onto a channel. Here are examples of some of them.
Further examples can be found in the API documentation.

// Publishing a simple byte array message

myChannel .publish (new nConsumeEvent ("TAG", message.getBytes()));
//Publishing a dictionary (nEventProperties)

nEventProperties props = new nEventProperties();

props.put ("bondname", "bondl") ;

props.put ("price", 100.00);

nConsumeEvent evt = new nConsumeEvent ("atag", props, "data".toBytes()):
myChannel .publish (evt) ;

// publishing an XML document

InputStream is = new FileInputStream(aFile);

DOMParser p = new DOMParser () ;

p.parse(new InputSource(is));

Document doc = p.getDocument () ;

myChannel.publish ("XML", doc);

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been committed will the events become available to subscribers on the
channel.

Below are some code snippets for transactional publishing:

//Publishing a single event in a transaction

nTransactionAttributes tattrib=new nTransasctionAttributes (myChannel) ;
nTransaction myTransaction=nTransactionFactory.create (tattrib);
myTransaction.publish (new nConsumeEvent ("TAG", message.getBytes())):;
myTransaction.commit () ;

//Publising multiple events in a transaction

Vector messages=new Vector();

messages.addElement (messagel) ;

nTransactionAttributes tattrib=new nTransasctionAttributes (myChannel) ;
nTransaction myTransaction=nTransactionFactory.create (tattrib);
myTransaction.publish (messages) ;

myTransaction.commit () ;

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may

Universal Messaging Developer Guide Version 10.1 29

Enterprise APlIs

be unclear. To verify that a transaction has been committed or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was committed:

boolean committed = myTransaction.isCommitted (true) ;

Sending XML Dom Objects

Universal Messaging provides inbuilt support for XML based messaging.
XML can be published as either a String or a DOM Document object.

A summary of the code needed to publish and consume XML data is provided below.
For more information please see the Universal Messaging publish XML and consume
XML examples.

Publishing
The code to read an XML file and publish it as DOM Document is as follows:

//Create an input stream

InputStream is = new FileInputStream(aFile);
//Create a DOM Parser object

DOMParser p = new DOMParser () ;

//Parse from the input stream

p.parse(new InputSource(is));

//Get the XML Document

doc = p.getDocument () ;

//Publish the Dom Document

myChannel.publish(tag, doc)

Subscribing

The code to consume XML is as follows:

//The nConsumEventListener Callback

void go(nConsumeEvent evt) {
//get the DOM Document from the Universal Messaging event
Document doc = evt.getDocument ()>
//pass it to the Universal Messaging xmlHelper class
xmlHelper xh = new xmlHelper(doc);
//output the XML to standard out
xh .dumpDoc () ;

Asynchronous Subscriber

Asynchronous channel subscribers consume events from a callback on an interface that
all asynchronous subscribers must implement. We call this interface an nEventListener.

The listener interface defines one method called 'go' which when called will pass events
to the consumer as they are delivered from the Universal Messaging Realm Server.

An example of such a simple listener is shown below:

Universal Messaging Developer Guide Version 10.1 30

Enterprise APlIs

public class mySubscriber implements nEventListener {
public mySubscriber () throws Exception {
// construct your session
// and channel objects here
// begin consuming events from the channel at event id 0
// i.e. the beginning of the channel
myChannel .addSubscriber (this , 0);
}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
}
public static void main(String[] args) {
new mySubscriber () ;
}
}

Asynchronous consumers can also be created using a selector, which defines a set of
event properties and their values that a subscriber is interested in. For example if events
are being published with the following event properties:

nEventProperties props =new nEventProperties|();
props.put ("BONDNAME”, “bondl”) ;

If you then provide a message selector string in the form of:

String selector = "BONDNAME='bondl'";

And pass this string into the addSubscriber method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Channel Iterator

Events can be synchronously consumed from a channel using a channel iterator object.
The iterator will sequentially move through the channel and return events as and when
the iterator getNext() method is called.

If you are using iterators so that you know when all events have been consumed from a
channel please note that this can also be achieved using an asynchronous subscriber by
calling the nConsumeEvents isEndOfChannel() method.

An example of how to use a channel iterator is shown below:

public class mylterator {
nChannelIterator iterator = null;
public myIterator () throws Excepetion {
// construct your session and channel objects
// start the iterator at the beginning of the channel (event id 0)
iterator = myChannel.createlterator (0);
}
public void start () {
while (true) {
nConsumeEvent event = iterator.getNext () ;
go (event) ;
}
}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID());
}
public static void main(String[] args) {
mylterator itr = new mylterator();

Universal Messaging Developer Guide Version 10.1 31

Enterprise APlIs

itr.start();
1
}
Synchronous consumers can also be created using a selector, which defines a set of event
properties and their values that a consumer is interested in. For example if events are
being published with the following event properties:

nEventProperties props =new nEventProperties|();
props.put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

String selector = "BONDNAME='bondl'"

And pass this string into the createlterator method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Batched Subscribe

If a client application needs to subscribe to multiple channels it is more efficient to batch
these subscriptions into a single server call. This is achieved using the subscribe method
of nSession rather than first finding the nChannel object and then calling the subscribe
method of nChannel.

The following code snippet demonstrates how to subscribe to two Universal Messaging
channels in one server call:

public class myEventListener implements nEventListener ({
public void go (nConsumeEvent evt) {
System.out.println ("Received an event!");
}

}
public void demo () {

nSubscriptionAttributes|[] arr = new nSubscriptionAttributes[2];
arr[0] = new nSubscriptionAttributes ("myChanl", "", 0, myLisl);
arr[l] = new nSubscriptionAttributes ("myChan2", "", 0, myLis2);

arr = mySession.subscribe (arr) ;
for (int 1 = 0; i < arr.length; i++) {
if (larr[i].wasSuccessful ()) {
handleSubscriptionFailure (arr[i]) ;

}

//subscription successful
}
}
public void handleSubscriptionFailure (nSubscriptionAttributes subAtts) {
subAtts.getException () .printStackTrace () ;

}

The nSubscriptionAttributes class is used to specify which channels to subscribe to.
The second two parameters of the constructor represent the selector to use for the
subscription and the event ID to subscribe from.

It is possible that the subscription may fail; for example, the channel may not exist or
the user may not have the required privileges. In this situation, calling wasSuccessful()
on the nSubscriptionAttributes will return false and getException() will return the
exception that was thrown.

Universal Messaging Developer Guide Version 10.1 32

Enterprise APlIs

If the subscription is successful then the nChannel object can be obtained from the
nSubscriptionAttributes as shown in the following code snippet:

nChannel chan = subAtts.getChannel () ;

Batched Find

In client applications, it is quite common to have multiple Channels or Queues that one
is trying to find. In these scenarios, the batched find call built into nSession is extremely
useful.

The following code snippet demonstrates how to find 2 Universal Messaging Channels
in one server call:

public void demo () {
nChannelAttributes|[] arr = new nChannelAttributes[2];
nChannel[] channels = new nChannels[2];
arr[0] = new nChannelAttributes ("myChanl")
arr[l] = new nChannelAttributes ("myChan2")
nFindResult[] results = mySession.find(arr
for (int i = 0; i < results.length; i++) {
if (!results[i].wasSuccessful ()) {
handleSubscriptionFailure (results[i]);
} else if (results[i].isChannel) {
channels[i] = results[i].getChannel () ;

’

)

}
}
}
public void handleSubscriptionFailure (nFindResult result) {
result.getException () .printStackTrace () ;
}

To perform the same operation for Queues, simply use the example above and exchange
nChannel for nQueue, and check each result returned to see if the isQueue() flag is set.

Durable channel consumers and named objects

Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Asynchronous Durable Consumer

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with an asynchronous event consumer:

public class mySubscriber implements nEventListener {

public mySubscriber () throws Exception {
// construct your session and channel objects here.
// create the named object and begin consuming events from
// the channel at event id 0, i.e. the beginning of the channel
nDurableAttributes.nDurableType type =

nDurableAttributes.nDurableType.Named;

nDurableAttributes attr = nDurableAttributes.create (type, "uniquel");
attr.setPersistent (true);
attr.setClustered(false);
attr.setStartEID(O) ;
nDurable named = myChannel.getDurableManager () .add (attr);
myChannel.addSubscriber (this , nobj);

Universal Messaging Developer Guide Version 10.1 33

Enterprise APlIs

}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
}
public static void main(String[] args) {
new mySubscriber () ;

}

Synchronous Durable Consumer

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with a synchronous event consumer:

public class mylterator {
nChannelIterator iterator = null;
public myIterator () throws Exception {
// construct your session and channel objects here
// create the named object and begin consuming events from the channel
// at event id 0, i.e. the beginning of the channel
nDurableAttributes.nDurableType type =
nDurableAttributes.nDurableType.Named;
nDurableAttributes attr = nDurableAttributes.create (type, "unique2");
attr.setPersistent (true) ;
attr.setClustered(false);
attr.setStartEID(0) ;
nDurable named = myChannel.getDurableManager () .add (attr);
iterator = myChannel.createlterator (named) ;
}
public void start () {
while (true) {
nConsumeEvent event = iterator.getNext () ;
go (event) ;
}
}

public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;

}

public static void main(String[] args) {
myIlterator itr = new mylterator();
itr.start();

}

Both synchronous and asynchronous channel consumers allow message selectors to be
used in conjunction with named objects. Please see the API documentation for more
information.

There are also different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method:

public void go (nConsumeEvent event) ({

System.out.println ("Consumed event "+event.getEventID()) ;
event.ack();

Universal Messaging Developer Guide Version 10.1 34

Enterprise APlIs

Shared Durable Consumer

Multiple subscribers can hold a subscription to the same named object and all the

subscribers will process events in a round-robin manner.

nDurableAttributes.nDurableType type =
nDurableAttributes.nDurableType.Shared;

nDurableAttributes attr = nDurableAttributes.create (type, "shared durable") ;

attr.setPersistent (persistent) ;

attr.setClustered (isClusterWide) ;

attr.setStartEID(startEid) ;

nDurable shared = channels.getDurableManager () .add (attr);

Serial Durable Consumer

Multiple subscribers can hold a subscription to the same named object and all the

subscribers will process events in a serial manner.

nDurableAttributes.nDurableType type =
nDurableAttributes.nDurableType.Serial;

nDurableAttributes attr = nDurableAttributes.create (type, "serial durable");

attr.setPersistent (persistent) ;

attr.setClustered(isClusterWide) ;

attr.setStartEID(startEid) ;
nDurable serial = channels.getDurableManager () .add (attr) ;

Priority

Two subscribers can hold a subscription to the same named object. One is given priority
and will process events during normal operation. If, however, the subscriber with
priority is disconnected for whatever reason, and is unable to process events, the second
subscriber to that named object will take over and continue to process events as they
come in. This allows failover, with backup subscribers handling events if the subscriber
with priority goes down.

To do this, we simply create the subscriber with a boolean specifying if this subscriber
has priority. Only one subscriber is allowed priority at any given time. An example of a
named object specifying priority is shown below:
nDurableAttributes.nDurableType type =
nDurableAttributes.nDurableType.Priority;
nDurableAttributes attr =
nDurableAttributes.create (type, "priority durable");
attr.setPersistent (persistent) ;
attr.setClustered(isClusterWide) ;
attr.setStartEID(startEid) ;
nDurable named = channels.getDurableManager () .add (attr);

Named Objects

Universal Messaging provides the ability for the server to maintain state for the last
event that was consumed by a consumer on a channel. By providing a unique name, you
can create a named object on a channel and even when your application is stopped, the
next time you start your application, you will only consume available events from the
last event id that the server stored as successfully consumed by that named object.

Universal Messaging Developer Guide Version 10.1 35

Enterprise APlIs

Named objects can be persistent, i.e. the last eid is written to disk, so that if the Universal
Messaging Realm Server is restarted, the last eid consumed is retrievable for each named
object on a channel.

An example of how to create a named object that begins from event id 0, and is
persistent is shown below:

nNamedObject nobj = myChannel.createNamedObject ("uniquel", 0, true);

Event Fragmentation

Universal Messaging is capable of sending large messages. The maximum message
size is given by the configuration parameter MaxBufferSize. For a description of this
parameter, see the section Realm Configuration in the description of the Enterprise
Manager in the Universal Messaging Administration Guide.

However, to get the best performance out of the system, it is important to consider how
the data for such events is sent. In some cases, it might be better to compress or fragment
the message rather than increasing MaxBufferSize.

If you want to send a large file, you could first compress the file before attaching it to

an nConsumeEvent as a byte array. It takes time to compress data but as long as the data
compresses well, you may find that the by reducing the network utilization, your system
operates more efficiently.

Another option is to fragment the data. To fragment the data you need to convert to a
byte array as before, but split the byte array and send multiple nConsumeEvent requests
rather than one. By doing this, the events are handled completely separately by the
server, so there are some things to consider; for example, this approach will not work if
you are using a queue with multiple consumers.

The Merge Engine and Event Deltas

In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. The subscriber will receive a full event on initial subscription, which
contains the most up to date state of the event. After the initial message, only the key/
value pairs which have changed since the last message will be sent to the client.

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been

created with the Merge Engine and it must have a single Publish Key. The publish key
represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such:

nChannelAttributes cattr
= new nChannelAttributes ("RatesChannel", 0, 0, nChannelAttributes.SIMPLE TYPE);

Universal Messaging Developer Guide Version 10.1 36

Enterprise APlIs

//
// This next line tells the server to Merge incoming events based on the publish
// key name and the name of the registered event

//

cattr.useMergeEngine (true) ;

//
// Now create the Publish Key (See publish Keys for a full description

//
nChannelPublishKeys[] pks = new nChannelPublishKeys[1l];
pks[0] = new nChannelPublishKeys ("ccy", 1);
cattr.setPublishKeys (pks) ;

//

// Now create the channel

//

myChannel = mySession.createChannel (cattr);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.

nRegisteredEvent audEvent = myChannel.createRegisteredEvent ("AUD") ;

nEventProperties props = audEvent.getProperties() ;

props.put ("bid", 0.8999);

props.put ("offer", 0.9999);

props.put ("close", "0.8990");
audEvent.commitChanges () ;

You now have a nRegisteredEvent called audEvent which is bound to a ccy value

of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:

props.put ("bid", 0.9999);
audEvent.commitChanges () ;

This code will send only the new "bid" change to the server. The server will modify the

event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener

The subscriber implements nEventListener in the usual way and does not need to do
anything different in order to receive either event deltas or snapshots containing the
result of one or more merge operations. The standard nEventListener will receive a
full event when the subscriptions is initiated. Thereafter it will receive only deltas. If at
any time the user is disconnected then it will receive a fresh update of the full event on
reconnection - followed by a resumption of delta delivery.

If you wish to differentiate between snapshot events and delta events then the
nConsumeEvent attributes can be used as follows:

event.getAttributes () .isDelta() ;

Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same channel or queue. Universal Messaging provides the ability to
expedite messages based on a priority level. Messages with higher levels of priority are

Universal Messaging Developer Guide Version 10.1 37

Enterprise APlIs

able to be delivered to clients ahead of lower priority messages. The priority is a numeric
value in the range 0 (lowest priority) to 9 (highest priority).

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:

nConsumeEvent evt;
evt.getAttributes () .setPriority ((byte) 9);

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically, events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis, and the effects
become more noticeable as load increases.

Note: If events are stored for replay at a later stage, for example for a durable
subscriber who is currently not consuming events, higher priority events will
be delivered earlier than lower priority events when the durable subscriber
starts consuming the events, even if the lower priority events were created
much earlier .

Publish / Subscribe Using DataStreams and DataGroups

Publish / Subscribe is one of several messaging paradigms supported by Universal
Messaging. Universal Messaging DataGroups are lightweight structures designed to
facilitate Publish/Subscribe . When using DataGroups, user subscriptions are managed
remotely in a way that is transparent to subscribers. Universal Messaging Channels
provide an alternative style of Publish/Subscribe where the subscribers manage their
subscriptions directly.

There are two resources that are used when interacting with DataGroups: DataStreams
and DataGroups.
DataStreams

A Data Stream is a destination for published events. Publishers with appropriate
permissions can write events directly to Data Streams. A Universal Messaging client
session can optionally have a Data Stream, and receive events through it.

A Data Stream can be a member of one or more Data Groups.

Universal Messaging Developer Guide Version 10.1 38

Enterprise APlIs

DataGroups

Any event written to a Data Group will be propagated to all Data Streams that are
members of that Data Group.

Data Groups may also contain other Data Groups. Any event written to an upper level
Data Group will be written to all contained Data Groups, and thus to all contained Data
Streams.

Note that all Data Streams are automatically added to the realm server's Default Data
Group. Writing an event to the Default Data Group, therefore, will ensure it is delivered
to any client with a session configured to use a Data Stream.

This section demonstrates Universal Messaging pub / sub using DataGroups in Java, and
provides example code snippets for all relevant concepts:

DataStreamListener

If a nSession is created with a nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

B Anevent is published directly to this particular nDataStream
B Anevent is published to any nDataGroup which contains this nDataStream

B An event is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

B Anexample of how to create a session with an nDataStreamListener interface is
shown below:

public class DataGroupClient implements nDataStreamListener({

nSession mySession;

public DataGroupClient (String realmURLs) {
nSessionAttributes nsa = new nSessionAttributes (realmURLSs) ;
mySession = nSessionFactory.create(nsa, this);
mySession.init (this);

}

/177

// nDataStreamListener Implementation

/177

//Callback received when event is available

public void onMessage (nConsumeEvent event) {

//some code to process the message

}

Creating and Deleting DataGroups

Creating Universal Messaging DataGroups

nDataGroups can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

Universal Messaging Developer Guide Version 10.1 39

Enterprise APlIs

In order to create a nDataGroup, first of all you must create an nSession object, which is
effectively your logical and physical connection to a Universal Messaging Realm. This is
achieved by using an RNAME for your Universal Messaging Realm when constructing
the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes (RNAME) ;
nSession mySession=nSessionFactory.create (nsa) ;
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession object instance 'mySession’, you can then create DataGroups. The
create DataGroup methods will return the nDataGroup if it already exists.

The code snippets below demonstrate the creation of nDataGroups:

Create a Single nDataGroup

nDataGroup myGroup = mySession.createDataGroups ("myGroup") ;

Create Multiple nDataGroups

String[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession.createDataGroups (groups) ;

Creating DataGroups with DataGroupListeners and ConflationAttributes
It is also possible to specify additional properties when creating DataGroups:
®m nDataGroupListener - To specify a listener for DataGroup membership changes

® nConflationAttributes - To specify attributes which control event merging and
delivery throttling for the DataGroup

Now we have a reference to a Universal Messaging DataGroup it is possible to publish
events

Deleting Universal Messaging DataGroups

There are various deleteDataGroup methods available on nSession which will delete
DataGroups. It is possible to specify single nDataGroups or arrays of nDataGroups.

Managing DataGroup Membership

DataGroups are extremely lightweight from both client and server perspectives; a back-
end process, such as a Complex Event Processing engine, can simply create DataGroups
and then add or remove users (or even entire nested DataGroups) based on bespoke
business logic. A user who is removed from one DataGroup and added to another

will continue to receive events without any interruption to service, or indeed explicit
awareness that any DataGroup change has occurred.

Universal Messaging Developer Guide Version 10.1 40

Enterprise APlIs

This page details some of the typical operations that DataGroup management process
would carry out. Please see our Java sample apps for more detailed examples of
DataGroup management.

Tracking Changes to DataGroup Membership (DataGroupListener)

The nDataGroupListener interface is used to provide asynchronous notifications
when nDataGroup membership changes occur. Each time a user (nDataStream) or
nDataGroup is added or removed from a nDataGroup a callback will be received.
public class datagroupListener implements nDataGroupListener ({

nSession mySession;
public datagrouplListener (nSession session) {

mySession = session;
//add this class as a listener for all nDataGroups on this Universal Messaging
// realm

mySession.getDataGroups (this) ;

}

/177

//DataGrouplListener Implementation

/1]

public void addedGroup (nDataGroup to, nDataGroup group, int count) {
//Called when a group has been added to the 'to' data group.
//count is the number of nDataStreams that will receive any events published
//to this nDataGroup

}

public void addedStream (nDataGroup group, nDataStream stream, int count) {
//Called when a new stream has been added to the data group.

}

public void createdGroup (nDataGroup group) {
//Called when a group has been created.

}

public void deletedGroup (nDataGroup group) {
//Called when a group has been deleted.

}

public void deletedStream (nDataGroup group, nDataStream stream, int count,

boolean serverRemoved) {

//Called when a stream has been deleted from the data group.
//serverRemoved is true if the nDataStream was removed because of flow control

}

public void removedGroup (nDataGroup from, nDataGroup group, int count) {
//Called when a group has been removed from the 'from' data group.

}

}

There are three ways in which the nDataGroupListener can be used:

Listening to an individual DataGroup
Listeners can be added to individual DataGroups when they are created or at any time
after creation. The code snippets illustrate both approaches:

mySession.createDataGroup (dataGroupName, datagroupListener);
myDataGroup.addListener (datagroupListener) ;

Universal Messaging Developer Guide Version 10.1 41

Enterprise APlIs

Listening to the Default DataGroup

The Default nDataGroup is a DataGroup to which all nDataStreams are added by
default. If you add a DataGroupListener to the default DataGroup then callbacks will be
received when:

B anDataStream is connected/disconnected

® anDataGroup is created or deleted

Listening to all DataGroups on a Universal Messaging Realm

The code snippet below will listen on all nDataGroups (including the default
DataGroup).

mySession.getDataGroups (datagroupListener) ;

Adding and Removing DataGroup Members

The nDataGroup class provides various methods for adding and removing
nDataStreams and nDataGroups. Please see the nDataGroup API documentation for a
tull list of methods. Examples of some of these are provided below:

//Add a nDataStream (user) to a nDataGroup

public void addStreamToDataGroup (nDataGroup group, nDataStream user) {
group.add (user) ;

}

//Remove a nDataStream (user) from a nDataGroup

public void removeStreamFromDataGroup (nDataGroup group, nDataStream user) {
group.remove (user) ;

}

//Add a nDataGroup to a nDataGroup

public void addNestedDataGroup (nDataGroup parent, nDataGroup child) {
parent.add (child) ;

}

//Remove a nDataGroup from a nDataGroup

public void removeNestedDataGroup (nDataGroup parent, nDataGroup child) {
parent.remove (child) ;

}

DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throttling of events) occurs when messages are published. Conflation can be carried

out in several ways and these are specified using a nConflationAttributes object. The
ConflationAttributes object is passed in to the DataGroup when it is created initially.

The nConflationAttributes object has two properties action and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:

nConflationAttributes.sMergeEvents
nConflationAttributes.sDropEvents

Universal Messaging Developer Guide Version 10.1 42

Enterprise APlIs

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object

//ConflationAttributes specifying merge events and no throttled delivery
nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sMergeEvents, 0);
//ConflationAttributes specifying merge events and throttled delivery at 1 second intervals
nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sMergeEvents, 1000) ;
//ConflationAttributes specifying drop events and throttled delivery at 1 second intervals
nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sDropEvent, 1000);

Create a Single nDataGroup with Conflation Attributes

public class datagroupListener implements nDataGroupListener {

nSession mySession;

nDataGroup myDataGroup;

public datagrouplListener (nSession session, nConflationAttributes confattribs,

String dataGroupName) {

mySession = session;
//create a DataGroup passing in this class as a nDataGroupListener and a
//ConflationAttributes
myDataGroup = mySession.createDataGroup (dataGroupName, this, confattribs)

Create Multiple nDataGroups with Conflation Attributes

nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sMergeEvents, 1000) ;
String[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession.createDataGroups (groups, confattribs) ;

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have a nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.

nRegisteredEvent audEvent = myDataGroup.createRegisteredEvent () ;

nEventProperties props = audEvent.getProperties();

props.put ("bid", 0.8999);

props.put ("offer", 0.9999);

props.put ("close", "0.8990");
audEvent.commitChanges () ;

You now have a nRegisteredEvent called audEvent which is bound to the data group
that could be called 'aud'. We then set the properties relevant to the application, finally
we call commitChanges(), this will send the event, as is, to the server. At this point if the
bid was to change then that individual field can be published to the server as follows:

props.put ("bid", 0.9999);
audEvent.commitChanges () ;

Universal Messaging Developer Guide Version 10.1 43

Enterprise APlIs

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

When a data group has been created with Merge conflation, all registered events
published to that data group will have their nEventProperties merged into the snapshot
event, before the delta event is delivered to the consumers.

When using Merge conflation with an interval (ie throttling), all updates will be merged
into a conflated event (as well as the snapshot event) that will be delivered within the
chosen interval. For example, consider the following with a merge conflated group and
an interval set to 100ms (i.e. maximum of 10 events a second):

Scenario 1

t0 - Publish Messagel, Bid=1.234 (This message will be immediately
delivered, and merged into the snapshot)
tl0 - Publish Message2, Offer=1.234 (This message will be held as a
conflation event, and merged into the snapshot)
t20 - Publish Message3, Bid=1.345 (This message will be merged with the
conflated event, and with the snapshot)
£100 - Interval hit (Conflated event containing Offer=1.234,Bid=1.345

is delivered to consumers)
Interval timer reset to +100ms, ie t200

£101 — Publish Message4, Offer=1.345 (This message will be held as a conflation event,
and merged into the snapshot)

Where t0...tn is the time frame in milliseconds from now.

Scenario 2

t0 - Publish Messagel, Bid=1.234 (This message will be immediately
delivered, and merged into the snapshot)

£100 - Interval hit (Nothing is sent as there has been no update
since tO0)

t101 - Publish Message2, Offer=1.234 (This message will be immediately

delivered, and merged into the snapshot)
Interval timer reset to +100ms, ie t201

Meanwhile, if any new consumers are added to the Data Group, they will always
consume the most up to date snapshot and then begin consuming any conflated updates
after that.

Publishing Events to Conflated DataGroups With A Drop Policy
If you have specified a "Drop" policy in your ConflationAttributes then events are
published in the normal way rather than using nRegisteredEvent.

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will
contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

DataGroups Event Publishing

You can get references to any DataGroup from the nSession object. There are various
writeDataGroup methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataGroups.

Universal Messaging Developer Guide Version 10.1 44

Enterprise APlIs

myDataGroup = mySession.getDataGroup ("myGroup") ;
nEventProperties props = new nEventProperties();
//You can add other types in a dictionary object
props.put ("keyOstring"+x, "1"+x);

props.put ("keylint", (int) 1);
props.put ("key2long", (long) -11);
nConsumeEvent evtl = new nConsumeEvent (props, buffer);

//Publish the event
mySession.writeDataGroup (evtl, myDataGroup) ;

DataStream Event Publishing

You can get references to any nDataStream (user) from the nSession object if you

call getDefaultDataGroup(). You can also access nDataStreams by implementing the
nDataGroupListener interface. Please see DataGroup management for more information.
This will deliver callbacks as users are connected/disconnected. There are various
writeDataStream methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataStreams.

nEventProperties props = new nEventProperties();

//You can add other types in a dictionary object
props.put ("keyOstring"+x, "1"+x);

props.put ("keylint", (int) 1);
props.put ("key2long", (long) -11);
nConsumeEvent evtl = new nConsumeEvent (props, buffer);

//Publish the event
mySession.writeDataStream(evtl, myDataStream)

Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same datagroup. Universal Messaging provides the ability to expedite
messages based on a priority level. Messages with higher levels of priority are able to be
delivered to clients ahead of lower priority messages. The priority is a numeric value in
the range 0 (lowest priority) to 9 (highest priority).

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:
nConsumeEvent evt;
evt.getAttributes () .setPriority ((byte) 9);

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

Universal Messaging Developer Guide Version 10.1 45

Enterprise APlIs

As Priority Messaging is done dynamically, events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis, and the effects
become more noticeable as load increases.

Note: If events are stored for replay at a later stage, for example for a durable
subscriber who is currently not consuming events, higher priority events will
be delivered earlier than lower priority events when the durable subscriber
starts consuming the events, even if the lower priority events were created
much earlier .

Message Queues

Message queues are one of several messaging paradigms supported by Universal
Messaging.

Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) or data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

Universal Messaging also supports non destructive reads (peeks) from queues which
enable consumers to see what events are on a queue without removing it from the
queue. Any event which has been peeked will still be queued for popping in the normal
way. The Universal Messaging enterprise manager also supports the ability to visually
peek a queue using it s snoop capability.

This section demonstrates how Universal Messaging message queues work in Java, and
provide examples code snippets for all relevant concepts:

Creating a Queue

In order to create a queue, first of all you must create your nSession object, which is your
effectively your logical and physical connection to a Universal Messaging Realm. This

is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

nSession mySession=nSessionFactory.create (nsa) ;
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then begin creating the queue
object. Queues have an associated set of attributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the queue, the attributes

Universal Messaging Developer Guide Version 10.1 46

Enterprise APlIs

determine the availability of the events published to a queue to any consumers wishing
to consume them.

To create a queue, we do the following;:

nChannelAttributes cattrib = new nChannelAttributes () ;
cattrib.setChannelMode (nChannelAttributes.QUEUE MODE) ;
cattrib.setMaxEvents (0) ;

cattrib.setTTL(0) ;

cattrib.setType (nChannelAttributes.PERSISTENT TYPE) ;
cattrib.setName ("myqueue") ;

nQueue myQueue=mySession.createQueue (cattrib) ;

Now we have a reference to a Universal Messaging queue within the realm.

Setting User and Group Permissions during Queue Creation

User and a group permissions can be created using the factory methods defined in the
nStorePermission class.
For example, a user permission can be created with

nStorePermission.createForUser (<username>, <host>, <permission mask>)

or
nStorePermission.createForUser (<subject>, <permission mask>)
where <username> and <host> are String parameters, <subject> is a String in the format

"<username>@<host>" and <permission_mask> is a long representing the mask for the
corresponding user/group.

The permission mask must be generated using the nStorePermissionGenerator class. The
utility provides methods for building queue permissions from an EnumSet. The
following enumeration is defined:

® nQueueStorePermission - for all permissions that can be applied on a queue

Here is an example for generating the permission mask:
long queuePermission = nStorePermissionGenerator.getQueuePermissions

(EnumSet.of (nQueueStorePermission.MANAGE, nQueueStorePermission.PUSH)) ;

The Client API contains the following method which is accessible from a session
instance:

createQueue (nChannelAttributes attributes, Collection<nStorePermission> queuePermissions)

The method for creating multiple stores is overloaded and accepts collection with
permissions that can be applied to the corresponding store. Here is an example:

create (nChannelAttributes[] attr, Collection<Collection<nStorePermission>> permissionsList)

The permissions for each store are also a collection, since multiple permissions can be
applied on a single store during creation. If the create procedure fails for one of the
stores, the others are created successfully. The reason for the failure can be found using
the methods defined in the nCreateResult class which is used as a returned value for each
store when multiple queues are requested to be created from the client.

If applying the requested permissions fails when attempting to create a single queue, an
nSecurityException is thrown containing the name of the subject for which the operation has

Universal Messaging Developer Guide Version 10.1 47

Enterprise APlIs

failed. For example, if the client tries to grant permissions for a group which does not
exist, the operation will fail and the queue will not be created. The client is authorized to
grant permissions on store creation only for existing groups.

Here is a code sample illustrating the usage for creating a queue:

long userPermission = nStorePermissionGenerator.getQueuePermissions (
EnumSet.of (nQueueStorePermission.MANAGE, nQueueStorePermission.PUSH)) ;
long groupPermissionMask = nStorePermissionGenerator.getQueuePermissions (
EnumSet.of (nQueueStorePermission.PEEK, nQueueStorePermission.PURGE)) ;
nStorePermission firstPermission = nStorePermission.createForUser (
"user", "127.0.0.1", userPermission);
nStorePermission secondPermission = nStorePermission.createForUser (
"secondUser", "10.0.34.71", secondUserPermission);
Collection<nStorePermission> queuePermissions =
Arrays.asList (firstPermission, secondPermission) ;
nChannelAttributes channelAttributes = new nChannelAttributes ("queueToCreate") ;
session.createQueue (channelAttributes, queuePermissions) ;

Finding a Queue

In order to find a queue, first of all the queue must be created. This can be achieved
through the Universal Messaging Enterprise Manager, or programmatically. First of all
you must create your nSession object, which is your effectively your logical and physical
connection to a Universal Messaging Realm. This is achieved by using the correct
RNAME for your Universal Messaging Realm when constructing the nSessionAttributes
object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

nSession mySession=nSessionFactory.create (nsa);
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession’, we can then try to find the queue object.
Queues have an associated set of attributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the queue, the attributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To find a queue previously created, we do the following;:

nChannelAttributes cattrib = new nChannelAttributes () ;
cattrib.setName ("myqueue") ;
nQueue myQueue=mySession.findQueue (cattrib) ;

Now we have a reference to a Universal Messaging queue within the realm.

Queue Publish

There are 2 types of publish available in Universal Messaging for queues:

Reliable publish is simply a one way push to the Universal Messaging Server. This
means that the server does not send a response to the client to indicate whether the
event was successfully received by the server from the publish call.

Universal Messaging Developer Guide Version 10.1 48

Enterprise APlIs

Transactional publish involves creating a transaction object to which events are
published, and then committing the transaction. The server responds to the transaction
commit call indicating if it was successful. There are also means for transactions to be
checked for status after application crashes or disconnects.

Reliable Publish

Once you have established a session and find a queue, you then need to construct an
event and publish the event onto the queue.

For reliable publish, here is the example code for how to publish events to a queue.
Further examples can be found in the API documentation.

// Publishing a simple byte array message

myQueue.push (new nConsumeEvent ("TAG", message.getBytes()));

// publishiing an XML document

InputStream is = new FileInputStream(aFile);

DOMParser p = new DOMParser () ;

p.parse(new InputSource(is));

Document doc = p.getDocument () ;

myQueue.push ("XML", doc);

Transactional Publish

Transactional publishing provides us with a method of verifying that the server receives
the events from the publisher, and provides guaranteed delivery.

There are similar prototypes available to the developer for transaction publishing. Once
we have established our session and our queue, we then need to construct our events
and our transaction and publish these events to the transaction. Then the transaction will
be committed and the events available to consumers to the queue.

Below is a code snippet of how transactional publishing is achieved:

Vector messages=new Vector () ;

Messages.addElement (messagel) ;

nTransactionAttributes tattrib=new nTransasctionAttributes (myQueue) ;
nTransaction myTransaction=nTransactionFactory.create (tattrib) ;
myTransaction.publish (messages) ;

myTransaction.commit () ;

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been committed or aborted, an call can be
made on the transaction that will determine if the events within the transactional were
successfully received by the Universal Messaging Realm Server.

boolean committed = myTransaction.isCommitted (true) ;

Which will query the Universal Messaging Realm Server to see if the transaction was
committed.

Asynchronous Queue Consuming

Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The

Universal Messaging Developer Guide Version 10.1 49

Enterprise APlIs

listener interface defines one method called 'go' which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

An example of an asynchronous queue reader is shown below:

public class myAsyncQueueReader implements nEventListener ({
nQueue myQueue = null;
public myAsyncQueueReader () throws Exception {
// construct your session and queue objects here
// begin consuming events from the queue
nQueueReaderContext ctx = new nQueueReaderContext (this, 10);
nQueueAsyncReader reader = myQueue.createAsyncReader (ctx) ;
}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
}
public static void main(String[] args) {
try {
new myAsyncQueueReader () ;
} catch (Exception e) {
e.printStackTrace () ;

}

}

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a subscriber is interested in. For example if
events are being published with the following event properties:

nEventProperties props =new nEventProperties() ;
props.put ("BONDNAME”, “bondl”) ;

If you then provide a message selector string in the form of:

String selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Synchronous Queue Consuming

Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

An example of a synchronous queue reader is shown below:

public class mySyncQueueReader {
nQueueSyncReader reader = null;
nQueue myQueue = null;
public mySyncQueueReader () throws Exception ({
// construct your session and queue objects here
// construct the queue reader
nQueueReaderContext ctx = new
nQueueReaderContext (this, 10);
reader = myQueue.createReader (ctx) ;
}
public void start() throws Exception {
while (true) {
// pop events from the queue
nConsumeEvent event = reader.pop/() ;

Universal Messaging Developer Guide Version 10.1 50

Enterprise APlIs

go (event) ;
}
t
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
t
public static void main(String[] args) {
try {
mySyncQueueReader sqr = new mySyncQueueReader () ;
sgr.start () ;
} catch (Exception e) {
e.printStackTrace () ;

}
}

Synchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a consumer is interested in. For example if
events are being published with the following event properties:

nEventProperties props =new nEventProperties|();
props.put ("BONDNAME”, “bondl”) ;

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Asynchronous Transactional Queue Consuming

Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called 'go' which when called will
pass events to the consumer as they are delivered from the Universal Messaging Realm
Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:

public class myAsyncTxQueueReader implements nEventListener ({
nQueueAsyncTransactionalReader reader = null;
nQueue myQueue = null;
public myAsyncTxQueueReader () throws Exception {
// construct your session and queue objects here
// begin consuming events from the queue
nQueueReaderContext ctx = new
nQueueReaderContext (this, 10);
reader = myQueue.createAsyncTransactionalReader (ctx) ;
}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
reader.commit () ;

Universal Messaging Developer Guide Version 10.1 51

Enterprise APlIs

public static void main(String[] args) {
try {
new myAsyncTxQueueReader () ;
} catch (Exception e) {
e.printStackTrace () ;

}
}

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been committed, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a subscriber is interested in. For example if
events are being published with the following event properties:

nEventProperties props =new nEventProperties();
props.put (“"BONDNAME”, “bondl”) ;

If you then provide a message selector string in the form of:

String selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Synchronous Transactional Queue Consuming

Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional synchronous queue reader is shown below:

public class mySyncTxQueueReader ({

nQueueSyncTransactionReader reader = null;

nQueue myQueue = null;

public mySyncTxQueueReader () throws Exception ({
// construct your session and queue objects here
// construct the transactional queue reader
nQueueReaderContext ctx = new
nQueueReaderContext (this, 10);

Universal Messaging Developer Guide Version 10.1 52

Enterprise APls

reader = myQueue.createTransactionalReader (ctx) ;
}
public void start() throws Exception {
while (true) {
// pop events from the queue
nConsumeEvent event = reader.pop() ;
go (event) ;
// commit each event consumed
reader.commit (event.getEventID()) ;

}
}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
}
public static void main(String[] args) {
try {
mySyncTxQueueReadersqr = new mySyncTxQueueReader () ;
sqr.start () ;
}catch (Exception e) {
e.printStackTrace () ;

}
}

As previously mentioned, the big difference between a transactional synchronous
reader and a standard synchronous queue reader is that once events are consumed by
the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been committed, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Synchronous queue consumers can also be created using a selector, which defines a
set of event properties and their values that a consumer is interested in. For example if
events are being published with the following event properties:

nEventProperties props =new nEventProperties () ;
props.put (Y"BONDNAME”, “bondl”) ;

If you then provide a message selector string in the form of:

String selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Queue Browsing / Peeking

Universal Messaging provides a mechanism for browsing (peeking) queues. Queue
browsing is a non-destructive read of events from a queue. The queue reader used

by the peek will return an array of events, the size of the array being dependent on
how many events are in the queue, and the window size defined when your reader

Universal Messaging Developer Guide Version 10.1 53

Enterprise APlIs

context is created. For more information, please see the Universal Messaging Client API
documentation.

An example of a queue browser is shown below:

public class myQueueBrowser {
nQueueReader reader = null;
nQueuePeekContext ctx = null;
nQueue myQueue = null;
public myQueueBrowser () throws Exception {
// construct your session and queue objects here
// create the queue reader
reader = myQueue.createReader (new
nQueueReaderContext ()) ;
ctx = nQueueReader.createContext (10);
}
public void start() throws Exception {
boolean more = true;
long eid =0;
while (more) {
// browse (peek) the queue
nConsumeEvent [] evts = reader.peek(ctx);
for (int x=0; x < evts.length; x++) {
go (evts[x]) ;
}
more = ctx.hasMore () ;
}
}
public void go (nConsumeEvent event) ({
System.out.println ("Consumed event "+event.getEventID()) ;
}
public static void main(String[] args) {
try {
myQueueBrowser gbrowse = new myQueueBrowser () ;
gbrowse.start () ;
} catch (Exception e) {
e.printStackTrace () ;
}

}

Queue browsers can also be created using a selector, which defines a set of event
properties and their values that a browser is interested in. For example if events are
being published with the following event properties:

nEventProperties props =new nEventProperties();
props.put ("BONDNAME”, “bondl”) ;

If you then provide a message selector string in the form of:
String selector = "BONDNAME='bondl'";
And pass this string into the constructor for the nQueuePeekContext object shown in the

example code, then your browser will only receive messages that contain the correct
value for the event property BONDNAME.

Universal Messaging Developer Guide Version 10.1 54

Enterprise APlIs

Request Response

Subscriber Based Publish

Universal Messaging can easily be used to issue request/response message exchanges.
To accomplish this, the requester simply publishes an event to a request queue and then
listens for a response to be issued on a response queue. The responder tags this response
with the username of the requester, and this ensures that only the requester will see the
response event.

Requester

The requester publishes an event to a request queue and then listens for a response to be
issued on a response queue. The response will be tagged with the tag of the requester.
This tag is specified during the initial configuration of the session, as shown below:

mySession = nSessionFactory.create(nsa, this,"subscriber tag"):;

After setting this, the requester simply publishes an event to the request queue and
listens for a reply on the response queue.

An example Java requester is available in the examples section.

Responder

The responder listens to the request channel and responds to each request event. To
ensure the message is only delivered to the correct recipient, the Subscriber Name
must be set on the response event. The response event's data can contain the relevant
information the user needs.

//Having received a request event req, and established a connection to

//a response queue respQueue.

System.out.println ("Received request");
//Retrieve username of request sender.

String requester = reqg.getPublishUser() ;
//Construct reply message.
String text = "Response: " + new String(reqg.getEventDatal());

//Construct reply event

nEventProperties atr = new nEventProperties();

nConsumeEvent resp = new nConsumeEvent (atr, text.getBytes()):
//Set recipient of the event to the requester's tag to reply.
resp.setSubscriberName (requester.getBytes()) ;
respQueue.push (resp) ;

An example Java responder is available in the examples section.

Event Fragmentation

Universal Messaging is capable of sending large messages. The maximum message
size is given by the configuration parameter MaxBufferSize. For a description of this
parameter, see the section Realm Configuration in the description of the Enterprise
Manager in the Universal Messaging Administration Guide.

Universal Messaging Developer Guide Version 10.1 55

Enterprise APlIs

However, to get the best performance out of the system, it is important to consider how
the data for such events is sent. In some cases, it might be better to compress or fragment
the message rather than increasing MaxBuffersize.

If you want to send a large file, you could first compress the file before attaching it to

an nConsumeEvent as a byte array. It takes time to compress data but as long as the data
compresses well, you may find that the by reducing the network utilization, your system
operates more efficiently.

Another option is to fragment the data. To fragment the data you need to convert to a
byte array as before, but split the byte array and send multiple nConsumeEvent requests
rather than one. By doing this, the events are handled completely separately by the
server, so there are some things to consider; for example, this approach will not work if
you are using a queue with multiple consumers.

Provider for JMS

Overview of the Provider for JMS

This guide describes the programmatic steps you can take in order to use Universal
Messaging Provider for JMS. There is also a section that will help you discover how to
perform administration of JMS objects in the Universal Messaging Enterprise Manager
section.

Topics and Queues

Universal Messaging Enterprise Server includes support for JMS functionality such as
topics and queues.

JMS topics correspond to channels in Universal Messaging publish / subscribe, and JMS
queues correspond to Universal Messaging message queues.

Communication Drivers

The pluggable communications drivers enable JMS to be used on public, private and
wireless networks transparently. JMS functionality can be delivered over normal TCP/
IP based sockets, SSL enabled sockets, HTTP and HTTPS. When supporting JMS using
HTTP or HTTPS, Universal Messaging can traverse proxy servers and network address
translation devices, and it does not require any additional web server to perform.

JMS Message Filtering

JMS message selector support is offered via Universal Messaging's high performance
server side message filtering engine. This ensures that only messages with content
that your clients register an interest in are delivered over the network, thus conserving
network bandwidth.

Universal Messaging Developer Guide Version 10.1 56

Enterprise APlIs

Round-Robin Connection Factories

The Universal Messaging API for JMS allows you to configure round-robin connection
factories. These factories allow clients to publish messages in a round-robin fashion, so
that one message or transaction gets published to the first realm node or cluster, the next
message to the next realm node or cluster, and so on. These connection factories have the
following limitations:

1. Event consumption is not supported through these factories, so for example message
listeners cannot be registered and consumers cannot be created via the sessions
created from these connection factories.

2. The sessions created through these connections factories do not support distributed
(XA) transactions.

Message Batching

Universal Messaging provides a non-standard extension to JMS that allows clients to
send messages to the JMS provider in batches. This mechanism can lead to performance
improvements, because multiple messages can be sent in a single API call without
waiting for the acknowledgment for each message.

This is particularly relevant for synchronous publishing (PERSISTENT messages and
SyncPersistent enabled), as multiple messages in a single API call will allow you to send
the messages in a single transaction to achieve higher throughput.

If you are using asynchronous publishing (NON_PERSISTENT messages), you can also
batch the messages, but no performance gain will be expected. This is because multiple
messages can be sent without batching in separate API calls without waiting for any
confirmation from the server.

For API details of message batching, see the API documentation for the class
com.pcbsys.nirvana.nJMS.

JMSAdmin: Sample application for creating realm resources

Universal Messaging's Enterprise Manager tool supports JNDI using the same Universal
Messaging Channel based context used by the JMSAdmin example.

The example (jmsdmin.Java) source code demonstrates how to store Universal
Messaging Provider for JMS components into a JNDI service provider. The default
service provider for the example uses Universal Messaging's own Universal Messaging
Context to store JMS objects references, however any JNDI context provider can be used,
from LDAP through to NIS. The Universal Messaging context is discussed in more detail
here. The Universal Messaging Context stores references in a channel called /naming/
defaultContext.

JMSAdmin creates all required resources on a Universal Messaging realm. The
command syntax is as follows:
Java com.pcbsys.nirvana.nSpace.JMSAdmin

—-DRNAME [-DPRINCIPAL] [-DPASSWORD] -DCONTEXT FACTORY
-DPROVIDER URL JMSAdmin bind | unbind | list | queueFactory |

Universal Messaging Developer Guide Version 10.1 57

Enterprise APlIs

topicFactory |connectionFactory | queue | topic name / alias

where the -D parameters have the following meaning;:

RNAME is the realm name of the Universal Messaging server you wish to connect
to. If no RNAME is provided the default RNAME of nsp://localhost:9000 is used.

You can specify a cluster of realms by specifying a comma-separated list of
connection URLs, for example "nsp://localhost:9000,nsp://localhost:9010".

If you want to use a round-robin connection factory, you can specify several
connection URLs, where each connection URL can point to a standalone realm or a
cluster. In this case, each connection URL is bounded by a set of round brackets - "("

and H)Yl.

Examples:

= (UM1)(UM2)(UM3)(UM4) - Indicates 4 standalone realms, namely UM1, UM2,
UM3 and UM4, so 4 connections will be constructed here.

= (UM1,UM2)(UM3,UM4) - Indicates 2 clusters, one consisting of UM1 and
UM2 and the other consisting of UM3 and UM4, so only 2 connections will be
constructed here.

= (UM1)(UM2,UM3)(UM4) - Indicates one cluster consisting of UM2 and UM3, and

two standalone realms, namely UM1 and UM4. A total of 3 connections will be
constructed here

For the round-robin URL syntax, the following rules apply:

Each set of brackets must contain at least one valid connection URL.
There is no limit on the number of sets of brackets in the URL.

Each set of bracket indicates a unique connection, and the realm names
within each sets of brackets will be supplied unchanged to the underlying
implementation.

PRINCIPAL is the subject (if any) that your JNDI service provider requires.
PASSWORD is the PRINCIPAL's password for the JNDI service provider used.

CONTEXT_FACTORY is the fully qualified class name of the provider's

context factory implementation. The default CONTEXT FACTORY is
com.pcbsys.nirvana.nSpace.NirvanaContextFactory and is set automatically if no
CONTEXT_FACTORY parameter is provided.

PROVIDER_URL is the custom URL required by the context factory and provider
implementation. If no PROVIDER_URL parameter is passed, the default used is
nsp://localhost:9000/.

As an example, assume we want to create a TOPIC called rates on a Universal
Messaging realm running on our local machine. Typing;:

Java com.pcbsys.nirvana.nSpace.JMSAdmin bind topic rates

Will create an event in the /naming/defaultContext channel with the following
information in the event properties of the event:

Universal Messaging Developer Guide Version 10.1 58

Enterprise APlIs

rates/RefAddr/0/Content=rates
rates/RefAddr/0/Type=Topic
rates/ClassName=javax.JMS.Topic
rates/FactoryName=com.pcbsys.nirvana.nJMS.TopicFactory
rates/RefAddr/0/Encoding=String

The topic rates will automatically be created on the Universal Messaging realm running
on the PROVIDER_URL value. Assuming you wish to reference your local realm as

a TopicConnectionFactory named TopicConnectionFactory in JMS, use the following
command:

Java com.pcbsys.nirvana.nSpace.JMSAdmin bind topicFactory TopicConnectionFactory

This will publish an event to the /naming/defaultContext channel with the following

information in the event dictionary:
TopicConnectionFactory/RefAddr/0/Type=TopicConnectionFactory

TopicConnectionFactory /FactoryName=com.pcbsys.nirvana.nJMS.TopicConnectionFactoryFactory
TopicConnectionFactory/RefAddr/0/Encoding=String
TopicConnectionFactory/ClassName=javax.JMS.TopicConnectionFactory

TopicConnectionFactory/RefAddr/0/Content=nsp\://127.0.0.1\:9000
TopicConnectionFactory/RefAddr/0/Encoding=String

Creating a queue can be achieved using the following command:

Java com.pcbsys.nirvana.nSpace.JMSAdmin bind queue movie

Likewise, a JMS queue connection factory called QueueConnectionFactory can be bound
into a name space using the following command

Java com.pcbsys.nirvana.nSpace.JMSAdmin bind queueFactory QueueConnectionFactory

Having run both queue related commands, the /naming/defaultContext channel will
contain 4 events, each one pertaining to the 4 objects that have been bound, namely
TopicConnectionFactory, QueueConnectionFactory, rates and movie. The Universal
Messaging Context used with your JMS application will now be able to look up these
objects and use them within your application.

JMS Client SSL Configuration

This section describes how to use SSL in your Universal Messaging Provider for JMS
applications. Universal Messaging supports various wire protocols including SSL
enabled sockets and HTTPS.

Once you have created an SSL enabled interface for your realm you need to ensure
that your client application passes the required SSL properties either on the connection
factory or via system properties used by your JSSE-enabled JVM. The Universal
Messaging download contains some sample Java keystore files that will be used in this
example.

The first such keystore is the client keystore, called client.jks, which can be found in your
installation directory, under the /server/Universal Messaging/bin directory. The second
is the truststore called nirvanacacerts.jks, which is also located in the /server/Universal
Messaging/bin directory.

Custom SSL Properties

Using the sample keystores, you can set custom SSL attributes on JMS as follows:

Universal Messaging Developer Guide Version 10.1 59

Enterprise APlIs

Setting the SSL Attributes on the JNDI Context

In your properties object the following properties will set SSL attributes on the JNDI

Context.

env = new Properties();
env.setProperty ("java.naming.factory.initial",
"com.pcbsys.nirvana.nSpace.NirvanaContextFactory") ;
env.setProperty ("java.naming.provider.url", rname);
env.setProperty("nirvana.ssl.keystore.path",
$INSTALLDIRS\client\Universal Messaging\bin\client.jks) ;
env.setProperty("nirvana.ssl.keystore.pass", password) ;
env.setProperty("nirvana.ssl.keystore.cert", certAlias);
// Certificate alias for the client to use when connecting to an interface
// with client validation enabled
env.setProperty("nirvana.ssl.truststore.path",
$INSTALLDIRS$\client\Universal Messaging\bin\nirvanacacerts.jks);
env.setProperty("nirvana.ssl.truststore.pass", password) ;
env.setProperty("nirvana.ssl.protocol", "TLS");

Setting the SSL Attributes on the Connection Factory

B You can set the SSL attributes using the same Properties object like this:

connectionFactory.setProperties (env) ;
Connection con = connectionFactory.createConnection () ;

B You can set the SSL attributes using the available setters:

connectionFactory.setSSLStores (String keyStorePath, String keyStorePass,
String trustStorePath, String trustStorePass);

connectionFactory.setSSLStores (String keyStorePath, String keyStorePass,
String certificateAlias, String trustStorePath, String trustStorePass);

connectionFactory.setSSLProtocol (String protocol) ;

connectionFactory.setSSLEnabledCiphers (String[] enabledCiphers) ;

Connection con = connectionFactory.createConnection () ;

Setting the SSL Attributes on the Connection

Connection con =
keyStoreCert,

connectionFactory.createConnection (keyStorePath, keyStorePass,
trustStorePath, trustStorePass, cipherSuite, protocol)

JSSE SSL System Properties

The following system properties are used by the jsse implementation in your JVM. You
can specify the SSL properties by passing the following as part of the command line for
your JMS application:

-Djavax.
-Djavax.

-Djavax

-Djavax.

where :

net.
net.
.net.
net.

ssl.
ssl.
ssl.
ssl.

keyStore=%INSTALLDIR%\client\Universal Messaging\bin\client.jks
keyStorePassword=password

trustStore=%INSTALLDIR%\client\Universal Messaging\bin\nirvanacacerts.jks
trustStorePassword=password

B javax.net.ssl.keyStore is the client keystore location

javax.net.ssl.keyStorePassword is the password for the client keystore
javax.net.ssl.trustStore is the CA keystore file location

javax.net.ssl.trustStorePassword is password for the CA keystore

Universal Messaging Developer Guide Version 10.1 60

Enterprise APlIs

As well as the above system properties, if you are intending to use https, your J]MS
applications will require the following system property to be passed in the command
line:

-Djava.protocol.handler.pkgs="com.sun.net.ssl.internal.www.protocol"

As well as the above, the RNAME used by the JMS application must correspond to the
correct type of SSL interface, and the correct hostname and port that was configured
earlier.

In JMS, the RNAME corresponds to a JNDI reference. The example JMSADmin
application can be used to create a sample file based JNDI context, where the RNAME
is specified as the content of the TopicConnectionFactoryFactory reference. Once your
SSL interface is created you can simply change this value in your JNDI context to be the
RNAME you require your JMS applications to use.

Application Server Integration (JBoss)

JMS provides extensions that allows JMS providers to be integrated into Application
Servers. This section describes the steps involved in integrating Universal Messaging
Provider for JMS with JBoss. All references to JBoss assume JBoss version 3.2.x or 4.0.x
are being used.

This guide will provide the following information:
B "Message Queue Configuration" on page 62

B "Server Session Pool Configuration" on page 62

B "Jboss Configuration & Service Deployment" on page 62
B '"Universal Messaging Server Configuration" on page 62
B "Running Message Driven Beans" on page 63
Configuration Terms

Firstly, for the following sections, we will be referencing certain directories for the

install. These are described below:
B <jboss_home> - the JBoss installation directory

B <jboss_bin> - the JBoss bin directory located under <jboss_home>/bin

B <jboss_default> - default server, under <jboss_home> [server/default

B <jboss_default_lib> - default server lib directory, under <jboss_default> /lib

B <jboss_default_deploy> - default server deploy directory, under <jboss_default> /deploy
|

<jboss_default_conf> - default server configuration directory, usually <jboss_default>/
conf

Universal Messaging Developer Guide Version 10.1 61

Enterprise APlIs

Message Queue Configuration

JBoss provides its own JMS Message Queue service that we need to replace with
Universal Messaging's own message queue service. This section will describe the steps
needed to integrate Universal Messaging's Message service into JBoss.

To do this we need to change the references in the JBoss xml configuration files so that
the Universal Messaging Message Queue service is used:

In the <jboss_default_conf> /standardjboss.xml file and replace the tags that say
Default]MSProvider with Universal Messaging]MSProvider.

Server Session Pool Configuration

JBoss provides its own server session pool objects that allow multiple JMS sessions to be
pooled within the Message Queue Service. Universal Messaging also provides its own
session pool objects. This section describes the steps necessary to integrate Universal
Messaging's Server Session Pool into JBoss.

To do this we need to change the references in the JBoss xml configuration files so that
Universal Messaging's Server Session Pools are used by the Message Queue Service:

In the <jboss_default_conf> /standardjboss.xml file and replace the tags that say
StdJMSPool with Universal Messaging]MSPool.

JBoss Configuration

This section describes the steps necessary to ensure the JBoss server is ready to begin
using Universal Messaging as the Message Queue Service provider. Please complete the
following steps:

1. Remove the <jboss_default_deploy>/JMS directory completely

2. Put the nirvana-service.xml file into the <jboss_default_deploy> directory (found in the
src/xml/jboss directory of your install)

3. Put the Universal Messaging nJMS.jar, nClient.jar and nJ2EE jar files into the
<jboss_default_lib> directory from your /lib directory of the install

4. Modify the run script for JBoss to include the following -D parameter when the JBoss
server is started:

-Dnirvana.provider.url=<your.Universal Messaging.rname> (e.g. nsp://
localhost:9000, which is the default RNAME)

Universal Messaging Realm Server Configuration

In order to configure the Universal Messaging Realm Server, please ensure you have
either read the Universal Messaging Enterprise Manager JNDI integration section or
are familiar with the jmsadmin sample programs. These tools enable you to create the
Universal Messaging JNDI objects necessary for the jboss server to successfully use
Universal Messaging as the JMS message queue provider. In this example, we will use

Universal Messaging Developer Guide Version 10.1 62

Enterprise APlIs

the jmsadmin example program, however should you choose to, you can also use the
Universal Messaging Enterprise Manager by following the steps found in the guide.

Please follow the steps below:

1. Start the Universal Messaging server

2. Open a Universal Messaging Client environment prompt

3. Type :jmsadmin bind topicFactory TopicConnectionFactory (followed by return)

4. Type :jmsadmin bind queueFactory QueueConnectionFactory (followed by return)
5. Type : jmsadmin bind queue queue/DLQ (followed by return)

This will set up the queue and topic factories used by the Universal Messaging Provider
for JMS message service, as well as setting up the JBoss DLQ used for internal message
processing.

Once these steps have been completed, you can then start the JBoss server which will
now be using Universal Messaging Provider for JMS as the message queue provider

Running Message Driven Beans

Message driven beans can be deployed within application servers to provide a run-
frame for JMS services. Once you have created your message driven beans and they are
deployed into the jboss server, you must ensure that all topics and queues used by the
MDBs have been created using the jmsadmin tool, so that they can be referenced within
the Universal Messaging JNDI context used by the Universal Messaging messaging
service.

JMS Message / Event Mapping

Universal Messaging provides interoperability between JMS and Non-JMS client APIs.
The API for the Universal Messaging Provider for JMS shares the same event structures
sent over the wire as other Universal Messaging Client APIs. The nConsumeEvent in
the Universal Messaging client APIs is the basic structure of all events published and
subscribed whether JMS or Non-JMS, Java or C#.

The JMS Message has a distinct structure: the header, the message properties and the
body. In the Universal Messaging client API, the nConsumeEvent is the container for
the JMS message structure. Any JMS message consumer on a topic or queue expects
the nConsumeEvent to be in a predefined format with specific JMS header values,
message properties and a message body. The JMS Header values are stored in the
nEventAttributes of the nConsumeEvent and any message properties are stored in the
nEventProperties objects for the same event. The message body is different for each of
the JMS message types (bytes, map, stream, object, text) but it is always stored in the
byte[] payload of the nConsumeEvent.

Usability

Publishing a JMS Message using the API for the Universal Messaging Provider for
JMS sends an nConsumeEvent to the server with the message body stored in the event
payload, i.e. the event byte[]. Each JMS Header exists in the nEventAttributes, and any

Universal Messaging Developer Guide Version 10.1 63

Enterprise APlIs

JMS message properties are stored in the nEventProperties. The Java, C++ and C# Client
APIs use the same structure for nConsumeEvent and can therefore all consume JMS
Message objects. As there is no equivalent J]MS C# or C++ specification, these APIs will
treat these messages as normal nConsumeEvent objects.

JMS provides a Map Message type, within Universal Messaging the map object
is represented by an nEventProperties. When the message is published this map
is serialised and stored in the event payload. In order to consume this message
from C# you can convert the payload back to an nEventProperties using the
getPayload AsDictionary() method.

Publishing a non-JMS Message for consumption by JMS-based API clients also provides
a level of interoperability. The API for J]MS will interpret any nConsumeEvent objects
published by any other non-JMS client API (Java, C#, Javascript, Mobile etc.) as
BytesMessage objects and deliver them to the JMS consumers as such.

JMS Message Type Conversion

JMS message types are exposed so that you can publish a native nConsumeEvent
and have it received by JMS subscribers in the specified type instead of in the default
BytesMessage type.

The JMS Message types are assigned integer values as shown below. The integer values
can be used directly when setting the message type, or accessed via the following public
static constants in nEventAttributes:

JMS BASE MESSAGE_TYPE = 0
JMS MAP MESSAGE TYPE = 1
JMS_BYTES MESSAGE TYPE = 2
JMS_OBJECT MESSAGE TYPE
JMS_STREAM MESSAGE TYPE

= g
JMS_TEXT MESSAGE_TYPE = 5

4

You can set the message type on an nConsumeEvent in the following way (using the
message type JMS OBJECT MESSAGE TYPE as an example):

nEventAttributes eventAttributes = new nEventAttributes();
eventAttributes.setMessageType(nEventAttributes.JMS_OBJECT_MESSAGE_TYPE);

nConsumeEvent evt = new nConsumeEvent ("Message", bytes);
evt.setAttributes (eventAttributes) ;

The data portion of the nConsumeEvent will contain the message body and will need to
be set according to the message type as described in the following sections:

JMS _BASE_MESSAGE_TYPE
Publisher:

nEventAttributes attributes = new nEventAttributes();
attributes.setMessageType (nEventAttributes.JMS BASE MESSAGE TYPE) ;
nConsumeEvent evt = new nConsumeEvent ("Message", byteArray);
evt.setAttributes (attributes) ;

JMS Subscriber:
Message message = topicConsumer.receive (2000) ;
MessageImpl baseMessageImpl = (Messagelmpl)message;

baseMessageImpl.getBuffer ()

Universal Messaging Developer Guide Version 10.1 64

Enterprise APlIs

The buffer will be equal to the byteArray sent in the data payload of the
nConsumeEvent.

JMS_BYTES_MESSAGE_TYPE

Publisher:

ByteArrayOutputStream out = new ByteArrayOutputStream() ;
DataOutputStream os = new DataOutputStream(out);

os.writelnt (32);

os.writeInt(l); //true

os.writeBoolean (true);

os.flush();

nEventAttributes attributes = new nEventAttributes|();
attributes.setMessageType (nEventAttributes.JMS BYTES MESSAGE TYPE) ;
nConsumeEvent evt = new nConsumeEvent ("Message", out.toByteArray()):
evt.setAttributes (attributes) ;

JMS Subscriber:

Message message = topicConsumer.receive (2000) ;

BytesMessage bytemessage = (BytesMessage)message;
bytemessage.readInt (); //32

bytemessage.readInt (); //1

bytemessage.readBoolean (); //true

JMS OBJECT MESSAGE_TYPE
Publisher:

ByteArrayOutputStream out = new ByteArrayOutputStream() ;
ObjectOutputStream os = new ObjectOutputStream (out) ;
os.writeObject (anyObjectThatIsSerializable) ;

nEventAttributes attributes = new nEventAttributes();
attributes.setMessageType (nEventAttributes.JMS OBJECT MESSAGE TYPE) ;
nConsumeEvent evt = new nConsumeEvent ("Message", out.toByteArray()):;
evt.setAttributes (attributes);

JMS Subscriber:

Message message = topicConsumer.receive (2000) ;

ObjectMessage objectMessage = (ObjectMessage) message;

Object object = objectMessage.getObject () ;

The returned object will be the deserialization of the object sent in the data payload of
the nConsumeEvent.

JMS_MAP_MESSAGE_TYPE
Publisher:

No direct mapping can be made as Universal Messaging uses internal collections

to construct the underlying map message. The publisher will not be able to send

an nConsumeEvent with the data portion containing this as we do not expose the
serialization of our internals. An option that is however available and can also be

applied to other JMS Message types is the use of nEventProperties.

nEventProperties props = new nEventProperties();//populate with key/value properties
nEventAttributes attributes = new nEventAttributes();

attributes.setMessageType(nEventAttributes.JMS_MAP_MESSAGE_TYPE);
nConsumeEvent evt = new nConsumeEvent ("Message", null);

Universal Messaging Developer Guide Version 10.1 65

Enterprise APlIs

evt.setAttributes (attributes) ;
evt.setProperties (props) ;

JMS Subscriber:
Message message = topicConsumer.receive (2000) ;
MapMessage mapMessage = (MapMessage)message;

Users can then get data using the 'key' of any of the entries in nEventProperties set on
the nConsumeEvent by invoking for example:

mapMessage.getObjectProperty ("key"); //if the type is unknown
mapMessage.getIntProperty ("key") ;

and various other built-in getter methods that return different types of properties.

JMS_STREAM_MESSAGE_TYPE
Publisher:

ByteArrayOutputStream out = new ByteArrayOutputStream() ;
ObjectOutputStream os = new ObjectOutputStream (out) ;
Vector<Object> vector = new Vector<Object>();

vector.add (true) ;

vector.add (110110110) ;

vector.add (1.05f) ;

vector.add ("abcdef") ;

os.writeObject (vector) ;

nEventAttributes attributes = new nEventAttributes();
attributes.setMessageType (nEventAttributes.JMS STREAM MESSAGE TYPE) ;
nConsumeEvent evt = new nConsumeEvent ("Message", out.toByteArray()):;
evt.setAttributes (attributes);

JMS Subscriber:

Message message = topicConsumer.receive (2000) ;

StreamMessage streamMessage = (StreamMessage)message;
streamMessage.readBoolean(); //true

streamMessage.readLong(); //110110110

streamMessage.readFloat (); //1.05f

streamMessage.readString (); //abcdef

JMS_TEXT _MESSAGE_TYPE
Publisher:

String textMessage = "This will be in the text portion of the message";
ByteArrayOutputStream baos = new ByteArrayOutputStream() ;

baos.write (textMessage.getBytes (StandardCharsets.UTF 8));
nEventAttributes attributes = new nEventAttributes|();
attributes.setMessageType (nEventAttributes.JMS TEXT MESSAGE TYPE) ;
nConsumeEvent evt = new nConsumeEvent ("Message", baos.toByteArray());
evt.setAttributes (attributes) ;

JMS Subscriber:
Message message received = topicConsumer.receive (2000);
TextMessage received = (TextMessage)message received;

String text = received.getText());

This will return the same string sent in the data payload of the nConsumeEvent.

Universal Messaging Developer Guide Version 10.1 66

Enterprise APlIs

Fanout Engine

The Universal Messaging Queue and Channel Fanout Engines are used to store and
forward events based on the channel type. JMS uses topics and messages which are
equivalent to Universal Messaging channels and events respectively.

Universal Messaging offers several channel types, each of which have different
requirements when storing data. The available channel types are summarized in the
section Channel Attributes in the Concepts guide.

The Fanout Engine for Universal Messaging Provider for JMS uses different criteria to
determine storage of events. No replay of messages means that it is not necessary to store
events if there is no interest on the channel or once they have been consumed regardless
of the channel type. Durable Subscribers require the engine to store the events until the
subscriber becomes active and consumes the events. For more information, see "Engine
Differences" on page 68.

Interest

The Fanout Engine for Universal Messaging Provider for JMS deals with events
published to channels based on 'interest'. If there is no interest present on the channel
then any events published can be immediately discarded due to no replay of messages. The
channel is said to have no interest if there are no durable or active subscribers.

Durable Subscribers

It is often the case that a subscriber needs to receive all events published to a channel
including the events published when the subscriber is inactive. With a durable
subscriber, any events published while the subscriber is inactive are stored until the
subscriber reconnects and consumes the events missed.

No replay of messages

When a JMS subscription is made to a channel, the subscription always begins from the
last issued event ID. As no events can be consumed more than once, there is no need to
store events once they are consumed. This improves the efficiency of the system because
all events can be fanned out to subscribers and then dropped straight away (as long as
there are no synchronous consumers or inactive durable subscriptions). This greatly
reduces the overhead caused by I/O.

Only in the case of inactive durable subscribers or synchronous consumers are events
stored. Once all durable subscribers or synchronous consumers have consumed an
event, it is removed from storage as there is no need for it to be kept. Synchronous
consumers require the events to be stored because they do not receive events fanned out
to all consumers, instead they iterate through the events requesting each event in turn.

Recovery

In the case that a subscriber loses connection to the server, the JMS engine will register
a need to temporarily store events for a configurable period of time or until the client
reconnects. The time period is defined by the TTL value of the event (if this is non zero)

Universal Messaging Developer Guide Version 10.1 67

Enterprise APlIs

or the EventTimeout value stored in the realm configuration/ClientTimeoutValues under
the config tab in the Enterprise Manager which is 60 seconds by default.

Engine Differences

The tables below shows the storage differences between the JMS Engine and the
Universal Messaging Queue and Channel Engines. The Universal Messaging engines
store events based on the channel type whereas the JMS Engine only stores events when
there are synchronous consumers or inactive durable subscribers. The channel type does
however determine where the data is stored.

[=] - Events to be stored on disk prior to delivery
IF - Events to be stored in memory prior to delivery

_! - Events are not stored prior to delivery

On a Mixed channel, persistent storage to disk or to memory can be individually set
on a per-event basis. When appropriate, events on Persistent channels will be stored to
disk, and events on Reliable and Simple channels will be stored in memory. Transient
channels do not store events prior to delivery.

JMS Engine

Channel Type Mixed | Persistef Paged | Reliable| Off- Simple Transienl
Heap

Active Durable
Subscribers

Active shared | | |
Durable
Subscribers (see
note 1)

Active regular
Durable
Subscribers,

with auto-
acknowledgement
(see note 2)

Active regular e | = | =
Durable
Subscribers,

with client
acknowledgement
(see note 3)

Universal Messaging Developer Guide Version 10.1 68

Enterprise APlIs

Channel Type Mixed | Persistef Paged | Reliable| Off- Simple Transienl
Heap

One or more = | =] = =)) =

Synchronous

Consumers or
Inactive Durable
Subscribers

No Durable
Subscribers

No Subscribers

Note: 1. For a shared durable consumer, events will always be persisted in an
internal queue for that specific subscriber, but not on the channel.

2. For a regular durable consumer, using auto-acknowledgment, events will
be passed on to the subscriber and not stored on the channel.

3. For a regular durable consumer, using client acknowledgment, events will
be stored on the channel. When the subscriber acknowledgment arrives, the
event will be removed from the channel.

For further information on storage methods, see the section Named Objects and Shared
Named Objects in the Concepts guide.

Universal Messaging Channel Engine

Channel Type Mixed | Persistej Paged | Reliable| Off- Simple Transienl
Heap

Active Durable (== | = |= i 1 1

Subscribers

One or more |=|=1 |= = i 1 1

Synchronous

Consumers or
Inactive Durable

Subscribers
No Durable = | =] = 1 =1 =1
Subscribers
No Subscribers (== | = = | = =

Universal Messaging Developer Guide Version 10.1 69

Enterprise APlIs

Universal Messaging Queue Engine

Queue Type Mixed | Persistej Paged | Reliable| Off- Simple Transienl
Heap

Active == | = | | |

Consumers

No Subscribers = | = = 1 = =1

Resource Adapter for JMS

For JBoss EAP 6.1 and WebSphere 8.5.5, the Universal Messaging installation contains

a product-specific generic resource adapter for JMS. The .rar file is located in /
j2ee/umra.rar under the product installation directory and contains the modified
genericra.jar, the nNJMS jar and nClient.jar. A README.txt is included and outlines the
changes made to the resource adapter. The ra.xml descriptor file is located in the META-
INF directory.

Configuring JBoss EAP 6.1 for Universal Messaging

A detailed explanation of the configuration process can be found in the document
Integration and Configuration of Software AG’s Universal Messaging with JBOSS EAP
6.1 in the wiki pages of the Software AG Technical Community web site at "http://
techcommunity.softwareag.com/pwiki" on page

Configuring WebSphere 8.5.5 for Universal Messaging

A detailed explanation of the configuration process can be found in the document
Integration and Configuration of Software AG's Universal Messaging with IBM WebSphere
Application Server in the wiki pages of the Software AG Technical Community web site at
"http://techcommunity.softwareag.com/pwiki" on page

Support for XA Transactions

Universal Messaging's Provider for JMS has a restriction in the area of XA transactions.
Specifically, while Universal Messaging provides support for all the required XA
interfaces, the first (prepare) phase of the XA two-phase commit protocol is not fully
supported. This means that:

1. Innon-failure cases, XA transactions including Universal Messaging steps will work
as expected.

2. If there is only a single Universal Messaging step in a multi-part XA transaction and
the Universal Messaging step is the first to be committed, the XA transaction will
work as expected even if it fails and has to be rolled back.

Universal Messaging Developer Guide Version 10.1 70

http://techcommunity.softwareag.com/pwiki
http://techcommunity.softwareag.com/pwiki
http://techcommunity.softwareag.com/pwiki

Enterprise APlIs

3. In the case above, rollback of the Universal Messaging step may not fully match the
expected XA transaction behavior.

4. In all other failure cases, the expected XA transaction behavior is not guaranteed.

The use of XA transactions with Universal Messaging is not recommended unless your
application can be written to be tolerant of these limitations.

Basic Authentication

Overview

The entire set of session creation methods of the Universal Messaging client and admin
APIs for Java (nsp/nsps/nhp/nhps, native and JMS) have overloaded variants that accept
username/password credentials which are then supplied to the Universal Messaging
server.

The Universal Messaging server enables those credentials to be authenticated against
pluggable Directory backends (ranging from LDAP to flat files) or by means of JAAS-
based methods (based on user-configurable pluggable modules).

Note that authentication does not supplant the traditional Universal Messaging ACLs
and is merely an additional security step performed before the relevant ACLs are
evaluated and applied.

The Directory mode is sometimes called SASL+Directory as the credentials are
exchanged via SASL, but the SASL capability is embedded in the proprietary Universal
Messaging client-server protocol, and need not concern users or administrators.

The configuration is determined by a set of Java system properties on both the client and
server side, the latter typically centralised in the nserver.conf or nserverdaemon.conf
configuration file. nserver.conf is used if you start the realm server manually, e.g.

from the command line. nserverdaemon.conf is used if you start the realm server as a
Windows service or as a UNIX daemon.

Client-side Authentication

If the pre-existing session connection methods with no username/password parameters
are used, then the client will continue to use unauthenticated sessions as before
(assuming the server is configured to allow that), i.e. by defaulting the user identity to
the username under whose identity the client process is running (as reflected in the Java
user.name system property).

Configuration
The client API is controlled by three main Java system properties:

® Nirvana.auth.client.jaaskey

If set, this means that any authentication should be performed via JAAS, and it
specifies the name of the entry to use in the JAAS login configuration, which is

Universal Messaging Developer Guide Version 10.1 71

Enterprise APlIs

typically a text file created by the system administrator. We shall refer to the file here
as the JAAS-LCF (Login Configuration File), a version of which must exist on both
the client and the server.

The pathname of the JAAS-LCF is specified by the usual JAAS system property,

java.security.auth.login.config.

The Universal Messaging client SDK supplies the username and password to the
JDK's built-in API for JAAS, and this results in JAAS internally consulting the JAAS-
LCF, which specifies one or more pluggable JAAS modules that will perform the
authentication. The precise modules to use are a matter of site-specific policies
determined by the Universal Messaging administrator, and the JAAS modules
configured into a client should obviously be aligned with those configured on the
server.

If Nirvana.auth.client.jaaskey is not explicitly set, then the authentication
mechanism defaults to SASL.

The special value of Nirvana.auth.client.jaaskey=noauth means that the client
will neither perform JAAS authentication nor engage in SASL negotiation, but

will instead forward the username and password to the server, which will then
authenticate them via its own JAAS configuration.

® Nirvana.sasl.client.mech

This specifies which SASL mechanism to use, and the supported options are PLAIN,
CRAM-MDS5 and DIGEST-MDS5.

The mechanism defaults to PLAIN if this system property is not set, and the usual
SASL trade-offs apply. PLAIN transmits the user password in plain text, so it is
advisable to only use it over an SSL connection. On the other hand, CRAM-MD5 and
DIGEST-MD?5 do not transmit the password in plain text so are more appropriate for
general connections.

One of the JAAS modules available is the Universal Messaging class
com.pcbsys.foundation.security.sasl.fSas|ClientLoginModule which will result in the
authentication being performed via SASL after all, despite initially being routed via
JAAS. From the server's perspective, the authentication negotiation is conducted
entirely in SASL.

The fSas|ClientLoginModule class is integrated with the Software AG family of JAAS-
based modules, and one reason you might opt for this JAAS-SASL hybrid is to chain
it with other Software AG JAAS-based modules, in line with your site's JAAS policy.

B Nirvana.sasl.client.enablePrehash

This specifies whether to prehash the supplied password when using the CRAM-
MD?5 or DIGEST-MDS5 mechanisms. It may be set to "true" or "false". This should

be set to "true" only when the server is using the fSAGInternalUserRepositoryAdapter to
store client credentials, otherwise CRAM-MDb5 and DIGEST-MD?5 authentication will
fail. If Nirvana.sasl.client.enablePrehash is not set, then the value defaults to
"false" and prehashing is not enabled.

Universal Messaging Developer Guide Version 10.1 72

Enterprise APlIs

API

The API extensions for Java consist of the following new overloaded variants of existing
session-creation methods.

nSessionFactory:

public static nSession create (nSessionAttributes attr,
String username, String password)
public static nSession create (nSessionAttributes attr,
nReconnectHandler handler, String username, String password)
public static nSession createMultiplexed (nSession session,
String user, String passwd)
public static nSession createMultiplexed (nSessionAttributes sessionAttributes,
String userName, String passwd)

nRealmNode:

Constructor -
nRealmNode (nSessionAttributes sAttr, String username, String passwd)

nRealmAdmin:

Constructor -

nRealmAdmin (nSessionAttributes sAttr, String username, String password)

Constructor -

nRealmAdmin (nSessionAttributes sAttr, String username, String password,
boolean followMaster)

JNDI:

If you're using the NirvanaContextFactory class (loads the Universal Messaging provider
for JMS) as the value of the standard java.naming.factory.initial context-environment

key, then the standard context-environment keys java.naming.security.principal and
java.naming.security.credentials should be assigned the username and password respectively.

This is standard JNDI configuration, and is compatible with all JNDI-based providers.

Server-side Authentication

There is a much broader range of configuration options on the server, controlling every
aspect of authentication from whether it's enabled in the first place, to how to look up
user credentials.

Client Negotiation

Authentication is disabled by default on the server for backward compatibility, meaning
that even if clients do supply user credentials, they will be accepted without verification.

This is controlled by the Nirvana.auth.enabled system property, which must be

n__n

explicitly set to "Y" or "y" to enable authentication.

System administrators have to set up various other configuration options when enabling
authentication, so they would set Nirvana.auth.enabled as part of that effort.

Even when authentication is enabled, authenticating clients can exist side-by-side with
non-authenticating ones, meaning it is entirely optional for clients to supply any user

Universal Messaging Developer Guide Version 10.1 73

Enterprise APlIs

credentials, and if they don't they will be handled in the traditional Universal Messaging
manner.

The Nirvana.auth.mandatory system property controls this behaviour, and should be

explicitly set to "Y" or "y" to make authentication mandatory, meaning clients that don't
supply a username and password will be rejected.

There are two exemptions from mandatory authentication, in order to prevent
Enterprise Manager getting locked out.

One of them is the super-user on localhost, and the other is a set of users in a file pointed
at by the optional JVM property -DNirvana.auth.exempt=/path/to/file.

The users in the latter file are listed one per line in ACL-style notation, e.g.
usernamel@10.140.2.95.

If -DNirvana.auth.exempt is not set, the optional -DSECURITYFILE JVM property is
processed in the same way, but to enable decoupling, if -DNirvana.auth.exempt is set
to "-" (hyphen) then there are no exempt users and -DSECURITYFILE is not processed.

When a client does authenticate, the Universal Messaging client-server protocol
automatically signals the server whether they're using SASL+Directory or JAAS. If JAAS,
then the Nirvana.auth.server.jaaskey system property must be set on the server,
and it specifies the name of the entry to use in the server-side JAAS-LCF file.

As in the client case, the pathname of the JAAS-LCF is specified by the standard JAAS
system property, java.security.auth.login.config.

If the Nirvana.auth.server. jaaskey system property is not set on the server, then it
will reject all attempts to authenticate via JAAS.

Directory Backend

The Universal Messaging server can make use of a variety of backend Directory servers
or mechanisms, as controlled by the Nirvana.directory.provider system property,
which specifies the pluggable Java class representing the Directory.

Usernames are case-sensitive and are used in the form supplied to do the Directory
lookup. This is the authentication step, and is followed by an authorisation step in which
the username is normalised to lowercase to match against Universal Messaging ACLs.
Universal Messaging ACLs are case-insensitive but expressed in lower-case, and any
ACLs created via the Enterprise Manager will be forced to lower case.

Internal User Repository

If the Nirvana.directory.provider system property is set to
"com.pcbsys.foundation.security.auth.fSAGInternalUserRepository Adapter", then
usernames will be looked up in a standard Software AG store called the 'Internal User
Repository', which is a flat file maintained by the Software AG command-line utility
internaluserrepo. This utility is located in <SoftwareAG_INSTALLROOT> /common/bin.

This mechanism is the default user repository if the Nirvana.directory.provider
property is not set.

Universal Messaging Developer Guide Version 10.1 74

Enterprise APlIs

You can use the following syntax to add a user "myuser1l" with a password "mypwd1l" to
the internal user repository.

internaluserrepo.bat -f <path to users.txt> -c -p mypwdl myuserl

The location of the file containing the internal user repository is given by the system
property Nirvana.auth.sagrepo.path, and would default to ./users.txt (relative to

the runtime directory of the Universal Messaging server), but the nserver.conf file
shipped with Universal Messaging overrides this as ../users.txt, locating it in the same
<SoftwareAG_INSTALLROOT> /nirvana/server/umserver directory as the licence.xml file.

The entry in nserver.conf looks like this:
wrapper.java.additional.1l8=-DNirvana.auth.sagrepo.path=../users.txt

The nserver.conf file may of course be edited as usual to move the users.txt file into a
location that is shared by all the realms of an installed Universal Messaging instance.

You should also set up the following configurations in the nserver.conf file, to ensure
that basic authentication is activated and mandatory:

wrapper.java.additional.l9=-DNirvana.auth.mandatory=Y

// This makes basic authentication mandatory.

// Calls not supplying the credentials in this case will be rejected.
wrapper.java.additional.20=-DNirvana.auth.enabled=Y

// This enables the basic authentication feature,

// but it is not mandatory to supply credentials.
If you add users to the internal user repository, you should also set up Universal
Messaging server ACLs for these users, specifying e.g. myuserl@hostname, and give
appropriate or full control.

Note: m To activate any changes you make, you need to restart the Universal
Messaging server.

B More details about the utility internaluserrepo and its options are
available in the Software AG document Command Central Help.

LDAP

If the Nirvana.directory.provider system property is set to
"com.pcbsys.foundation.security.auth.fLDAPAdapter”, then LDAP will be used as the
source of user information.

Interaction with the LDAP server is configured via the following Java system properties:
m Nirvana.ldap.provider:

The LDAP client class - defaults to the JDK's built-in provider,
com.sun.jndi.ldap.LdapCtxFactory

m Nirvana.ldap.url:

The address of the LDAP server. This has no default and must be specified, using
%Hﬁaxsudlasldap://localhost:389/dc:sag,dc:com.

m Nirvana.ldap.suffix:

Universal Messaging Developer Guide Version 10.1 75

Enterprise APlIs

The suffix to apply to LDAP queries. This has no default and may be null, but if non-
null it qualifies the URL above. E.g. Nirvana.ldap.url=ldap://localhost:389/
dc=sag and Nirvana.ldap.suffix=dc=com will result in the same effective query
root as Nirvana.ldap.url=1ldap://localhost:389/dc=sag, dc=com when the
Nirvana.ldap.suffix property is not set.

m Nirvana.ldap.rootcreds:

The privileged-administrator login credentials to use on the LDAP server, in order to
perform user queries. There is no default and if not set it means there is no need to
specify any such credentials, but if present the format must be username:password.

The remaining system properties relate to the LDAP schema and default to the standard
COSINE schema:

m Nirvana.ldap.attribute.username:

This specifies the LDAP attribute which represents the username, and defaults to the
standard schema convention of "cn".

m Nirvana.ldap.attribute.password:

This specifies the LDAP attribute which represents the password, and defaults to the
standard schema convention of "userPassword".

m Nirvana.ldap.search.username:

This specifies the search expression to use for a given username, and defaults to cn=
%U%, where $U% gets substituted by the username.

Code Examples

This section provides self-contained examples which include full application source
code. You can use them for learning purposes or as a starting point for your own code
development.

Pub/Sub Channels

Java Client: Channel Publisher

This example publishes events onto a Universal Messaging Channel.

Usage

npubchan <channel name> [count] [size]

<Required Arguments>

<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)
Note: -? provides help on environment variables

Universal Messaging Developer Guide Version 10.1 76

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Java Client: Transactional Channel Publisher

This example publishes events transactionally to a Universal Messaging Channel. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been committed successfully.

Usage

npubtxchan <channel name> [count] [size] [tx size]

<Required Arguments>

<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Asynchronous Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel. See also: " Synchronous Subscription” on page 77

Usage

nsubchan <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Synchronous Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel. See also: " Asynchronous Subscription” on page 77.

Usage

channeliterator <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>
<channel name> - Channel name parameter for the channel to subscribe to

Universal Messaging Developer Guide Version 10.1 77

Enterprise APlIs

[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Asynchronous Named Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel using a named object.

Usage

nnamedsubchan <channel name> [name] [start eid] [debug] [count] [auto ack]
[cluster wide] [persistent] [selector]

<Required Arguments>

<channel name> - Channel name parameter for the channel to subscribe to

[Optional Arguments]

[name] - Specifies the unique name to be used for a named subscription
(default: OS username)

[start eid] - The Event ID to start subscribing from if the named subscriber needs
to be created (doesn't exist)

[debug] - The level of output from each event, 0 - none, 1 - summary,
2 - EIDs, 3 - All

[count] - The number of events to wait before printing out summary information
(default: 1000)

[auto ack] - Specifies whether each event will be automatically acknowledged by
the api (default: true)

[cluster wide] - Specifies whether the named object is to be used across a cluster
(default: false)

[persistent] - Specifies whether the named object state is to be stored to disk or
held in server memory (default: false)

[priority] - The priority of the subscriber.

[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Synchronous Named Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel using a named object and a channel iterator.

Usage

nnamediterator <channel name> [name] [start eid] [debug] [count]
[cluster wide] [persistent] [selector]

<Required Arguments>

<channel name> - Channel name parameter for the channel to subscribe to

[Optional Arguments]

[name] - Specifies the unique name to be used for a named subscription
(default: OS username)
[start eid] - The Event ID to start subscribing from if name subscriber

Universal Messaging Developer Guide Version 10.1 78

Enterprise APlIs

is to be created (doesn't already exist)

[debug] - The level of output from each event, 0 - none, 1 - summary,
2 - EIDs, 3 - All

[count] - The number of events to wait for before printing out summary
information (default: 1000)

[cluster wide] - Specifies whether the named object is to be used across a
cluster (default: false)

[persistent] - Specifies whether the named object state is to be stored to
disk or held in server memory (default: false)

[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: XML Channel Publisher

This example publishes XML events onto a Universal Messaging Channel

Usage

nxmlpub <channel name> <xml file> [count] [size]

<Required Arguments>

<channel name> - Channel name parameter for the channel to publish to
<xml file> - The full path of the xml file to publish

[Optional Arguments]

[count] -The number of events to publish (default: 10)

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Asynchronous XML Channel Consumer

This example shows how to asynchronously subscribe to XML events on a Universal
Messaging Channel.

Usage

nxmlsub <channel name> [start eid] [debug] [count] [selector]

<Required Arguments>

<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Event Delta Delivery

This example shows how to publish and receive registered events.

Universal Messaging Developer Guide Version 10.1 79

Enterprise APlIs

Usage

RegisteredEvent <rname> <channel name> [count] [size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

Application Source Code

See the online documentation for a code example.

Java Client: Batching Server Calls

This example shows how to find multiple channels and queues in one call to the server.

Usage

findChannelsAndQueues <name> <name> <name>.....
<Arguments>

<name> - The name (s) of the channels to find
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Batching Subscribe Calls

This example of batching shows how to subscribe to multiple Universal Messaging
Channels in one server call.

Usage

sessionsubscriber <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<channel names> - Comma separated list of channels to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Pub/Sub Datagroups

Java Client: DataStream Listener

This example shows how to initialise a session with a DataStream listener and start
receiving data.

Universal Messaging Developer Guide Version 10.1 80

Enterprise APlIs

Usage

DataStreamListener [debug] [count]

<Required Arguments>

[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Java Client: DataGroup Publishing with Conflation

This example shows how to publish to DataGroups, with optional conflation.

Usage

DataGroupPublish <group name> [count] [size] [enable multicast] [conflate]

[conflation merge or drop] [conflation interval]
<Required Arguments>

<group name> - Data group name parameter to publish to

[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

[enable multicast] - enable the data group for multicast delivery

[conflate] - enable conflation true or false

[conflation merge or drop] - merge to enable merge or drop to enable drop
(default: merge)

[conflation interval] - the interval for conflation to publish(default: 500

Application Source Code

See the online documentation for a code example.

Java Client: DataGroup Manager

This is an example of how to run a DataGroup manager application

Usage

dataGroupsManager <Properties File Location>

<Required Arguments>

<Properties File Location Data Groups> - The location of the property file to
use for mapping data groups to data groups

<Properties File Location Data Streams> - The location of the property file to
use for mapping data streams to data groups

<Auto Recreate Data Groups> - True or False to auto recreate data groups takes
the data group property file and creates channels
a group for every name mentioned on the left of equals sign

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 81

Enterprise APlIs

Java Client: Delete DataGroup

This is a simple example of how to delete a DataGroup

Usage

deleteDataGroups <data group name> <delete type>
<Required Arguments>

<data group name> - Data group name parameter to delete
<Delete Type> - Data group delete by string(l) or object (2)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: DataGroup Delta Delivery

This example shows how to use delta delivery with DataGroups.

Usage

DataGroupDeltaDelivery [count]
[Optional Arguments]
[count] - the number of times to commit the registered events

Application Source Code

See the online documentation for a code example.

Message Queues

Java Client: Queue Publisher

This example publishes events onto a Universal Messaging Queue.

Usage

npushg <queue name> [count] [size]

<Required Arguments>

<gueue name> - Queue name parameter for the queue to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Transactional Queue Publisher

This example publishes events transactionally to a Universal Messaging Queue. A
Universal Messaging transaction can contain one or more events. The events which

Universal Messaging Developer Guide Version 10.1 82

Enterprise APlIs

make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been committed successfully.

Usage

npushtxg <queue name> [count] [size] [txsize]

<Required Arguments>

<gueue name> - Queue name parameter for the queue to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)
[txsize] - The number of events to publish per transaction (default: 1)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Asynchronous Queue Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Queue. See also: " Synchronous Queue Subscription” on page 84.

Usage

npopgasync <queue name> [debug] [count] [selector]

<Required Arguments>

<gueue name> - Queue name parameter for the queue to pop from
[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Asynchronous Transactional Queue Consumer

This example shows how to transactionally asynchronously subscribe to events on a
Universal Messaging Queue. See also: " Synchronous Queue Subscription.” on page
84

Usage

npoptxgasync <queue name> [debug] [count] [selector]
<Required Arguments>

<gueue name> - Queue name parameter for the queue to pop from
[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 83

Enterprise APlIs

Java Client: Synchronous Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription” on page 83.

Usage

npopg <queue name> [timeout] [debug] [count] [selector]
<Required Arguments>

<queue name> - Queue name parameter for the queue to pop from
[Optional Arguments]

[timeout] - The timeout for the dequeue operation

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Synchronous Transactional Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription” on page 83.

Usage

npoptxg <queue name> [timeout] [debug] [count] [selector]
<Required Arguments>

<gueue name> - Queue name parameter for the queue to pop from
[Optional Arguments]

[timeout] - The timeout for the dequeue operation

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Peek events on a Queue

1

This example shows how to peek events on a Universal Messaging Queue. See also: '
Asynchronous Queue Subscription” on page 83.

Usage

npeekqg <queue name> [debug] [count] [selector]

<Required Arguments>

<gueue name> - Queue name parameter for the queue to peek
[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Universal Messaging Developer Guide Version 10.1 84

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Java Client: Requester - Request/Response

This example shows how to request a response in a request/response fashion.

Usage

requester <request queue> <request queue>

<Required Arguments>

<request queue> - Queue onto which request are published
<response queue> - Queue onto which responses are published
[Optional Arguments]

[asynchronous] - Whether to use asynchronous producing and consuming
true/false, default false.

[transactional] - Whether to use transactional production and consumption of
events - true/false, default false.

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Responder - Request/Response

This example shows how to respond to a request in performed in a request/response
fashion.

Usage

responder <request queue> <response queue>

<Required Arguments>

<request queue> - Queue onto which request are published
<response queue> - Queue onto which responses are published
[Optional Arguments]

[asynchronous] - Whether to use asynchronous producing and consuming
true/false, default false.

[transactional] - Whether to use transactional production and consumption of
events - true/false, default false.

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Administration API

Java Client; Add a Queue ACL Entry
This example demonstrates how to add an ACL entry to a Universal Messaging Queue.

Usage

naddqueueacl <queue name> <user> <host> [list acl] [modify acl]
[full] [peek] [push] [purge] [pop]

Universal Messaging Developer Guide Version 10.1 85

Enterprise APlIs

<Required Arguments>

<gueue name> - Queue name parameter for the queue to add the ACL entry to
<user> - User name parameter for the queue to add the ACL entry to

<host> - Host name parameter for the queue to add the ACL entry to
[Optional Arguments]

[list acl] - Specifies that the list acl permission should be added
[modify acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added

[peek] - Specifies that the peak permission should be added

[push] - Specifies that the push permission should be added

[purge] - Specifies that the purge permission should be added

[pop] - Specifies that the pop permission should be added

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Modify a Channel ACL Entry

This example demonstrates how to modify the permissions of an ACL entry on a
Universal Messaging Channel.

Usage

nchangechanacl <channel name> <user> <host> [+/—list_acl] [+/—modify_acl]
[+/-full] [+/-last eid] [+/-read] [+/-write] [+/-purge]
[+/-named] [+/-all perms]
<Required Arguments>
<channel name> - Channel name parameter for the channel to change the ACL entry for
<user> - User name parameter for the channel to change the ACL entry for
<host> - Host name parameter for the channel to change the ACL entry for
[Optional Arguments]

[+/-] - Prepending + or - specifies whether to add or remove a permission

[list _acl] - Specifies that the list acl permission should be added/removed
[modify acl] - Specifies that the modify acl permission should be added/removed
[full] - Specifies that the full permission should be added/removed

[last eid] - Specifies that the get last EID permission should be added/removed
[read] - Specifies that the read permission should be added/removed

[write] - Specifies that the write permission should be added/removed

[purge] - Specifies that the purge permission should be added/removed

[named] - Specifies that the used named subscriber permission should be added/removed
[all perms] - Specifies that all permissions should be added/removed

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Delete a Realm ACL Entry

This example demonstrates how to delete an ACL entry from a realm on a Universal
Messaging Channel.

Usage

ndelrealmacl <user> <host> [-r]

<Required Arguments>

<user> - User name parameter to delete the realm ACL entry from
<host> - Host name parameter to delete the realm ACL entry from

Universal Messaging Developer Guide Version 10.1 86

Enterprise APlIs

[Optional Arguments]
[-r] - Specifies whether recursive traversal of the namespace should be done
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Add a Schedule to a Universal Messaging Realm

This example demonstrates how to read a schedule from a file and add the schedule to a
realm.

Usage

naddschedule <source> [subject] [clusterwide]
<Required Arguments>

<source> - location of the schedule script file
[Optional Arguments]

[subject] - The subject of the schedule (default : os username)
[clusterwide] - Whether or not the schedule is cluster wide (default : false)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Simple authentication server

This demonstrates how to set security permissions when connection attempts are made
on the realm.

Application Source Code

See the online documentation for a code example.

Java Client: Monitor realms for cluster creation, and cluster events

This example demonstrates how to monitor a realm or realms for cluster events.

Application Source Code

See the online documentation for a code example.

Java Client: Monitor realms for client connections coming and going

This example demonstrates how to monitor for connections to the realm and its
channels.

Usage
nconnectionwatch
Note: -? provides help on environment variables

Universal Messaging Developer Guide Version 10.1 87

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Java Client: Copy a channel and its events

This example demonstrates how to copy a channel and its events from one location to

another.

Usage

nadmincopychan <channel>

<Required Arguments>

[-r toRealm] [-n toChannelName] [-a channel ttl]
[-c channel capacity] [-t channel type]

<channel> - Channel name parameter for the channel to copy

[Optional Arguments]

<-r toRealm> -

<-n toChannelName> =

<-a channel ttl> -

<-c channel capacity> -

<-t channel type> =
(

The
The
The
The
The
P |

name of the linked remote realm to copy the channel to
name you wish to give the copied channel

ttl you wish to give the copied channel

capacity you wish to give the copied channel

channel you wish the copied channel to be any of

R| M| S | T)

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client; Monitor the remote realm log and audit file

This example demonstrates how to monitor a realm's log and audit files.

Usage

nauditandloglistener <-1 logfile> <-a auditfile> <-replay>

[Optional Arguments]

<-1 logfile> - A file name to store the log messages to (without this it
will go to system.out

<-a auditfile> - A file name to store the audit messages to (without this it
will go to system.out

<-replay> - Specifies if the entire audit file will be replayed

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Export a realm to XML

This example demonstrates how to export a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins, configuration information and JNDI assets to
an XML file so that it can be imported into any other realm (see "Java Client: Import a
realm's configuration information" on page 89).

Usage

nexportrealmxml [export file location]

Universal Messaging Developer Guide Version 10.1 88

Enterprise APlIs

<Optional Arguments>
-all -realms -cluster -realmacl -realmcfg -channels -jndi
-channelfilter=<filter> -channeacls -datagroups -datagroupfilter=<filter>
-joins -queues -queuefilter=<filter> -queueacls -interfaces -plugins -via
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Import a realm's configuration information

This example demonstrates how to import a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins, configuration information and JNDI assets from
an XML file that was previously created by exporting a realm (see "Java Client: Export a
realm to XML" on page 88).

Usage

nimportrealmxml file name

<Optional Arguments>
-all -realmacl -realmcfg -channels -jndi -channelfilter=<filter>
-channelacls -queues -queuefilter=<filter> -queueacls -interfaces
-datagroups -datagroupfilter=<filter>

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Console-based Realm Monitor
This example demonstrates how to monitor a realm's cluster, joins, security, channels /

queues, scheduling, interfaces / plugins and configuration information.

Usage

nTop [refreshRate]

[Optional Arguments]

[refreshRate] - the rate at which the information is reloaded on screen (milliseconds)
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Realm Monitor

Monitors a Universal Messaging Realm and output results to CSV files.

Usage

java RealmMonitor <rnames> [config file]
<Required Parameters>

<rname> : comma separated list of rnames to monitor.
[Optional Parameters]
[config file] : configuration file location e.g. c:\\config.txt

All other parameters can be specified in the config file.

Universal Messaging Developer Guide Version 10.1 89

Enterprise APlIs

If realm is clustered then other realms in cluster will
be found automatically.

Application Source Code

See the online documentation for a code example.

Description of Classes and Output

Contained within the application are 5 separate classes each set up to monitor different
aspects of a Universal Messaging Realm:

m "Connection Monitor" on page 91 - monitors all connections to the realm
"Realm Monitor" on page 91 - regularly outputs current state of the realm
"Thread Monitor" on page 92 - monitors for unexpected thread behaviour

"Log Monitor" on page 92 - listens for key words in the Realm log

"Channel Monitor" on page 92 - monitors channel and queue state for potential
issues

The application takes 2 arguments:
1. RNAMEs
Comma separated list of RNAMESs of the realms to monitor.

If the realm is part of a cluster, the application will also monitor the cluster members
so there is no need to list the RNAMEs of the other cluster members.

2. Configuration file
[optional] the location of the configuration file (including the name of the file).
If this is not specified, a default file will be created.

Each monitor will output different information and at different intervals. The
information to be output can be specified in the 'methods' field in the configuration file
for each monitor. The data is written to CSV files so that it can be easily plugged into
graphing tools or other monitoring applications. Most of the monitors will only output
data if a certain condition is met for example the log monitor will only write data if a
keyword is found in a line of the Universal Messaging Realm log. The realm monitor on
the other hand will constantly output data to the CSV every X seconds. If a realm goes
down, the realm monitor will output Os which will make any problems apparent if the
data is put into a graph.

Configuration File

The configuration file provides flexibility to change when and what data is output for
each monitor. The application will generate a default configuration file if no command
line argument is specified. This default file contains all the necessary parameters to start
monitoring but all parameters are customisable. Each monitor has different triggers for
when to output data. These triggers can all be specified in this file. More detail on the
monitor specific parameters can be found in the relevant sections below. You can also

Universal Messaging Developer Guide Version 10.1 90

Enterprise APlIs

specify the working directory for the tests [default: ./RealmMonitorOut/] and which tests
to run.

'methods' parameter

Each monitor requires this parameter to be set in the configuration file. This is a
comma separated list of method names to be invoked on the object that the monitor is
observing. The result of each of these methods will be output to the CSV file under the
corresponding heading in the 'headings' parameter.

For example the connection monitor is monitoring connections so will invoke the
methods on the nConnectionDetails object. You can specify any methods here that are
a member of the nConnectionDetails class. It is possible that the return type of these
methods will not be a type that is easily represented as a string or you may wish to
display the object in a certain way. Most of these cases have been dealt with already
but in order to change the behaviour you can simply override the method name in
the relevant monitor class. For example the channel monitor invokes the methods on
nLeafNode which has a method called getUsedSpace. getUsedSpace returns a long
representing the number of bytes used, however this application will return the used
space in kilobytes because the method is overridden:
public String getUsedSpace (Object o) {

long used = ((nLeafNode)o) .getUsedSpace() ;

used = used/1024;

return used+"";

}
The above method overrides the getUsedSpace method on the nLeafNode. By simply
creating this method inside the ChannelMonitor class, whenever getUsedSpace is
required, this method will be called instead with the nLeafNode as a parameter.

Connection Monitor

The connection monitor maintains a list of the current connections to the realm. Every
x seconds the monitor will check each connection for potential problems and write the
details of that connection to the CSV file if any trigger is hit.

There are two triggers currently available:

B maxQueuedEvents - maximum number of events allowed to be queued for a
connection before the monitor will output to the CSV

® maxTimeOfLastTransmit - maximum time taken to transmit the last event.

This monitor invokes the method in the 'methods' parameter on the nConnectionDetails
object.

Realm Monitor

The realm monitor prints to the CSV file every x seconds (configurable by the
refreshRate parameter). There are no triggers for this monitor as the information should
be available at all times. If no data is available (realm is down) then by default the
monitor will output Os to the CSV.

This monitor invokes the method in the 'methods' parameter on the nRealmNode object.

Universal Messaging Developer Guide Version 10.1 91

Enterprise APlIs

Thread Monitor

The thread monitor constantly checks the thread pools for unexpected values. There are
2 triggers which will cause the monitor to write to the CSV:

® maxQueueSize - if the number of queued tasks in the thread pool exceeds this value
then the information on this tread pool will be output to the CSV

® minldle - the minimum number of idle threads available before the monitor will
output to the CSV

This monitor invokes the method in the 'methods' parameter on the nThreadPool object.

Log Monitor

This monitor listens to the Universal Messaging log and will write to the CSV whenever
any line of the log contains a keyword. The list of keywords can be specified in the
config file.

The 'methods' parameter in the configuration file will be invoked on the LogMonitor
class or the enclosing RealmMonitor class e.g. getTime.

Channel Monitor

The channel monitor keeps track of the current channels and queues on the realm. If any
triggers are hit for a leaf node then the details of that leaf node are output to the CSV.

There are many triggers that can be set for this monitor. For example there is a
parameter called 'minCurrentCons' and an associated 'maxCurrentCons'. If the number
of current connections falls outside of this range then the details of the leaf node are
printed to the CSV.

This monitor invokes the method in the 'methods' parameter on the nLeafNode object.

Java Client: Create Cluster

This example demonstrates how to create a cluster.

Usage

nmakecluster <cluster name> <convert local stores> <rnames> [-r]
<Required Arguments>
<cluster name> -
The name for the new cluster.
The cluster name must be alphanumeric.
<convert local stores> -
Flag to indicate whether the local stores of the master
should be converted to cluster wide stores.
<rnames> -
Server URLs to be included in the cluster.
There can be several names, separated by a space.
The proper format is:
[nsp/nhp/nsps/nhps] ://[hostname] : [port]
or
shm://[path/to/file]
Note: -? provides help on environment variables

Universal Messaging Developer Guide Version 10.1 92

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Java Client: Create Security Group

This example demonstrates how to create a security group.

Usage

nmakesecgroup <security group name> [-r]

<Required Arguments>

<security group name> - The name of the security group
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Add Security Group Subject

This example demonstrates how to add a subject to a security group.

Usage

naddsecgrpsubject <security group name> <subject> [-r]
<Required Arguments>

<security group name> - The name of the security group.
<subject> - The subject to be added, in the format "user@host".
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Delete Security Group Subject

This example demonstrates how to delete a subject from a security group.

Usage

ndelsecgrpsubject <security group name> <subject> [-r]

<Required Arguments>

<security group name> - The name of the security group.

<subject> - The subject to be removed, in the format "userlhost".
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Delete Security Group

This example demonstrates how to delete a security group.

Usage

Universal Messaging Developer Guide Version 10.1 93

Enterprise APlIs

ndelsecgroup <security group name> [-r]

<Required Arguments>

<security group name> - The name of the security group.
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Provider for JMS

Using the AMQP Protocol

The JMS sample applications (with the exception of the JMS Queue Browser) can be
used over the Advanced Message Queuing Protocol (AMQP) protocol. AMQP is defined
by the ISO/IEC 19464 standard.

In order to switch to AMQP, you need to change the following environment variables,
prior to running the JMS sample application:

Environment variable Description

CONTEXT_FACTORY The name of the ContextFactory class

used by the sample application (default:
com.pcbsys.nirvana.nSpace.NirvanaContextFactory). When using
an AMQP connection this should be changed to:

m org.apache.qpid.jms.jndi.JmslinitialContextFactory - to use the
QPID Proton JMS Client libraries, or

m org.apache.qpid.amgp_1_0.jms.jndi.PropertiesFilelnitialContextFactory
- to use the QPID Legacy JMS Client libraries

PROVIDER_URL The URL of your local nirvana realm from which JNDI
entries will be looked up (default: nsp://localhost:9000).
When using an AMQP connection this should be
changed to:

® amgqp://localhost:9000 - when using a plain AMQP
connection, connecting to a standard nsp interface;

®m amgqps://localhost:9000 - when using a plain AMQP
connection over a secure socket connection, connecting
to a nsps interface.

Note: AMQP connections require the AMQP plugin to be enabled on the realm and
work only over the nsp and nsps interfaces. The connections will not work
over nhp or nhps.

Universal Messaging Developer Guide Version 10.1 94

Enterprise APlIs

Note: When using AMQP with all JMS sample applications, the <factoryname>
parameter is ignored, but it is still required. This is due to the internal
implementation of the client libraries.

Plain AMQP pub/sub example

The following example assumes that you have an existing topic MyTopic configured on
the realm server and bound in the JNDI context, and that the client tries to connect to a
NSP interface.

To start a subscriber:
1. Start a "Java examples" command prompt

2. Set the following environment variables:

set CONTEXT FACTORY=org.apache.gpid.jms.jndi.JmsInitialContextFactory
set PROVIDER URL=amqgp://<hostname>:<port>

3. Start the jmssub application by running the following command:

jmssub ignored topic.MyTopic

At this point the jmssub application will be running over AMQP and will receive any
messages published on the MyTopic topic

To start a publisher:
1. Start a "Java examples" command prompt

2. Set the following environment variables:

set CONTEXT FACTORY=org.apache.qgpid.jms.jndi.JmsInitialContextFactory
set PROVIDER URL=amgp://<hostname>:<port>

3. Start the jmssub application by running the following command:

jmspub ignored topic.MyTopic 10

At this point the jmspub application will be running over AMQP and will send 10
messages to the MyTopic topic.

AMQP over alternative TLS example

The following example assumes that you have an existing topic MyTopic configured on
the realm server and bound in the JNDI context and that the client tries to connect to a
NSPS interface.

To start a subscriber:
1. Start a "Java examples" command prompt

2. Set the following environment variables:

set CONTEXT FACTORY=org.apache.gpid.jms.jndi.JmsInitialContextFactory
set PROVIDER URL=amgps://<hostname>:<port>

3. Start the jmssub application by running the following command:

jmssub ignored topic.MyTopic

Universal Messaging Developer Guide Version 10.1 95

Enterprise APlIs

At this point the jmssub application will be running over AMQP and will receive any
messages published on the MyTopic topic

To start a publisher:
1. Start a "Java examples" command prompt

2. Set the following environment variables:

set CONTEXT FACTORY=org.apache.gpid.jms.jndi.JmsInitialContextFactory
set PROVIDER URL=amgps://<hostname>:<port>

3. Start the jmssub application by running the following command:

Jjmspub ignored topic.MyTopic 10

At this point the jmspub application will be running over AMQP and will send 10
messages to the MyTopic topic.

Note: If the NSPS interface on the realm has been configured to use the certificates
generated by the "CertificateGenerator" then you don't need to make any
changes to the client applications. However if you are using different
certificates, then in each command prompt, you need to additionally set the
certificate locations by executing the following set commands:

set CAKEYSTORE=<TRUST KEYSTORE PATH>
set CAKEYSTOREPASSWD=<TRUST KEYSTORE PASSWORD>
set CKEYSTORE=<CLIENT KEYSTORE PATH>
set CKEYSTOREPASSWD=<CLIENT KEYSTORE PASSWORD>

Java Client: JMS BytesMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Bytes Messages to a
JMS Topic.

Usage

jmsbytespub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<topicName> - JMS Topic to publish on.
When using AMQP, this should be in the
format topic.<topicName>

<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS BytesMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Bytes Messages
from a JMS Topic.

Universal Messaging Developer Guide Version 10.1 96

Enterprise APlIs

Usage

jmsbytessub <factoryname> <destinationName> <transacted> <durablename> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<destinationName> - JMS Destination to subscribe to.
When using AMQP, this should be in the
format topic.<topicName> or queue.<queueName>

<transacted> - Whether the session is transacted
<durablename> - The name of a durable subscriber
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS MapMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Map Messages to a
JMS Topic.

Usage

Jjmsmappub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<topicName> - JMS Topic to publish on.
When using AMQP this should be in the
format topic.<topicName>

<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JUS MapMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Map Messages
from a JMS Topic.

Usage

jmsmapsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<destinationName> - JMS Destination to subscribe to.
When using AMQP this should be in the
format topic.<topicName> or queue.<queueName>
<transacted> - Whether the session is transacted
<selector> - An optional message selector

Universal Messaging Developer Guide Version 10.1 97

Enterprise APlIs

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS ObjectMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Object Messages to
a JMS Topic.

Usage

jmsobjectpub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<topicName> - JMS Topic to publish on.
When using AMQP this should be in the
format topic.<topicName>

<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS ObjectMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Object Messages
from a JMS Topic.

Usage

Jjmsobjectsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<destinationName> - JMS Destination to subscribe to.
When using AMQP this should be in the
format topic.<topicName> or queue.<queueName>

<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS StreamMessage Publisher

This example uses Universal Messaging Provider for JMS to publish Stream Messages to
a JMS Topic.

Universal Messaging Developer Guide Version 10.1 98

Enterprise APlIs

Usage

jmsstreampub <factoryname> <topicName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<topicName> - JMS Topic to publish on.
When using AMQP this should be in the
format topic.<topicName>

<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS StreamMessage Subscriber

This example uses Universal Messaging Provider for JMS to consume Stream Messages
from a JMS Topic.

Usage

jmsstreamsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm)
If you are using AMQP, this argument is ignored
but it is still required.
<destinationName> - JMS Destination to subscribe to.
When using AMQP this should be in the
format topic.<topicName> or queue.<queueName>

<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS BytesMessage Queue Publisher

This example uses Universal Messaging Provider for JMS to publish Bytes Messages to a
JMS Queue.

Usage

Jjmsbytesgpub <factoryname> <queueName> <count> <transacted>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<queueName> - JMS Queue to publish on.
When using AMQP this should be in the
format queue.<gqueueName>

<count> - Number of events to publish
<transacted> - Whether the session is transacted
Note: -? provides help on environment variables

Universal Messaging Developer Guide Version 10.1 99

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Java Client: JMS BytesMessage Queue Subscriber

This example uses Universal Messaging Provider for JMS to consume Bytes Messages
from a JMS Queue.

Usage

Jjmsbytesgsub <factoryname> <destinationName> <transacted> <selector>
<Required Arguments>
<factoryname> - JMS Factory (Must exist in target realm).
If you are using AMQP, this argument is ignored
but it is still required.
<destinationName> - JMS Destination to subscribe to.
When using AMQP this should be in the
format topic.<topicName> or queue.<queueName>

<transacted> - Whether the session is transacted
<selector> - An optional message selector
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: JMS Queue Browser
This example shows how to browse a Universal Messaging Provider for JMS Queue in
JMS.

Usage

jmsgbrowse <factoryname> <destinationName> <selector>
<Required Arguments>

<factoryname> - JMS Factory (Must exist in target realm)
<destinationName> - JMS Destination to subscribe to
<selector> - An optional message selector

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Channel / Queue / Realm Management

Java Client: Creating a Channel
This example demonstrates how to create a Universal Messaging channel

programmatically.

Usage

nmakechan <channel name> [time to live] [capacity] [type] [cluster wide]
[start eid] [use jms engine] [honor capacity when full]

Universal Messaging Developer Guide Version 10.1 100

Enterprise APlIs

<Required Arguments>

<channel name> - Channel name parameter for the channel to be created.

[Optional Arguments]

[time to live] - The Time To Live parameter for the new channel (default: O0)
[capacity] - The Capacity parameter for the new channel (default: 0)
[type] - The type parameter for the new channel (default: S)
R - For a reliable (stored in memory) channel with persistent eids
P - For a persistent (stored on disk) channel
S - For a simple (stored in memory) channel with non-persistent eids
T - For a transient (no server based storage)
M - For a Mixed (allows both memory and persistent events) channel
O - For an Off Heap channel

G - For a Paged channel (Uses a memory mapped file for storage)
[cluster wide] - Whether the channel is cluster wide. Will only work if the

realm is part of a cluster.

[start eid] - The initial start event id for the new channel

(default: 0).

[use jms engine] - Sets whether to use the JMS style fanout engine.
[honor capacity when full] - Whether the channel / queue capacity setting will

prevent publishing of any more data once full.
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Deleting a Channel

This example demonstrates how to delete a Universal Messaging channel

programmatically.

Usage

ndelchan <channel name>
<Required Arguments>

<channel name> - Channel name parameter for the channel to delete

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Creating a Queue

This example demonstrates how to create a Universal Messaging queue

programmatically.

Usage

nmakeq <queue name> [time to live] [capacity] [type] [cluster wide]

<Required Arguments>

<queue name> - Queue name parameter for the queue to be created

[Optional Arguments]

[time to live] - The Time To Live parameter for the new queue (default: 0)
[capacity] - The Capacity parameter for the new queue (default: 0)

[type] - The type parameter for the new queue (default: S)

R - For a reliable (stored in memory) queue with persistent eids

P - For a persistent (stored on disk) queue

S - For a simple (stored in memory) queue with non-persistent eids

T - For a transient (no server based storage)

M - For a Mixed (allows both memory and persistent events) queue

Universal Messaging Developer Guide Version 10.1

101

Enterprise APlIs

O - For an Off Heap queue
G - For a Paged queue (Uses a memory mapped file for storage)

[cluster wide] - Whether the queue is cluster wide. Will only work if the
realm is part of a cluster
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Deleting a Queue

This example demonstrates how to delete a Universal Messaging queue
programmatically.

Usage
ndelg <gueue name>
<Required Arguments>

<queue name> - Queue name parameter for the channel to delete
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Create a Channel Join

This is a class that demonstrates how to create a channel join.

Usage

nmakechanjoin <source channel name> <destination channel name>
[max hops] [selector]
<Required Arguments>

<source channel name> - Channel name parameter of the local channel name
to join
<destination channel name> - Channel name parameter of the remote channel name
to join
[Optional Arguments]
[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter string to use on messages travelling through
this join
[Allow Purge] - If allow purge is true then when the source channel is purged
events will also be purged
[archive] - true/false, defaults to false, set if you wish to perform an
archive join to a queue
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Delete a Channel Join

This is a class that demonstrates how to delete a channel join.

Universal Messaging Developer Guide Version 10.1 102

Enterprise APlIs

Usage

ndelchanjoin <source channel name> <destination channel name>
<Required Arguments>

<source channel name> - Source Channel name parameter of the join to be deleted

<destination channel name> - Destination Channel name parameter of the join to
be deleted

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Purge events from a channel

This class demonstrates how to purge events from a channel.

Usage

npurgechan <channel name> <start eid> <end eid> <filter>

<Required Arguments>

<channel name> - Channel name parameter for the channel to be purged
<start eid> - The start eid of the range of events to be purged

<end eid> - The end eid of the range of events to be purged

<filter> - An optional filter string for events to be purged

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Find the event id of the last event

This class demonstrates how to find the last event id published on a specific channel.

Usage

ngetlasteid <channel name>

<Required Arguments>

<channel name> - Channel name parameter to get the last EID for
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Add a realm to another realm

This is a class that demonstrates how to add a realm to another realm, either mounted
into the namespace or not.

Usage

naddrealm <realm name> <realm details> [mount point]

<Required Arguments>

<realm name> - Realm name parameter for the realm to add

<realm details> - Realm details parameter for the realm to add.
Same form as RNAME

Universal Messaging Developer Guide Version 10.1 103

Enterprise APlIs

[Optional Arguments]

[mount point] - Where you would like to mount the realm within the namespace,
for example /eur/uk
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Java Client: Multiplex a Session

Multiplex two Universal Messaging sessions over one channel.

Usage

nsubchan <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Client APl Package Documentation

API documentation is available for the following Client API:
m Java Client API: com.pcbsys.nirvana.client

The API documentation is available in the Universal Messaging Reference Guide section of
the documentation.

Enterprise Developer's Guide for C++

This guide describes how to develop and deploy C++ applications using Universal
Messaging, and assumes you already have Universal Messaging installed.

General Features

Creating a Session

To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session (nSession) object, which is effectively your logical and physical
connection to a Universal Messaging Realm.

Universal Messaging Developer Guide Version 10.1 104

Enterprise APlIs

Creating a Universal Messaging Session Object

1. Create a nSessionAttributes object with the RNAME value of your choice

std::string[] RNAME={"nsp://127.0.0.1:9000"};
int length = 1;
nSessionAttributes *nsa=new nSessionAttributes (RNAME, length)

2. Call the create method on nSessionFactory to create your session

Session *mySession = nSessionFactory::create(nsa);

Alternatively, if you require the use of a session reconnect handler to intercept the
automatic reconnection attempts, pass an instance of that class too in the create
method:

class myReconnectHandler
public nReconnectHandler

{

//implement tasks associated with reconnection

}
myReconnectHandler rhandler=new myReconnectHandler () ;
nSession *mySession=nSessionFactory::create(nsa, rhandler);

Initializing a Universal Messaging Session

1. Initialise the session object to open the connection to the Universal Messaging Realm

mySession->init () ;

Universal Messaging Events

A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging channel or queue. It is stored by the server and then passed to
consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Event Dictionary (see "Event Dictionaries” on page 105).

Each nConsumeEvent object has an nEventAtrributes object associated with it which
contains all available meta data associated with the event.

Constructing an Event

In this C++ code snippet, we construct our Universal Messaging Event object
(nConsumeEvent), and, in this example, pass a byte array data into the constructor:
std::string strLine = "Hello World";

int length = 0;

unsigned char *pLine = nConstants::encode(strLine, length);

nEventProperties *pProps = new nEventProperties();
nConsumeEvent *evt = new nConsumeEvent (pProps, pLine, length);

Event Dictionaries

Universal Messaging Event Dictionaries (nEventProperties) provide an accessible and
flexible way to store any number of message properties for delivery within an event (for
related information, see "Universal Messaging Events" on page 105).

Universal Messaging Developer Guide Version 10.1 105

Enterprise APlIs

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's dictionary.

Event dictionaries can facilitate the automated purging of data from channels through
the use of Publish Keys.

Constructing an Event

In this code snippet, we assume we want to publish an event containing the definition of
a bond, say, with a name of "bond1":

nEventProperties *props = new nEventProperties|();

props—>put ("bondname", "bondl");

props—->put ("price", 100.00) ;

nConsumeEvent *evt = new nConsumeEvent (props, "atag"):;

channel->publish (evt) ;

Note that in this example code, we also create a new Universal Messaging Event object
(nConsumeEvent, see "Universal Messaging Events" on page 105) to make use of our
Event Dictionary (nEventProperties).

Channel Joins

Joining a channel to another channel or queue allows you to set up content routing such
that events published to the source channel will be passed on to the destination channel/
queue automatically. Joins also support the use of filters thus enabling dynamic content
routing.

Please note that while channels can be joined to both resources, queues cannot be used
as the source of a join.

Channels can be joined using the Universal Messaging Enterprise Manager GUI or
programmatically.

In joining two Universal Messaging channels there is one compulsory option and
two optional ones. The compulsory option is the destination channel. The optional
parameters are the maximum join hops and a message selector to be applied to the join.

Note: For a description of the general principles involved in creating channel
joins, see the section Creating Channel Joins in the Administration Guide. The
description details the usage based on the Enterprise Manager, but the same
general principles apply if you are using the APL

Multiple Path Delivery

Universal Messaging users can define multiple paths over different network protocols
between the same places in Universal Messaging. Universal Messaging guarantees that
the data always gets delivered once and once only.

Universal Messaging Developer Guide Version 10.1 106

Enterprise APlIs

Channel joins can be created using the Make Channel Join sample application which
is provided in the bin directory of the Universal Messaging installation. For further
information on using this example please see the make channel join example page.

Universal Messaging joins are created as follows:

//Obtain a reference to the source channel

nChannel *mySrcChannel = mySession->findChannel (nca);

//Obtain a reference to the destination channel

nChannel *myDstChannel = mySession->findChannel (dest);

//Obtain a reference to the destination channel's realm

nRealm *realm = myDstChannel->getChannelAttributes ()->getRealm() ;
//create the join

mySrcChannel->joinChannel (myDstChannel, true, jhc, SELECTOR);

Channel joins can also be deleted. Please see the delete channel join example for more
information.

Google Protocol Buffers

Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and

this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including .NET, Perl, PHP etc.
Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in nirvana, allowing for server-side
filtering of Google Protocol Buffer events, which can be sent on resources just like a
normal Universal Messaging events. The server side filtering of messages is achieved by
providing the server with a description of the data structures(constructed at the .proto
compile time, using the standard protobuf compiler and the --descriptor_set_out
option). The default location the sever looks in for descriptor files is /plugins/

Universal Messaging Developer Guide Version 10.1 107

Enterprise APlIs

ProtobufDescriptors and this can be configured through the enterprise manager. The
server will monitor this folder for changes, and the frequency of these updates can be
configured through the enterprise manager. The server can then use to extract the key
value pairs from the binary Protobuf message and filter message delivery based on user
requirements.

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.

nProtobuf events are received by subscribers in the normal way.

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the EM is no running on the same machine as the server. To enable this, the
server outputs a descriptor set to a configurable directory (by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Publish / Subscribe using Channel Topics

Publish / Subscribe Using Channels/Topics

The Universal Messaging C++ API provides publish subscribe functionality through
the use of channel objects. Channels are the logical rendezvous point for publishers
(producers) and subscribers (consumers) of data (events).

Universal Messaging DataStreams and DataGroups provide an alternative style of
Publish/Subscribe where user subscriptions can be managed remotely on behalf of
clients.

Under the publish / subscribe paradigm, each event is delivered to each subscriber
once and only once per subscription, and is not removed from the channel after being
consumed.

This section demonstrates how Universal Messaging pub / sub works.

Creating a Channel

Channels can be created programmatically as detailed below, or they can be created
using the Enterprise Manager.

In order to create a channel, first of all you must create an nSession object, which is
effectively your logical and physical connection to a Universal Messaging realm. This is
achieved by using an RNAME for your Universal Messaging realm when constructing
the nSessionAttributes object, as shown below:

std::string[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes *nsa = new nSessionAttributes (RNAME) ;

nSession *mySession = nSessionFactory::create (nsa);
mySession->init () ;

Universal Messaging Developer Guide Version 10.1 108

Enterprise APlIs

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession’, we can then begin creating the channel
object. Channels have an associated set of attributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the channel, the attributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To create a channel, we do the following:

nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setMaxEvents (0) ;

cattrib->setTTL (0) ;

cattrib->setType (nChannelAttributes: :PERSISTENT TYPE) ;
cattrib->setName ("mychannel") ;

nChannel *myChannel = mySession->createChannel (cattrib) ;

Now we have a reference to a Universal Messaging channel within the realm.

Finding a Channel

In order to find a channel programmatically you must create your nSession object, which
is effectively your logical and physical connection to a Universal Messaging realm. This
is achieved by using the correct RNAME for your Universal Messaging realm when
constructing the nSessionAttributes object, as shown below:

std::string* RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes *nsa = new nSessionAttributes (RNAME) ;

nSession *mySession = nSessionFactory::create (nsa);
mySession->init () ;

Once the nSession->init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession’, we can then try to find the channel object.
Channels have an associated set of attributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the channel, the attributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To find a channel previously created, we do the following:

nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setName ("mychannel") ;
nChannel *myChannel = mySession->findChannel (cattrib) ;

This returns a reference to a Universal Messaging channel within the realm.

How to publish events to a Channel
There are 2 types of publish available in Universal Messaging for channels:

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Universal Messaging Developer Guide Version 10.1 109

Enterprise APlIs

Transactional Publish involves creating a transaction object to which events are published,
and then committing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the channel has been located, an event must be constructed prior to a publish call being
made to the channel.

For reliable publish, there are a number of method prototypes on a channel that allow us
to publish different types of events onto a channel. Here are examples of some of them.
Further examples can be found in the API documentation.

// Publishing a simple byte array message
myChannel->publish (new nConsumeEvent ("TAG", message->getBytes()));

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been committed will the events become available to subscribers on the
channel.

Below is a code snippet for transactional publishing:

std::list<nConsumeEvent*> messages;

messages->push back (messagel) ;

nTransactionAttributes *tattrib=new nTransasctionAttributes (myChannel) ;
nTransaction *myTransaction=nTransactionFactory::create(tattrib);
myTransaction->publish (messages) ;

myTransaction->commit () ;

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been committed or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was committed:

bool committed = myTransaction->isCommitted (true) ;

Asynchronous Subscriber

Asynchronous channel subscribers consume events from a callback on an interface that
all asynchronous subscribers must implement. We call this interface an nEventListener.

Universal Messaging Developer Guide Version 10.1 110

Enterprise APlIs

The listener interface defines one method called 'go' which when called will pass events
to the consumer as they are delivered from the Universal Messaging Realm Server.

An example of such a simple listener is shown below:

class subscriber : public nEventListener({
public:
mySubscriber () {
// construct your session
// and channel objects here
// begin consuming events from the channel at event id 0
// i.e. the beginning of the channel
myChannel->addSubscriber (this , 0);
}
void go (nConsumeEvent *pEvt) {
printf ("Consumed event %d",pEvt->getEventID())
}
int main(int argc, char** argv) ({
new mySubscriber () ;
return 0;
}
}

Asynchronous consumers can also be created using a selector, which defines a set of
event properties and their values that a subscriber is interested in. For example if events
are being published with the following event properties:

nEventProperties *props =new nEventProperties();
props—->put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

std::string selector = "BONDNAME='bondl'";

And pass this string into the addSubscriber method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Channel lterator

Events can be synchronously consumed from a channel using a channel iterator object.
The iterator will sequentially move through the channel and return events as and when
the iterator getNext() method is called.

If you are using iterators so that you know when all events have been consumed from a
channel please note that this can also be achieved using an asynchronous subscriber by
calling the nConsumeEvents isEndOfChannel() method.

An example of how to use a channel iterator is shown below:

class mylterator {
private:
nChannelIterator *iterator = null;
public:
myIterator () {
// construct your session and channel objects
// start the iterator at the beginning of the channel (event id 0)
iterator = myChannel->createlterator (0);
}
void start () {

Universal Messaging Developer Guide Version 10.1 111

Enterprise APlIs

while (true) {
nConsumeEvent *event = iterator->getNext () ;
go (event) ;
}
}
void go (nConsumeEvent *event) {
printf ("Consumed event $%d",event->getEventID()) ;
}
int main(int argc, char** argv) ({
mylterator *itr = new mylterator();
itr->start();
return 0;
}
}

Synchronous consumers can also be created using a selector, which defines a set of event
properties and their values that a consumer is interested in. For example if events are
being published with the following event properties:

nEventProperties *props = new nEventProperties();
props—->put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

std::string selector = "BONDNAME='bondl'"

And pass this string into the createlterator method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Batched Subscribe

If a client application needs to subscribe to multiple channels it is more efficient to batch
these subscriptions into a single server call. This is achieved using the subscribe method
of nSession rather than first finding the nChannel object and then calling the subscribe
method of nChannel.

The following code snippet demonstrates how to subscribe to two Universal Messaging
channels in one server call:

public class myEventListener : public nEventListener {
public void go (nConsumeEvent* evt) ({
cout<<"Received an event!";
}

}
public void demo () {

int numChans = 2;

nSubscriptionAttributes **arr = new nSubscriptionAttributes* [numChans];
arr[0] = new nSubscriptionAttributes ("myChanl", "", 0, myLisl);

arr[l] = new nSubscriptionAttributes ("myChan2", "", 0, myLis2);

mySession->subscribe (arr, numChans) ;
for (int 1 = 0; i < arr.length; i++) {
if (larr[i]->wasSuccessful ()) {
handleSubscriptionFailure (arr[i]) ;
}
//subscription successful
}
}
public void handleSubscriptionFailure (nSubscriptionAttributes* subAtts) {
cout<< subAtts.getException () .StackTrace;
}

Universal Messaging Developer Guide Version 10.1 112

Enterprise APlIs

The nSubscriptionAttributes class is used to specify which channels to subscribe to.
The second two parameters of the constructor represent the selector to use for the
subscription and the event ID to subscribe from.

It is possible that the subscription may fail; for example, the channel may not exist or
the user may not have the required privileges. In this situation, calling wasSuccessful()
on the nSubscriptionAttributes will return false and getException() will return the
exception that was thrown.

If the subscription is successful then the nChannel object can be obtained from the
nSubscriptionAttributes as shown in the following code snippet:

nChannel* chan = subAtts->getChannel () ;

Batched Find

In client applications, it is quite common to have multiple Channels or Queues that one
is trying to find. In these scenarios, the batched find call built into nSession is extremely
useful.

The following code snippet demonstrates how to find 2 Universal Messaging Channels
in one server call:

void demo () {
int numchans = 2;
nChannelAttributes** arr = new nChannelAttributes* [numchans];
nChannel** channels = new nChannels* [numchans];
arr[0] = new nChannelAttributes ("myChanl") ;
arr[l] = new nChannelAttributes ("myChan2") ;
fSortedList<std::string, nFindResult*> *pArr = mySession->find(arr, numchans);
int 1 =0;
for (fSortedList<std::string, nFindResult*>::iterator iterator = pArr->begin();
iterator != pArr->end(); iterator++)
{
if (!iterator->second->wasSuccessful ())
{
handleSubscriptionFailure (iterator->second) ;
}
else 1if (iterator->second->isChannel ())
{
channels[i] = iterator->second->getChannel () ;
}
a2
}
public void handleSubscriptionFailure (nFindResult* result) {
// do something
}
}

To perform the same operation for Queues, simply use the example above and exchange
nChannel for nQueue, and check each result returned to see if the isQueue() flag is set.

Durable channel consumers and named objects

Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging Developer Guide Version 10.1 113

Enterprise APlIs

Universal Messaging supports durable consumers through use of Universal Messaging
named objects (see "Named Objects" on page 115) as shown by the following example

code.

Names objects can also be managed via the Enterprise Manager.

Asynchronous Durable Consumer

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with an asynchronous event consumer:

class mySubscriber : public nEventListener {

public:

mySubscriber () {
// construct your session
// and channel objects here
// create the named object and begin consuming events from the channel at event id 0
// i.e. the beginning of the channel
nNamedObject *nobj = myChannel->createNamedObject ("uniquel", 0, true);
myChannel->addSubscriber (this , nobj);

}

void go (nConsumeEvent *event) ({
printf ("Consumed event $%d",event->getEventID()) ;

}

int main (int argc, char** argv) {
new mySubscriber () ;
return O0;

Synchronous Durable Consumer

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with a synchronous event consumer:

class mylterator {
private:
nChannellIterator *iterator = null;
public:

myIterator () {
// construct your session
// and channel objects here
// start the iterator at the beginning of the channel (event id 0)
nNamedObject *nobj = myChannel->createNamedObject ("unique2", 0, true);
iterator = myChannel->createlterator (0);

}

void start () {
while (true) {

nConsumeEvent *event = iterator->getNext () ;
go (event) ;

}

}

void go (nConsumeEvent *event) {
printf ("Consumed event %d",event->getEventID());

}

int main(int argc, char** argv) ({
mylterator *itr = new mylterator();
itr->start () ;
return 0;

Universal Messaging Developer Guide Version 10.1 114

Enterprise APlIs

Both synchronous and asynchronous channel consumers allow message selectors to be
used in conjunction with named objects. Please see the API documentation for more
information.

There are also different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method:
void go(nConsumeEvent *event) {

printf ("Consumed event %d",event->getEventID()) ;

event->ack () ;

}

Named Objects

Universal Messaging provides the ability for the server to maintain state for the last
event that was consumed by a consumer on a channel. By providing a unique name, you
can create a named object on a channel and even when your application is stopped, the
next time you start your application, you will only consume available events from the
last event id that the server stored as successfully consumed by that named object.

Named objects can be persistent, i.e. the last eid is written to disk, so that if the Universal
Messaging Realm Server is restarted, the last eid consumed is retrievable for each named
object on a channel.

An example of how to create a named object that begins from event id 0, and is
persistent is shown below:

nNamedObject nobj = myChannel.createNamedObject ("uniquel", 0, true);

The Merge Engine and Event Deltas

In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. The subscriber will receive a full event on initial subscription, which
contains the most up to date state of the event. After the initial message, only the key/
value pairs which have changed since the last message will be sent to the client.

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been

created with the Merge Engine and it must have a single Publish Key. The publish key
represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such

nChannelAttributes* cattr
= new nChannelAttributes ("RatesChannel", 0, 0, nChannelAttributes.SIMPLE TYPE);

Universal Messaging Developer Guide Version 10.1 115

Enterprise APlIs

//
// This next line tells the server to Merge incoming events based on the publish
// key name and the name of the registered event

//

cattr->useMergeEngine (true) ;

//
// Now create the Publish Key (See publish Keys for a full description

//
nChannelPublishKeys** pks = new nChannelPublishKeys[1];
pks[0] = new nChannelPublishKeys ("ccy", 1);
cattr->setPublishKeys (pks) ;

//

// Now create the channel

//

myChannel = mySession->createChannel (cattr);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.

nRegisteredEvent* audEvent = myChannel->createRegisteredEvent ("AUD") ;

nEventProperties* props = audEvent->getProperties();

props->put ("bid", 0.8999);

props—->put ("offer", 0.9999);

props->put ("close", "0.8990");

audEvent->commitChanges () ;

You now have a nRegisteredEvent called audEvent which is bound to a ccy value

of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:

props->put ("bid", 0.9999);
audEvent->commitChanges () ;

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener v nRegisteredEventListener

The subscriber doesn't need to do anything different to receive these events. The
standard nEventListener will appear to receive full events with all keys and data even
though only the changed keys were transmitted. The events are reassembled on the
client and are updated locally such that the subscriber receives the usual callback from
the server.

If the client only wants to process the changes then they can choose to implement

the nRegisteredEventListener interface rather than the nEventListener interface. The
nRegisteredEventListener, has an update() method in addition to the usual go() method.
The update method will be called whenever an update has been published.

Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same channel or queue. Universal Messaging provides the ability to
expedite messages based on a priority level. Messages with higher levels of priority are

Universal Messaging Developer Guide Version 10.1 116

Enterprise APlIs

able to be delivered to clients ahead of lower priority messages. The priority is a numeric
value in the range 0 (lowest priority) to 9 (highest priority).

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:

nConsumeEvent* evt;
evt->getAttributes () -—>setPriority(9) ;

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically, events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis, and the effects
become more noticeable as load increases.

Note: If events are stored for replay at a later stage, for example for a durable
subscriber who is currently not consuming events, higher priority events will
be delivered earlier than lower priority events when the durable subscriber
starts consuming the events, even if the lower priority events were created
much earlier .

Publish / Subscribe using Datastreams and Datagroups

Publish / Subscribe Using DataStreams and DataGroups

Publish / Subscribe is one of several messaging paradigms supported by Universal
Messaging. Universal Messaging DataGroups are lightweight structures designed to
facilitate Publish/Subscribe . When using DataGroups, user subscriptions are managed
remotely in a way that is transparent to subscribers. Universal Messaging Channels
provide an alternative style of Publish/Subscribe where the subscribers manage their
subscriptions directly.

There are two resources that are used when interacting with DataGroups: DataStreams
and DataGroups.
DataStreams

A Data Stream is a destination for published events. Publishers with appropriate
permissions can write events directly to Data Streams. A Universal Messaging client
session can optionally have a Data Stream, and receive events through it.

Universal Messaging Developer Guide Version 10.1 17

Enterprise APlIs

A Data Stream can be a member of one or more Data Groups.

DataGroups

Any event written to a Data Group will be propagated to all Data Streams that are
members of that Data Group.

Data Groups may also contain other Data Groups. Any event written to an upper level
Data Group will be written to all contained Data Groups, and thus to all contained Data
Streams.

Note that all Data Streams are automatically added to the realm server's Default Data
Group. Writing an event to the Default Data Group, therefore, will ensure it is delivered
to any client with a session configured to use a Data Stream.

This section demonstrates Universal Messaging pub / sub using DataGroups in C++, and
provides example code snippets for all relevant concepts.

DataStreamListener

If a nSession is created with a nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

B Anevent is published directly to this particular nDataStream
B An event is published to any nDataGroup which contains this nDataStream

B Anevent is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

B Anexample of how to create a session with an nDataStreamListener interface is
shown below:

public class DataGroupClient : public nDataStreamlListener{
nSession* mySession;
public DataGroupClient (std::stringé& realmURLs) {
nSessionAttributes* nsa = new nSessionAttributes (realmURLs) ;
mySession = nSessionFactory::create(nsa, this);
mySession->init (this) ;

}

/177

// nDataStreamListener Implementation

/117

//Callback received when event is available

public void onMessage (nConsumeEvent* event) {
//some code to process the message

}

Creating and Deleting DataGroups

Creating Universal Messaging DataGroups

nDataGroups can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

Universal Messaging Developer Guide Version 10.1 118

Enterprise APlIs

In order to create a nDataGroup, first of all you must create an nSession object, which
is effectively your the logical and physical connection to a Universal Messaging Realm.
This is achieved by using an RNAME for your Universal Messaging Realm when
constructing the nSessionAttributes object, as shown below:

std::string* RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes* nsa=new nSessionAttributes (RNAME) ;
nSession* mySession=nSessionFactory::create (nsa);
mySession->init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession object instance 'mySession’, you can then create DataGroups. The create
DataGroup methods will return the nDataGroup if it already exists.

The code snippets below demonstrate the creation of nDataGroups:

Create a Single nDataGroup

nDataGroup* myGroup = mySession->createDataGroups ("myGroup") ;

Create Multiple nDataGroups

std::string* groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup* myGroups = mySession->createDataGroups (groups) ;

Creating DataGroups with DataGroupListeners and ConflationAttributes
It is also possible to specify additional properties when creating DataGroups:
®m nDataGroupListener - To specify a listener for DataGroup membership changes

® nConflationAttributes - To specify attributes which control event merging and
delivery throttling for the DataGroup

Now we have a reference to a Universal Messaging DataGroup it is possible to publish
events

Deleting Universal Messaging DataGroups

There are various deleteDataGroup methods available on nSession which will delete
DataGroups. It is possible to specify single nDataGroups or arrays of nDataGroups.

Managing DataGroup Membership

DataGroups are extremely lightweight from both client and server perspectives; a back-
end process, such as a Complex Event Processing engine, can simply create DataGroups
and then add or remove users (or even entire nested DataGroups) based on bespoke
business logic. A user who is removed from one DataGroup and added to another

will continue to receive events without any interruption to service, or indeed explicit
awareness that any DataGroup change has occurred.

This page details some of the typical operations that DataGroup management process
would carry out.

Universal Messaging Developer Guide Version 10.1 119

Enterprise APlIs

Please see our C++ sample apps for more detailed examples of DataGroup management.

Tracking Changes to DataGroup Membership (DataGroupListener)

The nDataGroupListener interface is used to provide asynchronous notifications
when nDataGroup membership changes occur. Each time a user (nDataStream) or
nDataGroup is added or removed from a nDataGroup a callback will be received.

public class datagroupListener : public nDataGroupListener {

nSession* mySession;

public datagroupListener (nSession session) {
mySession = session;
//add this class as a listener for all nDataGroups on this Universal
// Messaging realm
mySession->getDataGroups (this) ;

}

/17

//DataGroupListener Implementation

/1]

public void addedGroup (nDataGroup* to, nDataGroup* group, int count) {
//Called when a group has been added to the 'to' data group.
//count is the number of nDataStreams that will receive any events
//published to this nDataGroup

}

public void addedStream (nDataGroup* group, nDataStream* stream, int count) {
//Called when a new stream has been added to the data group.

}

public void createdGroup (nDataGroup* group) {
//Called when a group has been created.

}

public void deletedGroup (nDataGroup* group) {
//Called when a group has been deleted.

}

public void deletedStream (nDataGroup* group, nDataStream* stream, int count,

bool serverRemoved) {

//Called when a stream has been deleted from the data group.
//serverRemoved is true if the nDataStream was removed because of flow control

}

public void removedGroup (nDataGroup* from, nDataGroup* group, int count) {
//Called when a group has been removed from the 'from' data group.

}

}

There are three ways in which the nDataGroupListener can be used:

Listening to an individual DataGroup

Listeners can be added to individual DataGroups when they are created or at any time
after creation. The code snippets illustrate both approaches:

mySession->createDataGroup (dataGroupName, datagroupListener) ;
myDataGroup->addListener (datagroupListener) ;

Listening to the Default DataGroup

The Default nDataGroup is a DataGroup to which all nDataStreams are added by
default. If you add a DataGroupListener to the default DataGroup then callbacks will be
received when:

B anDataStream is connected/disconnected

Universal Messaging Developer Guide Version 10.1 120

Enterprise APlIs

® anDataGroup is created or deleted

Listening to all DataGroups on a Universal Messaging Realm

The code snippet below will listen on all nDataGroups (including the default
DataGroup).

mySession->getDataGroups (datagrouplListener) ;

Adding and Removing DataGroup Members

The nDataGroup class provides various methods for adding and removing
nDataStreams and nDataGroups. Please see the nDataGroup API documentation for a
full list of methods. Examples of some of these are provided below:
//Add a nDataStream (user) to a nDataGroup
public void addStreamToDataGroup (nDataGroup* group, nDataStream* user) {
group->add (user) ;
}
//Remove a nDataStream (user) from a nDataGroup
public void removeStreamFromDataGroup (nDataGroup* group, nDataStream* user) {
group->remove (user) ;

}

//Add a nDataGroup to a nDataGroup

public void addNestedDataGroup (nDataGroup* parent, nDataGroup* child) {
parent->add (child) ;

}

//Remove a nDataGroup from a nDataGroup

public void removeNestedDataGroup (nDataGroup* parent, nDataGroup* child) {
parent->remove (child) ;

}
DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throttling of events) occurs when messages are published. Conflation can be carried

out in several ways and these are specified using a nConflationAttributes object. The
ConflationAttributes object is passed in to the DataGroup when it is created initially.

The nConflationAttributes object has two properties action and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:

nConflationAttributes: :sMergeEvents
nConflationAttributes: :sDropEvents

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object

//ConflationAttributes specifying merge events and no throttled delivery
nConflationAttributes* confattribs =
new nConflationAttributes (nConflationAttributes: :sMergeEvent, O0);

Universal Messaging Developer Guide Version 10.1 121

Enterprise APlIs

//ConflationAttributes specifying merge events and throttled delivery at
// 1 second intervals
nConflationAttributes* confattribs =

new nConflationAttributes (nConflationAttributes: :sMergeEvent, 1000) ;
//ConflationAttributes specifying drop events and throttled delivery at
// 1 second intervals
nConflationAttributes* confattribs =

new nConflationAttributes (nConflationAttributes::sDropEvent, 1000) ;

Create a Single nDataGroup with Conflation Attributes

//create a DataGroup passing in this class as a nDataGroupListener and
// a ConflationAttributes
myDataGroup = mySession->createDataGroup (dataGroupName, this, confattribs);

Create Multiple nDataGroups with Conflation Attributes

nConflationAttributes* confattribs =

new nConflationAttributes (nConflationAttributes: :sMergeEvent, 1000) ;
std::string[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession->createDataGroups (groups, confattribs);

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have a nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.

nRegisteredEvent* audEvent = myDataGroup->createRegisteredEvent () ;

nEventProperties* props = audEvent->getProperties();

props->put ("bid", 0.8999);

props—->put ("offer", 0.9999);

props->put ("close", "0.8990");

audEvent->commitChanges () ;

You now have a nRegisteredEvent called audEvent which is bound to a ccy value
of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:

props->put ("bid", 0.9999);

audEvent->commitChanges () ;
This code will send only the new "bid" change to the server. The server will modify the

event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Publishing Events to Conflated DataGroups With A Drop Policy
If you have specified a "Drop" policy in your ConflationAttributes then events are
published in the normal way rather than using nRegisteredEvent.

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will
contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

Universal Messaging Developer Guide Version 10.1 122

Enterprise APlIs

DataGroups Event Publishing

You can get references to any DataGroup from the nSession object. There are various
writeDataGroup methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataGroups.

myDataGroup* = mySession->getDataGroup ("myGroup") ;

nEventProperties* props = new nEventProperties|();

//You can add other types in a dictionary object

props—>put ("keyOstring"+x, "1"+x);

props—->put ("keylint", (int) 1);

props->put ("key2long", (long) -11);

nConsumeEvent* evtl = new nConsumeEvent (props, buffer);

//Publish the event

mySession->writeDataGroup (evtl, myDataGroup) ;

DataStream Event Publishing

You can get references to any nDataStream (user) from the nSession object if you

call getDefaultDataGroup(). You can also access nDataStreams by implementing the
nDataGroupListener interface. Please refer to DataGroup management (see "Managing
DataGroup Membership" on page 119) for more information. This will deliver
callbacks as users are connected/disconnected. There are various writeDataStream
methods available. These methods also support batching of multiple events to a single
group or batching of writes to multiple DataStreams.

nEventProperties* props = new nEventProperties();

//You can add other types in a dictionary object

props->put ("keyOstring"+x, "1"+x);

props—->put ("keylint", (int) 1);

props—->put ("key2long", (long) -11);

nConsumeEvent* evtl = new nConsumeEvent (props, buffer);

//Publish the event
mySession->writeDataStream(evtl, myDataStream)

Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same datagroup. Universal Messaging provides the ability to expedite
messages based on a priority level. Messages with higher levels of priority are able to be
delivered to clients ahead of lower priority messages.

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:

nConsumeEvent evt;

evt->getAttributes () -—>setPriority(9) ;

Universal Messaging Developer Guide Version 10.1 123

Enterprise APlIs

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis and the effects
become more noticeable as load increases.

It is possible to specify multiple levels of priority for events on the same datagroup. This
behaviour will cause the events to be delivered highest priority first. When doing this it
is important to realise that events on a datagroup will no longer be delivered on a first in
first out basis.

Message Queues

Message Queues

Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) of data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

Universal Messaging also supports non destructive reads (peeks) from queues which
enable consumers to see what events are on a queue without removing it from the
queue. Any event which has been peeked will still be queued for popping in the normal
way. The Universal Messaging enterprise manager also supports the ability to visually
peek a queue using its snoop capability.

This section demonstrates how Universal Messaging message queues work in C++, and
provide examples code snippets for all relevant concepts.

Creating a Queue

In order to create a queue, first of all you must create your nSession object, which is
effectively your logical and physical connection to a Universal Messaging Realm. This
is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAttributes object, as shown below:

std::string[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes *nsa = new nSessionAttributes (RNAME) ;

nSession *mySession = nSessionFactory::create(nsa);
mySession->init () ;

Once the mySession->init() method is successfully called, your connection to the realm
will be established.

Universal Messaging Developer Guide Version 10.1 124

Enterprise APlIs

Using the nSession objects instance 'mySession’, we can then begin creating the queue
object. Queues have an associated set of attributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the queue, the attributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To create a queue, we do the following;:

nChannelAttributes *cattrib = new nChannelAttributes();
cattrib->setChannelMode (nChannelAttributes: :QUEUE MODE) ;
cattrib->setMaxEvents (0) ;

cattrib->setTTL (0) ;

cattrib->setType (nChannelAttributes: :PERSISTENT TYPE) ;
cattrib->setName (“myqueue”) ;

nQueue *myQueue=mySession->createQueue (cattrib) ;

Now we have a reference to a Universal Messaging queue within the realm.

Finding a Queue

In order to find a queue, first of all the queue must be created. This can be achieved
through the Universal Messaging Enterprise Manager, or programmatically (see
"Creating a Queue" on page 124). First of all you must create your nSession object,
which is your effectively your logical and physical connection to a Universal Messaging
Realm. This is achieved by using the correct RNAME for your Universal Messaging
Realm when constructing the nSessionAttributes object, as shown below:

std::string[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes *nsa=new nSessionAttributes (RNAME) ;

nSession *mySession = nSessionFactory->create (nsa);

mySession->init () ;

Once the nSession->init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession', we can then try to find the queue object.
Queues have an associated set of attributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the queue, the attributes
determine the availability of the events published to a queue to any consumers wishing
to consume them.

To find a queue previously created, we do the following;:

nChannelAttributes *cattrib = new nChannelAttributes() ;
cattrib->setName ("myqueue") ;
nQueue *myQueue = mySession->findQueue (cattrib) ;

Now we have a reference to a Universal Messaging queue within the realm.

Queue Publish
There are 2 types of publish available in Universal Messaging for queues:
B '"Reliable Publish" on page 126

B '"Transactional Publish" on page 126

Universal Messaging Developer Guide Version 10.1 125

Enterprise APlIs

Reliable publish is simply a one way push to the Universal Messaging Server. This
means that the server does not send a response to the client to indicate whether the
event was successfully received by the server from the publish call.

Transactional publish involves creating a transaction object to which events are
published, and then committing the transaction. The server responds to the transaction
commit call indicating if it was successful. There are also means for transactions to be
checked for status after application crashes or disconnects.

Reliable Publish

Once you have established a session and found a queue, you then need to construct an
event (see "Universal Messaging Events" on page 105) and publish the event onto the
queue.

For reliable publish, here is the example code for how to publish events to a queue.
Further examples can be found in the API documentation.

// Publishing a simple byte array message
myQueue->push (new nConsumeEvent ("TAG", message->getBytes (), size);

Transactional Publish

Transactional publishing provides us with a method of verifying that the server receives
the events from the publisher, and provides guaranteed delivery.

There are similar prototypes available to the developer for transaction publishing.
Once we have established our session (see "Creating a Session" on page 104) and our
queue (see "Finding a Queue" on page 125), we then need to construct our events

(see "Universal Messaging Events" on page 105) and our transaction and publish
these events to the transaction. Then the transaction will be committed and the events
available to consumers to the queue.

Below is a code snippet of how transactional publishing is achieved:

std::list<nConsumeEvent*> messages;

messages—->push back (messagel) ;

nTransactionAttributes *tattrib=new nTransasctionAttributes (myQueue) ;
nTransaction *myTransaction=nTransactionFactory::create (tattrib);
myTransaction->publish (messages) ;

myTransaction->commit () ;

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been committed or aborted, a call can be
made on the transaction that will determine if the events within the transactional were
successfully received by the Universal Messaging Realm Server.

bool committed = myTransaction->isCommitted (true) ;

Which will query the Universal Messaging Realm Server to see if the transaction was
committed.

An example of publishing events onto a queue can be found on the examples page
under "Push Queue". An example of how to transactionally publish events to a queue
can be found on the examples page under "TX Push Queue".

Universal Messaging Developer Guide Version 10.1 126

Enterprise APlIs

Asynchronous Queue Consuming

Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The
listener interface defines one method called 'go' which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

An example of an asynchronous queue reader is shown below:

class myAsyncQueueReader : public nEventListener ({
private:
nQueue *myQueue = null;
myAsyncQueueReader () {
// construct your session and queue objects here
// begin consuming events from the queue
nQueueReaderContext *ctx = new
nQueueReaderContext (this, 10);
nQueueAsyncReader *reader = myQueue->createAsyncReader (ctx) ;
}
void go (nConsumeEvent event) ({
printf ("Consumed event %d",event.getEventID()) ;
}
int main (int argc, char** argv) {
new myAsyncQueueReader () ;
return 0;

}

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties (see "Event Dictionaries" on page 105) and their values that a
subscriber is interested in. For example if events are being published with the following
event properties:

nEventProperties *props =new nEventProperties();
props—>put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

std::string selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

An example of an asynchronous queue reader can be found on the examples page under
"Queue Subscriber".

Synchronous Queue Consuming

Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

An example of a synchronous queue reader is shown below:

class mySyncQueueReader {
private:
nQueueSyncReader *reader = null;
nQueue *myQueue = null;

Universal Messaging Developer Guide Version 10.1 127

Enterprise APlIs

public:
mySyncQueueReader () {
// construct your session and queue objects here
// construct the queue reader
nQueueReaderContext *ctx = new
nQueueReaderContext (this, 10);
reader = myQueue->createReader (ctx) ;
}
void start () {
while (true) {
// pop events from the queue
nConsumeEvent *event = reader->pop();
go (event) ;
}
t
void go (nConsumeEvent *event) ({
printf ("Consumed event %d",event->getEventID());

t

int main(int argc, char** argv) {
mySyncQueueReader *sgr = new mySyncQueueReader () ;
sqr->start () ;
return O;

}

Synchronous queue consumers can also be created using a selector, which defines a

set of event properties (see "Event Dictionaries" on page 105) and their values that a
consumer is interested in. For example if events are being published with the following
event properties:

nEventProperties props =new nEventProperties() ;
props—->put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

std:string selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

An example of a synchronous queue consumer can be found on the examples page
under "Queue Reader".

Asynchronous Transactional Queue Consuming

Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called 'go' which when called will
pass events to the consumer as they are delivered from the Universal Messaging Realm
Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:

class myAsyncTxQueueReader : public nEventListener {

Universal Messaging Developer Guide Version 10.1 128

Enterprise APlIs

private:
nQueueAsyncTransactionalReader *reader = null;
nQueue *myQueue = null;
public:
myAsyncTxQueueReader () {
// construct your session and queue objects here
// begin consuming events from the queue
nQueueReaderContext *ctx = new
nQueueReaderContext (this, 10);
reader = myQueue->createAsyncTransactionalReader (ctx) ;
}
void go (nConsumeEvent *event) ({
printf ("Consumed event $%d",event->getEventID()) ;
reader->commit () ;

t

int main(int argc, char** argv) {
new myAsyncTxQueueReader () ;
return 0;

}

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been committed, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to9.

Asynchronous queue consumers can also be created using a selector, which defines a
set of event properties (see "Event Dictionaries" on page 105) and their values that a
subscriber is interested in. For example if events are being published with the following
event properties:

nEventProperties *props =new nEventProperties();
props—->put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:
std::string selector = "BONDNAME='bondl'";
And pass this string into the constructor for the nQueueReaderContext object shown in the

example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

Synchronous Transactional Queue Consuming

Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This

Universal Messaging Developer Guide Version 10.1 129

Enterprise APlIs

ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional synchronous queue reader is shown below:

class mySyncTxQueueReader {
nQueueSyncTransactionReader *reader = null;
nQueue *myQueue = null;
public:
mySyncTxQueueReader () {
// construct your session and queue objects here
// construct the transactional queue reader
nQueueReaderContext *ctx = new
nQueueReaderContext (this, 10);
reader = myQueue->createTransactionalReader (ctx) ;
}
void start () {
while (true) {
// pop events from the queue
nConsumeEvent *event = reader->pop();
go (event) ;
// commit each event consumed
reader->commit (event->getEventID()) ;
}
}
void go (nConsumeEvent *event) ({
printf ("Consumed event %d",event->getEventID()) ;
}
int main(int argc, char** argv) {
new mySyncTxQueueReader () ;
sqr->start () ;
return O;

}

As previously mentioned, the big difference between a transactional synchronous
reader and a standard synchronous queue reader is that once events are consumed by
the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the .rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been committed, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with event id's 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to9.

Synchronous queue consumers can also be created using a selector, which defines a

set of event properties (see "Event Dictionaries" on page 105) and their values that a
consumer is interested in. For example if events are being published with the following
event properties:

nEventProperties props =new nEventProperties() ;
props->put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

std::string selector = "BONDNAME='bondl'";

Universal Messaging Developer Guide Version 10.1 130

Enterprise APlIs

And pass this string into the constructor for the nQueueReaderContext object shown in the
example code, then your consumer will only consume messages that contain the correct
value for the event property BONDNAME.

An example of a synchronous queue consumer can be found on the examples page
under "Queue Reader".

Queue Browsing / Peeking

Universal Messaging provides a mechanism for browsing (peeking) queues. Queue
browsing is a non-destructive read of events from a queue. The queue reader used

by the peek will return an array of events, the size of the array being dependent on
how many events are in the queue, and the window size defined when your reader
context is created. For more information, please see the Universal Messaging Client API
documentation.

An example of a queue browser is shown below:

public class myQueueBrowser {
private:
nQueueSyncReader *reader;
nQueuePeekContext *ctx;
nQueue *myQueue;
public:
myQueueBrowser () {
// construct your session and queue objects here
// create the queue reader
reader = myQueue->createReader (new
nQueueReaderContext ()) ;
ctx = nQueueReader::createContext (10) ;
}
void start () {
bool more = true;
long eid =0;
while (more) {
// browse (peek) the queue
int size;
nConsumeEvent **evts = reader->peek(ctx,size);
for (int x=0; x < size; x++) {
go (evts|[x]);
}
more = ctx->hasMore();
}
}

void go (nConsumeEvent *event) {
printf ("Consumed event $%d",event->getEventID()) ;

}
int main (int argc, char** argv) {
myQueueBrowser *gbrowse = new myQueueBrowser () ;
gbrowse->start () ;
return 0;

}

Queue browsers can also be created using a selector, which defines a set of event
properties (see "Event Dictionaries” on page 105) and their values that a browser

is interested in. For example if events are being published with the following event
properties:

Universal Messaging Developer Guide Version 10.1 131

Enterprise APlIs

nEventProperties props =new nEventProperties() ;
props—->put ("BONDNAME", "bondl") ;

If you then provide a message selector string in the form of:

std::string selector = "BONDNAME='bondl'";

And pass this string into the constructor for the nQueuePeekContext object shown in the
example code, then your browser will only receive messages that contain the correct
value for the event property BONDNAME.

An example of an queue browser can be found on the examples page under "Queue
Peek".

Code Examples for C++

Publish / Subscribe using Channel Topics

C++ Client: Channel Publisher

This example publishes events onto a Universal Messaging Channel.

Usage

publish <rname> <channel name> [count] [size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

C++ Client: Transactional Channel Publisher

This example publishes events transactionally to a Universal Messaging Channel. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commited succesfully.

Usage

txpublish <rname> <channel name> [count] [size] [tx size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

[tx size] - The number of events per transaction (default: 1)

Universal Messaging Developer Guide Version 10.1 132

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

C++ Client: Asynchronous Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel. See also: " Synchronous Subscription" on page 133

Usage

subscriber <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<rname> - URL of realm to connect to

<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

C++ Client: Synchronous Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel. See also: " Asynchronous Subscription” on page 133

Usage

channeliterator <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

C++ Client: Asynchronous Named Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel using a named object.

Usage

namedsubscriber <rname> <channel name> <named object> [persist] [auto] [start eid]

[debug] [count] [selector]
<Required Arguments>

<rname> - the rname of server to connect to

Universal Messaging Developer Guide Version 10.1 133

Enterprise APlIs

<channel name> - Channel name parameter for the channel to subscribe to
<named object> - Unique id of the named object
[Optional Arguments]

[persist] - If the named object will be stored persistently
[auto] - If messages are acknowledged auomatically or manually
[start eid] - The Event ID to start subscribing from
[debug] - The level of output from each event,
0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

C++ Client: Synchronous Named Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel using a named object and a channel iterator.

Usage

namedchanneliterator <rname> <channel name> [name] [start eid] [debug] [count]

[clusterwide] [persistent] [selector]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[name] - specifies the unique name to be used for a named subscription

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event,

0 - none, 1 - summary, 2 - EIDs, 3 - All

[count] - The number of events to wait before printing out summary information

[clusterwide] - specifies whether the named object is to be used across a cluster
(default : false)

[persistent] - specifies whether the named object state is to be stored on disk or
held in server memory (default : false)

[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

C++ Client: Event Delta Delivery

This example shows how to publish and receive registered events.

Usage

RegisteredEvent <rname> <channel name> [count]
<Required Arguments>
<rname> - Rname of the server to connect to

<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 134

Enterprise APlIs

C++ Client: Batching Server Calls

This example shows how to find multiple channels and queues in one call to the server.

Usage

findChannelsAndQueues <RNAME> <name> <name> <name>.....
<Required Arguments>

<RNAME> - The RNAME of the realm you wish to connect to
<name> - The name (s) of the channels to find

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

C++ Client: Batching Subscribe Calls

This example of batching shows how to subscribe to multiple Universal Messaging
Channels in one server call.

Usage

sessionSubscriber <RNAME> <channelnames>

<Required Arguments>

<RNAME> - The RNAME of the realm you wish to connect to
<channelnames> - Comma separated list of channels to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Publish / Subscribe using Datastreams and Datagroups

C++ Client: DataStream Listener

This example shows how to initialise a session with a DataStream listener and start
receiving data.

Usage

DataStreamlListener <rname> [debug] [count]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 135

Enterprise APlIs

C++ Client: DataGroup Publishing with Conflation

This example shows how to publish to DataGroups, with optional conflation.

Usage

DataGroupPublish <rname> <group name> [count] [size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<group name> - Data group name parameter to publish to

[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

C++ Client: DataGroup Manager

This is an example of how to run a DataGroup manager application

Usage

dataGroupsManager <rname> <Properties File Location>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<Properties File Location Data Groups> - The location of the property file to use
for mapping data groups to data groups

<Properties File Location Data Streams> - The location of the property file to use
for mapping data streams to data groups

<Auto Recreate Data Groups> - True or False to auto recreate data groups takes the
data group property file and creates channels
a group for every name mentioned on the left of equals sign

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

C++ Client: Delete DataGroup

This is a simple example of how to delete a DataGroup

Usage

deleteDataGroup <rname> <group name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<group name> - Data group name parameter to delete

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 136

Enterprise APlIs

C++ Client: DataGroup Delta Delivery

This example shows how to use delta delivery with DataGroups.

Usage

DataGroupDeltaDelivery <rname>
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
[Optional Arguments]

[count] - the number of times to commit the registered events (default : 10)

Application Source Code

See the online documentation for a code example.

Message Queues

C++ Client: Queue Publisher

This example publishes events onto a Universal Messaging Queue.

Usage

pushg <rname> <queue name> [count] [size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name parameter for the queue to publish to

[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

C++ Client: Transactional Queue Publisher

This example publishes events transactionally to a Universal Messaging Queue. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been commited succesfully.

Usage

txpushg <rname> <queue name> [count] [size] [tx size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name parameter for the queue to publish to

[Optional Arguments]

[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)
[tx size] - The number of events per transaction (default: 1)

Universal Messaging Developer Guide Version 10.1 137

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

C++ Client: Asynchronous Queue Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Queue. See also: " Synchronous Queue Subscription” on page 138

Usage

gsubscriber <rname> <queue name> [debug] [transactional] [selecter] [count]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name to pop from
[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[transactional] - true / false whether the subscriber is transactional,

if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use

[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

C++ Client: Synchronous Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription” on page 138

Usage

greader <rname> <queue name> [debug] [timeout] [transactional] [selecter] [count]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<queue name> - Queue name to pop from

[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[timeout] - The timeout for the synchronous pop call
[transactional] - true / false whether the subscriber is transactional,

if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

C++ Client: Peek Events on a Queue

Consume events from a Universal Messaging Queue in a non-destructive manner

Usage

gpeek <rname> <gqueue name> [debug] [selecter] [count]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

Universal Messaging Developer Guide Version 10.1 138

Enterprise APlIs

<queue name> - Queue name to pop from
[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Administration API

C++ Client: Add a Queue ACL Entry

This example demonstrates how to add an ACL entry to a Universal Messaging Queue.

Usage

naddqueueacl <rname> <user> <host> <queue name> [list acl] [modify acl] [full]
[peek] [write] [purge] [pop]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<user> - User name parameter for the new ACL entry

<host> - Host name parameter for the new ACL entry

<queue name> - Queue name parameter for the new ACL entry

[Optional Arguments]

[list acl] - Specifies that the list acl permission should be added

[modify acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added

[peek] - Specifies that the read permission should be added

[write] - Specifies that the write permission should be added

[purge] - Specifies that the purge permission should be added

[pop] - Specifies that the pop permission should be added

Application Source Code

See the online documentation for a code example.

C++ Client: Modify a Channel ACL Entry

This example demonstrates how to modify the permissions of an ACL entry on a
Universal Messaging Channel..

Usage

nmodchanacl <rname> <user> <host> <channel name>

[list acl] [modify acl] [full] [last eid] [read] [write] [purge] [named]
<Required Arguments>
<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<user> - User name parameter for the new ACL entry
<host> - Host name parameter for the new ACL entry
<channel name> - Channel name parameter for the new ACL entry
[Optional Arguments]
[+/-] - Prepending + or - specifies whether to add or remove a permission
[list _acl] - Specifies that the list acl permission should be added
[modify acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added
[last _eid] - Specifies that the get last EID permission should be added
[read] - Specifies that the read permission should be added

Universal Messaging Developer Guide Version 10.1 139

Enterprise APlIs

[write] - Specifies that the write permission should be added

[purge] - Specifies that the purge permission should be added

[named] - Specifies that the used named subscriber permission should be added
[all perms] - Specifies that the pop permission should be added/removed

Application Source Code

See the online documentation for a code example.

C++ Client: Delete a Realm ACL Entry
This example demonstrates how to delete an ACL entry from a realm on a Universal

Messaging Channel.

Usage

delrealmacl <rname> <user> <host>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<user> - User name parameter for the ACL entry to delete

<host> - Host name parameter for the ACL entry to delete

Application Source Code

See the online documentation for a code example.

C++ Client: Monitor realms for client connections coming and going

This example demonstrates how to monitor for connections to the realm and its
channels.

Application Source Code

See the online documentation for a code example.

C++ Client: Console-based Realm Monitor

This example demonstrates how to monitor live realm status.

Application Source Code

See the online documentation for a code example.

C++ Client: Remove Node ACL

This shows how the ACL for an nNode can be removed.

Usage

ndelnodeacl <rname> <user> <host> <channel name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<user> - User name

<host> - Host name

<node> - Channel / Queue name to remove the entry from

Universal Messaging Developer Guide Version 10.1 140

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

C++ Client: Authserver

This demonstrates how to set security permissions when connection attempts are made
on the realm.

Application Source Code

See the online documentation for a code example.

Channel / Queue / Realm Management

C++ Client: Creating a Channel

This example demonstrates how to create a Universal Messaging channel
programmatically

Usage

makechan <rname> <channel name> [time to live] [capacity] [type] [cluster wide]
[start eid]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<channel name> - Channel name parameter for the channel to be created

[Optional Arguments]

[time to live] - The Time To Live parameter for the new channel (default: 0)

[capacity] - The Capacity parameter for the new channel (default: 0)

[type] - The type parameter for the new channel (default: S)

R - For a reliable (stored in memory) channel with persistent eids

P - For a persistent (stored on disk) channel

S - For a simple (stored in memory) channel with non-persistent eids

T - For a transient (no server based storage)

M - For a Mixed (allows both memory and persistent events) channel

[cluster wide] - Whether the channel is cluster wide. Will only work if the realm
is part of a cluster

[start eid] - The initial start event id for the new channel (default: 0)

Application Source Code

See the online documentation for a code example.

C++ Client: Deleting a Channel

This example demonstrates how to delete a Universal Messaging channel
programmatically.

Usage

deletechan <rname> <channel name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to be deleted

Universal Messaging Developer Guide Version 10.1 141

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

C++ Client: Creating a Queue

This example demonstrates how to create a Universal Messaging queue
programmatically.

Usage

makequeue <rname> <queue name> [time to live] [capacity] [type] [cluster wide]
[start eid]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<queue name> - queue name parameter for the queue to be created

[Optional Arguments]

[time to live] - The Time To Live parameter for the new queue (default: 0)

[capacity] - The Capacity parameter for the new queue (default: 0)

[type] - The type parameter for the new queue (default: S)

R - For a reliable (stored in memory) queue with persistent eids

P - For a persistent (stored on disk) queue

S - For a simple (stored in memory) queue with non-persistent eids

T - For a transient (no server based storage)

M - For a Mixed (allows both memory and persistent events) queue

[cluster wide] - Whether the queue is cluster wide. Will only work if the realm
is part of a cluster

[start eid] - The initial start event id for the new queue (default: 0)

Application Source Code

See the online documentation for a code example.

C++ Client: Deleting a Queue
This example demonstrates how to delete a Universal Messaging queue

programmatically.

Usage

deletequeue <rname> <queue name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<queue name> - Queue name parameter for the queue to be deleted

Application Source Code

See the online documentation for a code example.

C++ Client: Create Channel Join

Create a join between two Universal Messaging Channels

Usage

makechanneljoin <rname> <source channel name> <destination channel name>
[max hops] [selector] [allow purge]
<Required Arguments>

Universal Messaging Developer Guide Version 10.1 142

Enterprise APlIs

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join
[Optional Arguments]

[max hops] - The maximum number of join hops a message can travel through

[selector] - The event filter std::string to use on messages travelling through
this join

[allow purge] - boolean to specify whether purging is allowed (default : true)

Application Source Code

See the online documentation for a code example.

C++ Client: Delete a Channel Join

Delete a join between two Universal Messaging Channels

Usage

deletechanneljoin <rname> <source channel name> <destination channel name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join

Application Source Code

See the online documentation for a code example.

C++ Client: Purge Events From a Channel

Purge events from a Universal Messaging channel

Usage

purgechan <rname> <channel name> [start eid] [end eid] [selector] [wait]
<Required Arguments>

<rname> - URL of realm to connect to

<channel name> - Channel name parameter for the channel to purge to
[Optional Arguments]

[start eid] - The Event ID to start purging from

[end eid] - The Event ID to purge to

[selector] - The purge event filter string to use

[wait] - whether to wait for a response (synchronous) or not (asynchronous)

Application Source Code

See the online documentation for a code example.

C++ Client: Create Queue Join

Create a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage

makequeuejoin <rname> <source channel name> <destination queue name>
[max hops] [selector]
<Required Arguments>
<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

Universal Messaging Developer Guide Version 10.1 143

Enterprise APlIs

<source channel name> - Channel name parameter of the local channel name to join

<destination gqueue name> - Queue name parameter of the remote queue name to join

[Optional Arguments]

[max hops] - The maximum number of join hops a message can travel through

[selector] - The event filter std::string to use on messages travelling through
this join

Application Source Code

See the online documentation for a code example.

C++ Client: Delete Queue Join

Delete a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage

deletequeuejoin <rname> <source channel name> <destination queue name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<source channel name> - Channel name parameter of the local channel name to join
<destination queue name> - Queue name parameter of the remote queue name to join

Application Source Code

See the online documentation for a code example.

Prerequisites

Prerequisites

Universal Messaging C++ makes use of certain non-standard C++ libraries. Before using
Universal Messaging C++, these libraries must be installed and the environment setup
accordingly.

POCO

Universal Messaging C++ uses the POCO C++ class libraries. The required POCO
libraries are distributed with Universal Messaging so no installation is required,
however please see the Environment Setup section below for further details on how to
compile and run Universal Messaging C++ applications using these libraries.

For more information, please visit the POCO website at http://pocoproject.org/.

OpenSSL

OpenSSL is also required on the system running Universal Messaging C++. OpenSSL
is installed by default on most Unix based operating systems, however if you require
OpenSSL please refer to the OpenSSL website at http://www.openSSL.org.

To subscribe to a channel using an SSL interface, extra requirements must be met. SSL
requires certificates to be set up on the client and server. The location of these certificates
must be known to the applications. For instructions on how to run Universal Messaging

Universal Messaging Developer Guide Version 10.1 144

http://pocoproject.org/
http://www.openSSL.org

Enterprise APlIs

C++ applications using an SSL enabled interface, please see "Client SSL. Configuration"
on page 145.

To learn more about SSL please see the SSL. Concepts section.

Environment Setup

In order to compile and run applications using Universal Messaging C++, the
environment must be set up correctly. For example, to compile the applications the
compiler needs to know where the POCO libraries and headers are.

Environment setup is different for different operating systems:
B "Environment Setup : Windows" on page 146

B '"Environment Setup : Linux" on page 147

Client SSL Configuration

Universal Messaging fully supports SSL Encryption. This section describes how to use
SSL in your Universal Messaging C++ client applications.

Once you have created an SSL enabled interface you will need to create certificates for
the server and the client. The Universal Messaging download contains a generator to
create some example Java key store files to be used by the Universal Messaging server
but may also be converted to Privacy Enhanced Mail Certificates (.pem) for use with a
Universal Messaging C++ client.

Please refer to the Enterprise Manager guide to create your own client certificates.
However please remember that in order to run a Universal Messaging C++ client, the
certificate provided must be in .pem format.

Running a Universal Messaging C++ Client

A client can be run anonymously which means that any client can subscribe to a channel
securely. The server can also be run with client validation such that only trusted clients
can connect. To enable or disable client certificate validation you can use the Universal
Messaging Enterprise Manager. Highlight the SSL enabled interface in the "Interface"
tab for your realm then open the "Certificates" tab and check or uncheck the box labelled
"Enable Client Cert Validation".

In order to run a client using SSL, the location of the key stores and the relevant
passwords need to be specified in nConstants. This can be done by setting up the
relevant environment variables (as necessary to run the sample applications), or by
calling the relevant set methods (defined in nConstants) from the application code.

Different environment variables need to be set depending on whether client certificate
validation is enabled:

With Client Certificate Validation

In this case, the client must hold a certificate to validate that it can be trusted. It must
also have a trust store such that it can validate that the server is trusted. The key store

Universal Messaging Developer Guide Version 10.1 145

Enterprise APlIs

located at CERTPATH also contains the client's private key and therefore must have a
password associated with it. Therefore the following environment variables must be set:

m CERTPATH - The path where the client certificate is located
m CERTPASS - The password for the client certificate
® CAPATH - The path where the trust store is located

Without Client Certificate Validation

If client certificate validation has been disabled on the server then clients connect to
the server anonymously. This means that clients do not need to have a certificate and
therefore CERTPATH and CERTPASS do not need to be set. With Universal Messaging
C++ server-side validation is also set to be non-strict. This means that the client does
not need to have a trust store because it will not try to validate the server certificate,
therefore it is not necessary to set the CAPATH.

See the SSL Concepts section for more detailed information.

Environment Setup : Windows

Once Universal Messaging has been installed, the sample applications can be run from
the "C++ Examples Command Prompt". The guide below explains how the Universal
Messaging C++ environment can be set up for compiling and running the applications
on a Windows operating system.

The Universal Messaging C++ and POCO libraries can be found in a platform-specific
directory under the cplus\lib directory. In order to run Universal Messaging C++
applications, the location of these libraries must be known to the system. There are
several methods which can be used to achieve this:

1. By updating the PATH environment variable in the command prompt used to
compile or run code:

C:\> set PATH=<UM Install Dir>\cplus\lib\x86_ 64;$PATH%
where <UM_Install_Dir> is the root folder of the Universal Messaging installation.
This will allow you to run applications in the current command prompt.
2. In order to update the PATH globally, you need to:
m Open System in the Control Panel.

m Expand the "Advanced" tab and click the button labelled "Environment
Variables"

®m In the new window, the Path variable is found in the "System Variables" section.
Highlighting the variable and clicking "edit" will open another window.

® In this new window you should append the location of the libraries to the
beginning of the "variable value" section.

3. Another way to make the libraries globally available is to copy them into the
Windows System32 folder located at:

Universal Messaging Developer Guide Version 10.1 146

Enterprise APlIs

C:\WINDOWS\ System32
This directory is looked in by default for Runtime libraries.

To compile applications, the compiler will need to know the location of the POCO lib
files, Nirvana.lib and certain C++ header files. The location of the libs is described above,
and the headers are located in cplus\include. The cplus\examples directory contains
the source code for several sample applications as well as project files (.vcproj) which
can be opened with Microsoft Visual Studio. Each application comes pre-compiled,

the executable (.exe) can be found in the application's directory (cplus\examples
\applicationName).

Compiling the Sample Applications

Once the environment has been set up as described above, the sample applications
can be built by either opening the application's project file in Microsoft Visual Studio
or by running vcbuild. In order to use vcbuild, either run the Microsoft Visual Studio
command prompt and ensure that the Universal Messaging environment is set up, or
run vsvars32.bat in a command prompt:

C:\> "C:\Program Files\Microsoft Visual Studio 9.0\Common7\Tools\vsvars32.bat"
The environment will now be set up for running vcbuild. In order to compile an
application, navigate to the application's directory and run:

<UM Install Dir>\cplus\examples\channeliterator> vcbuild

This will compile the application in a new folder called Release. To clean this directory
so that the application can be recompiled, run:

<UM_Install Dir>\cplus\examples\channeliterator> vcbuild /clean

After compilation the executable (.exe) will be present in a folder called Release found in
the same directory as the source code for the application.

Environment Setup : Linux

The guide below explains how the Universal Messaging C++ environment can be set up
for compiling and running the applications on Linux 64-bit operating system.

Running a Universal Messaging C++ application requires the system to know the
location of certain runtime libraries. OpenSSL is assumed to be installed and the location
known to the system. The POCO libraries and Nirvana.so are found in cplus/linux64/lib.
To make these libraries known to the system, several methods can be used:

1. By setting the LD_LIBRARY_PATH environment variable:

export LD LIBRARY PATH=
<UM Installation Dir>/cplus/linux/lib:$LD_LIBRARY PATH

This will allow programs to be compiled and run in the current shell.

2. In order to make the libraries globally available you can copy the libraries into /usr/
local/lib.

Universal Messaging Developer Guide Version 10.1 147

Enterprise APlIs

3. Another method to make the libraries globally available is by using ldconfig. This
requires root access to the system:
[root]$ cd /etc/ld.so.conf.d

[root]$ echo <UM Installation Dir>/cplus/linux/lib>nirvana.conf
[root]$ ldconfig

The above code first navigates the required directory. It then creates a new file called
nirvana.conf (this can be any file name with extension ".conf") containing the location
of the libraries. Once this file is created, Idconfig is run (must be run as root) which
creates the necessary links.

To compile a Universal Messaging C++ application, the location of the shared libraries
must be known by the system as described above. The compiler must also know the
location of certain C++ headers. These headers are found in cplus/include. The cplus/
example directory contains sample applications written using the Universal Messaging
C++ API as well as the make files which can be used to compile them. In order to
compile your own applications, please refer to these makefiles as a template. Each
application comes pre-compiled, the executable (no file extension) can be found in the
application's directory (cplus/examples/applicationName).

Compiling the Sample Applications

Once the environment has been set up as described above, the sample applications
can be compiled by navigating to the application's directory (cplus/examples/
applicationName) and running:

[user@host channeliterator]$ make

To clean this directory so that the application can be recompiled, run:

[user@host channeliterator]$ make clean

The executable (no file extension) will now be present in the same directory as the source
code after compilation.

Enterprise Developer's Guide for C#

This guide describes how to develop and deploy C# .NET applications using Universal
Messaging, and assumes you already have Universal Messaging installed.

General Features

Creating a Session for C#

To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session object, which is effectively your logical and physical connection to a
Universal Messaging Realm. The steps below describe session creation.

1. Create a nSessionAttributes object with the RNAME value of your choice

string[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

Universal Messaging Developer Guide Version 10.1 148

Enterprise APlIs

2. Call the create method on nSessionFactory to create your session

Session mySession=nSessionFactory.create (nsa)

Alternatively, if you require the use of a session reconnect handler to intercept the
automatic reconnection attempts, pass an instance of that class too in the create
method:

public class myReconnectHandler : nReconnectHandler{

//implement tasks associated with reconnection

}
myReconnectHandler rhandler=new myReconnectHandler () ;
nSession mySession=nSessionFactory.create(nsa, rhandler);

3. Initialise the session object to open the connection to the Universal Messaging Realm

mySession.init () ;

To enable the use of DataGroups and to create an nDataStream , you should pass an
instance of nDataStreamListener to the init call.
public void SimpleStreamlListener : nDataStreamListener{

//implement onMessage callback for nDataStreamListener callbacks

}
nDataStreamlListener myListener = new SimpleStreamlListener () ;
nDataStream myStream = mySession.init (myListener) ;

After initialising your Universal Messaging session, you will be connected to the
Universal Messaging Realm. From that point, all functionality is subject to a Realm ACL
check. If you call a method that requires a permission your credential does not have, you
will receive an nSecurityException.

Universal Messaging Events

A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging channel or queue. It is stored by the server and then passed to
consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Event Dictionary (see "Universal Messaging Event Dictionaries" on page 149).

Each nConsumeEvent object has an nEventAtrributes object associated with it which
contains all available meta data associated with the event

Constructing an Event
In this C# .NET code snippet, we construct our Universal Messaging Event object
(nConsumeEvent), and, in this example, pass a byte array data into the constructor:

nConsumeEvent evt = new nConsumeEvent ("String",
(new UTF8Encoding()) .GetBytes ("Hello World"));

Universal Messaging Event Dictionaries

Event Dictionaries (nEventProperties) provide an accessible and flexible way to store
any number of message properties for delivery within an "Universal Messaging Events"
on page 149.

Universal Messaging Developer Guide Version 10.1 149

Enterprise APlIs

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's dictionary.

Event dictionaries can facilitate the automated purging of data from channels through
the use of Publish Keys.

Constructing an Event

In this C# code snippet, we assume we want to publish an event containing the
definition of a bond, say, with a name of "bond1":

nEventProperties props = new nEventProperties();

props.put ("bondname", "bondl") ;

props.put ("price", 100.00);
nConsumeEvent evtl = new nConsumeEvent ("atag", props):;

Note that in this example code, we also create a new Universal Messaging Event object
(nConsumeEvent) to make use of our Event Dictionary (nEventProperties).

Channel Joins

Joining a channel to another channel or queue allows you to set up content routing so
that events published to the source channel will be passed on to the destination channel/
queue automatically. Joins also support the use of filters, thus enabling dynamic content
routing.

Please note that while channels can be joined to both channels and queues, queues
cannot be used as the source of a join.

Channels can be joined using the Enterprise Manager GUI or programmatically.

When creating a join there is one compulsory option and two optional ones. The
compulsory option is the destination channel. The optional parameters are the
maximum join hops and a filter to be applied to the join.

Note: For a description of the general principles involved in creating channel
joins, see the section Creating Channel Joins in the Administration Guide. The
description details the usage based on the Enterprise Manager, but the same
general principles apply if you are using the APL

Hop Count

Joins have an associated hop count, which can optionally be defined when the join is
created. The hop count allows a limit to be put on the number of subsequent joins an
event can pass through if published over this join. If a hop count is not defined for a join,
it will default to 10.

The hop count is the number of intermediate stores between the source channel and the
final destination. As an example, imagine we have 10 channels named "channel0" to
"channel9" and all these channels are joined sequentially. When we publish to channel

Universal Messaging Developer Guide Version 10.1 150

Enterprise APlIs

0, if the join from channelO to channell has a hop count of 5 then the event will be
found on channel0 (the source channel), channels 1 to 5 (the intermediate channels) and
channel6 (the endpoint).

Loop Detection

Joins allow the possibility of defining a loop of joined channels. To prevent channels
receiving multiple copies of the same event, Universal Messaging implements loop
detection on incoming events. To illustrate this, imagine a simple example with two
channels (channel0 and channell) and we create a loop by joining channel0 to channell
and channell to channel0. If we publish to channel0 the event will also be published to
channell over the join. But channell is joined to channel0 too, so now the event would
get published to channel0 again. Without loop detection, this cycle would repeat until
the maximum hop count has been reached.

To prevent this, Universal Messaging detects when a message which has already been
published to a channel or queue and will not publish it a second time.

Multiple Path Delivery

Universal Messaging users can define multiple paths over different network protocols
between the same places in Universal Messaging. Universal Messaging guarantees that
the data always gets delivered once and once only.

For information on how to create and delete joins programmatically in C# .NET please
see the API documentation.

Archive Joins

It is possible to archive messages from a given channel by using an archive join. To
perform an archive join, the destination must be a queue in which the archived messages
will be stored. An example of this can be seen below:

nChannelAttributes archiveAtr = new nChannelAttributes();

archiveAtr.setName (rchanName) ;

nQueue archiveQueue = mySession.findQueue (archiveAtr) ;
mySrcChannel.joinChannelToArchive (archiveQueue) ;

Inter-Cluster Joins

Inter-cluster joins are added and deleted in almost exactly the same way as normal joins.
The only differences are that the two clusters must have an inter-cluster connection

in place, and that since the clusters do not share a namespace, each channel must be
retrieved from nodes in their respective clusters, rather than through the same node. For
example :

nChannel clusterlchanl realmNodel.findChannel (channelattributesl) ;

nChannel cluster2chanl realmNoded.findChannel (channelattributes?2);
clusterlchanl.joinChannel (cluster2chanl) ;

Universal Messaging Developer Guide Version 10.1 151

Enterprise APlIs

Publish / Subscribe using Channel Topics

Creating a Channel

Channels can be created programmatically as detailed below, or they can be created
using the Enterprise Manager.

In order to create a channel, first of all you must create an nSession object, which is
effectively your logical and physical connection to a Universal Messaging realm. This is
achieved by using an RNAME for your Universal Messaging realm when constructing
the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

nSession mySession=nSessionFactory.create (nsa);
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession’, we can then begin creating the channel
object. Channels have an associated set of attributes, that define their behaviour within
the Universal Messaging Realm Server. As well as the name of the channel, the attributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To create a channel, we do the following:

nChannelAttributes cattrib = new nChannelAttributes () ;
cattrib.setMaxEvents (0) ;

cattrib.setTTL (0) ;

cattrib.setType (nChannelAttributes.PERSISTENT TYPE) ;
cattrib.setName ("mychannel") ;

nChannel myChannel=mySession.createChannel (cattrib) ;

Now we have a reference to a Universal Messaging channel within the realm.

Finding a Channel
Finding a Universal Messaging Channel using the Universal Messaging C# .NET Client API

In order to find a channel programmatically you must create your nSession object, which
is effectively your logical and physical connection to a Universal Messaging realm. This
is achieved by using the correct RNAME for your Universal Messaging realm when
constructing the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;

nSession mySession=nSessionFactory.create (nsa);
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Universal Messaging Developer Guide Version 10.1 152

Enterprise APlIs

Using the nSession objects instance 'mySession’, we can then try to find the channel object.
Channels have an associated set of attributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the channel, the attributes
determine the availability of the events published to a channel to any subscribers
wishing to consume them,

To find a channel previously created, we do the following;:

nChannelAttributes cattrib = new nChannelAttributes () ;
cattrib.setName ("mychannel") ;
nChannel myChannel=mySession.findChannel (cattrib) ;

Publishing Events to a Channel
There are 2 types of publish available in Universal Messaging for channels:

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then committing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the channel has been located, an event must be constructed prior to a publish call being
made to the channel.

For reliable publish, there are a number of method prototypes on a channel that allow us
to publish different types of events onto a channel. Here are examples of some of them.
Further examples can be found in the API documentation.

// Publishing a simple byte array message

myChannel .publish (new nConsumeEvent ("TAG", (new UTF8Encoding()) .GetBytes (message))):;
//Publishing a dictionary (nEventProperties)
nEventProperties props = new nEventProperties() ;
props.put ("bondname", "bondl") ;

props.put ("price", 100.00);

nConsumeEvent evt = new nConsumeEvent ("atag", props):;
myChannel .publish (evt) ;

// Publishing multiple messages in one publish call
List<nConsumeEvent> Messages = new List<nConsumeEvent> () ;
Messages.Add (messagel) ;

Messages.Add (message?2) ;

Messages.Add (message3) ;

myChannel .publish (Messages) ;

Transactional Publish

Transactional publishing provides a means of verifying that the server received the
events from the publisher, and therefore provides guaranteed delivery.

Universal Messaging Developer Guide Version 10.1 153

Enterprise APlIs

There are similar prototypes available to the developer for transactional publishing.
Once the session is established and the channel located, we then need to construct the
events for the transaction and publish these events to the transaction. Only when the
transaction has been committed will the events become available to subscribers on the
channel.

Below is a code snippet for transactional publishing:

//Publishing a single event in a transaction

nTransactionAttributes attrib=new nTransasctionAttributes (myChannel) ;
nTransaction myTransaction=nTransactionFactory.create (attrib) ;
myTransaction.publish (new nConsumeEvent ("TAG", new UTF8Encoding()) .GetBytes (message)));
myTransaction.commit () ;

//Publising multiple events in a transaction

List<nConsumeEvent> Messages = new List<nConsumeEvent> () ;

Messages.Add (messagel) ;

nTransactionAttributes tattrib = new nTransasctionAttributes (myChannel) ;
nTransaction myTransaction = nTransactionFactory.create (tattrib);
myTransaction.publish (Messages) ;

myTransaction.commit () ;

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction may
be unclear. To verify that a transaction has been committed or aborted, a call can be
made on the transaction that will determine if the events within the transaction were
successfully received by the Universal Messaging Realm Server. This call can be made
regardless of whether the connection was lost and a new connection was created.

The following code snippet demonstrates how to query the Universal Messaging Realm
Server to see if the transaction was committed:

bool committed = myTransaction.isCommitted (true) ;

Subscribe Asynchronously to a Channel

Asynchronous channel subscribers consume events from a callback on an interface that
all asynchronous subscribers must implement. We call this interface an nEventListener.

The listener interface defines one method called 'go' which when called will pass events
to the consumer as they are delivered from the Universal Messaging Realm Server.

A simple example of such a listener is shown below:

public class mySubscriber : nEventListener ({
public mySubscriber () {
// construct your session and channel objects here
// begin consuming events from the beginning of the channel (event id 0)
myChannel.addSubscriber (this, 0);
}
public void go (nConsumeEvent event) ({
Console.WritelLine ("Consumed event " + event.getEventID());
}
public static void Main (String[] args) {
new mySubscriber () ;

}

Universal Messaging Developer Guide Version 10.1 154

Enterprise APlIs

Subscription with a Filtering Selector

Asynchronous consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:

nEventProperties props = new nEventProperties();
props.put ("BONDNAME", "bondl") ;

A developer can create a message selector string such as:

String selector = "BONDNAME='bondl'";

Passing this string into the addSubscriber method shown in the example code, will ensure
that the subscriber will only consume messages that contain the correct value for the
event property BONDNAME.

Synchronous Consumers

Events can be synchronously consumed from a channel using a channel iterator object.
The iterator will sequentially move through the channel and return events as and when
the iterator getNext() method is called.

If you are using iterators so that you know when all events have been consumed from a
channel please note that this can also be achieved using an asynchronous subscriber by
calling the nConsumeEvent's isEndOfChannel() method.

An example of how to use a channel iterator is shown below:

public class mylterator {
nChannellIterator iterator = null;
public myIterator () {
// construct your session and channel objects here
// start the iterator at the beginning of the channel (event id 0)
iterator = myChannel.createlIterator (0);
}
public void start () {
while (true) {
nConsumeEvent event = iterator.getNext () ;
go (event) ;
}
}
public void go (nConsumeEvent event) {
Console.WritelLine ("Consumed event "+event.getEventID()) ;
}
public static void Main (String[] args) {
mylterator itr = new mylterator();
itr.start () ;

}

Synchronous consumers can also be created using a selector, which defines a set of event
properties and their values that a consumer is interested in. For example if events are
being published with the following event properties:

nEventProperties props =new nEventProperties();
props.put ("BONDNAME", "bondl") ;

Universal Messaging Developer Guide Version 10.1 155

Enterprise APlIs

If you then provide a message selector string in the form of:

String selector = "BONDNAME='bondl'";

And pass this string into the createlterator method shown in the example code, then
your consumer will only consume messages that contain the correct value for the event
property BONDNAME.

Batched Subscribe

If a client application needs to subscribe to multiple channels it is more efficient to batch
these subscriptions into a single server call. This is achieved using the subscribe method
of nSession rather than first finding the nChannel object and then calling the subscribe
method of nChannel.

The following code snippet demonstrates how to subscribe to two Universal Messaging
channels in one server call:

public class myEventListener implements nEventListener ({
public void go (nConsumeEvent evt) ({
Console.WriteLine ("Received an event!");
}
}
public void demo () {
nSubscriptionAttributes|[] arr = new nSubscriptionAttributes[2];
arr[0] = new nSubscriptionAttributes ("myChanl", "", 0, myLisl);
arr[l] = new nSubscriptionAttributes ("myChan2", "", 0, myLis2);
arr = mySession.subscribe (arr) ;
for (int i = 0; i < arr.length; i++) {
if (larr[i].wasSuccessful ()) {
handleSubscriptionFailure (arr[i]) ;
}
//subscription successful
}
}
public void handleSubscriptionFailure (nSubscriptionAttributes subAtts) {
Console.WritelLine (subAtts.getException () .StackTrace) ;

}

The nSubscriptionAttributes class is used to specify which channels to subscribe to.
The second two parameters of the constructor represent the selector to use for the
subscription and the event ID to subscribe from.

It is possible that the subscription may fail; for example, the channel may not exist or
the user may not have the required privileges. In this situation, calling wasSuccessful()
on the nSubscriptionAttributes will return false and getException() will return the
exception that was thrown.

If the subscription is successful then the nChannel object can be obtained from the
nSubscriptionAttributes as shown in the following code snippet:

nChannel chan = subAtts.getChannel () ;

Universal Messaging Developer Guide Version 10.1 156

Enterprise APlIs

Batched Find

In client applications, it is quite common to have multiple Channels or Queues that one
is trying to find. In these scenarios, the batched find call built into nSession is extremely
useful.

The following code snippet demonstrates how to find 2 Universal Messaging Channels
in one server call:

public void demo () {
nChannelAttributes|[] arr = new nChannelAttributes[2];
nChannel[] channels = new nChannels[2];
arr[0] = new nChannelAttributes ("myChanl")
arr[l] = new nChannelAttributes ("myChan2")
nFindResult[] results = mySession.find(arr
for (int i = 0; i < results.length; i++) {
if (!results[i].wasSuccessful ()) {
handleSubscriptionFailure (results[i]);
} else if (results[i].isChannel) {
channels[i] = results[i].getChannel () ;

’

)

}
}
}
public void handleSubscriptionFailure (nFindResult result) {
Console.Writeline (result.getException () .StackTrace) ;
}

To perform the same operation for Queues, simply use the example above and exchange
nChannel for nQueue, and check each result returned to see if the isQueue() flag is set.

Using Durable Objects

This section describes how to use durable objects and shared durable objects using the
Universal Messaging API for C#.

Creating durable objects

For operations like creating, retrieving, deleting or unbinding a durable object, the
nDurableManager must be used. Every channel has a durable manager associated with it.
For information on how to use it, check the following examples.

Example 1

Getting the durable manager:

nSession session = nSessionFactory.create (new nSessionAttributes ("nsp://localhost:11000"));
session.init () ;
nChannelAttributes channelAttributes = new nChannelAttributes ("testChannel") ;

nChannel channel = session.createChannel (channelAttributes);
nDurableManager durableManager = channel.getDurableManager () ;
Example 2

Creating durable objects using the durable manager instance from the example above:

nDurableAttributes exclusiveAttributes = nDurableAttributes.create (
nDurableAttributes.nDurableType.Named, "exclusive");

nDurable exclusiveDurable = durableManager.add (exclusiveAttributes) ;

nDurableAttributes priorityAttributes = nDurableAttributes.create (

Universal Messaging Developer Guide Version 10.1 157

Enterprise APlIs

nDurableAttributes.nDurableType.Priority, "priority"):;
nDurable priorityDurable = durableManager.add(priorityAttributes);
nDurableAttributes sharedAttributes = nDurableAttributes.create (
nDurableAttributes.nDurableType.Shared, "shared");
nDurable sharedDurable = durableManager.add(sharedAttributes) ;
nDurableAttributes serialAttributes = nDurableAttributes.create (
nDurableAttributes.nDurableType.Serial, "serial");
nDurable serialDurable = durableManager.add(serialAttributes);

Here we have listed the different options to create a new durable object. It can be either
shared, serial or non-shared. The non-shared durable object can use a priority or be a
simple exclusive durable object where only one subscriber can be attached at a time.

Example 3

Deleting a durable object:

durableManager.delete (exclusiveDurable) ;
Example 4
Retrieving a durable object:

B Retrieving the durable object can be done using only the name of the durable object:

nDurable returnedDurable = durableManager.get ("shared") ;

® Or you can also retrieve all durables for the channel to which the durable manager
corresponds:

nDurable[] allDurables = durableManager.getAll () ;

Note: Shared durable objects with hidden queues are not supported in the C# client.
If you attempt to create or retrieve a durable with nDurableType.SharedQueued, an
exception will be thrown. Also when retrieving the durable objects from the
server, if there is already one shared queued durable object created from and
older client, those durables will not be returned from the method getAll() on the
durable manager.

Shared durables support purging events - by filter, by event id, by range of event ids or
all of the events. The following methods defined on nDurable can be used. They provide
an implementation only for shared durables:

void remove (long eid)

void remove (long start, long end)

void remove (string filter)
void removeAll ()

For the other durable types an nlllegalStateException is thrown.

Creating a durable subscription

After durable objects are created on the server, a subscription can be created using the
nChannel instance. You can create both synchronous and asynchronous subscriptions.

For creating asynchronous durable consumers, the following methods can be used:

void addSubscriber (nEventListener listener, nDurable durable)

void addSubscriber (nEventListener listener, nDurable durable,
string selector, bool autoAck)

void addSubscriber (nEventListener listener, nDurable durable,

Universal Messaging Developer Guide Version 10.1 158

Enterprise APlIs

nNamedPriorityListener priorityListener)
void addSubscriber (nEventListener listener, nDurable durable,
string selector, bool autoAck, nNamedPriorityListener priorityListener)

The API for creating synchronous durable subscribers is:

nChannelIterator createlterator (nDurable durable)
nChannelIterator createlterator (nDurable durable, string selector)

A public interface is available for committing and rolling back events. The methods are
defined for the nDurable instance. To be able to apply these operations on a single event
and not only on consecutive event ids is of significant importance for the shared types.

Here are the methods defined in the nDurable class:

void acknowledge (nConsumeEventToken eventToken, bool isSynchronous)
void rollback (nConsumeEventToken eventToken, bool isSynchronous)

By default, these methods include previous outstanding events that were received in the
same connection.

This functionality is extended for the durables which are shared. On an nSharedDurable
instance you can also invoke:
void acknowledge (List<nConsumeEventToken> eventTokens, bool isSynchronous)
void acknowledge (nConsumeEventToken eventToken, bool isSynchronous,

bool includePreviousEventsOutstanding)
void rollback (List<nConsumeEventToken> eventTokens, bool isSynchronous)

void rollback (nConsumeEventToken eventTocken, bool isSynchronous,
bool includePreviousEventsOutstanding)

Note: There is a difference in the behavior regarding the re-delivery of rolled back
events. If the durable object is shared, events are redelivered immediately.
But for priority and exclusive durables, events are redelivered after re-
subscribing.

The nConsumeEventToken is an abstraction for the event identifier and is built internally.
The value can be retrieved using the public nConsumeEventToken getEventldentifier() method
defined for the nConsumeEvent instance.

nDurableViewer instances can be created for browsing the events on the durable object. Its
API supports the following methods:

nConsumeEvent next ()
void close ()

for retrieving the next event and closing the viewer.
Restrictions

The nAdminAPI has no additional extensions for working with nDurable objects. For
example, nDurableNode and nDurableConnectionNode, available in the client API for Java, are
not ported in the client API for C# .

API Support for Reactive Extensions (Rx)

The Universal Messaging native client API provides support for Reactive Extensions
(Rx). This support provides the ability to create priority, shared or exclusive / named

Universal Messaging Developer Guide Version 10.1 159

Enterprise APlIs

durable subscribers using the following method on the topic retrieved from the
initialized session:

ITransactionalConsumer CreateDurableConsumer (
string name, string unique, DurableType durableType,
string filter, bool subscribeToPurge = false)

A DurableType enumeration has been added with the available options: Named, Priority
and Shared.

See the following example:

using (var session = new Session ("nsp://localhost:11000"))
{

// Initialize the session

session.Initialize();

// Create consumer & subscribe

consumer = session.Topics.CreateDurableConsumer (
"channel", "durable", DurableType.Named, "filter");

var query =
from e in consumer.ToObservable ()
select e.Message;

// Subscribe

query.Subscribe (ProcessMessage) ;

}
// Example function to process messages
void ProcessMessage (IMessage message)

{
if (message != null)
{

Console.Writeline ("Message received {0}.", message.Id);
}
}

The consumer implements ITransactionalConsumer, so you would be able to commit or roll
back events by simply invoking consumer.commit() or consumer.rollback(), which will commit
or roll back all of the unacknowledged events up to and including the last received
event.

Durable Channel Consumers and Named Objects (Deprecated)

Note: The API described in this section for creating named objects and named objects
with priority has now been deprecated and will be removed from the product
in an upcoming release. If you are developing new applications, use the API
described in the section "Using Durable Objects" on page 157 instead.

Universal Messaging provides the ability for both asynchronous and synchronous
consumers to be durable. Durable consumers allow state to be kept at the server with
regard to what events have been consumed by a specific consumer of data.

Universal Messaging supports durable consumers through use of Universal Messaging
named objects (see "Named Objects" on page 162) as shown by the following example
code.

Named objects can also be managed via the Enterprise Manager.

Universal Messaging Developer Guide Version 10.1 160

Enterprise APlIs

Asynchronous

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with an asynchronous event consumer:

public class mySubscriber : nEventListener ({

public mySubscriber () {
// construct your session and channel objects here
// create the named object and begin consuming events
// from the beginning of the channel (event id 0)
nNamedObject nobj = myChannel.createNamedObject ("uniquel", 0, true);
myChannel.addSubscriber (this , nobj);

}

public void go (nConsumeEvent event) ({
Console.WritelLine ("Consumed event "t+event.getEventID());

}
public static void Main (String[] args) {
new mySubscriber () ;

}

Synchronous

An example of how to create a named object that begins from event id 0, is persistent
and is used in conjunction with a synchronous event consumer:

public class mylterator {
nChannelIterator iterator = null;

public myIterator () {
// construct your session and channel objects here

// start the iterator
nNamedObject nobj = myChannel.createNamedObject ("unique2", 0, true);

iterator = myChannel.createlterator (0);

}
public void start () {
while (true) {
nConsumeEvent event = iterator.getNext () ;

go (event) ;
}
}

public void go (nConsumeEvent event) ({
Console.WritelLine ("Consumed event "+event.getEventID()) ;

}
public static void Main(String[] args) {
mylterator itr = new mylterator();

itr.start () ;

}

Both synchronous and asynchronous channel consumers allow message selectors to be
used in conjunction with named objects. Please see the API documentation for more
information.

There are also different ways in which events consumed by named consumers can be
acknowledged. By specifying that 'auto acknowledge' is true when constructing either
the synchronous or asynchronous consumers, then each event is acknowledged as
consumed automatically. If 'auto acknowledge' is set to false, then each event consumed
has to be acknowledged by calling the ack() method:

public void go (nConsumeEvent event) ({

Universal Messaging Developer Guide Version 10.1 161

Enterprise APlIs

Console.WritelLine ("Consumed event " + event.getEventID()) ;
event.ack () ;

}

Priority

Two subscribers can hold a subscription to the same named object. One is given priority
and will process events during normal operation. If, however, the subscriber with
priority is disconnected for whatever reason, and is unable to process events, the second
subscriber to that named object will take over and continue to process events as they
come in. This allows failover, with backup subscribers handling events if the subscriber
with priority goes down.

To do this, we simply create the subscriber with a boolean specifying if this subscriber
has priority. Only one subscriber is allowed priority at any given time. An example of a
named object specifying priority is shown below:

nNamedObject named = myChannel.createNamedObject (
subname, startEid, persistent, cluster, priority);

Named Objects

Universal Messaging provides the ability for the server to maintain state for the last
event that was consumed by a consumer on a channel. By providing a unique name, you
can create a named object on a channel and even when your application is stopped, the
next time you start your application, you will only consume available events from the
last event id that the server stored as successfully consumed by that named object.

Named objects can be persistent, i.e. the last event id is written to disk, so that if the
Universal Messaging Realm Server is restarted, the last event id consumed is retrievable
for each named object on a channel.

An example of how to create a named object that begins from event id 0, and is
persistent is shown below:

nNamedObject nobj = myChannel.createNamedObject ("uniquel", 0, true);

The Merge Engine and Event Deltas

In order to streamline publish/subscribe applications it is possible to deliver only the
portion of an event's data that has changed rather than the entire event. These event
deltas minimise the amount of data sent from the publisher and ultimately delivered to
the subscribers.

The publisher simply registers an event and can then publish changes to individual keys
within the event. Subscribers can be configured to get callbacks which contain either the
entire event or just the changed key(s). Either way, only the key(s) that have changed are
delivered to the subscribing client.

Publisher - Registered Events

In order to publish event deltas the publisher uses the Registered Event facility available
on a Universal Messaging Channel. Please note that the channel must have been
created with the Merge Engine and it must have a single Publish Key. The publish key

Universal Messaging Developer Guide Version 10.1 162

Enterprise APlIs

represents the primary key for the channel and the registered events. So for example if
you are publishing currency rates you would setup a channel as such
nChannelAttributes cattr
= new nChannelAttributes ("RatesChannel", 0, 0, nChannelAttributes.SIMPLE TYPE);
//
// This next line tells the server to Merge incoming events based on the publish
// key name and the name of the registered event
//
cattr.useMergeEngine (true) ;

//
// Now create the Publish Key (See publish Keys for a full description
//
nChannelPublishKeys[] pks = new nChannelPublishKeys[1];
pks[0] = new nChannelPublishKeys ("ccy", 1);
cattr.setPublishKeys (pks) ;
//

// Now create the channel
//

myChannel = mySession.createChannel (cattr);

At this point the server will have a channel created with the ability to merge incoming
events from Registered Events. The next step is to create the Registered events at the
publisher.

nRegisteredEvent audEvent = myChannel.createRegisteredEvent ("AUD") ;

nEventProperties props = audEvent.getProperties();

props.put ("bid", 0.8999);

props.put ("offer", 0.9999);

props.put ("close", "0.8990");
audEvent.commitChanges () ;

You now have a nRegisteredEvent called audEvent which is bound to a ccy value

of "AUD". We then set the properties relevant to the application, finally we call
commitChanges(), this will send the event, as is, to the server. At this point if the bid was
to change then that individual field can be published to the server as follows:

props.put ("bid", 0.9999);
audEvent.commitChanges () ;

This code will send only the new "bid" change to the server. The server will modify the
event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

Subscriber - nEventListener

The subscriber implements nEventListener in the usual way and does not need to do
anything different in order to receive either event deltas or snapshots containing the
result of one or more merge operations. The standard nEventListener will receive a
full event when the subscription is initiated. Thereafter it will receive only deltas. If at
any time the user is disconnected then it will receive a fresh update of the full event on
reconnection - followed by a resumption of delta delivery.

If you wish to differentiate between snapshot events and delta events then the
nConsumeEvent attributes can be used as follows:

event.getAttributes () .isDelta() ;

Universal Messaging Developer Guide Version 10.1 163

Enterprise APlIs

For more information on Universal Messaging publish / subscribe, please see the API
documentation.

Event Fragmentation

Universal Messaging is capable of sending large messages. The maximum message
size is given by the configuration parameter MaxBufferSize. For a description of this
parameter, see the section Realm Configuration in the description of the Enterprise
Manager in the Universal Messaging Administration Guide.

However, to get the best performance out of the system, it is important to consider how
the data for such events is sent. In some cases, it might be better to compress or fragment
the message rather than increasing MaxBufferSize.

If you want to send a large file, you could first compress the file before attaching it to

an nConsumeEvent as a byte array. It takes time to compress data but as long as the data
compresses well, you may find that the by reducing the network utilization, your system
operates more efficiently.

Another option is to fragment the data. To fragment the data you need to convert to a
byte array as before, but split the byte array and send multiple nConsumeEvent requests
rather than one. By doing this, the events are handled completely separately by the
server, so there are some things to consider; for example, this approach will not work if
you are using a queue with multiple consumers.

Consuming a JMS Map Message

In order to enable Universal Messaging to support JMS, message types for JMS are
stored in a slightly different way from the normal nConsumeEvent.

When a Java client publishes a JMS Map Message, the map is serialised and
stored in the payload of the message. For a C# subscriber to consume a JMS Map
Message, this payload must be reconstructed as an nEventProperties using the
getPayload AsDictionary method.

Consuming a Map Message

A JMS map message will be received in the go callback in the same way as a normal
nConsumeEvent. Once received, the Map Message can be handled as follows:
go (nConsumeEvent evt) {
if (evt.getAttributes () .getType () ==nEventAttributes.MapMessageType) {
nEventProperties map = evt.getPayloadAsDictionary() ;

}
}

Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same channel or queue. Universal Messaging provides the ability to
expedite messages based on a priority level. Messages with higher levels of priority are

Universal Messaging Developer Guide Version 10.1 164

Enterprise APlIs

able to be delivered to clients ahead of lower priority messages. The priority is a numeric
value in the range 0 (lowest priority) to 9 (highest priority).

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be
removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:

nConsumeEvent evt;
evt.getAttributes () .setPriority(9) ;

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically, events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis, and the effects
become more noticeable as load increases.

Note: If events are stored for replay at a later stage, for example for a durable
subscriber who is currently not consuming events, higher priority events will
be delivered earlier than lower priority events when the durable subscriber
starts consuming the events, even if the lower priority events were created
much earlier .

Publish / Subscribe using Datastreams and Datagroups

Publish / Subscribe Using DataStreams and DataGroups

Publish / Subscribe is one of several messaging paradigms supported by Universal
Messaging. Universal Messaging DataGroups are lightweight structures designed to
facilitate Publish/Subscribe . When using DataGroups, user subscriptions are managed
remotely in a way that is transparent to subscribers. Universal Messaging Channels
provide an alternative style of Publish/Subscribe where the subscribers manage their
subscriptions directly.

There are two resources that are used when interacting with DataGroups: DataStreams
and DataGroups.
DataStreams

A Data Stream is a destination for published events. Publishers with appropriate
permissions can write events directly to Data Streams. A Universal Messaging client
session can optionally have a Data Stream, and receive events through it.

Universal Messaging Developer Guide Version 10.1 165

Enterprise APlIs

A Data Stream can be a member of one or more Data Groups.

DataGroups

Any event written to a Data Group will be propagated to all Data Streams that are
members of that Data Group.

Data Groups may also contain other Data Groups. Any event written to an upper level
Data Group will be written to all contained Data Groups, and thus to all contained Data
Streams.

Note that all Data Streams are automatically added to the realm server's Default Data
Group. Writing an event to the Default Data Group, therefore, will ensure it is delivered
to any client with a session configured to use a Data Stream.

This section demonstrates Universal Messaging pub / sub using DataGroups in C#, and
provides example code snippets for all relevant concepts.

Enabling DataGroups and Receiving Event Callbacks

DataStreamListener

If an nSession is created with an nDataStreamListener then it will receive asynchronous
callbacks via the onMessage implementation of the nDataStreamListener interface. The
nDataStreamListener will receive events when:

B An event is published directly to this particular nDataStream
B Anevent is published to any nDataGroup which contains this nDataStream

B An event is published to an nDataGroup which contains a nested nDataGroup
containing this nDataStream

® Anexample of how to create a session with an nDataStreamListener interface is
shown below:

public class DataGroupClient : nDataStreamListener({

nSession mySession;

public DataGroupClient (string realmURLs) {
nSessionAttributes nsa = new nSessionAttributes (realmURLS) ;
mySession = nSessionFactory.create(nsa, this);
mySession.init (this);

}

/177

// nDataStreamListener Implementation

/177

//Callback received when event is available

public void onMessage (nConsumeEvent event) {

//some code to process the message

}

Universal Messaging Developer Guide Version 10.1 166

Enterprise APlIs

Managing Datagroups
Creating and Deleting DataGroups

Creating Universal Messaging DataGroups

nDataGroups can be created programmatically as detailed below, or they can be created
using the Universal Messaging enterprise manager.

In order to create a nDataGroup, first of all you must create an nSession object with
an nDataStreamListener. This is effectively your logical and physical connection to a
Universal Messaging Realm. This is achieved by using an RNAME for your Universal
Messaging Realm when constructing the nSessionAttributes object, as shown below:

string[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa=new nSessionAttributes (RNAME) ;
nSession mySession=nSessionFactory.create (nsa);
mySession.init (this); // where this is an nDataStreamListener

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession object instance 'mySession', you can then create DataGroups. The
create DataGroup methods will return the nDataGroup if it already exists.

The code snippets below demonstrate the creation of nDataGroups:

Create a Single nDataGroup

nDataGroup myGroup = mySession.createDataGroups ("myGroup") ;

Create Multiple nDataGroups

string[] groups = {"myFirstGroup", "mySecondGroup"};
IEnumerable<nDataGroup> myGroups = mySession.createDataGroups (groups) ;

Creating DataGroups with DataGroupListeners and ConflationAttributes
It is also possible to specify additional properties when creating DataGroups:
® nDataGroupListener - To specify a listener for DataGroup membership changes

® nConflationAttributes - To specify attributes which control event merging and
delivery throttling for the DataGroup

Now we have a reference to a Universal Messaging DataGroup it is possible to publish
events
Deleting Universal Messaging DataGroups

There are various deleteDataGroup methods available on nSession which will delete
DataGroups. It is possible to specify single nDataGroups or arrays of nDataGroups.

Universal Messaging Developer Guide Version 10.1 167

Enterprise APlIs

Managing DataGroup Membership

DataGroups are extremely lightweight from both client and server perspectives; a back-
end process, such as a Complex Event Processing engine, can simply create DataGroups
and then add or remove users (or even entire nested DataGroups) based on bespoke
business logic. A user who is removed from one DataGroup and added to another

will continue to receive events without any interruption to service, or indeed explicit
awareness that any DataGroup change has occurred.

This page details some of the typical operations that DataGroup management process
would carry out. Please see our C# sample apps for more detailed examples of
DataGroup management.

Tracking Changes to DataGroup Membership (DataGroupListener)

The nDataGroupListener interface is used to provide asynchronous notifications
when nDataGroup membership changes occur. Each time a user (nDataStream) or
nDataGroup is added or removed from a nDataGroup a callback will be received.

public class datagroupListener : nDataGroupListener {

nSession mySession;

public datagroupListener (nSession session) {
mySession = session;
//add this class as a listener for all nDataGroups on this Universal
//Messaging realm
mySession.getDataGroups (this) ;

}

/1177

//DataGroupListener Implementation

/1]

public void addedGroup (nDataGroup to, nDataGroup group, int count) {
//Called when a group has been added to the 'to' data group.
//count is the number of nDataStreams that will receive any events published to
//this nDataGroup

}

public void addedStream (nDataGroup group, nDataStream stream, int count) {
//Called when a new stream has been added to the data group.

}

public void createdGroup (nDataGroup group) {
//Called when a group has been created.

}

public void deletedGroup (nDataGroup group) {
//Called when a group has been deleted.

}

public void deletedStream (nDataGroup group, nDataStream stream, int count,

boolean serverRemoved) {

//Called when a stream has been deleted from the data group.
//serverRemoved is true if the nDataStream was removed because of flow control

}

public void removedGroup (nDataGroup from, nDataGroup group, int count) {
//Called when a group has been removed from the 'from' data group.

}

}

There are three ways in which the nDataGroupListener can be used:

Universal Messaging Developer Guide Version 10.1 168

Enterprise APlIs

Listening to an individual DataGroup

Listeners can be added to individual DataGroups when they are created or at any time
after creation. The code snippets illustrate both approaches:

mySession.createDataGroup (dataGroupName, datagroupListener);
myDataGroup.addListener (datagroupListener) ;

Listening to the Default DataGroup

The Default nDataGroup is a DataGroup to which all nDataStreams are added by
default. If you add a DataGroupListener to the defaiult DataGroup then callbacks will be
received when:

B anDataStream is connected/disconnected

® anDataGroup is created or deleted

Listening to all DataGroups on a Universal Messaging Realm

The code snippet below will listen on all nDataGroups (including the default
DataGroup).

mySession.getDataGroups (datagroupListener) ;

Adding and Removing DataGroup Members

The nDataGroup class provides various methods for adding and removing
nDataStreams and nDataGroups. Please see the nDataGroup API documentation for a
tull list of methods. Examples of some of these are provided below:

//Add a nDataStream (user) to a nDataGroup

public void addStreamToDataGroup (nDataGroup group, nDataStream user) {
group.add (user) ;

}

//Remove a nDataStream (user) from a nDataGroup

public void removeStreamFromDataGroup (nDataGroup group, nDataStream user) {
group.remove (user) ;

}

//Add a nDataGroup to a nDataGroup

public void addNestedDataGroup (nDataGroup parent, nDataGroup child) {
parent.add (child) ;

}

//Remove a nDataGroup from a nDataGroup

public void removeNestedDataGroup (nDataGroup parent, nDataGroup child) {
parent.remove (child) ;

}

DataGroup Conflation Attributes

Enabling Conflation on DataGroups

Universal Messaging DataGroups can be configured so that conflation (merging and
throttling of events) occurs when messages are published. Conflation can be carried
out in several ways and these are specified using an nConflationAttributes object. The
ConflationAttributes object is passed in to the DataGroup when it is created initially.

Universal Messaging Developer Guide Version 10.1 169

Enterprise APlIs

The nConflationAttributes object has two properties action and interval. Both of these are
passed into the constructor.

The action property specifies whether published events should replace previous events in
the DataGroup or be merged with them. These properties are defined by static fields:

nConflationAttributes.sMergeEvents
nConflationAttributes.sDropEvents

The interval property specifies the interval in milliseconds between event fanout to
subscribers. An interval of zero implies events will be fanned out immediately.

Creating a Conflation Attributes Object

//ConflationAttributes specifying merge events and no throttled delivery
nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sMergeEvents, 0);
//ConflationAttributes specifying merge events and throttled delivery at
// 1 second intervals
nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sMergeEvents, 1000) ;
//ConflationAttributes specifying drop events and throttled delivery at
// 1 second intervals
nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sDropEvent, 1000);

Create a Single nDataGroup with Conflation Attributes

public class datagrouplListener : nDataGroupListener {

nSession mySession;

nDataGroup myDataGroup;

public datagrouplListener (nSession session, nConflationAttributes confattribs,

string dataGroupName) {

mySession = session;
//create a DataGroup passing in this class as a nDataGroupListener and
//a ConflationAttributes
myDataGroup = mySession.createDataGroup (dataGroupName, this, confattribs);

Create Multiple nDataGroups with Conflation Attributes

nConflationAttributes confattribs =

new nConflationAttributes (nConflationAttributes.sMergeEvents, 1000) ;
string[] groups = {"myFirstGroup", "mySecondGroup"};
nDataGroup[] myGroups = mySession.createDataGroups (groups, confattribs);

Publishing Events to Conflated DataGroups With A Merge Policy

At this point the server will have a nDataGroup created with the ability to merge
incoming events from Registered Events. The next step is to create the Registered events
at the publisher.

nRegisteredEvent audEvent = myDataGroup.createRegisteredEvent () ;
nEventProperties props = audEvent.getProperties();

props.put ("bid", 0.8999);

props.put ("offer", 0.9999);

props.put ("close", "0.8990");

audEvent.commitChanges () ;

Universal Messaging Developer Guide Version 10.1 170

Enterprise APlIs

You now have a nRegisteredEvent called audEvent which is bound to a data group that
could be called 'aud'. We then set the properties relevant to the application, finally we
call commitChanges(), this will send the event, as is, to the server. At this point if the bid
was to change then that individual field can be published to the server as follows:

props.put ("bid", 0.9999);
audEvent.commitChanges () ;

This code will send only the new "bid" change to the server. The server will modify the

event internally so that any new client subscribing will receive all of the data, yet any
existing subscribers will only receive the change.

When a data group has been created with Merge conflation, all registered events
published to that data group will have their nEventProperties merged into the snapshot
event, before the delta event is delivered to the consumers.

When using Merge conflation with an interval (i.e. throttling), all updates will be
merged into a conflated event (as well as the snapshot event) that will be delivered
within the chosen interval. For example, consider the following with a merge conflated
group and an interval set to 100ms (ie maximum of 10 events a second):

Scenario 1

t0 - Publish Messagel, Bid=1.234 (This message will be immediately
delivered, and merged into the snapshot)

tl0 - Publish Message2, Offer=1.234 (This message will be held as a
conflation event, and merged into the
snapshot)

t20 - Publish Message3, Bid=1.345 (This message will be merged with the
conflated event, and with the snapshot)

£100 - Interval hit (Conflated event containing

Offer=1.234,Bid=1.345
is delivered to consumers)
Interval timer reset to +100ms, ie t200
t101 - Publish Message4, Offer=1.345 (This message will be held as a
conflation event,
and merged into the snapshot)

Where t0...tn is the time frame in milliseconds from now.

Scenario 2

t0 - Publish Messagel, Bid=1.234 (This message will be immediately
delivered, and merged into the snapshot)

t100 - Interval hit (Nothing is sent as there has been no
update since tO0)

t101 - Publish Message2, Offer=1.234 (This message will be immediately

delivered, and merged into the snapshot)
Interval timer reset to +100ms, ie t201

Meanwhile, if any new consumers are added to the Data Group, they will always
consume the most up to date snapshot and then begin consuming any conflated updates
after that.

Publishing Events to Conflated DataGroups With A Drop Policy

If you have specified a "Drop" policy in your ConflationAttributes then events are
published in the normal way rather than using nRegisteredEvent.

Universal Messaging Developer Guide Version 10.1 171

Enterprise APlIs

Consuming Conflated Events from a DataGroup

The subscriber doesn't need to do anything different to receive events from a DataGroup
with conflation enabled. If nRegisteredEvents are being delivered then the events will
contain only the fields that have changed will be delivered. In all other circumstances an
entire event is delivered to all consumers.

Publishing to Datagroups

DataGroups Event Publishing

You can get references to any DataGroup from the nSession object. There are various
writeDataGroup methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataGroups.

myDataGroup = mySession.getDataGroup ("myGroup") ;

nEventProperties props = new nEventProperties();

//You can add other types in a dictionary object
props.put ("keyOstring"+x, "1"+x);

props.put ("keylint", (int) 1);
props.put ("key2long", (long) -11);
nConsumeEvent evtl = new nConsumeEvent (props, buffer);

//Publish the event
mySession.writeDataGroup (evtl, myDataGroup) ;

DataStream Event Publishing

You can get references to any nDataStream (user) from the nSession object if you

call getDefaultDataGroup(). You can also access nDataStreams by implementing the
nDataGroupListener interface. Please see DataGroup management for more information.
This will deliver callbacks as users are connected/disconnected. There are various
writeDataStream methods available. These methods also support batching of multiple
events to a single group or batching of writes to multiple DataStreams.

nEventProperties props = new nEventProperties();

//You can add other types in a dictionary object
props.put ("keyOstring"+x, "1"+x);

props.put ("keylint", (int) 1);
props.put ("key2long", (long) -11);
nConsumeEvent evtl = new nConsumeEvent (props, buffer):;

//Publish the event
mySession.writeDataStream(evtl, myDataStream)

Priority Messaging

In certain scenarios it may be desirable to deliver messages with differing levels of
priority over the same datagroup. Universal Messaging provides the ability to expedite
messages based on a priority level. Messages with higher levels of priority are able to be
delivered to clients ahead of lower priority messages. The priority is a numeric value in
the range 0 (lowest priority) to 9 (highest priority).

Universal Messaging achieves this capability through a highly concurrent and scalable
implementation of a priority queue. Where in a typical queue events are first in first
out, in a priority queue the message with the highest priority is the first element to be

Universal Messaging Developer Guide Version 10.1 172

Enterprise APlIs

removed from the queue. In Universal Messaging each client has its own priority queue
for message delivery.

The following code snippet demonstrates how to set priority on a message:

nConsumeEvent evt;
evt.getAttributes () .setPriority(9) ;

Priority Messaging allows for a high priority message to be delivered ahead of a backlog
of lower priority messages. Ordering of delivery is done dynamically on a per client
basis.

Priority messaging is enabled by default, there are no configuration options for this
feature.

As Priority Messaging is done dynamically, events may not appear in strict order of
priority. Higher priority events are expedited on a best effort basis, and the effects
become more noticeable as load increases.

Note: If events are stored for replay at a later stage, for example for a durable
subscriber who is currently not consuming events, higher priority events will
be delivered earlier than lower priority events when the durable subscriber
starts consuming the events, even if the lower priority events were created
much earlier .

Message Queues

Message Queues

Universal Messaging provides message queue functionality through the use of queue
objects. Queues are the logical rendezvous point for publishers (producers) and
subscribers (consumers) of data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

Universal Messaging also supports non destructive reads (peeks) from queues, which
enable consumers to see what events are on a queue without removing them from the
queue. Any event which has been peeked will still be queued for popping in the normal
way. The Universal Messaging Enterprise Manager also supports the ability to visually
peek a queue using its snoop capability.

This section demonstrates how Universal Messaging message queues work, and provide
example code snippets for all relevant concepts.
Creating a Queue

In order to create a queue, first of all you must create your nSession object, which is your
effectively your logical and physical connection to a Universal Messaging Realm. This

Universal Messaging Developer Guide Version 10.1 173

Enterprise APlIs

is achieved by using the correct RNAME for your Universal Messaging Realm when
constructing the nSessionAttributes object, as shown below:

String[] RNAME={"nsp://127.0.0.1:9000"};

nSessionAttributes nsa = new nSessionAttributes (RNAME) ;

nSession mySession = nSessionFactory.create (nsa);
mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

We can use the nSession object instance mySession to create the queue object. Queues
have an associated set of attributes that define their behaviour within the Universal
Messaging Realm Server. As well as the name of the queue, the attributes determine the
availability of the events published to a queue to any consumers wishing to consume
them,

To create a queue, we do the following;:

nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setChannelMode (nChannelAttributes.QUEUE MODE) ;
cattrib.setMaxEvents (0) ;

cattrib.setTTL (0) ;

cattrib.setType (nChannelAttributes.PERSISTENT TYPE) ;
cattrib.setName ("myqueue") ;

nQueue myQueue = mySession.createQueue (cattrib) ;

Now we have a reference to a Universal Messaging queue within the realm.

Finding a Queue

In order to find a queue, first of all the queue must be created. This can be achieved
through the Universal Messaging Enterprise Manager, or programmatically. First of

all you must create your nSession object, which is effectively your logical and physical
connection to a Universal Messaging Realm. This is achieved by using the correct
RNAME for your Universal Messaging Realm when constructing the nSessionAttributes
object, as shown below:

String[] RNAME = ({"nsp://127.0.0.1:9000"});
nSessionAttributes nsa = new nSessionAttributes (RNAME) ;
nSession mySession = nSessionFactory.create (nsa);

mySession.init () ;

Once the nSession.init() method is successfully called, your connection to the realm will
be established.

Using the nSession objects instance 'mySession’, we can then try to find the queue object.
Queues have an associated set of attributes, that define their behaviour within the
Universal Messaging Realm Server. As well as the name of the queue, the attributes
determine the availability of the events published to a queue to any consumers wishing
to consume them,

To find a queue previously created, we do the following;:

nChannelAttributes cattrib = new nChannelAttributes () ;
cattrib.setName ("myqueue") ;
nQueue myQueue = mySession.findQueue (cattrib) ;

Now we have a reference to a Universal Messaging queue within the realm.

Universal Messaging Developer Guide Version 10.1 174

Enterprise APlIs

Publishing events to a Queue
There are 2 types of publish available in Universal Messaging for queues:

Reliable Publish is simply a one way push to the Universal Messaging Server. This means
that the server does not send a response to the client to indicate whether the event was
successfully received by the server from the publish call.

Transactional Publish involves creating a transaction object to which events are published,
and then committing the transaction. The server responds to the transaction commit call
indicating if it was successful. There are also means for transactions to be checked for
status after application crashes or disconnects.

Reliable Publish

Once the session has been established with the Universal Messaging realm server and
the queue has been located, an event must be constructed prior to a publish call being
made to the queue.

The following code snippet shows how to reliably publish events to a queue. Further
examples can be found in the API documentation.

// Publishing a simple byte array message

myChannel .publish (new nConsumeEvent ("TAG", (new UTF8Encoding()) .GetBytes (message)));
// Publishing multiple messages in one publish call
List Messages = new List();

Messages.Add (messagel) ;
Messages.Add (message?2) ;
Messages.Add (message3) ;
myChannel .publish (Messages) ;

Transactional Publish

Transactional publishing provides us with a method of verifying that the server receives
the events from the publisher, and provides guaranteed delivery.

There are similar prototypes available to the developer for transaction publishing. Once
we have established our session and our queue, we then need to construct our events
and our transaction, then publish these events to the transaction. The transaction will
then be committed and the events available to consumers to the queue.

Below is a code snippet demonstrating transactional publishing:

List Messages = new List();

Messages.Add (messagel) ;

nTransactionAttributes tattrib = new nTransasctionAttributes (myChannel) ;
nTransaction myTransaction = nTransactionFactory.create (tattrib);
myTransaction.publish (Messages) ;

myTransaction.commit () ;

If during the transaction commit your Universal Messaging session becomes
disconnected, and the commit call throws an exception, the state of the transaction
may be unclear. To verify whether a transaction has been committed or aborted, the
transaction can be queried to determine whether the events within the transactional
were successfully received by the Universal Messaging Realm Server:

bool committed = myTransaction.isCommitted (true) ;

Universal Messaging Developer Guide Version 10.1 175

Enterprise APlIs

Examples

For more information on Universal Messaging Message Queues, please see the API
documentation.

Asynchronously Consuming a Queue

Asynchronous queue consumers consume events from a callback on an interface that all
asynchronous consumers must implement. We call this interface an nEventListener. The
listener interface defines one method called go which when called will pass events to the
consumer as they are delivered from the Universal Messaging Realm Server.

An example of an asynchronous queue reader is shown below:

public class myAsyncQueueReader : nEventListener {
nQueue myQueue = null;
public myAsyncQueueReader () {
// construct your session and queue objects here
// begin consuming events from the queue
nQueueReaderContext ctx = new nQueueReaderContext (this, 10);
nQueueAsyncReader reader = myQueue.createAsyncReader (ctx);

}
public void go (nConsumeEvent event) {
Console.WritelLine ("Consumed event "+event.getEventID()) ;

}
public static void Main (String[] args) {
new myAsyncQueueReader () ;

}

Subscription with a Filtering Selector

Asynchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:

nEventProperties props = new nEventProperties();
props.put ("BONDNAME", "bondl") ;

A developer can create a message selector string such as:

String selector = "BONDNAME='bondl'";

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

Synchronously Consuming a Queue

Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

An example of a synchronous queue reader is shown below:

public class mySyncQueueReader {

Universal Messaging Developer Guide Version 10.1 176

Enterprise APlIs

nQueueSyncReader reader = null;
nQueue myQueue = null;
public mySyncQueueReader () {
// construct your session and queue objects here
// construct the queue reader
nQueueReaderContext ctx = new nQueueReaderContext (this, 10);
reader = myQueue.createReader (ctx) ;

public void start() {
while (true) {
// pop events from the queue
nConsumeEvent event = reader.pop();
go (event) ;

}

public void go (nConsumeEvent event) ({
Console.WritelLine ("Consumed event "t+event.getEventID());

public static void Main (String[] args) {
mySyncQueueReader sqgr = new mySyncQueueReader () ;
sqr.start () ;

Subscription with a Filtering Selector

Synchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:

nEventProperties props = new nEventProperties();
props.put ("BONDNAME", "bondl") ;

A developer can create a message selector string such as:

String selector = "BONDNAME='bondl'";

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

Asynchronous Transactional Queue Consumption

Asynchronous transactional queue consumers consume events from a callback on an
interface that all asynchronous consumers must implement. We call this interface an
nEventListener. The listener interface defines one method called go which when called will
pass events to the consumer as they are delivered from the Universal Messaging Realm
Server.

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional asynchronous queue reader is shown below:

public class myAsyncTxQueueReader : nEventListener {
nQueueAsyncTransactionalReader reader = null;

Universal Messaging Developer Guide Version 10.1 177

Enterprise APlIs

nQueue myQueue = null;

public myAsyncTxQueueReader () {
// construct your session and queue objects here
// begin consuming events from the queue
nQueueReaderContext ctx = new nQueueReaderContext (this, 10);
reader = myQueue.createAsyncTransactionalReader (ctx) ;

public void go (nConsumeEvent event) ({
Console.WritelLine ("Consumed event "+event.getEventID()) ;
reader.commit () ;

public static void Main(String[] args) {
new myAsyncTxQueueReader () ;

}

As previously mentioned, the big difference between a transactional asynchronous
reader and a standard asynchronous queue reader is that once events are consumed
by the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been committed, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with Event IDs 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to 9.

Subscription with a Filtering Selector

Asynchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:

nEventProperties props = new nEventProperties();
props.put ("BONDNAME", "bondl") ;

A developer can create a message selector string such as:
String selector = "BONDNAME='bondl'";
Passing this string into the constructor for the nQueueReaderContext object shown in the

example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

Synchronous Transactional Queue Consumption

Synchronous queue consumers consume events by calling pop() on the Universal
Messaging queue reader object. Each pop call made on the queue reader will
synchronously retrieve the next event from the queue.

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This

Universal Messaging Developer Guide Version 10.1 178

Enterprise APlIs

ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

An example of a transactional synchronous queue reader is shown below:

public class mySyncTxQueueReader ({
nQueueSyncTransactionReader reader = null;
nQueue myQueue = null;
public mySyncTxQueueReader () {
// construct your session and queue objects here
// construct the transactional queue reader
nQueueReaderContext ctx = new nQueueReaderContext (this, 10);
reader = myQueue.createTransactionalReader (ctx) ;
}
public void start() {
while (true) {
// pop events from the queue
nConsumeEvent event = reader.pop();
go (event) ;
// commit each event consumed
reader.commit (event.getEventID()) ;
}
}
public void go (nConsumeEvent event) ({
Console.WritelLine ("Consumed event "+event.getEventID()) ;
}
public static void Main (String[] args) {
mySyncTxQueueReadersgr = new mySyncTxQueueReader () ;
sgr.start () ;

}

As previously mentioned, the big difference between a transactional synchronous
reader and a standard synchronous queue reader is that once events are consumed by
the reader, the consumers need to commit the events consumed. Events will only be
removed from the queue once the commit has been called.

Developers can also call the rollback() method on a transactional reader that will notify
the server that any events delivered to the reader that have not been committed, will be
rolled back and redelivered to other queue consumers. Transactional queue readers can
also commit or rollback any specific event by passing the event id of the event into the
commit or rollback calls. For example, if a reader consumes 10 events, with Event IDs 0
to 9, you can commit event 4, which will only commit events 0 to 4 and rollback events 5
to9.

Subscription with a Filtering Selector

Synchronous queue consumers can also be created using a selector, which allows the
subscription to be filtered based on event properties and their values.

For example, assume some events are being published with the following event
properties:

nEventProperties props = new nEventProperties();
props.put ("BONDNAME", "bondl") ;

A developer can create a message selector string such as:

String selector = "BONDNAME='bondl'";

Universal Messaging Developer Guide Version 10.1 179

Enterprise APlIs

Passing this string into the constructor for the nQueueReaderContext object shown in the
example code will ensure that the subscriber will only consume messages that contain
the correct value for the event property BONDNAME.

Browse (Peek) a Universal Messaging Queue

Universal Messaging provides a mechanism for browsing (peeking) queues. Queue
browsing is a non-destructive read of events from a queue. The queue reader used

by the peek will return an array of events, the size of the array being dependent on
how many events are in the queue, and the window size defined when your reader
context is created. For more information, please see the Universal Messaging Client API
documentation.

An example of a queue browser is shown below:

public class myQueueBrowser {
nQueueReader reader = null;
nQueuePeekContext ctx = null;
nQueue myQueue = null;
public myQueueBrowser () {
// construct your session and queue objects here
// create the queue reader
reader = myQueue.createReader (new nQueueReaderContext ()) ;
ctx = nQueueReader.createContext (10) ;
}
public void start () {
bool more = true;
long eid =0;
while (more) {
// browse (peek) the queue
nConsumeEvent [] evts = reader.peek(ctx);
for (int x=0; x < evts.Length; x++) {
go (evts([x]);
}
more = ctx.hasMore();
}
}
public void go (nConsumeEvent event) ({
Console.Writeline ("Consumed event "+event.getEventID()) ;
}
public static void Main (String[] args) {
myQueueBrowser gbrowse = new myQueueBrowser () ;
gbrowse.start () ;

Subscription with a Filtering Selector

Queue browsers can also be created using a selector, which allows the peek to be filtered
based on event properties and their values.

For example, assume some events are being published with the following event
properties:

nEventProperties props = new nEventProperties();
props.put ("BONDNAME", "bondl") ;

A developer can create a message selector string such as:

Universal Messaging Developer Guide Version 10.1 180

Enterprise APlIs

String selector = "BONDNAME='bondl'";

Passing this string into the constructor for the nQueuePeekContext object shown in the
example code will ensure that the browser will only receive messages that contain the
correct value for the event property BONDNAME.

For more information on Universal Messaging Message Queues, please see the API
documentation.

Request Response

Universal Messaging can easily be used to issue request/response message exchanges.
To accomplish this, the requester simply publishes an event to a request queue and then
listens for a response to be issued on a response queue. The responder tags this response
with the username of the requester, and this ensures that only the requester will see the
response event.

Requester

The requester publishes an event to a request queue and then listens for a response

to be issued on a response queue. The response will be tagged with the username of
the requester. This is specified during the initial configuration of the session, as shown
below:

mySession = nSessionFactory.create(nsa, this,"subscriber tag"):;

After setting this, the requester simply publishes an event to the request queue and
listens for a response on the response queue. An example C# .NET requester is available
in the examples section.

Responder

The responder listens to the request channel and responds to each request event. To
ensure the message is only delivered to the correct recipient, the Subscriber Name
must be set on the response event. The response event's data can contain the relevant
information the user needs.

//Having received a request event req,

//and established a connection to a response gqueue respQueue.
Console.Writeline ("Received request");

//Retrieve username of request sender.

String requester = reqg.getPublishUser () ;

//Construct repsponse message.

String text = "Response: " + new String(reg.getEventData());
//Construct response event

nEventProperties atr = new nEventProperties();

nConsumeEvent resp = new nConsumeEvent (atr, text.getBytes()):
//Set recipient of the event to the requester's tag to response.
resp.setSubscriberName (requester.getBytes()) ;
respQueue.push (resp) ;

An example C# NET responder is available in the examples section.

Universal Messaging Developer Guide Version 10.1 181

Enterprise APlIs

Event Fragmentation

Universal Messaging is capable of sending large messages. The maximum message
size is given by the configuration parameter MaxBuffersize. For a description of this
parameter, see the section Realm Configuration in the description of the Enterprise
Manager in the Universal Messaging Administration Guide.

However, to get the best performance out of the system, it is important to consider how
the data for such events is sent. In some cases, it might be better to compress or fragment
the message rather than increasing MaxBuffersize.

If you want to send a large file, you could first compress the file before attaching it to

an nConsumeEvent as a byte array. It takes time to compress data but as long as the data
compresses well, you may find that the by reducing the network utilization, your system
operates more efficiently.

Another option is to fragment the data. To fragment the data you need to convert to a
byte array as before, but split the byte array and send multiple nConsumeEvent requests
rather than one. By doing this, the events are handled completely separately by the
server, so there are some things to consider; for example, this approach will not work if
you are using a queue with multiple consumers.

Basic Authentication

Overview

The entire set of session creation methods of the Universal Messaging client, admin APIs
and reactive extension in .NET have overloaded variants that accept username/password
credentials which are then supplied to the Universal Messaging server.

To use these overloaded variants, the external SASL library (s22 sSASL.d11) must be
loaded and its assembly must be available to the Universal Messaging API, as described
in the "Prerequisites for Basic Authentication" on page 182 page.

Note that authentication does not supplant the traditional Universal Messaging ACLs
and is merely an additional security step performed before the relevant ACLs are
evaluated and applied.

The configuration for .NET authentication is controlled by either a set of environment
variables or directly in the API via the com.pcbsys.nirvana.client.nSessionAttributes structure.

Prerequisites for Basic Authentication

In order to enable SASL authentication in .NET, the library s22 saAs1.d11 and

its dependency BouncyCastle.Crypto.dll must be made available in the same
application domain as the Universal Messaging library. The easiest away to do this is
to add a reference to the s22 SasL.d11 library whenever you have a reference to any
Universal Messaging .NET libraries. Alternatively the assembly can be loaded into

Universal Messaging Developer Guide Version 10.1 182

Enterprise APlIs

the current application domain using System.Reflection.Assembly.Load () and
supplying the path to the s22 sas1.d11 file.

The files s22 sasSL.dll and BouncyCastle.Crypto.dll are located in the same
dotnet/bin directory as the other DLL files for .NET.

Once the assembly is available, it will be automatically picked up when creating a
session (whether via a client session, realm node or RX session) and used to connect to
the server. If the assembly is unavailable and authentication credentials are supplied, an
exception will be thrown when attempting to connect to the server, stating that no SASL
implementations are available.

If authentication is not enabled on the server, the client will default to a standard
connection without authentication.

Client-side Authentication

Authentication methods will only be used if a password is supplied when creating

a session to the server. The SASL implementation for Universal Messaging

in NET supports the following mechanisms: plain (plain text username/password
authentication), CRAM-MD?5 and Digest-MD5 (cryptographically encoded credential
authentication). The preferred mechanism can be set either via an API call or an
environment variable as detailed below.

Setting the preferred authentication mechanism via Environment Configuration

There are a number of environment variables which may be used to control the
authentication behaviour of the NET API:

m Nirvana.sasl.client.mech

This specifies which SASL mechanism to use, and the supported options are PLAIN,
CRAM-MD5 and DIGEST-MDS5.

The mechanism defaults to PLAIN if this system property is not set, and the usual
SASL trade-offs apply. PLAIN transmits the user password in plain text, so it is
advisable to only use it over an SSL connection. On the other hand, CRAM-MD5 and
DIGEST-MD?5 do not transmit the password in plain text so are more appropriate for
general connections.

Note that if the preferred mechanism is set via nSessionAttributes, the API-set value will
be preferred over this one.

® Nirvana.sasl.client.enablePrehash

This specifies whether to prehash the supplied password when using the CRAM-
MD?5 or DIGEST-MD5 mechanisms. It may be set to "true" or "false". This should

be set to "true" only when the server is using the fSAGInternalUserRepositoryAdapter to
store client credentials, otherwise CRAM-MDb5 and DIGEST-MD?5 authentication will
fail. If Nirvana.sasl.client.enablePrehash is not set, then the value defaults to
"false" and prehashing is not enabled.

Universal Messaging Developer Guide Version 10.1 183

Enterprise APlIs

Setting the preferred authentication mechanism via API

For the client and admin APIs, the preferred authentication mechanisms can be set via
the nSessionAttributes class used to create a session as follows:

nSessionAttributes:

public void setSASLMechPrefs (nSaslMechanism[] mechPrefs)

Here, nsas1Mechanismis an enum with possible values PLAIN, CRAM MD5 or

DIGEST MD5. The array passed in should be an array of any number of these
nSaslMechanisms in order of preference. Preferences set here will take precedence

over any preferences set via environment variables. If this is unset, Universal

Messaging will use the mechanism preference set via the environment variable
Nirvana.sasl.client.mechanism. If this environment variable is unset, the default
mechanism will be PLAIN. Note that this method is unavailable to clients using a reactive
session. In this case, the mechanism preferences can only be set via the environment
variable Nirvana.sasl.client.mechanism.

In order to supply credentials to the API, Universal Messaging offers a number of
additions to the standard constructors and factory methods. Either the username and
password can be supplied independently as a String and a SecureString (inbuilt in NET
in System.Security) respectively or in some cases both can be supplied together inside a
NetworkCredentials object (inbuilt in .NET in System.Net).

Thus we have the following API additions:
Client Sessions:

nSessionFactory:

public static nSession create (nSessionAttributes sAttr,
String username, SecureString password)

public static nSession create (nSessionAttributes sAttr,
NetworkCredentials creds)

public static nSession create (nSessionAttributes sAttr,
nReconnectHandler handler, String username, SecureString password)

public static nSession create (nSessionAttributes sAttr,
nReconnectHandler handler, NetworkCredentials creds)

public static nSession createMultiplexed (nSessionAttributes sAttr,
String username, SecureString password)

public static nSession createMultiplexed (nSessionAttributes sAttr,
NetworkCredentials creds)

public static nSession createMultiplexed (nSession session,
String username, SecureString password)

public static nSession createMultiplexed(nSession session,
NetworkCredentials creds)

Admin Sessions:

nRealmNode:

Constructor -

nRealmNode (nSessionAttributes sAttr, String username, SecureString passwd) ;
Constructor -

nRealmNode (nSessionAttributes sAttr, NetworkCredentials creds) ;

nRealmAdmin:

Universal Messaging Developer Guide Version 10.1 184

Enterprise APlIs

Constructor -

nRealmAdmin (nSessionAttributes sAttr, String username,
SecureString password)

Constructor -

nRealmAdmin (nSessionAttributes sAttr, String username,
SecureString password, bool followTheMaster)

Reactive Sessions:

ISessionAttributes:

string Username { get; set; }
SecureString Password { get; set; }
NetworkCredentials Credentials { get; set; }

Server-side Authentication

For information of setting up and using server-side authentication, refer to the

section "Server-side Authentication” on page 73 in the Java-related part of this
documentation. The information described there applies equally to basic authentication
when using the C# client.

Google Protocol Buffers

Overview

Google Protocol Buffers are a way of efficiently serializing structured data. They are
language and platform neutral and have been designed to be easily extensible. The
structure of your data is defined once, and then specific serialization and deserialization
code is produced specifically to handle your data format efficiently.

Universal Messaging supports server-side filtering of Google Protocol Buffers, and

this, coupled with Google Protocol Buffer's space-efficient serialization can be used to
reduce the amount of data delivered to a client. If server side filtering is not required, the
serialised protocol buffers could be loaded into a normal nConsume Event as the event
data.

The structure of the data is defined in a .proto file, messages are constructed from a
number of different types of fields and these fields can be required, optional or repeated.
Protocol Buffers can also include other Protocol Buffers.

The serialization uses highly efficient encoding to make the serialized data as space
efficient as possible, and the custom generated code for each data format allows for
rapid serialization and deserialization.

Using Google Protocol Buffers with Universal Messaging

Google supplies libraries for Protocol Buffer in Java, C++ and Python, and third party
libraries provide support for many other languages including .NET, Perl, PHP etc.
Universal Messaging's client APIs provide support for the construction of Google
Protocol Buffer event through which the serialized messages can be passed.

These nProtobufEvents are integrated seamlessly in nirvana, allowing for server-side
filtering of Google Protocol Buffer events, which can be sent on resources just like a

Universal Messaging Developer Guide Version 10.1 185

Enterprise APlIs

normal Universal Messaging events. The server side filtering of messages is achieved by
providing the server with a description of the data structures(constructed at the .proto
compile time, using the standard protobuf compiler and the --descriptor_set_out
option). The default location the sever looks in for descriptor files is /plugins/
ProtobufDescriptors and this can be configured through the enterprise manager. The
server will monitor this folder for changes, and the frequency of these updates can be
configured through the enterprise manager. The server can then use to extract the key
value pairs from the binary Protobuf message and filter message delivery based on user
requirements.

To create a nProtobuf event, simply build your protocol buffer as normal and pass it into
the nProtobuf constructor along with the message type used.

nProtobufEvent evt = new nProtobufEvent (buffer, "example") ;
myChannel .publish (evt) ;

nProtobuf events are received by subscribers in the normal way.

The Enterprise Manager can be used to view, edit and republish protocol buffer events,
even if the EM is no running on the same machine as the server. To enable this, the
server outputs a descriptor set to a configurable directory (by default the htdocs
directory for the realm) and this can then be made available through a file plugin etc.
The directory can be changed through the enterprise manager. The enterprise manager
can then be configured to load this file using -DProtobufDescSetURL and then the
contents of the protocol buffers can be parsed.

Examples

Publish / Subscribe using Channel Topics

Publish / Subscribe

Publish / Subscribe is one of several messaging paradigms available in Universal
Messaging. Universal Messaging Channels are a logical rendezvous point for publishers
(producers) and subscribers (consumers) or data (events).

Universal Messaging DataStreams and DataGroups provide an alternative style of
Publish/Subscribe where user subscriptions can be managed remotely on behalf of
clients.

Universal Messaging Channels equate to Topics if you are using the Universal
Messaging Provider for JMS.

Under the publish / subscribe paradigm, each event is delivered to each subscriber once
and only once per subscription, and is not typically removed from the channel as a result
of the message being consumed by an individual client.

This section demonstrates how Universal Messaging pub / sub works in C#, and
provides example code snippets for all relevant concepts:

Universal Messaging Developer Guide Version 10.1 186

Enterprise APlIs

Channel Publisher

This example publishes events onto a Universal Messaging Channel.

Usage

publish <rname> <channel name> [count] [size]
<Required Arguments>
<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Transactional Channel Publisher

This example publishes events transactionally to a Universal Messaging Channel. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been committed successfully.

Usage

txpublish <rname> <channel name> [count] [size] [tx size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

[tx size] - The number of events per transaction (default: 1)

Application Source Code

See the online documentation for a code example.

Asynchronous Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel. See also: " Synchronous Subscription” on page 188

Usage

subscriber <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Universal Messaging Developer Guide Version 10.1 187

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Synchronous Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel. See also: " Asynchronous Subscription” on page 187

Usage

channeliterator <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Asynchronous Named Channel Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Channel using a named object.

Usage

namedsubscriber <rname> <channel name> [name] [start eid] [debug] [count] [auto ack]
[cluster wide] [persistent] [selector] [priority]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<channel name> - Channel name parameter for the channel to subscribe to

[Optional Arguments]

[name] - Specifies the unique name to be used for a named subscription
(default: OS username)

[start eid] - The Event ID to start subscribing from if the named subscriber
needs to be created (doesn't exist)

[debug] - The level of output from each event,
0 - none, 1 - summary, 2 - EIDs, 3 - All

[count] - The number of events to wait before printing out summary information
(default: 1000)

[auto ack] - Specifies whether each event will be automatically acknowledged by
the api (default: true)

[cluster wide] - Specifies whether the named object is to be used across a cluster
(default: false)

[persistent] - Specifies whether the named object state is to be stored to disk or
held in server memory (default: false)

[selector] - The event filter string to use

[priority] - Whether priority is enabled for this named subscriber

(default: false)

Universal Messaging Developer Guide Version 10.1 188

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Synchronous Named Channel Consumer

This example shows how to synchronously consume events from a Universal Messaging
Channel using a named object and a channel iterator.

Usage

namedchanneliterator <rname> <channel name> [name] [start eid] [debug] [count]

[cluster wide] [persistent] [selector]
<Required Arguments>
<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[name] - Specifies the unique name to be used for a named subscription
(default: OS username)

[start eid] - The Event ID to start subscribing from if name subscriber is to be
created (doesn't already exist)

[debug] - The level of output from each event,
0 - none, 1 - summary, 2 - EIDs, 3 - All

[count] - The number of events to wait for before printing out summary
information (default: 1000)

[cluster wide] - Specifies whether the named object is to be used across a cluster
(default: false)

[persistent] - Specifies whether the named object state is to be stored to disk or
held in server memory (default: false)

[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Event Delta Delivery

This example shows how to deliver only changed keys within events, as opposed to
entire events.

Usage

RegisteredEvent <rname> <channel name> [count] [size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to publish to
[Optional Arguments]

[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Batching Server Calls

This example shows how to find multiple channels and queues in one call to the server.

Universal Messaging Developer Guide Version 10.1 189

Enterprise APlIs

Usage

findChannelsAndQueues <RNAME> <name> <name> <name>.....
<Required Arguments>

<RNAME> - The RNAME of the realm you wish to connect to
<name> - The name (s) of the channels to find

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Batching Subscribe Calls

This example of batching shows how to subscribe to multiple Universal Messaging
Channels in one server call.

Usage

sessionsubscriber <rname> <channel name> [start eid] [debug] [count] [selector]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<channel name> - Folder name parameter for the location of the channels to subscribe to
[Optional Arguments]

[start eid] - The Event ID to start subscribing from

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information
[selector] - The event filter string to use

Application Source Code

See the online documentation for a code example.

Publish / Subscribe using Datastreams and Datagroups

DataStream Listener
This example shows how to initialise a session with a DataStream listener and start

receiving data.

Usage

DataGroupListener <rname> [debug] [count]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

DataGroup Publishing with Conflation

This example shows how to publish to DataGroups, with optional conflation.

Universal Messaging Developer Guide Version 10.1 190

Enterprise APlIs

Usage

DataGroupPublish <rname> <group name> <conflate> [count] [size]
[conflation merge or drop] [conflation interval]
<Required Arguments>
<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<group name> - Data group name parameter to publish to
<conflate> - enable conflation true or false
[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

[conflation merge or drop] - merge to enable merge or drop to enable drop
(default: merge)

[conflation interval] - the interval for conflation to publish(default: 500

Application Source Code

See the online documentation for a code example.

DataGroup Manager

This is an example of how to run a DataGroup manager application

Usage

dataGroupsManager <rname> <Properties File Location>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<Properties File Location Data Groups> - The location of the property file to use for
mapping data groups to data groups

<Properties File Location Data Streams> - The location of the property file to use for
mapping data streams to data groups

<Auto Recreate Data Groups> - True or False to auto recreate data groups takes the
data group property file and creates channels
a group for every name mentioned on the left of equals sign

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Delete DataGroup

This is a simple example of how to delete a DataGroup

Usage

deleteDataGroups <RNAME> <data group name> [delete type]
<Required Arguments>
<RNAME> - RNAME for the realm to connect to

<data group name> - Data group name parameter to delete

<Optional Arguments>

[Delete Type] - Data group delete by string(l) or object(2) default:l
Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 191

Enterprise APlIs

DataGroup Delta Delivery

This example shows how to use delta delivery with DataGroups.

Usage

DataGroupDeltaDelivery <rname> [count]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<Optional Arguments>

<count> - the number of times to commit the registered events - default : 10

Application Source Code

See the online documentation for a code example.

Message Queues

Queue Publisher

This example publishes events onto a Universal Messaging Queue.

Usage

pushg <rname> <queue name> [count] [size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name parameter for the queue to publish to

[Optional Arguments]

[count] -The number of events to publish (default: 10)
[size] - The size (bytes) of the event to publish (default: 100)

Application Source Code

See the online documentation for a code example.

Transactional Queue Publisher

This example publishes events transactionally to a Universal Messaging Queue. A
Universal Messaging transaction can contain one or more events. The events which
make up the transaction are only made available by the Universal Messaging server if
the entire transaction has been committed successfully.

Usage

txpushg <rname> <queue name> [count] [size] [tx size]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name parameter for the queue to publish to

[Optional Arguments]

[count] -The number of events to publish (default: 10)

[size] - The size (bytes) of the event to publish (default: 100)

[tx size] - The number of events per transaction (default: 1)

Universal Messaging Developer Guide Version 10.1 192

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Asynchronous Queue Consumer

This example shows how to asynchronously subscribe to events on a Universal
Messaging Queue. See also: " Synchronous Queue Subscription” on page 193

Usage

gsubscriber <rname> <queue name> [debug] [transactional] [selecter] [count]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name parameter for the queue to pop from

[Optional Arguments]

[debug] - The level of output from each event,
0 - none, 1 - summary, 2 - EIDs, 3 - All
[transactional] - true / false whether the subscriber is transactional, if true,
each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Synchronous Queue Consumer

This example shows how to synchronously consume events from a Universal Messaging
Queue. See also: " Asynchronous Queue Subscription” on page 193

Usage

greader <rname> <queue name> [debug] [timeout] [transactional] [selecter] [count]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name to pop from

[Optional Arguments]

[debug] - The level of output from each event,
0 - none, 1 - summary, 2 - EIDs, 3 - All
[timeout] - The timeout for the synchronous pop call
[transactional] - true / false whether the subscriber is transactional,
if true, each event consumed will be ack'd to confirm receipt
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Peek Events on a Queue

Consume events from a Universal Messaging Queue in a non-destructive manner

Usage

gpeek <rname> <queue name> [debug] [selecter] [count]

Universal Messaging Developer Guide Version 10.1 193

Enterprise APlIs

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<gueue name> - Queue name on which to peek

[Optional Arguments]

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All
[selector] - The event filter string to use
[count] - The number of events to wait before printing out summary information

Application Source Code

See the online documentation for a code example.

Requester - Request/Response

This example shows how to request a response in a request/response fashion.

Usage

request <channel name>

<Required Arguments>

<request queue> - Queue onto which request are published

<response queue> - Queue onto which responses are published

<channel name> - Channel name parameter for the channel to subscribe to
<tag> - the tag to identify this requester by.

[Optional Arguments]

[asynchronous] - Whether to use asynchronous producing and consuming
- true/false, default false.

[transactional] - Whether to use transactional production and consumption of events
- true/false, default false.

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Responder - Request/Response

This example shows how to respond to a request in performed in a request/response
fashion.

Usage

response <channel name>

<Required Arguments>

<request queue> - Queue onto which request are published

<response queue> - Queue onto which responses are published

<channel name> - Channel name parameter for the channel to subscribe to
[Optional Arguments]

[asynchronous] - Whether to use asynchronous producing and consuming
- true/false, default false.

[transactional] - Whether to use transactional production and consumption of events
- true/false, default false.

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 194

Enterprise APlIs

MyChannels.Nirvana API

MyChannels.Nirvana DataGroup Publisher

This example shows how to create a DataGroup Publisher using the
MyChannels.Nirvana APL

Application Source Code

See the online documentation for a code example.

MyChannels.Nirvana Queue Publisher

This example shows how to create a Queue Publisher using the MyChannels.Nirvana
APIL

Application Source Code

See the online documentation for a code example.

MyChannels.Nirvana Topic Publisher

This example shows how to create a Topic Subscriber using the MyChannels.Nirvana
APL

Application Source Code

See the online documentation for a code example.

MyChannels.Nirvana DataGroup Listener

This example shows how to create a DataGroup Listener using the MyChannels.Nirvana
APIL

Application Source Code

See the online documentation for a code example.

MyChannels.Nirvana Queue Consumer

This example shows how to create a Queue Consumer using the MyChannels.Nirvana
APL

Application Source Code

See the online documentation for a code example.

MyChannels.Nirvana Topic Subscriber

This example shows how to create a Topic Subscriber using the MyChannels.Nirvana
APIL

Universal Messaging Developer Guide Version 10.1 195

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

RX Topic Subscriber

This example shows how to create a Topic Subscriber using the Universal Messaging
Reactive library.

Application Source Code

See the online documentation for a code example.

RX Queue Consumer

This example shows how to create a Queue Consumer using the Universal Messaging
Reactive library.

Application Source Code

See the online documentation for a code example.

RX DataGroup Listener

This example shows how to create a DataGroup Listener using the Universal Messaging
Reactive library.

Application Source Code

See the online documentation for a code example.

Administration API

Add a Queue ACL Entry

This example demonstrates how to add an ACL entry to a Universal Messaging Queue.

Usage

naddqueueacl <rname> <user> <host> <queue name> [list acl] [modify acl] [full] [peek]
[push] [purge] [pop]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<user> - User name parameter for the queue to add the ACL entry to

<host> - Host name parameter for the queue to add the ACL entry to

<queue name> - Queue name parameter for the queue to add the ACL entry to

[Optional Arguments]

[list acl] - Specifies that the list acl permission should be added
[modify acl] - Specifies that the modify acl permission should be added
[full] - Specifies that the full permission should be added

[peek] - Specifies that the peak permission should be added

[push] - Specifies that the push permission should be added

[purge] - Specifies that the purge permission should be added

[pop] - Specifies that the pop permission should be added

Universal Messaging Developer Guide Version 10.1 196

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Modify a Channel ACL Entry

This example demonstrates how to modify the permissions of an ACL entry on a
Universal Messaging Channel.

Usage

nchangechanacl <rname> <user> <host> <channel name> [+/—list_acl] [+/—modify_acl]
[+/-full] [+/-last eid] [+/-read] [+/-write] [+/-purge] [+/-named] [+/-all perms]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<user> - User name parameter for the channel to change the ACL entry for

<host> - Host name parameter for the channel to change the ACL entry for

<channel name> - Channel name parameter for the channel to change the ACL entry for

[Optional Arguments]

[+/-]1 - Prepending + or - specifies whether to add or remove a permission

[list acl] - Specifies that the list acl permission should be added/removed

[modify acl] - Specifies that the modify acl permission should be added/removed
[full] - Specifies that the full permission should be added/removed

[last_eid] - Specifies that the get last EID permission should be added/removed
[read] - Specifies that the read permission should be added/removed

[write] - Specifies that the write permission should be added/removed

[purge] - Specifies that the purge permission should be added/removed

[named] - Specifies that the used named subscriber permission should be added/removed
[all perms] - Specifies that all permissions should be added/removed

Application Source Code

See the online documentation for a code example.

Delete a Realm ACL Entry

This example demonstrates how to delete an ACL entry from a realm on a Universal
Messaging Channel.

Usage

ndelrealmacl <rname> <user> <host> [-r]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<user> - User name parameter to delete the realm ACL entry from

<host> - Host name parameter to delete the realm ACL entry from

[Optional Arguments]

[-r] - Specifies whether recursive traversal of the namespace should be done

Application Source Code

See the online documentation for a code example.

Monitor realms for client connections coming and going

This example demonstrates how to monitor for connections to the realm and its
channels.

Universal Messaging Developer Guide Version 10.1 197

Enterprise APlIs

Usage

nconnectionwatch <rname>
<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

Application Source Code

See the online documentation for a code example.

Export a realm to XML

This example demonstrates how to export a realm's cluster, joins, security, channels /
queues, scheduling, interfaces / plugins and configuration information to an XML file so
that it can be imported into any other realm.

Usage

nexportrealmxml <rname> <export file location>
<Optional Arguments> -all -realms -cluster -realmacl -realmcfg -channels -channeacls
-joins —-gqueues -queueacls -interfaces -plugins -via

Application Source Code

See the online documentation for a code example.

Import a realm's configuration information
This example demonstrates how to import a realm's cluster, joins, security, channels /

queues, scheduling, interfaces / plugins and configuration information from an XML file.

Usage

nimportrealmxml <rname> <file name>
<Optional Arguments> -all -realmacl -realmcfg -channels -channeacls -queues
-queueacls -interfaces

Application Source Code

See the online documentation for a code example.

Console-based Realm Monitor

This example demonstrates how to monitor live realm status.

Usage

nTop <rname> [refreshRate]

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

[Optional Arguments]

[refreshRate] - the rate at which the information is reloaded on screen (milliseconds)

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 198

Enterprise APlIs

Simple authentication server

This demonstrates how to set security permissions when connection attempts are made
on the realm.

Application Source Code

See the online documentation for a code example.

Set Container ACL
Set the ACL of a container to that currently applied to a specified channel.

Usage

nsetcontaineracl <channel name> <container name>
<Required Arguments>
<rname> - name of the realm to connect to.

<channel name> - channel name parameter used to obtaine the ACL to set the container
nodes to");

<container name> - Container name parameter for the container to set the ACL to");

Note: -? provides help on environment variables

Application Source Code

*

PCB Systems Limited License Version 1.1
Copyright PCB Systems Limited. All rights reserved

In the event that you should download or otherwise use this software
(the "Software") you hereby acknowledge and agree that:

1. The Software is the property of PCB Systems Limited: Title, Copyright and all
other proprietary rights, interest and benefit in and to the Software is and
shall be owned by PCB Systems Limited;

2. You will not make copies of the Software whatsoever other than, if you should
so wish, a single copy for archival purposes only;

3. You will not modify, reverse assemble, decompile, reverse engineer or otherwise
translate the Software;

4. You will not redistribute, copy, forward electronically or circulate the Software
to any person for any purpose whatsoever without the prior written consent of
PCB Systems Limited;

5. You will not charge for, market or provide any managed service or product that
is based upon or includes the Software or any variant of it; and

6. You will not use the Software for any purpose apart from your own personal,
noncommercial and lawful use;

You hereby agree that the software is used by you on an "as is" basis, without
warranty of any kind. PCB Systems Limited hereby expressly disclaim all warranties
and conditions, either expressed or implied, including but not limited to any
implied warranties or conditions or merchantability and fitness for a particular
purpose.

LR T N e e e e N N S S e e N I I . N S T

Universal Messaging Developer Guide Version 10.1 199

Enterprise APlIs

You agree that you are solely responsible for determining the appropriateness of
using the Software and assume all risks associated with it including but not
limited to the risks of program errors, damage to or loss of of data, programs or
equipment and unavailability or interruption of operations.

PCB Systems Limited will not be liable for any direct damages or for any, special,
incidental or indirect damages or for any economic consequential damages (including
lost profits or savings), or any damage howsoever arising.

/

namespace com.pcbsys.nirvana.nAdminAPT

{

Ok X o X ok oF ok % X

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Threading;

using System.Collections;

using com.pcbsys.nirvana.client;
class setContainerACL

{

/**
* Private variables used in this application
*/

private String name = null;

private String host = null;
private nSessionAttributes attr = null;
private String containerName = null;
private String channelName = null;
private nRealmNode node = null;
private nLeafNode leaf = null;
private nACL acl = null;
private String rname = null;
/**
* Consruct and instance of this class using the command line arguments passed
* when it is executed.
*)
public setContainerACL(String[] args) {
//Process command line arguments
processArgs (args) ;
try {
Console.WritelLine("Connecting to " + rname);
// construct the session attributes from the realm
attr = new nSessionAttributes(rname);
// get the root realm node from the realm admin
node = new nRealmNode (attr);
if (!node.isAuthorised()) {
Console.WriteLine ("User not authorised on this node "+attr);
return;
}
// wait for the entire node namespace to be constructed
Console.WritelLine("waiting for namepsace construction..... Wohe
node.wailtForEntireNameSpace () ;
Console.WriteLine("finished");
leaf = (nLeafNode)node.findNode (channelName) ;
if (leaf !'= null) {
acl = leaf.getACLs();
searchNode (node) ;
} else {
Console.WriteLine ("Cannot find leaf node "+channelName) ;
}
node.close () ;
} catch (Exception e) {

Universal Messaging Developer Guide Version 10.1 200

Enterprise APlIs

Console.WriteLine (e.StackTrace) ;
}
}
/**
* recursively search through the realm node looking for channel nodes
*/

public void setContainer (nContainer p node) {

try {
// set the acl for the container nodes
Console.WritelLine ("~~~~~~~~vmnanvnvnnvnvnnvcnacnnvnv~v v L
Console.WriteLine("Applying acl to container node " + p node.getAbsolutePath());

// set the acl on the container
p_node.setACL (acl) ;
Console.WritelLine("~~~~~n~vn~vnnvn~vnnvn~vn~vnsv v) ;
} catch (Exception e) {
Console.WriteLine (e.StackTrace) ;
}
}

/**
* search the enumeration of child nodes for other realms and containers
=/
private void searchNodes (nContainer p node, System.Collections.IEnumerator enuml) {
while (enuml.MoveNext ()) {
Object obj = enuml.Current;

if (obj is nRealmNode) {
searchNode ((nRealmNode)obj);

} else if (obj is nContainer) {
nContainer cont = (nContainer)obj;
String fullyQualifiedName = cont.getAbsolutePath() ;
if (fullyQualifiedName.Equals (containerName)) {

Console.WritelLine ("Found container "+fullyQualifiedName) ;
setContainer (cont);

} else {
searchNodes (cont, cont.getNodes()) ;

}

}

}
}

/**
* Search the children of the realm passed as a paremeter
*/

private void searchNode (nRealmNode p node) {
try {

searchNodes (p _node, p node.getNodes());
}
catch (Exception ex) {
Console.Writeline (ex.StackTrace) ;
}
}
J**
* If you construct an instance of this class from another class, you can set the name
* and host for the subject.
*/
public void setSubject (String p name, String p host) {
name = p name;
host = p host;
}

/**
* Set the program variables and permissions flags based on command line args
*/
private void processArgs (String[] args) {
if (args.Length != 3) {
Usage () ;

Universal Messaging Developer Guide Version 10.1 201

Enterprise APlIs

Environment.Exit (1) ;

}
switch (args.Length) {

case 3:
channelName = args[2];
goto case 2;
case 2:
containerName = args[l];
goto case 1;
case 1:
rname = args[0];
break;
}
}
/* *
* Run this as a command line program passing the command line args.
*
* Or construct one of these classes from another class ensuring you have added
*
53 RNAME
& CHANNEL
&3 CONTAINER
*
* as system properties, and pass in a list of permissions in the constructor
*
*/
public static void Main(String[] args) {
setContainerACL setAcl = new setContainerACL (args) ;

Environment.Exit (0) ;

}

/**
* Prints the usage message for this class
%

private static void Usage () {
Console.WriteLine("Usage ...\n");

Console.WritelLine ("nsetcontaineracl <channel name> <container name> \n");
Console.WriteLine (

"<Required Arguments> \n");
Console.WriteLine (

"<rname> - name of the realm to connect to.");
Console.Writeline ("<channel name> - channel name parameter used to obtain ");
Console.WriteLine (" the ACL to set the container nodes to");
Console.WritelLine ("<container name> - Container name parameter for the ");
Console.WriteLine (" container to set the ACL to");
Console.WriteLine (

"\n\nNote: -? provides help on environment variables \n");

}
private static void UsageEnv () {
Console.WriteLine (
"\n\n (Environment Variables) \n");
Console.WriteLine (
" (RNAME) - One or more RNAME entries in the form protocol://host:port");
Console.WritelLine (

" protocol - Can be one of nsp, nhp, nsps, or nhps, where:");
Console.WriteLine (
" nsp - Specifies Universal Messaging Socket Protocol (nsp)"):;

Console.WriteLine (
" nhp - Specifies Universal Messaging HTTP Protocol (nhp)");

Console.WriteLine (" nsps - Specifies Universal Messaging Socket Protocol ");
Console.WriteLine (" Secure (nsps), i.e. using SSL/TLS");
Console.WriteLine (" nhps - Specifies Universal Messaging HTTP Protocol ");
Console.WriteLine (" Secure (nhps), i.e. using SSL/TLS");

(

Console.WriteLine

Universal Messaging Developer Guide Version 10.1 202

Enterprise APlIs

" port - The port number of the server");

Console.WriteLine ("\nHint: - For multiple RNAME entries, use comma separated ");

" values which will be attempted in connection ");
W weight order\n");

Console.WriteLine
Console.WriteLine

Console.WritelLine (" (LOGLEVEL) - This determines how much information the nirvana
Console.WriteLine (" api will output 0 = verbose 7 = quiet\n");
Console.WriteLine (" containing the client cert\n");
Console.WriteLine (" (CKEYSTOREPASSWD) - If using SSL, the password for the");

Console.WriteLine (" keystore containing the client cert\n");
Console.WriteLine

" (CAKEYSTORE) - If using SSL, the location of the ca truststore\n");
Console.WriteLine (

" (CAKEYSTOREPASSWD) - If using SSL, the password for the ca truststore\n");
Console.WriteLine (

" (HPROXY) - HTTP Proxy details in the form proxyhost:proxyport, where:");
Console.WriteLine (

" proxyhost - The HTTP proxy host");
Console.WriteLine (

" proxyport - The HTTP proxy port\n");
Console.WriteLine (

" (HAUTH) - HTTP Proxy authentication details in the form user:pass, where:");
Console.WriteLine (

" user - The HTTP proxy authentication username");
Console.WriteLine (

" pass - The HTTP proxy authentication password\n");
Environment.Exit (1) ;

(
(
(
(
Console.WriteLine (" (CKEYSTORE) - If using SSL, the location of the keystore ");
(
(
(
(

Difference between 2 realms

Output all the differences between two realms.

Usage

nDiff <realml> <realm2>

[Required Arguments]

<realml> - the RNAME of a the first realm to compare
<realm2> - the RNAME of a the second realm to compare

Application Source Code

See the online documentation for a code example.

Channel / Queue / Realm Management

Creating a Channel

Output all the differences between two realms.

Usage

makechan <rname> <channel name> [time to live] [capacity] [type] [cluster wide]
[start eid]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<channel name> - Channel name parameter for the channel to be created

[Optional Arguments]

Universal Messaging Developer Guide Version 10.1 203

);

Enterprise APlIs

[time to live] - The Time To Live parameter for the new channel (default: O0)

[capacity] - The Capacity parameter for the new channel (default: 0)

[type] - The type parameter for the new channel (default: S)

R - For a reliable (stored in memory) channel with persistent eids

P - For a persistent (stored on disk) channel

S - For a simple (stored in memory) channel with non-persistent eids

T - For a transient (no server based storage)

M - For a Mixed (allows both memory and persistent events) channel

[cluster wide] - Whether the channel is cluster wide. Will only work if the realm
is part of a cluster (default: false)

[start eid] - The initial start event id for the new channel (default: 0)

Application Source Code

See the online documentation for a code example.

Deleting a Channel

Output all the differences between two realms.

Usage

deletechan <rname> <channel name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<channel name> - Channel name parameter for the channel to delete

Application Source Code

See the online documentation for a code example.

Creating a Queue

This example demonstrates how to create a Universal Messaging queue
programmatically.

Usage

makequeue <rname> <queue name> [time to live] [capacity] [type] [cluster wide] [start eid]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<queue name> - queue name parameter for the queue to be created

[Optional Arguments]

[time to live] - The Time To Live parameter for the new queue (default: 0)

[capacity] - The Capacity parameter for the new queue (default: 0)

[type] - The type parameter for the new queue (default: S)

R - For a reliable (stored in memory) queue with persistent eids

P - For a persistent (stored on disk) queue

S - For a simple (stored in memory) queue with non-persistent eids

T - For a transient (no server based storage)

M - For a Mixed (allows both memory and persistent events) queue

[cluster wide] - Whether the queue is cluster wide. Will only work if the realm is part
of a cluster (default: false)

[start eid] - The initial start event id for the new queue (default: 0)

Application Source Code

See the online documentation for a code example.

Universal Messaging Developer Guide Version 10.1 204

Enterprise APlIs

Deleting a Queue

This example demonstrates how to delete a Universal Messaging queue
programmatically.

Usage

deletequeue <rname> <queue name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<queue name> - queue name parameter for the queue to delete

Application Source Code

See the online documentation for a code example.

Create Channel Join

Create a join between two Universal Messaging Channels.

Usage

makechanneljoin <rname> <source channel name> <destination channel name> [max hops]
[selector] [allow purge]

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<source channel name> - Channel name parameter of the local channel name to join

<destination channel name> - Channel name parameter of the remote channel name to join

[Optional Arguments]

[max hops] - The maximum number of join hops a message can travel through
[selector] - The event filter string to use on messages travelling through this join
[allow purge] - boolean to specify whether purging is allowed (default : true)

Application Source Code

See the online documentation for a code example.

Delete a Channel Join

Create a join between two Universal Messaging Channels

Usage

deletechanneljoin <rname> <source channel name> <destination channel name>

<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<source channel name> - Channel name parameter of the local channel name to join
<destination channel name> - Channel name parameter of the remote channel name to join

Application Source Code

See the online documentation for a code example.

Multiplex a Session

Multiplex two Universal Messaging sessions over one channel.

Universal Messaging Developer Guide Version 10.1 205

Enterprise APlIs

Usage

multiplex <channel name> [start eid] [debug] [count] [selector]

<Required Arguments>

<channel name> - Channel name parameter for the channel to subscribe to");
[Optional Arguments]

[start eid] - The Event ID to start subscribing from");

[debug] - The level of output from each event, 0 - none, 1 - summary, 2 - EIDs, 3 - All");
[count] - The number of events to wait before printing out summary information

[selector] - The event filter string to use

Note: -? provides help on environment variables

Application Source Code

See the online documentation for a code example.

Purge Events From a Channel

Delete all events from a Universal Messaging Channel

Usage

purgeevents <rname> <channel name> <start eid> <end eid> [filter]
<Required Arguments>

<rname> - The realm to retrieve channels from

<channel name> - Channel name parameter for the channel to be purged
<start eid> - The start eid of the range of events to be purged

<end eid> - The end eid of the range of events to be purged
[Optional Arguments]

[filter] - The filter string to use for the purge

Application Source Code

See the online documentation for a code example.

Create Queue Join

Create a join between a Universal Messaging Queue and a Universal Messaging Channel

Usage

makequeuejoin <rname> <source channel name> <destination queue name> [max hops] [selector]
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000

<source channel name> - Channel name parameter of the local channel name to join
<destination gqueue name> - Queue name parameter of the remote queue name to join

[Optional Arguments]

[max hops] - The maximum number of join hops a message can travel through

[selector] - The event filter string to use on messages travelling through this join

Application Source Code

See the online documentation for a code example.

Delete Queue Join

Delete a join between a Universal Messaging Queue and a Universal Messaging Channel

Universal Messaging Developer Guide Version 10.1 206

Enterprise APlIs

Usage

deletequeuejoin <rname> <source channel name> <destination queue name>
<Required Arguments>

<rname> - the custom URL to access the realm. Example: nhp://localhost:9000
<source channel name> - Channel name parameter of the local channel name to join
<destination gqueue name> - Queue name parameter of the remote queue name to join

Application Source Code

See the online documentation for a code example.

Prerequisites

C# Prerequisites

This section gives information on what is required to get started using the C# API for
Universal Messaging. The C# API for Universal Messaging is available in 2 different
DLL distributions. The first is for developing Native Windows Applications ("Nirvana
DotNet.dll"), and the second is compatible with Microsoft Silverlight applications
("Nirvana Silverlight.dll"). In both cases, the Client API is exactly the same.

Universal Messaging .NET

Universal Messaging .Net requires Microsoft .Net Framework, which you can download
from the Microsoft Download website at http://www.microsoft.com/downloads/.

The .NET installer will automatically set up the environment such that C# applications
can be compiled and run natively on Microsoft Windows. Please see the Environment
Setup section below for information on how to compile and run applications using the
Universal Messaging C#.NET API.

Universal Messaging Silverlight

For a client to run a Universal Messaging Silverlight application, Microsoft Silverlight
must be installed. You can download this from http://www.microsoft.com/silverlight/
get-started/install/.

SSL

To subscribe to a channel using an SSL interface, extra requirements must be met.
Universal Messaging C# supports client certificate authentication as well as anonymous
SSL. For client certificate authentication, the location of the client certificate and

private key password, as well as the trust store must be known to the application. For
instructions on how to run Universal Messaging C# applications using an SSL enabled
interface, please see Client SSL.

Universal Messaging Developer Guide Version 10.1 207

http://www.microsoft.com/downloads/
http://www.microsoft.com/silverlight/get-started/install/
http://www.microsoft.com/silverlight/get-started/install/

Enterprise APlIs

Environment Setup

Compilation

It is recommended that you use Microsoft Visual Studio to compile Universal Messaging
C# applications. Visual Studio will set up the required environment for compiling C#
applications. However to make use of the Universal Messaging APIs, the location of the
Universal Messaging libraries will need to be referenced such that they can be found by
the compiler.

The libraries can be found in the dotnet\bin directory. For native Windows applications
the "Nirvana DotNet.dll" library is required and for Silverlight applications the "Nirvana
Silverlight.dll" is required.

Runtime

The Universal Messaging DLLs used to compile C# applications are unlike C++ in

that these libraries are used both at compile time and at runtime. At compile time,

the location of the library is specified as a reference such that it can be used by the
compiler. At runtime this library is looked for in the same directory as the executable.
For information on how to run an application without the DLL in the same directory, see
Globally Accessible DLLs.

Sample Applications

The dotnet\bin directory of the Universal Messaging download contains precompiled
sample applications for Universal Messaging C#.Net. These applications can be run on a
PC running Microsoft Windows which has .NET installed as described above.

The source code for each application can be found in dotnet\examples along with a
batch file which can be used to compile the application:

> cd C:\SoftwareAG\UniversalMessaging\dotnet\examples\channeliterator
> builddotnetsampleapp.bat channeliterator

This will compile the channeliterator sample application and place the executable in the
dotnet\bin directory.

C# Client SSL Configuration

Universal Messaging fully supports SSL Encryption. This section describes how to use
SSL in your Universal Messaging C# client applications.

Once you have created an SSL enabled interface you will need to create certificates

for the server and client (if using client certificate authentication). The Universal
Messaging download contains a generator to create some example Java key store files
to be used by the Universal Messaging server but may also be converted to Public-Key
Cryptography Standards (PKCS) files for use with a Universal Messaging C# client. To
convert from .jks to .p12 you can use keytool.exe (supplied with java). The command to
do so is shown below:

keytool -importkeystore -srckeystore client.jks -destkeystore client.pl2
-srcstoretype JKS -deststoretype PKCS12

Universal Messaging Developer Guide Version 10.1 208

Enterprise APlIs

Please refer to this guide to create your own client certificates. However please
remember that in order to run a Universal Messaging C# client, the certificate provided
must be in PKCS format.

Running a Universal Messaging C# Client

A client can use anonymous SSL, but when the Universal Messaging SSL interface is
configured for client validation, only trusted clients can connect with a valid certificate.
To enable or disable client certificate validation at the realm server, you can use the
Universal Messaging Enterprise Manager. Highlight the SSL enabled interface in the
"Interface" tab for your realm then open the "Certificates" tab and check or uncheck

the box labelled "Enable Client Cert Validation". Hit the Apply button, and restart the
interface.

When client certificate validation is enabled, the client is required to have a certificate
so that the server can validate the client. If the server certificate is self signed (as the
certificates created using the generator are), the client must also have a trust store to
validate the server certificate.

The location of the key stores and the relevant passwords need to be specified in
nConstants. This can be done by adding the client certificate and trust store to the
windows certificate store. The location of the client certificate can also be set by setting
the certificate property (defined in nConstants) in the application code or by setting
CERTPATH (the location of the certificate) and CERTPASS (the private key password) as
environment variables. For more information, see SSL Concepts.

Adding Certificates to the Windows Certificate Store

The default password for the certificates created using the generator is "nirvana".

To add the client certificate:

® Open the Start menu, click on Run and enter "certmgr.msc".

® In the new window, expand the "Personal” folder and right click on the "Certificates"
folder.

m Select "All Tasks->Import..."

® Follow the Instructions and import the client certificate (client.p12)
To add the trust store:

B Open the Start menu, click on Run and enter "certmgr.msc".

® Inthe new window, expand the "Trusted Root Certification Authorities" folder and
right click on the "Certificates" folder.

m Select "All Tasks->Import..."
m Follow the Instructions and import the trust store (nirvanacacerts.p12)

You will now be able to connect to a realm using nsps and nhps.

Universal Messaging Developer Guide Version 10.1 209

Enterprise APlIs

Globally Accessible DLLs

By default, C# applications require any user created DLLs to be present in the same
directory as the application. As DLLs are typically shared by multiple applications, it
may be necessary for the DLL to be placed in a globally accessible location. To do this in
C# you need to add the DLL file to the Global Assembly Cache (GAC).

Strong-Named Assemblies

Before a DLL can be added to the GAC, it must be given a strong-same. This procedure
aims to protect the user from corrupted DLLs. As DLLs are linked at runtime, it would
be possible for someone to build a new version of the DLL but add malicious code. The
user application would have no way of telling that this is not the correct DLL and would
run the malicious code. GAC and strong-named assemblies protect against this, for more
information see Strong-Named Assemblies on the Microsoft website.

Creating a Strong-Named Assembly

The C# DLLs in the Universal Messaging download have already been given strong-
names so this section is not required to make the Universal Messaging DLLs globally
accessible.

1. Either open a .NET command prompt or open a standard command prompt and
run vsvars32.bat which is located in "C:\Program Files\ Microsoft Visual Studio
9.0\ Common?\Tools". Which will set up the required environment.

2. Navigate to a directory where you want to store the keyfile and run the following
command:
C:\myarea\folder\> sn -k keyfile.snk

This will create a keyfile which contains a pair of private and public keys which can
be used to protect your DLLs.

3. Now you need to edit the AssemblyInfo.cs file for the project used to create the DLL
by adding the following code:

[assembly:AssemblyKeyFile (@"C:\myarea\folder\keyfile.snk")]

4. Now when you build the DLL as usual it will be given a strong-name but will not be
globally accessible until added to GAC.

Adding Strong-Named Assembly to GAC

1. Either open a .NET command prompt or open a standard command prompt and
run vsvars32.bat which is located in "C:\ Program Files\ Microsoft Visual Studio
9.0\ Common?\Tools". Which will set up the required environment.

2. In this prompt execute gacutil as shown below:

C:\myarea\folder\> gacutil /i mylib.DLL

Universal Messaging Developer Guide Version 10.1 210

http://msdn.microsoft.com/en-us/library/wd40t7ad.aspx

Enterprise APlIs

The DLL will now be globally accessible on the system. The C#.NET sample applications
in the download use the "Nirvana Dotnet.DLL" library and "nSampleApp.DLL", both
have been given strong-names so can be added to GAC using gacutil as described above.

NOTE: to remove an assembly from the cache execute "gacutil /u mylib", the file
extension is not required.

Messaging API

MyChannels.Nirvana API: Creating and Disposing of a Session

Creating a session is extremely simple with the C# .NET MyChannels.Nirvana
API. Simply create a new Session object with the desired RNAME, then call the
Session.Initialize() method.

String RNAME = "nsp://127.0.0.1:9000";
Session session = new Session (RNAME) ;
session.Initialize();

DataGroups can be enabled on a session by setting the DataGroups.Enable flag, as
shown below, before the call to Initialize() is made.

session.DataGroups.Enable = true;

To end a session, call the Session.Dispose() method.

session.Dispose () ;

Session Events

®m AsynchronousExceptionRaised - fired when an asynchronous exception is thrown by the
session

m ConnectionStatusChanged - fired when the connection status changes, for example when
the connection is lost.

MyChannels.Nirvana API: Producers

The sending of messages is exposed via the Producers feature, simplifying the message
sending process across Topics, Queues and DataGroups by using an identical procedure
for each.

Firstly, a Producer is created of the appropriate type, passing in the name of the
DataGroup, Topic or Queue. Examples are included below for each of the three
mechanisms. Obviously, in order to use DataGroups, they must first be enabled by
setting the Session.DataGroups.Enable flag to true before initializing the session.
IProducer producer

IProducer producer
IProducer producer

session.DataGroups.CreateProducer ("Groupl") ;
session.Queues.CreateProducer ("Queuel") ;
session.Topics.CreateProducer ("Topicl") ;

In order to send a message, a Message object is first created, as shown below, then
is passed into the Producer's Send() method. The Message constructor has various
overloads to allow the specification of properties, tags and data.

// Creating a Message

Universal Messaging Developer Guide Version 10.1 211

Enterprise APlIs

string msgContents = "Hello World!";
Message msg = new Message (msgContents, new bytel[] { }));
producer. Send (msg) ;

MyChannels.Nirvana API: Consumers

Consumers are the main means of consuming messages when using the
MyChannels.Nirvana API. They allow simple consumption of messages from both
Topics and Queues. A Consumer is created using the CreateConsumer() method in
either Session.Queues or Session.Topics, depending upon which type of Consumer is
desired.

The Consumer's MessageReceived event is fired whenever a message is received by the
Topic or Queue being consumed. By attaching an appropriate handler, the message can
be dealt with in whatever way is desired.

IConsumer consumer = session.Queues.CreateConsumer ("Queuel");
consumer.MessageReceived += (s, e) => ProcessMessage (e.Message) ;

IConsumer consumer = session.Topics.CreateConsumer ("Topicl");
consumer.MessageReceived += (s, e) => ProcessMessage (e.Message) ;

DataGroups

Consuming messages when using DataGroups is even simpler than when using Topics
or Queues. The Session.DataGroups object itself has a MessageReceived event, which
can be used in the same manner as above to handle incoming messages.

session.DataGroups += (s, e) => ProcessMessage (e.Message) ;

MyChannels.Nirvana API: Reactive Extensions

Reactive Extensions for NET (commonly referred to as "Rx") is a new library currently
under development by Microsoft that aims to allow the development of so-called
"reactive" applications, by exposing the Observer pattern (as seen in C# Multicast
delegates and Events), but in a simpler, more intuitive manner.

Nirvana.Reactive

The Universal Messaging Reactive library for .NET aims to make use of the capabilities
offered by Rx, by allowing the conversion from Universal Messaging objects to
Observable sequences and vice versa.

Currently, the library only supports the conversion from Universal Messaging objects
to Observable sequences, and is designed to work with the MyChannels.Nirvana API.
One main method is included: ToObservable(), which converts the messages from either a
IConsumer (Topics and Queues) or a IDataGroupSession. This means that consuming
messages on a Topic or Queue looks distinctly different from the more conventional
Consumer method.
var consumer = session.Topics.CreateConsumer ("Topicl");
var query = from e in consumer.ToObservable ()

select e.Message;

// Subscribe
query.Subscribe (ProcessMessage) ;

/] ..
public void ProcessMessage (object m)

Universal Messaging Developer Guide Version 10.1 212

http://msdn.microsoft.com/en-us/devlabs/ee794896

Enterprise APlIs

{

Console.WritelLine ("Message: {0}", ((Message)m).Id);

}

This looks somewhat confusing at first glance, but is simple enough when broken
down. The ToObservable() call on the Topic Consumer returns an Observable sequence
of MessageEventArgs, as returned when the MessageReceived event is fired in the
MyChannels.Nirvana API on the Consumer. The query simply filters that sequence to
obtain the Messages from each MessageEventArgs. The Subscribe() method allows a
handling method to be attached to the Observable sequence, just as one would attach
an event handler to an typical event. In this case, the ProcessMessage() method simply
writes the Id of the message received to the console.

DataGroups work in a similar fashion. As DataGroups do not have Consumers in the
manner of Topics and Queues, the ToObservable() method is instead called on the
IDataGroupSession object, returning an Observable sequence which can be manipulated
in an identical fashion.
var query = from e in session.DataGroups.ToObservable ()

select e.Message;

// Subscribe
query.Subscribe (ProcessMessage) ;

Enterprise Developer's Guide for VBA

This guide describes how to develop Microsoft Excel spreadsheets which receive data
in real time and publish events to Universal Messaging Channels using Visual Basic for
Applications (VBA).

Universal Messaging Enterprise Client Development in VBA

B '"Universal Messaging Publish/Subscribe" on page 213

B '"Prerequisites” on page 220

Publish / Subscribe

Publish/Subscribe

The Universal Messaging VBA API allows you to publish and subscribe to Universal
Messaging channels using Microsoft Office products such as Excel. Channels are the
logical rendezvous point for publishers (producers) and subscribers (consumers) of data
(events).

Subscribing Tasks

Subscribing to a Channel

Once you have installed the Universal Messaging RTD server, the server will be
available for use in any Excel spreadsheet on the system. To start subscribing you need

Universal Messaging Developer Guide Version 10.1 213

Enterprise APlIs

to use the RTD function in Excel. The RTD function is used in the same way as any other
Excel function. By entering the function with the correct parameters into a cell, you will
immediately subscribe to the specified channel and receive the value associated with the
specified property contained in the event.

RTD Function

The RTD function is a built in Excel function but the parameters are specific to the
Universal Messaging RTD server. To subscribe to a Universal Messaging channel you
need to use the following structure:

=RTD ("Universal MessagingRTD",,RNAME, Channel, Property,Key,Value,Key2,Value2 ...)

The parameters are explained below:

"Universal MessagingRTD"

This is the CLSID which has been registered for the Universal Messaging RTD server.
By specifying this ID, Excel will lookup the Universal Messaging RTD server in the
Windows Registry.

Second Parameter

The second parameter is left blank because the Universal Messaging RTD server
is installed on the local machine. If it were installed remotely, the server would be
specified here.

RNAME
The RNAME of the realm which the cell should connect to. You may also specify certain
configurations for the session in this field. The RNAME is of the form:

protocol://host:port?property=value&property2=value2. ..
The following properties are available:

B user - this is the username that will be used to connect to the realm

Channel

The name of the Universal Messaging Channel which you wish to connect to. You may
also specify channel specific configuration properties in this field. The Channel field has
the form:

/folder/channelname?property=value&property2=value?...
The following properties are available:

B eid - the eid for which to start subscribing. This value is -1 by default which means
subscription starts from the last eid of the channel (will not receive any events
currently on the channel). -2 will mean the last event published on the channel is
consumed as well as any further events published and hence -3 will mean the last 2
are consumed etc. A positive value will cause mean events from that eid onward are
consumed so 0 means all events on the channel will be consumed.

Universal Messaging Developer Guide Version 10.1 214

Enterprise APlIs

B hwmark - the high water mark for the event queue of the channel. This ensures that
the event queues do not grow too large without dropping any events. For more
information see "Queue watermarks" on page 219.

B lwmark - once the event queue has reached high watermark, no more events will be
added to the event queue. Once the queue length reaches Iwmark (low watermark)
the listener is notified to continue receiving events.

Key, Value

The Universal Messaging RTD server allows you to filter events based on key-value
pairs. Here the value of Property is only shown if the event properties contains each key
and the value associated with that key.

A Universal Messaging Event can contain nEventProperties which themselves can
contain nested nEventProperties. These nested properties are accessed by a key in the
same way as the values are accessed. In order to access the key-value pairs contained
within the inner properties using the RTD server, you should use the syntax shown
below:

...,propsA.Key,value, propsA.propsB.key,value, ...

Here propsA is found inside the main nEventProperties for the nConsumeEvent. Inside
propsA is a set of key-value pairs but also another nEventProperties object called propsB
which itself contains key-value pairs and possibly further nEventProperties.

Publishing Tasks

Creating a Session

To interact with a Universal Messaging Server, the first thing to do is create a Universal
Messaging Session object, which is effectively your logical and physical connection to a
Universal Messaging Realm.

Creating a Universal Messaging Session Object

The VBA code snippet below demonstrates the creation and initialisation of an nSession
object:

Dim nsa As New nSessionAttributes

Call nsa.init ("nsp://127.0.0.1:9000")

Dim fact As New nSessionFactory

Set sess = fact.Create(nsa)
Call sess.init

Finding a Channel

Once the session has been established with the Universal Messaging realm server,
the session object can be used to locate an existing Universal Messaging Channel by
specifying the channel's name.

Note that you can use the Enterprise Manager GUI to create a Universal Messaging
Channel.

Universal Messaging Developer Guide Version 10.1 215

Enterprise APlIs

This VBA code snippet demonstrates how to find a channel (for example /eur/rates):

Dim nca As New nChannelAttributes
Call nca.setName ("/eur/rates")
Set chan = sess.findChannel (nca)

Universal Messaging Events

A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging channel or queue. It is stored by the server and then passed to
consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Universal Messaging Event Dictionary (nEventProperties).

Constructing an Event

In this VBA code snippet, we construct our Universal Messaging Event object, as well
as a Universal Messaging Event Dictionary object (nEventProperties) for our Universal
Messaging Event:

Dim props As New nEventProperties

Call props.put ("examplekey", "hello world")

Dim evt As New nConsumeEvent
Call evt.init 2 (props)

Here the function evt.init_2() is used. The nConsumeEvent class currently has 3 initialise
methods but Excel does not support overloading so renames these methods to init_1
init_2 etc.

Publishing Events to a Channel

Once the session has been established with the Universal Messaging realm server, and
the channel has been located, the channel's publish function can be invoked.

Call chan.publish (evt)

Learn More

Event Properties

A Universal Messaging Event (nConsumeEvent) can contain nEventProperties. This object
contains key-value pairs in a similar way to a hash table and can also support nested
nEventProperties.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's properties.

In this code snippet, we assume we want to publish an event containing a key called
"myKey" with value "myValue"

Dim props As New nEventProperties
Call props.put ("myKey", "myValue")
Dim evt As New nConsumeEvent

Call evt.init 2 (props)

Call myChannel.Publish (evt)

Universal Messaging Developer Guide Version 10.1 216

Enterprise APlIs

The highlighted code shows the creation of the event properties.

Now say we want to add another set of properties within the properties we have
just created. The code below highlight the extra code required to add a nested
nEventProperties.

Dim props As New nEventProperties

Call props.put ("myKey", "myValue")

Dim innerProps As New nEventProperties

Call innerProps.put ("myInnerKey", "myInnerValue")

Call props.put 4 ("myDictName", innerProps)

Dim evt As New nConsumeEvent

Call evt.init 2 (props)

Call myChannel.Publish (evt)

Here you see that the inner nEventProperties is created in exactly the same way and is
then added to the outer nEventProperties in the same way that you would add a key-
value pair with the value being the nEventProperties.

How the RTD Server Works

Excel is a single threaded application which means that asynchronous behavior is
limited. Most asynchronous systems make use of either push or pull methods of receiving
data.

Both of these methods have limitations. Pushing data to Excel when Excel is busy*

wil mean that any events pushed will be dropped as Excel cannot deal with them. If
Excel is required to pull from the server, then because it does not know when the data is
available it will have to continually send requests to the server.

For this reason Excel uses a hybrid of both mechanisms. Once events are received, the
Universal Messaging RTD server will send a notification to Excel to say that data is
available. Excel will then respond to this notification by requesting the RTD server to
send the data. This does however mean that if Excel is busy, although no events will be
dropped, the notification sent to Excel may be ignored. The Universal Messaging RTD
Server deals with this by queueing events internally.

*Excel is said to be busy whenever it is recalculating but also when the user responds to
dialog prompts or enters data into a cell.

Setting the RTD Throttle Interval

Excel Throttle Interval

When Excel receives a notification that new data is available it will only respond if it is
not busy* and if the throttle interval has passed. By default Excel sets a throttle interval
of 2 seconds which means that updates cannot be received faster than every 2 seconds. A
high throttle value does not mean that events will be missed. The Universal Messaging
RTD server queues events and will process the entire queue internally before returning
data to Excel.

*Excel is said to be busy whenever it is recalculating but also when the user responds to
dialog prompts or enters data into a cell.

Universal Messaging Developer Guide Version 10.1 217

Enterprise APlIs

Changing the Excel Throttle Interval

The throttle interval is stored in the Windows registry but you may wish to set a
different throttle interval for different spreadsheets. In order to do this you need to use
VBA.

B Open Excel and switch to the VBA window
® In the Project Explorer panel double click on "ThisWorkbook"

® This will bring up a new code window. In this window enter the following code

Private Sub Workbook Open ()
Application.RTD.ThrottleInterval = 0
End Sub

By setting a throttle interval of 0, Excel will try to respond to update notifications
whenever it is not busy. A value of -1 will set the RTD server to manual mode which
means Excel will not respond to any update notifications. Instead the user must
manually call the RTD server to request new data.

Internal Event Processing

Excel is a single threaded application, therefore it cannot process events when it is

in a busy state. Every time an event is received by the RTD server, a notification that
new data is available is sent to Excel. As soon as Excel receives this notification it will
request data from the RTD server. During this request, Excel enters a busy state and will
therefore drop any further notifications that more data is available. If Excel responded to
every notification it would be appropriate to simply allow excel to pop an event off the
internal event queue and return this data (then deal with the next request) but as this is
not the case, a different solution needs to be approached.

The Universal Messaging RTD server approaches this scenario in two different ways:

Processing Historical Data

If a user specifies an eid previous to that of the last published event (0 or less than -1) it
is assumed that every event up to the last published event is required by Excel. In this
case, the Universal Messaging RTD server will continue to notify Excel that new data

is available until the internal event queue is empty and the last published event on the
channel has been consumed. Every time Excel requests data it will pop one event off the
internal event queue for that channel and update its cells. This ensures that every value
is returned to Excel however quickly the events are received.

Once the last published event has been consumed, the RTD server returns to its normal
state as described below.
Normal Processing State

Every time Excel requests data, the entire internal event queue is consumed internally
and the most recent value required for each cell is returned to Excel.

Every event is processed internally, however only the most recent value that a cell
requires is returned. For example if a cell is subscribed to a channel and requests events

Universal Messaging Developer Guide Version 10.1 218

Enterprise APlIs

with property "name". If 50 events are queued internally, each event will be processed
but only the most recent value of name would be returned to Excel. This saves Excel
from making 50 separate requests for data when it may be that only one of the 50 events
contains the property "name". If all 50 events contained the property "name" then
returning the value 50 times would cause the value of the cell to rapidly change which is
not generally required for an Excel application.

Universal Messaging RTD Server Internal Queues

High/Low Watermark

As mentioned in "How RTD Works" on page 217, if Excel is in a busy state it will not
request any data from the Universal Messaging RTD Server. Rather than drop events,
the Universal Messaging RTD server will continue to push all events onto internal event
queues.

If events are rapidly published onto a channel or Excel remains in a busy state
indefinitely (if a dialog box is not responded to), without the high/low watermark
mechanism, the queues would continue to grow and use system resources.

The watermarks refer to the queue length and can be set per channel using the "RTD
function” on page 213. Once the event queue length for a particular channel reaches

the high watermark, any incoming events will be caused to wait which will trigger flow
control handled by Universal Messaging. Once events are popped off the queue and
the queue length reaches the low watermark, the incoming events will be notified to
continue and then event queue will begin to refill.

OnChange() Event Using RTD

When cells are updated using the RTD function, the onChange() event for that cell is
not triggered. It is not possible to fully recreate this functionality but there are several
methods to produce a similar result.

Alternative Solutions

User Defined Function (UDF)

Excel functions are recalculated whenever the value of that functions parameters change.
This means that a function can be created in cell A1 with a parameter reference of cell
A2. When the value of cell A2 changes, the function in cell A1 will recalculate and give a
similar functionality to that of the onChange() event.

There are several limitations to what actions can be performed using this method. For
example Excel 2003 will not allow any formatting of cells inside a function and Excel
2007 also places certain restrictions. For more information please see limitations with
user defined functions on the Microsoft website.

onCalculate()

The onCalculate() event is called whenever a calculation takes place on the worksheet.
When an RTD Server is used, this event is triggered whenever new data is sent to Excel.
This means the event is potentially triggered very often if a low throttle interval (see

Universal Messaging Developer Guide Version 10.1 219

http://support.microsoft.com/kb/170787
http://support.microsoft.com/kb/170787

Enterprise APlIs

"Setting the RTD Throttle Interval” on page 217) is used so it is advised to keep any
code in this section to a minimum. This event does not have any parameters so it is up to
the user to determine which cells have changed during the calculation.

Prerequisites

Pub/Sub in VBA uses libraries written using the C# APL Please refer to the C#
Prerequisites for C# specific requirements.

.NET Framework

Because Universal Messaging VBA makes use of Universal Messaging C# libraries,
it requires Microsoft .Net Framework, which you can download from the Microsoft
Download website at http://www.microsoft.com/downloads/.

Subscribing

To access the Universal Messaging RTD server installer please contact support. The
installer will register the RTD server in the windows registry so that it can be found by
the RTD function in Excel.

Microsoft Excel Versions

Universal Messaging VBA has been tested on Excel version 2003 and 2007. The Universal
Messaging RTD Server has been compiled using Excel 2003 Primary Interop Assemblies
(PIA). Due to backwards compatibility, Excel 2007 is able to run with this version of PIA
which means that the same version of the Universal Messaging RTD server can be run
on both versions of Microsoft Excel.

Publishing

To publish from Excel, you must set a reference to the Universal MessagingExcel.tlb type
library. To access this library please contact support. This library will allow you to create
and publish events from within VBA.

The type library is essentially a wrapper for the Universal Messaging C# API to make it
visible from Excel.
Macro Security

Publishing events requires code to be written in VBA. If macros are not enabled you will
not see any events published as the VBA code is not allowed to run.

Enterprise Developer's Guide for Python

This guide describes how to develop and deploy Enterprise-class Python applications
using Universal Messaging, and assumes you already have Universal Messaging
installed.

Universal Messaging Developer Guide Version 10.1 220

http://www.microsoft.com/downloads/

Enterprise APlIs

Enterprise Client Development

Environment Configuration

The Universal Messaging Python API uses a C++ wrapper library to expose functionality
from Universal Messaging C++ in python. Therefore the Python API has the same
dependencies as the C++ API, some of which do not ship with the product.

OpenSSL

The Universal Messaging C++ Client uses OpenSSL for secure connections. This product
does not ship with Universal Messaging because some of the encryption used is
restricted in certain countries.

OpenSSL comes pre-installed on most unix based systems. On Windows you can either
download and build the source from www.openssl.org. Or you can download pre-
compiled binaries. The required binaries for Windows are "Win32 OpenSSL v0.9.8r".

Microsoft Visual C++ 2008 Runtime Libraries

These libraries are requires to run any C++ application. Because the Universal Messaging
Python Client uses Universal Messaging C++, these libraries are required. They are
available to download from the Microsoft website.

Running the Sample Applications

Once you have installed Universal Messaging, the sample applications can be found in
[Universal Messaging Install]/python/examples. To run the applications you first need to
setup the required paths by running the Python Examples Command Prompt.

On Windows this can be found in: Start -> All Programs -> Universal
Messaging_6.0.XXXXX -> Client -> [RealmName] -> Python Examples Command
Prompt.

On Linux this can be found in: [Universal Messaging Install] / links / Client /
[RealmName] / Python Examples Command Prompt.

Running this script will set up the environment and change to the directory containing
the python samples so now to run the DataStreamListener sample you can simply enter:

c:\Python26\python.exe DataStreamListener.py

Running with a Different Python Version

The C++ wrapper which the Python API uses has to be compiled against a specific
python version. In the Universal Messaging installer we currently release the
wrapper compiled against Python 2.6 and 2.7. By default the sample applications
will reference the library built against 2.6. To change this you can alter the file named
NirvanaModule.py which is found in the same directory as the sample applications.

Universal Messaging Developer Guide Version 10.1 221

http://www.openssl.org
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=29

Enterprise APlIs

ImportError: DLL load failed

If any libraries cannot be found then you will get an error like this. Please ensure you
have installed OpenSSL, Visual C++ 2008 runtime libraries and have run the Python
Examples Command Prompt.

Creating a Session

To interact with a Universal Messaging Server, the first thing to do is initialize a
Universal Messaging Session object, which is effectively your logical and physical
connection to one or more Universal Messaging Realms.

Creating a Universal Messaging Session Object

A Universal Messaging Session object (called NirvanaSession) is contained within the
NirvanaPython library so you must first include the library and then initiate a new
NirvanaSession.

from NirvanaPython import *
NirvanaModule = NirvanaSession ()

If the NirvanaPython library is not in the same directory as the application you are
writing then you will need to make sure the directory containing the library is in the
Python sys path:

import sys

sys.path.append ('..\\bin\\Win32\\Python26\\")
If you have problems importing the NirvanaPython library then it may be that one of the
other dependencies are missing. Please make sure you have dealt with the prerequisites
(see "Environment Configuration" on page 221)

Connecting to a Universal Messaging Realm
Once the NirvanaSession object has been initialised, you can connect to a Universal
Messaging Realm as follows:

rname="nsp://localhost:9000"
NirvanaModule.connect (rname)

For information of the parameters you can pass to the connect() function e.g a user
name, you can enter:

help (NirvanaModule.connect)

Subscribing to a Channel/Topic or Queue

In the NirvanaPython API there is no object which represents a Universal Messaging
Channel or Queue. In order to subscribe you simply pass the name of the destination
to the NirvanaSession.subscribe method along with the NirvanaCallback object which will
receive the asynchronous events.

Universal Messaging Developer Guide Version 10.1 222

Enterprise APlIs

Creating a NirvanaCallback Object

Asynchronously receiving events requires an object which implements the
NirvanaPython.NirvanaCallback interface. The interface has one method, onMessage
which is passed a nConsumeEvent object (see "Universal Messaging Events" on page
227).
class NirvanaCallback (NirvanaPython.NirvanaCallback) :

def onMessage (self,message) :

print "received an event"
listener = NirvanaCallback ()

Registering the NirvanaCallback Object to Receive Events

Once the NirvanaCallback object is created you need to register that object as a listener
on the Universal Messaging Channel or Queue. First of all you need to construct

a NirvanaSession (see "Creating a Session" on page 222). Then you can call the
NirvanaSession.subscribe method where the first parameter is the name of the Universal
Messaging Channel or Queue that you wish to subscribe to and the second parameter is
the Universal Messaging Callback object.

mySession = NirvanaSession ()

mySession.connect ("nsp://localhost:9000")

chanName="demochannel"
mySession.subscribe (chanName, listener)

Once the subscription has been registered, the onMessage method of the
NirvanaCallback object will be invoked whenever a message is published onto the
channel named "demochannel".

DataStream - Receiving DataGroup Events

Python clients can (optionally) act as a DataStream, which allows them to receive events
from DataGroups of which they are made members.

The NirvanaSession can be initialised to receive DataGroup events by passing a
NirvanaCallback object into the connect method.

Creating a NirvanaCallback Object

Asynchronously receiving events requires an object which implements the
NirvanaPython.NirvanaCallback interface. The interface has one method, onMessage
which is passed a nConsumeEvent object (see "Universal Messaging Events" on page
227).
class NirvanaCallback (NirvanaPython.NirvanaCallback) :

def onMessage (self,message) :

print "received an event"
listener = NirvanaCallback ()

Registering as a DataStream

In order to register the NirvanaSession as a DataStream, you simply need to pass the
NirvanaCallback object into the connect method of NirvanaSession along with the
RNAME (see "Creating a Session" on page 222).

Universal Messaging Developer Guide Version 10.1 223

Enterprise APlIs

mySession = NirvanaSession ()
mySession.connect ("nsp://localhost:9000",listener)

Publishing Events to a Channel or Queue

Once the NirvanaSession has been established with the Universal Messaging realm
server, a new Universal Messaging Event object (nConsumeEvent) must be constructed
prior to use in the publish call being made to the channel.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object (nEventDictionary) for our Universal Messaging Event before publishing it:
chanName = "demoChannel"

props = nEventProperties ()

props.put ("exampleKey", "Hello World")

event = nConsumeEvent (props, "aTag")
mySession.publish (chanName, event)

Note that there is no Universal Messaging Channel or Queue object, you simply pass the
name of the destination (channel or queue) to the publish method.

The underlying library (written using the Universal Messaging C++ API) will find the
Channel or Queue object the first time the destination is accessed. So if you pass the
name of a Channel which does not exist then you will receive an exception.

Other than initially finding the channel, publish calls are asynchronous so the publish
call will immediately return allowing the client to continue. This means that if there
is an exception on the server e.g. the client does not have permission to publish to the
destination, there will be no client side exception unless you use an asynchronous
exception listener.

Writing an Event to a DataGroup

Once the NirvanaSession has been established with the Universal Messaging realm
server, a new Universal Messaging Event object (nConsumeEvent) must be constructed.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object (nEventDictionary) for our Universal Messaging Event before publishing it:
datagroupname = "myDataGroup"

props = nEventProperties ()

props.put ("exampleKey", "Hello World")

event = nConsumeEvent (props, "aTag")
mySession.writeDataGroup (datagroupname, event)

Note that there is no Universal Messaging DataGroup object, you simply pass the name
of the DataGroup you wish to publish to.

The underlying library (written using the Universal Messaging C++ API) will create the
DataGroup if it does not exist on the Universal Messaging Realm Server.

Asynchronous Exception Listener

Certain methods within the Universal Messaging Python Client API require
synchronous calls to the server. For example the NirvanaSession.getLastEID method
will request the most recent event ID that was published onto a Universal Messaging

Universal Messaging Developer Guide Version 10.1 224

Enterprise APlIs

Channel. This method is required to be synchronous i.e. must block until a response is
received. Other methods such as NirvanaSession.publish do not require a response so to
make these methods as fast as possible, they are asynchronous.

With synchronous calls, if an exception is thrown on the server e.g. the user does
not have permission to get the last event ID then the exception is passed back in the
response and thrown on the client.

With asynchronous calls, the client does not wait for a response so if an exception is
thrown on the server e.g. the user does not have permission to publish, the client will not
know that the event was not successfully published. This is where it is useful to have an
Asynchronous Exception Listener.

The Asynchronous Exception Listener will receive notification of exceptions that
occurred on the server for asynchronous calls. So if the user was not allowed to publish,
the listener will be notified with a message indicating this.

Creating a Asynchronous Exception Listener

Asynchronously receiving exceptions requires an object which implements the
NirvanaPython.AsyncExceptionListener interface. The interface has one method,
onException which is passed a string describing the exception.
class AsyncExceptionListener (NirvanaPython.AsyncExceptionListener) :

def onException (self,message) :

print "Received an exception -> "+message
exceptionlListener = AsyncExceptionListener ()

Registering the listener for events

In order to register the NirvanaPython.AsyncExceptionListener to receive notification of
exceptions, you can call the add AsyncExceptionListener method of NirvanaSession (see
"Creating a Session" on page 222).

mySession = NirvanaSession ()

mySession.connect ("nsp://localhost:9000")
mySession.addAsyncExceptionListener (exceptionListener)

Synchronously Requesting Events

Although in most circumstances it is more efficient to consume events asynchronously.
The Universal Messaging Python API also provides the ability to request events one by
one from the server.

Once you have created a session you can create an iterator for the channel or queue that
you wish to consume from.
iter = NirvanaModule.getIterator (channame,startEid, selector,

timeout)

for evt in iter:
doSomething (evt)

On each iteration the Python client will request an event from the server and receive the
event back as a response. Once the client has consumed all of the events on the channel/
queue, it will wait for timeout milliseconds for another event to be received. When the
client times out it will stop iterating.

Universal Messaging Developer Guide Version 10.1 225

Enterprise APls

Alternatively you can manually request events from the server:

evt = iter.next ()

Once all events are consumed the next () method will time out and return None.

Sample Applications

Publish / Subscribe using Channel Topics

Channel Publisher

This example shows how publish events onto a Universal Messaging Channel

Application Source Code

See the online documentation for a code example.

Asynchronous Channel Subscriber

This examples show how to connect to a Universal Messaging Channel and
asynchronously receive messages.

Application Source Code

See the online documentation for a code example.

Channel Iterator

This example shows how to iterate over events stored on a Universal Messaging
Channel

Application Source Code

See the online documentation for a code example.

Publish / Subscribe using Datastreams and Datagroups

DataGroup Publisher

This is a simple example of how to delete a DataGroup

Application Source Code

See the online documentation for a code example.

DataStream Listener

This example shows how to initialise a session ready to asynchronously receive events
via DataGroups.

Universal Messaging Developer Guide Version 10.1 226

Enterprise APlIs

Application Source Code

See the online documentation for a code example.

Message Queues

Queue Publisher

This example shows how publish events onto a Universal Messaging Queue

Application Source Code

See the online documentation for a code example.

Asynchronous Queue Consumer

This examples show how to connect to a Universal Messaging Queue and
asynchronously receive messages.

Application Source Code

See the online documentation for a code example.

Synchronous Queue Reader

This example shows how to synchronously pop messages off a Universal Messaging
Queue.

Application Source Code

See the online documentation for a code example.

Python Objects

Universal Messaging Events

A Universal Messaging Event (nConsumeEvent) is the object that is published to a
Universal Messaging Channel, Queue or DataGroup. It is stored by the server and then
passed to consumers as and when required.

Events can contain simple byte array data, or more complex data structures such as an
Universal Messaging Event Dictionary (nEventProperties).

Constructing an Event

In this Python code snippet, we construct our Universal Messaging Event
object (nConsumeEvent), as well as a Universal Messaging Event Dictionary object
(nEventProperties) for our Universal Messaging Event:

props = nEventProperties ()

props.put ("bondname", "bondl")
props.put ("price", 100.00)

Universal Messaging Developer Guide Version 10.1 227

Enterprise APlIs

event = nConsumeEvent (props, "Tag")

Handling a Received Event

When a client subscribes to a channel and specifies a callback function to handle
received events, the callback function will be invoked with the event as its parameter
whenever an event is received.

In this Python code snippet, we demonstrate a simple implementation of such a callback
function. In this example, we assume that the event contains an Event Dictionary with
two keys: bondname and price .
class myCallback (NirvanaPython.NirvanaCallback) :
def onMessage (self,event):

props = event.getProperties ()

name = props.get ("bondname")

price = props.get ("price")

//do something with name and price

Event Dictionaries

Event Dictionaries (nEventProperties) provide an accessible and flexible way to store any
number of message properties for delivery within a Universal Messaging Event.

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's dictionary.

In this code snippet, we assume we want to publish an event containing the definition of
a bond, say, with a name of "bond1":

props = nEventProperties ()

props.put ("bondname", "bondl")

props.put ("price", 100.00)

event = nConsumeEvent (props, "Tag")

NirvanaModule.publish ("Channelname",evt) ;

Note that in this example code, we also create a new Universal Messaging Event object
(nConsumeEvent) to make use of our Event Dictionary (nEventProperties).

API Language Comparisons

Universal Messaging APIs for Enterprise, Web and Mobile applications are available in
a range of programming languages. The following table provides an overview of each
language's support for Universal Messaging features and communication protocols:

Universal Messaging Developer Guide Version 10.1 228

Enterprise APlIs

Target Environments Communication Messaging Extended
Protocols Paradigms APIs
Enter- Web Mobile Native or Pub/ Msg. Admin JMS
prise Comet Sub Queues
Java & & Native (] ()] ()] (@)
C# NET () Native () (]
C++ () Native © & &
Python (] Native (V] (]
Excel (] Native (]
VBA
JavaScript e Native (via © (2]
WebSocket)
or Comet
Microsoft () Native () (]
Silverlight
iPhone (] Native (V)]
Android & Native &

Universal Messaging Developer Guide Version 10.1 229

Universal Messaging Developer Guide Version 10.1 230

Mobile Client APIs

2 Mobile Client APIs

B ClENt APLTOr IPRONE ...ttt ettt e ettt et eeeee e e eeareee e 232
T O 1= o1 0 A o I (o T A o [0 TSP O RS TRURRPR 233

Universal Messaging Developer Guide Version 10.1 231

Mobile Client APls

Our mobile messaging solution allows developers to implement real-time publish/
subscribe functionality within mobile phone applications on a range of devices including
Apple iPhone and Android:

®m Apple iPhone

Our Universal Messaging iPhone API is implemented natively in C++, and through
Objective-C and C++ code offers a core subset of Universal Messaging client
functionality which allows iPhone to publish and subscribe to Universal Messaging
channels, and to asynchronously receive events in realtime:

m "Universal Messaging iPhone Developer's Guide" on page 232

Please contact us for a live demonstration, or for access to our Universal Messaging
for Apple iPhone API.

® Android

Android devices are able to make use of our Universal Messaging Enterprise API for
Java to subscribe to Universal Messaging channels and utilize message queues.

Our "Android Developer's Guide" on page 233 provides further information,
online demonstrations and sample source code.

See Universal Messaging's Language API Comparison Grid for an overview of basic
differences between each APL

Client API for iPhone

iPhone Developer's Guide

This guide describes how to develop and deploy Apple iPhone applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

Universal Messaging iPhone Client Development

Universal Messaging for the iPhone is provided through a port of our Universal
Messaging C++ library. The iPhone development environment supports both Objective-
C and C++ and allows resources from either environment to coexist and be accessible
from the other.

Universal Messaging for the iPhone is delivered as a suite of static libraries built for the
platform along with their associated header files. Dragging the libraries into XCODE
automatically includes them in your project. The Universal Messaging iPhone download
available above includes all the required libraries, header files and full source for our
TradeSpace implementation on the iPhone.

Universal Messaging Developer Guide Version 10.1 232

Mobile Client APls

Client API for Android

Android Developer's Guide

Universal Messaging for Android is supported through our Universal Messaging
Enterprise API for Java.

Using the Enterprise Client API

To use Universal Messaging within your Android project, you must reference the

JAR file nClient.jar for the Enterprise Client API for Java, found in your Universal
Messaging installation. References may typically be made by simply dragging the JAR
into your IDE.

We have provided a sample Android application, TradeSpace, along with full source
code to get you started writing your own Android applications with Universal
Messaging.

Documentation

The Universal Messaging Enterprise Developer's Guide for Java provides full
information on how to use pub/sub, message queues and peer to peer services in your
Android application.

Portions of this page are modifications based on work created and shared by Google and
used according to terms described in the Creative Commons 3.0 Attribution License.

Universal Messaging Developer Guide Version 10.1 233

http://creativecommons.org/licenses/by/3.0/

Universal Messaging Developer Guide Version 10.1 234

Web Client APIs

3 Web Client APIs

B Overview Of Web ClIENt APIS ..o 236
m Web Developer's Guide for JavasCript ... s 236
m Web Developer's Guide for SIVEIght ..o 278
B Web Developer's GUIde fOr JAVA ..o 287

Universal Messaging Developer Guide Version 10.1 235

Web Client APls

Overview of Web Client APIs

Our web-based messaging solution allows developers to implement real-time publish/
subscribe functionality into browser applications or RIAs (Rich Internet Applications)
using JavaScript or Java:

m JavaScript

The Universal Messaging JavaScript API is a pure JavaScript solution. This allows
developers to use JavaScript and HTML to build Ajax/Comet clients which can
publish and subscribe to Universal Messaging channels, and asynchronously receive
events in realtime:

m "JavaScript Developer's Guide" on page 236

Our JavaScript APl is popular because it works without plugins or infrastructure
workarounds, using only the browser's built-in JavaScript engine.

m Microsoft Silverlight

The Universal Messaging Silverlight API is an C# NET API allowing the rapid
development of publish/subscribe RIA clients. These clients can be run within a
browser:

m "Web Developer's Guide for Silverlight" on page 278
= Java

The Universal Messaging Java client APIs can be used for standalone Java applications,
but can also be used in the browser as either Applets or Java Webstart applications.

m '"Java Developers Guide for Web Developers" on page 287

Note that the above Universal Messaging Java links are for web-based applications.
Universal Messaging Java APIs can also be used for enterprise clients and servers, as
well as mobile applications.

See Universal Messaging's Language API Comparison Grid for an overview of basic
differences between each APIL.

Web Developer's Guide for Javascript

Overview

The following sections describe how to develop and deploy JavaScript applications
using Universal Messaging, and assumes you already have Universal Messaging
installed.

Universal Messaging supports both WebSocket and Ajax / Comet streaming through
our Javascript API. Universal Messaging streams events to web clients asynchronously,

Universal Messaging Developer Guide Version 10.1 236

Web Client APls

without the requirement for any additional technology components at clients' browsers.
The API will automatically detect client capabilities and make use of the optimum
underlying transport in each case.

Server Configuration for JavaScript

Server Configuration for HTTP Delivery

Universal Messaging can serve web content over both HTTP and HTTPS communication
modes. This section discusses the steps necessary to configure a realm server to deliver
web content over HTTP.

Creating a Universal Messaging HTTP (nhp) Interface
Note: Universal Messaging ships with an HTTP Interface enabled by default.

Universal Messaging provides its own protocol, the Universal Messaging HTTP Protocol
(nhp) for the delivery of web content over HTTP. For web communication to take place
an interface using this protocol must be created. Creating an interface can be done
through the enterprise manager.

Serving Content through File Plugins

A Universal Messaging nhps interface delivers content to connected browsers through
file plugins. Generally at least two file plugins will need to be configured to serve a page
using the Universal Messaging JavaScript API. The first will be a pointer to the Universal
Messaging JavaScript client libraries. The second will be a plugin pointing to the base
directory of the web pages which use these libraries.

The Universal Messaging JavaScript client libraries are located in /1ib/javascript in
the nirvana base installation directory. To use these libraries in any content served from
an interface a file plugin with a Basepath which points to this directory is necessary.
The URL Path of the file plugin may be anything you wish, though it must be referenced
the same in the include in your javascript code. For example, if you set the URL Path to /
1ib/js then the following code must be included in your pages:

<script language="JavaScript" src="/lib/js/nirvana.js"></script>

Note: Universal Messaging ships with a file plugin with the base path /1ib/js and
the above configuration.

The file plugin which points to your web content is configured in a similar way. The
BasePath should point to the fully qualified path of your web directory. The URL Path
is the resource location relative to your address. For example, serving content from the
root of the website can be done by setting a URL Path of /

If you prefer, you can host your web application on a different web server entirely. In
addition, nirvana.js could be served from such a web server. The Universal Messaging
realm server's interface's file plugin (/lib/js in this case) will only be required if

Universal Messaging Developer Guide Version 10.1 237

Web Client APls

you opt to use any of the JavaScript drivers that use postMessage for cross domain
communication (see JavaScript driver details for more information).
JavaScript Interface Properties

The behaviour of nhp interfaces when serving web content can be changed through the
enterprise manager. These settings can be changed by editing configuration properties
available in the JavaScript panel accessed through the interface tab.

Comet Configuration Properties

The Universal Messaging enterprise manager also provides realm wide configuration
settings for Comet. These are available in the enterprise manager from the Comet Config
panel.

Server Configuration for HTTPS Delivery

Universal Messaging can serve web content over both HTTP and HTTPS communication
modes. This section discusses the steps necessary to configure a realm server to deliver
web content over HTTPS.

Creating a Universal Messaging HTTPS (nhps) Interface

Universal Messaging provides its own protocol, the Universal Messaging HTTPS
Protocol (nhps) for the secure delivery of web content over HTTPS. For web
communication to take place an interface using this protocol must be created. Creating
an interface can be done through the enterprise manager.

Enabling SSL on the Interface

When the interface is created using the enterprise manager default values are placed
into the Certificates tab in the interface panel. To communicate using HTTPS over the
interface additional configuration in this panel is required.

Other Configuration Options

Once the interface is created and SSL is enabled and correctly set up on the interface
configuration can be completed by using the same steps which apply to configuring a
HTTP interface.

Serving From Another Webserver
The Universal Messaging JavaScript API consists of two files:
B nirvana.js (which can be served from any webserver)

B crossDomainProxy.html (needed only if using one of the postMessage drivers, and
which must be served from a file plugin on the Universal Messaging realm server)

Universal Messaging Realm Servers provide the option of exposing an HTTP web server
interface for serving files to clients, removing the need to install a third party web server

Universal Messaging Developer Guide Version 10.1 238

Web Client APls

for hosting applications. Of course, it is possible to use a third party web server to host
applications too.

Here we will explain how to deploy applications in both scenarios.

Web Applications on a Realm File Plugin

Your application source code, and the Universal Messaging library files shown above,
need to be deployed to one or more directories on the Realm Server, and File Plugins
configured to provide access to these directories.

Note: Universal Messaging ships with an HTTP Interface enabled by default. This
HTTP Interface is pre-configured with a file plugin with the base path /1ib/
js which points to the directory containing the above library files.

As a result, both files are accessible via a browser at the following paths on the realm:
B /lib/js/nirvana.js
B /lib/js/crossDomainProxy.html

To use Universal Messaging, applications then simply need to include nirvana.js as
follows:
<script src="/lib/js/nirvana.js"></script>

There is no need to reference the crossDomainProxy.html file directly (the nirvana.js
library will load it automatically if it is required).

Your Universal Messaging session can be started with a relatively simple configuration,
as follows:

var mySession = Nirvana.createSession ({

applicationName : "myExampleApplication",
sessionName : "myExampleSession",
username : "testuser"

});
mySession.start () ;

Web Applications on a Third Party Web Server

Your application source code and HTML files, and optionally the nirvana.js library
(which may in fact be served from any server, including a CDN), are deployed to a third
party web server, such as Apache.

If there is any chance that your client will use a postMessage drivers, then you must
ensure that the crossDomainProxy.html file is accessible on the realm via a file plugin.

If you use the default file plugin configuration mentioned above, then no further
configuration is required. If instead you decide to make the crossDomainProxy.html
file available at a different path by using a different file plugin, then you will need to
specify this path as a crossDomainPath key in the session configuration object passed to
Nirvana.createSession ().

Universal Messaging Developer Guide Version 10.1 239

Web Client APls

For any driver other than WEBSOCKET, the third party web server must be using the
same protocol (i.e. http or https) as the Universal Messaging Realm interface file plugin,
and running on the same port. The WEBSOCKET driver does not have this restriction.

To use Universal Messaging:

1. Applications need to include nirvana.js as follows:

<script src="/front/end/server/lib/nirvana.js"></script>

2. TheNirvana.createSession () call must use a configuration object that includes
the following key/value pair:

® realms : Anarray of URLs of the realm servers in use, e.g.

["http://nodel.um.softwareag.com:80", "http://
node2.um.softwareag.com:80"]

3. Your Universal Messaging session can then be started with a configuration such as:

var mySession = Nirvana.createSession ({
realms : ["http://nodel.um.softwareag.com:80",
"http://node2.um.softwareag.com:80"1],
applicationName : "myExampleApplication",
sessionName : "myExampleSession",
username : "testuser"

})i

mySession.start () ;

For more information, please see Universal Messaging Sessions in JavaScript, which
describes in more detail the options that can be set using the Universal Messaging
session configuration object.

Web Client Development in JavaScript

Creating a Session

To interact with a Universal Messaging Server, the first thing to do is configure and start
a Universal Messaging Session object, which is effectively your logical and physical
connection to one or more Universal Messaging Realms.

Configuring a Universal Messaging Session Object

A Universal Messaging session object is created using the Nirvana.createSession ()
function. Once created, a session can be started at will:

var mySession = Nirvana.createSession();

The Nirvana.createSession () function may be passed an optional configuration
object as a parameter, as follows:

var mySession = Nirvana.createSession ({
realms : ["http://showcase.um.softwareag.com:80"],
// this can be an array of realms
debugLevel : 4, // 1-9 (1 = noisy, 8 = severe, 9 = default = off)
sessionTimeoutMs : 10000,
enableDataStreams : false,
drivers : [// an array of transport drivers in preferred order:

Universal Messaging Developer Guide Version 10.1 240

Web Client APls

Nirvana.Driver.WEBSOCKET,
Nirvana.Driver.XHR STREAMING CORS,
Nirvana.Driver.XDR STREAMING,
Nirvana.Driver.JSONP LONGPOLL
]
}):

For a full list of the parameters used in this configuration object, please see the JavaScript
API Documentation for Nirvana.createSession().

Starting your Session

Once a session object has been created, the session may be started as follows:

var mySession = Nirvana.createSession() ;
mySession.start () ;

Session Start Callbacks

When a Universal Messaging Session is successfully started following a call to start(), an
asynchronous callback will be fired. You can assign a function to be fired as follows:
function sessionStarted(s) {

console.log("Session started with ID " + s.getSessionID())
t
var mySession = Nirvana.createSession() ;
mySession.on (Nirvana.Observe.START, sessionStarted);
mySession.start () ;

For more details on methods available on a session object, please see the JavaScript API
Documentation for the Universal Messaging Session object.

Publish/Subscribe Tasks

Overview of using Publish/Subscribe

The Universal Messaging JavaScript API provides publish subscribe functionality
through the use of channel objects. Channels are the logical rendezvous point for
publishers (producers) and subscribers (consumers) of data (events).

Under the publish / subscribe paradigm, each event is delivered to each subscriber
once and only once per subscription, and is not removed from the channel after being
consumed.

This section demonstrates how Universal Messaging pub / sub works, and provides
example code snippets for all relevant concepts.

Using a Universal Messaging Channel

This JavaScript code snippet demonstrates how to create a channel object, which allows
you to publish or subscribe to a Universal Messaging channel:

var myChannel = mySession.getChannel ("/fxdemo/prices") ;

Note that unlike the Enterprise APIs, the JavaScript API does not support programmatic

creation of channels; instead, you can use the Enterprise Manager GUI to create a
Universal Messaging Channel.

Universal Messaging Developer Guide Version 10.1 241

Web Client APls

A channel object offers several methods. Three of the more important ones are:
B mnyChannel.subscribe ()

B myChannel.unsubscribe ()

B myChannel.publish (Event event)

Please see JavaScript API Documentation for Channels for information on all available
methods on a channel.

Each of the above methods can invoke one or more optional user-specified callback
functions which you can (and probably should) implement and assign as follows:
var myChannel = mySession.getChannel ("/fxdemo/prices") ;
// Assign a handler function for Universal Messaging Events received on the Channel,
// then subscribe:
function myEventHandler (event) {

var dictionary = event.getDictionary() ;

console.log(dictionary.get ("name") + " " + dictionary.get ("bid")) ;

}
myChannel.on (Nirvana.Observe.DATA, myEventHandler) ;
myChannel .subscribe () ;

See "Subscribing to a Channel" on page 242 and "Publishing Events to a Channel" on
page 243.

Subscribing to a Channel

Once a Universal Messaging Channel object has been created, you can subscribe to the
channel, and receive Universal Messaging Events published on the channel.

Simple Subscription

This JavaScript code snippet demonstrates how to subscribe to a channel:

var myChannel = mySession.getChannel ("/fxdemo/prices") ;

function myEventHandler (event) {
var dictionary = event.getDictionary();
console.log(dictionary.get ("name") + " " + dictionary.get ("bid"));

}
myChannel.on (Nirvana.Observe.DATA, myEventHandler) ;
myChannel.subscribe () ;

Note that the subscribe () call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing. Whenever an event is received on

the channel, however, any user function assigned as a callback for the observable event
Nirvana.Observe.DATA will be invoked, with the appropriate Event as its parameter.

Subscription with a Filtering Selector

It is also possible to subscribe to a channel with a user-specified selector (a type of filter),
ensuring that your client receives only events that match the selector. Selectors are SQL-
like statements such as:

® name LIKE '"%bank%" AND description IS NOT NULL
B (vol>0.5OR price =0) AND delta<1

Universal Messaging Developer Guide Version 10.1 242

Web Client APls

This JavaScript code snippet demonstrates how to subscribe to a channel and receive
only events which have a key named "volatility" and a value greater than 0.5:
var myChannel = mySession.getChannel ("/fxdemo/prices") ;
function myEventHandler (event) {
var dictionary = event.getDictionary();
console.log(dictionary.get ("name") + " " + dictionary.get ("bid"));

}

myChannel.on (Nirvana.Observe.DATA, myEventHandler) ;
myChannel.setFilter ("name like 'SEURS'");
myChannel.subscribe () ;

Handling Errors

You may optionally specify an error handler to be notified of subscription or publishing
errors:
function myErrorHandler (error) {

console.log(error.message) ;

}

myChannel.on (Nirvana.Observe.ERROR, myErrorHandler) ;

If you do not implement an error handler in this way, errors will be silently ignored.

Publishing Events to a Channel

Once the session has been established with the Universal Messaging realm server, and a
Universal Messaging Channel object has been created, a new Universal Messaging Event
object must be constructed to use in the publish call being made on the channel.

Note that in this example code, we also create a Universal Messaging Event Dictionary
object for our Universal Messaging Event before publishing it:

var mySession = Nirvana.createSession() ;

var myChannel = mySession.getChannel ("/tutorial/sandbox") ;

var myEvent = Nirvana.createEvent () ;

var myDict = myEvent.getDictionary() ;

myDict.putString ("demoMessage", "Hello World");

myChannel .publish (myEvent) ;

Note that the publish call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing.

To enable the developer to know when a publish call has completed, any user function
assigned as a callback for the channel's observable event Nirvana.Observe.PUBLISH
will be invoked, with the a string value of “"OK” (which indicates the publish was
successful):

function publishCB (responseString) {

console.log("Publish attempt: " + responseString);

}
myChannel.on (Nirvana.PUBLISH, publishCB) ;
myChannel .publish (myEvent) ;

Transactional Publish

Transactional publishing provides a means of verifying that the server has received
events from the publisher, and therefore provides guaranteed delivery. Clients can
publish using transactions to both channels and queues in Javascript.

Universal Messaging Developer Guide Version 10.1 243

Web Client APls

Transactions can be created by the user from a "Universal Messaging Event" on page 105
object and a Universal Messaging Transaction object. The event can then be published
through the transaction object to the server.

var demoSession = Nirvana.createSession () ;
var myChannel = demoSession.getChannel ("/example/txChannel") ;
var datalistener = function (event) {

console.log ("Received Event from Channel");
b
myChannel.on (Nirvana.Observe.DATA, datalistener);
myChannel . subscribe () ;
var myTransaction = myChannel.createTransaction();
var commitListener = function () {

console.log("Received Commit Callback from Publish");
b
myTransaction.on (Nirvana.Observe.COMMIT, commitListener);
var myEvent = Nirvana.createEvent () ;
myEvent.setData ("Hello World");
myTransaction.setEvent (myEvent) ;
myTransaction.publishAndCommit () ;

The transaction's observable event Nirvana.Observe.COMMIT is fired after a successful
publish request once the client receives confirmation from the server that the event has
been published. This will result in the invocation of any user-assigned listener functions,
as in the example code above.

Similarly, a transaction's observable event Nirvana.Observe.ERROR is fired after when
the client receives confirmation from the server that a problem occurred resulting in the
event not being published.
var errorListener = function (error) {

console.log(error.message) ;
bi
myTransaction.on (Nirvana.Observe.ERROR, errorListener) ;
In scenarios where a problem occurs, the client may not receive either of these callbacks.
This may be either due to server side or client side failure. In these scenarios the state of
the transaction from the clients perspective is ambiguous.

By invoking the myTransaction.checkCommitStatus (queryServer) method the
client will attempt to resolve the state of the server. It will first attempt to do this locally;
if it can do this the method will instantaneously invoke the callback method with the
transaction status. If it cannot do this and queryServer is set to true, it will contact the
server for confirmation and pass this confirmation to any callback method associated
with the transaction's observable event Nirvana.Observe.COMMIT. If queryServer is set
to false it will immediately invoke the callback with the failure status.

DataStream - Receiving DataGroup Events

JavaScript clients can (optionally) act as a DataStream, which allows them to receive
events from DataGroups of which they are made members.

The process for enabling DataStream functionality is quite simple:

1. Pass a configuration object to the Nirvana.createSession() call with a suitable
configuration parameter (enableDataStreams).

Universal Messaging Developer Guide Version 10.1 244

Web Client APls

2. Implement the Session.on() callback function.

Processing events received as a DataStream is also very simple:

var mySession = Nirvana.createSession ({ enableDataStreams : true });
function myDGEventHandler (event) {
console.log("Received a DataGroup Event");

}
mySession.on (Nirvana.Observe.DATA, myDGEventHandler) ;
mySession.start () ;

Note that JavaScript clients can only act as DataStreams (consumers of DataGroup
events). The JavaScript API does not currently support publishing to DataGroups
or remote management of DataGroup members; DataGroup management is instead
supported by Universal Messaging's Enterprise APIs.

Message Queue Tasks

Overview of using Message Queues

The Universal Messaging JavaScript API provides message queue functionality through
the use of queue objects. Queues are the logical rendezvous point for publishers
(producers) and subscribers (consumers) of data (events).

Message queues differ from publish / subscribe channels in the way that events are
delivered to consumers. Whilst queues may have multiple consumers, each event is
typically only delivered to one consumer, and once consumed (popped) it is removed
from the queue.

This section demonstrates how Universal Messaging message queues work in JavaScript,
and provides example code snippets for all relevant concepts.
Using a Queue

This JavaScript code snippet demonstrates how to create a queue object, which allows
you to publish or subscribe to a Universal Messaging queue:

var myQueue = mySession.getQueue ("/demo/prices") ;

Note that unlike the Enterprise APIs, the JavaScript API does not support programmatic
creation of queues; instead, you can use the Enterprise Manager GUI to create a
Universal Messaging Queue.

A queue object offers several methods. Three of the more important ones are:
B myQueue.subscribe ()

B myQueue.unsubscribe ()

B myQueue.publish (Event event)

Please see JavaScript API Documentation for Queues for information on all available
methods on a queue.

Each of the above methods can invoke one or more optional user-specified callback
functions which you can (and probably should) implement and assign as follows:

Universal Messaging Developer Guide Version 10.1 245

Web Client APls

var myQueue = mySession.getQueue ("/demo/prices") ;
// Assign a handler function for Universal Messaging Events received on the Queue,
// then subscribe:
function myEventHandler (event) {
var dictionary = event.getDictionary();
console.log(dictionary.get ("name") + " " + dictionary.get ("bid"));

}
myQueue.on (Nirvana.Observe.DATA, myEventHandler) ;
myQueue.subscribe () ;

See "Subscribing to a Queue" on page 246 and "Publishing Events to a Queue" on
page 246.

Subscribing to a Queue

Once a Universal Messaging Queue object has been created, you can subscribe to the
queue, and receive Universal Messaging Events published on the queue. JavaScript
supports two kinds of queue subscribers. An asynchronous non-transactional consumer
and a asynchronous transactional consumer.

Simple Subscription

Once a Universal Messaging Queue object has been created, you can subscribe to the
channel, and receive Universal Messaging Events published on the queue.

This JavaScript code snippet demonstrates how to subscribe to a queue:

var myQueue = mySession.getQueue ("/demo/prices") ;

function myEventHandler (event) {
var dictionary = event.getDictionary() ;
console.log(dictionary.get ("name") + " " + dictionary.get ("bid")):;

}
myQueue.on (Nirvana.Observe.DATA, myEventHandler) ;
myQueue.subscribe () ;

Note that the subscribe () call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing. Whenever an event is received on

the queue, however, any user function assigned as a callback for the observable event
Nirvana.Observe.DATA will be invoked, with the appropriate Event as its parameter.

Handling Errors

You may optionally specify an error handler to be notified of subscription or publishing
errors:
function myErrorHandler (error) {

console.log(error.message) ;

}

myQueue.on (Nirvana.Observe.ERROR, myErrorHandler) ;

If you do not implement an error handler in this way, errors will be silently ignored.

Publishing Events to a Queue

Once the session has been established with the Universal Messaging realm server, and a
Universal Messaging Queue object has been created, a new Universal Messaging Event
object must be constructed to use in the publish call being made on the queue.

Universal Messaging Developer Guide Version 10.1 246

Web Client APls

Note that in this example code, we also create a Universal Messaging Event Dictionary
object for our Universal Messaging Event before publishing it:

var mySession = Nirvana.createSession();

var myQueue = mySession.getQueue ("/tutorial/somequeue") ;

var myEvent = Nirvana.createEvent () ;

var myDict = myEvent.getDictionary () ;

myDict.putString ("demoMessage", "Hello World");

myQueue.publish (myEvent) ;

Note that the publish call is asynchronous; it returns immediately, allowing single-
threaded JavaScript clients to continue processing.

To enable the developer to know when a publish call has completed, any user function
assigned as a callback for the queue's observable event Nirvana.Observe.PUBLISH
will be invoked, with the a string value of “OK” (which indicates the publish was
successful):

function publishCB (responseString) {

console.log("Publish attempt: " + responseString);

}
myQueue.on (Nirvana.PUBLISH, publishCB) ;
myQueue.publish (myEvent) ;

Asynchronous Transactional Queue Consuming

Transactional queue consumers have the ability to notify the server when events have
been consumed (committed) or when they have been discarded (rolled back). This
ensures that the server does not remove events from the queue unless notified by the
consumer with a commit or rollback.

Subscribing as a Transactional Reader

This JavaScript code snippet demonstrates how to subscribe to a queue as a transactional
queue reader:
var demoSession = Nirvana.createSession();
var demoQueue = demoSession.getQueue ("/some/demo/queue") ;
demoQueue.on (Nirvana.Observe.DATA,
function (event) {
// define what to do when we receive an event

)i

You can specify the transaction flag and the window size as follows:

var demoQueue = mySession.getQueue ("/some/demo/queue", true);
// The true flag specifies that we are a transactional reader
demoQueue.setWindowSize (10); // 10 is the windowSize
demoQueue.subscribe () ;

Performing a Commit

As previously mentioned, the big difference between a transactional reader and a
standard queue reader is that once events are consumed by the reader, the consumers
need to commit the events consumed. Events will only be removed from the queue once
the commit has been called.

Universal Messaging Developer Guide Version 10.1 247

Web Client APls

The server will only deliver up to the specified windowSize number of events. After this
the server will not deliver any more events to the client until commit has been called.
The default windowSize is 5.

The JavaScript libraries provide two methods for committing events which have been
consumed. demoQueue . commitAll () will commit every event which this consumer
has received thus far, but has not previously committed. When the server receives this
message, all these events will be removed. demoQueue . commit (event) will commit the
given event and any uncommitted events occurring before.
demoQueue.on (Nirvana.Observe.DATA,
function (event) {
// process the event
demoQueue.commit (event); // Commit the event

)i

Performing a Rollback

Developers can also roll back events received by the transactional reader. Uncommitted
events will be redelivered by the server (possibly to other queue consumers if they exist).

The JavaScript libraries provide two methods for performing a rollback.
demoQueue.rollbackall () will roll back all previously uncommitted events which the
consumer has received. demoQueue.rollback (event) will perform a rollback on all
events starting from the given event.

JavaScript Objects

Universal Messaging Events

A Universal Messaging Event is the object that is published to a Universal Messaging
channel or queue. It is stored by the server and then passed to consumers as and when
required.

Events can contain simple byte array data, or more complex data structures such as an
"Universal Messaging Event Dictionary" on page 250.

Constructing an Event

In this JavaScript code snippet, we construct our Universal Messaging Event object,
as well as a "Universal Messaging Event Dictionary" on page 250 object for our
Universal Messaging Event:

var myEvent = Nirvana.createEvent () ;

var myDict = myEvent.getDictionary() ;
myDict.putString ("demoMessage", "Hello World");

Handling a Received Event

When a client subscribes to a channel and specifies a callback function to handle
received events, the callback function will be invoked with the event as its parameter
whenever an event is received.

Universal Messaging Developer Guide Version 10.1 248

Web Client APls

In this JavaScript code snippet, we demonstrate a simple implementation of such
a callback function. In this example, we assume that the event contains an Event
Dictionary with two keys: name and price .
var myChannel = mySession.getChannel ("/fxdemo/prices") ;
function myEventHandler (event) ({
var dictionary = event.getDictionary() ;
console.log(dictionary.get ("name") + ": " + dictionary.get ("price")):;
}

myChannel.on (Nirvana.Observe.DATA, myEventHandler) ;
myChannel . subscribe () ;

Universal Messaging Event Attributes

Universal Messaging Event Attributes are objects which contain meta-data about a
"Universal Messaging Event" on page 248. A Client can query the attributes of a
delivered event to provide specific handling for different types of event depending on its
attributes.

Some header information contained in an Event Attributes object can be set by the client
prior to publishing the Event. This information will subsequently be delivered to any
clients who receive it.

Obtaining an nEventAttributes object

If an Event does not explicitly have any Event Attributes, then a new, empty Event
Attributes object is initialized for the Event with a call to getEventAttributes ():
var attribs = someEvent.getEventAttributes() ;

attribs.setPublisherName ("John Doe") ;
myChannel .publish (someEvent) ;

For more detailed usage information, please see the JavaScript API Documentation for
Event Attributes.

Merging and Registered Events

"Registered Events" on page 250 facilitate delivery of partial events containing only
the data which has changed to a client. A publisher can publish and subsequently
update a registered event through JavaScript by using the setAllowMerge method of
nEventAttributes.

myEvent .putDictionary(aDictionary) ;

myEvent.getEventAttributes () .setAllowMerge (true) ;
myChannel .publish (someEvent) ;

A JavaScript client can query if a received event is a registered event by checking the
isRegistered flag on the nEventAttributes object
if (aEvent.getAttributes () .isRegistered()) {

// Some registered event specific code here...

}

Similarly, a JavaScript client which receives an event can query if it is a full or partial
event by checking if the isDelta flag is set on an nEventAttributes object.

if (aEvent.getAttributes () .isDelta()) {
// Some registered delta-specific code here...

Universal Messaging Developer Guide Version 10.1 249

Web Client APls

}

Obtaining the Event TimeStamp

If configured to do so, the realm server will stamp each event it delivers to the
client with the time it was received. This timestamp can be accessed through the
nEventAttributes object.

var age = now - aEvent.getAttributes () .getTimeStamp () ;

Other Headers

The nEventAttributes object also contains methods for setting and getting other
attributes associated with the object. These include JMS specific headers and details on
the origin, destination and join channels. To see the full list of operations available on
this object consult the API documentation.

Event Dictionaries

Event Dictionaries (nEventProperties) provide an accessible and flexible way to store
any number of message properties for delivery within a "Universal Messaging Event" on
page 248.

Event Dictionaries are quite similar to a hash table, supporting primitive types, arrays,
and nested dictionaries.

Universal Messaging filtering allows subscribers to receive only specific subsets of a
channel's events by applying the server's advanced filtering capabilities to the contents
of each event's dictionary.

In this code snippet, we assume we want to publish an event containing a string, say,
with a name of "demoMessage":

var mySession = Nirvana.createSession() ;

var myChannel = mySession.getChannel ("/tutorial/sandbox") ;

var myEvent = Nirvana.createEvent () ;

var myDict = myEvent.getDictionary() ;

myDict.putString ("demoMessage", "Hello World");

myChannel .publish (myEvent) ;

Note that in this example code, we also create a new "Universal Messaging Event"” on
page 248 object to make use of our Event Dictionary (nEventProperties).

Optimizing Throughput

The Merge Engine and Event Deltas

In order to streamline web-based Publish/Subscribe applications, it is possible to deliver
only the differences between consecutive events, as opposed to the entire event each
time. These event deltas minimize the amount of data that needs to be sent from the
publisher, as well as the amount of data ultimately delivered to subscribers.

Universal Messaging Developer Guide Version 10.1 250

Web Client APls

Event Deltas and Publishers

Imagine a channel that is used to deliver foreign-exchange currency prices. Let us
assume that the channel has a publish-key named pair, of depth 1, representing the
currency pair. This means that a maximum of one event for each currency pair will exist
on the channel at any time.

An event representing a foreign-exchange currency price might therefore be published
as follows:

var event = Nirvana.createEvent () ;

var priceDictionary = myEvent.getDictionary();
priceDictionary.putString ("pair", "EURUSD");
priceDictionary.putFloat ("bid", 1.2261);
priceDictionary.putFloat ("offer", 1.2263);
priceDictionary.putFloat ("close", 1.2317);
priceDictionary.putFloat ("open", 1.2342);
demoChannel .publish (event) ;

Let us now imagine that the spread on this price has tightened: while the bid value
remains the same, the offer is lowered from 1.2263 to 1.2262.

Under normal circumstances, an entire new event would be created and published:

var event = Nirvana.createEvent () ;

var priceDictionary = myEvent.getDictionary() ;
priceDictionary.putString ("pair", "EURUSD") ;
priceDictionary.putFloat ("bid", 1.2261);
priceDictionary.putFloat ("offer", 1.2262);
priceDictionary.putFloat ("close", 1.2317);
priceDictionary.putFloat ("open", 1.2342);
demoChannel.publish (event) ;

Notice that the majority of the information in this new event is no different to that in the
previously sent event.

Event deltas allow us to publish only the information that has changed :

var event = Nirvana.createEvent () ;

var priceDictionary = myEvent.getDictionary() ;

// we need to specify the publish-key too, of course
priceDictionary.putString ("pair", "EURUSD") ;
priceDictionary.putFloat ("offer", 1.2262);
event.getAttributes () .setAllowMerge (true) ;
demoChannel .publish (event) ;

It is clear from the above example that using event delta functionality through
setAllowMerge (true) in the Event Attributes object is especially useful when
publishing events with many dictionary keys that have unchanged values.

Event Deltas and Subscribers

In the above example, where the channel had a publish-key named pair with a depth of
1, only one event for each currency will exist on the channel at any one time. Given that
the last published event was a mere delta, how can we guarantee that a new subscriber
will receive an event with a fully populated dictionary containing all expected keys?

Universal Messaging's Merge Engine will process and merge events with all event
deltas, maintaining internal representations of merged event snapshots, keyed on the

Universal Messaging Developer Guide Version 10.1 251

Web Client APls

channel's publish-key. A merged event snapshot for each unique publish-key value is
delivered to subscribers when they initially subscribe, or when they reconnect after a
period of disconnection.

Web clients built using the Universal Messaging JavaScript API can receive any
combination of standard events, event deltas and merged event snapshots.
New Subscribers: Merged Events

A client that subscribed to the channel some time after the above example's event delta
was published would receive a server-generated merged event snapshot with a dictionary
containing the following key/value pairs:

B pair: "EURUSD"
m bid:1.2261

m offer:1.2262

B close:1.2317

B open:1.2342

Note how the offer value of 1.2262 has been merged into the older event's dictionary.

Existing Subscribers: Events and Event Deltas

A client that was subscribed before the initial example event was published would
receive two events. The first event would have a dictionary containing the following
key/value pairs:

B pair: "EURUSD"

m bid:1.2261
B offer:1.2263
® close:1.2317
B open:1.2342

The second event received by the client (the delta) would be marked as a delta, and have
a dictionary containing only the following key/value pairs:

B pair: "EURUSD"
m offer:1.2262

In summary, therefore, any new client subscribing will receive all of the fields in the
merged event for EURUSD, while any existing subscribers will only receive the offer
change for EURUSD.

Important: Note that only the event delta is passed to the developer-implemented
Channel.on () callback; it is the developer's responsibility to make use of the
deltas in this case.

Universal Messaging Developer Guide Version 10.1 252

Web Client APls

Further Notes

® In order for a channel to be capable of delivering deltas and merging events it must
be created with the Merge Engine enabled, and it must have a single publish-key.
The publish-key represents the primary key for the channel.

®m If a publisher of an event does not make a call to setAllowMerge (true) then the
merged event snapshot for that publish-key value would be replaced in its entirety
by the newly published event.

m If a subscriber disconnects and then reconnects it will again receive the latest
snapshot before receiving only the deltas that are subsequently published.

JavaScript Communication Drivers and Protocols

Communication Drivers

Overview
JavaScript communication drivers use streaming techniques or long polling, as required.
For a full list, please see the JavaScript API Documentation for Drivers.

The following links provide a basic description of the main techniques employed by
these drivers:

m "HTML5 WebSocket" on page 269
m " Comet Streaming" on page 274

® "Comet LongPolling" on page 274

Standard HTTP Polling

Most non-Universal Messaging web applications make use of repeated, standard HTTP
polling requests. Such application requests/responses look like this:

Universal Messaging Developer Guide Version 10.1 253

Web Client APls

Ordinary HTTP Behaviour

Browser Server

Data Request

f=
t=0; no events
Response: "Empty"
Data Request
t=1; no events
Response: "Empty”
Bl
Data Request

t=2; event/s

Response: Event Data

Data Request

Browser Server

The Universal Messaging JavaScript API is more efficient than this. It implements
several underlying drivers for communication between a Universal Messaging
JavaScript client and a Universal Messaging realm server. These drivers can be
conceptually divided into:

B streaming drivers

® long polling drivers

Streaming Drivers

The Streaming drivers implemented in Universal Messaging take advantage of various
technologies implemented in different web browsers, and various mechanisms to
achieve HTTP server push or HTTP streaming. These technologies and mechanisms

Universal Messaging Developer Guide Version 10.1 254

Web Client APls

include HTML5 Web Sockets, chunked XMLHTTPRequest and XDomainRequest
responses, EventSource/SSE, iFrame Comet Streaming and more.

The fundamental difference between Universal Messaging JavaScript API's Streaming
drivers and standard HTTP polling is that the Universal Messaging realm server will not
terminate the HTTP connection after it sends response data to the client. The connection
will remain open so that if additional data (such as Universal Messaging events)
becomes available for the client, it can immediately be delivered to the client without
having to be queued and without having to wait for the client to make a subsequent
request. The client can interpret the "partial” response chunks as they arrive from the
server.

Universal Messaging Developer Guide Version 10.1 255

Web Client APls

Streaming Driver Behaviour

Browser Server

Session Request

Session Response Chunk: SessionlD

———m—— e ———————————————

Subscription Request >

Subscription Response: OK

<

Session Response Chunk: Subscription Metadata

1------------------------------

Session Response Chunk: Event Data

I

Session Response Chunk: Event Data

I

Add Session

Add Subscriber

t=0; no events

t=1; no events

t=2; event/s

t=3; no events

t=4; event's

Browser Server

Universal Messaging Developer Guide Version 10.1

256

Web Client APls

This is much more efficient than standard HTTP polling, since the client need only make
a single HTTP request, yet receive ongoing data in a single, long lived response.

Streaming drivers are the preferred drivers to use in a Universal Messaging JavaScript
application. Do note, however, that some environments may limit the successful use of
streaming drivers (such as intermediate infrastructure with poorly configured client-side
proxy servers or reverse proxy servers). In these instances, clients can be configured to
fall back to a Long Polling driver (which can be considered a driver "of last resort").

Long Polling Drivers

When using a Long Polling driver, a Universal Messaging client requests information
from the realm server in a similar way to a normal HTTP poll. The primary difference is
that if the server does not have any information for the client at that time, then instead of
sending an empty response and closing the connection, the server will instead hold the
request and wait for information (for example, Universal Messaging events) to become
available. Once information is available for the client, the server completes its response
and closes the connection. The Universal Messaging client will then immediately make a
new Long Poll request for the next batch of information:

Universal Messaging Developer Guide Version 10.1 257

Web Client APls

Long Poll Driver Behaviour

Browser Server
Session Request
-
Add Session
Session Response: SessionlD
4
Subscription Request
P

Subscription Response: OK (and Subscription Metadata)

Add Subscriber

t=0; no events

t=1; no events

t=2: event/s

Bl
Long Poll Reguest
P
Long Poll Response: Event Data
<
Long Poll Reguest
P
Browser Server

Clearly, if information is constantly being provided, then a client will end up making
very frequent Long Poll requests (potentially as frequently as it would with a normal
HTTP poll approach). The Universal Messaging realm server can be configured to
delay responding and closing a connection for as long as desired (thereby allowing
administrators the option of making requests be fulfilled as soon as data is available,
or waiting for a time period, allowing information to accumulate further, before

Universal Messaging Developer Guide Version 10.1

258

Web Client APls

responding - this latter technique is recommended if a client is likely to receive many
events per second).

Long Polling drivers are therefore not true "push" drivers, and should only be
used under circumstances where real push is not possible (owing, for instance, to
intermediate infrastructure such as poorly configured client-side proxy servers or
reverse proxy servers).

Infrastructural Issues and Workarounds

Universal Messaging JavaScript clients are intended to receive data in near real-time.
To facilitate this, such clients will tend to use one of the API's Streaming drivers (as
opposed to a basic, repetitive HTTP polling).

In most environments, a Streaming driver - which works over HTTP - can be used
without problem. In some environments, however, infrastructure components can
interfere with the real-time HTTP streams. Here we will look at some possible causes of
interference, and discuss how to work around them.

Client-Side Proxy Servers

Most client side proxy servers will permit a client to make a long lived connection to
a Universal Messaging realm server (to see why a long-lived connection is important,
please see the discussion of Streaming drivers above).

In some environments, however, a proxy server might interrupt these connections. This
might be, for example, because:

m the proxy server wishes to "virus check" all content it receives on behalf of its clients.
In this case the proxy server may buffer the streaming response in its entirety
before "checking" it and delivering it to the client. Since the response is, essentially,
unending, the proxy will never deliver any such content to the client and the client
will be forced to reset and try again. If the client has been configured to try other
drivers, it will eventually fall back to a long-polling driver (which should work
perfectly well in such an environment).

B some companies may limit the size of responses which the proxy server will handle.
In this case, the proxy server will forcefully close the connection. As a result, a
Universal Messaging JavaScript client will automatically attempt to re-initialise the
session, and gracefully continue. This should not affect usability too much (though
clients will experience an unnecessary disconnect/reconnect cycle).

B some companies may limit the time for which a connection can remain open through
the proxy. Again, a Universal Messaging JavaScript client will automatically work
around this as above.

It is strongly recommended that you use SSL-encrypted HTTP for your Universal
Messaging applications. Many proxy servers will allow SSL-encrypted HTTP traffic to
pass unhindered. This will ensure that the greatest number of clients can use an efficient
streaming driver.

Universal Messaging Developer Guide Version 10.1 259

Web Client APls

Reverse Proxy Servers and Load Balancers

If your infrastructure includes a reverse proxy server or a load balancer, it is important
to ensure that "stickiness" is enabled if you are using this infrastructure to front more
than one Universal Messaging realm server. That is, requests from an existing client
should always be made to the same back end Universal Messaging realm server.

Most load balancers offer stickiness based either on client IP address or using HTTP
cookies. Client IP based stickiness can work well (though be aware that some clients may
be making requests from different IP addresses, if, for instance, they are behind a bank
of standard proxy servers in their own environment). Cookie-based stickiness will work
well for most drivers (though note that some drivers, notably the "XDR" drivers which
are based on Microsoft's XDomainRequest object, do not support cookies - please see the
JavaScript API Documentation for Drivers for more information).

Choosing Appropriate Drivers for Your Environment

While the default set of drivers work well in a simple environment where browsers
connect directly to the server without intermediate infrastructure such as ill-configured
proxy servers or overly-aggressive antivirus products, in some cases you may wish to
customise the driver set to minimise issues with clients behind such infrastructure.

In summary, to minimise rare but lengthy delays where present-day client infrastructure
interferes with session initialisation, use the following set:

XHR_STREAMING_CORS

XDR_STREAMING
IFRAME_STREAMING_POSTMESSAGE
EVENTSOURCE_STREAMING_POSTMESSAGE
XDR_LONGPOLL

XHR_LONGPOLL_CORS
XHR_LONGPOLL_POSTMESSAGE

m JSONP_LONGPOLL

AND use HTTPS with SSL certificates for the servers on which you deploy your HTML/
JS and for all the UM servers.

More Details

Unless configured otherwise, Universal Messaging JavaScript clients will attempt to use
the following drivers, in decreasing order of preference:

m WEBSOCKET: Streaming driver for browsers supporting HTML5 Web Sockets.

® XHR_STREAMING_CORS: Streaming driver for browsers supporting
XMLHTTPRequest with CORS (Cross-Origin Resource Sharing). Intended for
Chrome, Firefox, Safari, IE10+ and Microsoft Edge.

Universal Messaging Developer Guide Version 10.1 260

Web Client APls

® XDR_STREAMING: Streaming driver for browsers supporting XDomainRequest
(Microsoft Internet Explorer 8+). Intended for IE8 and IE9. Note that
XDomainRequest and hence the XDR_STREAMING driver can not send client
cookies to the server.

m [FRAME_STREAMING_POSTMESSAGE: Streaming driver for browsers supporting
the cross-window postMessage API (per https://developer.mozilla.org/en/DOM/

window.postMessage). Intended for Chrome, Firefox, Safari, IE 8+ and Microsoft
Edge.

® EVENTSOURCE_STREAMING_POSTMESSAGE: Streaming driver for browsers
supporting both Server-Sent-Events and the cross-window postMessage APIL.

m XDR_LONGPOLL: Longpoll driver for browsers supporting XDomainRequest
(Microsoft Internet Explorer 8+). Intended for IE8 and IE9. Note that

XDomainRequest and hence the XDR_STREAMING driver can not send client
cookies to the server.

® XHR_LONGPOLL_CORS: Longpoll driver for browsers supporting
XMLHTTPRequest with CORS (Cross-Origin Resource Sharing). Intended for
Chrome, Firefox, Safari, IE10+ and Microsoft Edge.

® XHR_LONGPOLL_POSTMESSAGE: Longpoll driver for browsers supporting the
cross-window postMessage APIL Intended for Chrome, Firefox, Safari, IE8+ and
Microsoft Edge.

® NOXD_IFRAME_STREAMING: Legacy non-cross domain streaming driver for
older clients requiring streaming from the server that serves the application itself.
Intended for Chrome, Firefox, Safari, IE6+ and Microsoft Edge.

® JSONP_LONGPOLL: Longpoll driver for older browsers relying on DOM
manipulation only (no XHR or similar required). Intended for Chrome, Firefox,
Safari, IE6+ and Microsoft Edge.

The vast majority of clients settle on one of the first three streaming drivers.

As outlined in the API documentation, the developer can override the driver set and
preference order. This is rarely recommended, however, unless a significant proportion
of clients are located behind infrastructure which interrupt communication based on
the typically preferred drivers. We shall explain how such interruptions can manifest
themselves for each of these driver types.

Firstly, a little more detail on how driver failover works for the JavaScript APL
We will first look at how a client communicates with a single UM server:

A client browser first checks whether it supports the underlying technologies on which
the current driver is based. If it does not, then it removes the driver from its list of
possible drivers and will never attempt to use it again.

If the browser successfully initialises a session with the server, then it will always try to
use the same driver thereafter, and will NOT fail over to a different driver (unless the
user reloads the application).

Universal Messaging Developer Guide Version 10.1 261

Web Client APls

If a browser does support the driver, then the driver gets 3 consecutive attempts to
initialise a session. The first attempt happens immediately. The second connection
attempt has a delay of 1 second. The third attempt has a delay of 2 seconds. This is to
avoid compounding problems on a server that may be undergoing maintenance or other
load issues (this is of particular importance if an environment supports many users, or
has been configured to use only a single realm server).

After the third failure, if the client's session object has been configured with more than
one driver (or if it is using the default set), then it will switch to the next driver, and will
once again immediately try to connect and initialise a session. Such drivers' second and
third attempts are subject to the same introduced delays as described above.

Next, let us look at how a client communicates with a cluster of UM servers:

When attempting to initialise a session with a server within a cluster, then a client will
go through all drivers until one works, as described above. A side effect of this is that
if the first server with which the client attempts to communicate is unresponsive, then
one can expect a delay of at least (number_of_supported_drivers * 3 seconds) plus
any underlying request timeouts before the client switches to the next UM server. In a
worst-case scenario this could lead to a delay of 20 seconds or more, which is far from
desirable.

This delay would be this considerable only when the first UM server the client
attempted to use was unavailable. Had the first UM server been available, and
subsequently become unavailable (thus disconnecting the browser), the browser will
switch to a second realm server considerably more quickly, because:

m If the browser gets a confirmed session to server X, then - as explained earlier - it will
always try to use that driver thereafter.

®m If, having had a confirmed session to server X it gets disconnected from server
X, then it will continue retrying to connect to server X with the same driver for a
maximum of 5 consecutive failed attempts (any successful connection will reset the
failure count to 0). If the 5th attempt fails, the browser will consider this server to
be unavailable, and will switch to the next server, re-enable *all* drivers, and start
cycling through them again (giving each one 3 chances to connect as usual). On the
assumption that the second realm server is indeed available, a client would, at this
point, reconnect immediately.

So one key here is to avoid including realms servers in a client's session configuration

object if they are known to be not available pre-session-initialisation. This can be done
by dynamically generating session configuration objects based upon the availability of
back-end servers (though this is beyond the scope of the UM API).

An alternative approach to avoid such a delay would be to lower the number of
potential drivers a browser could attempt - but this will doubtlessly lead to fewer clients
being able to connect, so is not recommended.

Finally, let's look at the individual drivers themselves. All notes below are for traffic over
HTTP (not HTTPS):

m WEBSOCKET Streaming driver for browsers supporting HTML5 Web Sockets.

Universal Messaging Developer Guide Version 10.1 262

Web Client APls

In a typical production deployment, one would expect the majority of external client
browsers to not be able to communicate using WebSockets. There are several reasons
for this:

m Firstly, a significant proportion of end users are using web browsers that do
not yet support the WebSocket protocol (e.g. around 30% of users are on IE9 or
earlier, with no WebSocket support).

m Secondly, users behind corporate proxy servers will, at present, find that the
proxy server will in all likelihood not support the WebSocket protocol, even if
their browser does; this is expected to change, but it will take years, not months.

m Thirdly, many companies wish to deploy their UM servers behind standard
reverse proxy servers or load balancers such as Oracle iPlanet (which, like
the majority of such products, does not support WebSockets either); again,
WebSocket support will appear in such products, but it is simply not there today.

m Fourthly, a client-side antivirus product can interfere with the browser's receipt
of real-time data sent down a WebSocket response. This is common, for example,
for clients using Avast's WebShield functionality - these clients usually have to
be configured to use a long polling driver unless they configure their antivirus
product to ignore traffic from specific hosts. The issue is that the antivirus
product attempts to buffer the entire response so that it can process it for viruses
and the like before giving it to the client. Avast upgraded their product to better
handle WebSocket last year, and as part of that process they have whitelisted a
number of well-known sites that use WebSocket, but may be still being a little
overzealous with WebSocket connections to hosts they don't know.

These issues in combination make it more likely than not that a corporate web user
will be unable to use WebSockets.

That said, if a browser doesn't support WebSocket, it will fail over to the next driver
immediately. On the other hand, if the browser does support WebSockets, but an
intermediate proxy or reverse proxy server doesn't, then the WebSocket HTTP
handshake would, in some circumstances, result in the proxy immediately returning
an error response to the browser. Under these conditions, the browser will retry the
WebSocket driver a maximum of three times (incurring the "3 second" delay as per
the "back-off" rules described above) before failing over to the next driver. The worse
case scenario is a client using a proxy that simply ignores the WebSocket HTTP
Protocol Upgrade handshake; here you are at the mercy of the client timing out,

as the UM server would never receive the WebSocket upgrade request. Although
you can set these timeouts to whatever values you wish, the default values are set

to support clients on slow connections - lowering them will cause clients on slow
connections to frequently fail to initialise sessions.

For client environments that support it, WebSocket is an excellent choice of driver.
Whether you wish to risk a 3-second delay (or, in the rare cases described above,
much higher) for those client environments that don't support it is down to your
distribution of customers. If you are building applications targeting customers
whose infrastructure you understand, then it is worth using the WebSocket driver.
If the audience is more generally distributed, then a good proportion of the clients

Universal Messaging Developer Guide Version 10.1 263

Web Client APls

that are unable to use WebSockets will incur a session initialisation delay. You may
therefore wish to exclude the WEBSOCKET driver from your application's session
configuration.

® XHR_STREAMING_CORS Streaming driver for browsers supporting
XMLHTTPRequest with CORS (Cross-Origin Resource Sharing). Intended for
Chrome, Firefox, Safari, IE10+ and Microsoft Edge.

Unlike WebSocket, this driver does not rely on anything other than standard HTTP
requests and a streaming HTTP response. If the client supports the driver, the only
issues here are intermediate infrastructure components interfering with the real-time
stream of data sent from the UM server to the client:

®m An intermediate proxy server may choose to buffer the streamed response rather
than streaming it directly to the client in real-time. Some have a habit of buffering
all un-encrypted traffic for virus-scanning purposes, thus preventing clients
from using streaming drivers of any kind. This is not very common, but it does
happen.

®m More common is the interruption of a streamed response by client-side antivirus
products like Avast's WebShield (see above, in the WebSocket driver discussion).
In these cases, the browser would not receive the session initialisation response
(as it is being buffered by the antivirus product), and would eventually time out.
This is much slower than failing immediately.

m XDR_STREAMING Streaming driver for browsers supporting XDomainRequest
(Microsoft Internet Explorer 8+). Intended for IE8 and IE9. Note that
XDomainRequest and hence the XDR_STREAMING driver can not send client
cookies to the server.

Although IE8 and IE9 support the XHR object, they cannot use the XHR object to
make cross-domain requests. This driver therefore instead uses a Microsoft-specific
object called the XDomainRequest object which can support streaming responses to
fully cross-domain requests.

As mentioned in its description, this driver can not send client cookies to the server.
This is because Microsoft chose to prevent cookies being sent via the XDR object. As
a result, any intermediate DMZ infrastructure (such as a load balancer) that relies on
client-side HTTP cookies to maintain, for example, load balancer server "stickiness",
will be unable to maintain stickiness (since no cookies that the load balancer might
set will appear in subsequent client requests when using an XDR based driver). If the
load-balancer is fronting more than one UM server, then this setup can result in load
balancers sending a client's post-session-initialisation requests, such as a subscription
request, to a random back-end UM server rather than to the server with which a
client had initialised a (load-balancer-proxied) session. This will cause a client to
reinitialise their session, and repeat ad infinitum. In these cases, if load balancers are
indeed using cookie-based stickiness, then you have two options: either explicitly
configure JavaScript sessions with a set of drivers that exclude all XDR variants, or
change the load balancer configuration to use client IP-based stickiness instead of
cookie-based stickiness instead

Universal Messaging Developer Guide Version 10.1 264

Web Client APls

IFRAME_STREAMING_POSTMESSAGE Streaming driver for browsers supporting
the cross-window postMessage API (per https://developer.mozilla.org/en/DOM/
window.postMessage). Intended for Chrome, Firefox, Safari, IE8+ and Microsoft
Edge.

In all likelihood, a client browser will settle on one of the three drivers discussed
above before it would fail over to this driver. This driver is really only of use in
environments where, for some reason, a browser is unable to create an instance of an
XHR object. This used to be the the case in some older versions of IE if, for example,
a Windows Administrator's policy prevented IE from being able to invoke ActiveX
objects (such as the XMLHTTPRequest object). In modern versions of IE, however,
XMLHTTPRequest is a native non-ActiveX object so this is less of an issue.

The downsides of this driver are the same as those for the XHR_STREAMING_CORS
driver: proxy and antivirus product interference.

EVENTSOURCE_STREAMING_POSTMESSAGE Streaming driver for browsers
supporting both Server-Sent-Events and the cross-window postMessage APIL.

This driver is really only useful to a small subset of modern browsers such as Opera.
It does not rely on any unusual HTTP behaviour, and is therefore only subject to

the same negatives as the other streaming drivers: proxy and antivirus product
interference.

XDR_LONGPOLL Longpoll driver for browsers supporting XDomainRequest
(Microsoft Internet Explorer 8+). Intended for IE8 and IE9. Note that
XDomainRequest and hence the XDR_STREAMING driver can not send client
cookies to the server.

This is the most efficient long-polling driver for IE8 and IE9. Its downside is the
lack of cookie support. This is only an issue if dealing with certain load balancer
configurations (see discussion of XDR_STREAMING).

XHR_LONGPOLL_CORS Longpoll driver for browsers supporting
XMLHTTPRequest with CORS (Cross-Origin Resource Sharing). Intended for
Chrome, Firefox, Safari, IE10+ and Microsoft Edge.

This is the most efficient long-polling driver for non IE-browsers and for IE10+.

As with all long polling drivers (including XHR_LONGPOLL_POSTMESSAGE
and JSONP_LONGPOLL discussed below), the browser will maintain an open
connection to the server until data is available for transport to the browser. As soon
as data arrives for delivery to the browser, the server will wait for a short period of
time (known as the server-side "Long Poll Active Delay" timeout, which defaults
to 100ms) before sending the data to the browser, and closing the connection. The
browser will then immediately make a new long-poll connection to the server, in
preparation for more data. Since the server closes the connection immediately after
sending any data, any intermediary proxy servers or antivirus products will not be
buffering the response in the same was as they might buffer a streaming response,
but will instead immediately relay the response to the browser.

Note that if no data is available to be sent to the browser (if, say, the client is
subscribed to a channel which rarely contains events) then the long-poll connection

Universal Messaging Developer Guide Version 10.1 265

Web Client APls

will remain open for a limited period before being closed by the server (at which
point the browser will automatically create a new long-poll request and wait for

data once again). The length of time for which such "quiet" connections stay open

is defined by the "Long Poll Idle Delay" value, which can be set using Enterprise
Manager (see the JavaScript tab for the relevant Interface). It is important that this
value is lower than the value of any intermediary proxy servers' own timeouts
(which are often 60 seconds, but sometimes as low as 30 seconds). A suitable
production value for "Long Poll Idle Delay" might therefore be 25000ms (25 seconds).

This driver, like all long polling drivers, is good for browsers that want low-latency
but infrequent updates. Long polling drivers are not a good choice for browsers that
receive a continual stream of many messages per second, however (as the browser
may end up making several requests per second to the server, depending upon

the "Long Poll Active Delay" value). In such cases it would be prudent to increase
the "Long Poll Active Delay" value significantly from its default value of 100ms,

to perhaps 1000ms or more (while acknowledging that the browsers using a long
polling driver in such a scenario would no longer be receiving "near-real-time" data).
For browsers that are instead subscribed to channels (or members of datagroups)
that have relatively infrequent updates, the "Long Poll Active Delay" can potentially
be lowered to 0, resulting in real-time delivery despite the use of a long-polling
driver.

® XHR_LONGPOLL_POSTMESSAGE Longpoll driver for browsers supporting the
cross-window postMessage APIL. Intended for Chrome, Firefox, Safari, IE8+ and
Microsoft Edge.

This is the most efficient long-polling driver for non IE-browsers that do not support
CORS, and is a cookie-supporting alternative to XDR_LONGPOLL for IE8 and

IE9. See the XHR_LONGPOLL_CORS discussion for details on how long polling
functions.

® NOXD_IFRAME_STREAMING Legacy non-cross domain streaming driver for older
clients requiring streaming from the realm that serves the application itself. Intended
for Chrome, Firefox, Safari, IE6+ and Microsoft Edge.

This is a streaming driver that is subject to the same issues as the other streaming
drivers: proxy and antivirus product interference.

In addition, unlike all the other drivers, which are fully cross-domain (allowing
communication to a UM server on a different domain to the server that serves the
applications HTML/]S), this driver only permits communication back to the same
server that served the HTML/JS. This implies that the application's HTML/JS must be
served from a file plugin on the UM server in question.

m JSONP_LONGPOLL Longpoll driver for older browsers relying on DOM

manipulation only. Browser will show "busy indicator/throbber" when in use.
Intended for Chrome, Firefox, Safari, IE6+ and Microsoft Edge.

This is the least efficient long-poll driver, but the most likely one to work in all
circumstances. See the XHR_LONGPOLL_CORS discussion for details on how long
polling functions.

Universal Messaging Developer Guide Version 10.1 266

Web Client APls

Dealing with Intermediate Infrastructure Issues

As you can see, proxy servers are a particular bane for streaming HTTP traffic. Happily,
practically all of these issues can be mitigated simply by using HTTPS instead of HTTP.
In these cases, a proxy server will blindly proxy the HTTPS traffic without attempting to
understand or modify the HTTP conversation contained within, and without interfering
with it. If, therefore, you deploy your application on an HTTPS server, and install SSL
certificates on your UM servers, you should be able to use the default set of drivers with
minimal problems.

We would also point out that in our experience all production deployments at our
customers' sites are secured with HTTPS (SSL or TLS). Besides helping browsers
behind certain proxy servers maintain persistent connections that would otherwise be
interrupted by naively configured proxy servers (perhaps buffering for virus checking),
or by misconfigured or old proxies (that cannot understand WebSocket Protocol
Upgrade handshakes), HTTPS offers clear security benefits and improves usability.

Working around client-side antivirus products is a little more difficult, unfortunately.
One option might be to offer a link to a "long-poll-only" version of the application,

and to show this link on screen only when a client is attempting to initialise a session

for the first time. For clients which successfully initialise a session using a streaming
driver, the link will be replaced with actual application content in no time, but for clients
having problems, the ability to click a "click here if you're having problems connecting"
is probably sufficient.

Other "workarounds", such as remembering the driver that worked for a browser as
a value within a persistent cookie (so that it can be reused automatically thereafter),
are risky; a client can be a laptop which subsequently connects via a proxy with a
completely different configuration, for example. Such approaches are best not relied
upon.

It is a shame to abandon WebSocket given its clear benefits, but in a production
deployment we would, for the sake of simplicity, suggest the following as a useful
custom set of drivers:

XHR_STREAMING_CORS

XDR_STREAMING
IFRAME_STREAMING_POSTMESSAGE
EVENTSOURCE_STREAMING_POSTMESSAGE
XDR_LONGPOLL

XHR_LONGPOLL_CORS
XHR_LONGPOLL_POSTMESSAGE

m JSONP_LONGPOLL

This basically leaves out WEBSOCKET because of the risk of a prolonged "failure" time
for a minority of clients behind incompatible proxies, and also leaves out the "legacy"
NOXD_IFRAME_STREAMING driver since this is the only non-cross-domain driver,

Universal Messaging Developer Guide Version 10.1 267

Web Client APls

and it is likely that any production application's HTML/JS would benefit from being

deployed on a static WebServer rather than on a file plugin within the messaging server.

If your DMZ infrastructure includes load balancer components that rely on HTTP

cookies for "stickiness", then the XDR-based drivers should not be used (see the
discussion of XDR_STREAMING above). In this case, the set of custom drivers would be
best reduced to:

XHR_STREAMING_CORS
IFRAME_STREAMING_POSTMESSAGE
EVENTSOURCE_STREAMING_POSTMESSAGE
XHR_LONGPOLL_CORS
XHR_LONGPOLL_POSTMESSAGE
JSONP_LONGPOLL

What Drivers Should | Use?

This example can help you choose a suitable configuration:

Are your application's clients Yes
typically behind proxy servers?

Is your Universal Messaging server No, we do not use a Load Balancer
behind a Load Balancer?

Is your Universal Messaging server No, we do not use a Reverse Proxy
behind a Reverse Proxy Server? Server

Where is your application's HTML/JS It is served from a different web
served from? server (e.g. Apache)

Suggested Session Driver Configuration:

var session = Nirvana.createSession ({

// The WEBSOCKET driver is best not used if clients are behind
// traditional proxy servers.
// NOXD_IFRAME STREAMING excluded as it won't work when
// hosting application HTML on a 3rd-party webserver.
drivers : [
Nirvana.Driver.XHR STREAMING CORS,
Nirvana.Driver.XDR STREAMING,
Nirvana.Driver.IFRAME STREAMING POSTMESSAGE,
Nirvana.Driver.EVENTSOURCE STREAMING POSTMESSAGE,
Nirvana.Driver.XDR LONGPOLL,
Nirvana.Driver.XHR LONGPOLL CORS,
Nirvana.Driver.XHR LONGPOLL POSTMESSAGE,
Nirvana.Driver.JSONP LONGPOLL

Universal Messaging Developer Guide Version 10.1

268

Web Client APls

Corresponding Server-Side Configuration:

Remember to include the hostname(s) of all servers hosting your application HTML in
the CORS Allowed Origins field.

Ensure that you have configured a file plugin on the Universal Messaging interface to
which JavaScript clients will connect, and that you have configured it to serve /lib/js/
crossDomainProxy.html correctly.

Ensure that the Long Poll Idle Delay value is set to be lower than your Load Balancer or
Reverse Proxy server's timeout value. This setting is in ms, and a good value is usually
around 25000.

Ensure that the Long Poll Idle Delay value is set to be lower than any intermediate proxy
server's timeout value. Many proxy servers have timeouts as low as 30 seconds (though
an administrator may have lowered this, of course). In the Universal Messaging server,
this setting is in ms, and a pragmatic value is usually around 25000. You may need to
lower it further if external clients behind remote proxy servers fail to maintain sessions
when using a longpolling driver.

WebSocket Delivery Mode

An Introduction to WebSockets

WebSocket is an emerging HTML5 protocol which provides full-duplex communication
over a TCP socket. The WebSocket API is currently being developed by W3C and the
WebSocket Protocol standardized by IETF.

WebSocket is supported by all major browser vendors. It is currently enabled in Google
Chrome (6+), Mozilla Firefox (6+), Apple Safari (5+), Internet Explorer (HTML5 Labs
only) and Microsoft Edge.

WebSockets serve as an effective low-latency alternative to comet based solutions such
as "XMLHTTPRequest LongPoll" on page 274 or "Forever IFrame" on page 275. It
provides browser-based communication which does not rely on opening multiple HTTP
communications, unlike the aforementioned comet based techniques.

WebSockets in Universal Messaging

Universal Messaging supports WebSocket browser-based communication through our
JavaScript APL. In addition to WebSockets our JavaScript API offers both "LongPolling"
on page 274 and "Forever IFrame" on page 275 communication modes. In

situations where it is possible to use WebSocket however there are significant
performance gains to be had.

In some cases it is desirable to communicate in a secure manner using WebSocket secure
(wss) instead of unencrypted WebSocket (ws). To do this using our JavaScript API, the
following snippet is used:

Sometimes unsecured WebSocket connections cannot be established because of
intermediary network infrastructure such as proxies or firewalls. Some anti-virus

Universal Messaging Developer Guide Version 10.1 269

Web Client APls

software may also block or restrict the creation of a WebSocket on some ports. These
problems can often be overcome by using WebSocket over an SSL connection.

WebSocket interaction with Proxy Servers

As the adoption of WebSocket becomes more widespread an increasing number of
proxy vendors are supporting communication over WebSocket. There still remain cases
however where WebSocket connections cannot be established because of a proxy server
or firewall which blocks this connection.

The reasons for this are twofold. Some proxy servers have not been updated to handle
the protocol, treating requests to establish the connection as normal HTTP traffic.
WebSocket requests are also known not to conform with the HTTP 1.0 spec, causing
some proxies to reject them.

Please see JavaScript API Documentation for Drivers for more details of WebSocket and
other drivers.

WebSocket communication over a Forward Proxy

A Forward Proxy (often just referred to as a proxy) acts as an intermediary between
a client and a browser. If the proxy is explicitly configured it is usually possible to
establish a WebSocket connection to a server without the need for further configuration.

This generally works because in cases where a browser is configured to use an explicit
proxy server it will issue an HTTP CONNECT request to the proxy when establishing
the WebSocket connection. The Connect method enables the proxy to act as a tunnel
between the client and server.

There are two cases where this method may not work. In some situations the proxy may
be configured to restrict use of the HTTP CONNECT method. In other situations the request
may travel through a proxy which is not explicitly configured (a transparent proxy). As
the browser has no knowledge of the proxy, it will not issue the HTTP CONNECT request.

One approach that will likely grant connectivity in both of these situations would be to
use the secure version of the protocol. As the data sent is encrypted when sent the proxy
server it is unable to manipulate it in any way. In these situations it will often forward
the request from the client to the server intact and a connection can be established.

An example on configuring a forward proxy which works with WebSocket is available in
the section "WebSocket over a Forward Proxy" on page 271.

WebSocket communication over a Reverse Proxy

A reverse proxy is a server which appears to clients to be an ordinary server. The client
issues requests directly to this proxy. Based on a set of rules the proxy server will

then forward this request to one or more origin servers which handle the request. The
response is sent back through the proxy and it appears to the client that this response
originated directly from the reverse proxy itself.

WebSocket communication through reverse proxy servers using the application layer
(HTTP in this case) may work in some but not all scenarios. The proxy server must
provide support for WebSockets (HAProxy for example, does). Furthermore the client

Universal Messaging Developer Guide Version 10.1 270

Web Client APls

wishing to communicate using WebSockets must use a version greater than 8 of the
protocol.

WebSocket communication through a reverse proxy using clients which use a previous
version of the protocol is generally not possible. This is because of a recognised flaw
corrected after version 8 of the protocol. This flaw manifests itself because older versions
of the protocol included 8 bytes of key data after the header during a connection
upgrade request. This data was not advertised in the Content-Length header. Because of
this most application layer proxies will discard this data.

Reverse proxies which support forwarding at the Transport layer (layer 4 of the OSI
model) can still be used with older versions of the WebSocket protocol. As layer 4
proxies do not inspect the contents of a HTTP requests header (whereas application
layer proxies do) the key data is not removed when traversing over them.

When traversing reverse proxies which forward at the transport layer both secure and
non-secure communication modes are likely to work. When specifying a WebSocket port
to connect to when using a reverse proxy, the client must use the port which the reverse
proxy is listening to connections on. It should not attempt to connect to the port which
the Universal Messaging realm interface is listening on.

Examples of configured reverse proxies which work with WebSocket are available in the
section "WebSocket over a Reverse Proxy" on page 272.

WebSocket over a Forward Proxy

WebSocket communication can take successfully take place in the presence of forward
proxies, providing the client and proxy server have been configured properly to deal
with it. This page explains how to configure a Universal Messaging JavaScript client and
Apache serving as a forward proxy to permit WebSocket use.

Configuration for an Explicit Forward Proxy

An explicit forward proxy is a forward proxy which the client is configured to use. The
client is aware of the presence of this proxy. In these situations it is easier for the client

to establish a WebSocket connection with the server for reasons outlined in the section

"WebSocket Delivery Mode" on page 269.

Before detailing how to configure Apache as a forward proxy we warn you
that this can be a dangerous thing to do. Before enabling Apache to act as

a forward proxy you must secure your server correctly. Failing to do so will
provide malicious entities with an open proxy server which are dangerous to
both your own network and the rest of the internet.

To proxy requests from your server enable the ProxyRequests directive, located in
mod_proxy. An example configuration file configured as a forward proxy would be:

Example Apache forward proxy configuration

Listen 80

Ensure Proxy Module is Loaded
LoadModule proxy module path/to/mod proxy
Turn on forward proxying

Universal Messaging Developer Guide Version 10.1 271

Web Client APls

DO NOT DO THIS UNLESS YOUR FORWARD PROXY IS CORRECTLY SECURED
ProxyRequests On
ProxyVia On
Al1owCONNECT 9000 # Allow HTTP CONNECT on the nirvana realm port
<Proxy *>

Order deny,allow

Deny from all

Allow from 127.0.0.1 # Restrict to localhost only
</Proxy>

A JavaScript client may then connect using this forward proxy by initialising a session
using the following options:

NirvanaSession.start ({

webSocket : true,
webSocketPort : 9000 // Port of the Universal Messaging interface
});

If the proxy is configured to restrict use of the HTTP CONNECT method then the steps
above may fail even if the proxy is explicitly declared to the client browser. In these
cases it is possible to take the same steps as detailed below for transparent proxy servers
to establish a WebSocket connection.

Configuration for a Transparent Forward Proxy

A transparent forward proxy is an invisible proxy which sits between the client and
server. In these cases as the client browser does not know about the presence of
this proxy it will not send a HTTP CONNECT request to the proxy when establishing
a WebSocket connection. Establishing the connection will likely fail using the
configuration above.

Communicating with the server using SSL will alleviate this problem. Transparent
proxies will usually by default forward SSL traffic. This will allow us to establish a
WebSocket connection.

To do this we must configure apache to allow the HTTP CONNECT header to be sent to the
secure nirvana interface. In this case the example is exactly the same as above, except
with the line A11owCONNECT 9443 where 9443 is the port of the secure realm interface.

The client can then be configured to start a WebSocket session as follows:

NirvanaSession.start ({

webSocket : true,

webSocketPort : 9443, // Port of the Universal Messaging secure interface
secure : true

1)

To maximise the chance of establishing a successful WebSocket connection we
recommend using this secure method of transport over the alternative.
WebSocket over a Reverse Proxy

WebSocket communication can take place over any reverse proxy which is configured to
perform forwarding at the transport layer. Some proxies are able to handle WebSocket

Universal Messaging Developer Guide Version 10.1 272

Web Client APls

communication from certain clients at the application layer. This page details example
configurations for the open source proxy and load balancing software HAProxy.

Application Layer (HTTP) Proxy

Clients communicating using versions of the WebSocket protocol later than version 8 are
able to negotiate some reverse proxies which use application layer forwarding. HAProxy
is one such vendor able to handle WebSocket communication in this manner.

An example configuration file for HAProxy is as follows:

Example HAProxy Configuration file
Here we forward all requests on port 443 to our nirvana server
listening on port 9443
backend defines the nirvana server to forward to. We declare
two backends, one for # serving the http page and another for
websocket communication. Note that these could be two different
ports (80 for serving the web content and 9443 for the secure
nirvana websocket connection)
backend nirvana www

balance roundrobin

option forwardfor

timeout connect 10s

timeout server 30s

server nirvanal nirvanahost:9443 weight 1 maxconn 1024 check
backend nirvana socket

balance roundrobin

option forwardfor

timeout connect 10s

timeout server 30s

server nirvanal nirvanahost:9443 weight 1 maxconn 1024 check
frontend https proxy

bind *:443

timeout client 30s

default backend nirvana www

acl is websocket hdr (Upgrade) -i WebSocket

acl is websocket hdr beg(Host) -i ws

use backend nirvana socket if is websocket

Transport Layer (TCP) Proxy

As forwarding occurs at the transport layer it can only be performed based on the port of
the received packet. To perform forwarding based on URL we would need access to the
HTTP object at the application layer.

The configuration file for HAProxy is as follows:

Example HAProxy Configuration file
Here we forward all incoming requests on port 443 to our nirvana
server which has an nhps interface listening on port 9443
backend defines the nirvana server to forward to
backend nirvana
mode tcp
timeout connect 10s
timeout server 30s
balance roundrobin
server nirvanal nirvanahost:9443 weight 1 maxconn 1024
nirvanahost translates to an ip address
frontend defines the interfaces for the reverse proxy to listen on
frontend https proxy
bind *:443

Universal Messaging Developer Guide Version 10.1 273

Web Client APls

mode tcp
timeout client 30s
default backend nirvana

Configuring the Client

The client JavaScript session should be configured as follows:

NirvanaSession.start ({

webSocket : true,

webSocketPort : 443,
secure : true

The client can then connect by visiting the page https://proxyhost:443

It is possible to communicate using WebSockets over a reverse proxy without using a
secure connection. This can be achieved similar to the example above except modifying
the port (to use a non-secure port) and changing the session options to this port and
setting the secure flag to false. It is however recommended that to maximise the
success of establishing a WebSocket connection a secure communication method is
chosen.

Comet Streaming Delivery Mode

Comet Streaming drivers in JavaScript have been implemented in several ways,
including XHR with CORS, XDR, and "Forever IFrames".

Comet Forever IFrames in Universal Messaging

An [Frame is an inline frame within a web page which contains an inline document. The
term 'Forever IFrame' is used to denote an inline frame which is implicitly declared as
infinitely long. This property of such frames allow the server to continually populate it
with data. As browsers render and execute scripts on a page incrementally, the pushed
data can be manipulated by the client as it passes into the frame.

The Forever IFrame delivery mode is supported by Universal Messaging's JavaScript
API and can be used in all browsers.

In addition to Streaming, "WebSocket" on page 269 and "LongPolling" on page 274
delivery modes are supported.

Please see the JavaScript API Documentation for Drivers for more details.

Comet LongPolling Delivery Mode

An Introduction to Comet LongPolling

LongPolling is a variation of the traditional polling technique. In traditional polling,
a client sends requests on a regular basis to the server attempting to pull any new
data available on the server. If there are no events on the server an empty response is
returned and after a specified delay the client sends a new request.

LongPolling sends requests to the server in much the same way as traditional polling. In
a LongPoll implementation however if the server has no data to push it holds the request

Universal Messaging Developer Guide Version 10.1 274

Web Client APls

up until the point where new data is available or the request times out. Once the server
sends a LongPoll response the client typically initiates a new request immediately.

As the server usually holds a LongPoll request at all times from the client. It is able to
asynchronously push data to the client by providing it with a response.

Comet LongPolling in Universal Messaging

The LongPolling delivery mode is supported by Universal Messaging's JavaScript API
and can be used by all browsers. In addition to LongPolling, "WebSocket" on page
269 and "Forever [Frame" on page 275 delivery modes are also offered by the APL

LongPolling is a desirable option when the implementation must support older
browser versions, or also when requests must traverse proxy servers which may not be
configurable by those developing the application. Other delivery modes often require
newer browsers or unobtrusive end-to-end connections.

Longpolling drivers in Universal Messaging JavaScript include XHR with CORS, XHR
with postMessage, XDR and JSONP. Please see JavaScript API Documentation for
Drivers for more details.

Comet Forever IFrame Delivery Mode

An Introduction to Comet Forever IFrames

An IFrame is an inline frame within a web page which contains an inline document. The
term 'Forever IFrame' is used to denote an inline frame which is implicitly declared as
infinitely long. This property of such frames allow the server to continually populate it
with data. As browsers render and execute scripts on a page incrementally, the pushed
data can be manipulated by the client as it passes into the frame.

Comet Forever IFrames in Universal Messaging

The Forever IFrame delivery mode is supported by Universal Messaging's JavaScript
API and can be used in all browsers. In addition to Forever IFrame, "WebSocket Delivery
Mode" on page 269 and "Comet LongPolling Delivery Mode" on page 274 delivery
modes are supported.

A Universal Messaging JavaScript client can communicate with a server using the
Forever IFrame delivery mode by specifying the following configuration when starting a
session:

NirvanaSession.start ({

protocolSelection : ["streamingcomet"]

});

Example: Implementing a Simple Pub/Sub Client

The Universal Messaging JavaScript API makes it easy to implement JavaScript Publish
& Subscribe clients. These clients can communicate using Comet techniques (both

Universal Messaging Developer Guide Version 10.1 275

Web Client APls

streaming and long-polling), as well as using Web Sockets when supported by the client
browser.

The code shown below is a fully functioning example of such a client, containing
JavaScript connection, publishing and subscription logic and an HTML UL

In some circumstances you may wish to serve your web application from another

web server (e.g. Apache). Universal Messaging supports this also but due to security
restrictions within browsers it requires that your application is organised differently (see
"Serving From Another Webserver" on page 238 for related information).

<?xml version="1.0" encoding="UTF-8"?>

<!doctype html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>

<script language="JavaScript" src="lib/nirvana.js"></script>

<script>

window.onload = isLoaded;

var demoChannel = null;

var demoUsername = "anonymous";

function isLoaded() {
/**
* As soon as the page loads, we should create our Universal Messaging session.
* This method is invoked by the body tag's "onload" event.
* We use the pre-instantiated object NirvanaSession and define what
* we want to happen once the session is initialised by implementing
* a callback function, NirvanaSession.onInit:
***/

NirvanaSession.onInit = function(nirvanaSessionID) {
/**
* Now that our session has initialised, we can access an automatically
instatiated object named Nirvana, which provides access to classes
representing events and dictionaries, such as Nirvana.nConsumeEvent
and Nirvana.nEventProperties.
In this demo, we shall subscribe to a channel and define what we
want to happen when certain activities occur (such as subscribing,
or receiving events). We do this by implementing callback logic,

* either with anonymous functions, or if preferred, with named functions:
***/

ok o X X %

demoChannel = new NirvanaChannel ("/showcase/simplechatroom") ;
demoChannel .onSubscribe =
function (cname, msg) { window.status = "Subscribed to " + cname; }

demoChannel .onData = demoEventHandler;
demoChannel.onPublish = updateUserInputUI;
demoChannel . subscribe () ;

}

NirvanaSession.onConnect = function() { window.status = "Connected"; }
NirvanaSession.onDisconnect =
function() { window.status = "Disconnected. Reconnecting..."; }

/**
* Now that we have defined all that should happen when our session is
* up and running, let us *start* it. We pass in a configuration object

* to specify properties about this connection.
***/

NirvanaSession.start ({

domain : "my-channels.com", // as we are going to use

// realm showcase.um.softwareag.com
realmHosts : ["showcase"], // an array of realm hostnames

// - in this case just the one
applicationName : "SimpleChatRoom",
sessionName : "JavaScriptDemoSession",

Universal Messaging Developer Guide Version 10.1 276

Web Client APls

username : demoUsername // in a typical app, this would be
// an authenticated username
1)
}

function demoEventHandler (event) {
/**
* This method automatically gets invoked every time we receive an
event from the demoChannel (since this is the method we specified

* as the demoChannel.onData event handler. Note that the

* event object will be passed to this method as a parameter. We can

* then get the event's data "dictionary", and read the value of any

* of its keys. In this demo, we use this data to update a textarea.
***/
var dictionary = event.getDictionary() ;

var newData =

dictionary.get ('publisher') + ": " + dictionary.get('message') + "\n"

var oldData = document.getElementById ("outputTextarea") .value;
document.getElementById ("outputTextarea") .value = newData + oldData;

function publishMessage () {
/**
* This method is an example of how to publish events to our channel.

* We first create an nConsumeEvent, and assign it an nEventProperties
* object (which represents a data "dictionary" - essentially a hash of
* key-value pairs). Finally, we call the channel's publish method,

* It is good practice to wrap code like this in try/catch blocks.
***/

if (document.getElementById("demoInput").value == "") return;
try {
var evt = new Nirvana.nConsumeEvent () ;

var dictionary = new Nirvana.nEventProperties() ;
dictionary.put ("publisher", demoUsername) ;
dictionary.put ("message", document.getElementById ("demoInput") .value) ;
evt.setDictionary (dictionary) ;
demoChannel.publish (evt) ;
} catch (error) {
alert ("Error: " + error.message);
}

}

function updateUserInputUI () {
/**
* This method automatically gets invoked after we successfully
* publish to testChannel (since this is the method we specified
* as the handler for testChannel.onPublish.

* A typical implementation of such a function would re-enable UI components

* that might have been disabled while publishing took place.

***/

if(!initialiasedASession)
alert ("We did not get a session to Universal Messaging");

document.getElementById ("demoInput") .value = "";
window.status = "Published";

}
</script>

<title>Universal Messaging JavaScript Tutorial Application:
Simple Chat Room</title>
</head>
<body onload="isLoaded () ">
<hl>Universal Messaging JavaScript Tutorial Application:
Simple Chat Room</hl>
<form onsubmit="publishMessage (); return false;">
<h2>Input</h2>
<input type="text" id="demoInput"/>
<input type="submit" value="Publish">

Universal Messaging Developer Guide Version 10.1

277

Web Client APls

<h2>0Output</h2>

<textarea id="outputTextarea" rows="10" cols="70"></textarea>
</form>
</body>
</html>

Web Developer's Guide for Silverlight

Developing and Deploying Silverlight Applications

This guide describes how to develop and deploy Microsoft Silverlight applications using
Universal Messaging, and assumes you already have Universal Messaging installed.

Note: The Universal Messaging client API for Microsoft Silverlight is deprecated
and will be removed from the product distribution in the next official release.

Universal Messaging Web Client Development in Microsoft Silverlight

Please refer to the Universal Messaging C# Developer's Guide for more information on
developing Silverlight clients.

Silverlight Deployment

We provide a separate "Tradespace Demos' download that contains a fully working
Silverlight application called Tradespace. When you follow the instructions, you are able
to load the Silverlight Tradespace demo application from your Universal Messaging
realm.

The setup of the demos performs the following actions:
® Adds an http interface on port 8080

B Adds afile plugin to your this interface (this enables the Universal Messaging server
to act as a web server and serve content to browsers)

®m Creates the required channels in the realm used by the Tradespace demos.

Running through the demos setup is the simplest way to get started with Universal
Messaging and deployment of a Silverlight application - in this case the Tradespace
Silverlight demo. You can of course go through the individual steps described above
yourself and deploy your own Silverlight application.

Channel ACLs

When creating a Silverlight application, it is worth remembering to correctly set the
ACLs for both the realm(s) and channel(s) used, to ensure that the application is able to
access the Universal Messaging server. This can easily be performed using the Enterprise
Manager.

Universal Messaging Developer Guide Version 10.1 278

Web Client APls

Silverlight's Client Access Policy File

When deploying a Silverlight application on a different host to the Universal Messaging
server, Silverlight requires the use of a client access policy file to validate that the
connection is permitted. For example :

® you deploy your Silverlight application from webhostl.yourdomain.com:80
®m your Universal Messaging server is located on nirvanahostl.yourdomain.com:80

When Silverlight detects a connect attempt outside of the host from which the
application was downloaded, it makes a request for the policy file from the host you
are making the connection to. When using an nhp (HTTP) or nhps (HTTPS) RNAME
to connect to the Universal Messaging realm, Silverlight makes a GET request for

a clientaccesspolicy.xml file from the root of the web server (in this case, the file

plugin running on the Universal Messaging server HTTP or HTTPS interface). If no
clientaccesspolicy.xml is found, it then makes a second GET for a crossdomain.xml file,
again from the root of the file plugin.

An example of a clientaccesspolicy.xml file for Silverlight clients is shown below. This
example should not be used for anything other than testing purposes, as it essentially
allows open access to and from all domains. For more information on cross domain
access with Silverlight, and configuring the clientaccesspolicy.xml file, see the Microsoft
MSDN guide.

<?xml version="1.0" encoding="utf-8"?>
<access-policy>
<cross-domain-access>
<policy>
<allow-from http-request-headers="*">
<domain uri="*"/>
</allow-from>
<grant-to>
<resource path="/" include-subpaths="true"/>
</grant-to>
</policy>
</cross-domain-access>
</access-policy>

Examples

Live Stock Chart

This example demonstrates how to subscribe to a Universal Messaging channel and
chart prices received in real-time events.

Application Source Code

using System;
using System.Collections.Generic;
using System.Ling;

Universal Messaging Developer Guide Version 10.1 279

http://msdn.microsoft.com/en-us/library/cc197955%28v=vs.95%29.aspx
http://msdn.microsoft.com/en-us/library/cc197955%28v=vs.95%29.aspx

Web Client APls

using
using
using
using
using
using
using
using
using
using
using

{

System.
System.
System.
System.
System.
System.
System.
System.
System.

Net;

Threading;

Windows;
Windows.Controls;
Windows.Documents;
Windows.Input;
Windows.Media;
Windows.Media.Animation;
Windows.Shapes;

com.pcbsys.nirvana.client;
Visifire.Charts;
namespace Silverlight LiveStockChart

public partial class Page : UserControl,nEventListener,nReconnectHandler

{

private bool started;

public nSession mySession;

public Thread sessionThread;

private long myEventCount=0;

private const string RNAME = "nhps://showcase.um.softwareag.com:443";
private const string RATES CHANNEL = "/showcase/stockhistory";

public Page ()

{

InitializeComponent () ;

CreateChart () ;

StartupProgressDialog.IsOpen = true;

sessionThread = new Thread (new ThreadStart (startSubscribers));
sessionThread.IsBackground = true;

sessionThread.Start () ;

App.Current.Host.Content.Resized += (s, e) =>

{

} .

}

theBack.Width = App.Current.Host.Content.ActualWidth;
theBack.Height = App.Current.Host.Content.ActualHeight;

’

public void disconnected (nSession anSession)

{

StartupProgressDialog.Dispatcher.BeginInvoke (new

setProgressBarMessage (updateStatusMessage), "Disconnected...");

StartupProgressDialog.Dispatcher.BeginInvoke (new

setOverlayPanelVisibleDelegate (setOverlayPanelVisible), true);

Console.WriteLine ("Disconnected") ;

}

public void reconnected(nSession anSession)

{

StartupProgressDialog.Dispatcher.BeginInvoke (new

setOverlayPanelVisibleDelegate (setOverlayPanelVisible), false);

Console.WriteLine ("Reconnected") ;

}

public bool tryAgain(nSession anSession)

{

return true;

}

public void go (nConsumeEvent evt)

{

if (evt.getChannelName () .Equals (RATES CHANNEL))

{

myEventCount++;
if (myEventCount>=100)
{
StartupProgressDialog.Dispatcher.BeginInvoke (new
setOverlayPanelVisibleDelegate (setOverlayPanelVisible),
false);

Universal Messaging Developer Guide Version 10.1 280

Web Client APls

}

nEventProperties nep = evt.getProperties();
nEventAttributes nea = evt.getAttributes();

long tval = nea.getTimestamp () ;

DateTime ttime = ConvertJavaMiliSecondToDateTime (tval) ;

myChart.Dispatcher.BeginInvoke (new
RatesDataDelegate (updateRatesGrid), ttime.ToShortTimeString(),
nep.get ("value") .ToString()) ;
return;
}
}
public DateTime ConvertJavaMiliSecondToDateTime (long javaMS)
{
DateTime UTCBaseTime = new DateTime (1970, 1, 1, 0, 0, O,
DateTimeKind.Utc) ;
DateTime dt = UTCBaseTime.Add (new TimeSpan (javaMS *
TimeSpan.TicksPerMillisecond)) .ToLocalTime () ;
return dt;
}
public delegate void RatesDataDelegate (String index, String ival);
private void updateRatesGrid (String time, String ival)
{
DataPoint dataPoint = new DataPoint ();
// Set YValue for a DataPoint
dataPoint.YValue = Double.Parse (ival) ;
dataPoint.AxisXLabel = time;
// Add dataPoint to DataPoints collection.
myChart.Series[0] .DataPoints.Add (dataPoint) ;
}
public delegate void setProgressBarMessage (String message) ;
public void updateStatusMessage (String message)
{
myStatusMessage.Text = message;
}
public delegate void setOverlayPanelVisibleDelegate (Boolean flag);
public void setOverlayPanelVisible (Boolean flag)
{
StartupProgressDialog.IsOpen = flag;
}
public void startSubscribers ()
{
if (!started)
{
try
{
nSessionAttributes nsa = new nSessionAttributes (RNAME, 5);
mySession = nSessionFactory.create(nsa, this, "SilverDemoUser"):;
mySession.init () ;
StartupProgressDialog.Dispatcher.BeginInvoke (new
setProgressBarMessage (updateStatusMessage),
"Subscribing to Rates...");
nChannelAttributes ncaindices = new nChannelAttributes () ;
ncaindices.setName (RATES CHANNEL) ;
nChannel myRatesChannel = mySession.findChannel (ncaindices);
myRatesChannel.addSubscriber (this, 0);
StartupProgressDialog.Dispatcher.BeginInvoke (new
setProgressBarMessage (updateStatusMessage),
"Waiting for 100 events to create chart...");
}
catch (Exception e)
{
Console.Writeline ("Error starting subscribers: " + e.Message);
Console.WriteLine (e.StackTrace) ;

Universal Messaging Developer Guide Version 10.1 281

Web Client APls

}
started = true;
}
}
/// <summary>
/// Function to create a Visifire Chart
/// </summary>
public void CreateChart ()
{
// Create a new instance of Title
Title title = new Title();
// Set title property
title.Text = "NSL PLC.";
// Add title to Titles collection
myChart.Titles.Add (title) ;

Live Stock Indices

This example demonstrates how to subscribe to a Universal Messaging channel and

render prices received in real-time events.

Application Source Code

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Ling;

using System.Net;

using System.Threading;

using System.Windows;

using System.Windows.Controls;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Animation;
using System.Windows.Shapes;

using com.pcbsys.nirvana.client;
namespace Silverlight LiveStockIndices

{

public partial class Page : UserControl,nReconnectHandler,nEventListener

{
private bool started;
public nSession mySession;

private ObservableCollection<RatesData> myRatesDatalistSource =

new ObservableCollection<RatesData> () ;

public Thread sessionThread;

private const string RNAME = "nhps://showcase.um.softwareag.com:443";
private const string RATES CHANNEL = "/showcase/stockindices";

public Page ()

{
InitializeComponent () ;
StartupProgressDialog.IsOpen = true;

myIndexGrid.ItemsSource = this.myRatesDatalistSource;

myIndexGrid.IsReadOnly = true;
App.Current.Host.Content.Resized +=

{

theBack.Width = App.Current.Host.Content.ActualWidth;

theBack.Height = App.Current.Host.Content.ActualHeight;

}i

Universal Messaging Developer Guide Version 10.1

282

Web Client APls

sessionThread = new Thread (new ThreadStart (startSubscribers));
sessionThread.IsBackground = true;
sessionThread.Start () ;
}
public void startSubscribers ()
{
if (!started)
{
try
{
nSessionAttributes nsa = new nSessionAttributes (RNAME, 5);
mySession = nSessionFactory.create(nsa, this, "SilverDemoUser") ;
mySession.init () ;
StartupProgressDialog.Dispatcher.BeginInvoke (new
setProgressBarMessage (updateStatusMessage),
"Subscribing to Rates...");
nChannelAttributes ncaindices = new nChannelAttributes () ;
ncaindices.setName (RATES CHANNEL) ;
nChannel myRatesChannel = mySession.findChannel (ncaindices) ;
myRatesChannel.addSubscriber (this, 0);
StartupProgressDialog.Dispatcher.BeginInvoke (new
setOverlayPanelVisibleDelegate (setOverlayPanelVisible),
false);
}
catch (Exception e)
{
Console.Writeline ("Error starting subscribers: " + e.Message);
Console.WriteLine (e.StackTrace) ;
}
started = true;
}
}
public delegate void setProgressBarMessage (String message) ;
public void updateStatusMessage (String message)
{
myStatusMessage.Text = message;
}
public delegate void setOverlayPanelVisibleDelegate (Boolean flag);
public void setOverlayPanelVisible (Boolean flag)
{
StartupProgressDialog.IsOpen = flag;
}
public void disconnected (nSession anSession)
{
StartupProgressDialog.Dispatcher.BeginInvoke (new
setProgressBarMessage (updateStatusMessage), "Disconnected...");
StartupProgressDialog.Dispatcher.BeginInvoke (new
setOverlayPanelVisibleDelegate (setOverlayPanelVisible), true);
Console.WriteLine ("Disconnected") ;
}
public void reconnected(nSession anSession)
{
StartupProgressDialog.Dispatcher.BeginInvoke (new
setOverlayPanelVisibleDelegate (setOverlayPanelVisible), false);
Console.WriteLine ("Reconnected") ;
}
public bool tryAgain(nSession anSession)
{
return true;
}
public void go (nConsumeEvent evt)

{
if (evt.getChannelName () .Equals (RATES CHANNEL))

Universal Messaging Developer Guide Version 10.1 283

Web Client APls

}
}

nEventProperties nep = evt.getProperties();
myIndexGrid.Dispatcher.BeginInvoke (new
RatesDataDelegate (updateRatesGrid), nep.getString("name"),
nep.get ("value") .ToString()) ;
return;

public delegate void RatesDataDelegate (String index, String ival);

private

{
try
{

}

void updateRatesGrid(String index, String ival)

Boolean found = false;
foreach (RatesData item in myRatesDatalistSource)
{
if (item.Index.Equals (index))
{
if (item.Price != ival)
{
item.Price = ival;
int currentidx = myRatesDatalListSource.IndexOf (item) ;
myRatesDatalistSource.Remove (item) ;
myRatesDatalistSource.Insert (currentidx,
new RatesData () {Index = index, Price = ival});
myIndexGrid.SelectedIndex = currentidx;
}
found = true;
}
}
if (!found)
{
RatesData newratesd = new RatesData () { Index = index,
Price = ival };
myRatesDatalListSource.Insert (0, newratesd);
myIndexGrid.SelectedIndex = 0;
}

catch (Exception ex)

{

Console.Writeline ("Error updateing index grid");
Console.WritelLine (ex.Message) ;

Simple Chat Room

This example demonstrates how to subscribe and publish to a Universal Messaging

channel.

Application Source Code

using System;

using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Ling;

using System.Net;

using System.Threading;

using System.Windows;

using System.Windows.Controls;

Universal Messaging Developer Guide Version 10.1 284

Web Client APls

using
using
using
using
using
using

System
System
System
System
System
com.pc

.Windows.Documents;
.Windows.Input;
.Windows.Media;
.Windows.Media.Animation;
.Windows.Shapes;
bsys.nirvana.client;

namespace Silverlight SimpleChatRoom

{

public partial class Page : UserControl,nEventListener,nReconnectHandler

{

priv
publ
priv

n
publ
priv
priv
priv
publ
{

}
publ
{

}
publ

{

ate bool started;

ic nSession mySession;

ate ObservableCollection<ChatData> myChatDatalListSource =
ew ObservableCollection<ChatData> () ;

ic Thread sessionThread;

ate nChannel myChatChannel;

ate const string RNAME = "nhps://showcase.um.softwareag.com:443";
ate const string CHAT CHANNEL = "/showcase/simplechatroom";

ic Page()

InitializeComponent () ;

StartupProgressDialog.IsOpen = true;

lstChat.ItemsSource = this.myChatDatalListSource;

sessionThread = new Thread (new ThreadStart (startSubscribers));

sessionThread.IsBackground = true;

sessionThread.Start () ;

App.Current.Host.Content.Resized += (s, e) =>

{
theBack.Width = App.Current.Host.Content.ActualWidth;
theBack.Height = App.Current.Host.Content.ActualHeight;

b
ic void startSubscribers ()

if (!started)
{
try
{
nSessionAttributes nsa = new nSessionAttributes (RNAME, 5);
mySession = nSessionFactory.create(nsa, this, "SilverDemoUser") ;
mySession.init () ;
StartupProgressDialog.Dispatcher.BeginInvoke (new
setProgressBarMessage (updateStatusMessage),
"Subscribing to Chat...");
nChannelAttributes ncachat = new nChannelAttributes();
ncachat.setName (CHAT CHANNEL) ;
myChatChannel = mySession.findChannel (ncachat);
myChatChannel.addSubscriber (this, 0);
StartupProgressDialog.Dispatcher.BeginInvoke (new
setOverlayPanelVisibleDelegate (setOverlayPanelVisible),
false);
}
catch (Exception e)
{
Console.Writeline ("Error starting subscribers: " + e.Message);
Console.WritelLine (e.StackTrace);
}
started = true;

}
ic void go (nConsumeEvent evt)

if (evt.getChannelName () .Equals (CHAT CHANNEL))

Universal Messaging Developer Guide Version 10.1 285

Web Client APls

nEventProperties nep = evt.getProperties();
String msg = nep.getString("message") ;
String sender = nep.getString("sender") ;
nEventAttributes nea = evt.getAttributes();
long tval = nea.getTimestamp () ;
DateTime ttime = ConvertJavaMiliSecondToDateTime (tval) ;
lstChat.Dispatcher.BeginInvoke (new
ChatDataDelegate (updateChatList), sender, msg, ttime.ToString());
return;
}
}
private void Send Button Click(object sender, RoutedEventArgs e)

{

if (txtMessage.Text == null) return;

//to handle enter key pressed in general

String senderuser = "SilverUser" + ("" +
mySession.getSessionConnectionId()) .Substring (13);

String message = txtMessage.Text;

nEventProperties props = new nEventProperties();

props.put ("sender", senderuser);
props.put ("message", message) ;
nConsumeEvent evt = new nConsumeEvent (props, "chatmsg"):;
myChatChannel.publish (evt) ;
txtMessage.Text = "";
}
public DateTime ConvertJavaMiliSecondToDateTime (long javaMS)
{
DateTime UTCBaseTime = new DateTime (1970, 1, 1, 0, 0, O,
DateTimeKind.Utc) ;
DateTime dt = UTCBaseTime.Add (new TimeSpan (javaMS *
TimeSpan.TicksPerMillisecond)) .ToLocalTime () ;
return dt;
}
public delegate void ChatDataDelegate (String sender, String message,
String timestamp) ;
public void updateChatList (String sender, String message, String timestamp)
{
ChatData somechatmessage = new ChatData () { Message = message,
Sender = sender, TimeStamp = timestamp };
myChatDatalistSource.Insert (0, somechatmessage);
}
public delegate void setProgressBarMessage (String message) ;
public void updateStatusMessage (String message)
{
myStatusMessage.Text = message;
}
public delegate void setOverlayPanelVisibleDelegate (Boolean flag);
public void setOverlayPanelVisible (Boolean flag)
{
StartupProgressDialog.IsOpen = flag;
}
public void disconnected (nSession anSession)
{
StartupProgressDialog.Dispatcher.BeginInvoke (new
setProgressBarMessage (updateStatusMessage), "Disconnected...");
StartupProgressDialog.Dispatcher.BeginInvoke (new
setOverlayPanelVisibleDelegate (setOverlayPanelVisible), true);
Console.WritelLine ("Disconnected") ;
}
public void reconnected(nSession anSession)

{

StartupProgressDialog.Dispatcher.BeginInvoke (new

Universal Messaging Developer Guide Version 10.1 286

Web Client APls

setOverlayPanelVisibleDelegate (setOverlayPanelVisible), false);

Console.WritelLine ("Reconnected") ;
}
public bool tryAgain(nSession anSession)
{

return true;
}
private void txtMessage KeyDown (object sender, KeyEventArgs e)
{

if (e.Key == Key.Enter && txtMessage.Text != null &&

txtMessage.Text.Trim () .Length>0)
{
//Handle Enter Here.
e.Handled = true;
Send Button Click(sender, e);

}

else

{

e.Handled = false;
}

Web Developer's Guide for Java

Web Developer's Guide for Java

This guide describes how to develop and deploy Java Web applications using Universal
Messaging, and assumes you already have Universal Messaging installed.
Universal Messaging Web Client Development in Java

Universal Messaging Web Clients have access to the Universal Messaging Enterprise API
for Java, which has been streamlined to provide our full messaging capability via a very
small client library which is easily deployed as an applet or a Java Web Start application.

Please refer to the Universal Messaging Enterprise Java Development Guide for more
information on Java Client Development.

Deploying Java Applications using Java Web Start

This guide describes the basic concepts for deploying feature rich Java applications
using Java Web Start.

Java Web Start

Java Web Start enables applications to be deployed quickly and easily launched from a
web server. Once launched using Web Start, an application can subsequently be directly
launched using a desktop link on the client machine.

Universal Messaging Developer Guide Version 10.1 287

Web Client APls

Basics

Typically, an application written in Java can be deployed quickly with a few simple
steps. Java Web Start applications require all resources to be located within one or more
jar files. Once you have packaged up your resources (classes, images etc.) into your jar
file(s), you need to create a Java Network Launching Protocol (JNLP) file to be placed
onto your web server. This file specifies all the properties required by your application,
as well as any Web Start instructions required in order to launch the application.

Example JNLP (Tradespace)

Our sample Tradespace application is a good example of a Web Start application that
uses the Universal Messaging Client API to consume simulated stock index prices,
trades as well as news and chat. Below shows the contents of the JNLP file used to
launch this application.
<?xml version="1.0" encoding="UTF-8"?>
<jnlp spec="1.0+" codebase="https://showcase.my-channels.com/demo/installers/java/"
href="https://showcase.my-channels.com/demo/installers/java/tradespace.jnlp">
<information>
<title>Nirvana Tradespace</title>
<vendor>my-channels.com</vendor>
</information>
<security>
<all-permissions/>
</security>
<update check="timeout" policy="always"/>
<resources>
<j2se java-vm-args="-Djavaws.cfg.jauthenticator=none" version="1.5+"/>
<jar href="https://showcase.my-channels.com/demo/installers/java/Tradespacedemo.jar"
download="eager" main="true"/>
<property name="sun.java2d.noddraw" value="true"/>
</resources>
<application-desc main-class="com.pcbsys.nirvana.apps.Tradespace"/>
</jnlp>

New versions of your application can be easily deployed to your customer base
automatically by updating the resource jar files and deploying them to your web server.

Java Web Start applications will automatically check for new versions before launching
local cached versions.

Applet Javascript Bridge Example

A Sample JavaScript-Applet Bridged Client

Using the Universal Messaging nApplet, it is easy to bridge communications between
a JavaScript front end which delegates all Universal Messaging communication to an
Applet.

The code shown below is a fully functioning example of such a client, containing an
applet along with JavaScript code which communicates seamlessly with the applet. The
applet implements all connection, publishing and subscription logic. All events that are
delivered to the applet are called back into JavaScript asynchronously.

<?xml version="1.0" encoding="UTF-8"?>

Universal Messaging Developer Guide Version 10.1 288

Web Client APls

<!doctype html PUBLIC "-// W3C// DTD XHTML 1.0 Transitional// EN"
"http:// www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http:// www.w3.0rg/1999/xhtml" xml:lang="en" lang="en">

<head>

<script language="JavaScript" src="lib/nirvana.js"></script>

<script>

var appName = "myTestApplication";

var channelName = "/tutorial/testchannel/";

var realm = "nhp://" + location.hostname + ":80";

var sessionName = "myExampleSession";

var username = "emcdaid"; // note that in a real app,

// this should be an authenticated username!
var connected = false;
var isLoadedCounter = 0;
var mySession = null;
var testChannel = null;
var isTimedOutConnectingCounter = 0;

function isLoaded () {
/**

* As soon as the page loads, we should create our Universal Messaging session.

This method is invoked by the <body> tag's "onload" event.

a username and a "prefix" for connection listener callback methods.
The last parameter is the connection listener "prefix". As we chose

four methods to receive asynchronous notifications of our connection
status: conHandlerCBgotInitialConnection, conHandlerCBdisconnected,
conHandlerCBreconnected and conHandlerCBtryAgain.

Note that we could use any string as a prefix; we simply need to

* name our four implemented methods accordingly.
***/

// the nJSCRIPT variable is set by the applet when it initially loads

* ok X X X X X ok

if (typeof nJSCRIPT == "undefined") {

if (isLoadedCounter > 4) {

window.status = "unable to initialise Universal Messaging libraries";
return;

}

else{

setTimeout ("isLoaded ()", 4000) ;

}

}

else if (nJdSCRIPT == true) {

window.status = "nApplet has been initialised.";

// session is initialised with a realm address, a sessionid,
// a username and a connection listener callback stub.
mySession = new nSessionWithSubjectAndReconnectionHandler (realm,

appName, username, "conHandlerCB") ;

mySession.init () ;

connectionTimeoutMonitor () ;

}
}

function connectionTimeoutMonitor () {
/**
* This method is used to allow the web page to give up on attempting
* to get an initial connection after a certain number of retries are
* unsuccessful.
***/
isTimedOutConnectingCounter++;
if (mySession.isConnected()) {
return;
}
else if (isTimedOutConnectingCounter < 4) {
setTimeout ("connectionTimeoutMonitor ()", 4000);

We initialise our session by passing in a realm address, a sessionid,

to use the string "conHandlerCB" as the prefix, we must now implement

Universal Messaging Developer Guide Version 10.1

289

Web Client APls

}

else if (isTimedOutConnectingCounter == 4) {

timedOutConnecting = true;

window.status = "Timed out connecting to Universal Messaging. ";
document.getElementById ('Universal Messaging') .stop() ;

return;

}
}
function conHandlerCBdisconnected () {
/**
* This method automatically gets invoked we get disconnected from our
* Universal Messaging session. Note that this is because we specified
"conHandlerCB" as the prefix of the implicit "disconnected",
"reconnected","initialConnection" & "tryAgain" methods when we
created the session (see fourth parameter in the constructor for
nSessionWithSubjectAndReconnectionHandler) .
A typical use for these method would be to re-enable UI components
which might have been disabled during the disconnected period.
See also the tryAgain method, which allows us to specify whether
the application should attempt to reconnect automatically after a

*
*
*
*
*
*
*
*
* disconnect has occurred.
***/
connected = false;

alert ("Disconnected") ;

}

function conHandlerCBreconnected() {
/**
* This method automatically gets invoked we get reconnected to our
Universal Messaging session after a disconnect too place. Note that this is

because we specified "conHandlerCB" as the prefix of the implicit
"disconnected", "reconnected","initialConnection" & "tryAgain"

methods when we created the session (see fourth parameter in the
nSessionWithSubjectAndReconnectionHandler constructor).

A typical use for these method would be to re-enable UI components

which might have been disabled during the disconnected period.

See also the tryAgain method, which allows us to specify whether
the application should attempt to reconnect automatically after a

* disconnect has occured.
***/

Ok X X X X ok ok X

connected = true;

alert ("Reconnected") ;

}
function conHandlerCBgotInitialConnection () {
/**
* This method automatically gets invoked we get the initial connection.
Note that this is because we specified "conHandlerCB" as the prefix
of the implicit "disconnected", "reconnected","initialConnection" &
"tryAgain" methods when we created the session (see fourth parameter
in the nSessionWithSubjectAndReconnectionHandler constructor).

A typical use for these method would be to wait for confirmation
that the session has initialised before continuing with any other

* processing.
***/

X% ok ok X X

connected = true;

window.status = "Connected to Universal Messaging.";

setTimeout ("handleNewConnection();", 500);

}
function conHandlerCBtryAgain () {
/**

* This method automatically gets invoked after each attempt to

* reconnect to a disconnected Universal Messaging session. This allows the
* developer to control whether or not continued attempts should be

* made to reconnect. Note that this is because we specified

Universal Messaging Developer Guide Version 10.1 290

Web Client APls

"conHandlerCB" as the prefix of the implicit "disconnected",
"reconnected","initialConnection" & "tryAgain" methods when we
created the session in our isLoaded() method.

This method allows us to specify whether the application should

* attempt to reconnect automatically after a disconnect has occured.
***/

* ok X X

return true;
}
function handleNewConnection () {

window.status = "Session Initialised";

setupTestChannel () ;
}
function setupTestChannel () {
/**
* Here we create an nChannelAttributes object, setting its name to
* that of the channel we wish to use. We then use our session to

* a) find the channel, then b) subscribe to the channel.
***/
if (connected) {

var channelAttribs = new nChannelAttributes();
channelAttribs.setName (channelName) ;

testChannel = mySession.findChannel (channelAttribs, "testChannelFoundCB");
// make sure we have a usable channel object

if (testChannel == false) {

if (mySession.isConnected()) {

// Channel could not be found. Let us try again.

// Maybe channel does not exist, or channel ACL is incorrect
setTimeout ("setupTestChannel ()", 2000) ;

} else {

// waiting for disconnect

setTimeout ("setupTestChannel ()", 4000) ;

}

} else {

// Add subscriber to the channel object

var startEID = 0;

var evtHandler = "myTestChannelEventHandlerCB";

testChannel .addSubscriberFromEID (evtHandler, startEID)

}

} else {

// if we were disconnected when this method was called, try again
setTimeout ("getServerTime ()", 4000);

}

window.status = "";

}
function myTestChannelEventHandlerCB (event) {
/**
* This method automatically gets invoked every time we receive an
event from the testChannel (since this is the method we specified
when we subscribed - see testChannelFoundCB method) . Note that the
event object will be passed to this method as a parameter. We can
then get the event data (which is a byte[]), and/or its "dictionary"
which contains a set of key-value pairs. In this demo, we use the

* dictionary keys "publisher" and "message", and update a textarea.
***/

* Ok X X X

var dictionary = event.getDictionary() ;

var newData = dictionary.get ('publisher') + ": " + dictionary.get('message') + "\n"
var oldData = document.getElementById ("outputTextarea) .value;
document.getElementById ("outputTextarea") .value = newData + oldData;

}

function publishMessage () {
/**

* This method is an example of how to publish events to our channel.
* We first create an nConsumeEvent, and assign it an nEventProperties

Universal Messaging Developer Guide Version 10.1 291

Web Client APls

* object (which represents a data"dictionary" - essentially a hash of

* key-value pairs). Finally, we publish our event to the channel.
***/

if (document.getElementById("demoInput").value == "") return;
try {
var evt = new nConsumeEvent () ;

var dictionary = new nEventProperties();

dictionary.put ("publisher", username) ;

dictionary.put ("message", document.getElementById ("demoInput") .value) ;
evt.setDictionary(dictionary) ;

testChannel.publish (evt) ;

} catch (error) {

alert ("Error: " + error.message);

}

}
</script>
<title>Pub/Sub with Universal Messaging JavaScript</title>
</head>

<body onload="isLoaded () ">
<hl>Universal Messaging : Pub/Sub with Java to JavaScript Bridge</hl>

<applet

codebase = "/jars/"

archive = "nClient.jar,nSigned.jar,nApplet.jar"
code = "com.pcbsys.nirvana.client.jscript.Universal MessagingAppletThreaded.class"
id = "Universal Messaging"

name = "Universal Messaging"

MAYSCRIPT

width = "0O"

height = "0"

hspace = "0"

vspace = "0"

align = "bottom"

>

</applet>

<form onsubmit="publishMessage(); return false;">
<h2>Input</h2>

<input type="text" id="demoInput"/>
<input type="submit" value="Publish">

<h2>Output</h2>

<textarea id="outputTextarea" rows="10" cols="70"></textarea>
</form>

</body>

</html>

Universal Messaging Developer Guide Version 10.1 292

	Table of Contents
	Universal Messaging Client Development
	Enterprise APIs
	Overview of the Enterprise Client APIs
	Enterprise Developer's Guide for Java
	General Features
	Creating a Session
	Events
	Event Dictionaries
	Channel Joins
	Google Protocol Buffers

	Publish / Subscribe Using Channels/Topics
	Creating a Channel
	Finding a Channel
	Publishing events to a Channel
	Sending XML Dom Objects
	Asynchronous Subscriber
	Channel Iterator
	Batched Subscribe
	Batched Find
	Durable channel consumers and named objects
	Named Objects
	Event Fragmentation
	The Merge Engine and Event Deltas
	Priority Messaging

	Publish / Subscribe Using DataStreams and DataGroups
	DataStreamListener
	Creating and Deleting DataGroups
	Managing DataGroup Membership
	DataGroup Conflation Attributes
	DataGroups Event Publishing
	DataStream Event Publishing
	Priority Messaging

	Message Queues
	Creating a Queue
	Finding a Queue
	Queue Publish
	Asynchronous Queue Consuming
	Synchronous Queue Consuming
	Asynchronous Transactional Queue Consuming
	Synchronous Transactional Queue Consuming
	Queue Browsing / Peeking
	Request Response
	Event Fragmentation

	Provider for JMS
	Overview of the Provider for JMS
	JMSAdmin: Sample application for creating realm resources
	JMS Client SSL Configuration
	Application Server Integration (JBoss)
	JMS Message / Event Mapping
	JMS Message Type Conversion
	Fanout Engine
	Resource Adapter for JMS
	Support for XA Transactions

	Basic Authentication
	Overview
	Client-side Authentication
	Server-side Authentication

	Code Examples
	Pub/Sub Channels
	Java Client: Channel Publisher
	Java Client: Transactional Channel Publisher
	Java Client: Asynchronous Channel Consumer
	Java Client: Synchronous Channel Consumer
	Java Client: Asynchronous Named Channel Consumer
	Java Client: Synchronous Named Channel Consumer
	Java Client: XML Channel Publisher
	Java Client: Asynchronous XML Channel Consumer
	Java Client: Event Delta Delivery
	Java Client: Batching Server Calls
	Java Client: Batching Subscribe Calls

	Pub/Sub Datagroups
	Java Client: DataStream Listener
	Java Client: DataGroup Publishing with Conflation
	Java Client: DataGroup Manager
	Java Client: Delete DataGroup
	Java Client: DataGroup Delta Delivery

	Message Queues
	Java Client: Queue Publisher
	Java Client: Transactional Queue Publisher
	Java Client: Asynchronous Queue Consumer
	Java Client: Asynchronous Transactional Queue Consumer
	Java Client: Synchronous Queue Consumer
	Java Client: Synchronous Transactional Queue Consumer
	Java Client: Peek events on a Queue
	Java Client: Requester - Request/Response
	Java Client: Responder - Request/Response

	Administration API
	Java Client: Add a Queue ACL Entry
	Java Client: Modify a Channel ACL Entry
	Java Client: Delete a Realm ACL Entry
	Java Client: Add a Schedule to a Universal Messaging Realm
	Java Client: Simple authentication server
	Java Client: Monitor realms for cluster creation, and cluster events
	Java Client: Monitor realms for client connections coming and going
	Java Client: Copy a channel and its events
	Java Client: Monitor the remote realm log and audit file
	Java Client: Export a realm to XML
	Java Client: Import a realm's configuration information
	Java Client: Console-based Realm Monitor
	Java Client: Realm Monitor
	Java Client: Create Cluster
	Java Client: Create Security Group
	Java Client: Add Security Group Subject
	Java Client: Delete Security Group Subject
	Java Client: Delete Security Group

	Provider for JMS
	Using the AMQP Protocol
	Java Client: JMS BytesMessage Publisher
	Java Client: JMS BytesMessage Subscriber
	Java Client: JMS MapMessage Publisher
	Java Client: JMS MapMessage Subscriber
	Java Client: JMS ObjectMessage Publisher
	Java Client: JMS ObjectMessage Subscriber
	Java Client: JMS StreamMessage Publisher
	Java Client: JMS StreamMessage Subscriber
	Java Client: JMS BytesMessage Queue Publisher
	Java Client: JMS BytesMessage Queue Subscriber
	Java Client: JMS Queue Browser

	Channel / Queue / Realm Management
	Java Client: Creating a Channel
	Java Client: Deleting a Channel
	Java Client: Creating a Queue
	Java Client: Deleting a Queue
	Java Client: Create a Channel Join
	Java Client: Delete a Channel Join
	Java Client: Purge events from a channel
	Java Client: Find the event id of the last event
	Java Client: Add a realm to another realm
	Java Client: Multiplex a Session

	Client API Package Documentation

	Enterprise Developer's Guide for C++
	General Features
	Creating a Session
	Universal Messaging Events
	Event Dictionaries
	Channel Joins
	Google Protocol Buffers

	Publish / Subscribe using Channel Topics
	Publish / Subscribe Using Channels/Topics
	Creating a Channel
	Finding a Channel
	How to publish events to a Channel
	Asynchronous Subscriber
	Channel Iterator
	Batched Subscribe
	Batched Find
	Durable channel consumers and named objects
	Named Objects
	The Merge Engine and Event Deltas
	Priority Messaging

	Publish / Subscribe using Datastreams and Datagroups
	Publish / Subscribe Using DataStreams and DataGroups
	DataStreamListener
	Creating and Deleting DataGroups
	Managing DataGroup Membership
	DataGroup Conflation Attributes
	DataGroups Event Publishing
	DataStream Event Publishing
	Priority Messaging

	Message Queues
	Message Queues
	Creating a Queue
	Finding a Queue
	Queue Publish
	Asynchronous Queue Consuming
	Synchronous Queue Consuming
	Asynchronous Transactional Queue Consuming
	Synchronous Transactional Queue Consuming
	Queue Browsing / Peeking

	Code Examples for C++
	Publish / Subscribe using Channel Topics
	C++ Client: Channel Publisher
	C++ Client: Transactional Channel Publisher
	C++ Client: Asynchronous Channel Consumer
	C++ Client: Synchronous Channel Consumer
	C++ Client: Asynchronous Named Channel Consumer
	C++ Client: Synchronous Named Channel Consumer
	C++ Client: Event Delta Delivery
	C++ Client: Batching Server Calls
	C++ Client: Batching Subscribe Calls

	Publish / Subscribe using Datastreams and Datagroups
	C++ Client: DataStream Listener
	C++ Client: DataGroup Publishing with Conflation
	C++ Client: DataGroup Manager
	C++ Client: Delete DataGroup
	C++ Client: DataGroup Delta Delivery

	Message Queues
	C++ Client: Queue Publisher
	C++ Client: Transactional Queue Publisher
	C++ Client: Asynchronous Queue Consumer
	C++ Client: Synchronous Queue Consumer
	C++ Client: Peek Events on a Queue

	Administration API
	C++ Client: Add a Queue ACL Entry
	C++ Client: Modify a Channel ACL Entry
	C++ Client: Delete a Realm ACL Entry
	C++ Client: Monitor realms for client connections coming and going
	C++ Client: Console-based Realm Monitor
	C++ Client: Remove Node ACL
	C++ Client: Authserver

	Channel / Queue / Realm Management
	C++ Client: Creating a Channel
	C++ Client: Deleting a Channel
	C++ Client: Creating a Queue
	C++ Client: Deleting a Queue
	C++ Client: Create Channel Join
	C++ Client: Delete a Channel Join
	C++ Client: Purge Events From a Channel
	C++ Client: Create Queue Join
	C++ Client: Delete Queue Join

	Prerequisites
	Prerequisites
	Client SSL Configuration
	Environment Setup : Windows
	Environment Setup : Linux

	Enterprise Developer's Guide for C#
	General Features
	Creating a Session for C#
	Universal Messaging Events
	Universal Messaging Event Dictionaries
	Channel Joins

	Publish / Subscribe using Channel Topics
	Creating a Channel
	Finding a Channel
	Publishing Events to a Channel
	Subscribe Asynchronously to a Channel
	Synchronous Consumers
	Batched Subscribe
	Batched Find
	Using Durable Objects
	Durable Channel Consumers and Named Objects (Deprecated)
	The Merge Engine and Event Deltas
	Event Fragmentation
	Consuming a JMS Map Message
	Priority Messaging

	Publish / Subscribe using Datastreams and Datagroups
	Publish / Subscribe Using DataStreams and DataGroups
	Enabling DataGroups and Receiving Event Callbacks
	DataStreamListener

	Managing Datagroups
	Creating and Deleting DataGroups
	Managing DataGroup Membership
	DataGroup Conflation Attributes

	Publishing to Datagroups
	DataGroups Event Publishing
	DataStream Event Publishing
	Priority Messaging

	Message Queues
	Message Queues
	Creating a Queue
	Finding a Queue
	Publishing events to a Queue
	Asynchronously Consuming a Queue
	Synchronously Consuming a Queue
	Asynchronous Transactional Queue Consumption
	Synchronous Transactional Queue Consumption
	Browse (Peek) a Universal Messaging Queue
	Request Response
	Event Fragmentation

	Basic Authentication
	Overview
	Prerequisites for Basic Authentication
	Client-side Authentication
	Server-side Authentication

	Google Protocol Buffers
	Examples
	Publish / Subscribe using Channel Topics
	Publish / Subscribe
	Channel Publisher
	Transactional Channel Publisher
	Asynchronous Channel Consumer
	Synchronous Channel Consumer
	Asynchronous Named Channel Consumer
	Synchronous Named Channel Consumer
	Event Delta Delivery
	Batching Server Calls
	Batching Subscribe Calls

	Publish / Subscribe using Datastreams and Datagroups
	DataStream Listener
	DataGroup Publishing with Conflation
	DataGroup Manager
	Delete DataGroup
	DataGroup Delta Delivery

	Message Queues
	Queue Publisher
	Transactional Queue Publisher
	Asynchronous Queue Consumer
	Synchronous Queue Consumer
	Peek Events on a Queue
	Requester - Request/Response
	Responder - Request/Response

	MyChannels.Nirvana API
	MyChannels.Nirvana DataGroup Publisher
	MyChannels.Nirvana Queue Publisher
	MyChannels.Nirvana Topic Publisher
	MyChannels.Nirvana DataGroup Listener
	MyChannels.Nirvana Queue Consumer
	MyChannels.Nirvana Topic Subscriber
	RX Topic Subscriber
	RX Queue Consumer
	RX DataGroup Listener

	Administration API
	Add a Queue ACL Entry
	Modify a Channel ACL Entry
	Delete a Realm ACL Entry
	Monitor realms for client connections coming and going
	Export a realm to XML
	Import a realm's configuration information
	Console-based Realm Monitor
	Simple authentication server
	Set Container ACL
	Difference between 2 realms

	Channel / Queue / Realm Management
	Creating a Channel
	Deleting a Channel
	Creating a Queue
	Deleting a Queue
	Create Channel Join
	Delete a Channel Join
	Multiplex a Session
	Purge Events From a Channel
	Create Queue Join
	Delete Queue Join

	Prerequisites
	C# Prerequisites
	C# Client SSL Configuration
	Globally Accessible DLLs

	Messaging API
	MyChannels.Nirvana API: Creating and Disposing of a Session
	MyChannels.Nirvana API: Producers
	MyChannels.Nirvana API: Consumers
	MyChannels.Nirvana API: Reactive Extensions

	Enterprise Developer's Guide for VBA
	Publish / Subscribe
	Publish/Subscribe
	Subscribing Tasks
	Subscribing to a Channel

	Publishing Tasks
	Creating a Session
	Finding a Channel
	Universal Messaging Events
	Publishing Events to a Channel

	Learn More
	Event Properties
	How the RTD Server Works
	Setting the RTD Throttle Interval
	Internal Event Processing
	Universal Messaging RTD Server Internal Queues
	OnChange() Event Using RTD

	Prerequisites

	Enterprise Developer's Guide for Python
	Enterprise Client Development
	Environment Configuration
	Creating a Session
	Subscribing to a Channel/Topic or Queue
	DataStream - Receiving DataGroup Events
	Publishing Events to a Channel or Queue
	Writing an Event to a DataGroup
	Asynchronous Exception Listener
	Synchronously Requesting Events

	Sample Applications
	Publish / Subscribe using Channel Topics
	Channel Publisher
	Asynchronous Channel Subscriber
	Channel Iterator

	Publish / Subscribe using Datastreams and Datagroups
	DataGroup Publisher
	DataStream Listener

	Message Queues
	Queue Publisher
	Asynchronous Queue Consumer
	Synchronous Queue Reader

	Python Objects
	Universal Messaging Events
	Event Dictionaries

	API Language Comparisons

	Mobile Client APIs
	Client API for iPhone
	iPhone Developer's Guide

	Client API for Android
	Android Developer's Guide

	Web Client APIs
	Overview of Web Client APIs
	Web Developer's Guide for Javascript
	Overview
	Server Configuration for JavaScript
	Server Configuration for HTTP Delivery
	Server Configuration for HTTPS Delivery
	Serving From Another Webserver

	Web Client Development in JavaScript
	Creating a Session
	Publish/Subscribe Tasks
	Overview of using Publish/Subscribe
	Using a Universal Messaging Channel
	Subscribing to a Channel
	Publishing Events to a Channel
	Transactional Publish
	DataStream - Receiving DataGroup Events

	Message Queue Tasks
	Overview of using Message Queues
	Using a Queue
	Subscribing to a Queue
	Publishing Events to a Queue
	Asynchronous Transactional Queue Consuming

	JavaScript Objects
	Universal Messaging Events
	Universal Messaging Event Attributes
	Event Dictionaries

	Optimizing Throughput
	The Merge Engine and Event Deltas

	JavaScript Communication Drivers and Protocols
	Communication Drivers
	WebSocket Delivery Mode
	WebSocket over a Forward Proxy
	WebSocket over a Reverse Proxy
	Comet Streaming Delivery Mode
	Comet LongPolling Delivery Mode
	Comet Forever IFrame Delivery Mode

	Example: Implementing a Simple Pub/Sub Client

	Web Developer's Guide for Silverlight
	Developing and Deploying Silverlight Applications
	Examples
	Live Stock Chart
	Live Stock Indices
	Simple Chat Room

	Web Developer's Guide for Java
	Web Developer's Guide for Java
	Deploying Java Applications using Java Web Start
	Applet Javascript Bridge Example

