
Universal Messaging Administration Guide

Version 10.1

October 2017

This document applies to Universal Messaging Version 10.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2013-2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: NUM-AG-101-20180212

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

Universal Messaging Administration Guide Version 10.1 3

Table of Contents

Overview... 9

Universal Messaging Enterprise Manager.. 11
Introduction... 12

Getting Started.. 12
Tab-by-Tab Overview...13

Administration Using Enterprise Manager..16
Enterprise View..16
Realm Administration...17

Creating and Starting a Realm Server...17
Connecting to Multiple Realms.. 18
Disconnecting from Realms... 20
Editing Connection Information.. 22
Realm Profiles.. 24
Realm Federation...25
Realm Configuration...28

Zone Administration...82
Cluster Administration..85

Creating a Cluster.. 85
Deleting Clusters.. 89
Modifying Clusters..91
Cluster Channel Administration..93
Cluster Queue Administration.. 96
Viewing Cluster Information... 99
Manage Inter-Cluster Connections...101
Creating and Managing Clusters with Sites...104

Channel Administration..107
Creating Channels..108
Editing Channels.. 113
Copying Channels.. 116
Creating Channel Joins..118
Channel Snoop...122
Channel Publishing...123
Channel Named Objects.. 126

DataGroup Administration... 127
Creating DataGroups..128
Adding Existing DataGroups to DataGroups... 132
Removing DataGroups from DataGroups.. 134
Deleting DataGroups..135

Queue Administration.. 137
Creating Queues.. 137

M
Table of Contents

Universal Messaging Administration Guide Version 10.1 4

Editing Queues...143
Copying Queues...146
Queue Snoop... 148

Using ACLs for role-based Security..150
Security Groups..151
Realm Entitlements.. 153
Channel Entitlements... 155
Queue Entitlements..157
Interface VIA Rules.. 159

Scheduling... 161
Universal Messaging Scheduling : Writing Schedule Scripts................................... 161
Universal Messaging Scheduling : Calendar Triggers Schedules............................166
Universal Messaging Scheduling : Conditional Triggers.. 167
Universal Messaging Scheduling : Tasks...182
Universal Messaging Scheduling: Editor..198
Scheduler Examples...204
Universal Messaging Scheduling : Example Realm Script...................................... 205
Universal Messaging Scheduling : Store Triggers Example.................................... 205
Universal Messaging Scheduling : Interface Triggers Example............................... 207
Universal Messaging Scheduling : Memory Triggers Example................................ 207
Universal Messaging Scheduling : Realm Triggers Example...................................207
Universal Messaging Scheduling : Cluster Triggers Example..................................208
Universal Messaging Scheduling : Counter Trigger Example.................................. 208
Universal Messaging Scheduling : Time Triggers Example..................................... 209
Universal Messaging Scheduling : Configuration Example......................................209

Integration with JNDI... 210
TCP Interfaces, IP Multicast and Shared Memory..216

Overview of Working with Interfaces..216
Creating Interfaces... 217
Starting Interfaces.. 220
Modifying Interfaces... 221
Stopping Interfaces...221
Deleting Interfaces..221
SSL Interfaces..221
Interface Configuration... 222
JavaScript Interface Panel... 224
Interface plugins... 227
Multicast Configuration... 227
Shared Memory Configuration... 232
Creating an SSL network interface to a Universal Messaging Realm Server...........234
How to generate certificates for use.. 238

Plugins... 241
File Plugin...242
XML Plugin... 246
Proxy Passthrough Plugin..251

M
Table of Contents

Universal Messaging Administration Guide Version 10.1 5

REST Plugin...252
SOAP Plugin.. 270
Servlet Plugin... 273

XML Configuration: Overview..275
XML Configuration: Exporting To XML...276
XML Configuration: Importing From XML.. 277
XML Configuration: Sample XML File for EXPORT...278

Management and Monitoring Sections...282
Enterprise view.. 282
Management Information...284

Enterprise Summary...285
Clusters Summary..287
Clusters Status... 288
Realms Summary...290
Realm Status..292
Realm Monitoring... 294
Universal Messaging Enterprise Manager : Logs Panel.. 294
Realm Connections.. 298
Threads Status... 301
Top.. 303
Audit Panel... 306
Container Status...309
Container Monitor Panel.. 311
Channel Status...314
Data Group Status... 316
Channel Connections... 318
Queue Status... 321
Interface Status.. 323

Scheduler view.. 325
Channel view... 330
Queue view..335

Using the Enterprise Viewer...339

Using Command Central to Manage Universal Messaging... 341
Managing Universal Messaging using Command Central... 342
Securing Access to Command Central.. 342

Changing the Authentication Mode... 342
Verifying the Outbound Authentication Settings..343
Using Unix Shell Scripts to Change Connection Credentials for Managed Products...... 343

Instance Management.. 344
Creating an Instance... 344
Deleting an Instance..345

Authentication Configuration...345
Universal Messaging Configuration Types... 346

Working with Universal Messaging Configuration Types.. 346

M
Table of Contents

Universal Messaging Administration Guide Version 10.1 6

User Management... 347
License Management.. 347
Ports Configuration..347

Configure NSP..348
Configure NHP... 350
Configure NHPS...353
Configure NSPS... 356

Memory Configuration... 358
Realm Access Control Lists (ACLs)..359
Group Management...359
General Properties...359
JNDI Management...361

JNDI Connection Factories.. 362
JNDI Destinations...363

Channels Configuration... 364
Queues Configuration..368
Zones... 371
Java System Properties.. 372
Cluster Management... 372

Before You Create a Universal Messaging Cluster..372
Cluster Configuration Fields...373
Cluster Configuration Tasks Supported..373
Cluster Migration.. 373

Universal Messaging Logs... 374
Universal Messaging Administration Types..374

Durable Subscribers.. 374
Channels..378
Queues.. 378

Universal Messaging Inventory.. 379
Universal Messaging Lifecycle Actions.. 379
Universal Messaging KPIs..379
Universal Messaging Run-time Monitoring Statuses..380
Universal Messaging and the Command Line Interface.. 381
Universal Messaging Commands...382

Command Line Administration Tools.. 415
Introduction to the Administration Tools... 416
Starting the Tools using the Tools Runner Application...416
Performing Standard Administration Tasks on Realms and Clusters.....................................418
Running a Configuration Health Check..418
Collecting Realm Information... 428

Universal Messaging Administration API..435
Introduction... 436
Administration API Package Documentation..439
Namespace Objects... 439

M
Table of Contents

Universal Messaging Administration Guide Version 10.1 7

nRealmNode.. 439
nLeafNode (Channels and Queues)... 441
Realm Federation.. 443
Channel Join..444

Realm Server Management..445
Interfaces... 445
Scheduling... 447
Config...448
Clustering...449
Multicast...451

Security... 452
Access Control Lists..452
Nirvana Admin API - Nirvana Security Groups... 453
Realm Access Control List (nACL)... 454
Channel Access Control List (nACL).. 454
Queue Access Control List..455

Management Information..456
nRealmNode.. 456
nClusterNode... 459
nLeafNode... 460
Connection Information..462

M
Even Header

Universal Messaging Administration Guide Version 10.1 8

M
Odd Header

Universal Messaging Administration Guide Version 10.1 9

Overview

This administration guide covers the following areas:

"Universal Messaging Enterprise Manager" on page 11: a graphical user interface
for management of your Universal Messaging environment. There is also a read-
only version of the Enterprise Manager, called the Enterprise Viewer, which allows
unprivileged users to view the Universal Messaging environment (see the section
"Using the Enterprise Viewer" on page 339 for details).

"Using Command Central to Manage Universal Messaging" on page 341: a web
and command-line interface to configure and manage Universal Messaging.

"Command Line Administration Tools" on page 415: a set of command line tools
that allow you to perform many of the common actions available through Universal
Messaging.

"Universal Messaging Administration API" on page 435: a powerful API that
allows you to build applications to manage your Universal Messaging environment
programmatically.

M
Even Header

Universal Messaging Administration Guide Version 10.1 10

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 11

1 Universal Messaging Enterprise Manager

■ Introduction ... 12

■ Administration Using Enterprise Manager ... 16

■ Management and Monitoring Sections .. 282

■ Using the Enterprise Viewer .. 339

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 12

Universal Messaging provides a powerful management tool that enables the capture of
extremely granular metrics, management and audit information from multiple Universal
Messaging realms. The enterprise realm manager also allows you to control, configure
and administer all aspects of any Universal Messaging realm or clusters of realms.

Universal Messaging's Enterprise Manager has been completely wrien using the
Universal Messaging management API and so any of its functionality can be easily
integrated into bespoke or 3rd party systems management services.

The Universal Messaging Enterprise Manager and administration API use in-band
management. This ensures that the flexibility of Universal Messaging connections is
also made available from a management / monitoring perspective. Universal Messaging
realms can be managed remotely over TCP/IP sockets, SSL enables sockets, HTTP and
HTTPS as well as through normal and user-authenticated HTTP/S proxies.

This guide contains information on all aspects of using the Universal Messaging
enterprise manager GUI.

Introduction

Getting Started
In order to start administering and monitoring your Universal Messaging Realm servers
you need to launch the Universal Messaging Enterprise Manager. The Enterprise
Manager is capable of connecting to multiple Universal Messaging realms at the same
time, whether these are part of a cluster / federated namespace or simple standalone
realms. A configuration file called realms.cfg is created in your home directory which
stores the Enterprise Manager's connection info, however the very first time you
launch it a bootstrap RNAME environment variable can be used to override the default
connection information. Subsequent launches will not depend on the environment
variable as long as you save your connection information (see "Realm Profiles" on page
24).

Launching on Windows platforms can be done by selecting the Enterprise Manager
shortcut in the start menu.

You can also open a client command prompt and type a command of the following form:
<UM_install_dir> \java\<UM_server_name> \bin\nenterprisemgr.exe

where <UM_install_dir> is the installation root location and <UM_server_name> is the
name of the Universal Messaging server.

Launching on Unix platforms can be done by executing the nenterprisemgr executable,
which you can find under the installation directory at the following location:

java/umserver/bin/nenterprisemgr

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 13

Logging In

When you start the Enterprise Manager, there is a login dialog in which you can enter
a user ID and password. The user ID and password are only required for logging in if
you have activated basic authentication. If you have not activated basic authentication,
the password is ignored, but the user ID is still subject to the usual ACL checks in the
Enterprise Manager.

See the section Basic Authentication in the Developer Guide for information about seing
up basic authentication.

The read-only Enterprise Viewer

The Enterprise Viewer is a read-only version of the Enterprise Manager. It allows
unprivileged users to view the same information as with the Enterprise Manager, but
does not allow you to change the Universal Messaging environment in any way. For
further information, see the section "Using the Enterprise Viewer" on page 339.

Tab-by-Tab Overview
This document provides a high level overview of Enterprise Manager functionality
on a tab by tab basis, for each of the following node types (as displayed in Enterprise
Manager's left hand pane).

"Universal Messaging Enterprise" on page 13

"Realm Nodes" on page 13

"Container (Folder) Nodes" on page 15

"Channel Nodes" on page 15

"Queue Nodes" on page 16

Universal Messaging Enterprise View

Highlighting the Universal Messaging Enterprise node in the tree provides an Enterprise
Summary view of all realms to which Enterprise Manager is connected, and includes
information such the total number of realms, clusters, channels, queues, events
published and received, and more.

Realm Nodes

Highlighting a Realm Node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events
published or consumed, numbers of connections, and memory usage.

Monitoring Tab

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 14

A container for multiple panels that enable you to view live information on the
selected realm:

Logs

Provides a rolling view of Universal Messaging Logs and Plugin Logs including
Access and Error logs.

Connections

Provides a list of all current connections to the realm, along with details such as
protocol, user, and host. Allows connections to be "bounced" (forcing them to
reconnect).

Threads

Provides details such as the number of idle and active threads per thread pool,
task queue size per thread pool and a total number of executed tasks for the
respective thread pool. It also provides details of scheduled operations each task
has within the system.

Top

A "Unix top"-like view of realm memory usage, JVM GC stats, channel and
connection usage.

Audit

Displays the contents of the remote audit file and receives real time updates as
and when audit events are generated.

Metrics

Provides metrics on current memory usage, such as on-heap event memory
usage.

ACL Tab

Displays the realm ACL and the list of subjects and their associated permissions for
the realm. Permits editing of ACLs.

Comms Tab

Provides access to management tools for TCP interfaces, IP Multicast and Shared
Memory communication methods:

Interfaces

Management of TCP Interfaces (creation, deletion, starting/stopping) as well as
configuration of advanced interface properties.

Multicast

Management of IP Multicast Configurations (creation/deletion) and advanced
configuration tuning.

Shared Memory

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 15

Realms Tab

Provides a summary of memory, event and interface information for each realm to
which Enterprise Manager is connected.

Config Tab

Manage the seings for many groups of advanced realm configuration parameters.

Scheduler Tab

Permits the user to view, add, delete and edit scheduler scripts.

JNDI Tab

Enables the creation of references to JMS TopicConnectionFactory and
QueueConnectionFactory, as well as references to Topics and Queues.

Container (Folder) Nodes

Totals Tab

Provides status information for resources and services contained within the selected
container branch of the namespace tree.

Monitor Tab

A "Unix top"-like view of the usage of Channels or Queues found within the
container node.

Channel Nodes

Highlighting a Channel Node in the navigation tree in the left hand panel will bring up
a context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events
published or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins between Channels.

ACL Tab

Permits the user to add, remove or modify entries within the Channel ACL.

Named Objects

Enables the viewing and deletion of named objects (which provide state information
for durable consumers for the channel.

Snoop Tab

Permits snooping of events on the Channel

Connections

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 16

Enables the creation of references to JMS TopicConnectionFactory and
QueueConnectionFactory, as well as references to Topics and Queues.

Queue Nodes

Highlighting a Queue Node in the navigation tree in the left hand panel will bring up a
context-sensitive set of tabs in the right hand panel:

Status Tab

Provides a snapshot and historical view of statistics such as the number of events
published or consumed, rates, and event storage usage.

Joins Tab

Permits the user to view, add, delete and edit joins from any Channels to this Queue.

ACL Tab

Permits the user to add, remove or modify entries within the Queue ACL.

Snoop Tab

Permits snooping (a non-destructive read) of events on the Queue.

Administration Using Enterprise Manager

Enterprise View
The enterprise view is the first screen you see whenever the Universal Messaging
enterprise manager is launched. The screen is designed to provide an overview of the
characteristics as well as current status of the set of Universal Messaging realms that
enterprise manager is currently connected with, your Universal Messaging enterprise.
This summary view will include any type of Universal Messaging realm you have added
to your connection information whether they are standalone development realms or
production clustered realms. Adding or removing Universal Messaging realms to the
enterprise manager's connection info will result in those realm's data to be also included
in this view (see "Connecting to Multiple Realms" on page 18 and "Disconnecting
from Realms" on page 20).

As you navigate through more specific parts of the Universal Messaging enterprise, you
can always return to this screen by selecting the root node of the navigation tree called
Universal Messaging Enterprise.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging realms.
The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status respectively. The Totals panel displays the total number of clusters, realms and
resources across all Universal Messaging realms. The Event Status panel displays the
total number of events consumed, published as well as the current consume and publish
rates. Finally the Connection Status panel displays the total number, the current number

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 17

as well as the rate of connections (sessions), whether application or administrative,
across all Universal Messaging realms.

Realm Administration

Creating and Starting a Realm Server
Universal Messaging provides the following tools for performing general administrative
tasks on realms, such as creating a realm, checking the status of a realm, and deleting a
realm.

The Universal Messaging Instance Manager:

For related information, see the section Universal Messaging Instance Manager in the
Installation Guide.

Command Central: If your installation of Universal Messaging includes the optional
Command Central component, you can use the command line tool of Command
Central to perform administrative tasks on realms.

For related information, see the section "Universal Messaging Commands" on page
382 in the Command Central part of the documentation.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 18

Creating a Realm Server

You can use either the Universal Messaging Instance Manager or Command Central to
create the realm server. See the examples in the corresponding documentation pages at
the locations mentioned above.

Starting a Realm Server

After you have created the realm server, start the realm server as follows:

On Windows systems:

1. From the Windows Start menu, navigate to the node Start Servers that is located
under the Universal Messaging node.

2. Navigate in the hierarchy to find the node labelled Start <RealmName>, and click it.
Here, <RealmName> is the name you assigned to the realm server when you created
it.

On Linux:

1. Start the script nserver.sh that is located in UniversalMessaging/server/
<RealmName>/bin/ under the product installation directory.

Connecting to Multiple Realms
An Enterprise Manager has the ability to connect to multiple Universal Messaging
realms at the same time. These realms can be standalone or clustered so developers and
administrators can now manage and monitor the whole Universal Messaging enterprise
infrastructure from a single instance of Enterprise Manager. Once connected to a set of
Universal Messaging realms, it is possible to save (see "Realm Profiles" on page 24)
the connection information so that Enterprise Manager automatically connects to all
those realms each time it starts.

A bootstrap RNAME environment variable is needed the very first time you run
Enterprise Manager or if your connection info file is empty. If you use the shortcut /
link created by the installation process this will be automatically set to point to the
locally installed realm's bootstrap interface so you don't need to take additional action.
If however you open a client command prompt and you wish to initially connect to a
realm other than the local one, then you need to change your RNAME environment
variable.

For more information on how to set the RNAME variable, see the section Communication
Protocols and RNAMEs in the Developer Guide.

Please also note that once your realm connection information is saved, the RNAME
environment variable will be ignored.

Once your Enterprise manager is up and running, you have to select the Connect to
Realm menu option from the Connections menu, as shown in the figure below:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 19

The menu option will open the Connect To Realm dialog as shown in the figure below:

Simply fill in the RNAME that points to the interface of the Universal Messaging realm
you wish to connect to and click on the OK buon. The Enterprise Manager status bar
will display a message informing you where it is trying to connect to. If the connection is

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 20

successful, a new realm node will be rendered on the tree with the unique name of that
realm. You can manage and monitor the new realm by selecting that newly rendered
tree node.

The name displayed for the realm uses the syntax: realmname(host:port), for example
realm1(MyHost:11010).

If you enter an incorrect RNAME, if that realm is not running or if it is running but
the particular interface is not up the connection will fail. In that case a retry dialog will
appear like this one below:

If you had typed the correct RNAME this gives you the opportunity to start the
Universal Messaging realm or interface needed and click yes to retry the connection
without entering the information again. If however the RNAME entered was wrong or
you do not wish to retry then clicking no will close the dialog. Finally don't forget that to
make this connection get aempted each time you start Enterprise Manager you need to
save your connection information.

Note: Duplicate realm names are not allowed in the Enterprise Manager. If you have
connected to a realm on one host and try to connect to another realm with the
same name on another host, Enterprise Manager will return an error when
you try to open the second realm.

Disconnecting from Realms
Using the multiple realm connection functionality, the startup time of the Enterprise
manager is slightly increased each time you add a Universal Messaging realm to your
connection list. If you connect from a different location or network, if the development
phase of a Universal Messaging application completes or if you simply wish to have
faster startup times for Enterprise Manager, you may want to stop connecting to one or
more of your Universal Messaging realms.

This section explains how it is possible to disconnect from one of multiple realms that
your Universal Messaging Enterprise manager may be connected to. To do so, simply
select the Disconnect from Realm menu option in the Connections menu as shown in the
figure below:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 21

This causes a disconnection dialog to appear like the one shown below:

The dialog lists the names of the currently connected Universal Messaging realms. Select
the realm you wish to disconnect from and click OK. The Enterprise manager will then
disconnect from that Universal Messaging realm and the realm node with all its sub
nodes will disappear from the namespace tree.

Disconnecting from a realm is not necessarily a permanent operation. If you disconnect
from a realm that was listed in your connection information, then the disconnect
is applicable for this Enterprise Manager session only, next time you start up the
connection will be aempted again. In order to make the disconnect permanent, please

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 22

save (see "Realm Profiles" on page 24) your connection information after you
disconnect.

Editing Connection Information
As mentioned in previous sections, Universal Messaging Enterprise manager can
connect to multiple Universal Messaging realms at the same time and allows saving
connection information in a configuration file. This configuration file can change in one
of 3 ways:

1. By selecting the Save Connection Info menu option (see "Realm Profiles" on
page 24) which replaces the configuration file contents with the list of current
connections.

2. When running the Enterprise manager, if a connection to a configured realm fails and
the user chooses not to retry, a second dialog appears that looks like the example in the
figure below:

If the user clicks Yes, then the configuration file remains the same. However if the
user chooses no, the failed connection is removed from the configuration file without
any further action required. The Enterprise manager will never try to connect to that
Universal Messaging realm again during startup.

3. By using the Edit Connection Info menu option, located under the File menu as shown
in the figure below:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 23

This causes the following dialog to appear:

The Realm name combo box contains the complete list of configured Universal
Messaging realms that had been connected during the last Save Connection Info
operation. If you have connected to additional realms that had not been saved, these
will not be included in this list. By selecting a particular Realm name, you can also see
the connection RNAME value containing the RNAME that Enterprise manager uses
to connect to it. Clicking on the delete buon will remove the currently selected realm
from the connection info file and this can be repeated many times until only the desired

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 24

realms are present in the list. When this is done, click on the Save buon to recreate the
connection info file.

Realm Profiles
The Universal Messaging Enterprise Manager enables administrators to group realms
and their respective connections into profiles for easy management and accessibility.
Any number of realms can be saved as part of a profile.

When profiles are reloaded the Universal Messaging Enterprise Manager automatically
connects to all realms defined within the loaded profile.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 25

Realm Federation
As well as clustering technology, Universal Messaging supports the concept of a
federated namespace which enables realm servers that are in different physical locations
to be viewed within one logical namespace.

Note: Clustering and Realm Federation are mutually exclusive. If a realm is a
member of a cluster, you cannot use the realm for federation. Similarly, if a
realm is part of a federation, the realm cannot be used for clustering.

If you consider that a Universal Messaging namespace consists of a logical
representation of the objects contained within the realm, such as resources and services:
a federated namespace is an extension to the namespace that allows remote realms to be
visible within the namespace of other realms.

For example, if we had a realm located in the UK (United Kingdom), and 2 other realms
located in the US (United States) and DE (Germany), we can view the realms located in
DE and US within the namespace of the UK realm. Federation allows us to access the
objects within the DE and US realms from within the namespace of the UK realm.

It is possible to add realms to a Universal Messaging namespace using the Universal
Messaging Administration API or by using the Enterprise Manger as described below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 26

Adding Realms

The first step in order to provide federation is to add the realms. Adding a realm to
another realm can be achieved in 2 ways. The first way simply makes a communication
connection from one realm to another, so the realms are aware of each other and can
communicate. This allows you to create a channel join between these realms.

Note: For a description of the general principles involved in creating channel joins,
see the section Creating Channel Joins. The description details the usage based
on the Enterprise Manager, but the same general principles apply if you are
using the API.

The second option also makes a new communication connection, but if you specify a
'mount point', the realm you add will also be visible within the namespace of the realm
you added it to.

Mount Points

Providing a mount point for added realms is similar to the mount point used by file
systems when you mount a remote file system into another. It specifies a logical name
that can be used to access the resources within the mounted realm. The mount point is
therefore the entry point (or reference) within the namespace for the realm's resources
and services.

For example, if I have a realm in the UK, an wish to add to it a realm in the US, I could
provide a mount point of '/us' when adding the US realm to the UK realm. Using the
mount point of '/us', I can then access the channels within the US realm from my session
with the UK realm. For example, if I wanted to find a channel from my session with the
UK realm, and provided the channel name '/us/customer/sales', I would be able to get a
local channel reference to the '/customer/sales' channel within the US realm.

Using the Enterprise Manager to add realms

In order to add a realm to another realm, first of all you need to select the realm node
from the namespace that you wish to add the realm to. Then, right-click on the realm
node to display the menu options available for a realm node. One of the menu options is
labelled 'Add Realm to Namespace', clicking on this menu option will display a dialog
that allows you to enter the RNAME of the realm you wish to add and an optional
mountpoint. This dialog is shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 27

The RNAME value in the dialog corresponds to the realm interface you wish the 2
realms to communicate using. The mount point corresponds to the point within the
namespace that the realm will be referenceable.

The image below shows the namespace for a realm that has had 2 realms mounted
within its namespace, called 'eur' and 'us' respectively. As you can see the resources
within both the mounted realms are also displayed as part of the namespace of the
'node1' realm.

Sessions connected to the 'node1' realm now have access to three channels. These are :

'/global/orders' which is a local channel

'/eur/orders' which is actually a channel on another Universal Messaging Realm
which has been added to this namespace under the mountpoint '/eur'

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 28

'/us/orders' which is actually a channel on another Universal Messaging Realm
which has been added to this namespace under the mountpoint '/us'

Example Use of Federation : Remote Joins

Once you have added the realms to one another, it is possible to create remote joins
between the channels of the realms. This is very useful when considering the physical
distance and communications available between the different realms. For example,
if you wish all events published to the /customer/sales channel in the UK realm to be
available on the /customer/sales channel in the US realm, one would create a join from
the /customer/sales channel in the UK to the /customer/sales channel on the US realm, so
all events published onto the uk channel would be sent to the us channel.

Federation and remote joins provide a huge benefit for your organization. Firstly, any
consumers wishing to consume events from the uk channel would not need to do so
over a WAN link, but simply subscribe to their local sales channel in the us. This reduces
the required bandwidth between the us and uk for your organization, since the data
is only sent by the source realm once to the joined channel in the us, as opposed to
1...n times where n is the number of consumers in the us. Remote joins are much more
efficient in this respect, and ensure the data is available as close (physically) to the
consumers as possible.

Note: For a description of the general principles involved in creating channel joins,
see the section Creating Channel Joins. The description details the usage based
on the Enterprise Manager, but the same general principles apply if you are
using the API.

Realm Configuration
Universal Messaging Realms can be configured based on a number of properties that
are accessible both through the Universal Messaging Administration API as well as
the Universal Messaging Enterprise Manager. Any changes made to the configuration
properties for a Universal Messaging realm are automatically sent to the realm and
implemented. This functionality offers major benefits to Administrators, since realms
can be configured remotely, without the need to be anywhere near the actual realm
itself. More importantly, multiple realms and clustered realms can also be automatically
configured remotely.

This section describes the different configuration properties that are available using the
Universal Messaging Enterprise Manager.

When you select a realm from the namespace, one of the available panels in the
Enterprise Manager is labelled 'Config'. Selecting this panel displays various groups of
configuration properties, with each group of properties relating to a specific area within
the Universal Messaging Realm. Each group of properties contains different values for
specific items.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 29

Basic and Advanced Properties

There are currently a large number of configuration properties, and they are divided
into two categories, namely Basic and Advanced. The properties in the Basic category
are the most commonly used ones. The properties in the Advanced category will
probably be less frequently used, and are intended for special cases or expert users.

When the Basic and Advanced categories are expanded, you will see a display of the
configuration properties. Properties that have a similar effect are arranged into groups;
for example, properties that determine when a client times out are contained in the
group "Client Timeout Values":

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 30

Note that in the example shown, the group "Client Timeout Values" appears in both
the Basic and the Advanced category. However, the properties "EventTimeout",
"HighWaterMark" etc. belonging to this group appear only under the Basic category,
whereas the properties "QueueAccessWaitLimit" etc. belonging to the same group
appear only under the Advanced category. The properties in the Basic category are the
ones which you will probably find most useful for your day-to-day work.

Configuration Groups

The configuration groups are :

1. Audit Settings - Values relating to what information is stored by the audit process

2. Client Timeout Values - Values relating to client / server interaction

3. Cluster Config - Values specific to the clustering engine

4. Comet Config - Values relating to the configuration of Comet

5. Connection Config - Values relating to the client server connection

6. Data Stream Config - Values relating to the configuration of Data Streams

7. Durable Config - Values relating to usage of durables

8. Environment Config - Read only configuration values that relate to the system
environment. These cannot be changed.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 31

9. Event Storage - Values specific to how events are stored and retrieved on the server

10. Fanout Values - Values specific to the delivery of events to clients

11. Global Values - Values specific to the realm process itself

12. Inter-Realm Comms Config - Values relating to Inter-Realm communication

13. JVM Management - Values relating to the JVM the Realm Server is using

14. Join Config - Values specific to channel join management

15. Logging Config - Values specific to logging

16. Metric Config - Values relating to metric management

17. MQTT Config - Values relating to MQTT

18. Plugin Config - Values relating to Realm Plugins

19. Protobuf Config - Values relating to Protocol Buffers

20. Protocol AMQP Config - Values relating to the use of AMQP connections

21. Protocol MQTT Config - Values relating to the use of MQTT connections

22. Proxy Forward Config - Values relating to Proxy/Forwarding

23. RecoveryDaemon - Values relating to clients that are in recovery (i.e. replaying large
numbers of events)

24. Server Protection - Values specific to server protection

25. Thread Pool Config - Values specific to the servers thread pools.

26. TransactionManager - Values specific to the transaction engine of the RealmServer

The table below describes the properties that are available within each configuration
group. It also shows valid ranges of values for the properties and a description of what
each value represents. The "Adv. " column shows "Y" if the property is in the Advanced
category, whereas no entry indicates that the property is in the Basic category.

Configuration Group/Property Valid
values

Description Adv.

Audit Settings

ChannelACL True
or
False

Log to the audit file any
unsuccessful channel ACL
interactions. Default is true.

ChannelFailure True
or
False

Log to the audit file
any unsuccessful realm
interactions. Default is true.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 32

Configuration Group/Property Valid
values

Description Adv.

ChannelMaintenance True
or
False

Log to the audit file any
channel maintenance activity.
Default is false.

ChannelSuccess True
or
False

Log to the audit file
any successful channel
interactions. Default is false.

DataGroup True
or
False

Log to the audit file any
changes to DataGroup
structure

DataGroupFailure True
or
False

Log to the audit file any
failed aempts to DataGroup
structure

DataStream True
or
False

Log to the audit file
DataStream add and removes

Group True
or
False

Log to the audit file any
added or removed security
groups

GroupMembers True
or
False

Log to the audit file
any changes in group
membership

InterfaceManagement True
or
False

Log to the audit file any
interface management
activity. Default is true.

JoinFailure True
or
False

Log to the audit file any
unsuccessful join interactions.
Default is true.

JoinMaintenance True
or
False

Log to the audit file any join
maintenance activity. Default
is true.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 33

Configuration Group/Property Valid
values

Description Adv.

JoinSuccess True
or
False

Log to the audit file any
successful join interactions.
Default is false.

QueueACL True
or
False

Log to the audit file any
unsuccessful queue ACL
interactions. Default is true.

QueueFailure True
or
False

Log to the audit file
any unsuccessful queue
interactions. Default is true.

QueueMaintenance True
or
False

Log to the audit file any
queue maintenance activity.
Default is false.

QueueSuccess True
or
False

Log to the audit file any
successful queue interactions.
Default is false.

RealmACL True
or
False

Log to the audit file any
unsuccessful realm ACL
interactions. Default is true.

RealmFailure True
or
False

Log to the audit file
any unsuccessful realm
interactions. Default is true.

RealmMaintenance True
or
False

Log to the audit file any
realm maintenance activity.
Default is true.

RealmSuccess True
or
False

Log to the audit file any
successful realm interactions.
Default is false.

SnoopStream True
or
False

Log to the audit file Snoop
stream add and removes

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 34

Configuration Group/Property Valid
values

Description Adv.

Client Timeout Values

EventTimeout 5000
to
No
Max

The amount of ms the client
will wait for a response
from the server. Small
values may cause clients
to abandon waiting for
responses and disconnect
prematurely. Large values
may cause clients to take an
unusually long amount of
time waiting for a response
before disconnecting. Default
is 60000.

HighWaterMark 2 to
No
Max

The high water mark for
the connection internal
queue. When this value is
reached the internal queue is
temporarily suspended and
unable to send events to the
server. This provides flow
control between publisher
and server. Default is 200.

LowWaterMark 1 to
No
Max

The low water mark for the
connection internal queue.
When this value is reached
the outbound internal queue
will again be ready to push
event to the server. Default is
50.

QueueAccessWaitLimit 200
to
No
Max

The maximum number
of milliseconds it should
take to gain access to an
internal connection queue
to push events. Once this
time has elapsed the client
session will inform any
listeners registered on the
session which monitor
these connection queues.
Small values may result

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 35

Configuration Group/Property Valid
values

Description Adv.

in an excessive number of
notifications. Default is 200

QueueBlockLimit 500
to
No
Max

The maximum number of
milliseconds an internal
connection queue will wait
before notifying listeners
after it has reached the
HighWaterMark. Small
values may result in excessive
notifications. Default is 500.

Y

QueuePushWaitLimit 200
to
No
Max

The maximum number
of milliseconds it should
take to gain access to an
internal connection queue
and to push events before
notifying listeners. Small
values may result in excessive
notifications. Default is 200.

Y

TransactionLifeTime 1000
to
No
Max

The default amount of time
a transaction is valid before
being removed from the tx
store. Default is 20000.

Cluster Config

BufferSize 1400
to
1048576

Size in bytes of the inter-
realm buffer to use. If the
nodes are connected using
a high-speed network
connection, we suggest using
8192.

Y

ClientQueueSize 10
to
10000

Size of the client request
queue.

If this queue is small then the
clients will wait longer and
performance may drop.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 36

Configuration Group/Property Valid
values

Description Adv.

If too large then client
requests are queued but not
processed.

ClientQueueWindow 10
to
1000

The number of events sent
to an async queue reader
before the realm will commit.
A small number will reduce
performance.

ClientStateDelay 0 to
120000

The number of seconds to
delay the cluster processing
client requests when a
cluster state change occurs.
A large number will delay
client requests longer than
required.

DisableHTTPConnections True
or
False

Disable HTTP(s) connections
between cluster nodes. If true
then the server will only use
nsp(s) connections between
realm nodes, and any nhp(s)
rnames will be switched to
using nsp(s).

DisconnectWait 1000
to
120000

Time to wait for the node
to form in the cluster. Once
this time has expired the
behavior is defined by the
DisconnectWhenNotReady
flag.

DisconnectWhenNotReady True
or
False

If the node has not formed in
the cluster then disconnect
the client. If true then
the client will receive a
disconnect, else the request
will be queued.

EnableMulticast True
or
False

Enables cluster requests
broadcast to realms to be
send through the reliable

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 37

Configuration Group/Property Valid
values

Description Adv.

multicast mechanism within
Universal Messaging. This
seing only takes effect
if a multicast interface is
configured for all nodes
within the cluster.

EnableSites True
or
False

If enabled then the master
selection takes into account
the Prime Site.

 if used incorrectly a split
brain scenario may occur, so
please use with cauon.

Y

EnableStoreRecoveryRetry True
or
False

Enables/Disables the ability
for the slave to re-aempt a
recovery of a store if it detects
changes to the store during
recovery. If true the slave
will continue to aempt a
cluster recovery of a store
which may be changing due
to TTL or capacity on the
store aributes.

Y

EnginePipelineSize 1 to
32

Number of concurrent
pipeline threads running
within the cluster engine.
If set to 1, then all requests
are pipelined through one
thread, else topics/queues are
bound to specific pipelines.

Y

FilterEventsDuringRecovery True
or
False

Only Applicable to JMS
Engine Channels. Defines if
we recover events that have
already been consumed. If
false then extra events may
be sent to recovering realms
for no real reason.

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 38

Configuration Group/Property Valid
values

Description Adv.

FormationTimeout 60000
to
300000

The time to wait for the state
to move from recovery to
slave or master. If this value
is too small then recovering
a large number of events will
result in the realms dropping
out of the cluster.

HeartBeatInterval 1000
to
120000

Heart Beat interval in
milliseconds. Default is
120000. A small value here
will cause excessive messages
being generated between
realms.

InitialConnectionTimeout 5000
to
240000

The number of milliseconds
that the server will wait
while trying to establish
a connection to a peer. A
small value may reduce the
chance of a connection in
busy networks, while a large
number may delay cluster
formation.

IsCommiedDelay 1000
to
30000

When a slave processes
an IsCommied request
and it is still recovering the
Transaction store, it will
block the clients request for
this timeout period. If this is
set to a large value, clients
may experience a substantial
delay in response.

Y

MasterRequestTimeout 1000
to
900000

Specifies the amount of
time in milliseconds that the
master is going to wait for a
slave to respond to a single
request before disconnecting
it. This timeout will prevent a
slave from being reconnected

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 39

Configuration Group/Property Valid
values

Description Adv.

if it fails to respond to a
master request.

MasterVoteDelay 1000
to
60000

When a node has requested
to be master it will wait
this timeout period in
milliseconds for the peers to
agree. If this number is too
high the cluster formation
may take some time.

MasterWaitTimeout 1000
to
600000

When the master is lost from
the cluster and the remaining
peers detect that the master
has the latest state they will
wait for this time period for
the master to reconnect. If the
master fails to reconnect in
this time period a new master
is elected.

PublishQueueEnabled True
or
False

If enabled the slaves will
queue publish requests prior
to commiing them to the
cluster. If enabled and a slave
is killed, any outstanding
publish events will be lost.

Y

QueueSize 100
to
1000

Number of events
outstanding to be processed
by the clusters internal queue
before sending flow control
requests back. Increased size
increases the memory usage.

SecureHandshake True
or
False

If true, when peers connect
they will perform a secure
handshake to ensure the
connection is valid. This is
the preferred and secure
option. Disabling this would
only be recommended in
debug mode. This handshake

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 40

Configuration Group/Property Valid
values

Description Adv.

requires an RSA provider to
work.

SeparateLog True
or
False

Create a separate log file
for cluster events. Default is
false.

StateChangeScan 10000
to
No
Max

When a realm loses master
or slave state then after
this timeout all cluster
based connections will be
disconnected. If the realm
reenters the cluster then
the disconnect timeout is
aborted. If this value is
too low, all clients will be
bounced while the cluster is
forming.

SyncPingSize 100
to
10000

Number of events sent before
a cluster sync occurs. A small
number will effect overall
performance, a large number
may result in a cluster being
to far out of sync.

Y

TransactionSync True
or
False

Make all transactional based
events sync across the cluster.
If true, transactional events
may run slow but cluster
state is guaranteed.

Y

Comet Config

BufferSize 1024
to
102400

The buffer size for Comet
requests. Large sizes will
cause the realm to consume
more memory when reading
data from Comet clients.
Small sizes may introduce

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 41

Configuration Group/Property Valid
values

Description Adv.

delays in the time taken to
read requests.

EnableLogging True
or
False

Enables logging of all comet
queries, will impact server
performance

Timeout 10000
to
No
Max

The timeout for a Comet
connection. Small sizes
may cause Comet-based
connections to time out
prematurely. Large sizes may
increase the time a server
holds a disconnected Comet
connection open.

Connection Config

AllowBufferReuse True
or
False

If set to true then buffers
will be allocated from the
buffer pool and once finished
with returned to the pool.
If set to false then buffers
are allocated on the fly and
then left for the system to free
them. It is best to leave this
set to true. For object creation
limitation it is best to set this
to true.

Y

BufferManagerCount 1 to
256

The number of Buffer
Managers that the server will
allocate. This is used during
startup to size and manage
the network buffers. This
does not need to be large, but
a rule of thumb is 1 per core.

Y

BufferPoolSize 100
to
10000

The underlying Universal
Messaging IO utilizes buffers
from a pool. By default we
pre-load the pool with this

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 42

Configuration Group/Property Valid
values

Description Adv.

number of buffers. As the
reads/writes require buffers
they are allocated from this
pool, then once used are
cleared and returned. If the
size is too small we end up
creating and destroying
buffers, and the server may
spend time creating them
when needed. If the size is
too large we have a pool of
buffers which are not used
taking up memory.

BufferQueueSize 10
to
1000

Number of buffers to queue
before we stop reading from
the socket. If this is small we
would block the connection,
and performance may drop.
The larger it is the more
memory we use.

Y

BufferSize 1024
to
1048576

This specifies the default
size of the network buffers
that Universal Messaging
uses for its NIO. If small,
then Universal Messaging
will require more buffers (up
to the maximum specified
by BufferPoolSize) to send
an event. If too large, then
memory may be wasted on
large, unused buffers.

These buffers are reused
automatically by the server,
and are used to transfer data
from the upper application
layer to the network. So, for
example, the server might
use all BufferPoolSize buffers
to stream from 1 application
level buffer (depending
on the relative sizes of the
buffers).

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 43

Configuration Group/Property Valid
values

Description Adv.

An efficient size would be
about 40% more than the
average client event, or 5K
(whichever is largest). If too
small, the server will send
many small buffers.

CometReadTimeout 1000
to
120000

Specifies the time the server
will wait for a client to
complete sending the data

ConnectionDelay 10
to
60000

When the server has
exceeded the connection
count, how long to hold on
to the connection before
disconnecting. If this is too
low, the server will be busy
with reconnection aempts.
Default is 60000.

Y

EnablePriorityMessaging True
or
False

Enables server side
prioritization of messages
sent to clients. Select true to
enable priority messaging.

Y

HandshakeTimeout 1000
to
No
Max

The number of milliseconds
that the server will wait for
the session to be established.
A small number will impact
slow connections. Default is
1000, i.e. 1 second.

IdleDriverTimeout 120000
to
No
Max

Specifies the time in
milliseconds that a
communications driver
can be idle before being
deemed as inactive. When
this happens the server will
automatically close and
remove the driver. This
must be greater than the
keep alive timeout else all

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 44

Configuration Group/Property Valid
values

Description Adv.

connections will be closed
due to inactivity.

IdleSessionTimeout 10000
to
No
Max

If there has been no
communication from a
client for the configured
number of milliseconds,
the client is deemed idle
and is disconnected. This
typically occurs when there
are network issues between
a client and the server. If the
value is too low, the chance of
disconnecting a valid session
is high.

KeepAlive 5000
to
No
Max

The number of milliseconds
the server will wait before
sending a heartbeat. A small
number will cause undue
network traffic. Default is
60000.

MaxBufferSize 1024
to
No
Max

The maximum buffer size
in bytes that the server will
accept. Default is 20971520
(20MB).

Rather than using larger
buffers, it is recommended
that you compress if possible
to save bandwidth and
memory on the server.

This value exists to stop a
user from accidentally or
maliciously overloading the
server and causing excessive
memory consumption.

MaxBufferSizeClientSideCheck True
or
False

If set to true, this enables
client-side checks of the
size of the events being sent
against the connection's
MaxBufferSize. This allows

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 45

Configuration Group/Property Valid
values

Description Adv.

for beer exception handling
and less wasted bandwidth
on the client side. Default is
true.

MaxNoOfConnections -1
to
No
Max

Sets the maximum concurrent
connections to the server,
-1 indicates no restriction,
default is -1. Reducing this
to a small number may cause
client connections to be
rejected.

MaxWriteCount 5 to
100

When writing many events to
a client the write pool thread
may continue to send the
events before returning to the
pool to process other clients
requests. So, for example if
it is set to 5, then the thread
will send 5 events from the
clients queue to the client
before returning to the pool
to process another request. If
this number is small it creates
additional CPU overhead.

NIOSelectArray True
or
False

Specifies that the selector
thread will use an array-
based structure instead of an
iterator-based structure to
determine if underlying NIO
channels are ready.

Y

NetworkMonitorThreads 2 to
100

The number of threads to
allocate to flushing client
data, Please note this will
only take effect after a restart.
Depending on the number
of concurrent clients the
latencies during load my be
higher then expected

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 46

Configuration Group/Property Valid
values

Description Adv.

PriorityQueueCount 2 to
10

Sets the number of queues
to divide priority levels
between, up to a maximum
of 10 queues. It needs
EnablePriorityMessaging to
be enabled.

PriorityReadSpinLockMaxConnections0 to
8

Maximum number of clients
allowed to allocate high
priority spin locks. It needs
EnablePriorityMessaging to
be enabled.

PriorityReadSpinLockTime 1 to
10000

Maximum number of clients
allowed to allocate high
priority spin locks. It needs
EnablePriorityMessaging to
be enabled.

Y

PriorityReadType 0 to
2

If enabled then high
priority sessions will be
enabled to run spin locks
waiting to read. It needs
EnablePriorityMessaging to
be enabled.

QueueHighWaterMark 100
to
No
Max

The number of events in a
client output queue before
the server stops sending
events. A small number will
cause undue work on the
server. Default is 100.

QueueLowWaterMark 50
to
No
Max

The number of events in
the clients queue before
the server resumes sending
events. Must be less than the
high water mark. Default is
50.

ReadCount 1 to
20

Number of times the thread
will loop around waiting
for an event to be delivered

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 47

Configuration Group/Property Valid
values

Description Adv.

before returning. Large
values may cause read
threads to be held for
long periods of time, but
avoid context switching for
delivering events.

UseDirectBuffering True
or
False

If true the server will allocate
DirectByteBuffers to use for
network I/O, else the server
will use HeapByteBuffers.
The main difference is
where the JVM will allocate
memory for the buffers
the DirectByteBuffers
perform beer. For the
best performance the
DirectByteBuffers are
generally beer.

Y

WriteHandlerType 1 to
5

Specifies the type of write
handler to use

whEventThresholdCount 1 to
2000

Number of events
to exceed in the
whEventThresholdTime to
detect a peak. This number
should be small enough to
trigger peaks.

whEventThresholdTime 1 to
2000

Number of milliseconds
to sample the event rate to
detect peaks

whMaxEventsBeforeFlush 1 to
10000

Total number of events that
can be sent before a flush
must be done. If this number
is too small then too many
flushes will result.

whMaxEventsPerSecond No
Min
to

Specifies the total number
of events per second that a
realm will send to clients
before switching modes into

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 48

Configuration Group/Property Valid
values

Description Adv.

No
Max

peak mode. If this number is
small then the server will go
into peak mode too soon and
latencies will start to increase.

whMaxTimeBetweenFlush 1 to
1000

Total number of milliseconds
to wait before a flush is done.
If this number is too large
then latencies will increase.

whPeakTrailDelay 100
to
5000

When a peak is detected
how long to stay in this state
before returning to normal. If
this is too large then latencies
may be larger then expected.

Data Stream Config

FanoutTaskQueueSize 32
to
1024

Sets the number of tasks
that the FanOut Executor
will have outstanding. Large
values will consume more
memory on the server,
as events are cached in
the fanout task queue
waiting to be wrien. Large
values allow batching
to occur, potentially
increasing publish/subscriber
performance.

FanoutTraversalType (Values
as
listed
in
next
column)

The method to use when
traversing connections to
write events:

In Order. This will traverse
connections in the order that
they connected to the server
(oldest first).

Round Robin. This will
determine the order of
delivery in a pseudo-fair

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 49

Configuration Group/Property Valid
values

Description Adv.

fashion (the first connection
to be delivered to will
become the last, the second
will become the first etc.) .

Reverse Order. This will
traverse connections in
reverse older (oldest last).

The default is In Order.

MaxSessionIdSize 5 to
30

Maximum size of the session
ID used to uniquely identify
the clients. This is currently
unused.

Y

MonitorTimer 1000
to
120000

Time interval in milliseconds
to scan the data group
configuration looking for
idle / completed streams.
Large values may cause idle
and inactive datastreams to
remain on datagroups for
long periods of time. Small
values may cause transient
disconnections to trigger
datagroup removals for
datastreams - requiring them
to be added back into the
datagroup.

Y

OffloadMulticastWrite True
or
False

If true then all multicast
writes will be performed by
the parallel fanout engine.

Y

ParallelFanoutThreshold 10
to
10000

Number of streams when
the server will use parallel
fanout. Small values reduce
the amount of context
switching of the fanout
executor. Large values may
result in less optimal fanout
throughput.

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 50

Configuration Group/Property Valid
values

Description Adv.

SendInitialMapping True
or
False

When any stream registered
client connect sends the
entire DataGroup Name to ID
mapping

Y

Durable Config

QueuedExtendedException True
or
False

If true, then if the selector on
a queued durable changes,
the selector is added to the
exception string.

Y

Environment Config

AvailableProcessors READ
ONLY

Number of CPUs available

Embedded READ
ONLY

If true, this specifies that
the server is running as an
embedded server

InterRealmProtocolVersion READ
ONLY

Universal Messaging Server
Inter-Realm Protocol Version

JavaVendor READ
ONLY

Vendor of Java Virtual
Machine

JavaVersion READ
ONLY

Virtual Machine Version

NanosecondSupport READ
ONLY

Nanosecond support
available through JVM on
Native OS

OSArchitecture READ
ONLY

Operating System
Architecture

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 51

Configuration Group/Property Valid
values

Description Adv.

OSName READ
ONLY

Operating System Name

OSVersion READ
ONLY

Operating System Version

ProcessId READ
ONLY

Process ID

ServerBuildDate READ
ONLY

Universal Messaging Server
Build Date

ServerBuildNumber READ
ONLY

Universal Messaging Server
Build Number

ServerReleaseDetails READ
ONLY

Universal Messaging Release
Details

ServerVersion READ
ONLY

Universal Messaging Server
Build Version

TimerAdjustment READ
ONLY

The size of the Operating
System's time quantum.

Event Storage

ActiveDelay 100
to
No
Max

The time in milliseconds that
an active channel will delay
between scans. The smaller
the number, the more active
the server. Default is 1000.

Y

AutoDeleteScan 1000
to
500000

Specifies the number of
milliseconds between scans
on AutoDelete stores to see if
they should be deleted. The
larger this time frame, the
more AutoDelete stores will
potentially not be deleted on
the server.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 52

Configuration Group/Property Valid
values

Description Adv.

AutoMaintainOnFileLimit True
or
False

Specifies whether the server
will automatically perform
maintenance on topic or
queue stores when the
MaintenanceFileSizeThreshold
is reached. If false then the
MaxFileSize will be ignored.

AutoMaintainSystemStores True
or
False

Specifies whether the server
will automatically perform
maintenance on internal
system file stores

AutoMaintenanceThreshold 0 to
100

Sets the percentage free
before the server should run
maintenance on the internal
stores. It is by default 50.
This means maintenance will
be performed when 50% of
the number of the events
in the file are marked as
dead – already consumed
and acknowledged so
they can be deleted. This
is not applicable when
AutoMaintainOnFileLimit is
set to true.

CacheAge 1000
to
No
Max

The length of time in ms that
cached events will be kept
in memory. The larger the
value, the more memory
will be utilized. Default is
86400000 ms, which is 24
hours.

Y

EnableBufferingKey True
or
False

If set to true, the server will
use memory mapped files for
last EID buffering. This will
improve performance for all
event stores.

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 53

Configuration Group/Property Valid
values

Description Adv.

EnableStoreCaching True
or
False

If true the server will try to
cache events in memory after
they have been wrien/read.
Please note the server will
need to be rebooted for this to
take effect

EnableStoreReadBuffering True
or
False

If true the server will buffer
the reads from the store.
This will increase replay
performance greatly. Please
note the server will need to
be rebooted for this to take
effect.

Y

IdleDelay 5000
to
No
Max

The time in milliseconds that
an idle channel will delay
between scans. The smaller
the number, the more active
the server. Default is 60000.

Y

JMSEngineAutoPurgeTime 5000
to
600000

Defines the interval between
clean up of events on a JMS
Engine Resource. A large
interval may result in topics
with large numbers of events
waiting to be purged.

Y

MaintenanceFileSizeThreshold 1024000 Sets the percentage free
before the server should
run maintenance on the
internal stores. The smaller
the file size - maintenance
will be run more often. The
bigger it is – maintenance
may take longer time. There
are no performance issues
with a big file except on
startup when the stores
need to be reloaded.
AutoMaintainOnFileLimit
has to be set to true.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 54

Configuration Group/Property Valid
values

Description Adv.

MaintenanceMemoryThreshold 1048576 Maximum size in memory for
any topic or queue to reach
before maintenance of the in-
memory cache is run.

PageSize 10
to
100000

The page size to use for the
event store. This value sets
the number of events/page.

QueueDeliveryPersistencePolicy (Values
as
listed
in
next
column)

Sets the Queue Delivery
Persistence Policy. The
policy is a combination of
(a) making the disk storage
location persistent, i.e.
recoverable after a server
restart, or non-persistent,
i.e. erased at a server
restart, and (b) writing
events to the disk storage
location synchronously or
asynchronously.

If you choose a policy that
uses a non-persistent storage
location, unacknowledged
but delivered queue events
will be stored elsewhere until
they are acknowledged or
rolled back.

The available policies are:

No persistent/No sync:
The storage location
is not persistent, and
writing events to disk is
asynchronous.

Persistent/No sync:
The storage location
is persistent, and
writing events to disk is
asynchronous.

Persistent/Sync: The storage
location is persistent, and

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 55

Configuration Group/Property Valid
values

Description Adv.

writing events to disk is
synchronous.

The default is Persistent/
No sync. This is also the
recommended value for
production environments.

StoreReadBufferSize 1024
to
3000000

Size of the buffer to use
during reads from the store.
Note that the server will need
to be restarted for this to take
effect.

Y

SyncBatchSize 1 to
1000

Specifies the maximum size
before the sync call is made.
The lower this value, the
more sync calls made and the
more overhead incurred.

Y

SyncServerFiles True
or
False

If true the server will sync
each file operation for its
internal files. If true, this
adds additional overhead to
the server machines and can
reduce overall performance.

SyncTimeLimit 1 to
1000

Specifies the maximum time
in milliseconds that will be
allowed before the sync is
called. The lower this value,
the more file sync calls and
the more overhead incurred.

Y

ThreadPoolSize 1 to
4

The number of threads
allocated to perform the
management task on the
channels. The more channels
a server has, the larger this
number should be. Default is
1.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 56

Configuration Group/Property Valid
values

Description Adv.

Fanout Values

ConnectionGrouping True
or
False

If true allows the server to
group connections with the
same selector providing
improved performance. This
allows the server to optimize
the way it processes events
being delivered to the clients.

This requires a server restart
to take effect.

Y

DelayPublishOnCapacity True
or
False

Delays the publisher thread
when the store capacity is
exceeded. If this is not set, an
exception is passed back to
the client.

HonourSharedDurableCapacity True
or
False

If true, the channel will check
any shared durables for
capacity before accepting
a published event. If any
of these durables are over
capacity, the server will
respond as if the parent
channel is over capacity.
If false, the event will be
published regardless of the
number of events on its
shared durables.

Y

IteratorWindowSize 1 to
No
Max

Specifies the number of
events delivered to each
Channel Iterator in a pre
fetch. This allows the client
to perform much faster
by pre fetching events
on fast moving topics
requiring less client to server
communication.

The default is 100.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 57

Configuration Group/Property Valid
values

Description Adv.

JMSQueueMaxMultiplier 1 to
10

The multiplier used on the
High Water mark when
processing events from a JMS
Engine Queue/Topic. If this
value is too high the server
will consume vast amounts of
memory.

Y

MaximumDelayInWrite 1 to
5000

The number of milliseconds
an event will wait in a queue
before it will be processed. If
this number is to high then
the first published event may
take time to be delivered to
the client.

Y

ParallelBatchSize 50
to
10000

Specifies the number of
connections to process in one
batch per parallel thread.
If this number is small
then there may be adverse
overheads.

ParallelThreadPoolSize 2 to
64

Specifies the number of
threads to use within the
thread pool. If this number
is small then there maybe
adverse overheads. This
value required a restart to
take effect.

ParallelThreshold 1 to
10000

Specifies the number of
connections to a channel
before the server will use the
parallel fanout engine. If this
number is small then there
maybe adverse overheads.

ParallelUseGlobalPool True
or
False

If true all channels use a
common pool else all channel
have there own pool. If this
number is small then there
maybe adverse overheads.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 58

Configuration Group/Property Valid
values

Description Adv.

This value required a restart
to take effect.

PeakPublishDelay 0 to
No
Max

When clients start to hit high
water mark, this specifies
how long to delay the
publisher to allow the client
time to catch up. If this is
too small the publisher can
overwhelm the server.

Y

PublishDelay 0 to
No
Max

How long to delay the
publisher when the
subscriber's queue start to
fill, in milliseconds. If this
number is 0 then no delay.
Default is 10.

Y

PublishExpiredEvents True
or
False

Specifies whether to publish
expired events at server
startup. Default is true.

RoundRobinDelivery True
or
False

Specifies whether to use a
round robin approach for
event delivery to the set of
available event consumers.
Default is false.

SendEndOfChannelAlways True
or
False

Specifies whether to always
send an End Of Channel,
even if we find no matches
within the topic. If set,
the subscriber will always
be informed that the
subscription request has
completed the recovery of the
topic.

SendPubEventsImmediately True
or
False

Specify whether to send
publish events immediately.
If true, then the server will
send all publish events
to clients immediately, if
false the server is allowed

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 59

Configuration Group/Property Valid
values

Description Adv.

to collect events before
publishing.

SyncQueueDelay 10
to
3600000

Maximum number of
milliseconds the queue
publisher will be delayed.
This can be used to slow
down the queue publishers.

SyncQueuePublisher True
or
False

If true then the queue
publisher will be
synchronized with the queue
consumers. This allows flow
control of queue publishers.
If false then the value of
SyncQueueDelay is not used.

Global Values

AllowRealmAdminFullAccess True
or
False

If true then any user with the
full realm access will have
access to all channels and
queues.

Y

CacheJoinInfoKeys True
or
False

If enabled we cache join
key information between
events passed over joins. This
reduces the number of objects
created. If this parameter is
set to false then the server
will create a new byte[] and
string for each joined event.

Y

DisableExplicitGC True
or
False

If enabled the server will
call the Garbage Collector
at regular intervals to keep
memory usage down. If this
is disabled then the garbage
collection will be done solely
by the JVM.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 60

Configuration Group/Property Valid
values

Description Adv.

EnableCaching True
or
False

If EnableCaching is set to
True, the channel storage
properties Cache On Reload
and Enable Caching are set
to the values specified by the
client.

If EnableCaching is set to
False, then the channel
storage properties Cache On
Reload and Enable Caching
are set to False, regardless of
the values set by the client for
these storage properties.

The default for the global
value EnableCaching is False.

EnableDNSLookups True
or
False

If enabled the server will
aempt to perform a DNS
lookup when a client
connects to resolve the IP
address to a hostname. In
some instances this may
slow down the initial client
connections.

EnableWeakReferenceCleanup True
or
False

If enabled then the server will
hook into the JVM's garbage
collection and release cached
items when the JVM needs
memory. By enabling this,
the number of cached events
stored will be reduced but
memory will be maintained.

Y

ExtendedMessageSelector True
or
False

If true, allows the server to
use the extended message
selector syntax (enabling
string to numeric conversions
within the message selector).
Default is false.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 61

Configuration Group/Property Valid
values

Description Adv.

HTTPCookieSize 14
to
100

The size in bytes to be used
by nhp(s) cookies

Y

NHPScanTime 5000
to
No
Max

The number of milliseconds
that the server will wait
before scanning for client
timeouts. Default is 5000, i.e.
5 seconds.

Y

NHPTimeout 2000
to
No
Max

The number of milliseconds
the server will wait for client
authentication. If this number
is too large, the server may
have unwanted connections.
Default is 120000, i.e. 2
minutes.

Y

NanoDelayBase 10000
to
1000000

This number represents the
number of nanoseconds in
a millisecond. This is by
definition 1,000,000, but
changing the value can be
used to increase or decrease
the internal delays used by
Universal Messaging. If too
large, the response will slow
down, and if too small, CPU
usage increases.

Y

OverrideEveryoneUser True
or
False

Override the *@* permission
for channels / queues
with explicit ACL entry
permissions. Default is false.

PauseServerPublishing True
or
False

If true, the Pause Publishing
feature is activated. Default is
false.

This feature causes the server
to block all aempts by
clients to publish events, and
such clients will receive an
nPublishPausedException.

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 62

Configuration Group/Property Valid
values

Description Adv.

However, events that already
exist in the publishing client
queues on the server continue
to be consumed by the
subscribing clients until the
queues are emptied.

You can use the Pause
Publishing feature when it is
necessary to clear the client
event queues on the realm
server. This could be, for
example, before performing
maintenance tasks such as
increasing buffer storage
or performing a backup, or
before changing the server
configuration.

SendRealmSummaryStats True
or
False

If true sends the realm's
status summary updates
every second. Default is false.

ServerStateFlush 50
to
1000

Specifies the time in
milliseconds between scans
to save the server's state
files. If this parameter is too
large then data may be lost if
power to the machine is lost.

Y

ServerTime True
or
False

Allow the server to send the
current time to the clients.
Default is true.

StampDictionary True
or
False

Place Universal Messaging
details into the dictionary,
default is false. If true, adds
additional overhead to the
server/client.

StampHost True
or
False

Stamps the header with
the publishing host (true/
false). If true adds additional
overhead to the server/client.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 63

Configuration Group/Property Valid
values

Description Adv.

StampTime True
or
False

Stamps the header with the
current time (true/false).
If true, adds additional
overhead to the server/client.

StampTimeUseHPT True
or
False

If this is set to true, then the
server will use an accurate
millisecond clock, if available,
to stamp the dictionary.
This may impact overall
performance when delivering
events when latency is
important.

StampTimeUseHPTScale 0 to
2

This has 3 values, milli, micro
or nano accuracy

StampUser True
or
False

Stamps the header with
the publishing user (true/
false). If true, adds additional
overhead to the server/client.

StatusBroadcast 2000
to
No
Max

This property has two
purposes:

The number of milliseconds
between status events
being published to any
clients using Admin API or
Enterprise Manager. A small
value increases the server
load.

The number of milliseconds
between status messages
being wrien to the server
log, when periodic status
logging has been activated
via the EnableStatusLog
property.

Remember that if you change
the value of this property, it
will affect the time interval

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 64

Configuration Group/Property Valid
values

Description Adv.

for both status events and
status log intervals.

The default is 5000, i.e. every
5 seconds.

StatusUpdateTime 2000
to
No
Max

The number of milliseconds
between status events being
wrien to disk. Status
events provide a history of
the realm's state. A small
value increases the server
load. The default for this
is Long.MAX_VALUE, i.e.
never wrien to disk.

Inter-Realm Comms Config

EstablishmentTime 10000
to
120000

Time for an inter-realm link
to be initially established.
This value should reflect the
latency between nodes.

Y

KeepAliveInterval 1000
to
120000

Time interval where if
nothing is sent a Keep Alive
event is sent. This can be
used to detect if remote
members are still up and
functioning.

Y

KeepAliveResetTime 10000
to
180000

If nothing has been received
for this time the connection
is deemed closed. This value
must be larger than the
KeepAliveInterval.

Y

MaximumReconnectTime 1000
to
50000

The maximum number
of milliseconds to wait
before trying to re-establish
a connection. If this
value is too large, cluster
formation will be delayed.
The reconnect will be

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 65

Configuration Group/Property Valid
values

Description Adv.

aempted at a random
amount of time between
MinimumReconnectTime and
MaximumReconnectTime.

MinimumReconnectTime 100
to
10000

The minimum time to wait
before trying to re-establish
a connection. If this number
is too high then it may
impact the network during
outages. The reconnect will
be aempted at a random
amount of time between
MinimumReconnectTime and
MaximumReconnectTime.

Y

Timeout 60000
to
180000

If no events are received
within this time limit, the link
is assumed dead and will be
closed. If this limit is less than
the keep alive time then the
link will be closed.

Y

WriteDelayOnFail True
or
False

If true then all writes will
be delayed until the link is
reconnected or the timeout is
reached.

Y

WriteDelayTimeout 1000
to
60000

The maximum time to
wait on a write if the link
has dropped. If a realm
disconnects when we are
able to write to it, we wait
for a set amount of time for
the link to come back before
abandoning the write and
reseing altogether. This
insulates the cluster against
some transitive network
conditions.

Y

ZoneDefaultCanRecv True
or
False

The default value that the
interest manager will assign

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 66

Configuration Group/Property Valid
values

Description Adv.

to canRecv when a new
channel is created

ZoneDefaultCanSend True
or
False

The default value that the
interest manager will assign
to canSend when a new
channel is created

Y

JVM Management

AutoThreadDumpOnExit True
or
False

Defines if a thread dump is
produced when the server
exits.

EmergencyThreshold 50
to
99

The memory threshold
when the server starts to
aggressively scan for objects
to release. If this value is too
large the server may run out
of memory. Default is 94, i.e.
94%

EnableJMX True
or
False

Enable JMX beans within the
server. If enabled the server
will present JMX MBeans so
it can be monitored by any
JMX client.

ExitOnDiskIOError True
or
False

If true, the server will exit if it
gets an I/O Exception. Seing
this to false may result in lost
events if the server runs out
of disk space. Default is true

Y

ExitOnInterfaceFailure True
or
False

If true and for any reason an
interface cannot be started
when the realm initializes,
the realm will shut down.

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 67

Configuration Group/Property Valid
values

Description Adv.

ExitOnMemoryError True
or
False

If true, the server will exit
if it gets an out of memory
exception. Seing this to
false may result in unstable
behavior if the server runs
out of memory. Default is
true.

Y

IORetryCount 2 to
100

Number of times a file I/O
operation will be aempted
before aborting

Y

IOSleepTime 100
to
60000

Time between disk I/O
operations if an I/O operation
fails. If this time is large
then the server may become
unresponsive for this time.

Y

JMXRMIServerURLString String JNDI Lookup URL for the
JMX Server to use.

MemoryMonitoring 60
to
30000

Number of milliseconds
between monitoring memory
usage on the realm. If this
value is too large then the
realm will be slow to handle
memory usage. Default is
2000.

ThroleAllPublishersAtThreshold True
or
False

Defines if publishers will
be throled back when
the memory emergency
threshold is reached.

Y

WarningThreshold 40
to
95

The memory threshold
when the server starts to
scan for objects to release. If
this value is small then the
server will release objects
too soon, resulting in a lower
performing realm. Default is
85, i.e. 85%.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 68

Configuration Group/Property Valid
values

Description Adv.

Join Config

ActiveThreadPoolSize 1 to
No
Max

The number of threads to be
assigned for the join recovery.
Default is 2.

IdleThreadPoolSize 1 to
No
Max

The number of threads
to manage the idle and
reconnection to remote
servers. This number should
be kept small. Default is 1.

MaxEventsPerSchedule 1 to
No
Max

Number of events that will
be sent to the remote server
in one run. A low number
will increase the time to
recover the remote server,
a large number will impact
other joins which are also in
recovery. Default is 50.

Y

MaxQueueSizeToUse 1 to
No
Max

The maximum events that
will be queued on behalf
of the remote server. A low
number increases the time for
the remote server to recover,
a large number increases the
memory used for this server.
Default is 100.

Y

RemoteJoinAckBatchSize Events received through
remote joins are
acknowledged in batches.
This property configures the
batch size.

Y

RemoteJoinAckInterval In addition to the batch
acknowledgement, remote
join events get acknowledged
every n milliseconds. This

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 69

Configuration Group/Property Valid
values

Description Adv.

property configures this
interval

UseQueuedLocalJoinHandler True
or
False

Specifies whether to use a
queued join event handler.
True will enable source
channels and destination
channels to be process events
independently

Y

Logging Config

DefaultLogSize 100
to
No
Max

The default size of the log in
bytes

DisplayCurrentThread True
or
False

If enabled will display the
current thread in the log
message.

DisplayPackageName True
or
False

If enabled will display the
package name of the logger
this message originates from
in the log message.

EnableLog4J True
or
False

If enabled will intercept log
messages and pass to Log4J
as well. This requires a restart
before it will take effect.

EmbedTag True
or
False

Used to control if the
message tag is displayed in
log messages.

EnableStatusLog True
or
False

If true, periodic logging of
the Universal Messaging
server status is activated.
The messages will be logged
at time intervals given
by the StatusBroadcast
configuration property

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 70

Configuration Group/Property Valid
values

Description Adv.

described in the Global Values
section.

The default is true.

LogManager 0 to
2

The Log manager to use.

0 = ROLLING_OLD, 1
= ROLLING_DATE, 2 =
ROLLING_NUMBER

RolledLogFileDepth No
Min
to
No
Max

The number of log files to
keep on disk when using log
rolling. Oldest log files will
be deleted when new files are
created.

customDebugTag String The tag to mark Debug log
entries with.

customErrorTag String The tag to mark Error log
entries with.

customFatalTag String The tag to mark Fatal log
entries with.

customInfoTag String The tag to mark Info log
entries with.

customLogTag String The tag to mark Log entries
with.

customTraceTag String The tag to mark Trace log
entries with.

customWarnTag String The tag to mark Warn log
entries with.

fLoggerLevel 0 to
6

The server logging level,
between 0 and 6, with 0
indicating very verbose, and
6 indicating very quiet. The
more logging requested, the

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 71

Configuration Group/Property Valid
values

Description Adv.

more overhead on the server.
Default is 5.

Metric Config

EnableEventMemoryMonitoring True
or
False

If this is set to True, the
server will make available
memory usage.

EnableMetrics True
or
False

If this is set to True, the
server will make available
system metrics (e.g. memory
usage).

MQTT Config

Enable True
or
False

If true the server will accept
incoming MQTT connections.
The default is true if this
feature is enabled in the
product licence.

EnableAutoCreateTopics True
or
False

If true the server will auto-
generate Topics for MQTT
clients for subscriptions and
publishing. The default is
true.

EnforceAlphaNumericClientID True
or
False

If true then the Client
ID must consist solely of
alphanumeric characters. The
default is false.

DisconnectOnSecurityException True
or
False

If true and if a Publish
request fails then the client
will be disconnected. The
default is true.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 72

Configuration Group/Property Valid
values

Description Adv.

IgnoreClientIDLength True
or
False

If true then ignore the
standard Client ID maximum
length check of 23 characters.
The default is true.

SessionStateTTL 0 to
No
Max

The number of milliseconds
the state of a Client ID is kept
between connections. The
default value is set to 3 days.
Seing this value to 0 will
store the Client ID state until
a clean session is received.

Timeout 1000
to
60000

The number of milliseconds
over the timeout value before
the server will close the
connection.

SupportZeroLength True
or
False

MQTT 3.1.1 allows the server
to auto-generate the Client
ID if it has zero length. The
default is true.

QoS0AsTransient True
or
False

MQTT 3.1.1 allows the server
to recover publish events
with QoS greater than 0. By
default Universal Messaging
will recover all publish
events. The default is false.

Strict True
or
False

To be compliant with MQTT,
stores must use the JMS
Engine. This flag enforces this
check. The default is true.

MaxOutstanding 100
to
64000

Sets the maximum number
of events that the server
will send before waiting for
the client to acknowledge
them (QoS:1 and above). The
default is 64000.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 73

Configuration Group/Property Valid
values

Description Adv.

DisconnectClientsOnPublishFailureTrue
or
False

Defines whether the server
should disconnect clients to
inform them that publishing
has failed. The default is true.

Plugin Config

EnableAccessLog True
or
False

Defines if plugin access log is
produced

EnableErrorLog True
or
False

Defines if plugin error log is
produced

EnablePluginLog True
or
False

Defines if plugin status log is
produced

MaxNumberOfPluginThreads 10
to
10000

Maximum number of threads
to allocate to the plugin
manager

Y

PluginTimeout 1000
to
30000

Time in milliseconds that
the plugin will read from a
client. If too small, the plugin
may not load all of the clients
requests

Y

Protobuf Config

CacheEventFilter True
or
False

Hold the Protocol Buffer filter
cache in memory. Default
true

Y

FilterProtobufEvents True
or
False

Allows the server to filter on
Protocol Buffers. Default is
true

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 74

Configuration Group/Property Valid
values

Description Adv.

MaximumProtobufBuilders 1 to
No
Max

The maximum number of
builders per descriptor file
when using the global (non-
channel) caches. Default 4

Y

MinimumProtobufBuilders 1 to
99

The minimum number of
builders per descriptor file
when using the global (non-
channel) caches. Default 2

Y

ProtobufDescriptorsInputDir String The folder to search for
Protocol Buffer descriptor
files to parse incoming
messages.

Y

ProtobufDescriptorsOutputDir String The folder for the server to
put the combined Protocol
Buffer descriptor file for
serving out to clients.

Y

UpdateDescriptorsInterval 1000
to
No
Max

The time in milliseconds
between checking the
Protocol Buffer directory for
updates. Default is 60000

Y

useChannelLevelProtobufCache True
or
False

Seing this will alter how
protobuf descriptors are
cached. If set to true, use the
channel-level protobuf cache.
If set to false, the global-level
cache will be used. The server
must be restarted for this to
take effect.

Protocol AMQP Config

AllowUserTransformation No
Min
to
No
Max

Will load a user class for
event transformation.

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 75

Configuration Group/Property Valid
values

Description Adv.

AnonymousUser String The user name to use for
anonymous users

BufferSize 1000
to
60000

The size of the buffer that will
be used to read/write on the
AMQP connection

DefaultNodeMode 0 to
1

The type of node if it is not
able to detect it.

0=Queue, 1=Topic

Enable 0 to
No
Max

If true the server will accept
incoming AMQP connections

EnableWriteThread True
or
False

Enables the off loading of the
physical write to a thread
pool

Y

EngineLoopCount 4 to
100

How many times the AMQP
state engine will cycle per
thread pool allocation

Y

MaxFrameSize 10000
to
No
Max

Maximum size of an AMQP
frame

Y

MaxThreadPoolSize 2 to
100

Largest number of threads
the pool can have.

MinThreadPoolSize 1 to
10

Smallest number of threads
for the dedicated AMQP
thread pool

QueuePrefix String The address prefix for
specifying topic nodes as
required by some clients

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 76

Configuration Group/Property Valid
values

Description Adv.

SASL_Anonymous True
or
False

Enable Anonymous SASL

SASL_CRAM-MD5 True
or
False

Enable CRAM-MD5 SASL

SASL_DIGEST-MD5 True
or
False

Enable DIGEST-MD5 SASL

SASL_Plain True
or
False

Enable Plain SASL

SubscriberCredit 100
to
No
Max

Sets the subscriber (receiver)
credit

Timeout 10000
to
300000

Sets the network timeout Y

TopicPrefix String The address prefix for
specifying topic nodes as
required by some clients

TransformToUse 0 to
4

Selects the type of
transformation to use from
AMQP style events to native
UM events.

0 - No transformation, 1 -
Basic Transformation, 2 -
Complete Transformation, 3 -
User Configurable

Protocol MQTT Config

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 77

Configuration Group/Property Valid
values

Description Adv.

Enable True
or
False

If true the server will accept
incoming MQTT connections

EnableAutoCreateTopics True
or
False

If true the server will auto
generate Topics for MQTT
clients for subscriptions and
publishing

IgnoreClientIDLength True
or
False

If set to true ignore the
standard clientID maximum
length check of 24 characters

MaxBufferSize 10000
to
100
000
000

Sets the maximum buffer
size that the MQTT client can
send

Y

SessionStateTTL 0 to
No
Max

The number of milliseconds
the state of a clientID is
kept between connections.
The default value is 3 days.
Seing this value to 0 will
store the clientID state until a
clean session is received.

Y

Timeout 1000
to
60000

The number of milliseconds
over the timeout value before
the server will close the
connection

Y

Proxy Forward Config

BufferSize 1024
to
20480

The size of the buffer to use
for the proxied events. If this
value is small then there will
be additional network traffic
dealing with small packets.

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 78

Configuration Group/Property Valid
values

Description Adv.

FlushTimeout 10000
to
120000

Time to wait for a flush to
complete. If this value is
too large it may delay other
clients from flushing the data.

Y

RecoveryDaemon

EventsPerBlock 1 to
No
Max

The number of events to send
in one block to a recovering
connection. Small values
may slow down the overall
speed of recovery, however
large values may saturate
the recovery thread and keep
it busy from performing
recovery tasks for other stores
and connections.

Y

ThreadPool 1 to
No
Max

Number of threads to use for
client recovery

Server Protection

EnableFlowControl True
or
False

Enables flow control of
producer connections.
Default is False.

FlowControlWaitTimeOne 0 to
120000

The time in milliseconds to
hold a producing connection
before processing its events.
This is the longest level of
waiting.

Y

FlowControlWaitTimeTwo 0 to
120000

The time in milliseconds to
hold a producing connection
before processing its events.
This is the second level of
waiting.

Y

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 79

Configuration Group/Property Valid
values

Description Adv.

FlowControlWaitTimeThree 0 to
120000

The time in milliseconds to
hold a producing connection
before processing its events.
This is the first level of
waiting and the shortest wait
time.

Y

Thread Pool Config

CommonPoolThreadSize 5 to
1000

Maximum number of threads
to allocate to the common
thread pool

ConnectionThreadPoolMaxSize 10
to
No
Max

The maximum number of
threads allocated to establish
client connections. If this
number is too small then
connections may be left
waiting for a thread to
process it.

ConnectionThreadPoolMinSize 4 to
100

The minimum number of
threads allocated to establish
client connections. If too large
then the server will have
many idle threads.

ConnectionThreadWaitTime 10000
to
300000

The time for the thread to
wait for the client to finalize
the connection. If too low
then slow linked clients may
not be able to establish a
connection.

Y

EnableConnectionThreadPooling True
or
False

If true then if NIO is available
it will be available for
interfaces to use it and then
all reads/writes will be done
via the Read/Write thread
pools. If NIO is not available
then a limited used write
thread pool is used. This

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 80

Configuration Group/Property Valid
values

Description Adv.

requires a realm restart
before it takes effect.

MaxUnauthorisedCount 10
to
10000

The maximum outstanding
unauthorized connections per
hostname (or IP address if
host name is unavailable)

Y

ReadThreadPoolMaxSize 4 to
No
Max

The maximum number of
threads that will be allocated
to the read pool. If NIO is not
available this should be set
to the maximum number of
clients that are expected to
connect. If NIO is available
then it's best to keep this
number under 20.

ReadThreadPoolMinSize 4 to
No
Max

This is the number of threads
that will always be present in
the read thread pool. If this
is too small then the thread
pool will be requesting new
threads from the idle queue
more often. If too large then
the server will have many
idle threads.

SchedulerPoolSize 1 to
100

The number of threads
assigned to the scheduler,
default is 2.

ThreadIdleQueueSize 5 to
50

When threads are released
from various pools since they
no longer need them they
end up in the idle queue.
If this idle queue exceeds
this number the threads
are destroyed. Specify this
number to be large enough
to accommodate enough idle
threads, so that if any thread
pool requires to expand
then it can be reused. If the

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 81

Configuration Group/Property Valid
values

Description Adv.

number is too large then the
server may have many idle
threads.

WriteThreadPoolMaxSize 5 to
No
Max

The maximum number of
threads that will be allocated
to the write pool. If NIO is
not available this should be
set to the maximum number
of clients that are expected to
connect. If NIO is available
then it's best to keep this
number under 20.

WriteThreadPoolMinSize 5 to
No
Max

This is the number of threads
that will always be present in
the write thread pool. If this
is too small then the thread
pool will be requesting new
threads from the idle queue
more often. If too large then
the server may have many
idle threads.

TransactionManager

MaxEventsPerTransaction 0 to
No
Max

The maximum number of
events per transaction, a 0
indicates no limit.

MaxTransactionTime 1000
to
No
Max

Time in milliseconds that
a transaction will be kept
active. A large number will
cause the server to retain
these transactions in memory.

TTLThreshold 1000
to
60000

The minimum time in
milliseconds, below which
the server will not store the
Transaction ID.

Y

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 82

Double-clicking on the property you wish to modify in the configuration group will
provide you with a dialog window where the new value can be entered. The values of
configuration properties will be validated to check whether they are within the correct
range of values. If you enter an incorrect value you will be notified.

Zone Administration
Overview of Zone Administration

The Enterprise Manager provides menu items for performing the administrative
functions on zones. In a zone, messages that are published to a channel on one realm are
automatically forwarded to a channel of the same name on other realms in the zone.

Note: Messages on queues are not forwarded between realms in a zone; the zone
functionality applies only to channels.

For general information about using zones, refer to the Architecture section of the
Universal Messaging Concepts guide.

Zone administrative functionality is offered in the Enterprise Manager menu bar and in
the navigation tree:

The Zone tab in the menu bar allows you to perform operations on zones, such as
creating and deleting zones.

The Zones node in the navigation tree is the parent node of any zones you create.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 83

The zone administration operations that you can perform are described in the following
sections.

Creating a Zone

To create a zone and define it with an initial set of realms or clusters, proceed as follows:

1. Open the dialog for creating a zone.

You can do this in one of the following ways:

In the Menu bar, select Zone > Create Zone, or

In the navigation tree, select the Zones node, and from the context menu choose
Create Zone.

2. In the dialog, specify a name that will be assigned to the zone.

3. Add realms or clusters to the zone.

If you select the radio buon for realms, you see all of the realms that you can add to
the zone. If you select the radio buon for clusters, you see all of the clusters that you
can add to the zone.

Specify the realms or clusters you want to add to the zone, then click Add.

4. Click OK to create the zone and close the dialog.

The newly created zone is now displayed under the Zones node in the navigation tree.

If you expand the node of the new zone, you will see the realms that belong to the zone.

Note: 1. A zone can contain either realms or clusters, but not a mixture of realms
and clusters.

2. A zone cannot be empty; it must contain at least one realm or cluster.

Modifying the set of realms or clusters in a zone

To modify the set of realms or clusters in a zone, proceed as follows:

1. Under the Zones node in the navigation tree, select the node representing the
required zone. In the context menu, select Modify Zone Members.

This displays the realms/clusters that are currently members of the zone, and also
the realms/clusters that are currently not members but which are available to become
members.

2. As required, add realms/clusters to the zone's existing members, or remove existing
members.

3. Click OK to save the modified zone and close the dialog.

Deleting a zone

To delete a zone, proceed as follows:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 84

1. Select the Zones node in the navigation tree, then in the context menu, select Delete
Zone.

Alternatively, select Zone > Delete Zone from the menu bar.

2. Select the required zone from the displayed list and click OK to delete the zone.

Creating a channel in a zone

You can create a channel for a zone, and the channel will be automatically created on all
realms/clusters in the zone.

To create a channel in a zone, proceed as follows:

1. Select the node for the zone in the navigation pane. Then, in the context menu of the
node, select Create Channel.

2. In the Add Channel dialog, specify the aributes of the channel that you wish to
create.

3. Click OK to complete the dialog and create the channel.

The Enterprise Manager now creates the channel on all realms or channels in the zone.

Modifying a channel in a zone

If you wish to modify the aributes of a channel that was created in a zone via Create
Channel, you must modify the aributes for the channel in each of the zone members
(realms, clusters) individually.

Note: Any changes you make to the channel definition for a realm/cluster in a zone
are NOT propagated automatically to the other zone members. If you wish to
keep all zone members in sync, you have to update the other zone members
individually.

To modify a channel on one realm/cluster in a zone, proceed as follows:

1. Select the node for the channel under the node for the realm/cluster on which the
channel is defined.

2. In the context menu of the channel, select Edit Channel.

3. In the Modify Channel dialog, make your changes and click OK to complete the dialog.

General notes on using zones

This section summarizes some operational aspects of using zones.

If a zone member (a realm or cluster) is not active (e.g. the server is down), no
Enterprise Manager operations will be allowed on the zone until all zone members
are available again.

Any given realm or cluster cannot be a member of more than one zone at the same
time.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 85

Cluster Administration
This section describes the process of creating a Universal Messaging cluster. Universal
Messaging Clusters enables the replication of resources across the cluster. The state of a
clustered resource is maintained across all realms within the cluster. For example if an
event is popped from a clustered queue it is popped from all nodes within the cluster.

Creating a cluster of Universal Messaging realms ensures that applications either
publishing / subscribing to channels, or pushing / popping events from queues can
connect to any of the realms and view the same state. If one of the realms in the cluster
is unavailable client applications can automatically reconnect to any of the other cluster
realms and carry on from where they were.

For more information on how to use the Enterprise Manager to manage Universal
Messaging Clusters please see:

"Creating Realm Clusters" on page 85

"Deleting Realm Clusters" on page 89

"Modifying Cluster Members" on page 91

"Creating Cluster Channels" on page 93

"Creating Cluster Queues" on page 96

"Viewing and Monitoring Cluster Information" on page 99

"Manage Inter-Cluster Connections" on page 101

For more information on how to use the Enterprise Manager to manage Universal
Messaging Clusters with Sites please see:

"Creating and Managing Clusters with Sites" on page 104

Creating a Cluster
This section describes the process of creating a Universal Messaging Cluster. Clusters
allow a group of Universal Messaging Realm Servers to replicate resources between
them, and to maintain the state for those objects across all realms within the cluster.

Creating a cluster of Universal Messaging realms ensures that applications which
publish/subscribe to channels, or which push/pop events from queues, can connect
to any of the realms and view the same state. If one of the realms in the cluster is
unavailable, client applications can automatically reconnect to any of the other cluster
realms and carry on from where they were.

Universal Messaging's clustering technology provides an unsurpassed level of reliability. Client
applications can seamlessly switch between any cluster realm if any problems - such as
network or hardware failures - occur with the realm to which they are connected. This
also provides an exceptional ability to load balance clients between realm servers.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 86

Tip: Since the underlying purpose of a cluster is to provide resilience and high
availability, we advise against running all the servers in a cluster on a single
physical or virtual machine in a production environment.

Important: The Enterprise Manager does not support working with two clusters that
have the same name.

Viewing Clusters in Enterprise Manager

The Enterprise Manager's top level view shows a tree node labelled "Universal
Messaging Enterprise" (see "Enterprise Summary" on page 285). One level below this
is a tree node labelled "Clusters ", which contains any known clusters.

If you use the Enterprise Manager to connect to a realm which is a member of an
existing cluster, then the cluster will automatically be displayed under the above-
mentioned "Clusters " tree node. When a cluster node is found, the Enterprise Manager
will also automatically connect to all of the cluster member realms (if not already
connected by default as a result of having loaded realm connection information in a
custom Enterprise Manager Connection Profile). See "Connecting to Multiple Realms" on
page 18 for related information.

Preparing to Create a Cluster

Firstly, before a cluster can be created, the Enterprise Manager needs to connect to those
realms (see "Connecting to Multiple Realms" on page 18) that will form the cluster.
If any realms cannot be connected to, or you receive a 'Security Alert' message when you
click on the realm node, you may want to check that the realm is running, and check the
permissions (see "Realm Entitlements" on page 153) on the realm. If the realms you
are connecting to are running on different machines, you need to ensure that all realm
machines are given full permissions to connect to the other realms in the cluster. Each
realm communicates with the other cluster realms via its own connection. The subject of
each connection is as follows:

realm-realmname@ip_address

For example, in the following example, there are 3 realms that will form part of a cluster,
each realm subject needs to exists in the ACLs of the other realms. The following realm
subjects need to be added to the ACL for each realm in our example:

realm-realm1@10.140.1.1realm-realm2@10.140.1.2realm-realm3@10.140.1.3

The permissions given for each realm need to be 'Access Realm'. As well as this, each
realm must have a valid entry for the user@host that corresponds to the user that will
create the cluster using the Enterprise Manager. The permissions for this user must be
sufficient in order to create the cluster object. Temporarily it is often beer to provide the
@ default subject 'Full' privileges to facilitate seing up a realm and clusters.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 87

Creating a cluster

If you select the 'Clusters' node under the 'Universal Messaging Enterprise' node, you
will be shown a pop up menu with a number of options. One of the options is to create a
cluster. The image below shows this menu option as described.

When you select the 'Create Cluster' menu option, you are presented with the cluster
dialog. The cluster dialog allows you to select which of the realms that the Enterprise
Manager is connected to will become members of the cluster. One of the selected realms
will become the master during the cluster creation. The master realm will control
synchronizing the state between the other realms, and acts as the authoritative source for
this information.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 88

The cluster dialog contains a text box for you to input the name of the cluster. Below the
name are the details of the cluster members. The available realms are shown on the left
hand side of the dialog. The right hand side shows those realms that are members. When
you double-click on a realm name in the Available Realms list, or click on a realm name
and click on the Add buon, the realm will be added to the Cluster Members list. You can
remove any realm from the Cluster Members list by either double clicking on the realm
from the list or by selecting the realm name, and clicking on the Remove Buon.

When you have finished selecting your cluster members, clicking on the 'OK' buon
presents you with the local store migration dialog. This dialog allows you to select
whether to migrate local stores to cluster-wide stores. Selecting the Yes buon will
convert any local stores (channels, queues, etc.) on the realms being added to the cluster
into cluster-wide stores. These stores will then be present on all realms in the cluster
when cluster creation completes. If the name of a local store is the same as the name of
an existing cluster store, clicking the Yes buon will cause the cluster creation to fail due
to a name clash. Clicking the No buon will keep these stores local to the realms, and
they will not be present on other realms in the cluster when creation is completed.

If the cluster creation is successful, a new cluster node will appear under the Clusters
node, and the realms that have been selected as members will be shown beneath the
cluster.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 89

Checking the cluster state

When a cluster has been created, you can monitor its state by selecting the cluster node.
The 'Cluster Summary' tab will show the state of all cluster members, and which realm
is current cluster master. The image below shows the state of a cluster when it has been
created and all realms within the cluster are fully online.

Creating cluster channels (see "Cluster Channel Administration" on page 93) and
cluster queues (see "Cluster Queue Administration" on page 96) is not permied if
any of the cluster realms are offline.

Deleting Clusters
When a Universal Messaging cluster needs to be deleted, all cluster resources that
exist in all cluster member realms will also be deleted. Removal of a cluster is a simple
operation that can be achieved using the Enterprise Manager. This section will describe
the process of removing a cluster.

In order to remove a Universal Messaging Realm cluster, you must first of all select the
'Clusters' node from the Enterprise Manager. Right-clicking on this node will present a
pop up menu, as shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 90

Selecting the menu option 'Delete Cluster' will prompt you with a dialog that asks you
to select a cluster node from a list. This list will contain all known clusters within the
realms you have connected to. This dialog is shown in the image below.

Clicking on the 'OK' buon once you have selected the cluster you wish to delete will
prompt you to answer a question. This question gives you 2 choices with regard to the
cluster resources that may exist within the cluster. These are:

Delete all cluster wide resources from each cluster realm

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 91

Convert all cluster wide resources to local within each realm

Choosing to delete all cluster resources will not remove any locally created channels,
only those created for the cluster.

Choosing to convert each one to local, will keep any data that may be contained with the
resources .

This dialog is shown in the image below. Choosing 'Yes' will remove the cluster objects,
'No' will make them all local, 'Cancel' will take no action at all.

Modifying Clusters
The Universal Messaging Enterprise Manager enables you to modify clusters. By
'Modify' we mean adding new realms to the cluster or removing existing cluster
members.

To add a new realm to a cluster, you must first of all ensure that you have connected
to (see "Connecting to Multiple Realms" on page 18) the realm you wish to add.
Removing realms is accomplished by selecting the realm you wish to remove from the
cluster. This will be discussed in more detail further on.

If for example, you have a cluster with two realms, and wish to add a third realm to the
cluster, it is possible to do so. Similarly, if you have a cluster with three (or any number
of realms) and wish to remove a realm from the cluster, this is also possible.

Adding Cluster Members

In order to add a realm to a cluster, you must first ensure that you have created a cluster
(see "Creating a Cluster" on page 85). Once you have a cluster, then also ensure you
have connected to (see "Connecting to Multiple Realms" on page 18) the realm you
wish to add to your cluster. Select the cluster node from the namespace and right-click
on the node. This will present you with a pop-up menu. Select the menu item labelled
'Modify Cluster Members'.

The dialog this presents you displays the current members of your cluster as well as
any realms you are not connected to that are not cluster members. This dialog is shown
below:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 92

The dialog shows the name of the cluster, a list of realms which are not currently
members of the cluster (shown as a list on the left hand side), and a list of current cluster
members (on the right hand side).

As you can see from the above example, currently there are three realms within the
cluster 'TestCluster'.

Double-clicking on any non-member realm, or selecting it from the list and clicking the
'Add' buon will enable you to add the realm as a member.

Note: If the realm has local stores with names matching any store on the cluster, the
realm will not be added to the cluster. This is to prevent naming clashes on
the cluster.

When you have added the realms you wish to add as cluster members, click on the
buon labelled 'OK'. This will add all realms in the right-hand list to the cluster. All
cluster resources will also be created on the newly added realms once the realms have
successfully been added to the cluster.

Removing Cluster Members

Removing cluster realms is achieved by again selecting the cluster node, right-clicking
on the node and choosing the 'Modify Cluster Members' menu item. This presents the
same dialog as shown above.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 93

To remove a realm, double-click on the realm from the 'Cluster Members' list or select
the realm and click the 'Remove' buon. This will remove the realm from the list and
add it back into the non-members list.

Clicking on the buon labelled 'OK' will then prompt you to answer a question. This
question allows you to select one of 2 options:

Delete all cluster wide resources from each the removed realm members

Convert all cluster wide resources to local within the removed realm members

Choosing to delete all cluster resources will not remove any locally created channels,
only those created for the cluster within the realms you are removing.

Choosing to convert each one to local, will keep any data that may be contained within
the cluster resources for the realms you wish to remove.

Adding and Removing Cluster Members

Cluster members can be added and removed in the same operation. For example, if you
have a cluster with 'realm1' and 'realm2' but want to remove 'realm2' and add 'realm3',
you would simply remove 'realm2' and add 'realm3' from the 'Cluster Members' list
in the 'Modify Cluster' dialog. The Enterprise Manager will work out which realms to
add and which to remove for you and perform the necessary channel conversion and
deletions you choose.

Cluster Channel Administration
This section describes the process of creating channels on a Universal Messaging
Realm cluster. Channels are the logical rendezvous point for data that is published
and subscribed. Each channel that is created consists of a physical object within each
Universal Messaging realm within the cluster as well as its logical reference within each
realm's namespace.

Note: Simple and Transient channels are not supported across realms in a cluster.

Creating channels using the Enterprise Manager creates the physical object within each
cluster realm. Once created, references to the cluster channels can be obtained using the
Universal Messaging Client and Admin APIs, as you would with normal channels that
are not cluster wide channels. Clustered channels can also be monitored and managed
using the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within each realm's namespace are displayed in a tree
structure under each realm node. Each cluster node also displays the member realms
that make up the cluster.

Creating Cluster Channels

To create new cluster channels, you must first create a cluster if one does not already
exist.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 94

Secondly, in order to create a cluster channel, you must select the cluster node from
the namespace tree where the channel will be created. For example, if there is a cluster
called 'TestCluster', which contains 3 realms called 'realm1', 'realm2' and 'realm3' and
you want to create a channel called '/eur/gbp' within that cluster of realms, you would
need to first of all click on the cluster node called 'TestCluster'. Then, by right-clicking on
cluster node a pop-up menu will be displayed that shows a number of menu items (as
shown in the image below).

By clicking on the menu item 'Create Cluster Channel', you will be prompted with a
dialog box that allows you to enter the details of the cluster channel you wish to create.
Cluster channels have exactly the same set of aributes assigned to them as normal
channels when they are created.

The create channel dialog for cluster channels allows you to input values for each of
these aributes. The only difference is that the channel will be created across all of the
realms within the cluster and the same state will be maintained between all instances of
that channel by the cluster realms. This means, for example, that if an event is published
to a clustered channel it becomes available on all clusters simultaneously.

In order to create a Mixed cluster channel called '/eur/gbp' the following seings would
be configured:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 95

Clicking on the 'OK' buon will create the channel '/eur/gbp' across all realms within
the cluster 'TestCluster' and render the channel object in the namespace tree of the
Enterprise Manager. The image below shows how the namespace tree looks after the
cluster channel has been created, fully expanded.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 96

As you can see from the image above, each realm node now contains the the channel
node in its namespace tree under a folder (which we call a container node) called '/eur'.
The icon used for a cluster channel is different to that of normal channel and is denoted
by the small leer 'c' in the icon, whereas the normal channel icon does not contain the
'c'.

Cluster Queue Administration
This section describes the process of creating queues on a cluster of Universal Messaging
realm servers. Each cluster queue that is created consists of a physical object within each
Universal Messaging realm within the cluster as well as its logical reference within each
realm's namespace.

Note: Simple and Transient queues are not supported across realms in a cluster.

Creating queues using the Enterprise Manager creates the physical object within each
cluster realm. Once created, references to the cluster queues can be obtained using the
Universal Messaging Client and Admin APIs, as you would with normal queues that are
not cluster wide queues. Clustered queues can also be monitored and managed using
the Enterprise Manager.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 97

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within each realm's namespace are displayed in a tree
structure under each realm node. Each cluster node also displays the member realms
that make up the cluster.

Creating Cluster Queues

To create new cluster queues, you must first create a cluster (see "Creating a Cluster" on
page 85) if you have not already done so.

Secondly, in order to create a cluster queue, you must select the cluster node from the
namespace tree where the queue will be created. For example, if i have a cluster called
'TestCluster', which contains 3 realms called 'realm1', 'realm2' and 'realm3' and i want
to create a queue called /eur/orders within that cluster of realms, i would need to first of
all click on the cluster node called 'TestCluster'. Then, by right-clicking on cluster node
a pop-up menu will be displayed that shows a number of menu items (as shown in the
image below).

By clicking on the menu item 'Create Cluster Queue', you will be prompted with a
dialog box that allows you to enter the details of the cluster queue you wish to create.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 98

Cluster queues have exactly the same set of aributes assigned to them as normal
queues when they are created. The create queue dialog for cluster queues allows you
to input values for each of these aributes. The only difference will be that the queue
will be created across all of the realms within the cluster and the same state will be
maintained between all instances of that queue by the cluster realms.

In order to create a cluster queue called '/eur/orders' aributes you would add the
aributes as shown below:

Clicking on the 'OK' buon will create the queue '/eur/orders' across all realms within
the cluster 'TestCluster' and render the queue object in the namespace tree of the
Enterprise Manager, both under each realm under each realm in the cluster as well as
each realm underneath the realms container node. The image below shows how the
namespace tree looks after the cluster queue has been created, fully expanded.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 99

As you can see from the image above, each realm node now contains the the queue node
in its namespace tree under a folder (which we call a container node) called '/eur'. The
icon used for a cluster queue is different to that of normal queue and is denoted by a 'c'
in the icon, whereas the normal queue icon does not have a 'c'. queue.

Viewing Cluster Information
The Enterprise Manager provides Cluster information through the following four tabs:

Cluster Summary

Connections

Logfile

Sites

Cluster Summary

The Cluster Summary tab provides an overview of all realms in the Cluster. It identifies
the current Master realm, and also shows each realm's perception of the state of all other
realms.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 100

The Cluster Summary Tab.

Connections

The Connections tab shows all connections to realms in the Cluster. In this example, it
shows a single user connected to three realms in the Cluster:

The Cluster Connections Tab.

Remote Cluster Connections

The Remote Cluster Connections tab shows all remote cluster connections for this
Cluster. Clusters can be remotely connected together providing the ability to create joins
between channels in different clusters:

The Remote Cluster Connections Tab.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 101

Logfile

The Logfile tab shows a real-time Cluster-specific log, and provides the option to stream
the log output to a file:

The Cluster Logfile Tab.

Sites

The Sites tab shows any site configurations (see "Creating and Managing Clusters with
Sites" on page 104) for the current cluster. Clusters that have Site configurations are
known as Universal Messaging Clusters with Sites. (Those without are known as Universal
Messaging Clusters):

The Cluster Sites Tab.

Manage Inter-Cluster Connections

Creating Inter-Cluster Connections

Inter cluster connections can be created through the Enterprise Manager. To do this,
firstly connect to a realm in each cluster. Then, once both clusters are displayed in the
Enterprise Manager, click on the "Inter-Cluster Connections" tab under one of the cluster
panels.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 102

Next, select "Add" and choose the remote cluster from the dropdown list in the popup
dialog which will now appear:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 103

The inter-cluster connections should now be established, and inter-cluster joins can now
be formed through the Enterprise Manager or programmatically.

Note: For a description of the general principles involved in creating channel joins,
see the section Creating Channel Joins. The description details the usage based
on the Enterprise Manager, but the same general principles apply if you are
using the API.

Deleting Inter-Cluster Connections

To delete an inter-cluster connection, simply select the connection from the list and click
"Delete".

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 104

Creating and Managing Clusters with Sites
This section describes the process of modifying a Universal Messaging Cluster into a
Universal Messaging Cluster with Sites. Clusters with Sites allow a standard Universal
Messaging cluster to operate with as lile as 50% of the active cluster members (as
opposed to the standard 51% quorum in effect for clusters without sites), and provides
administrators with a mechanism to prevent the split brain scenario that would
otherwise be introduced when using exactly half of a cluster's realms.

Viewing Site Information in Enterprise Manager

The Enterprise Manager's top level view shows a tree node labelled "Universal
Messaging Enterprise" (see "Enterprise Summary" on page 285). One level below this
is a tree node labelled "Clusters ", which contains any known clusters.

After creating your cluster (see "Creating a Cluster" on page 85) and selecting the
cluster's icon in the Enterprise Manager, click the Sites tab:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 105

Sites Tab in Cluster View. No Sites have yet been created for the above cluster.

Creating a Primary Site for a Cluster

Click the New buon to create the first site. We'll assume the site is named Production.
Follow the prompts and pick a Realm to include in the site, for example realm1:

Creation of a "Production" Site.

Addition of an Initial Member to "Production" Site.

At this point, the new site will appear in the Sites tab:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 106

The "Production" Site with its initial member realm is shown.

Note that the table will contain a column for all realms in the cluster. In this example
we have only added one realm to the Production site. Checking and unchecking the
appropriate checkboxes will add or remove clustered realms from the corresponding
sites.

Creating a Backup Site for a Cluster

Next, follow the same steps to create the second site, which in this example we shall
assume is named : Disaster Recovery

Creation of a "Disaster Recovery" Site and addition of an initial site member realm.

Addition of an Initial Member to "Disaster Recovery" Site.

The new Disaster Recovery site will now also appear in the Sites tab:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 107

Sites Tab in Cluster View. The "Production" and "Disaster Recovery" Sites are both shown.

Setting a Site's IsPrime Flag

Administrators use a site's isPrime flag to determine the site that will contain a cluster's
master realm.

We recommend you to make the production site the prime site. For a discussion on the
pros and cons of whether to make the production site or the disaster recovery site the
prime site, refer to the section Clusters with Sites in the Concepts guide..

Seing the Production Site to be Prime by checking its isPrime checkbox.

Channel Administration
The links below describe the Channel management features available within Universal
Messaging's Enterprise Manager

"Creating Channels" on page 108

"Editing Channels" on page 113

"Copying Channels" on page 116

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 108

"Channel Joins" on page 444

"Channel Snoop" on page 122

"Publishing Events Onto Channels" on page 123

"Named Object Administration" on page 126

Creating Channels
This section describes the process of creating a Universal Messaging channel on
Universal Messaging realm servers. Channels are the logical rendezvous point for data
that is published and subscribed. If you are using Universal Messaging Provider for JMS
then channels are the equivalent of JMS topics.

Each channel that is created consists of a physical channel within the Universal
Messaging realm as well as its logical reference within a namespace that may be made
up of resources that exist across multiple Universal Messaging realm servers. Creating
channels using the Enterprise Manager creates the physical object within the realm.
Once created, references to channels can be obtained using the Universal Messaging
Client and Admin APIs. Channels can also be monitored and managed using the
Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager,
all resources and services found within the realm namespace are displayed in a
tree structure under the realm node itself. It is possible to view multiple Universal
Messaging realm servers from a single enterprise manager instance.

Creating Channels on a Universal Messaging Realm

To create new Universal Messaging channels, the Enterprise Manager provides a
number of options. Firstly, in order to create a channel, the branch where the channel
will exist needs to be selected within the namespace tree.

For example, to create a channel called '/eur/rates' on a Universal Messaging realm
called 'nirvana7' simply right-click on the realm node to display a pop-up menu which
contains a 'Create Channel' option.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 109

After selecting 'Create Channel', an Add Channel dialog box appears. Channels have a
set of aributes assigned to them when they are created. The Add Channel dialog allows
you to input values for each of these aributes.

For information about the available channel aributes, such as Channel Type and
Channel TTL (time-to-live), see the summary of Channel Aributes in the Commonly
Used Features section of the Universal Messaging Concepts guide.

In the example below, the channel '/eur/rates' will be created with a channel type of
Simple and a TTL of 7 seconds.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 110

There are also a number of Storage Properties associated with the channel which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 111

For information about the available channel aributes, see the summary of Storage
Properties in the Commonly Used Features section of the Universal Messaging Concepts
guide.

Clicking on the 'OK' buon in the Add Channel dialog will create the channel '/eur/
rates' on the Universal Messaging realm 'nirvana7' and render the channel object in the
namespace tree of the Enterprise Manager underneath the realm node. This is shown in
the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 112

As you can see from the image above, the channel node in the tree has been created
under a folder (which we call a container node) called '/eur' under the realm 'nirvana7'.

It is also possible to create channels directly underneath container nodes. For example,
if we wished to create another channel called '/eur/trades', we could repeat the process
described above using the full absolute name of the channel. This would again create
a channel called trades under the container node /eur. Alternatively, we can select
the /eur node and create the new channel using its relative name /trades. Selecting the
container node and right-clicking on the node, shows another pop-up menu of options
for container nodes. One of the options is 'Create Channel'. The image below shows this
menu as it appears when the container is right-clicked.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 113

By selecting the menu item, 'Create Channel' from the container node, you are once
again presented with the create channel dialog. This dialog looks like the dialog
used previously, except the dialog shows that the channel will be created under the
container /eur.

Editing Channels
This section describes the process of editing the aributes of a Universal Messaging
channel.

Editing channels using the Enterprise Manager enables you to change specific aributes
of a channel, such as name, event time to live (TTL), capacity, channel keys or even the
realm on which the channel exists.

Note: When a channel is edited, its aributes and any events found on the channel
will be copied into a temporary channel, the old channel is then removed and
then the new channel is created. The original events are then copied from the
temporary channel onto the new channel.

As far as possible, channel events are held in memory for performance
reasons. The temporary channel is also held in memory, and requires the
same amount of memory as the channel being edited. The realm server must
be able to allocate sufficient memory to store the temporary copy, otherwise
the channel edit operation will be aborted and an error will be logged. If such
a situation occurs, you can resolve it by allocating additional heap size, so that

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 114

the temporary copy can exist in memory at the same time as the channel being
edited.

Since editing a channel involves removing the existing channel, this will
end all active subscriptions to the channel. It will also end all shared
durables aached to the channel, along with the associated messages. Such
subscriptions or shared durables need to be recreated after you have finished
editing the channel.

Editing a channel which serves as a dead event store for another channel will
cause that reference to be removed, therefore the user should re-create the
reference.

In order to edit a channel, select it in the namespace, and then after right-clicking on the
node, a menu will be displayed with the various options for a channel node. The image
below shows this menu.

By selecting the 'Edit Channel' option, you will be presented with a dialog that allows
you to modify the details of the channel. These details not only include the channel
aributes, but also the realm to which the channel belongs. The image below shows the
edit channel dialog.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 115

The Parent Realm field shows a drop down list containing all the names of the realms
that the enterprise manager is currently connected to. By selecting a realm name from
the list, it is possible to move the selected channel to any of the available realms. Clicking
on the 'OK' buon will perform the edit operation on the channel.

There are also a number of Storage Properties associated with the channel which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 116

Copying Channels
This section describes the process of copying channels in Universal Messaging realms.

Copying channels using the Enterprise Manager enables you to duplicate channels
automatically across realms. When a channel is copied, its aributes and any events
found on the channel will be copied over onto the new channel copy.

Firstly, by selecting the channel in the namespace that you wish to copy and right-
clicking on the node, you will be presented with a menu that shows you the various
options for a channel node. The image below shows this menu.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 117

By selecting the 'Copy Channel' option, you will be presented with a dialog that allows
you to input the details of the new channel copy. These details not only include the
channel aributes, but also the realm to which the channel will be copied. The image
below shows the copy channel dialog.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 118

The Parent Realm field shows a drop down list containing all the names of the realms
that the Enterprise Manager is currently connected to. By selecting a realm name from
the list, it is possible to create a copy of the selected channel in that realm. Clicking on
the 'OK' buon will create the channel on the selected realm and the channel will then
appear in the namespace tree.

Creating Channel Joins
This section describes the process of joining channels on Universal Messaging realms.
Channels are the logical rendezvous point for data that is published and subscribed .

Channels can be joined programmatically or by using the Universal Messaging
Enterprise Manager as described below.

Joining channels using the Enterprise Manager creates a physical link between a source
channel and a destination channel. Once created, any events published to the source
channel will be republished onto the destination channel.

Joins can be created using filters , so that only specific events published to the source
channel that match certain search criteria will be routed to the destination channel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 119

Joins can also be created in several configurations:

A join may be created between a channel on a realm and a store on another realm
federated with the source realm (see "Realm Federation" on page 25 for details of
seing up federation between two realms);

A join can be created from a channel on a clustered realm to a store within the same
cluster. A non-clusterwide channel can be joined to a cluster-wide store, but not vice
versa;

A channel can be joined from a channel on one cluster to a channel on another
cluster by using an inter-cluster join (see "Inter-Cluster Joins" on page 121).

Universal Messaging also supports joins where the destination (incoming) is a
queue. Universal Messaging does not support joins where the source of the join is a
queue.

The image below shows a realm that contains the cluster channels /eur/rates and /local/
rates.

By selecting any of the cluster channels, then right-clicking, you can select the 'Join
Channel' menu option. You will be presented with the join dialog for the selected cluster
channel. This allows you to create a join from the channel to any other channel in any
realm.

We can, for example, select /local/rates as the channel we wish to join to /eur/rates, as
shown in the join dialog below, with a filter of CCY='EUR'. This will ensure that only
those events with the event property CCY equal to 'EUR' occurring on /local/rates will be
published to the /eur/rates channel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 120

The From Channel field represents the source channel and the To Store field represents the
destination channel. By default, the From Channel field contains the name of the currently
selected channel from which the join dialog was opened.

Clicking on the OK buon will create the join.

By selecting the Joins tab panel for either the /local/rates channel or the /eur/rates
channel, you will be presented with a panel that shows the join just created. The
image below shows the display for the /eur/rates channel, which in this example is the
destination channel. Selecting the newly created join will also show you any relevant
filtering criteria that the join has been created with.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 121

The table that shows the joins for a channel will indicate in the Type column whether
the join is 'Outgoing' or 'Incoming'. An outgoing join indicates that the selected channel
is the source for the join, whereas 'Incoming' indicates that the selected channel is the
destination channel.

Deleting Joins

You can delete a join by selecting the join from the joins table, and clicking the Delete Join
buon. Joins can only be deleted in the Enterprise Manager from the source (outgoing)
channel. If the destination channel (incoming) is selected, the Delete Join buon will be
disabled.

Inter-Cluster Joins

To add a join between channels on different clusters, first create an inter-cluster
connection between the two clusters. Next, simply select a realm in the desired
destination cluster as the join destination in the dropdown menu, as below:

As with non-inter-cluster joins, these joins can be specified with filters and hop-counts.
If realms in the destination cluster go down, the join will failover and will continue to
deliver events so long as the destination cluster is formed.

Inter-cluster joins can also be formed programmatically .

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 122

Allowing Purge

When a channel is purged, the events in the channel can also be purged. To activate this
feature, mark the checkbox Allow Purge.

Archival Joins

An archival join is a specific type of join made between a channel and a queue, where
events will not be checked for duplication. Events that are published to the source
channel will appear in the destination queue. This may result in duplicate events in the
queue if the queue has multiple sources.

If you use the optional Filter field, only the events matching the filter criteria will appear
in the destination queue.

The channel join dialog contains a checkbox labelled Archival. This checkbox is available
when you create a join from a channel to a queue. When you mark the checkbox, the join
is defined as an archival join.

A typical scenario for using this feature is if you have multiple routes that messages
can take to reach the same destination, and you want to retain all duplicates at the
destination. For example:

if an event is duplicated at the source.

if an event is copied from channel A -> B -> C and from channel A -> D -> C.

if you define multiple paths over different network protocols between the same
source and destination.

Without this feature, the duplicate detection would ensure that only one copy of the
message is delivered to the destination queue.

Channel Snoop
This section will describe how to snoop a Universal Messaging channel. Channels are
the logical rendezvous point for data that is published and subscribed.

Snooping a channel using the Universal Messaging enterprise manager allows the
display of the contents of events contained within that channel. Each channel node in the
namespace tree of a Universal Messaging realm, when selected, displays a snoop panel
that provides you with a means of subscribing to the channel so that the events' contents
can be displayed in a graphical panel.

You can select where on the channel you wish to subscribe from and to, based on the
event id, and you can also provide a filter that enables you to select specific events that
match a certain criteria.

First of all, by selecting the channel you wish to snoop in the namespace tree, the
Enterprise Manager will display a number of panels in a tabbed pane. One of these tabs
is labeled 'Snoop'. Selecting the snoop tab will display a panel like the one shown in the
image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 123

The snoop panel is split up into a number of different sections. Firstly, the 3 text fields at
the top of the panel allow you enter an event id range to and from, and a selector string
that will be used to filter events being snooped on the channel. Clicking the 'Start' buon
will begin the channel snoop, and start displaying any events that are published onto the
channel using whatever values you have input into the text fields.

When events are published, they are added to the main table below the text field input.
This main table shows 4 columns of summary information about each event: the event
id, event tag, time to live, and whether the event is persistent. By clicking on any event
shown as a row in the main table, more information on the event is shown in the boom
3 panels. As shown in the image below.

The Top 2 remaining panels show a Hexadecimal view of the event data and an ASCII
representation of the same event data. The panel below that shows the contents of
the event properties (if one exists for the event) listed within a table. Each property is
displayed as a row in the table. The table columns show the name of the property, the
type, and the value.

The buon labeled 'Pause' will temporarily suspend receipt of any new message being
received into the snoop panel for the selected channel. The 'Stop' buon will stop
snooping events and clear all the panels and tables.

In order to snoop the contents of a Universal Messaging queue (see "Queue Snoop" on
page 148) please see that section of the enterprise .

Channel Publishing
This section will describe how to publish events to a Universal Messaging channel from
the Enterprise Manager.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 124

Events can be published either from scratch, or by duplicating events already published
onto a channel from within the snoop (see "Channel Snoop" on page 122) panel view.
Both options allow you to add and remove event properties, set the event TTL, the event
persistence, the event tag and the number of times the event will be published to the
channel.

The event data can be either manually input, obtained from an xml Document file or any
other binary file.

Firstly, to publish a new event from scratch, select the desired channel you wish to
publish an event onto, and then right-click on the same node and choose the 'Publish'
menu option. This will display a dialog as shown below where you can construct the
event.

In the image above, the data for the event is simply a string. The properties are added
by entering a property key, a value and a type and then clicking on the 'Add Property'.
Once added, the properties are displayed in the table at the boom of the panel. To
remove a property entry, click on the property within the table view and select the
'Remove Property' menu option. Properties can also be edited by clicking on the
property from the table and double-clicking in the cell you wish to change. Once you hit
return, the value will be updated in the table.

To add an XML document as the event data, click on the 'Open' buon in the top right
hand corner of the dialog, and choose your xml file from the file chooser. Once opened,

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 125

the contents of the file will be displayed within the event data section of the dialog and
will be non-editable. An example of this is shown in the image below.

To publish the contents of any other file within the event data, repeat the above steps for
XML and select a non-xml file. The contents of the file will not be displayed, however the
file will be read in binary format when the 'Publish' buon is clicked and published to
the channel. Once again, when a file is selected for publishing the event data section is
non-editable.

Clicking on the 'Clear' buon will cancel any file that has previously been selected and
allow you to once again select a file or manually enter the event data.

In order to duplicate or modify and republish an event that has already been published
to a channel, you must first of all select the snoop panel (see "Channel Snoop" on page
122) for the channel in question, and snoop the channel. Once events are displayed
in the snoop panel, select the event you wish to duplicate or modify and republish from
the table of events. Right-clicking on the event will display a menu with 2 options. The
first option allows you to purge an individual event from a channel. The second menu
option will open the event publish dialog with the details of the event already filled in,
including the event properties, TTL and persistence.

Properties can be added / removed from the duplicate event as well as modified. To
modify a property, double-click in the cell of the property you wish to change and then
modifying its contents. With the republish option, you can also choose to purge the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 126

original event from the channel by checking the 'Purge Original Event' checkbox. Once
the 'Publish' buon is clicked, the duplicate event will be published onto the channel.
The number of publishes depends on the amount entered in the 'Num Of Publishes'
field. The image below shows the publish dialog for a JMS Message published onto a
Universal Messaging channel.

The publish option is also available for queues. The republish option is also available
from the snoop panel for queues.

Channel Named Objects
This section describes how to manage named objects stored by a realm server against
a Universal Messaging channel. Named objects provide state information for durable
consumers mapped to specific names on channels. Every time a consumer uses a named
object, it begins consuming from where the previous consumer finished.

The Universal Messaging APIs provide methods for managing named objects
programmatically, in Java and C#.

To retrieve and remove any named objects present on a channel in Enterprise Manager,
select the channel and click the Named Objects tab. When you first select the Named
Objects tab, the named object table is empty. To populate the table with any named
objects found for the channel, click Get Names.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 127

The following image shows that the named object table for the /eur/rates channel has a
named object for the name 'administrator'.

The named object table shows each named object as a row in the table. The columns
of the table show the aributes of a named object, such as the name, current event
ID (as known by the server), whether the named object is cluster-wide and whether
it is persistent (When a realm is restarted the named object state is read from disk as
opposed to being held in memory where it would be lost after a restart).

Note: When changes to the event ID and outstanding events aributes of a named
object occur, Enterprise Manager refreshes the values of these aributes at an
interval of several seconds. For this reason, if you click Get Names too often,
the event ID and outstanding events for a named object might not be updated
immediately.

To delete a named object, select the named object in the table and click Delete Name. This
action removes the named object from the server.

DataGroup Administration
The links below describe the DataGroup management features available within
Universal Messaging's Enterprise Manager

"Creating DataGroups" on page 128

"Adding Existing DataGroups to DataGroups" on page 132

"Removing DataGroups from DataGroups" on page 134

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 128

"Deleting DataGroups" on page 135

Creating DataGroups
Universal Messaging DataGroups provide a very lightweight grouping structure that
allows developers to manage user subscriptions remotely and transparently.

Each DataGroup is a resource that exists within the Universal Messaging realm server,
or within a cluster of multiple realm servers. Creating a DataGroup - in this case using
the Enterprise Manager - creates the physical object within the realm. Once created,
references to the DataGroup can be obtained using the Universal Messaging Client and
Admin APIs. DataGroups can also be monitored and managed using the Enterprise
Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager,
all resources and services found within the realm namespace are displayed in a
tree structure under the realm node itself. It is possible to view multiple Universal
Messaging realm servers from a single enterprise manager instance.

Creating a DataGroup

In Enterprise Manager, the Data Groups node exists within the realm node. Locate the
Data Group Node, and right click on it to bring up a context menu:

Create the DataGroup - in this example, we'll call it EURUSD_Gold :

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 129

The new DataGroup can now be seen in Enterprise Manager:

Publishers with the Publish to DataGroups ACL permission can now publish messages to
the new DataGroup programmatically.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 130

Creating a Nested DataGroup

Choose the DataGroup that is going to contain a new DataGroup. In this example, we'll
choose the EURUSD_Gold DataGroup we created earlier.

Right-click its icon, and the following context menu appears:

Add the nested DataGroup:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 131

The nested DataGroup can now be seen in the tree:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 132

Adding Existing DataGroups to DataGroups
We've already seen how to use Enterprise Manager to create a new DataGroup and add
it to an existing DataGroup (see "Creating DataGroups" on page 128). In this section,
we will add an existing DataGroup to a DataGroup.

Assume that in the following example structure of DataGroups, we would like to
add the existing Customer_Desk_A DataGroup, which itself already a member of the
EURUSD_Gold DataGroup, to the GBPUSD_Gold DataGroup too.

First, choose the DataGroup that is going to contain a new DataGroup. In this case, it's
the GBPUSD_Gold DataGroup we created earlier.

Right-click its icon, and the following context menu appears:

Click the "Add A DataGroup to GBPUSD_Gold" context menu option, then type in the
name of the DataGroup we wish to add as a member - in this case, Customer_Desk_A:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 133

Because this DataGroup already exists (and was a member of EURUSD_Gold), it now
appears as a member of two DataGroups (and thus appears twice in the tree of
DataGroup nodes):

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 134

Now, any events published to the DataGroups EURUSD_Gold or GBPUSD_Gold, or directly
to the DataGroup Customer_Desk_A, will be delivered to any DataStreams which are
members of the Customer_Desk_A DataGroup.

Removing DataGroups from DataGroups
In this section, we will remove an existing DataGroup from a DataGroup.

Assume that in the following example structure of DataGroups, we would like to
remove the existing Customer_Desk_C DataGroup from the EURUSD_Silver DataGroup.

First, choose the DataGroup that is going to be removed from its "parent" DataGroup. In
this case, it's the Customer_Desk_C DataGroup we created earlier.

Right-click its icon, and the following context menu appears:

Click the "Remove Customer_Desk_C from EURUSD_Silver" context menu option, then
click OK on the confirmation dialog.

The DataGroup, having been removed, will either:

Be moved to the top level DataGroups node if it has no other parent DataGroups, or

Appear in other nodes in the tree if it has at least one other parent DataGroup.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 135

In this example, the Customer_Desk_C DataGroup was not a member of any other
DataGroups, so having been removed from the EURUSD_Silver DataGroup, it now
appears in the top level DataGroups node.

Deleting DataGroups
There are two ways of deleting a DataGroup using the Enterprise Manager:

1. by navigating the DataGroups tree

2. by typing in its name

Note that if a deleted DataGroup is a member of more than one parent DataGroup, then
it will be deleted from all of them, and will no longer be defined for use elsewhere.

Deleting by Navigating the DataGroups Tree

In Enterprise Manager, locate the Data Group Node (in this example, EURUSD_Gold), and
right click on it to bring up a context menu:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 136

Click OK on the confirmation dialog, and the DataGroup will be deleted.

Deleting by Typing in the DataGroup Name

In Enterprise Manager, right-click the DataGroups node and select the "Delete A
DataGroup" context menu option:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 137

In the resulting dialog box, type in the name of the DataGroup to be deleted:

Click OK on the confirmation dialog, and the DataGroup will be deleted.

Queue Administration
The links below describe the queue management features available within Universal
Messaging's Enterprise Manager

"Creating Queues" on page 137

"Editing Queues" on page 143

"Copying Queues" on page 146

"Queue Snoop" on page 148

Creating Queues
This section describes how to create queues on Universal Messaging realms. Each queue
that is created consists of a physical object within the Universal Messaging realm as well
as its logical reference within the namespace.

Creating queues using the Enterprise Manager creates the physical object within
the realm. Once created, references to queues can be obtained using the Universal
Messaging Client and Admin APIs. Queues can also be monitored and managed using
the Enterprise Manager.

When you connect to a Universal Messaging realm in the Enterprise Manager, all
resources and services found within the realm namespace are displayed in a tree
structure under the realm node itself.

Creating Realm Queues

To create new realm queues, the Enterprise Manager provides you with a number of
options.

In order to create a queue called '/eur/requests' on a realm called 'nirvana' simply right-
click on the realm node called 'nirvana' to display a pop-up menu containing an option
called 'Create queue' (as shown in the image below).

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 138

By clicking on the menu item 'Create Queue', you will be prompted with a dialog box
that allows you to enter the queue aributes. Queues have a set of aributes assigned to
them when they are created. The create queue dialog allows you to input values for each
of these aributes.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 139

Clicking on the 'OK' buon will create the queue '/eur/requests' on the Universal
Messaging realm 'nirvana' and render the queue object in the namespace tree of the
Enterprise Manager underneath the realm node. This is shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 140

As you can see from the image above, the queue node in the tree has been created under
a folder (container node) called '/eur' under the realm 'nirvana'.

There are also a number of Storage Properties associated with the queue which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 141

Queues can also be created from the context of a container nodes by specifying a relative
queue name.

For example, to create another queue called '/eur/orders', you can select the '/eur' node
and create the new queue using its relative name '/orders'. Selecting the container node
and right-clicking on the node, shows another pop-up menu of options for container
nodes. One of the menu is 'Create Queue'. The image below shows this menu as it
appears when the container is right-clicked.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 142

By selecting the menu item, 'Create Queue' from the container node, you are once
again presented with the create queue dialog. This dialog looks like the dialog used
previously, except the title of the dialog shows that the queue will be created under the
container '/eur', as shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 143

Editing Queues
This section describes the process of editing queues in Universal Messaging realms. Each
queue that is created consists of a physical object within the Universal Messaging realm
as well as its logical reference within the namespace.

Editing queues using the Enterprise Manager enables you to change specific aributes
for a queue, such as name, TTL, capacity or even the realm on which the queue exists.

Note: When a queue is edited, its aributes and any events found on the queue will
be copied into a temporary queue, the old queue is then removed and then
the new queue is created and the events are then copied from the temporary
queue onto the new queue.

As far as possible, queue events are held in memory for performance reasons.
The temporary queue is also held in memory, and requires the same amount
of memory as the queue being edited. The realm server must be able to
allocate sufficient memory to store the temporary copy, otherwise the queue
edit operation will be aborted and an error will be logged. If such a situation
occurs, you can resolve it by allocating additional heap size, so that the
temporary copy can exist in memory at the same time as the queue being
edited.

Editing a queue which serves as a dead event store for another queue will
cause that reference to be removed, therefore the user should re-create the
reference.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 144

In order to edit a queue, select it in the namespace, and then after right-clicking on the
node, a menu will be displayed with the various options for a queue node. The image
below shows this menu.

By selecting the 'Edit Queue' option, you will be presented with a dialog that allows you
to modify the details of the queue. These details not only include the queue aributes,
but also the realm to which the queue exists. The image below shows the edit queue
dialog.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 145

The image shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list,
it is possible to move the selected queue to any of the available realms. Clicking on the
'OK' buon will perform the edit operation on the queue.

There are also a number of Storage Properties associated with the queue which can be
configured by clicking the "Edit..." buon to the right of "Storage Properties".

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 146

Copying Queues
This section will describe the process of copying queues in Universal Messaging realms.
Each queue that is created consists of a physical object within the Universal Messaging
realm as well as its logical reference within the namespace.

Copying queues using the Enterprise Manager enables you to duplicate queues
automatically across realms. When a queue is copied, its aributes and any events found
on the queue will be copied over onto the new queue copy.

Firstly, by selecting the queue in the namespace that you wish to copy and right-clicking
on the node, you will be presented with a menu that shows you the various options for a
queue node. The image below shows this menu.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 147

By selecting the 'Copy Queue' option, you will be presented with a dialog that allows
you to input the details of the new queue copy. These details not only include the queue
aributes, but also the realm to which the queue will be copied to. The image below
shows the copy queue dialog.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 148

The image shows a drop down list containing all the names of the realms that the
enterprise manager is currently connected to. By selecting a realm name from the list,
it is possible to create a copy of the selected queue in that realm. Clicking on the 'OK'
buon will create the queue on the selected realm and the queue will then appear in the
namespace tree.

Queue Snoop
This section will describe how to snoop a Universal Messaging queue. Each queue that is
created consists of a physical object within the Universal Messaging realm as well as its
logical reference within the namespace.

Snooping a queue allows you to view the events contained on a queue. Each queue node
in the namespace tree of a Universal Messaging realm, when selected, displays a snoop
panel that provides you with a means of browsing the queue and present the events on
the queue in a graphical panel.

You can also provide a filter that enables you to select specific events that match a certain
criteria.

First of all, by selecting the queue you wish to snoop in the namespace tree, the
Enterprise Manager will display a number of panels in a tabbed pane. One of these tabs
is labelled 'Snoop'. Selecting the snoop tab will display a panel like the one shown in the
image below.

The snoop panel is split up into a number of different sections. Firstly, the 3 text fields at
the top of the panel allow you enter an event id range to and from, and a selector string
that will be used to filter events being snooped on the queue. For queues, the event id
ranges are disabled. Clicking the 'Start' buon will begin the queue snoop, and start

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 149

displaying any events that are published onto the queue using whatever values you
have input into the text fields.

When events are published, they are added to the main table below the text field input.
This main table shows 4 columns of basic information about each event: the event id,
event tag, time to live, and whether the event is persistent. By clicking on any event
shown as a row in the main table, more information on the event is shown in the boom
3 panels. As shown in the image below.

The top 2 remaining panels show a Hexidecimal view of the event data and an ASCII
representation of the same event data. The panel below that shows the contents of
the event properties (if one exists for the event) listed within a table. Each property is
displayed as a row in the table. The table columns show the name of the property, the
type, and the value.

The buon labelled 'Pause' will temporarily suspend receipt of any new message
being received into the snoop panel for the selected queue. The 'Stop' buon will stop
snooping events and clear all the panels and tables.

Channels can also be snooped using the snoop panel (see "Channel Snoop" on page
122).

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 150

Using ACLs for role-based Security
Adding ACLs

The Enterprise Manager allows Access Control Lists (ACLs) to be controlled via the ACL
panel which is displayed for each object within the namespace. These panel allows users
to add entries to the ACL, as well as remove the selected entry. The image below shows
the dialog for adding an ACL entry.

Clicking on the 'OK' buon will add the subject to the selected objects ACL list.

Similarly, once they have been defined, Security Groups (see "Nirvana Admin API -
Nirvana Security Groups" on page 453) may be added into ACL Lists by clicking the
"Add Group" buon and selecting the desired group as shown:

When an entry is selected from the ACL panel, and the 'Delete' buon is selected, you
will be prompted to confirm the deletion.

After any changes made to the ACLs, only when the 'Apply' buon is clicked will those
changes be sent to the realm server for processing. Clicking the 'Cancel' buon will
discard any changes made and revert back to the state the Realm server has for the ACL.

To read more about the entitlements for each object, follow the links below:

"Security Groups" on page 453

"Realm ACL" on page 153

"Channel ACL" on page 155

"Queue ACL" on page 157

"Interface VIA ACL" on page 159

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 151

Security Groups
Security groups contain a list of subjects (username & host pairs) and, in addition, may
contain other Security Groups. Once a Security group is defined, the group can be added
to ACL lists like normal subject(user@host) entries are added and permissioned. This
allows for "sets" of users to be defined and granted permissions through a single entry in
an ACL list, rather than each user having an entry.

Before adding a Security Group to an ACL, it must first be created. This can be done
programmatically or via the Enterprise Manager, as shown below.

Once the group has been created, user@host subjects can be added to the group using
the "Add Member" buon:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 152

Alternatively, groups can be added as members of other groups by using the "Add
Group" buon. This will present you with a dropdown list of existing groups to choose
from:

Membership of Security Groups can be altered dynamically, and the changes will be
reflected in the permissions for all ACL lists where the security group is an entry in the
ACL list.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 153

As with all ACLs in Universal Messaging, privileges are cumulative. This means that,
for example, if a user is in a group which has publish permissions on a channel, but not
subscribe permissions, the user will no be able to subscribe on the channel. Then, if an
ACL entry is added on the channel for his specific username/host pair, with subscribe
but no publish permissions, the user will then be able to both subscribe(from the non-
group ACL permission), and publish (from the group ACL permission).

Realm Entitlements

Realm ACLs

As mentioned in the security introduction (see "Using ACLs for role-based Security" on
page 150), in order to perform operations within a Realm clients connecting to the
realm must be given the correct entitlements.

In order for a client to connect to a Universal Messaging Realm server there must be a
Realm ACL which allows them to do so. A Realm ACL contains a list of subjects and
their entitlements (i.e. what operations they can perform within the realm).

Using the Enterprise manager, one can add to, remove or modify entries within a realm
ACL.

ACLs can also be managed via the Universal Messaging administration API.

To view a Realm ACL, click on a realm node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the realm ACL and the list of
subjects and their associated permissions for the realm. The following image displays
and example of a realm ACL.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 154

As you can see above, the realm ACL has a number of subject entries and operations that
each subject is able to perform on the realm. The operations that can be performed on a
realm are described below in the order in which they appear in the ACL panel above:

Manage ACL - Allows the subject to get and manage the list of ACL entries.

Note: This permission is a combination of two permissions at the Administration
API level. The boolean setModify() API function allows/denies permission to
change an ACL value, and the boolean setList() API function allows/denies
permission to access the current list of ACLs. If both of these functions
return the value true, Manage ACL is allowed, otherwise Manage ACL is
not allowed.

If the green check icon is displayed in the Manage ACL field, the
corresponding two API functions for this field are set to true.

The value of this permission cannot be changed in the Enterprise Manager.

Full - Has complete access to the secured object

Access - Can actually connect to this realm

Configure - Can set run time parameters on the realm

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 155

Channels - Can add/delete channels on this realm

Realm - Can add / remove realms from this realm

Admin API - Can use the nAdminAPI package

Manage DataGroups - Can add / remove data groups from this realm

Pub DataGroups - Can publish to data groups (including default) on this realm

Own DataGroups - Can add / delete publish to data groups even when they were not
created by the user

The green check icon shows that a subject is permied to perform the operation.
For example, the subject *@* is shown as having no permissions for this realm. The
minimum requirement for a client to use a realm is the 'Access' privilege. Without this
privilege for the *@* subject, any Universal Messaging client aempting to connect,
whose subject does not appear in the ACL list, will not be able to establish a session with
the Realm Server.

In order to modify the permissions for a subject, you simply need to click on the cell
in the ACL table for the subject and the operation you wish to modify permissions for.
For example, if you want to grant the *@* user the 'Access' realm privilege, you would
simply click on the *@* row at the column labelled 'access'. This would turn the cell from
blank to a green check icon.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change.

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Any changes made to a realm ACL where the realm is part of a cluster will be replicated
to all other cluster realms.

Channel Entitlements

Channel ACLs

Once clients have established a session with a Universal Messaging Realm server,
and they have successfully been authenticated and the subject has the correct user
entitlements, in order to perform operations on channel objects, the correct entitlements
must be granted to the subject on the required channels. Each channel has an associated
ACL that contains a list of subjects and a set of privileges the subject is given for
operations on the channel.

Using the Enterprise Manager, one can add to, remove or modify entries within the
channel ACL.

To view a channel ACL, click on a channel node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the channel ACL and the list of

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 156

subjects and their associated permissions for the channel. The following image displays
and example of a channel ACL.

As you can see above, the channel ACL has a number of subject entries and operations
that each subject is able to perform on the channel. The operations that can be performed
on a channel are described below in the order in which they appear in the ACL panel
above:

Manage ACL - Allows the subject to get and manage the list of ACL entries.

Note: This permission is a combination of two permissions at the Administration
API level. The boolean setModify() API function allows/denies permission to
change an ACL value, and the boolean setList() API function allows/denies
permission to access the current list of ACLs. If both of these functions
return the value true, Manage ACL is allowed, otherwise Manage ACL is
not allowed.

If the green check icon is displayed in the Manage ACL field, the
corresponding two API functions for this field are set to true. If you
remove the green check icon, this sets the corresponding two API
functions for this field to false.

Full - Has complete access to the secured object

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 157

Purge - Can delete events on this channel

Subscribe - Can subscribe for events on this channel

Publish - Can publish events to this channel

Named - Can the user connect using a named (durable) subscriber

The green check icon shows that a subject is permied to perform the operation. For
example, if there is a subject *@* with only subscribe permissions for this channel, this
means that any client who has successfully established a session and has obtained a
reference to this channel within their application code can only subscribe to the channel
and read events.

In order to modify the permissions for a subject, you simply need to click on the cell in
the ACL table for the subject and the operation you wish to modify permissions for. For
example, if you want to remove the subscribe permission for the *@* subject you would
simply click on the *@* row at the column labelled 'subscribe'. This would turn the cell
from blank to a green check icon. This would also ensure that only those subjects listed
in the ACL and with sufficient privileges, would be able to perform any operations on
the channel.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change for that channel.

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Any changes made to a channel ACL where the channel is a cluster channel will be
replicated to all other instances of the cluster channel in all other cluster realms.

Queue Entitlements

Queue ACLs

Once clients have established a session with a Universal Messaging Realm server,
and they have successfully been authenticated and the subject has the correct user
entitlements, in order to perform operations on queue objects, the correct entitlements
must be granted to the subject on the required queue. Each queue has an associated ACL
that contains a list of subjects and a set of privileges the subject is given for operations on
the queue.

Using the Enterprise Manager, one can add to, remove or modify entries within the
queue ACL.

To view a queue ACL, click on a queue node within the namespace of the Enterprise
Manager, and select the 'ACL' tab. This will display the queue ACL and the list of
subjects and their associated permissions for the queue. The following image displays
and example of a queue ACL.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 158

As you can see above, the queue ACL has a number of subject entries and operations
that each subject is able to perform on the queue. The operations that can be performed
on a queue are described below in the order in which they appear in the acl panel above:

Manage ACL - Allows the subject to get and manage the list of ACL entries.

Note: This permission is a combination of two permissions at the Administration
API level. The boolean setModify() API function allows/denies permission to
change an ACL value, and the boolean setList() API function allows/denies
permission to access the current list of ACLs. If both of these functions
return the value true, Manage ACL is allowed, otherwise Manage ACL is
not allowed.

If the green check icon is displayed in the Manage ACL field, the
corresponding two API functions for this field are set to true. If you
remove the green check icon, this sets the corresponding two API
functions for this field to false.

Full - Has complete access to the secured object

Purge - Can delete events on this channel

Peak - Can snoop this queue (non destructive read)

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 159

Push - Can publish events to this queue

Pop - Can Consume events on this queue (destructive read)

The green check icon shows that a subject is permied to perform the operation. For
example, the subject *@* is shown as having only peek permissions for this queue. This
means that any client who has successfully established a session and has obtained a
reference to this queue within their application code can only subscribe to the queue and
read events.

In order to modify the permissions for a subject, you simply need to click on the cell in
the ACL table for the subject and the operation you wish to modify permissions for. For
example, if I wanted remove the peek permission for the *@* subject I would simply click
on the *@* row at the column labelled 'peek'. This would turn the cell from blank to a
green check icon. This would also ensure that only those subjects listed in the ACL and
with sufficient privileges, would be able to perform any operations on the queue.

After making any changes, you then need to click on the 'Apply' buon which will
notify the Realm Server of the ACL change for that queue.

Any ACL changes that are made by other Enterprise Manager users, or from any
programs using the Universal Messaging Admin API to modify ACLs will be received
by all other Enterprise Managers. This is because ACL changes are automatically sent to
all Universal Messaging Admin API clients, the Enterprise Manager being one of those
clients.

Any changes made to a channel ACL where the queue is a cluster queue will be
replicated to all other instances of the cluster queue in all other cluster realms.

Interface VIA Rules
Each interface defined within a Universal Messaging Realm server can have an
associated ACL list, known as a VIA list.

The VIA list enables list of users to be defined who are entitled to connect to the
Universal Messaging realm using a specific protocol 'via' a specific interface.

If for example, a realm has an HTTP (nhp) interface running on port 10000, and we
also want a sockets (nsp) interface running on port 15000, and you want all external
clients to connect using the nhp interface, and all internal clients to connect using the
nsp interface, this can be achieved by providing the nhp and nsp interfaces with a list of
subjects that are able to connect via the different interfaces.

This ensures that any user that tries to connect via the nsp interface who is not part
of the nsp interface VIA list but exists in the nhp via list will be rejected and will not
be able to establish a connection via nsp. The same will apply for the nhp interface.
Alternatively, by simply adding a list of via entries to the nhp interface (and leaving
the nsp via list empty), any user trying to connect via nsp interface who is found in any
other interface via list will be rejected. This allows you to tie specific users to specific
interfaces.

The default behaviour for all interfaces is that when no VIA lists exist on any defined
interfaces, all users can connect on any interface (Realm ACLs permiing, see "Realm

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 160

Entitlements" on page 153). When a user subject exists on an interface, that subject
cannot use any other interface other than the one they are listed in.

This is an extra level of security that allows administrators of Realm Servers to define a
strict approach to who can connect to the realm via specific protocols. This is particularly
useful if for example you run many services on a single Universal Messaging realm
server and wish to ensure that specific clients / groups of clients are using completely
separate interfaces.

Interface ACL (VIA List)

In order to view the VIA list for an interface, select the realm where the interface
is running, and then select the 'Interfaces' tab in the Enterprise Manager. From the
interface list for the realm, select the interface from the table of interfaces, and choose
the tab labelled 'VIA' from the boom of the interface panel. The image below shows the
result of an acl entry being added to the default socket interface running on port 9000.
By adding this entry, the user johnsmith@192.168.1.2 can only use the nsp0 interface
which is using the sockets protocol on port 9000.

As with all Universal Messaging ACLs wildcards are fully supported so that for
example, *@192.168.1.2 or johnsmith@* are both relevant enforceable VIA rules.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 161

Interface VIA entries can be added to by clicking on the 'Add' buon from the VIA panel
and entering the subject. Entries can be removed by selecting the entry and clicking the
'Delete' buon.

Any changes to the interface VIA list will not take effect at the server until the 'Apply'
buon has been clicked on the VIA panel. Changes can also be disregarded without
updating the server by clicking on the 'Cancel' buon on the VIA list panel.

Scheduling
Universal Messaging provides a sophisticated scheduling engine that enables tasks to
be executed on a Realm Server at specific times or when certain conditions occur within
the realm. This enables realm servers to automate important tasks, enabling them to self-
manage without the need for intervention by administrators or externally scheduled
tasks.

Administrators of Universal Messaging Realm servers can provide scripts that outline
the conditions and tasks to be performed which are then interpreted by the server. The
server converts the scripts into the actual tasks to be completed, and executes them
under the correct conditions.

This section will guide you through the basics of Universal Messaging Scheduling. From
the links found below you can learn the basic tasks that can be executed by a Realm
Server, time based scheduling and conditional triggers, as well as how to write, modify
and deploy scheduling scripts.

"Writing Scripts" on page 161

"Time Based Scheduling" on page 166

"Conditional Triggers" on page 167

"Tasks" on page 182

"The Universal Messaging Enterprise Manager Schedule Editor" on page 198

"Example Scheduling Scripts" on page 204

Universal Messaging Scheduling : Writing Schedule Scripts
Universal Messaging scheduling works by interpreting scripts wrien using a simple
grammar. Administrators of realms can deploy as many scheduling scripts as they wish
to each Realm Server.

This section will cover the basic structure of a Universal Messaging scheduling script,
and then show how to write a script and deploy it to the Realm Server.

Follow the links below to view the guide for each of these:

"Scheduling Grammar" on page 162

"Declarations" on page 164

"Initial Tasks" on page 164

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 162

"Every Clause" on page 164

"When Clause" on page 165

"Else Clause" on page 165

Scheduling Grammar

The grammar for scheduling scripts is extremely simple to understand. The script
must conform to a predefined structure and include elements that map to the grammar
expected by the Realm Server Scheduler Engine.

In its simplest form the Universal Messaging scheduler syntax starts with the command
'scheduler'. This tells the parser that a new scheduler task is being defined. This is
followed by the name of the scheduler being defined, this is a user defined name. For
example:
scheduler myScheduler {
}

Within this structure, triggers and tasks are defined. A task is the actual operation the
server will perform, and it can be executed at a certain time or frequency, or when a
condition occurs. Within the scheduler context the following verbs can be used to define
tasks to be executed.

declare : Used to define the name of a trigger for later user

initialise : Is the first thing run when a scheduler is started (also run when the realm
server starts up)

every : Used to define a time/calendar based event

when : Used to define a conditional trigger and the list of tasks to execute when it
fires

else : Used after a conditional trigger that will fire if the condition evaluates to false

The following shows the basic grammar and structure of a scheduling script.
/*
Comment block
*/
scheduler <User defined Name> {
declare <TRIGGER_DECLARATION>+
initialise {
<TASK_DECLARATION>+
}
/*
Time based tasks
*/
every <TIME_EXPRESSION> {
<TASK_DECLARATION>+
}
when (<TRIGGER_EXPRESSION>) {
<TASK_DECLARATION>+
} else {
<TASK_DECLARATION>+
}

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 163

where :

TRIGGER_DECLARATION ::= <TRIGGER> <NAME>
(<TRIGGER_ARGUMENT_LIST>)

TRIGGER ::= Valid trigger. Learn more about triggers at "Universal Messaging
Scheduling : Conditional Triggers" on page 167.

TRIGGER_ARGUMENT_LIST ::= Valid comma separated list of arguments for the
trigger

TASK_DECLARATION ::= Valid task. Learn more about tasks at "Universal
Messaging Scheduling : Tasks" on page 182.

TRIGGER_EXPRESSION ::=

<TRIGGER_EXPRESSION> <LOGICAL_OPERATOR> <TRIGGER_EXPRESSION> |
<TRIGGER> | <NAME> <COMPARISON_OPERATOR> <VALUE>

TIME_EXPRESSION ::=

<HOURLY_EXPRESSION> | <DAILY_EXPRESSION> | <WEEKLY_EXPRESSION> |
<MONTHLY_EXPRESSION> | <YEARLY_EXPRESSION>

HOURLY_EXPRESSION ::= <MINUTES>

DAILY_EXPRESSION ::= <HOUR> <COLON> <MINUTES>

WEEKLY_EXPRESSION ::= <DAYS_OF_WEEK> <SPACE> <HOUR> <COLON>
<MINUTES>

MONTHLY_EXPRESSION ::= <DAY_OF_MONTH> <SPACE> <HOUR> <COLON>
<MINUTES>

YEARLY_EXPRESSION ::= <DAY_OF_MONTH> <HYPHEN> <MONTH> <SPACE>
<HOUR> <COLON> <MINUTES>

MINUTES ::= Minutes past the hour, i.e. a value between 00 and 59

HOUR ::= Hour of the day, i.e. a value between 00 and 23

DAYS_OF_WEEK ::=

<DAY_OF_WEEK> | <DAY_OF_WEEK> <SPACE> <DAY_OF_WEEK>

DAY_OF_WEEK ::= Mo | Tu | We | Th | Fr | Sa | Su

DAY_OF_MONTH ::= Specific day of the month to perform a task, i.e. a value
between 01 and 28

MONTH ::= The month of the year, JAN, FEB, MAR etc.

NAME ::= The variable name for a trigger

COMPARISON_OPERATOR ::= > | => | < | <= | == | !=

LOGICAL_OPERATOR ::= AND | OR

COLON ::= The ":" character

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 164

SPACE ::= The space character

HYPHEN ::= The "-" character

+ ::= indicates that this can occur multiple times

VALUE ::= Any valid string or numeric value.

Declarations

The declarations section of the script defines any triggers and assigns them to local
variable names. The grammar notation defined above specifies that the declaration
section of a schedule script can contain multiple declarations of triggers. For example,
the following declarations section would be valid based on the defined grammar:
declare Config myGlobalConfig ("GlobalValues");
declare Config myAuditConfig ("AuditSettings");
declare Config myTransConfig ("TransactionManager");

The above declarations define 3 variables that refer to the the Config trigger. The
declared objects can be used in a time based trigger declaration, conditional triggers and
to perform tasks on.

Initialise

The initialise section of the schedule script defines what tasks are executed straight away
by the server when the script is deployed. These initial tasks are also executed every
time the Realm Server is started. An example of a valid initialise section of a schedule
script is shown below:
initialise {
Logger.report("Realm optimisation script and monitor startup initialising");
myAuditConfig.ChannelACL("false");
myAuditConfig.ChannelFailure("false");
myGlobalConfig.MaxBufferSize(2000000);
myGlobalConfig.StatusBroadcast(2000);
myGlobalConfig.StatusUpdateTime(86400000);
myTransConfig.MaxTransactionTime(3600000);
Logger.setlevel(4);
}

The example above ensures that each time a server starts, the tasks declared are
executed. Using the variables defined in the declarations section, as well as the Logger
task, the server will always ensure that the correct configuration values are set on the
server whenever it starts.

Every Clause

The every clause defines those tasks that are executed at specific times and frequencies
as defined in the grammar above. Tasks can be executed every hour at a specific time pas
the hour, every day at a certain time, every week on one or more days at specific times or
day, every month on a specific day of the month and a specific day of the year.

The grammar above defines how to declare an every clause. Based on this grammar the
following examples demonstrate how to declare when to perform tasks :
Hourly Example (Every half past the hour, log a message to the realm server log)
every 30 {

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 165

Logger.report("Hourly - Executing Tasks");
}
Daily Example (Every day at 18:00, perform maintenance on the customerSales channel)
every 18:00 {
Logger.report("Daily - performing maintenance");
Store.maintain("/customer/sales");
}
Weekly Example (Every week, on sunday at 17:30, purge the customer sales channel)
every Su 17:30 {
Logger.report("Weekly - Performing Purge");
Store.purge("/customer/sales");
}
Monthly Example (Every 1st of the month, at 21:00, stop all interfaces and start them again)
every 01 21:00 {
Logger.report("Monthly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}
Yearly Example (Every 1st of the January, at 00:00, stop all interfaces and start them again)
every 01-Jan 00:00 {
Logger.report("Yearly - Stopping interfaces and restarting");
Interface.stopAll();
Interface.startAll();
}

When Clause

The when clause defines a trigger that evaluates a specific value and executes a task if
the evaluation result is 'true'. The grammar for the when clause is defined above. The
following example shows a valid when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
}

The above example will trigger the Realm Server JVM to call garbage collection when
the amount of free memory drops to below 30MB.

Else Clause

The else clause defines an alternative action to the when clause if the when clause
evaluates to 'false'. The grammar for the else clause is defined above. The following
example shows a valid when clause :
when (MemoryManager.FreeMemory < 30000000) {
Logger.report("Memory below 30M, performing some clean up");
FlushMemory(true);
} else {
Logger.report("Memory not below 30M, no clean up required");
}

The above example will trigger the Realm Server JVM to call garbage collection when
the amount of free memory drops to below 30MB.

To view a sample scheduling script, see the section "Scheduler Examples" on page
204.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 166

Universal Messaging Scheduling : Calendar Triggers Schedules
Calendar schedules are triggered at specific times, either hourly, daily, weekly, monthly
or yearly. Each calendar trigger is declared using the 'every' keyword. For basic
information on the grammar for calendar schedules, please read the section on time
based triggers in the writing scripts help file (see "Universal Messaging Scheduling :
Writing Schedule Scripts" on page 161). The calendar, or time based triggers are
signified by using the 'every' keyword. The values entered after the keyword represent
hourly, daily, weekly, monthly or yearly frequency that the defined tasks will be
executed. See "Hourly Triggers" on page 166, "Daily Triggers" on page 166,
"Weekly Triggers" on page 166, "Monthly Triggers" on page 167, "Yearly Triggers"
on page 167.

This section will describe in more detail the variations of the calendar trigger grammar.

Hourly Triggers

Hourly triggers have the simplest grammar. The value after the 'every' keyword
represents the minutes past the hour that the tasks will be executed. For example,
specifying '00' means that the tasks are executed on the hour, every hour. If you specify
'30' the tasks will be executed at half past the hour every hour:
/*
 Execute every hour on the hour
*/
every 00 {
}
/*
 Execute every hour at half past the hour
*/
every 30 {
}

Daily Triggers

Daily triggers are executed every day at a specific time. The time of day is wrien as
'HH:MM', in a 24 hour clock format and represents the exact time of day that the tasks
are executed. For example, specifying '18:00' means the tasks are executed every day at
6pm. If you specify '08:30' the tasks will be executed at 8.30am every morning.
/*
 Execute day at 6pm
*/
every 18:00 {
}
/*
 Execute day at 8.30am
*/
every 08:30 {
}

Weekly Triggers

Weekly triggers are executed on specific days of the week at a specific time, in the format
'DD HH:MM' . The days are represented as a 2 character string being one of : Su; Mo;

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 167

Tu; We; Th; Fr; Sa, and you can specify more than one day. The time of day is wrien as
'HH:MM', in a 24 hour clock format and represents the exact time on each given day that
the tasks are executed. For example, specifying 'Fr 18:00' means the tasks are executed
every friday at 6pm. If you specify 'Mo Tu We Th Fr 18:30' the tasks will be executed
every week day at 6.30pm.
/*
 Execute every friday at 6pm
*/
every Fr 18:00 {
}
/*
 Execute every week day at 6.30pm
*/
every Mo Tu We Th Fr 18:30 {
}

Monthly Triggers

Monthly triggers are executed on a specific day of the month at a specific time, in the
format 'DD HH:MM' . The day is represented as a 2 digit number between 1 and 28. The
time of day is wrien as 'HH:MM', in a 24 hour clock format and represents the exact
time on the given day of the month that the tasks are executed. For example, specifying
'01 18:00' means the tasks are executed on the 1st of every month at 6pm.
/*
 Execute on the first of every month at 6pm
*/
every 01 18:00 {
}

Yearly Triggers

Yearly triggers are executed on a specific day and month of the year at a specific time,
in the format 'DD-MMM HH:MM'. The day of the month is represented as a 2 digit
number between 1 and 31, and the month is represented as a 3 character string being one
of : Jan; Feb; Mar; Apr; May; Jun; Jul; Aug; Sep; Oct; Nov; Dec. The time of day is wrien
as 'HH:MM', in a 24 hour clock format and represents the exact time on the given day
and month of the year that the tasks are executed. For example, specifying '01-Jan 18:00'
means the tasks are executed on the 1st of January every year at 6pm.
/*
 Execute on the first of january every year at 6pm
 */
every 01-Jan 18:00 {
}

Universal Messaging Scheduling : Conditional Triggers
Conditional triggers execute tasks when specific conditions occur. Each defined trigger
has a number of aributes that can be used as part of the trigger expression and
evaluated to determine whether the tasks are executed. For basic information on the
grammar for conditional triggers, please read the section on conditional triggers in
the writing scripts help file (see "Universal Messaging Scheduling : Writing Schedule
Scripts" on page 161). The conditional triggers are signified by using the 'when'

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 168

keyword. The expression entered after the keyword represent the trigger object(s) and
the values to be checked against.

This section describes in detail the triggers that are available and how to use them
within a trigger expression :

"Trigger Expressions" on page 168

"Store Triggers" on page 169

"Interface Triggers" on page 169

"Memory Triggers" on page 170

"Realm Triggers" on page 171

"Cluster Triggers" on page 172

"Counter Triggers" on page 172

"Timer Triggers" on page 172

"Config Triggers" on page 173

To view examples of scheduling scripts, see "Scheduler Examples" on page 204.

Trigger Expressions

A trigger expression is constructed from the definition of the trigger object(s) to
be evaluated and the values that will be used in the comparison. The trigger used
in the expression can be either the actual trigger object, or the declared name of
the trigger from the declarations section of the script (see "Universal Messaging
Scheduling : Writing Schedule Scripts" on page 161). Multiple triggers can be used in
the expression using conditional operators (AND | OR).

For example, the following expression can be used to evaluate when a Realm's Interface
accept threads are exhausted 5 times. When this happens, the accept threads will be
increased by 10. This schedule will continually monitor the state of the interface and self-
manage the accept threads so the realm server is always able to accept connections from
clients.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

The above schedule will monitor the number of times the accept threads are exhausted
and when the counter trigger hits 5 times, the number of threads will be increased by 10.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 169

The next section will describe the available trigger objects and the available triggers on
those objects that can be used within

Store Triggers - Channel / Queue based triggers

Store triggers are declared using the following syntax as an example:
declare Store myChannel("/customer/sales");

The table below lists those triggers that can be evaluated on a Store object, such that the
trigger expression will look like :
when (myChannel.connections > 100) {
}

Trigger Object Parameters Description

connections None Trigger on the number
of connections for the
channel or queue

freeSpace None Trigger on the amount
of free space available
in the store (used space
- size of all purged
events)

usedSpace Trigger on the amount
of used space available
in the store (size of
all event on disk or
memory)

numOfEvents None Trigger on the number
of events on the
channel / queue

filter Valid filter String Trigger when an event
that matches the filter
is published to the
channel / queue

Interface Triggers - Universal Messaging Interface based triggers

Interface triggers are declared using the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those triggers that can be evaluated on an Interface object, such that
the trigger expression will look like :

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 170

when (myNHP.connections > 100) {
}

Trigger Object Parameters Description

connections None Trigger on the number
of connections for the
interface

authentication None Trigger on the average
authentication time for
clients on an interface

failedConnections None Trigger on the number
of failed authentication
aempts

exhaustedTime None Trigger on the average
amount of time the
interface accept
thread pool has been
exhausted

idleThreads None Trigger on the number
of idle interface accept
pool threads

exhaustedCount None Trigger on the number
of times an interface
accept thread pool is
exhausted (i.e. idle ==
0)

state None Trigger when an
interface is in a certain
state

MemoryManager Triggers - Universal Messaging JVM Memory Management based triggers

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

The table below lists those triggers that can be evaluated on the memory management
object, such that the trigger expression will look like :
when (mem.freeMemory < 1000000) {
}

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 171

Trigger Object Parameters Description

freeMemory None Trigger when the
realm server's JVM has
a certain amount of
free memory

totalMemory None Trigger when the
realm server's JVM has
a certain amount of
total memory

outOfMemory None Trigger when the
realm server JVM runs
out of memory

Realm Triggers - Universal Messaging Realm based triggers

Realm triggers are declared using the following syntax as an example:
declare Realm myRealm("productionmaster");

The table below lists those triggers that can be evaluated on the realm object, such that
the trigger expression will look like :
when (realm.connections > 1000) {
}

Trigger Object Parameters Description

connections None Trigger when the
realm server current
connections reaches a
certain number

eventsSentPerSecond None Trigger when the
realm server's events
per second sent rate
reaches a certain value

eventsReceivedPerSecond None Trigger when the
realm server's events
per second sent
received reaches a
certain value

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 172

Cluster Triggers - Universal Messaging Cluster based triggers

Cluster triggers are declared using the following syntax as an example, assuming a
cluster is made up of 4 realms:
declare Cluster myNode1("realm1");
declare Cluster myNode2("realm2");
declare Cluster myNode3("realm3");
declare Cluster myNode4("realm4");

The table below lists those triggers that can be evaluated on the cluster object, such that
the trigger expression will look like :
when (Cluster.nodeOnline("realm1") == true){
}

Trigger Object Parameters Description

hasQuorum None Trigger when cluster
has quorum == true or
false

isMaster None Trigger when a cluster
realm is voted master

nodeOnline None Trigger when a cluster
realm is online or
offline

Counter Triggers - Counter value based triggers

Counter triggers allow you to keep a local count of events occurring with the Universal
Messaging scheduler engine. The values of the Counters can be incremented /
decremented and reset within the tasks section of a trigger declaration. Counter triggers
are declared using the following syntax as an example:
declare Counter counter1 ("myCounter");

The counter trigger can be evaluated by referencing the Counter object itself, such that
the trigger expression will look like :
when (counter1 > 5) {
}

Timer Triggers - Timer based triggers

Timer triggers allow you to start a timer that will keep track of how long (in seconds) it
has been running and then evaluate the running time within a trigger expression. Time
triggers are declared using the following syntax as an example:
declare Timer reportTimer ("myTimer");

The timer trigger can be evaluated by referencing the timer object itself, such that the
trigger expression will look like :

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 173

when (reportTimer == 60) {
}

Config Triggers -Universal Messaging configuration triggers

Config triggers refer to any of the configuration values available in the Config panel
for a realm. Any configuration value can be used as part of a trigger expression. Config
triggers are declared using the following syntax as an example (below example refers to
the 'GlobalValues' configuration group:
declare Config myGlobal ("GlobalValues");

The table below lists those triggers that can be evaluated on a Config object, such that
the task expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
}

Trigger Object Parameters Description

GlobalValues

SchedulerPoolSize None The number of threads
assigned to the
scheduler

MaxNoOfConnections None Sets the maximum
concurrent connections
to the server, -1
indicates no restriction

StatusUpdateTime None The number of ms
between status events
being wrien to disk

StatusBroadcast None The number of ms
between status events
being published

fLoggerLevel None The server logging
level

NHPTimeout None The number of
milliseconds the server
will wait for client
authentication

NHPScanTime None The number of
milliseconds that the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 174

Trigger Object Parameters Description
server will wait before
scanning for client
timeouts

HandshakeTimeout None The number of
milliseconds that
the server will wait
for the session to be
established

StampDictionary None Place Universal
Messaging details into
the dictionary (true/
false)

ExtendedMessageSelector None If true, allows the
server to use the
extended message
selector syntax (true/
false)

ServerTime None Allow the server to
send the current time
to the clients (true/
false)

SecureHandshake None Performs a security
handshake when
connecting into a
cluster

ConnectionDelay None When the server
has exceeded the
connection count, how
long to hold on to
the connection before
disconnecting

SupportVersion2Clients None Allow the server to
support older clients
(true/false)

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 175

Trigger Object Parameters Description

SendRealmSummaryStats None If true sends the
realms status summary
updates (true/false)

AuditSettings

RealmMaintenance None Log to the audit file
any realm maintenance
activity

InterfaceManagement None Log to the audit
file any interface
management activity

ChannelMaintenance None Log to the audit
file any channel
maintenance activity

QueueMaintenance None Log to the audit
file any queue
maintenance activity

ServiceMaintenance None Log to the audit
file any service
maintenance activity

JoinMaintenance None Log to the audit file
any join maintenance
activity

RealmSuccess None Log to the audit file
any successful realm
interactions

ChannelSuccess None Log to the audit file
any successful channel
interactions

QueueSuccess None Log to the audit file
any successful queue
interactions

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 176

Trigger Object Parameters Description

ServiceSuccess None Log to the audit file
any successful realm
interactions

JoinSuccess None Log to the audit file
any successful join
interactions

RealmFailure None Log to the audit file
any unsuccessful realm
interactions

ChannelFailure None Log to the audit file
any unsuccessful
channel interactions

QueueFailure None Log to the audit file
any unsuccessful
queue interactions

ServiceFailure None Log to the audit file
any unsuccessful
service interactions

JoinFailure None Log to the audit file
any unsuccessful join
interactions

RealmACL None Log to the audit file
any unsuccessful realm
acl interactions

ChannelACL None Log to the audit file
any unsuccessful
channel acl interactions

QueueACL None Log to the audit file
any unsuccessful
queue acl interactions

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 177

Trigger Object Parameters Description

ServiceACL None Log to the audit file
any unsuccessful
service acl interactions

ClientTimeoutValues

EventTimeout None The amount of ms the
client will wait for
a response from the
server

DisconnectWait None The maximum
amount of time to
wait when performing
an operation when
disconnected before
throwing session not
connected exception

TransactionLifeTime None The default amount
of time a transaction
is valid before being
removed from the tx
store

KaWait None The amount of time
the client will wait for
keep alive interactions
between server before
acknowledging
disconnected state

LowWaterMark None The low water mark
for the connection
internal queue. When
this value is reached
the outbound internal
queue will again be
ready to push event to
the server

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 178

Trigger Object Parameters Description

HighWaterMark None The high water mark
for the connection
internal queue. When
this value is reached
the internal queue is
temporarily suspended
and unable to send
events to the server.
This provides flow
control between
publisher and server.

QueueBlockLimit None The maximum number
of milliseconds a queue
will have reached
HWM before notifying
listeners

QueueAccessWaitLimit None The maximum number
of milliseconds it
should take to gain
access to a queue to
push events before
notifying listeners

QueuePushWaitLimit None The maximum number
of milliseconds it
should take to gain
access to a queue and
to push events before
notifying listeners

ClusterConfig

HeartBeatInterval None Heart Beat interval in
milliseconds

SeparateLog None Create a separate log
file for cluster events

EventsOutStanding None Number of events
outstanding

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 179

Trigger Object Parameters Description

EventStorage

CacheAge None The time in ms that
cached events will be
kept in memory for

ThreadPoolSize None The number of threads
allocated to perform
the management task
on the channels

ActiveDelay None The time in
milliseconds that an
active channel will
delay between scans

IdleDelay None The time in
milliseconds that an
idle channel will delay
between scans

FanoutValues

ConcurrentUser None The number of client
threads allowed to
execute concurrently in
the server

KeepAlive None The number of
milliseconds between
the server will wait
before sending a
heartbeat

QueueHighWaterMark None The number of events
in a client output
queue before the server
stops sending events

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 180

Trigger Object Parameters Description

QueueLowWaterMark None The number of events
in the clients queue
before the server
resumes sending
events

MaxBufferSize None The maximum buffer
size that the server will
accept

PublishDelay None How long to delay
the publisher when
subscribers queue start
to fill, in milliseconds

RoundRobinDelivery None Use a round robin
approach to event
delivery (true/false)

PublishExpiredEvents None Publish expired events
at server startup (true/
false)

JVMManagement

MemoryMonitoring None Number of
milliseconds between
monitoring memory
usage on the realm

WarningThreshold None The memory threshold
when the server starts
to scan for objects to
release

EmergencyThreshold None The memory threshold
when the server starts
to aggressively scan for
objects to release

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 181

Trigger Object Parameters Description

ExitOnMemoryError None If true, the server will
exit if it gets an out of
memory exception

ExitOnDiskIOError None If true, the server will
exit if it gets a I/O
Exception

JoinConfig

MaxEventsPerSchedule None Number of events
that will be sent to the
remote server in one
run

MaxQueueSizeToUse None The maximum events
that will be queued on
behalf of the remote
server

ActiveThreadPoolSize None The number of threads
to be assigned for the
join recovery

IdleThreadPoolSize None The number of threads
to manage the idle and
reconnection to remote
servers

RecoveryDaemon

ThreadPool None Number of threads to
use for client recovery

EventsPerBlock None The number of events
to send in one block

TransactionManager

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 182

Trigger Object Parameters Description

MaxTransactionTime None Time in milliseconds
that a transaction will
be kept active

MaxEventsPerTransaction None The maximum
number of events
per transaction, a 0
indicates no limit

TTLThreshold None The minimum time in
milliseconds, below
which the server
will not store the
Transaction ID

Universal Messaging Scheduling : Tasks
Tasks are executed by either time based (calendar, see "Universal Messaging
Scheduling : Calendar Triggers Schedules" on page 166) or conditional triggers (see
"Universal Messaging Scheduling : Conditional Triggers" on page 167). There are a
number of tasks that can be executed by the Universal Messaging Scheduling engine.
Each task corresponds to a unit of work that performs an operation on the desired object
within a Universal Messaging realm.

This section will discuss the available tasks that can be declared within a Universal
Messaging scheduling script :

"Task Expressions" on page 182

"Store Tasks" on page 183

"Interface Tasks" on page 184

"Memory Tasks" on page 185

"Counter Tasks" on page 186

"Timer Tasks" on page 186

"Config Tasks" on page 187

To view examples of scheduling scripts, see "Scheduler Examples" on page 204.

Task Expressions

Task expressions are comprised of the object on which you wish to perform the
operation, and the required parameters. For more information on the grammar for
task expressions, please see the writing scripts help file (see "Universal Messaging
Scheduling : Writing Schedule Scripts" on page 161). The following sections will

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 183

describe the task objects and the parameters required to perform them. The example
below demonstrates both Interface, Logger and Counter tasks.
scheduler realmInterfaceSchedule {
declare Interface myNHP ("nhp0");
declare Counter myCounter("myExhaustedThreads");
when (myNHP.idleThreads == 0) {
Logger.report("NHP0 Interface has no idles Threads");
myCounter.inc();
}
when (myCounter >= 5) {
Logger.report("Increasing the accept thread count on NHP0");
myNHP.threads("+10");
myCounter.reset();
}
}

Store Tasks - Channel / Queue operations

Store tasks can be used by first of all declaring the desired object as in the following
syntax:
declare Store myChannel("/customer/sales");

The table below lists those tasks available on a Store object, such that the task expression
will look like :
when (myChannel.numOfEvents < 100) {
myChannel.maintain();
}

Task Object Syntax Description

maintain
Store.maintain("*");
Store.maintain("/customer/sales");
myChannel.maintain();

Perform
maintenance on a
channel so that any
purged events are
removed from the
channel or queue
event store.

publish
myChannel.publish("Byte array data",
 "tag", "key1=value1:key2:value2"); Publish an event to

the channel / queue,
using the given byte
array, event tag and
event dictionary
values.

purge
myChannel.purge();
myChannel.purge(0, 100000);
myChannel.purge(0, 10000,
 "key1 = 'value1'");

Purge all events on
a channel, or events
between a start and
end eid, or using a
purge filter.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 184

Task Object Syntax Description

createChannel
myChannel.createChannel(0, 0, "P");

Create the channel
using the name it
was declared as,
and the l, capacity
and type specified
in the parameters

createQueue
myChannel.createQueue(0, 0, "P");

Create the queue
using the name it
was declared as,
and the l, capacity
and type specified
in the parameters

Interface Tasks - Universal Messaging Interface operations

Interface tasks are operations that can be performed on all interfaces or individually
declared interfaces. To declare an interface use the following syntax as an example:
declare Interface myNHP("nhp0");

The table below lists those tasks that can be executed on an Interface object, such that the
task expression will look like :
when (myNHP.connections > 1000) {
myNHP.threads("+10");
}

Task Object Syntax Description

stop
myNHP.stop();
Interface.stop("nhp0"); Stop the

interface

start
myNHP.start();
Interface.start("nhp0"); Start The

interface

stopAll
Interface.stopAll();

Stop all
interfaces on
the realm

startAll
Interface.startAll();

Start all
interfaces on
the realm

authTime
myNHP.authTime(20000);
myNHP.authTime("+10000"); Set the interface

authentication

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 185

Task Object Syntax Description
time to a value,
or increase /
decrease it by a
value.

backlog
myNHP.backlog(200);
myNHP.backlog("+100"); Set the interface

backlog time
to a value,
or increase /
decrease it by a
value.

autoStart
myNHP.autoStart("true");
myNHP.autoStart("false"); Set whether

an interface is
automatically
started when
the realm is
started.

advertise
myNHP.advertise("true");
myNHP.advertise("false"); Set whether

an interface
is available to
clients using
the admin API.

certificateValidation
myNHP.certificateValidation("true");
myNHP.certificateValidation("false"); Set whether an

interface (SSL)
requires clients
to provide a
certificate to
authenticate.

threads
myNHP.threads(10);
myNHP.threads("+10"); Set the interface

accept threads
to a value
or increase /
decrease it by a
value.

MemoryManager Triggers - Universal Messaging JVM Memory Management operations

MemoryManager triggers are declared using the following syntax as an example:
declare MemoryManager mem;

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 186

The table below lists those triggers that can be evaluated on the memory management
object, such that the task expression will look like :
when (mem.freeMemory < 1000000) {
}

Task Object Syntax Description

flush
mem.flush(true);
mem.flush(false); Cause the JVM to call

garbage collection, and
optionally release used
memory

Counter Tasks - Counter tasks

Counter tasks allow you to increment, decrement, set and reset a local counter within
the Universal Messaging scheduling engine. Counter tasks are declared using the
following syntax as an example:
declare Counter counter1 ("myCounter");

The counter task can be executing by referencing the Counter object itself, and calling
one of a number of available tasks. The basic counter task expression will look like :
when (counter1 > 5) {
counter1.reset();
}

The table below shows the tasks that can be executed on the Counter task.

Task Object Syntax Description

dec counter1.dec() Decrement the counter
by 1

inc counter1.inc() Increment the counter
by 1

set counter1.set(5) Set the counter to a
value

reset counter1.reset() Reset the counter to 0

Timer Tasks - Timer operations

Timer tasks allow you to start, stop and reset the timer. Time tasks are declared using
the following syntax as an example:
declare Timer reportTimer ("myTimer");

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 187

The timer task can be executed by referencing the timer object itself, such that the task
expression will look like :
when (reportTimer == 60) {
reportTimer.reset();
}

The table below shows the tasks that can be executed on the Counter task.

Task Object Syntax Description

start reportTimer.start() Start the timer

inc reportTimer.stop() Stop the timer

reset reportTimer.reset() Reset the timer

Config Tasks - Channel / Queue based triggers

Config tasks can be used to set any configuration value available in the Config panel for
a realm. Any configuration value can be used as part of a trigger task expression. Config
tasks are declared using the following syntax as an example (below example refers to the
'GlobalValues' configuration group:
declare Config myGlobal ("GlobalValues");
declare Config myAudit ("AuditSettings");
declare Config myClientTimeout ("ClientTimeoutValues");
declare Config myCluster ("ClusterConfig");
declare Config myEventStorage ("EventStorage");
declare Config myFanout ("FanoutValues");
declare Config myJVM ("JVMManagement");
declare Config myJoinConfig ("JoinConfig");
declare Config myRecovery ("RecoveryDaemon");
declare Config myTXMgr ("TransactionManager");

The table below lists those tasks that can be evaluated on a config object, such that the
task expression will look like :
when (myGlobal.MaxNoOfConnections == -1) {
myGlobal.MaxNoOfConnections(1000);
}

Trigger Object Syntax Description

GlobalValues

SchedulerPoolSize myGlobal.SchedulerPoolSize(2); The number of
threads assigned
to the scheduler

MaxNoOfConnections myGlobal.MaxNoOfConnections(-1); Sets the
maximum

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 188

Trigger Object Syntax Description
concurrent
connections to
the server, -1
indicates no
restriction

StatusUpdateTime myGlobal.StatusUpdateTime(60000); The number
of ms between
status events
being wrien to
disk

StatusBroadcast myGlobal.StatusBroadcast(2000); The number
of ms between
status events
being published

fLoggerLevel myGlobal.fLoggerLevel(4); The server
logging level

NHPTimeout myGlobal.NHPTimeout(2000); The number of
milliseconds
the server will
wait for client
authentication

NHPScanTime myGlobal.NHPScanTime(10000); The number of
milliseconds
that the server
will wait before
scanning for
client timeouts

HandshakeTimeout myGlobal.HandshakeTimeout(12000);The number of
milliseconds
that the server
will wait for the
session to be
established

StampDictionary myGlobal.StampDictionary(true); Place Universal
Messaging
details into the

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 189

Trigger Object Syntax Description
dictionary (true/
false)

ExtendedMessageSelector myGlobal.ExtendedMessageSelector
(true);

If true, allows
the server to use
the extended
message selector
syntax (true/
false)

ServerTime myGlobal.ServerTime(true); Allow the server
to send the
current time to
the clients (true/
false)

SecureHandshake myGlobal.SecureHandshake(true); Performs
a security
handshake
when
connecting into
a cluster

ConnectionDelay myGlobal.ConnectionDelay(2000); When the server
has exceeded
the connection
count, how long
to hold on to
the connection
before
disconnecting

SupportVersion2Clients myGlobal.SupportVersion2Clients
(true);

Allow the server
to support older
clients (true/
false)

SendRealmSummaryStats myGlobal.SendRealmSummaryStats
(true);

If true sends
the realms
status summary
updates (true/
false)

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 190

Trigger Object Syntax Description

AuditSettings

RealmMaintenance myAudit.RealmMaintenance
(false);

Log to the audit
file any realm
maintenance
activity

InterfaceManagement myAudit.InterfaceManagement
(false);

Log to the audit
file any interface
management
activity

ChannelMaintenance myAudit.ChannelMaintenance
(false);

Log to the audit
file any channel
maintenance
activity

QueueMaintenance myAudit.QueueMaintenance
(false);

Log to the audit
file any queue
maintenance
activity

ServiceMaintenance myAudit.ServiceMaintenance
(false);

Log to the audit
file any service
maintenance
activity

JoinMaintenance myAudit.JoinMaintenance(false); Log to the audit
file any join
maintenance
activity

RealmSuccess myAudit.RealmSuccess(false); Log to the
audit file any
successful realm
interactions

ChannelSuccess myAudit.ChannelSuccess(false); Log to the
audit file any
successful
channel
interactions

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 191

Trigger Object Syntax Description

QueueSuccess myAudit.QueueSuccess(false); Log to the
audit file any
successful queue
interactions

ServiceSuccess myAudit.ServiceSuccess(false); Log to the
audit file any
successful realm
interactions

JoinSuccess myAudit.JoinSuccess(false); Log to the
audit file any
successful join
interactions

RealmFailure myAudit.RealmFailure(false); Log to the
audit file any
unsuccessful
realm
interactions

ChannelFailure myAudit.ChannelFailure(false); Log to the
audit file any
unsuccessful
channel
interactions

QueueFailure myAudit.QueueFailure(false); Log to the
audit file any
unsuccessful
queue
interactions

ServiceFailure myAudit.ServiceFailure(false); Log to the
audit file any
unsuccessful
service
interactions

JoinFailure myAudit.JoinFailure(false); Log to the
audit file any
unsuccessful
join interactions

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 192

Trigger Object Syntax Description

RealmACL myAudit.RealmACL(false); Log to the
audit file any
unsuccessful
realm acl
interactions

ChannelACL myAudit.ChannelACL(false); Log to the
audit file any
unsuccessful
channel acl
interactions

QueueACL myAudit.QueueACL(false); Log to the
audit file any
unsuccessful
queue acl
interactions

ServiceACL myAudit.ServiceACL(false); Log to the
audit file any
unsuccessful
service acl
interactions

ClientTimeoutValues

EventTimeout myClientTimeout.EventTimeout
(10000);

The amount of
ms the client
will wait for a
response from
the server

DisconnectWait myClientTimeout.DisconnectWait
(30000);

The maximum
amount of time
to wait when
performing an
operation when
disconnected
before throwing
session not
connected
exception

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 193

Trigger Object Syntax Description

TransactionLifeTime myClientTimeout.TransactionLifeTime
(10000);

The default
amount of time
a transaction
is valid before
being removed
from the tx store

KaWait myClientTimeout.KaWait(10000); The amount
of time the
client will wait
for keep alive
interactions
between
server before
acknowledging
disconnected
state

LowWaterMark myClientTimeout.LowWaterMark
(200);

The low water
mark for the
connection
internal queue.
When this
value is reached
the outbound
internal queue
will again be
ready to push
event to the
server

HighWaterMark myClientTimeout.HighWaterMark
(500);

The high water
mark for the
connection
internal queue.
When this value
is reached the
internal queue
is temporarily
suspended and
unable to send
events to the
server. This
provides flow
control between

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 194

Trigger Object Syntax Description
publisher and
server.

QueueBlockLimit myClientTimeout.QueueBlockLimit
(5000);

The maximum
number of
milliseconds a
queue will have
reached HWM
before notifying
listeners

QueueAccessWaitLimit myClientTimeout.QueueAccessWaitLimit
(10000);

The maximum
number of
milliseconds
it should take
to gain access
to a queue to
push events
before notifying
listeners

QueuePushWaitLimit myClientTimeout.QueuePushWaitLimit
(12000);

The maximum
number of
milliseconds
it should take
to gain access
to a queue and
to push events
before notifying
listeners

ClusterConfig

HeartBeatInterval myCluster.HeartBeatInterval
(60000);

Heart Beat
interval in
milliseconds

SeparateLog myCluster.SeparateLog(true); Create a
separate log
file for cluster
events

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 195

Trigger Object Syntax Description

EventsOutStanding myCluster.EventsOutStanding
(10);

Number
of events
outstanding

EventStorage

CacheAge myEventStorage.CacheAge(360000); The time in ms
that cached
events will be
kept in memory
for

ThreadPoolSize myEventStorage.ThreadPoolSize(2); The number
of threads
allocated to
perform the
management
task on the
channels

ActiveDelay myEventStorage.ActiveDelay(1000); The time in
milliseconds
that an active
channel will
delay between
scans

IdleDelay myEventStorage.IdleDelay(60000); The time in
milliseconds
that an idle
channel will
delay between
scans

FanoutValues

ConcurrentUser myFanout.ConcurrentUser(5); The number of
client threads
allowed
to execute

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 196

Trigger Object Syntax Description
concurrently in
the server

KeepAlive myFanout.KeepAlive(60000); The number of
milliseconds
between the
server will wait
before sending a
heartbeat

QueueHighWaterMark myFanout.QueueHighWaterMark(500);The number of
events in a client
output queue
before the server
stops sending
events

QueueLowWaterMark myFanout.QueueLowWaterMark(200);The number of
events in the
clients queue
before the
server resumes
sending events

MaxBufferSize myFanout.MaxBufferSize(1024000); The maximum
buffer size that
the server will
accept

PublishDelay myFanout.PublishDelay(100); How long
to delay the
publisher when
subscribers
queue start
to fill, in
milliseconds

RoundRobinDelivery myFanout.RoundRobinDelivery(true);Use a round
robin approach
to event delivery
(true/false)

PublishExpiredEvents myFanout.PublishExpiredEvents(true);Publish expired
events at server

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 197

Trigger Object Syntax Description
startup (true/
false)

JoinConfig

MaxEventsPerSchedule myJoinConfig.MaxEventsPerSchedule
(200);

Number of
events that will
be sent to the
remote server in
one run

MaxQueueSizeToUse myJoinConfig.MaxQueueSizeToUse
(50);

The maximum
events that will
be queued on
behalf of the
remote server

ActiveThreadPoolSize myJoinConfig.ActiveThreadPoolSize
(4);

The number of
threads to be
assigned for the
join recovery

IdleThreadPoolSize myJoinConfig.IdleThreadPoolSize
(2);

The number
of threads
to manage
the idle and
reconnection to
remote servers

RecoveryDaemon

ThreadPool myRecovery.ThreadPool(5); Number of
threads to
use for client
recovery

EventsPerBlock myRecovery.EventsPerBlock(300); The number of
events to send in
one block

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 198

Trigger Object Syntax Description

TransactionManager

MaxTransactionTime myTXMgr.MaxTransactionTime
(1000);

Time in
milliseconds
that a
transaction will
be kept active

MaxEventsPerTransactionmyTXMgr.MaxEventsPerTransaction
(1000);

The maximum
number of
events per
transaction, a
0 indicates no
limit

TTLThreshold myTXMgr.TTLThreshold(1000); The minimum
time in
milliseconds,
below which
the server will
not store the
Transaction ID

Universal Messaging Scheduling: Editor
The Universal Messaging Enterprise Manager provides a scheduler panel that enables
the user to view, add, delete and edit scheduler scripts. To view the scheduler panel,
select the realm from the namespace and click on the 'Scheduler' tab.

The scheduler panel displays all scripts that have been deployed to the server within a
table. This table shows the name of the schedule, as defined within the script, the user
name of the person the script will be executed using (i.e. the user name of the Enterprise
Manager user who deployed the script, as well as whether the script is to be deployed
cluster wide (i.e. to all realms within the cluster node).

The image below shows the scheduler panel with no scheduling entries.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 199

The buon labelled 'Add New' when clicked will display a dialog containing a script
editing panel that has been designed to assist with the creation of scheduling scripts.
The scheduling grammar is discussed in more detail in the writing scripts section (see
"Universal Messaging Scheduling : Writing Schedule Scripts" on page 161), as well
as the calendar, triggers and tasks sections (see "Universal Messaging Scheduling :
Calendar Triggers Schedules" on page 166, "Universal Messaging Scheduling :
Conditional Triggers" on page 167 and "Universal Messaging Scheduling : Tasks" on
page 182). The image below shows the script editor panel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 200

Once your script is complete, in order to deploy the schedule to the server, you need to
click on the 'OK' buon. Once clicked, if there are any errors or problems with the script,
you will be presented with a dialog similar to the image below.

If the script does not contain any errors, the script editor panel will close and the new
scheduler script will then appear within the scheduler table. Clicking on the newly
created scheduler within the table will enable you to delete, vew and edit the schedule.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 201

The image below shows the newly created scheduler script once selected. There are
4 scheduler panels available for each scheduler selected from the table. Each panel
is represented by a tab on the boom half of the main scheduler panel. Each of these
panels is discussed below.

Script Editor Panel

The script editor panel is denoted by the tab labelled 'Script Editor' and provides the
same editor view found when you first add a new script. This panel is a simple editor
pane that enables you to modify the scheduler triggers and tasks. The image below
shows this panel selected from the available tabs.

Initial Tasks Panel

The initial tasks panel is denoted by the tab labelled 'Initial Tasks' and represents those
tasks defined within the initialisation section of the scheduler script. Each initial task
is represented as a row in a table with 3 columns. Column 1 labelled 'Task' is the task
object (see "Universal Messaging Scheduling : Tasks" on page 182). Column 2 labelled
'Function / Object' represents the details of the task, fo example, if the task was to purge
a channel, column 2 would show 'purge'. Column 3 labelled 'Parameter' shows any
parameters listed in the scheduler script for the given task. The image below shows an
example of the Initial Tasks tab being selected.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 202

Triggered Tasks

The triggered tasks panel is denoted by the 'Triggered Tasks' tab. This panel displays
those tasks that are triggered based on some conditional triggers. Each conditional
trigger is shown as a row in the table within this panel. Selecting a trigger from this table
will then display the tasks to be executed when this trigger is fired. Each task is shown
in a table similar to that found in the Initial Tasks panel. The image below shows the
triggered tasks panel being selected.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 203

Calendar Tasks

The final panel is the calendar tasks panel and is denoted by the 'Calendar Tasks' tab.
This panel shows the tasks that are scheduled to run at specific times. Each calendar
task is shown as a row within a table. This table has a total of 11 columns. The first 2
columns show the frequency and time. The frequency is either 'Hourly', 'Daily', 'Weekly',
'Monthly' or 'Yearly' and the time is specified as HH:MM. For hourly schedules, the HH
(hours) will be displayed as XX which denotes every hour.

Columns 3 to 9 represent which days of the week the task will run, starting from
Monday ('Mo'). A green circle means the task will run on that day. The last 2 columns
represent the Day and Month the task will run.

Selecting one of the rows in the table will display the actual tasks that will be executed
in a similar table to that found in the triggered tasks panel. The image below shows the
calendar tasks panel with a task selected.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 204

Any changes made to the schedule within the script editor panel can either be deployed
to the realm server by clicking on the 'Apply Changes' buon or discarded by clicking
on the 'Undo Changes' buon.

Schedule entries can be deleted from the server by selecting them from the main
scheduler table and clicking on the 'Delete' buon.

Scheduler Examples
Below is a list of example scheduling scripts that can help you become accustomed to
writing Universal Messaging Scheduling scripts.

"Generic Example" on page 205

"Store Triggers" on page 205

"Interface Triggers" on page 207

"Memory Triggers" on page 207

"Realm Triggers" on page 207

"Cluster Triggers" on page 208

"Counter Triggers" on page 208

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 205

"Timer Triggers" on page 209

"Config Triggers" on page 209

Universal Messaging Scheduling : Example Realm Script
/*
Comments must be enclosed in /* and */ sections
This is an example scheduler script
*/
scheduler realmSchedule {
 declare Config myGlobalConfig ("GlobalValues");
 declare Config myAuditConfig ("AuditSettings");
 declare Config myTransConfig ("TransactionManager");
 initialise {
 Logger.report("Realm optimisation script and monitor startup initialising");
 myAuditConfig.ChannelACL("false");
 myAuditConfig.ChannelFailure("false");
 myGlobalConfig.MaxBufferSize(2000000);
 myGlobalConfig.StatusBroadcast(2000);
 myGlobalConfig.StatusUpdateTime(86400000);
 myTransConfig.MaxTransactionTime(3600000);
 Logger.setlevel(4);
 }
 every 30 {
 Logger.report("Hourly - Executing Tasks");
 }
 every 18:00 {
 Logger.report("Daily - performing maintenance");
 Store.maintain("/customer/sales");
 }
 every We 17:30 {
 Logger.report("Weekly - Performing Purge");
 Store.purge("/customer/sales");
 }
 every 01 21:00 {
 Logger.report("Monthly - Stopping interfaces and restarting");
 Interface.stopAll();
 Interface.startAll();
 }
 every 01-Jan 00:00 {
 Logger.report("Yearly - Stopping interfaces and restarting");
 Interface.stopAll();
 Interface.startAll();
 }
 when (MemoryManager.FreeMemory <30000000) {
 Logger.report("Memory below 30M, performing some clean up");
 MemoryManager.FlushMemory("true");
 } else {
 Logger.report("Memory not below 30M, no clean up required");
 }
}

Universal Messaging Scheduling : Store Triggers Example
scheduler myStore {
 declare Store myPubChannel("myChannel");
 declare Store myPubQueue("myQueue");
/*
Create the channels if they do not exist on the server
*/

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 206

 initialise{
 myPubChannel.createChannel(0, 0, "P");
 myPubQueue.createQueue(0, 0, "M");
 myPubChannel.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2=value2");
 myPubQueue.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2=value2");
 }
/*
At 4:30 each morning perform maintenance on the stores to release unused space
*/
 every 04:30 {
 myPubQueue.maintain();
 myPubChannel.maintain();
 }
/*
Every hour publish an event to the Channel
*/
 every 0 {
 myPubChannel.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2:value2");
 myPubQueue.publish("Data to store in the byte array", "tag info",
 "key1=value1:key2:value2");
 }
/*
Every 1/2 hour purge the channels/queue
The purge takes 3 optional parameters
 StartEID
 EndEID
 Filter string
So it could be
 myPubChannel.purge(0, 100000);
or
 myPubChannel.purge(0, 10000, "key1 = 'value1'");
*/
 every 0 {
 myPubChannel.purge();
 myPubQueue.purge();
 }
/*
 When the number of events == 10 we purge the channel
*/
 when(myPubChannel.numOfEvents == 10){
 myPubChannel.purge();
 }
/*
 When the free space is greater then 60% perform maintenance
*/
 when(myPubChannel.freeSpace> 60){
 myPubChannel.maintain();
 }
/*
 When the number of connections on a channel reach 20 log an entry
*/
 when(myPubChannel.connections == 20){
 Logger.report("Reached 20 connections on the channel");
 }
/*
 Maintain all channels and queues at midnight every night
*/
 every 00:00 {
 Store.maintain("*");
 }

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 207

}

Universal Messaging Scheduling : Interface Triggers Example
scheduler realmInterfaceSchedule {
 declare Interface myNHP ("nhp0");
 declare Counter myCounter("myExhaustedThreads");
 when (myNHP.idleThreads == 0) {
 Logger.report("NHP0 Interface has no idles Threads");
 myCounter.inc();
 }
 when (myCounter>= 5) {
 Logger.report("Increasing the accept thread count on NHP0");
 myNHP.threads("+10");
 myCounter.reset();
 }
}
}

Universal Messaging Scheduling : Memory Triggers Example
scheduler myMemory {
/*
 Declare the MemoryManager task/trigger. Not really required to do
*/
declare MemoryManager mem;
/*
 Just using the MemoryManager task / trigger and not the declared mem as an example.
*/
 when (MemoryManager.freeMemory <10000000){
 MemoryManager.flush(false);
 }
/*
 Now when the Free Memory on the realm drops below 1000000 bytes force the
 realm to release ALL available memory
*/
 when (mem.freeMemory <1000000){
 mem.flush(true);
 }
/*
 This is the same as the one above, except not using the declared name.
*/
 when (MemoryManager.freeMemory <1000000){
 MemoryManager.flush(true);
 }
/*
 totalMemory available on the realm
*/
 when (MemoryManager.totalMemory <20000000){
 Logger.report("Declared Memory too small for realm");
 }
/*
 Out Of Memory counter, increments whenever the realm handles an out of memory exception
*/
 when (MemoryManager.outOfMemory> 2){
 Logger.report("Realm has run out of memory more then the threshold allowed");
 }
}

Universal Messaging Scheduling : Realm Triggers Example

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 208

scheduler realmSchedule {
 declare Realm myRealm ("productionmaster");
 declare Config myGlobalConfig ("GlobalValues");
 when (Realm.connections> 1000) {
 Logger.report("Reached 1000 connections, setting max connections");
 myGlobalConfig.MaxNoOfConnections(1000);
 }
 when (Realm.eventsSentPerSecond> 10000) {
 Logger.report("Reached 10000 events per second, reducing max connection count by 100");
 myGlobalConfig.MaxNoOfConnections("-100");
 }
}

Universal Messaging Scheduling : Cluster Triggers Example
/*
This script tests the cluster triggers. It is assumed the cluster is created with 4 realms
named realm1, realm2, realm3, realm4
*/
scheduler myCluster{
 declare Cluster myNode1("realm1");
 declare Cluster myNode2("realm2");
 declare Cluster myNode3("realm3");
 declare Cluster myNode4("realm4");
/*
 This will trigger when realm1 is online to the cluster
*/
 when (myNode1.nodeOnline == true){
 Logger.report("Realm1 online");
 }
/*
 This can also be written as
*/
 when (Cluster.nodeOnline("realm1") == true){
 Logger.report("Realm1 online");
 }
 when (myNode2.nodeOnline == true){
 Logger.report("Realm2 online");
 }
 when (myNode3.nodeOnline ==true){
 Logger.report("Realm3 online");
 }
 when (myNode4.nodeOnline == true){
 Logger.report("Realm4 online");
 }
 when (Cluster.hasQuorum == true){
 Logger.report("Cluster now has quorum and is running");
 }
 when (Cluster.isMaster("realm1") == true){
 Logger.report("This local realm is the master realm of the cluster");
 }
}

Universal Messaging Scheduling : Counter Trigger Example
scheduler myCounter{
/*
 Define some new counters
*/
 declare Counter counter1 ("myCounter");
 declare Counter counter2 ("myAdditional");
/*

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 209

 When the counter reaches 5 reset it to 0;
*/
 when(counter2> 5){
 counter2.reset();
 }
/*
 If counter1 is less then 3 then increment the value
*/
 when(counter1 <3){
 counter1.inc();
 counter2.dec();
 }
/*
 if Counter2 equals 0 then set counter1 to 5
*/
 when(counter2 == 0){
 counter1.set(5);
 }
}

Universal Messaging Scheduling : Time Triggers Example
scheduler myTimers{
/*
 Define some new timers
*/
 declare Timer reportTimer ("myTimer");
 declare Timer testTimer ("myDelay");
initialise{
 testTimer.stop();
}
/*
In 60 seconds log a report and start the second timer
*/
 when(timer == 60){
 Logger.report("Timer has fired!");
 testTimer.start();
 }
/*
When the second timer hits 30 seconds, log it and reset all timers to do it again
*/
 when(testTimer == 30){
 Logger.report("Test dela fired, resetting timers");
 testTimer.reset();
 testTimer.stop();
 timer.reset();
 }
}

Universal Messaging Scheduling : Configuration Example
scheduler myConfig {
/*
 Declare a local name for the Config(GlobalValues) config group and call it myGlobal.
 Can be used for both triggers and tasks
*/
 declare Config myGlobal ("GlobalValues");
/*
 When this scheduler task is initialised, set the Realms log level to 2
*/
 initialise{
 myGlobal.fLoggerLevel(2);

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 210

 }
/*
 Then if the log level is ever set to 0, automatically reset it to 2.
*/
 when(myGlobal.fLoggerLevel == 0){
 myGlobal.fLoggerLevel(2);
 }
/*
 If the maximum number of connections on the realm is less than 0,
 implying no limit, then set it to 100.
*/
 when(myGlobal.MaxNoOfConnections <0){
 myGlobal.MaxNoOfConnections(100);
 }
}

Integration with JNDI
Universal Messaging supports integration with JNDI through its own provider for
JNDI. Universal Messaging's provider for JNDI enables clients using Universal Messaging
Provider for JMS to locate references to JMS administered objects.

As with all Java APIs that interface with host systems, JNDI is independent of the
system's underlying implementation. In the case of the Universal Messaging product,
the JNDI provider stores object references in the Universal Messaging channel /naming/
defaultContext, which is the channel representing the Universal Messaging Initial
Context for JNDI, and locates the references to the objects using a channel iterator. Note
that if a realm is part of a cluster, the channel will be created on all cluster realm servers.
This ensures that any object references bound into the context are available on each
realm server in the cluster. See the section “Creating The Initial Context” for information
about how and when the channel for the Initial Context is created.

Setting Up the Context and Connection Factories for JNDI

The provider for JNDI can be managed using the Enterprise Manager tool, by selecting
any realm node from the namespace tree, and then clicking on the JNDI tab in the right
hand panel. The JNDI panel enables the creation of the provider and Initial Context for
JNDI, and of TopicConnectionFactory and QueueConnectionFactory references for JMS,
as well as references to Topics and Queues.

Creating The Initial Context

When you select a realm node from the namespace tree, one of the tabs on the right hand
side of the Enterprise Manager will be labelled JNDI.

Selecting this tab will display the default JNDI panel for a realm.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 211

If the Universal Messaging channel /naming/defaultContext has not been created yet,
you will be prompted to create it.

The Initial Context uses the (potentially clustered) Universal Messaging context channel
to store all JNDI references. This channel is called /naming/defaultContext. When the
channel is initially created, full permissions are assigned to the first client who creates it
and to all other users and clients who wish to use the channel.

Removing/destroying the Initial Context is as simple as deleting the /naming/
defaultContext channel. This will of course result in the loss of all existing JNDI
references (so make sure you don't accidentally delete this channel).

If the Initial Context no longer exists, then clicking the Create JNDI context buon at the
boom of the screen will recreate it (though it will not contain any of its previous JNDI
entries/references).

Viewing the JNDI Namespace

Whenever you open the JNDI Panel, Enterprise Manager will enable display of the JNDI
Namespace. The JNDI Namespace is displayed as a tree structure within the Namespace
section of the panel. The root of this tree will be the JNDI Provider URL.

In the case of a cluster, the comma-separated list of RNAME values for each server in the
cluster.

If you are using a round-robin connection factory, the URL syntax allows you to specify
multiple connection URLs, where each connection URL can specify either a standalone
realm or a cluster.

The JNDI namespace tree will render 6 "folders":

Connection Factories

Queue Connection Factories

Queues

Topic Connection Factories

Topics

XA Connection Factories

The image below shows this view after the JNDI panel has been loaded with the JNDI
namespace tree expanded:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 212

You can also use the Refresh buon to update the contents of the JNDI namespace tree
with any changes done outside the current instance of the Enterprise Manager.

Creating Connection Factories

By using a connection factory you can connect to both topics and queues. With a topic
connection factory (see description below) you connect only to topics, and with a queue
connection factory (also described below) you connect to queues. Normally connection
factories can be used as a more generic replacement for both topic connection factories
and queue connection factories.

How to create a connection factory

To create a connection factory, proceed as follows:

1. Select the node Connection Factories and open the context menu of this node.

2. In the dialog, supply a name to be displayed for the new connection factory, for
example "connectionFactory2". Also provide a connection URL, for example "nsp://
localhost:9000".

You can specify a cluster of realms by specifying a comma-separated list of
connection URLs, for example "nsp://localhost:9000,nsp://localhost:9010".

I f you want to use a round-robin connection factory, you can specify several
connection URLs, where each connection URL can point to a standalone realm or a
cluster. In this case, each connection URL is bounded by a set of round brackets - "("
and ")".

Examples:

(UM1)(UM2)(UM3)(UM4) - Indicates 4 standalone realms, namely UM1, UM2,
UM3 and UM4, so 4 connections will be constructed here.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 213

(UM1,UM2)(UM3,UM4) - Indicates 2 clusters, one consisting of UM1 and
UM2 and the other consisting of UM3 and UM4, so only 2 connections will be
constructed here.

(UM1)(UM2,UM3)(UM4) - Indicates one cluster consisting of UM2 and UM3, and
two standalone realms, namely UM1 and UM4. A total of 3 connections will be
constructed here

For the round-robin URL syntax, the following rules apply:

Each set of brackets must contain at least one valid connection URL.

There is no limit on the number of sets of brackets in the URL.

Each set of bracket indicates a unique connection, and the realm names
within each sets of brackets will be supplied unchanged to the underlying
implementation.

For more information on round-robin connection factories, see the section "Provider
for JMS" in the Developer Guide.

3. Use the dropdown list to select the appropriate durable type for durable consumers
for topics that can be created using this connection factory.

The following durable types are supported:

Named: There can be only one active consumer at a time.

Shared: Multiple durable consumers can connect to the same durable
subscription and can consume messages in a round-robin manner.

Shared-Queued: Multiple durable consumers can connect to the same durable
subscription and can consumer messages in a round-robin manner using a
queue-based durable.

Serial: Multiple durable consumers can connect to the same durable subscription
and can consume messages in a serial manner.

Priority: Multiple consumers can connect to the same durable subscription but
there can be only one active consumer at any one time.

Durable subscribers can be defined only for topics; they are not available for queues.

4. Click OK to save your changes and close the dialog.

Editing Connection Factories

To edit an existing connection factory, proceed as follows:

1. Expand the node Connection Factories to display the available connection factories.
Then double-click the required connection factory to open the edit dialog.

2. Make your changes in the dialog.

3. Click OK to save your changes and close the dialog.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 214

Creating Topic and Queue Connection Factories

In order to allow JMS clients to use the Universal Messaging Context Factory to
reference objects via JNDI, we first of all need to create Topic and Queue connection
factories.

To create a topic connection factory, proceed as follows:

1. Select the tree node labelled Topic Connection Factories and select the menu option New
Topic Connection Factory.

2. In the dialog, supply a name for the connection factory. Enter any name (in this
example, we will use the name TopicConnectionFactory). Also provide a connection
URL, for example "nsp://localhost:9000".

3. Select the desired durable type from the dropdown list.

4. Click OK to save your changes and close the dialog.

You will see that a new node has been created under the Topic Connection Factories folder
with the name that you entered. The image below shows the JNDI namespace with a
newly created topic connection factory:

The Topic Connection Factory object you just created is actually stored as an event,
published onto the /naming/defaultContext channel. This event is what will be
referenced by JMS clients when they aempt to find the details for the connection
factory.

To create a queue connection factory, proceed as follows:

1. Select the tree node labelled Queue Connection Factories and select the menu option
New Queue Connection Factory.

2. In the dialog, supply a name for the connection factory. Also provide a connection
URL, for example "nsp://localhost:9000".

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 215

3. Click OK to save your changes and close the dialog.

You will see that a new node has been created under the Queue Connection Factories folder
with the name that you entered.

Note: Durable types are only applicable to topics or normal connection factories.

Creating References to Topics and Queues

When JMS clients use the Universal Messaging Initial Context for JNDI, they also
reference the topics and queues from the same Initial Context. In order for these clients
to access these objects we need to create references to each topic and queue. Creating
such references will also create the underlying channel or queue if it does not already
exist; note that channels or queues created in this way will have the same default
permissions as channels or queues created manually.

In this example, we will add a new topic into the JNDI namespace that corresponds
to a Universal Messaging channel that already exists as a cluster channel. To do this,
first, right-click on the folder called Topics within the JNDI namespace, and select the
menu option New Topic. If we enter the name GlobalOrderStatus, then a new object will
be created under the Topics folder called GlobalOrderStatus. This is because, under the
covers, a corresponding event was published to the /naming/defaultContext channel. JMS
clients can thus look up the reference to this topic (channel) and begin using it within
their application. The following image shows the newly created Topic within the JNDI
namespace for the existing topic GlobalOrderStatus:

Once we have created both the topic connection factory and the topic, we can snoop
(see "Channel Snoop" on page 122) the /naming/defaultContext channel to view
the individual events that represent these references. If you click the /naming/
defaultContext channel within the Enterprise Manager namespace, then the Snoop

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 216

panel, and click Start, you will see the events representing the JNDI entries that have
been created. By selecting any of the events you will see the content of each event on the
channel and the corresponding JNDI context information given to the JMS applications
that will require it.

The image below shows an example of the Topic Connection Factory created earlier
using the JNDI panel:

TCP Interfaces, IP Multicast and Shared Memory

Overview of Working with Interfaces
Using Enterprise Manager, you can configure communication mechanisms including
TCP Interfaces, IP Multicast and Shared Memory (SHM):

TCP Interfaces

Interfaces within a Universal Messaging Realm Server define a protocol, a network
interface and a port number. When a Universal Messaging client connects to a realm
using an RNAME, they are actually connecting to an Interface that has been created on
the Universal Messaging Realm.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 217

If a machine that is running a Universal Messaging Realm has multiple physical network
interfaces, with different IP addresses, it is possible to bind specific protocols to specific
ports. This way you are able to segment incoming network traffic to specific clients.

For example, if a realm is running on a machine that has an external internet facing
network interface, as well as an internal interface, you can create a Universal Messaging
interface that uses nhp or nhps on port 80 or 443 respectively using the external facing
interface.

If on the other hand when there are multiple network interfaces, and you do not wish
to segment network traffic for specific protocols, you can specify to bind to all known
network interfaces to the specified protocol and port.

The default realm seing when you first install Universal Messaging creates a Universal
Messaging Socket Protocol Interface that binds to port 9000, on all known network
interfaces.

Once this basic understanding of Universal Messaging interfaces is understood, you
can then set about performing a number of operations using the Universal Messaging
Enterprise Manager:

"Creating Interfaces" on page 217

"Deleting Interfaces" on page 221

"Creating SSL Interfaces" on page 221

"Stopping Interfaces" on page 221

"Starting Interfaces" on page 220

"Interface Configuration" on page 222

"JavaScript Interface Panel" on page 224

"Modify Interfaces" on page 221

"Interface Plugins" on page 227

"Interface VIA rules" on page 159

IP Multicast

"IP Multicast Configuration" on page 451

Shared Memory (SHM)

"Shared Memory Configuration" on page 232

Creating Interfaces
This section describes how to create interfaces for a realm. For general information about
interfaces, see "TCP Interfaces, IP Multicast and Shared Memory" on page 216.

To reach the dialog for defining and managing interfaces for a realm, proceed as follows:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 218

1. In the namespace tree in the navigation frame, select the realm for which you want to
create an interface.

2. Select the Comms tab in the Realm Details frame.

3. Select the Interfaces tab.

You now see a table containing all of the available interfaces on a the selected realm.

The default interface is nsp (Universal Messaging Socket Protocol) and it binds to 0.0.0.0
(i.e. all known interfaces) on port 9000.

Please note that adding an SSL enabled interface (see "Creating an SSL network interface
to a Universal Messaging Realm Server" on page 234) for either SSL enabled sockets
or HTTPS requires some additional steps.

The image below shows the Interfaces tab containing the default realm interface.

The interfaces table consists of 5 columns:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 219

Name : Defined as protocol + n, where n is a unique sequence number for the
interfaces for that protocol.

Status : Shows whether the interface is 'Running', 'Stopped' or 'Error'. The error status
is shown if the interface has not been started due to an error.

Adapter : The physical network interface to bind to, expressed either as an IP address
or a hostname. The IP address 0.0.0.0 defines all known interfaces. You can use the
hostname if you want the interface to be independent of the underlying IP address.

Port : The port to bind to.

Threads : An indicator for the number of accept threads the interface has free to
accept connections. A full green bar denotes all are free.

To add a new interface, click on the Add Interface buon, which will show a dialog that
allows you to choose the protocol, the adapter, the port as well as whether the interface
should be started automatically when it is created and also when the server restarts. This
dialog is shown below:

In the example above, we have chosen to add a Universal Messaging HTTP Interface
(nhp) that will be bound to all known network interfaces (0.0.0.0) on port 80. If you
select the Auto Start option (by ticking the Auto Start checkbox), then click the OK buon,
this means that when the interface is created in the realm server, it will automatically
be started. Auto Start will also cause that interface to be started whenever the realm is
restarted. Once the interface has been created it will appear in the interfaces table as
shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 220

Further instructions on configuring Universal Messaging interfaces are also available in
the section "Interface Configuration" on page 222.

In addition a VIA rule (see "Interface VIA Rules" on page 159) can be added to
interfaces as a security enhancement.

HTTP / HTTPS Interface

The Javascript tab allows configuration of Comet delivery and is available for HTTP /
HTTPS (nhp / nhps) interfaces.

Starting Interfaces
Interfaces can be started by selecting the realm node where the interface you want to
start is running, and selecting the Interfaces tab. From the table of configured interfaces,
select the interface you want to start and double-click on the row. Alternatively, you
can click on the Status column for the interface. Both will present you with a dialog for
starting the selected interface.

Clicking on the Start buon will start the interface on the realm server.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 221

Modifying Interfaces
Each interface within a Universal Messaging realm has a number of configuration
aributes (see "Interface Configuration" on page 222) that can be modified using the
Enterprise Manager. Once modified, these can be applied to the interface on the fly.
Modifying an interface will cause it to restart, closing all connections to the interface.
However, since Universal Messaging clients will automatically reconnect to the realm
server, the service disruption should be minimal.

When you have modified the configuration aributes for the selected interface, the
Interfaces panel contains a buon labelled Apply. Clicking on this buon will send
the modified aributes to the realm server and apply them to the interface, causing
it to restart. If there are any clients connected to the interface they will automatically
reconnect after restart.

Stopping Interfaces
Interfaces can be stopped by selecting the realm node where the interface you want
to stopped is running, and selecting the Interfaces tab. From the table of configured
interfaces, select the interface you want to stop and double-click on the row.
Alternatively, you can click on the Status column for the interface. Both will have the
same effect, and will present you with a dialog for stopping the selected interface.

Clicking on the Stop buon will stop the interface on the realm server.

Deleting Interfaces
Interfaces can be deleted by simply selecting the realm node where the interface you
want to delete is running, and selecting the Interfaces tab. From the table of configured
interfaces, you can simply select the interface you want to delete and click the Delete
Interface buon.

When you delete an interface, Universal Messaging first stops the interface, then closes
all clients connected to the interface, then removes the interface from the realm.

SSL Interfaces
Universal Messaging supports SSL encryption by providing two SSL-enabled protocols.
These protocols enable clients to connect to a Universal Messaging realm server running
a specific protocol on a port using all or specific physical network interfaces.

Defining an SSL-enabled interface ensures that clients wishing to connect to a realm
server can do so only after presenting the correct SSL credentials and authenticating
with the server.

SSL authentication occurs within the Universal Messaging handshake which uses
the JVM's JSSE provider. This ensures that any unauthorized connections are SSL
authenticated before any Universal Messaging specific operations can be performed.

Creating an SSL enabled interface is the same as creating a non-SSL interface (see
"Creating Interfaces" on page 217) except where there are a number of SSL-related

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 222

aributes in addition to the basic aributes (see "Interface Configuration" on page
222).

For information on how to create an SSL interface using the Universal Messaging
Enterprise Manager, see "Creating an SSL network interface to a Universal Messaging
Realm Server" on page 234.

Interface Configuration
Each interface on a Universal Messaging Realm has a number of configurable aributes
that determine the interface behaviour. Some of these aributes are standard across all
types of interface protocols, and some are specific to a particular protocol.

This section will describe the aributes that are common to interfaces of all types.

For additional information on specific interfaces types, see "TCP Interfaces, IP Multicast
and Shared Memory" on page 216.

Basic Interface Attributes

When an interface is selected from the table of interfaces on the Interfaces tab, there are
a number of aributes that are configurable for the interface. Below the interfaces table,
there is a set of tabs, one of which is labelled Basic, as shown in the image below.

The basic interface configuration panel shows configurable aributes. These are
explained in the following section:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 223

Autostart Interface

The Autostart aribute specifies whether the interface is started automatically when
the Universal Messaging realm server is started. When this option is not selected, the
interface must be started manually in order for it to be used by connecting clients. Please
note that if Autostart is not set it must be started either manually or using the Universal
Messaging Administration API whenever after the realm is started.

If Autostart is selected then the interface will be started once the Apply buon is pressed.

Auth Time

The Auth Time aribute corresponds to the amount of time a client connection using this
interface can take to perform the correct handshake with the realm server. For example,
the default is 10000 milliseconds, but for some clients connecting on slow modems, and
who are using the nhps (hps) protocol, this default Auth Time may need to be increased.
If any client connection fails to perform the handshake in the correct timeframe, the
connection is closed by the realm server.

Accept Threads

Each Universal Messaging realm interface contains a server socket. The Accept Threads
aribute corresponds to the number of threads that are able to perform the accept()
for a client connection. The accept() operation on a Universal Messaging interface
performs the handshake and authentication for the client connection. For more heavily
utilised interfaces, the accept threads will need to be increased. For example, on an nhp
(hp) or nhps (hps) interface, each client request corresponds to a socket accept() on
the interface, and so the more requests being made, the busier the interface will be, so
the accept threads needs to be much higher than that of say an nsp (socket) interface.
Socket interfaces maintain a permanent socket connection, and so the accept() is only
performed once when the connection is first authenticated.

Send Buffersize

This specifies the size of the send buffer on the socket.

Receive Buffersize

This specifies the size of the receive buffer on the socket

Select Threads

The Select Threads option specifies the number of threads allocated to monitor socket
reads/writes on the interface if NIO is enabled. When a socket needs to be read, these
threads will fire and pass on the request to the read thread pool. If the socket is blocked
during a write, then when the socket is available to be wrien to, these threads will fire
and the request will be passed on to the write thread pool. The number of select threads
should not typically exceed the number of cores available.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 224

Enable NIO

Specify whether NIO should be used for this interface.

Advertise Interface

All interfaces that are advertised by a realm server are available to users (with the
correct permissions) of the Universal Messaging Admin API. This property specifies
whether the interface is indeed advertised to such users.

Backlog

The Backlog aribute specifies the maximum size of the incoming IP socket request
queue. The operating system that the realm server is running on may specify a
maximum value for this property. When the maximum queue size is reached the
operating system will refuse incoming connections until the request queue reduces in
size and more requests can be serviced. For more information on this value, please see
the system administration documentation for your Operating System.

Alias

Each interface on a Universal Messaging Realm Server can have an associated alias in
the form of host:port. This alias can be specified here.

For information on interface plugins please see "Interface plugins" on page 227.

For information on adding VIA rules for an interface please see "Interface VIA Rules" on
page 159.

When you change any of these aributes, the changes need to be applied by clicking the
Apply buon. For more information, refer to the modifying interfaces documentation (see
"Modifying Interfaces" on page 221).

JavaScript Interface Panel
Universal Messaging HTTP and HTTPS (nhp and nhps) interfaces have configuration
options specific to their communication with web clients using JavaScript. These options
are accessible through the JavaScript panel when viewing an nhp or nhps interface.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 225

The Interface Panel

JavaScript Interface Properties

Option Name Description

Enable
JavaScript

Recommended Seing: Enabled

Allows JavaScript clients to connect on this interface.

Enable
WebSockets

Recommended Seing: Enabled

Toggles the ability for clients to communicate with the server
using the HTML WebSocket Protocol on this interface.

CORS Allow
Credentials

Recommended Seing: Enabled

Toggles the server sending an "Access-Control-Allow-
Credentials: true" header in response to XHR-with-CORS
requests from the client. This is required if the application,
or website hosting the application, or intermediate

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 226

Option Name Description
infrastructure such as reverse proxy servers or load
balancers, uses cookies.

Leave this enabled unless recommended otherwise by
support. Disabling this will in most environments prevent all
CORS-based drivers from working correctly.

CORS
Allowed
Origins

Recommended Seing: *

A comma separated list of the host names (and IP addresses,
if they appear in URLs) of the server/s which host your
JavaScript application's HTML. Use an * (asterisk) as a
wildcard value if you do not wish to limit the hosts that
can serve applications to clients. This server will accept and
respond with the required Access-Control-Allow-Origin
header when requests originate from a hostname in this list.
This header allows CORS enabled transport mechanism to
bypass cross site security restrictions in modern browsers.

It is important that this is set appropriately, or approximately
half of the communication drivers available to JavaScript
clients will fail.

Enable GZIP
for LongPoll

Recommended Seing: Enabled

This will allow the server to gzip responses sent to LongPoll
clients. This can reduce network utilization on servers with
many LongPoll clients. It increases CPU resource utilization.

GZIP
Minimum
Threshold

Recommended Seing: 1000

The minimum message size is bytes required for the server to
begin compressing data sent to LongPoll clients.

Long Poll
Active Delay

Recommended Seing: 100

The time between clients sending long poll requests to the
server in milliseconds. Reducing this may reduce latency up
to a certain threshold but will increase both client and server
memory, CPU and network usage.

Long Poll Idle
Delay

Recommended Seing: 25000

The time between clients sending long poll when the
client is in idle mode. A client is put in idle mode when no
communication takes place between client and server for a
period of time. Reducing this may be necessary if a client is
timing out owing to local TCP/IP seings, proxy seings,

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 227

Option Name Description
or other infrastructure seings, but will result in higher
memory, CPU and network usage on both the client and
the server. It is however vital that this value is lower than
the timeouts used in any intermediate proxy server, reverse
proxy server, load balancer or firewall. Since many such
infrastructure components have default timeouts of as lile
as 30 seconds, a value of less than 30000 would be prudent.
If long polling client sessions continually disconnect and
reconnect, then lower this value.

Custom
Header
Config

Header Key/Value pairs which are sent in the HTTP packets
to the client.

Interface plugins
Universal Messaging supports the concept of plugins that actively process client
requests made to nhp and nhps interfaces. There are currently 4 plugins:

File (Provides behavior similar to a web server)

XML (Browse resources and events in XML)

SOAP (Browse channels, queues and events using SOAP protocol)

Proxy Passthrough (Enable hp/s requests for specific URLs to be forwarded to
another host:port)

The plugins are discussed in more detail in the section "Plugins" on page 241.

Multicast Configuration
Universal Messaging delivers 'ultra-low latency' to a large number of connected clients
by including IP Multicast functionality for both the delivery of events to Data Group
consumers as well as between inter-connected realms within a Universal Messaging
cluster.

This section assumes the reader has some knowledge of IP Multicast.

Universal Messaging Multicast Architecture

Each Universal Messaging interface that you configure on a Universal Messaging Realm
binds to one or all of the available physical Network adapters present on the host
machine. In order to successfully configure Multicast on a Universal Messaging Realm
you must ensure that you know the IP addresses of each of these network adapters
(including virtual addresses if running on a virtual host), and which physical network
adapter and it's address is capable of supporting IP Multicast. This information allows
the correct network adapter to be selected and bound to by the Multicast configuration.
Once this information is known, you then need to ensure that the physical network

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 228

infrastructure including switches and routers can support Multicast. Once validated, the
next step is to select an available Multicast address which can be used.

Universal Messaging servers can use IP Multicast either to deliver Data Group events
to its consumers or between Universal Messaging realms within a cluster. If you wish
to enable IP Multicast delivery to Data Group consumers, you can create a Multicast
configuration and select it for use with Data Groups. Once you have configured a
Multicast adapter, when you create a Data Group with the enable Multicast flag set,
the Universal Messaging realm will automatically begin delivering the events via
Multicast when published to that Data Group. The client application requires no extra
setup to begin receiving Multicast. When a client Data Stream is added to a Multicast
enabled Data Group, the client will transparently receive the information it needs to
begin consuming Multicast for that Data Group. The client will at first both consume
the Unicast Data Group events, and if Multicast is possible, also consume the Multicast
events. When both Unicast and Multicast are in sync after a period of time, the Universal
Messaging Server will stop sending Unicast events for that Data Stream to the client. The
Universal Messaging server will track whether each client is in fact able to process the
Multicast packets and if any client does not successfully acknowledge safe receipt of the
Multicast events, it will simply continue to consume the Unicast events.

With this model, the client is able to seamlessly interact with the Universal Messaging
server and begin consuming Multicast events with no changes to the Client application
required.

Setting Up Multicast for Data Group Delivery

The first step in configuring a Universal Messaging Realm for Multicast Data Group
delivery is to create the Multicast adapter configuration. Once you have the information
described in the previous section, and your Universal Messaging realm is running, start
the Enterprise Manager and connect to your realm. Once connected, select the realm
node from the tree, and choose the Multicast tab in the right hand panel, as shown
below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 229

Clicking on the "Add Multicast Config" buon opens a dialog that enables you to enter
the Multicast IP Address, as well as the Network Adapter Address of your multicast
configuration, as shown below.

When you click on ok in the dialog, the new Multicast configuration will appear in the
table. You then need to select that the multicast configuration is to be used for Data
Groups by clicking on the "Use for DataGroups" check box. Then click the "Apply"
buon and the configuration will be sent to the server. The completed multicast
Configuration is shown in the table as seen in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 230

Now you have created the Multicast configuration, you need to create your Multicast
enabled Data Groups. To do this, simply click on the Data Groups node in the tree,
and right click "Create Data Group". This will open up the standard create Data Group
dialog but with an additional check box for enabling Multicast. This is shown in the
image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 231

Now your data group is ready to be used for Multicast Delivery. If you are familiar with
Universal Messaging Data Groups, you will be familiar with our example Data Group
programs which you can use to test this out, or you may have your own Data Group
setup that you can use. If your Data Groups are created programmatically, then the key
thing to remember is that when you call the nSession.createDataGroup, you now need to
also pass in an additional boolean that marks the Data Group as Multicast enabled.

Setting Up Multicast for Cluster Inter Realm Communication

If you have a clustered setup, and you wish to setup Multicast between your realms
for the inter realm communication, the setup is the same, however on each realm that
you create a Multicast Configuration, the configuration itself needs to set the "Use for
Clusters" checkbox. The Multicast address can be the same for all realms, or you can
choose a different Multicast Address per realm. With this feature enabled, each realm
will know the Multicast address for each of the other realms in the cluster and will listen
on these addresses for inter realm cluster communication.

Advanced Multicast Settings

The default seings for the Multicast configurations you create are aimed at providing
the lowest possible latency. With this in mind, the configuration is such that the
multicast client will ack every 1 second, and the server will maintain a list of un-acked
events (default 9000). Should the publish rate exceed 9000 per second, you may notice
that the delivery rates might be quite irregular. This is down to the fact that the client
will only acknowledge every 1 second, and so the server will automatically back off the
delivery until it receives an acknowledgement from the client and can therefore clear
its unacknowledged queue. If this happens, you can change both the Unacked Window

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 232

Size to be > 9000 and the Keep Alive Interval (ack interval) to be less than 1 second (see
image of the Advanced Seings tab below).

Shared Memory Configuration
In order to create a Shared Memory (SHM) interface you will need to select the realm
node from the namespace tree to which you wish to add the interface, then in the
right hand tabbed area there will be a tab labeled "Comms". Select it, and you will be
presented with the "Shared Memory" tab:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 233

Now select "Add SHM Config" and you be presented with the below configuration box,
it contains three parameters

1. Path: This is the directory within which the files needed for SHM communication
will be created. (Please note that when choosing a path, ensure that the local user id
of the server can access this directory, for example, /dev/shm will require root / super
user access, or shm communication will not work)

2. Buffer Size: This is the size of the allocated memory in bytes a connection will use, it
will also create a file of the same size which is used for mapping.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 234

3. Timeout: This is the idle timeout for a connection, if no activity is detected on the
connection it is closed.

Once you press okay the driver is created and ready to go. If you wish to edit any of
those values you can edit them by double clicking any on the field you wish to change
and then applying them with the apply buon or reseing them by pressing cancel.

Creating an SSL network interface to a Universal Messaging Realm Server
Network Interfaces can be added to a Universal Messaging realm using the Universal
Messaging Administration API or by using the Universal Messaging Enterprise
Manager.

To add an SSL interface using the Enterprise Manager GUI, follow the steps below:

Step 1: Click on the interfaces panel for a realm. In the example below an interface is
being added to the realm "node1". An interface could also be added however to any
other realm shown in the Enterprise Manager. This ability makes centralized remote
administration very easy using Universal Messaging.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 235

Step 2: Click on the Add Interface buon in order to bring up the Add Interface dialog
box. In the dialog choose the network protocol you would like to use for this interface.
The choices are Sockets, Secure Sockets, HTTP and HTTPS. Choose either Secure Sockets
or Secure HTTPS to add an SSL interface.

In this example HTTPS is chosen as the protocol and the interface is added to the
network adapter 192.168.1.5. This will run the network interface on that IP Address.
Alternatively, you could add a hostname that will resolve to the IP address of the
chosen interface, or you can also specify 127.0.0.1 for localhost or 0.0.0.0 for all network
interfaces on this machine.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 236

Step 3: When a new interface is added, if the Auto Start option is not selected the realm
interface will not start automatically when a realm starts, and it will have to be started
manually.

After the interface has been added you should see the following in your interfaces panel:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 237

In this example you can see that this realm now has 2 network interfaces and that the
one just added ("nhps0") has been started.

If you did not choose to start the interface automatically, then in order to start the
interface you need to click on the line containing the stopped traffic light. This will
populate the tabs at the boom with details for this interface.

Click on the Certificates tab. You will see that the first 2 text boxes have been
automatically filled in. In the Universal Messaging download, we provide a utility called
Certificate Generator (see "How to generate certificates for use" on page 238) that can
generate sample .jks files containing certificates bound to localhost, for the server, the
client and the truststore used by jsse. In this example we are going to use the sample jks
files in order to demonstrate creating an SSL interface.

If you would like instructions on generating your own certificates (see "How to generate
certificates for use" on page 238) for use with Universal Messaging please see our
FAQ.

The text field titled 'Key store path' should contain something similar to:
c:\Universal Messaging\server\umserver\bin\server.jks

which should be the path to the sample Java keystore for the server, bound to localhost.
The text field 'Trust store path' should contain something similar to the following:
c:\Universal Messaging\server\umserver\bin\nirvanacacerts.jks

Next, fill in the entries for the 'Key Store Passwd' and 'CA Store Passwd' with
'password'. This is the password for both the server keystore and the CA (truststore)
keystore.

Next select the 'Basic' tab and click on the autostart interface checkbox. Clicking on this
box means that the interface will be started automatically when the Universal Messaging
realm server is started.

Then click on apply and the Interface will be started. It will also start it now.

Alternatively if you do not wish to autostart then double click on the line with the
stopped traffic light. This will bring up a dialog which allows you to start that network
interface.

If the network interface fails to start then please inspect the Universal Messaging log file
via the messages tab. Please contact your software supplier if any other issues arise.

Similarly, if you wish to stop an interface, simply double-click on the interface you want
to stop from the interface table, and click on the 'stop' buon.

There is no limit to the number of network interfaces that can be added to a realm and
each can have its own configuration such SSL chains etc applied. This allows you to
isolate customers from each other while still using only one Universal Messaging realm
server.

In this example we have used our own sample Java keystores which will only work
when using the loopback interface of your realm server host. If you wish to provide
SSL capabilities for remote connections, you must ensure you have your own keystores
and valid certificate chains. For related information on topics such as creating your own

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 238

certificate chains and using the Java keytool, you can visit external links such as the
following:

hp://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

How to generate certificates for use

Generating Demo / Development certificates

In order to generate a demo SSL certificate you can use the Java keytool utility or the
Universal Messaging Certificate Generator utility.

The Java keytool utility can be used to create and handle certificates. Keytool stores all
keys and certificates in a keystore. For a detailed description of Java's keytool please
see its documentation at hp://docs.oracle.com/javase/7/docs/technotes/tools/windows/
keytool.html.

The Universal Messaging Certificate Generator utility can be used to generate a self
signed server certificate, a self signed client certificate and a trust store for the above
two.

You can run the Certificate Generator from the Start Menu on Windows by selecting the
server/<realm name>/Create Demo SSL Certificates

Alternatively you can open a server Command Prompt and run the utility as required
for your platform:

Win32:

CerficateGenerator.exe

Linux/Solaris/Generic Unix:

./CerficateGenerator

OSX:

./CerficateGenerator.command

This will generate 3 files:

client.jks : Self signed certificate you could use if you have client certificate
authentication enabled.

server.jks : Self signed certificate with a CN=localhost . Please note: You can only
connect to interfaces using this by specifying a localhost RNAME due to the HTTPS
protocol restrictions.

nirvanacacerts.jks: Keystore that contains the public certificate part of the 2 key pairs
above. This should be used as a trust store by servers and clients.

It is also possible to customize some elements of these certificates stores such as the
password, the host bound to the server CN aribute and they key size.This can be done
by passing the following optional command line arguments to the Certificate Generator:

Win32:

http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/keytool.html

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 239

CerficateGenerator.exe <password> <host> <key size>

Linux/Solaris/Generic Unix:

./CerficateGenerator <password> <host> <key size>

OSX:

./CerficateGenerator.command <password> <host> <key size>

Generating Production certificates

In order to obtain a real SSL Certificate, you must first generate a CSR (Certificate
Signing Request). A CSR is a body of text that contains information specific to your
company and domain name. This is a public key for your server.

The Java keytool utility can be used to create and handle certificates. Keytool stores all
keys and certificates in a keystore. For a detailed description of keytool please see its
documentation.

Step 1: Create a keystore

Use the keytool to create a keystore with a private/public keypair.

keytool -genkey -keyalg "RSA" -keystore keystore -storepass password -
validity 360

You will be prompted for information about your organisation. Please note that when
it asks for "User first and last name", please specify the hostname that Universal
Messaging will be running on (e.g. www.yoursite.com).

Step 2: Create a certificate request

Use the keytool to create a certificate request.

keytool -certreq -keyalg "RSA" -file your.host.com.csr -keystore keystore

This will generate a file containing a certificate request in text format. The request itself
will look someting like this :
-----BEGIN NEW CERTIFICATE REQUEST-----
 MIIBtTCCAR4CAQAwdTELMAkGA1UEBhMCVVMxDzANBgNVBAgTBmxvbmRvbjEPMA0GA1UEBxMGbG9u
 ZG9uMRQwEgYDVQQKEwtteS1jaGFubmVsczEMMAoGA1UECxMDYml6MSAwHgYDVQQDExdub2RlMjQ5
 Lm15LWNoYW5uZWxzLmNvbTCBnzANBeddiegkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAycg0MJ7PXkQM9sLj
 1vWa8+7Ce0FDU4tpcMXlL647dwok3uUGXuaz72DmFtb8OninjawingsjxrMBDK9fXG9hqfDvxWGyU0DEgbn+Bg
 O3XqmUbyI6eMzGdf0vTyBFSeQIinigomontoyaU9Ahq1T7C6zlryJ9n6XZTW79E5UcbSGjoNApBOgVOCPKBs7/CR
 hZECAwEAAaAAMA0GCSqGSIb3DQEBBAUAA4GBAB7TkFzQr+KvsZCV/pP5IT0c9tM58vMXkds2J7TY
 Op3AueMVixRo14ruLq1obbTudhc385pPgHLzO7QHEKI9gJnM5pR9yLL72zpVKPQ9XOImShvO05Tw
 0os69BjZeW8LTV60v4w3md47IeGE9typGGxBWscVbXzB4sgVlv0JtE7b
 -----END NEW CERTIFICATE REQUEST-----

Step 3: Submit your certificate request to a certificate supplier

Certificate vendors will typically ask you to paste the certificate request into a weborder
form. This will be used as a public key to generate you private key. Please include the
(BEGIN and END) tags when you paste the certificate request.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 240

Please note that a cert of PKCS #7 format is required so that it can be imported back into
keytool. (step 4)

The certificate vendor will then provide you with a certificate which that will look
something like this:

Please paste this certificate into a file called your.host.com.cer [Note. please include the
(BEGIN and END) tags]
-----BEGIN PKCS #7 SIGNED DATA-----
 MIIFpAYJKoZIhvcNAQcCoIIFlTCCBZECAQExADALBgkqhkiG9w0BBwGgggV5MIIC
 2DCCAkGgAwIBAgICErYwDQYJKoZIhvcNAQEEBQAwgYcxCzAJBgNVBAYTAlpBMSIw
 IAYDVQQIExlGT1IgVEVTVElORyBQVVJQT1NFUyBPTkxZMR0wGwYDVQQKExRUaGF3
 dGUgQ2VydGlmaWNhdGlvbjEXMBUGA1UECxMOVEVTVCBURVNUIFRFU1QxHDAaBgNV
 BAMTE1RoYXd0ZSBUZXN0IENBIFJvb3QwHhcNMDQwOTA2MTYwOTIwWhcNMDQwOTI3
 MTYwOTIwWjB1MQswCQYDVQQGEwJVUzEPMA0GA1UECBMGbG9uZG9uMQ8wDQYDVQQH
 EwZsb25kb24xFDASBgNVBAoTC215LWNoYW5uZWxzMQwwCgYDVQQLEwNiaXoxIDAe
 BgNVBAMTF25vZGUyNDkubXktY2hhbm5lbHMuY29tMIGfMA0GCSqGSIb3DQEBAQUA
 A4GNADCBiQKBgQDJyDQwns9eRAz2wuPW9Zrz7sJ7QUNTi2lwxeUvrjt3CiTe5QZe
 5rPvYOYW1vw6PGswEMr19cb2Gp8O/FYbJTQMSBuf4GA7deqZRvIjp4zMZ1/S9PIE
 VJ5AhT0CGrVPsLrOWvIn2fpdlNbv0TlRxtIaOg0CkE6BU4I8oGzv8JGFkQIDAQAB
 o2QwYjAMBgNVHRMBAf8EAjAAMDMGA1UdHwQsMCowKKAmoCSGImh0dHA6Ly93d3cu
 dGhhd3RlLmNvbS90ZXN0Y2VydC5jcmwwHQYDVR0lBBYwFAYIKwYBBQUHAwEGCCsG
 AQUFBwMCMA0GCSqGSIb3DQEBBAUAA4GBAHGPR6jxU/h1U4yZGt1BQoydQSaWW48e
 r7slod/2ff66LwC4d/fymiOTZpWvbiYFH1ZG98XjAvoF/V9iNpF5ALfIkeyJjNj4
 ZryYjxGnbBa77GFiS4wvUk1sngnoKpaxkQh24t3QwQJ8BRHWnwR3JraNMwDWHM1H
 GaUbDBI7WyWqMIICmTCCAgKgAwIBAgIBADANBgkqhkiG9w0BAQQFADCBhzELMAkG
 A1UEBhMCWkExIjAgBgNVBAgTGUZPUiBURVNUSU5HIFBVUlBPU0VTIE9OTFkxHTAb
 BgNVBAoTFFRoYXd0ZSBDZXJ0aWZpY2F0aW9uMRcwFQYDVQQLEw5URVNUIFRFU1Qg
 VEVTVDEcMBoGA1UEAxMTVGhhd3RlIFRlc3QgQ0EgUm9vdDAeFw05NjA4MDEwMDAw
 MDBaFw0yMDEyMzEyMTU5NTlaMIGHMQswCQYDVQQGEwJaQTEiMCAGA1UECBMZRk9S
 IFRFU1RJTkcgUFVSUE9TRVMgT05MWTEdMBsGA1UEChMUVGhhd3RlIENlcnRpZmlj
 YXRpb24xFzAVBgNVBAsTDlRFU1QgVEVTVCBURVNUMRwwGgYDVQQDExNUaGF3dGUg
 VGVzdCBDQSBSb290MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQC1fZBvjrOs
 fwzoZvrSlEH81TFhoRPebBZhLZDDE19mYuJ+ougb86EXieZ487dSxXKruBFJPSYt
 tHoCin5qkc5kBSz+/tZ4knXyRFBO3CmONEKCPfdu9D06y4yXmjHApfgGJfpA/kS+
 QbbiilNz7q2HLArK3umk74zHKqUyThnkjwIDAQABoxMwETAPBgNVHRMBAf8EBTAD
 AQH/MA0GCSqGSIb3DQEBBAUAA4GBAIKM4+wZA/TvLItldL/hGf7exH8/ywvMupg+
 yAVM4h8uf+d8phgBi7coVx71/lCBOlFmx66NyKlZK5mObgvd2dlnsAP+nnStyhVH
 FIpKy3nsDO4JqrIgEhCsdpikSpbtdo18jUubV6z1kQ71CrRQtbi/WtdqxQEEtgZC
 JO2lPoIWMQA=
 -----END PKCS #7 SIGNED DATA-----

Step 4: Store the certificate in your keystore

Use the keytool to store the generated certificate :

keytool -keystore keystore -keyalg "RSA" -import -trustcacerts -file
your.host.com.cer

Once step 4 is completed you now have a Universal Messaging server keystore and can
add an SSL interface (see "Creating an SSL network interface to a Universal Messaging
Realm Server" on page 234).

Please note that if you completed steps 1 to 4 for test certificates then you will also need
to create a store for the CA root certificate as Universal Messaging will not be able to
start the interface until it validates where it came from. Certificate vendors typically
provide test root certificates which are not recognised by browsers etc. In this case you
will need to add that cert to another store and use that as your cacert. When specifying

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 241

certificates for a Universal Messaging SSL interface this would be specified as the Trust
Store Path in the certificates tab.

If you are using anonymous SSL then you will have to provide this cacert to clients also
as this will not be able to validate the Universal Messaging certificate without it. Please
see the Security section of our Concepts guide for more information on configuring
Universal Messaging clients to use certificates.

Plugins
The Universal Messaging Realm Server supports the concept of Plugins within the
context of the NHP or NHPS protocols. The plugins are initiated when the underlying
Universal Messaging driver receives an HTTP/S packet which is not part of the standard
Universal Messaging protocol. At this point it passes the request over to the Plugin
Manager to see if there is any registered plugin interested in the packet's URL. If there
is, then the request is forwarded to this plugin for processing. There are several plugins
supported by Universal Messaging. Please see below for available documentation:

"File Plugin" on page 242

"XML Plugin" on page 246

"Proxy passthrough Plugin" on page 251

"REST Plugin" on page 252

"SOAP Plugin" on page 270

"Servlet Plugin" on page 273

Configuration

Configuration of a plugin can be done programmatically with the Administration API
supplied with Universal Messaging or it can be done with the Enterprise Manager
application. For the rest of this document the Enterprise Manager will be used to
describe how to set up and use the plugins.

In order to add a plugin, first of all you need to have created the nhp or nhps interface
(see "Creating Interfaces" on page 217) that will use the plugin within the realm
where you wish to run the plugin.

Once the interface is created, proceed as follows to access the plugin configuration
dialog:

1. In the navigation frame, select the realm where you want to add the plugin.

2. In the Realm Details frame, navigate to the list of defined interfaces for the realm,
using Comms > Interfaces.

3. Select the interface from the table of configured interfaces.

4. Select the tab Plugins from the interface configuration panel.

5. Click Add Plugin. This displays the plugin configuration dialog, which enables you to
choose which plugin you wish to add.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 242

The diagram below shows a new file plugin about to be added to the known interface
nhp0.

URL Path

When you configure a plugin, you are required to add a URL Path. The URL Path is
what the realm server uses to determine if the request if destined for a plugin. If the
server name and path within the URL supplied in the plugin configuration dialog match
the server name and path within the request to a configured plugin, then this request is
passed to the correct configured plugin for processing.

For example:

If a request with a URL of http://realmServer/pluginpath/index.html is made
to the server, the file path will be extracted, i.e. pluginpath/index.html, and the
configured plugins will be scanned for a match. If there is a file plugin configured with a
URL Path pluginpath, then this plugin will get a request for index.html.

Similarly:

If a request with a URL of http://realmServer/pluginpath/pictures/pic1.jpg is
received, then the same file plugin would get a request for pictures/pic1.jpg.

File Plugin
The file plugin enables the Universal Messaging realm server to serve static web pages.
This can be used for example to have the realm server serve applets and supported
files without the need for a dedicated web server. For example, if you are running a file
plugin on your realm server host called webhost, on an nhp interface running on port
80, you could type in a URL within a web browser hp://webhost:80/index.html which
will return the index page defined within the file plugin's base path directory.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 243

This enables the realm server to act as a web server and can even be used to serve
applets to client browsers that may directly communicate with the realm server and
publish and consume events from channels.

Important: The root file directory that the file plugin points to using the BasePath
parameter can be any disk location. All files under that location are
potentially visible to any HTTP client that can connect to the Universal
Messaging realm server. We would recommend that you do not point the
file plugin to a directory that contains any sensitive data, without also
configuring suitable access controls. These could be at the network level
(restricting network access to the server), in the file plugin configuration (it
supports HTTP basic authentication with a username/password file) or by
using file permissions at the Operating System level (so that sensitive data
cannot be read by the realm server process). Or of course a combination of
these.

Configuration

Once you have created the file plugin on the interface you require it on, you can then
select it from the Plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The file plugin requires configuration information defining its behavior as well as the
location of the files it is required to serve to the clients. Below is a table that shows each
configuration parameter and describes what it is used for.

Parameter Name Description Default Value

BufferSize Size of the internal buffer to
use to send the data.

1024

BasePath Path used to locate the files. The
UniversalMessaging/
doc directory under
the product installation
directory.

DefaultName If no file name is specified
which file should be
returned.

index.html

FileNotFoundPage Name of the file to send
when file cannot be located

None.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 244

Parameter Name Description Default Value

UserFile Name of the file containing
the usernames and
passwords.

None.

Security Realm Name of the authentication
realm

None.

MimeType Name of the file to load
the mime type information
from. The format of
this file is : <mimetype>
<fileExtension>

Built in types used.

CachedObjects Number of objects to store
in the cache

100

CacheObjectSize Size in bytes that can be
stored in the cache

20K

SeparateAccessandErrorLogsChoose true to have
separate log files for the
access and error logs.

FALSE

The image below shows the Enterprise Manager Interfaces panel with an nhp interface
running on port 9000. This interface has a file plugin configured with the default seings
and its URL path is /. The default BasePath seing is the UniversalMessaging/doc
directory in the file hierarchy for your local product installation, which is where the
default product installation places the Universal Messaging API docs. Once the plugin
is created, you can click the Apply buon which will restart the interface and enable the
new file plugin.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 245

From a browser, it is now possible to enter the URL http://localhost:9000/ which
will then render the default index.html page from the UniversalMessaging/doc
directory for the API docs. The image below demonstrates the browser view from a
realm that has a file plugin on an nhp interface on port 9000, and displaying the default
API docs found in the UniversalMessaging/doc directory.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 246

XML Plugin
The XML Plugin can be used to query the realm server, its queues and channels. It
returns the data in XML format. This plugin also supports style sheets, so the XML can
be transformed into HTML or any format required. For example, a client can publish
XML data onto a Universal Messaging realm's channel, then using a standard web

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 247

browser, get the server to transform the XML into HTML via a stylesheet, thereby
enabling the web browser to view events on the realm.

This functionality enables realm data to be viewed from a channel without any
requirement for a Java client. All that is required is for the client to have a browser.

Important: Never include XSL code from untrusted sources into the plugin's XSL code,
as this can lead to a security risk for the client browser (or other client
application) accessing the plugin. The Universal Messaging realm server
itself is not at risk, since it does not execute the plugin's XSL code.

Configuration

Once you have created the XML plugin on the interface you require it on, you can then
select it from the Plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The XML plugin requires configuration information relating to its behavior as well as
the entry point in the namespace for the channels you wish to make available to serve to
the clients. Below is a table that shows each configuration parameter and describes what
it is used for.

Parameter
Name

Description Default Value

ChannelRoot Name of the channel or folder
to render.

/

Security
Realm

Name of the authentication
realm

None.

StyleSheet Name of the style sheet file to
use to process the resulting
XML.

None. If you specify
a filename without a
path, the default path is
UniversalMessaging/
server/<RealmName>/
bin under the product
installation root location.

UserFile Name of the file containing
the usernames and passwords

None.

Note: As a starting point for creating your own stylesheet, you can use the
stylesheet xml2html.xsl that is supplied in the UniversalMessaging/doc/
style directory in the file hierarchy for your local product installation.

The image below shows the Enterprise Manager Interface panel with an nhp interface
running on port 9005. This interface has an XML plugin configured to use the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 248

xml2html.xsl stylesheet and its URL path as /xml. The default ChannelRoot seing
is /, which is the root of the namespace, i.e. all channels. Once the plugin is created,
you can click the Apply buon which will restart the interface and enable the new XML
plugin.

From a browser, you can now enter the URL hp://localhost:9005/xml/ which will render
the realm information page using the stylesheet. The image below demonstrates the
browser view from a realm that has an XML plugin on an nhp interface on port 9005.

If you use the stylesheet xml2html.xsl delivered with the product, the result will be
similar to the display below. The realm information is displayed at the top of the page,
and the information on resources is shown beneath.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 249

As you can see above, each resource is shown as a link within a table showing the
information obtainable from the XML plugin. Clicking on a channel link will then take
you to another page that has been rendered by the XML plugin which will show you the
list of events on a channel. The image below shows the event list for the JNDI naming
channel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 250

The XML plugin will determine whether the events on the channel contain byte data,
dictionaries or XML documents and return the relevant elements within the XML
document. The stylesheet applied to the XML document then examines each element
to find out how to render it within the browser. Each event on the channel or queue is
shown in the table with event ID, its size in bytes and links to either the byte data, the
dictionary or the XML data. These links are generated by the stylesheet. Clicking on the
data or dictionary links will again return an XML document from the XML plugin that
will be rendered to show either the base64 encoded event data or the event dictionary.

If any events contain XML documents, these will be returned directly from the XML
plugin. The stylesheet provided will not render event XML documents, since the
structure of these is unknown. You will need to provide your own stylesheet to render
your own XML event documents.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 251

Proxy Passthrough Plugin
The Proxy Passthrough Plugin can be used to forward hp(s) requests from specific
URLs to another host. For example, if you want to forward requests from one realm to
another realm, or to another web server, you can use the proxy passthrough plugin.

This functionality enables realms to act as a proxy to forward URL requests to any host
that accepts hp(s) connections.

Configuration

Once you have created the proxy passthrough plugin on the interface you require it on,
you can then select it from the plugins panel for the selected interface and enter values
as you wish for the configuration parameters.

The proxy passthrough plugin requires configuration information relating to the
host and port that requests will be forwarded to. Below is a table that shows each
configuration parameter and describes what it is used for.

Parameter Name Description Default Value

HostName Host name of the process that
requests for the URL will be
forwarded to

Port Port on which the requests will
be sent to the host

80

The image below shows the Enterprise Manager Interface panel with an nhp interface
running on port 9000. This interface has a proxy passthrough plugin configured to
redirect requests from this interface using the URL path of /proxy and will forward
these requests to any File Plugins and XML Plugins located on the productionmaster
realm's nhp interface running on port 9005.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 252

From a browser, it is now possible to enter the URL http://localhost:9000/proxy/
which will redirect this request to the interface on the productionmaster realm
interface running on port 9005. This will display the details of the productionmaster
realm as if you had specified the URL http://productionmaster:9005/ in your
browser.

REST Plugin
The REST plugin allows access to the Universal Messaging REST API, and can be
enabled on any HTTP or HTTPS (NHP or NHPS) interface. The Universal Messaging
REST API is designed for publishing, purging and representing events published on
channels and queues in 2 initial representations: JSON and XML.

The Universal Messaging REST API supports three different HTTP commands. GET is
used for representations of events, POST for publishing and PUT for purging. Both XML
and JSON support byte arrays, XML and Dictionary events for publishing, which map to
native Universal Messaging event types. There are two MIME types available: text and
application.

Configuration

Once you have created the REST plugin on the interface you require it on, you can then
select it from the plugins panel for that interface and enter values as desired for the
configuration parameters.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 253

Parameter Name Description Default Value

AddUserAsCookie Add the username to the session's
cookies.

Blank

AuthParameters A list of key=value strings, which are
passed to the Authenticator's init()
function.

Blank

Authenticator Classname of Authenticator to use. If
blank, no authentication is used.

Blank

EnableStatus Enables Realm status details. Default is
disabled, for security reasons.

False

GroupNames A comma separated list of groups. The
user must be a member of at least one in
order to be granted access.

Blank

IncludeTypeInfo Includes type information for event
dictionaries.

False

NamespaceRoot Name of the namespace folder to be used
as root.

Blank

ReloadUserFileDynamicallyIf set to true and authentication is
enabled, fAuthenticator.reload() is called
on each request.

True

RoleNames A comma-separated list of names. The
user must have at least one to gain access.

Blank

Security Realm Name of the authentication realm. Blank

SessionTimeout Time in seconds to time-out inactive hp
sessions.

300

The REST plugin supports WADL documentation which is accessible through the HTTP
OPTIONS command. Once you have completed seing up your REST plugin, you can
verify it works by opening a browser to the NHP interface in the mount URL path,
and appending the query string ?method=options. For example, for an NHP interface
running on port 9000 on localhost, and having the plugin mounted on "/rest", open a
browser to hp://localhost:9000/rest/API?method=options.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 254

Following this will display an HTML version of the full Universal Messaging REST
API documentation which is generated by applying an XSL processor to the WADL
XML document. The XML document itself can be obtained by accessing the plugin URL
without the ?method=options query string. For example, the curl command line tool
can be used as follows:
curl -XOPTIONS http://localhost:9000/rest/API

What follows is a summary of the three HTTP commands for both XML and JSON, and
what functionality each provides, as well as detailed examples of requests and responses
for each command.

XML: GET

Provides XML representations of channels/queues or events in a channel or queue as
specified by the ChannelOrQueue parameter. The parameter is represented by the URI
Path following the REST Plugin mount.

If the value supplied corresponds to a Universal Messaging namespace container, the
representation returned is a list of channels and queues present in the container. If the
value supplied corresponds to a channel or queue then the representation returned is a
list of events. Finally if the value supplied does not correspond to either a container or a
channel / queue a 404 response will be returned with no body.

Available response representations:

"text/xml" on page 256

"application/xml" on page 256

XML: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue
parameter, which is represented by the URI Path following the REST Plugin mount. For
example hp://localhost:9000/rest/API/xml/testchannel expects an XML byte, XML or
dictionary event to be published to channel testchannel.

Acceptable request representations:

"text/xml" on page 260

"application/xml" on page 260

Available response representations:

"text/xml" on page 263

"application/xml" on page 263

XML: PUT

Allows purging of 1 or more events already published on a channel or queue specified
by the ChannelOrQueue parameter, which is represented by the URI Path following the
REST Plugin mount. For example hp://localhost:9000/rest/API/xml/testchannel expects

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 255

a request to purge events to be published to channel testchannel. Purging can be specified
by EID and selector.

Acceptable request representations:

"text/xml" on page 264

"application/xml" on page 264

Available response representations:

"text/xml" on page 264

"application/xml" on page 264

JSON: GET

Provides JSON representations of channels/queues or events in a channel or queue as
specified by the ChannelOrQueue parameter. The parameter is represented by the URI
Path following the REST Plugin mount.

If the value supplied corresponds to a Universal Messaging namespace container, the
representation returned is a list of channels and queues present in the container. If the
value supplied corresponds to a channel or queue then the representation returned is a
list of events. Finally if the value supplied does not correspond to either a container or a
channel / queue a 404 response will be returned with no body.

Available response representations:

"application/json" on page 264

JSON: POST

Allows publishing of an event to a channel or queue specified by the ChannelOrQueue
parameter, which is represented by the URI Path following the REST Plugin mount. For
example hp://localhost:9000/rest/API/json/testchannel expects a JSON byte, XML or
dictionary event to be published to channel testchannel.

Acceptable request representations:

"application/json" on page 267

Available response representations:

"application/json" on page 269

JSON: PUT

Allows purging of 1 or more events already published on a channel or queue specified
by the ChannelOrQueue parameter, which is represented by the URI Path following the
REST Plugin mount. For example hp://localhost:9000/rest/API/json/testchannel expects
a request to purge events to be published to channel testchannel. Purging can be specified
by EID and selector.

Acceptable request representations:

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 256

"application/json" on page 269

Available response representations:

"application/json" on page 269

Representation: XML

XML REPRESENTATION : An XML representation of channels/queues or events in a channel
or queue as specified by the ChannelOrQueue parameter.

Should the parameter point to an existing container, the response code is 200 and the
response looks like this:
<Nirvana-RealmServer-ChannelList NumberOfChannels="2">
 <!--Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 16:07:28 EET 2011-->
 <Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
 Name="testqueue" NumberEvents="0"
 fqn="http://localhost:8080/rest/API/xml/testqueue"/>
 <Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
 Name="testchannel" NumberEvents="2"
 fqn="http://shogun:8080/rest/API/xml/testchannel"/>
</Nirvana-RealmServer-ChannelList>

If the REST plugin is configured to include realm status, some additional information
about the realm is presented:
<Nirvana-RealmServer-ChannelList NumberOfChannels="2">
 <!--Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 16:07:28 EET 2011-->
 <Channel EventsConsumed="0" EventsPublished="0" LastEventID="-1"
 Name="testqueue" NumberEvents="0"
 fqn="http://localhost:8080/rest/API/xml/testqueue"/>
 <Channel EventsConsumed="0" EventsPublished="2" LastEventID="223"
 Name="testchannel" NumberEvents="2"
 fqn="http://shogun:8080/rest/API/xml/testchannel"/>
 <RealmStatus FreeMemory="498101048" RealmName="nirvana6" Threads="87"
 TotalConnections="0" TotalConsumed="0"
 TotalMemory="530186240" TotalPublished="2"/>
</Nirvana-RealmServer-ChannelList>

Should the parameter point to an existing channel or queue, the response code is 200
and the response looks like this:
<Nirvana-RealmServer-EventList>
 <!--Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 16:10:57 EET 2011-->
 <Details ChannelName="http://localhost:8080/rest/API/xml/testsrc"
 FirstEvent=
 "http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=first"
 LastEID="223"
 LastEvent=
 "http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=last"
 NextLink="http://localhost:8080/rest/API/xml/testsrc?EID=224" StartEID="222"/>
 <Event ByteLink="http://localhost:8080/rest/API/xml/testsrc?Data=Byte&EID=222"
 DataSize="9" EID="222" Tag="Test Tag" hasByte="true"/>
 <Event
 DictionaryLink=
 "http://localhost:8080/rest/API/xml/testsrc?Data=Dictionary&EID=223"
 EID="223" hasDictionary="true"/>
</Nirvana-RealmServer-EventList>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 257

You can follow the provided links to view individual events. If you choose to look at an
individual byte event, the response code is 200 and the response looks like this:
<Nirvana-RealmServer-RawData>
 <!--Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 16:13:17 EET 2011-->
 <EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222">
 <Data>
 <![CDATA[VGVzdCBCb2R5]]>
 </Data>
 <Tag>
 <![CDATA[Test Tag]]>
 </Tag>
 </EventData>
</Nirvana-RealmServer-RawData>

If you choose to look at an individual XML event, the response code is 200 and the
response looks like this:
<Nirvana-RealmServer-XMLData>
 <!--Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 16:13:17 EET 2011-->
 <EventData ChannelName="http://localhost:8080/rest/API/xml/testsrc" EID="222"
 isDOM="true">
 <Data>
 <myUserDataTag>
 Some User Data
 </myUserDataTag>
 </Data>
 <Tag>
 <![CDATA[Test Tag]]>
 </Tag>
 </EventData>
</Nirvana-RealmServer-XMLData>

If you choose to look at an individual Dictionary event, the response code is 200 and the
response looks like this:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 258

 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 <DataArray Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 259

If the rest plugin is configured to include type information in representations, dictionary
event representations will include them. In this case, responses looks like this:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 <DataArray ArrayType="0" Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="7" Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 260

 </DataArray>
 <DataArray ArrayType="9" Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

Finally, should the parameter point to a non existing container or channel / queue, the
response code is 404 without a response body

XML PUBLISH REQUEST

XML Byte events can be represented as follows:
<EventData isDom="false" isPersistent="true" TTL="0">
 <Data>
 <![CDATA[YSBib2R5]]>
 </Data>
 <Tag>
 <![CDATA[YSB0YWc=]]>
 </Tag>
</EventData>

Important: data and tag should always be submied in base64 encoded form.

XML DOM events can be represented as follows:
<EventData isDom="true" isPersistent="true" TTL="0">
 <Data>
 <![CDATA[YSBib2R5]]>
 </Data>
 <Tag>
 <![CDATA[YSB0YWc=]]>
 </Tag>
</EventData>

Important: data and tag should always be submied in base64 encoded form.

XML Dictionary events can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 261

 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean">
 <![CDATA[true]]>
 </Data>
 <DataArray Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 262

 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

Optionally, dictionary events can include type information (see "Types" on page 269).
This allows the Universal Messaging REST API to preserve these types when publishing
the event. The types are defined as byte constants to keep typed dictionary events
compact in size.

XML Dictionary events (with type information) can be represented as follows:
<DictionaryData isPersistent="true" TTL="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Dictionary Key="testdictionary">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>
 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 </Dictionary>
 <Data Key="testlong" Type="1">
 <![CDATA[1]]>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 263

 </Data>
 <Data Key="testfloat" Type="5">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testcharacter" Type="6">
 <![CDATA[a]]>
 </Data>
 <Data Key="testboolean" Type="3">
 <![CDATA[true]]>
 </Data>
 <DataArray ArrayType="0" Key="teststringarray">
 <ArrayItem Index="0">
 <![CDATA[one]]>
 </ArrayItem>
 <ArrayItem Index="1">
 <![CDATA[two]]>
 </ArrayItem>
 <ArrayItem Index="2">
 <![CDATA[three]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="7" Key="testbytearray">
 <ArrayItem Index="0">
 <![CDATA[YSBib2R5]]>
 </ArrayItem>
 </DataArray>
 <DataArray ArrayType="9" Key="testdictionaryarray">
 <ArrayItem Index="0">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 <ArrayItem Index="1">
 <Data Key="testdouble" Type="2">
 <![CDATA[1.0]]>
 </Data>
 <Data Key="testinteger" Type="4">
 <![CDATA[1]]>
 </Data>
 <Data Key="teststring" Type="0">
 <![CDATA[teststringvalue]]>
 </Data>
 </ArrayItem>
 </DataArray>
</DictionaryData>

Important: byte[] types should always be submied in base64 encoded form.

XML PUBLISH RESPONSE : A XML representation to indicate the status of aempting to
publish an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks
like this:
<Nirvana-RealmServer-PublishRequest>
 <response value="ok"/>
</Nirvana-RealmServer-PublishRequest>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 264

Should the publish call fail for any reason, the response code is 400 and the response
looks like this:
<Nirvana-RealmServer-Error>
 <response value="failInput"/>
 <errorcode value="ErrorCode"/>
 <errormessage value="Error Message"/>
</Nirvana-RealmServer-Error>

XML PURGE REQUEST : A XML representation of a Purge Request that indicates the
event(s) to purge.

A XML purge request looks as follows:
<Nirvana-RealmServer-PurgeRequest startEID="10" endEID="20" purgeJoins="false">
 <selector>
 <![CDATA[]]>
 </selector>
</Nirvana-RealmServer-PurgeRequest>

XML PURGE RESPONSE : A XML representation to indicate the status of aempting to
purge an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the purge call be successful, the response code is 200 and the response looks like
this:
<Nirvana-RealmServer-PurgeRequest>
 <response value="ok"/>
</Nirvana-RealmServer-PurgeRequest>

Should the purge call fail for any reason, the response code is 400 and the response looks
like this:
<Nirvana-RealmServer-Error>
 <response value="failInput"/>
 <errorcode value="ErrorCode"/>
 <errormessage value="Error Message"/>
</Nirvana-RealmServer-Error>

Representation: JSON

JSON REPRESENTATION : A JSON representation of channels/queues or events in a
channel or queue as specified by the ChannelOrQueue parameter.

Should the parameter point to an existing container, the response code is 200 and the
response looks like this:
{
 "Channels":
 [{
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "-1",
 "Name": "testqueue",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testqueue"
 }, {
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "212",
 "Name": "testchannel",
 "NumberEvents": "0",

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 265

 "fqn": "http://localhost:8080/rest/API/json/testchannel"
 }],
 "Comment": "Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 11:38:30 EET 2011",
 "Name":
 "Nirvana-RealmServer-ChannelList",
 "NumberOfChannels": "2",
}

If the REST plugin is configured to include realm status, some additional information
about the realm is presented:
{
 "Channels":
 [{
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "-1",
 "Name": "testqueue",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testqueue"
 }, {
 "EventsConsumed": "0",
 "EventsPublished": "0",
 "LastEventID": "212",
 "Name": "testchannel",
 "NumberEvents": "0",
 "fqn": "http://localhost:8080/rest/API/json/testchannel"
 }],
 "Comment": "Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 11:38:30 EET 2011",
 "Name": "Nirvana-RealmServer-ChannelList",
 "NumberOfChannels": "2",
 "Realm": {
 "FreeMemory": "503291048",
 "RealmName": "nirvana6",
 "Threads": "104",
 "TotalConnections": "1",
 "TotalConsumed": "0",
 "TotalMemory": "530186240",
 "TotalPublished": "0"
 }
}

Should the parameter point to an existing channel or queue, the response code is 200
and the response looks like this:
{
 "ChannelName": "http://localhost:8080/rest/API/json/testsrc",
 "Comment": "Constructed by my-channels Nirvana REST-Plugin : Wed
 Mar 02 12:19:22 EET 2011",
 "Events":
 [{
 "ByteLink": "http://localhost:8080/rest/API/json/testsrc?Data=Byte&EID=213",
 "DataSize": "9",
 "EID": "213",
 "Tag": "Test Tag",
 "hasByte": "true"
 }, {
 "DictionaryLink":
 "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=214",
 "EID": "214",
 "hasDictionary": "true"
 }],

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 266

 "FirstEvent": "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=first",
 "LastEID": "214",
 "LastEvent": "http://localhost:8080/rest/API/json/testsrc?Data=Dictionary&EID=last",
 "Name": "Nirvana-RealmServer-EventList",
 "NextLink": "http://localhost:8080/rest/API/json/testsrc?EID=215",
 "StartEID": "213"
}

You can follow the provided links to view individual events. If you choose to look at an
individual byte event, the response code is 200 and the response looks like this:
{
 "ChannelName": "http://localhost:8080/rest/API/json/testsrc",
 "Comment": "Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 12:21:46 EET 2011",
 "Data": "VGVzdCBCb2R5",
 "EID": "213",
 "Name": "Nirvana-RealmServer-RawData",
 "Tag": "Test Tag"
}

If you choose to look at an individual XML event, the response code is 200 and the
response looks like this:
{
 "ChannelName": "http://localhost:8080/rest/API/json/testsrc",
 "Comment": "Constructed by my-channels Nirvana REST-Plugin :
 Wed Mar 02 12:21:46 EET 2011",
 "Data": "VGVzdCBCb2R5",
 "EID": "213",
 "Name": "Nirvana-RealmServer-XMLData",
 "Tag": "Test Tag"
}

If you choose to look at an individual Dictionary event, the response code is 200 and the
response looks like this:
{
 "dictionary":
 {
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdictionary": [
 {
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"]
 }],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"],
 "teststringarray": [[
 "one",
 "two",
 "three"
]]
 },
 "isPersistent": true

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 267

}

If the rest plugin is configured to include type information in representations, dictionary
event representations will include them. In this case, responses looks like this:
{
 "dictionary":
 {
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdictionary":
 [{
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0]
 }, 9],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0],
 "teststringarray":
 [[
 "one",
 "two",
 "three"
], 100, 0]
 },
 "isPersistent": true
}

Finally, should the parameter point to a non existing container or channel / queue, the
response code is 404 without a response body

JSON PUBLISH REQUEST

JSON Byte events can be represented as follows:
{
 "data": "VGVzdCBCb2R5",
 "isPersistent": true,
 "tag": "VGVzdCBUYWc="
}

Important: data and tag should always be submied in base64 encoded form.

JSON DOM events can be represented as follows:
{
 "data": "VGVzdCBCb2R5",
 "isDOM": true,
 "isPersistent": true,
 "tag": "VGVzdCBUYWc="
}

Important: data and tag should always be submied in base64 encoded form.

JSON Dictionary events can be represented as follows:
{

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 268

 "dictionary":
 {
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdictionary":
 [{
 "testboolean": [true],
 "testcharacter": ["a"],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"]
 }],
 "testdouble": [1],
 "testfloat": [1],
 "testinteger": [1],
 "testlong": [1],
 "teststring": ["teststringvalue"],
 "teststringarray":
 [[
 "one",
 "two",
 "three"
]]
 },
 "isPersistent": true
}

Optionally, dictionary events can include type information (see "Types" on page 269).
This allows the Universal Messaging REST API to preserve these types when publishing
the event. The types are defined as byte constants to keep typed dictionary events
compact in size.

Dictionary events (with type information) can be represented as follows:
{
 "dictionary":
 {
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdictionary":
 [{
 "testboolean": [true, 3],
 "testcharacter": ["a", 6],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0]
 }, 9],
 "testdouble": [1, 2],
 "testfloat": [1, 5],
 "testinteger": [1, 4],
 "testlong": [1, 1],
 "teststring": ["teststringvalue", 0],
 "teststringarray":
 [[
 "one",
 "two",
 "three"
], 100, 0]
 },

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 269

 "isPersistent": true
}

Important: byte[] types should always be submied in base64 encoded form.

JSON PUBLISH RESPONSE : A JSON representation to indicate the status of aempting to
publish an event to the channel or queue specified by the ChannelOrQueue parameter.

Should the publish call be successful, the response code is 201 and the response looks
like this:
{
 "Response": "OK"
}

Should the publish call fail for any reason, the response code is 400 and the response
looks like this:
{
 "errorcode": "ErrorCode",
 "errormessage": "Error Message",
 "response": "failInput"
}

JSON PURGE REQUEST : A JSON representation of a Purge Request that indicates the
event(s) to purge.

A JSON purge request looks as follows:
{
 "endEID": 20,
 "purgeJoins": false,
 "selector": "",
 "startEID": 10
}

JSON PURGE RESPONSE : A JSON representation to indicate the status of aempting to
purge an event to the channel or queue specified by the ChannelOrQueue parameter

Should the purge call be successful, the response code is 200 and the response looks like
this:
{
 "Response": "OK"
}

Should the purge call fail for any reason, the response code is 400 and the response looks
like this:
{
 "errorcode": "ErrorCode",
 "errormessage": "Error Message",
 "response": "failInput"
}

Types

Type ID

String 0

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 270

Type ID

Long 1

Double 2

Boolean 3

Integer 4

Float 5

Character 6

Byte 7

Short 8

Dictionary 9

Array 100

SOAP Plugin
The Universal Messaging SOAP Plugin utilises the advanced HTTP/HTTPS stack
capabilities of the Universal Messaging server to provide an implementation of a SOAP
1.2 based client API. Any SOAP toolkit can use the provided WSDL to generate client
stubs for any SOAP compliant language. This way Universal Messaging functionality
is offered to programming languages that were previously unsupported and all this
without the need for any additional infrastructure component (SOAP server, web server
etc).

The plugin can be configured to expose complete Universal Messaging namespaces or
subsets, support username/password authentication, control web service listing and
other options further explained in the section below.

Configuration

Once you have created the SOAP plugin on the interface you require it on, you can then
select it from the plugins panel for the selected interface and enter values as you wish for
the configuration parameters.

The SOAP plugin requires configuration details regarding the entry point in the
namespace for the channels you wish to make available to vend to the clients, as well
as web-services specific configuration. Below is a table that shows each configuration
parameter and describes what it is used for.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 271

Parameter
Name

Description Default Value

URL File
Path

The mount URL path for
the SOAP plugin to be
invoked.

None (/soap needed for
samples)

ChannelRoot Universal Messaging
namespace node (channel
or folder) to expose through
soap

/

UserFile Name of the file containing
the usernames and
passwords

None.

Security
Realm

Name of the authentication
realm

None.

AachmentDir Name of the directory to
find the AXIS aachments

<ServerPath>/plugins/
attachments/

EnableList Enable or disable the listing
of web services WSDL files.
This is necessary if you
want to generate client
stubs.

false.

WebRootDir Name of the directory
containing the WEB-INF
directory

<ServerPath>/plugins/

WSDLEncoding Type of encoding to be used
for WSDL, valid values are
document, rpc, wrapped

rpc

In the table above, <ServerPath> is the location UniversalMessaging/server/
<RealmName> under the product installation root location.

The image below shows the Enterprise Manager interface panel with an nhp interface
running on port 9000. This interface has a SOAP Plugin configured with its URL path
as /soap. The default ChannelRoot seing is /, which is the root of the namespace, i.e. all
channels. Once the plugin is created, you can click the Apply buon which will restart the
interface and enable the new SOAP plugin.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 272

From a browser, you can now enter the URL 'hp://localhost:9000/soap/' which shows
the available services exposed via SOAP as well as links to the WSDL documents
required to generate client stubs:

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 273

Samples

The Universal Messaging installation includes a few samples for Perl in the
UniversalMessaging/extras/soap/perl directory. The applications use the
SOAP::Lite Perl module and were tested under Cygwin for Windows. Please note
that all the samples included assume that you have an NHP interface running on port
80 on the local machine, and that there is a SOAP plugin configured under /soap.
Furthermore the getEvent.pl sample requires you to have a channel called test with
at least 1 event inside.

For example to execute getChannelDetails.pl, open a cygwin (or other) shell and
type:
$ perl getChannelDetails.pl

firstEid=-1
ttl=0
name=Universal Messaging-p2p/serviceinfo
eventCount=0
type=Simple
capacity=0
lastEid=-1

firstEid=0
ttl=0
name=test
eventCount=10
type=Reliable
capacity=0
lastEid=9

Servlet Plugin
The servlet plugin enables the Universal Messaging realm server to serve Java servlets.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 274

Configuration

Once you have created the servlet plugin on an interface, you can then select it from the
Plugins panel for the interface and configure the plugin parameters.

The servlet plugin requires configuration information relating to its behavior, as well
as the location of the servlets it is required to serve to the clients. Below is a table that
shows each configuration parameter and describes what each is used for.

To ensure security, the EnforceConfigFile option can be set to true; this allows
only those classes specified in the configuration file to be loaded. Alternatively, the
EnforceStrictClassLoader option can be set; this prevents classes being loaded from
different class loaders to that of the servlet, and thereby also prevents arbitrary classes
from being loaded.

Parameter Name Description Default
Value

AddUserAsPlugin Add the username to the session cookies. false

AuthParameters List of key=value string which is passed to
authenticators init function.

AddUserAsPlugin Classname of authenticator to use, leave
blank for default

(default)

EnableClassReload Automatically reload servlet class if it
changes

true

EnforceConfigFile If true, only servlets within the
ServletConfigFile will be executed.

true

EnforceStrictClassLoaderIf true, only servlets loaded by the initial class
loader will be executed. Any classes loaded
by parent loader will be ignored.

true

GroupNames A comma separated list of groups to which
a user must be a member of to be granted
access.

MimeType Name of the file to load the mime type
information from. The format of the file is
same as the apache mime types.

Properties File containing the servlet properties. The file
should be a java properties file that contains

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 275

Parameter Name Description Default
Value

one property per line prefixed with the full
class name. For example for a servlet class
com.example.Servlet defining a property
called RNAME you should have a line as
follows: com.example.Servlet.RNAME=nsp://
localhost:9000

ReloadUserFileDynamicallyIf true, the user file will get reloaded on each
auth request.

true

RoleNames A comma separated list of groups to which a
user must have one to be granted access.

Security Realm Name of the authentication realm.

Servlet Config
File

File which contains all the valid servlets
which will run. The file should be a text file
containing one full servlet class name per
line, indicating only these should be allowed
to run. For example having a single line
com.example.Servlet would mean that only
that servlet will be allowed to run irrespective
of how many exist in the server classpath.

Servlet Path Directory in which to locate servlet classes

SessionTimeout Time in seconds before timeout of servlet
session not in use.

XML Configuration: Overview
The Universal Messaging Enterprise Manager allows you to export specific elements of
the realm or the entire realm structure into an XML representation. The exported XML
can contain all clusters, realm ACLs, channels, queues and their ACLs, configuration
parameters, JNDI assets, interfaces, plugins and scheduling information. Once exported,
the XML can then be imported into any other realm, which is useful when you wish to
clone realms and their internal structures. Importing the xml will automatically create
and configure those objects selected for the import from the XML file.

The export and import marshals the realm objects from their Administration API
representation into XML and back again. This provides a very powerful way of
automatically configuring a realm based on a standard structure.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 276

See the links below to view more about the import and export mechanism available in
the Universal Messaging Enterprise Manager:

"XML Configuration: Exporting To XML" on page 276

"XML Configuration: Importing From XML" on page 277

XML Configuration: Exporting To XML
The ability to export an entire realm or specific elements of a realm's structure is a
powerful enabler for managing the configuration of multiple realms within your
enterprise. This section will discuss how to export realm elements to their xml
representation.

Firstly, to export a realm to xml, you need to select the realm you wish to export from
the Enterprise Manager namespace. Right-clicking on the realm node will present a
menu for the options available on a realm node. One of those menu options is labelled
'Export Realm to XML'. Selecting this menu option will present a dialog as shown in the
image below.

The dialog above shows the list of export options available for the realm, and the name
and location of the file that will be exported. The 'Export to' field is the name and
location of the file to export which can either be typed manually, or chosen by selecting
the buon with the folder icon that shows a file chooser dialog.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 277

There are a large number of options for what can be exported from a realm. The check
boxes indicated on the dialog can all be selected individually for specific elements of a
realm to be exported, or by clicking on the 'Export All' buon all options will be selected.

Clicking on the 'OK' buon will export the realm to xml into the file and location
specified.

To view an example of the XML produced from the export, see "XML Configuration:
Sample XML File for EXPORT" on page 278.

XML Configuration: Importing From XML
The ability to import realm elements from XML is a powerful enabler for managing the
configuration of multiple realms within your enterprise. This section describes how to
import realm elements from the XML representation.

Firstly, to import a realm to XML, you need to have first made sure you have the
desired elements you wish to import within an XML file. For help on export, see "XML
Configuration: Exporting To XML" on page 276. To import XML, select the realm you
wish to import the realm data to from the Enterprise Manager namespace. Right-clicking
on the realm node will present a menu for the options available on a realm node. One of
those menu options is labelled Import Realm from XML.

Selecting this menu option will present a dialog as shown in the image below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 278

The dialog shows the list of import options available for the realm, and the name and
location of the file that will be used for the import. The Import from field is the name and
location of the file to import from which can either be typed manually, or chosen by
selecting the buon with the folder icon that shows a file chooser dialog.

There are a large number of options for what can be imported from XML into a realm.
The check boxes indicated on the dialog can all be selected individually for specific
elements of a realm to be imported, or by clicking on the Import All buon all options will
be selected.

Clicking on the OK buon will import the XML into the realm from file and location
specified, and then aempt to create the objects and set the configuration elements
defined within the XML.

To view an example of the XML produced from the export, see "XML Configuration:
Sample XML File for EXPORT" on page 278.

Setting to make Channels and Queues clustered or non-clustered while importing

When you export channels or queues to an XML file, each channel or queue in the
XML file has an aribute clusterWide. If you export a clustered channel or queue,
this aribute is set to "true", and if you export a non-clustered channel or queue, this
aribute is set to "false".

Before you import the XML file into a realm, you can manually edit the XML file and
modify the clusterWide aribute of each channel/queue, depending on how you want
to import the channel/queue. If you want a channel or queue to be imported as clustered
while doing an import on a clustered realm, set clusterWide to "true", and if you want
a channel or queue to be imported as non-clustered, set clusterWide to "false".

XML Configuration: Sample XML File for EXPORT
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Universal MessagingRealm comment="Realm configuration from productionmaster"
 exportDate="2005-01-06+00:00" name="productionmaster">
 <RealmConfiguration>
 <ConfigGroup name="AuditSettings">
 <ConfigItem name="ChannelACL" value="true"/>
 <ConfigItem name="ChannelFailure" value="true"/>
 <ConfigItem name="ChannelMaintenance" value="false"/>
 <ConfigItem name="ChannelSuccess" value="false"/>
 <ConfigItem name="InterfaceManagement" value="true"/>
 <ConfigItem name="JoinFailure" value="true"/>
 <ConfigItem name="JoinMaintenance" value="true"/>
 <ConfigItem name="JoinSuccess" value="false"/>
 <ConfigItem name="QueueACL" value="true"/>
 <ConfigItem name="QueueFailure" value="true"/>
 <ConfigItem name="QueueMaintenance" value="false"/>
 <ConfigItem name="QueueSuccess" value="false"/>
 <ConfigItem name="RealmACL" value="true"/>
 <ConfigItem name="RealmFailure" value="true"/>
 <ConfigItem name="RealmMaintenance" value="true"/>
 <ConfigItem name="RealmSuccess" value="false"/>
 <ConfigItem name="ServiceACL" value="true"/>
 <ConfigItem name="ServiceFailure" value="true"/>
 <ConfigItem name="ServiceMaintenance" value="true"/>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 279

 <ConfigItem name="ServiceSuccess" value="false"/>
 </ConfigGroup>
 <ConfigGroup name="ClientTimeoutValues">
 <ConfigItem name="DisconnectWait" value="120000"/>
 <ConfigItem name="EventTimeout" value="60000"/>
 <ConfigItem name="HighWaterMark" value="200"/>
 <ConfigItem name="KaWait" value="60000"/>
 <ConfigItem name="LowWaterMark" value="50"/>
 <ConfigItem name="QueueAccessWaitLimit" value="200"/>
 <ConfigItem name="QueueBlockLimit" value="500"/>
 <ConfigItem name="QueuePushWaitLimit" value="200"/>
 <ConfigItem name="TransactionLifeTime" value="20000"/>
 </ConfigGroup>
 <ConfigGroup name="ClusterConfig">
 <ConfigItem name="EventsOutStanding" value="10"/>
 <ConfigItem name="HeartBeatInterval" value="120000"/>
 <ConfigItem name="SeperateLog" value="false"/>
 </ConfigGroup>
 <ConfigGroup name="EnvironmentConfig">
 <ConfigItem name="JavaVendor" value="Sun Microsystems Inc."/>
 <ConfigItem name="JavaVersion" value="1.4.1_02"/>
 <ConfigItem name="OSArchitecture" value="x86"/>
 <ConfigItem name="OSName" value="Windows XP"/>
 <ConfigItem name="OSVersion" value="5.1"/>
 <ConfigItem name="ServerBuildDate" value="01-Jan-2005"/>
 <ConfigItem name="ServerBuildNumber" value="4000"/>
 <ConfigItem name="ServerVersion" value="$Name: $ - $Revision: 1.1 $"/>
 </ConfigGroup>
 <ConfigGroup name="EventStorage">
 <ConfigItem name="ActiveDelay" value="1000"/>
 <ConfigItem name="CacheAge" value="86400000"/>
 <ConfigItem name="IdleDelay" value="60000"/>
 <ConfigItem name="ThreadPoolSize" value="1"/>
 </ConfigGroup>
 <ConfigGroup name="FanoutValues">
 <ConfigItem name="ConcurrentUser" value="5"/>
 <ConfigItem name="KeepAlive" value="60000"/>
 <ConfigItem name="MaxBufferSize" value="1048576"/>
 <ConfigItem name="PublishDelay" value="10"/>
 <ConfigItem name="PublishExpiredEvents" value="true"/>
 <ConfigItem name="QueueHighWaterMark" value="100"/>
 <ConfigItem name="QueueLowWaterMark" value="50"/>
 <ConfigItem name="RoundRobinDelivery" value="false"/>
 </ConfigGroup>
 <ConfigGroup name="GlobalValues">
 <ConfigItem name="ConnectionDelay" value="60000"/>
 <ConfigItem name="ExtendedMessageSelector" value="false"/>
 <ConfigItem name="HandshakeTimeout" value="5000"/>
 <ConfigItem name="MaxNoOfConnections" value="-1"/>
 <ConfigItem name="NHPScanTime" value="5000"/>
 <ConfigItem name="NHPTimeout" value="120000"/>
 <ConfigItem name="SchedulerPoolSize" value="2"/>
 <ConfigItem name="SecureHandshake" value="true"/>
 <ConfigItem name="SendRealmSummaryStats" value="false"/>
 <ConfigItem name="ServerTime" value="true"/>
 <ConfigItem name="StampDictionary" value="false"/>
 <ConfigItem name="StatusBroadcast" value="5000"/>
 <ConfigItem name="StatusUpdateTime" value="9223372036854775807"/>
 <ConfigItem name="SupportVersion2Clients" value="true"/>
 <ConfigItem name="fLoggerLevel" value="1"/>
 </ConfigGroup>
 <ConfigGroup name="JVMManagement">
 <ConfigItem name="EmergencyThreshold" value="94"/>

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 280

 <ConfigItem name="ExitOnDiskIOError" value="true"/>
 <ConfigItem name="ExitOnMemoryError" value="true"/>
 <ConfigItem name="MemoryMonitoring" value="100"/>
 <ConfigItem name="WarningThreashold" value="85"/>
 </ConfigGroup>
 <ConfigGroup name="JoinConfig">
 <ConfigItem name="ActiveThreadPoolSize" value="2"/>
 <ConfigItem name="IdleThreadPoolSize" value="1"/>
 <ConfigItem name="MaxEventsPerSchedule" value="50"/>
 <ConfigItem name="MaxQueueSizeToUse" value="100"/>
 </ConfigGroup>
 <ConfigGroup name="RecoveryDaemon">
 <ConfigItem name="EventsPerBlock" value="500"/>
 <ConfigItem name="ThreadPool" value="4"/>
 </ConfigGroup>
 <ConfigGroup name="TransactionManager">
 <ConfigItem name="MaxEventsPerTransaction" value="0"/>
 <ConfigItem name="MaxTransactionTime" value="86400000"/>
 <ConfigItem name="TTLThreshold" value="1000"/>
 </ConfigGroup>
 </RealmConfiguration>
 <RealmPermissionSet>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*"
 overrideConnectionCount="false" useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="true" addremoveJoins="true"
 addremoveRealms="true" changeRealmConfig="true" connectToRealm="true"
 createP2PService="true" fullControl="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 overrideConnectionCount="true" useAdminAPI="true"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="false"
 createP2PService="false" fullControl="true" host="localhost"
 listACLEntries="false" modifyACLEntries="false" name="johnsmith"
 overrideConnectionCount="false" useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="192.168.1.2"
 listACLEntries="false" modifyACLEntries="false"
 name="realm-productionmaster" overrideConnectionCount="false"
 useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="192.168.1.2"
 listACLEntries="false" modifyACLEntries="false"
 name="realm-productionslave1" overrideConnectionCount="false"
 useAdminAPI="false"/>
 <RealmACLEntry addremoveChannels="false" addremoveJoins="false"
 addremoveRealms="false" changeRealmConfig="false" connectToRealm="true"
 createP2PService="false" fullControl="false" host="192.168.1.2"
 listACLEntries="false" modifyACLEntries="false"
 name="realm-productionslave2" overrideConnectionCount="false"
 useAdminAPI="false"/>
 </RealmPermissionSet>
 <ClusterSet>
 <ClusterEntry name="productioncluster">
 <ClusterMember name="productionmaster" rname="nsp://192.168.1.1:9000/"/>
 <ClusterMember name="productionslave1" rname="nsp://192.168.1.2:9000/"/>
 <ClusterMember name="productionslave2" rname="nsp://192.168.1.3:9000/"/>
 </ClusterEntry>
 </ClusterSet>

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 281

 <ChannelSet>
 <ChannelEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/customer/sales" type="MIXED_TYPE"/>
 <ChannelPermissionSet>
 <ChannelACLEntry fullControl="false" getLastEID="false" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*" publish="false"
 purgeEvents="false" subscribe="true" useNamedSubcription="false"/>
 <ChannelACLEntry fullControl="true" getLastEID="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 publish="true" purgeEvents="true" subscribe="true"
 useNamedSubcription="false"/>
 </ChannelPermissionSet>
 </ChannelEntry>
 <ChannelEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/naming/defaultContext" type="MIXED_TYPE"/>
 <ChannelPermissionSet>
 <ChannelACLEntry fullControl="false" getLastEID="true" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*" publish="false"
 purgeEvents="false" subscribe="true" useNamedSubcription="true"/>
 <ChannelACLEntry fullControl="true" getLastEID="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 publish="true" purgeEvents="true" subscribe="true"
 useNamedSubcription="false"/>
 </ChannelPermissionSet>
 <ChannelKeySet>
 <ChannelKeyEntry keyDepth="1" keyName="alias"/>
 </ChannelKeySet>
 </ChannelEntry>
 <ChannelEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/partner/sales"
 type="MIXED_TYPE"/>
 <ChannelPermissionSet>
 <ChannelACLEntry fullControl="false" getLastEID="true" host="*"
 listACLEntries="false" modifyACLEntries="false" name="*" publish="false"
 purgeEvents="false" subscribe="true" useNamedSubcription="true"/>
 <ChannelACLEntry fullControl="true" getLastEID="true" host="192.168.1.2"
 listACLEntries="true" modifyACLEntries="true" name="johnsmith"
 publish="true" purgeEvents="true" subscribe="true"
 useNamedSubcription="false"/>
 </ChannelPermissionSet>
 </ChannelEntry>
 </ChannelSet>
 <QueueSet>
 <QueueEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/customer/queries" type="MIXED_TYPE"/>
 <QueuePermissionSet>
 <QueueACLEntry fullControl="false" host="*" listACLEntries="false"
 modifyACLEntries="false" name="*" peek="true" pop="false" purge="false"
 push="false"/>
 <QueueACLEntry fullControl="true" host="192.168.1.2" listACLEntries="true"
 modifyACLEntries="true" name="johnsmith" peek="true" pop="true"
 purge="true" push="true"/>
 </QueuePermissionSet>
 </QueueEntry>
 <QueueEntry>
 <ChannelAttributesEntry EID="0" TTL="0" capacity="0" clusterWide="true"
 name="/partner/queries" type="MIXED_TYPE"/>
 <QueuePermissionSet>
 <QueueACLEntry fullControl="false" host="*" listACLEntries="false"

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 282

 modifyACLEntries="false" name="*" peek="true" pop="false" purge="false"
 push="false"/>
 <QueueACLEntry fullControl="true" host="192.168.1.2" listACLEntries="true"
 modifyACLEntries="true" name="johnsmith" peek="true" pop="true" purge="true" push="true"/>
 </QueuePermissionSet>
 </QueueEntry>
 </QueueSet>
 <RealmInterfaces>
 <RealmNSPInterface>
 <RealmInterface acceptThreads="2" adapter="0.0.0.0" advertise="true"
 authtime="10000" autostart="true" backlog="100" name="nsp0" port="9000"/>
 <InterfacePermissionSet>
 <InterfaceACLEntry host="192.168.1.2" name="johnsmith"/>
 </InterfacePermissionSet>
 </RealmNSPInterface>
 <RealmNHPInterface>
 <RealmInterface acceptThreads="2" adapter="0.0.0.0" advertise="true"
 authtime="10000" autostart="true" backlog="100" name="nhp0" port="80"/>
 </RealmNHPInterface>
 </RealmInterfaces>
</Universal MessagingRealm>

Management and Monitoring Sections

Enterprise view
Universal Messaging Enterprise Manager facilitates centralised summary view for a set
of Universal Messaging realm servers whether standalone or defined in a cluster setup.

"Enterprise Summary" on page 282

"Cluster Summary" on page 283

Enterprise Summary

The Universal Messaging Enterprise Manager provides a summary view of all Universal
Messaging realms whether clustered or standalone, publish and consume event /
connection totals and rates across the entire set of Realms that the instance of the
Enterprise Manager is connected to.

For more information on these screens please see the Management Information section.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 283

Cluster Summary

The Universal Messaging Enterprise Manager tool provides a summary view for each
cluster defined, showing a real-time cluster status as well as publish and consume
event / connections totals and rates.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 284

Management Information
Each Universal Messaging Administration API client, (the Enterprise Manager is an
admin API client) connects to one or more realms and asynchronously consumes status
events on all of the objects within each realm.

Status events are sent periodically (between configurable intervals, see "Realm
Configuration" on page 28) and contain information pertaining to those objects
where activity has occurred.

As each status event is received, the Enterprise Manager is updated with the relevant
values and these are displayed on the status panels for each object within the
namespace.

Selecting an object from the namespace automatically renders a set of panels to the
right of the selected node, one of which is the 'Status' panel. The status panels and their
contents are described in the links below.

The Universal Messaging enterprise manager has been wrien entirely with the
Universal Messaging admin API and so the functionality seen in these screens can easily
be added to any bespoke administration or monitoring tools.

"Enterprise Summary" on page 285

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 285

"Clusters Summary" on page 287

"Cluster Status" on page 288

"Realms Summary" on page 290

"Realm Status" on page 292

"Realm Monitoring" on page 294

"Container Status" on page 309

"Container Monitor Panel" on page 311

"Channel Status Information" on page 314

"Data Group Status Information" on page 316

"Channel Connections" on page 318

"Queue Status Information" on page 321

"Interface Status Information" on page 323

For more information on other functionality provided in the enterprise manager please
refer to the Enterprise Manager guide.

Enterprise Summary
The enterprise view is the first screen you see whenever the Universal Messaging
enterprise manager is launched. The screen is designed to provide an overview of the
characteristics as well as current status of the set of Universal Messaging realms that
enterprise manager is currently connected with

This section describes the type of status information that can be observed from the
Enterprise level view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging realms.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status. These panels and the information displayed are described below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 286

Totals

The Totals section describes 5 values :

Clusters- The number of clusters defined within the enterprise manager and its realm
nodes

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of Data Groups that exist across all known realms

Services- Total number of services that exist across all known realms

Event Status

The Event Status section describes 4 values:

Published - The total number of events being published to all channels, queues and
services across all realms

Consumed - The total number of events being consumed from all channels, queues
and services across all realms

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 287

Published/Sec - The number of events being published to all channels, queues and
services, per second across all realms

Consumed/Sec - The number of events being consumed from all channels, queues and
services, per second across all realms

Connection Status

The Connection Status section describes 3 values :

Total - The total number of connections made to all realms

Current - The current number of events across all realms

Rate - The number of connections being made per second across all realms at this
point in time

Clusters Summary
The clusters view is designed to provide an overview of the characteristics as well
as current status of the set of Universal Messaging clustered realms that enterprise
manager is aware of.

This section describes the type of status information that you can observe from the
Clusters Summary view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging clusters.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status. These panels and the information displayed are described below.

Totals

The Totals section describes the following :

Clusters- The number of clusters defined within the enterprise manager and its realm
nodes

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of Data Groups that exist across all known realms

Services- Total number of services that exist across all known realms

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services
across all realms within known clusters

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 288

Consumed - The total number of events consumed from all channels, queues and
services across all realms within known clusters

Published/Sec - The number of events published to all channels, queues and services,
per second across all realms within known clusters

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second across all realms within known clusters

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to all realms within known clusters

Current - The current number of events across all realms within known clusters

Rate - The number of connections being made per second across all realms within
known clusters

Clusters Status
The cluster status view provides an overview of the characteristics as well as current
status of a selected Universal Messaging cluster.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 289

This section will describe the type of status information that you can observe from the
Cluster Status view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging clusters.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status. These panels and the information displayed are described below.

Totals

The Totals section describes the following :

Realms- The number of realms within the cluster

Channels- The number of channels that exist across all realms within the cluster

Queues- The number of queues that exist across all realms within the cluster

Services- Total number of services that exist across all realms within the cluster

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services
across all realms within the cluster

Consumed - The total number of events consumed from all channels, queues and
services across all realms within the cluster

Published/Sec - The number of events published to all channels, queues and services,
per second across all realms within the cluster

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second across all realms within the cluster

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to all realms within the cluster

Current - The current number of events across all realms within the cluster

Rate - The number of connections being made per second across all realms within the
cluster

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 290

Realms Summary
The realms view is designed to provide an overview of the characteristics as well as
current status of the set of Universal Messaging realms that enterprise manager is aware
of.

This section will describe the type of status information that you can observe from the
Realms Summary view.

The top of the screen displays a large real time graph illustrating the total number of
events published (yellow) and consumed (red) across all Universal Messaging realms.

The boom of the screen displays 3 panels named Totals, Event Status and Connection
Status respectively. These panels and the information displayed are described below.

Totals

The Totals section contains the following values :

Realms- The number of realms known by the enterprise manager

Channels- The number of channels that exist across all known realms

Queues- The number of queues that exist across all known realms

Data Groups- The number of Data Groups that exist across all known realms

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 291

Services- Total number of services that exist across all known realms

Event Status

The Event Status section contains the following :

Published - The total number of events published to all channels, queues and services
across all known realms

Consumed - The total number of events consumed from all channels, queues and
services across all known realms

Published/Sec - The number of events published to all channels, queues and services,
per second across all known realms

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second across all known realms

Connection Status

The Connection Status section contains the following :

Total - The total number of connections made to all known realms

Current - The current number of events across all known realms

Rate - The number of connections being made per second across all known realms

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 292

Realm Status
The realm status view provides an overview of the characteristics as well as current
status of a selected Universal Messaging realm. When you select a Realm node from the
namespace, the status panel is displayed by default for the realm.

This section will describe the type of status information that you can observe from the
Realm Status view.

The top of the screen displays a panel containing 4 values. These values are :

Name - The name of the selected realm

Threads - Number of threads within the Realm Server's JVM

Realm Up Time - How long the realm has been running for

Last Update - The time that the last status update was sent by the realm

The top of the Status panel contains 2 large real time graphs illustrating the total number
of events published (yellow) and consumed (red) across the Universal Messaging Realm,
as well as the JVM memory status for the selected realm.

The boom of the screen displays 4 panels named Event Status, Totals, Connection Status
and Memory Usage. These panels and the information displayed are described below.

Event Status

The Event Status section describes 4 values :

Published - The total number of events published to all channels, queues and services
within the realm

Consumed - The total number of events consumed from all channels, queues and
services within the realm

Published/Sec - The number of events published to all channels, queues and services,
per second within the realm

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second within the realm

Totals

The Totals section describes the following values :

Realms- The number of realms mounted within this realm's namespace

Channels- The number of channels that exist within this realm

Queues- The number of queues that exist within this realm

Data Groups- The number of Data Groups that exist within this realm

Services- Total number of services that exist within this realm

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 293

Connection Status

The Connection Status section contains the following values :

Total - The total number of connections made to this realm

Current - The current number of connections to this realm

Rate - The number of connections being made per second to this realm

Allowed - The permied number of concurrent connections

Memory Usage(MB)

The Memory Usage section contains the following values :

Total - The total amount of MB allocated to the Realm JVM, specified by the -Xmx
value for the JVM

Free - The amount of JVM memory available for the Realm

Used - The amount of JVM memory used by the Realm

Used/sec - The amount of memory used per second by the Realm between newest
update and previous update

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 294

Realm Monitoring
When you select a Universal Messaging realm node from the namespace, one of the
available panels to select is labeled 'Monitoring'. This panel is a container for multiple
panels that enable you to view live information on the selected realm.

There are 5 tabs available under the Monitoring section, as shown in the image below.

"Logs" on page 294

"Realm Connections" on page 298

"Threads Panel" on page 301

"Top" on page 303

"Audit" on page 306

Universal Messaging Enterprise Manager : Logs Panel
Each Universal Messaging Realm Server has a log file within the data directory called
nirvana.log. The Enterprise Manager provides a panel that displays real time log
messages as they are wrien to the log file. This enables you to remotely view the
activity on a realm as it is happening. The Universal Messaging Administration API also

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 295

provides the ability to consume the log file entries from an nRealmNode. See the code
example "Monitor the Remote Realm Log and Audit File" for an illustration of usage.

The Universal Messaging log file will contain useful information about various activities,
such as connection aempts, channels being located and subscribed to as well as status
and warning information.

The Logs Panel

The Enterprise Manager provides a panel for each realm where the log files can be
viewed. To view the log files, click on the realm node from the namespace and select
the panel labeled 'Monitor' and then select the 'Logs' tab. This will show the live log
messages for the selected realm. The log panel will automatically replay the last 20 log
entries from the Realm Server and then each entry thereafter. The image below shows an
example of the log panel for a selected realm:

The log panel also provides the ability to stream the log messages to a local file. Clicking
on the buon labeled 'Start Stream' from the log panel will prompt you to enter the
name of the file you wish to stream the log messages to. The stream can be stopped by
clicking the same buon again.

Understanding the log file

When a server is started, the initial entries in the log file contain useful information
about the server's configuration. The following text is an excerpt from a Realm Server
log during startup:
[Wed Jun 20 09:37:39 BST 2012],==
[Wed Jun 20 09:37:39 BST 2012], Copyright . All rights reserved
[Wed Jun 20 09:37:39 BST 2012],Start date = Wed Jun 20 09:37:39 BST 2012
[Wed Jun 20 09:37:39 BST 2012],Process ID = 3216
[Wed Jun 20 09:37:39 BST 2012],
[Wed Jun 20 09:37:39 BST 2012],Realm Server Details :

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 296

[Wed Jun 20 09:37:39 BST 2012], Realm Server name = realm1
[Wed Jun 20 09:37:39 BST 2012], Realm Server version = $Name: $ - $Revision: 1.7 $
[Wed Jun 20 09:37:39 BST 2012], Build Number = Build 11248
[Wed Jun 20 09:37:39 BST 2012], Build Date = June 19 2012
[Wed Jun 20 09:37:39 BST 2012], Data Directory =
 C:\\Universal Messaging\\server\\realm1\data
[Wed Jun 20 09:37:39 BST 2012], Extension Directory =
 C:\Universal Messaging\server\realm1\plugins\ext
[Wed Jun 20 09:37:39 BST 2012], Low Latency Executor = false
[Wed Jun 20 09:37:39 BST 2012], Realm(s) Reloaded = 1
[Wed Jun 20 09:37:39 BST 2012], Channels Reloaded = 8
[Wed Jun 20 09:37:39 BST 2012], Queues Reloaded = 0
[Wed Jun 20 09:37:39 BST 2012], Interfaces Reloaded = 1
[Wed Jun 20 09:37:39 BST 2012],
[Wed Jun 20 09:37:39 BST 2012],Operating System Environment :
[Wed Jun 20 09:37:39 BST 2012], OS Name = Windows 7
[Wed Jun 20 09:37:39 BST 2012], OS Version = 6.1
[Wed Jun 20 09:37:39 BST 2012], OS Architecture = x86
[Wed Jun 20 09:37:39 BST 2012], Available Processors = 4
[Wed Jun 20 09:37:39 BST 2012],
[Wed Jun 20 09:37:39 BST 2012],Java Environment :
[Wed Jun 20 09:37:39 BST 2012], Java Vendor = Sun Microsystems Inc.
[Wed Jun 20 09:37:39 BST 2012], Java Vendor URL = http://java.sun.com/
[Wed Jun 20 09:37:39 BST 2012], Java Version = 1.6.0_30
[Wed Jun 20 09:37:39 BST 2012], Memory Allocation = 494 MB
[Wed Jun 20 09:37:39 BST 2012], Memory Warning = 420 MB
[Wed Jun 20 09:37:39 BST 2012], Memory Emergency = 465 MB
[Wed Jun 20 09:37:39 BST 2012], Clock Adjustment = 0ms
[Wed Jun 20 09:37:39 BST 2012],Startup: Starting Realm status monitoring
[Wed Jun 20 09:37:39 BST 2012], Nanosecond delay = Supported
[Wed Jun 20 09:37:39 BST 2012], Time Zone = Greenwich Mean Time
[Wed Jun 20 09:37:39 BST 2012],Startup: Stored Certificate and private key
 in servers keystore
[Wed Jun 20 09:37:39 BST 2012],Startup: Completed Realm Public and Private RSA Key
[Wed Jun 20 09:37:39 BST 2012], Security Provider 0 = SUN version 1.6
[Wed Jun 20 09:37:39 BST 2012],Startup: Reloading Realm Public for realm1
[Wed Jun 20 09:37:39 BST 2012],Startup: Cluster cryptograhic initialisation, complete
[Wed Jun 20 09:37:39 BST 2012], Security Provider 1 = SunRsaSign version 1.5
[Wed Jun 20 09:37:39 BST 2012], Security Provider 2 = SunJSSE version 1.6
[Wed Jun 20 09:37:39 BST 2012], Security Provider 3 = SunJCE version 1.6
[Wed Jun 20 09:37:39 BST 2012], Security Provider 4 = SunJGSS version 1.0
[Wed Jun 20 09:37:39 BST 2012], Security Provider 5 = SunSASL version 1.5
[Wed Jun 20 09:37:39 BST 2012], Security Provider 6 = XMLDSig version 1.0
[Wed Jun 20 09:37:39 BST 2012], Security Provider 7 = SunPCSC version 1.6
[Wed Jun 20 09:37:39 BST 2012], Security Provider 8 = SunMSCAPI version 1.6
[Wed Jun 20 09:37:39 BST 2012],==

The above sequence of log entries can be found at the beginning of the Universal
Messaging log file, and shows information such as when the realm was started, the build
number and build date of the Universal Messaging Server, as well as environmental
information like, OS, Java version, timezone.

Each log entry contains a date, the log level as well as the log message itself, in the
format:

[DATE_TIME],LOG_LEVEL,Message

It is also possible to configure the name of the Java package that the message originates
from and the name of the thread the message is being logged from. See the section
"Realm Configuration" on page 28 for related information.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 297

The Universal Messaging log level is a level from 0 to 6 that determines what
information is wrien to the log. Log level 0 is the most verbose level of logging and on
a heavily utilised server will produce a lot of log output. Log level 6 is the least verbose
level, and will produce low levels of log output. The log level of each log message
corresponds to a value from 0 to 6. The following list explains the log file messages
levels and how they correspond to the values:

0 - TRACE (Log level 0 will output any log entries with a level in the range 0-6; this is
the most verbose level)

1 - DEBUG (Log level 1 will output any log entries with a level in the range 1-6)

2 - INFO (Log level 2 will output any log entries with a level in the range 2-6)

3 - WARN (Log level 3 will output any log entries with a level in the range 3-6)

4 - ERROR (Log level 4 will output any log entries with a level in the range 4-6)

5 - FATAL (Log level 5 will output any log entries with a level in the range 5-6)

6 - LOG (Log level 6 will output any log entries with a level of 6; this is the least
verbose level)

Log levels can be changed dynamically on the server by using the Config Panel (see
"Realm Configuration" on page 28). The log file has a maximum size associated
with it. When the maximum file size is reached, the log file will automatically roll, and
rename the old log file to _old and create a new log file . The maximum size for a log
file is set to 10000000 bytes (approximately 10MB). This value can be changed within
the nserver.conf or nserverdaemon.conf file in the server/<realm>/bin directory of your
installation, where <realm> is the name of the Universal Messaging realm. You need to
modify the -DLOGSIZE property within this file to change the size.

Note: nserver.conf is used if you start the realm server manually, e.g. from the
command line. nserverdaemon.conf is used if you start the realm server as a
Windows service or as a UNIX daemon.

Other Logging Frameworks

By default, Universal Messaging uses a built in logging framework, but there is also
the capability to use third party open source frameworks. Currently, we support the
Logback (hp://logback.qos.ch/) and Log4J2 (hp://logging.apache.org/log4j/2.x/)
frameworks.

To configure Universal Messaging to use one of these frameworks, you can pass a -
DLOG_FRAMEWORK parameter with the values LOGBACK or LOG4J2. See the section
Server Parameters in the Concepts guide for further information.

These frameworks are configured using XML configuration files loaded from the
classpath. The Universal Messaging installation provides default versions of these
configuration files in the lib directory. These files can be modified in order to produce
the desired logging output. For more information on configuration see the official
documentation of the relevant framework.

http://logback.qos.ch/
http://logging.apache.org/log4j/2.x/

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 298

The Log Manager

Universal Messaging has 3 different log managers for archiving old log files. When
a log file reaches its maximum size, the log manager will aempt to archive it, and a
new log file will become active. Options such as the number of log files to keep, and the
maximum size of a log file are configurable through the logging section of the Config
Panel (see "Realm Configuration" on page 28). When a log file is archived and a new
log file created, realm specific information such as Universal Messaging version number
will be printed to the start of the new log in a similar way to when a realm is started.
Each log manager uses a different method to store log files once they are not the active
logs for the realm.

ROLLING_OLD : This log manager uses 2 log files. The active log file is stored
with the default log name, and the most recently rolled log file is stored with _old
appended to the log name. e.g. nirvana.log and nirvana.log_old

ROLLING_DATE : The rolling date manager stores a configurable number of log
files (RolledLogFileDepth). Rolled log files are stored with the date they were rolled
appended to the active log file name. e.g. nirvana.logWed-Sep-14-02-31-40-117-
BST-2011.

ROLLING_NUMBER : The numbered log manager stores a configurable number
of log files (RolledLogFileDepth). Rolled log files are stored with a numbered index
appended to the file name e.g. nirvana.log3 is the 3rd oldest log file

Realm Connections
When a Universal Messaging client connects to a Realm Server, the server maintains
information on the connection (see "Connection Information" on page 462) that is
available through the Universal Messaging Administration API. The API also provides
mechanisms for receiving notification when connections are added and deleted (see the
code example "Connection Watch" for an illustration of using this in the Administration
API).

The Universal Messaging Enterprise Manager allows you to view the connections on a
realm as well as drilldown and view specific information about each connection, such
as the last event sent or received, and the rate of events sent and received from each
connection.

To view the current realm connections, simply select a realm node from the namespace,
and select the 'Connections' tab from within the 'Monitoring' tab of the selected realm
node. This will display a panel containing a table of connections, as shown in the image
below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 299

The connections table has 4 columns:

Protocol - The protocol used in the connection

User - The name of the user connected

Host - The host machine that the user is connecting from

Connection - The local connection id, defined as hostname:local_port

The highlighted connection above shows that the user has connection using the nhp
protocol, to localhost. In this example, the nhp interface is running on port 80, so the
RNAME of this connection was nhp://localhost:80/

When a connection is highlighted, there a number of things that can be shown for a the
connection.

Firstly, connections can be disconnected by clicking on the 'Disconnect' buon.

Secondly, by double-clicking on a connection from the table, or by clicking on the 'Show
Details' buon, you are presented with a panel that contains a more detailed look at the
activity for the selected connection. The connection details panel is shown in the image
below.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 300

Connection Details

You will see that there are 2 separate information panels above the graphs once you have
drilled down into a connection. The first of which is labelled Connection Details. This
information contains information about the user connection, such as user name, host
protocol.

Client Environment

Next to this you will see a panel that shows details regarding the client environment for
this user. These includes API language / Platform, Host OS and Universal Messaging
build number

The two graphs, labeled 'Tx Event History' and 'Rx Event History' show the total
(yellow) and rates (red) for events received from the server (TX) and sent to the server
(RX) for the selected connection.

The boom of the connection details panel shows 3 sections of information for the
selected connection, 'Events Sent', 'Events Received' and 'Status'. Each of these are
described below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 301

Events Sent

The Events Sent section contains the values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - The maximum rate at which events have been sent by the realm server to this
connection

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section contains the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - The maximum rate at which events have been sent by this connection to the
realm server

Last Event Type - The type of the last event sent from the connection to the realm
server

Bytes - Total bytes sent by this connection to the realm server

Status

The Events Sent section contains the following values:

Connect Time - The amount of time this connection has been connected to the realm
server

Queue Size - The number of events in the outbound queue of this connection (i.e.
events waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm
server

Last Rx - The time since the last event was sent to the server from this connection

Clicking on the 'Show List' buon will take you back to the connections table.

Threads Status
The threads tab found within the Enterprise Manager offers 2 statistical views, thread
pools and scheduler tasks.

The thread pool display shows the number of idle and active threads per thread pool as
well as the task queue size per thread pool and a total number of executed tasks for the
respective thread pool

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 302

The Scheduler provides information pertaining to the number of scheduled operations
each task has within the system.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 303

Top
Within the 'Monitoring' panel of a selected Realm node you will find a panel called 'Top'.
This provides a view not unlike 'top' for unix systems or task manager for windows
based systems. Its main purpose is to present the user with a high level view of realm
usage, both from a connection perspective and also from a channel perspective.

The Top panel comprises 2 sections. The top most section contains 2 real time graphs
illustrating the realm memory usage in the same way the Realm Status panel (see
"Realm Status" on page 292) displays memory usage, as well as displaying JVM GC
stats. This section also contains a summary showing the number of mounted realms, the
number of resources and the number of services.

The boom section of the Monitor panel displays a series of tabs, showing channel and
connection usage throughout the realm.

Channel Usage

The middle section of the Monitor panel displays a table showing multiple columns
and rows. This table represents channel usage throughout the realm. Each row in the
table represents a channel. Channel usage can be measured a number of ways. Each
measurement corresponds to a column within the table. By clicking on one of the

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 304

column headers, all known channels will be sorted according to their value for the
selected column. For example, one of the columns is 'Connections', i.e. the number
of current consumers on the channel. By clicking on the column header labelled
'Connections', the table will be sorted according to the number of consumers each
channel has. The channel with the most number of consumers will appear at the top of
the table.

Channel usage measurements are described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

% Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent /
mixed channels

Connection Usage

The boom section of the monitor panel shows a similar table to that of the channel
usage table described above, except that this table represents connection usage. Each

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 305

row represents a connection. A connection corresponds to the physical aspect of a
Universal Messaging Session. Connection usage, like channel usage can be measured in
a number of different ways. Each column in the table represents a type of measurement
for a realm connection. Clicking on one of the column headers will cause the table of
connections to be sorted according to the value of the selected column. For example,
one of the columns is 'Events In', i.e. the number of events sent to the server by the
connection. By clicking on the column header labeled 'Events In', the table will be sorted
according to the number of events each connection has sent to the server. The connection
with the most 'Events In' count will appear at the top of the table.

Connection usage measurements are described below:

Queued- The number of event in the connections outbound queue

Events In - The rate of events sent by the connection to the realm server

Bytes In - The rate of bytes sent by the connection to the realm server

Events Out - The rate of events consumed by the connection from the realm server

Bytes Out - The rate of bytes consumed by the connection from the realm server

Latency - The measured time it takes the connection to consume events from the
server, i.e. time taken between leaving the realm server and being consumed by the
connection.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 306

Monitor Graphs

The monitor panel provides a method of graphing both channel and connection usage. It
uses a 3D graph package from sourceforge (hp://sourceforge.net/projects/jfreechart/) to
display the items in each table as columns in a 3D vertical bar chart. The bar charts can
be update live as the values in the tables are updated. Once a column is selected, simply
click on the buon labeled 'Bar Graph' under either the channel or connections table and
a graph panel will appear, as shown in the image below showing a graph of the number
of events published for channels within a realm..

Right-clicking anywhere within the graph will show a pop-up menu of options. One
of the options is labeled 'Start Live Update', which will ensure the graph consumes
updates as and when they occur to the table. Once the live update is started, you can
also stop the live update by once again right clicking on the graph and selecting 'Stop
Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the
properties of the graph and its axis.

Audit Panel
Universal Messaging Realm Servers log administration operations performed on the
realm to a file. These events are called Audit Events and are stored in a local file called
Universal MessagingAudit.mem. These audit events are useful for tracking historical
information about the realm and who performed what operation and when. The
Universal Messaging Administration API provides the ability to consume the audit file

http://sourceforge.net/projects/jfreechart/

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 307

entries from an nRealmNodeM. See the code example "Monitor the Remote Realm Log
and Audit File" for an illustration of usage.

The Universal Messaging Enterprise Manager provides an Audit Panel that displays the
contents of the remote audit file and receives real time updates as and when audit events
are generated. The audit events that are wrien to the audit file are determined by the
configuration specified in the Config Panel (see "Realm Configuration" on page 28)
of the Universal Messaging Enterprise Manager.

Audit Events

Each audit event corresponds to an operation performed on an object within a realm.
The audit event contains the date on which it occurred, the object and the operation that
was performed on the object.

The list below shows the objects that audit events correspond to as well as the operations
performed on them which are logged to the audit file:

Realm - CREATE, DELETE, ACCESS

Interfaces - CREATE, DELETE, MODIFY, START, STOP

Channels - CREATE, DELETE, MODIFY

Queues - CREATE, DELETE, MODIFY

Services - CREATE, DELETE

Joins - CREATE, DELETE

Realm

ACL - CREATE, DELETE, MODIFY

Channel ACL - CREATE, DELETE, MODIFY

Queue ACL - CREATE, DELETE, MODIFY

Service ACL - CREATE, DELETE, MODIFY

Audit Panel

The audit panel displays audit events for a realm server. You can view the audit panel
by clicking on the realm you wish to view the audit file for within the namespace and
selecting the panel labeled 'Audit' from within the 'Monitoring' panel of the selected
realm. The image below shows an example of the audit panel for a Universal Messaging
Realm.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 308

When you first connect to a realm, the audit panel will display the last 20 audit events
from its history. Audit files can become quite large over time on a heavily utilised realm,
so the initial load is limited to just the last 20. After that all subsequent audit events will
be shown in the audit panel.

Each audit event is shown as a row in a table. The table has 5 columns:

Date - The time at which the audit event occurred on the server

Originator - Who performed the operation

Type - What type of object was the action performed on

Action - What action was performed

Object - The name of the object

If the object type is an ACL for either realm, resource or service, selecting the entry from
the table will also display the ACL changes in the boom section of the audit panel. For
modified ACLs, each acl permission that has been granted or removed will be displayed
as a green '+', or a red '-' respectively.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 309

Audit Stream

The audit panel provides a buon that enables you to stream the remote audit events
from the realm to a local file. This also provides you with the option of replaying the
entire audit file.

Clicking on the 'Start Stream' buon will prompt you with a file chooser dialog to select
the location and name of the file that the audit events will be streamed to. Once you
have selected this file, you will be prompted whether you wish to replay the entire audit
file into the stream or just the last 20 audit entries. The image below shows this dialog:

The text below is an exert from a sample audit file than has been streamed from a
server. Each entry that relates to a modified ACL shows the permissions that have been
changed, and the permissions that are granted by either a + or -. For permissions that
have remained the same, the leer 'N' for not change will be placed after the permission.
Fri Jan 21 15:43:40 GMT 2005,CHANACL,/customer/sales:*@*,MODIFY,paul weiss@localhost,
 Full(-), Last Eid(N),Purge(-),Subscribe(N),Publish(-),Named Sub(N),Modify Acls(-),
 List Acls(-),
Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:*@*,MODIFY,
 paul weiss@localhost,Full(-),Purge(-), Peek(N),Push(-),Pop(-),Modify Acls(-),
 List Acls(-),
Fri Jan 21 15:43:40 GMT 2005,QUEUEACL,/partner/queries:paul weiss@localhost,MODIFY,
 paul weiss@localhost, Full(N),Purge(N),Peek(N),Push(N),Pop(N),Modify Acls(N),
 List Acls(N),
Fri Jan 21 16:13:10 GMT 2005,INTERFACE,nhp0,CREATE,paul weiss@localhost,
Fri Jan 21 16:15:31 GMT 2005,INTERFACE,nhp0,MODIFY,paul weiss@localhost,

Archive Audit

The audit panel provides a buon that enables you to archive the audit file. As
mentioned before, depending on what is being logged to the audit file, the file can
grow quite large. As it's an audit and provides historical data, there is no automatic
maintenance of the file it is down to the realm administrators when the file is archived.
The 'Archive Audit' buon when clicked will simply rename the existing audit file to a
name with the current date, and start a new audit file.

Container Status
When you select a container (folder) from the namespace, one of the available panels to
select is labeled 'Totals'.

The Totals panel for a container provides status information for resources and services
contained within the selected container branch of the namespace tree.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 310

The status information shown within this panel is explained below.

The Totals panel is split into 2 main sections. The top most section of this panel shows 2
graphs, one demonstrates Event History, and the other Storage Usage History.

The event history graph shows the rates that events are published (red) and consumed
(yellow) across all channels, queues and services found within the selected container.

The storage usage history graph shows the total amount of storage space used by each
channel, queue and service found within the selected container.

Both graphs are updated every time a status event is received from the realm in which
the container exists. The image below demonstrates the Container status graphs as
described.

The boom section of the panel displays 4 sections of information, Event Status, Totals,
Connection Status and Storage Usage. These panels and the information displayed are
described below.

Event Status

The Event Status section describes the following :

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 311

Published - The total number of events published to all channels, queues and services
within the container

Consumed - The total number of events consumed from all channels, queues and
services within the container

Published/Sec - The number of events published to all channels, queues and services,
per second within the container

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second within the container

Totals

The Totals section describes the following :

Realms- The number of realms mounted within this container

Channels- The number of channels that exist within this container

Queues- The number of queues that exist within this container

Services- Total number of services that exist within this container

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to channels, queues and services within
this container

Current - The current number of connections made to channels, queues and services
within this container

Rate - The number of connections being made per second to channels, queues and
services within this container

Storage Usage (KB)

The Memory Usage section describes 4 values :

Total - The total amount of KB used by channels, queues and services found within
this container

Free - The free memory available in the Realm JVM

Used - The amount of memory available in the Realm JVM

Change - The amount of change in Realm JVM memory between newest update and
previous update

Container Monitor Panel
When you select a container (folder) from the namespace, one of the available panels to
select is labeled 'Monitor'.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 312

The Monitor panel provides a view not unlike 'top' for unix systems or task manager for
windows based systems. Its main purpose is to present the user with a high level view of
usage. The usage is based on channels found within the container node.

The Monitor panel comprises 2 sections. The top most section contains a real time
graph illustrating the realm memory usage in the same way the Realm Status panel (see
"Realm Status" on page 292) displays memory usage. This section also contains a
summary showing the number of mounted realms, the number of channels, the number
of queues and the number of services.

The image below demonstrates the Monitor panel for a container within a clustered
realm.

Channel Usage

The next section of the Monitor panel displays a table showing multiple columns
and rows. This table represents channel usage throughout the realm. Each row in the
table represents a channel. Channel usage can be measured a number of ways. Each
measurement corresponds to a column within the table. By clicking on one of the
column headers, all known channels found within the container will be sorted according
to their value for the selected column. For example, one of the columns is 'Connections',
i.e. the number of current consumers on the channel. By clicking on the column header
labeled 'Connections', the table will be sorted according to the number of consumers

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 313

each channel has. The channel with the most number of consumers will appear at the
top of the table.

Each column used for channel usage measurements is described below:

Connections - The number of consumers the channel has

Published - The rate of events published per status interval

Consumed - The rate of events consumed per status interval

Memory (bytes) - The number of bytes the channel uses from the JVM memory

% Memory - The percentage of overall JVM memory used by this channel

Disk - The amount of disk space used by this channel, only relevant for persistent /
mixed channels

Monitor Graphs

The monitor panel provides a method of graphing channel usage. It uses a 3D graph
package from sourceforge (hp://sourceforge.net/projects/jfreechart/) to display the
items in each table as columns in a 3D vertical bar chart. The bar charts can be update
live as the values in the tables are updated. Once a column is selected, simply click on
the buon labeled 'Bar Graph' under either the channel or connections table and a graph
panel will appear, as shown in the image below showing a graph of the number of
events published for channels within the container..

Right-clicking anywhere within the graph will show a pop-up menu of options. One
of the options is labeled 'Start Live Update', which will ensure the graph consumes

http://sourceforge.net/projects/jfreechart/

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 314

updates as and when they occur to the table. Once the live update is started, you can
also stop the live update by once again right clicking on the graph and selecting 'Stop
Live Update'.

You can also print the graph, and save the graph image as a '.png' file, as well as alter the
properties of the graph and its axis.

Channel Status

Introduction

Every time a channel object is selected from the namespace, the first panel to be
displayed on the right hand side of the Enterprise Manager panel is the 'Status' panel.
Configuration information is always displayed at the top section of the Enterprise
Manager when a channel is selected. This configuration information shows channel type,
l (age), capacity as well as any channel key information available. The channel 'Status'
tab shows real-time management information for the selected channel.

The status panel is split into 2 main sections. The top section shows real time graphs
representing the events published and consumed on the channel, both in terms of rates
(i.e. per status interval) as well as the totals.

The boom section shows the actual values ploed in the graphs for events published
and consumed, as well as information about the actual channel store at the server.

The image below shows the status panel for an active cluster channel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 315

The top most graph in the panel shows the event history for events consumed from the
channel. The red line graphs the rates at which events are being consumed while the
yellow line graphs the total events consumed from the channel.

The boom graph shows the event history for events published to the channel. The
red line graphs the rates at which events are being published while the yellow line
graphs the total events published to the channel. As the status events are consumed,
and the channel (nLeafNode) is updated with the new values for events consumed and
published, the status panel and its graphs will be updated.

The boom section of the status panel shows 3 types of information: Totals, Rates and
Event Store. These are discussed below.

Totals

The totals section shows 5 values:

Published - The total number of events published to the channel when the last status
events was consumed

Consumed - The total number of events consumed from the channel when the last
status event was consumed

Event ID - The event id of the last event published to the channel

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 316

Current Connections - The current number of consumers on the channel

Total Connections - Total number of subscribers that have subscribed to the channel

Rates

The rates section shows 3 values:

Published - The current rate of events published to the channel, calculated as (total -
previous total) / (interval 1000 milliseconds)

Consumed - The current rate of events consumed from the channel, calculated as
(total - previous total) / (interval 1000 milliseconds)

Connections - The current rate of subscriptions being made to the channel

Event Store

The event store section shows 4 values:

Used Space - The amount of space in KB used by the channel on the server (either
memory, or disk for persistent / mixed channels)

Events - The current number of events on the channel

% Free - The amount of free space in the channel store (calculated as (used space -
(total space used by all purged or aged events))

Cache Hit - The %age of events consumed from the channel event cache as opposed
form the actual physical store if persistent or mixed

Data Group Status
When you select the 'Data Groups' node from the tree, one of the available panels to
select is labeled 'Status' panel.

The Status panel for The 'Data Groups' node contains information regarding the publish
and consumed events on Data Groups as well as the number of Data Groups and Data
Streams currently connected

The status information shown within this panel is explained below.

The Status panel is split into 2 main sections. The top most section of this panel shows a
graph that demonstrates Event History

The event history graph shows the rates that events are published (red) and consumed
(yellow) across all data groups in the current realm.

This graph is updated every time a status event is received from the realm in which
data groups are actively being used. The image below demonstrates the status graphs as
described.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 317

The boom section of the panel displays 4 sections of information, Event Status, Totals,
Connection Status and Storage Usage respectively. These panels and the information
displayed are described below.

Event Status

The Event Status section describes the following :

Published - The total number of events published to all channels, queues and services
within the container

Consumed - The total number of events consumed from all channels, queues and
services within the container

Published/Sec - The number of events published to all channels, queues and services,
per second within the container

Consumed/Sec - The number of events consumed from all channels, queues and
services, per second within the container

Totals

The Totals section describes the following :

Realms- The number of realms mounted within this container

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 318

Channels- The number of channels that exist within this container

Queues- The number of queues that exist within this container

Services- Total number of services that exist within this container

Connection Status

The Connection Status section describes the following :

Total - The total number of connections made to channels, queues and services within
this container

Current - The current number of connections made to channels, queues and services
within this container

Rate - The number of connections being made per second to channels, queues and
services within this container

Storage Usage (KB)

The Memory Usage section describes 4 values :

Total - The total amount of KB used by channels, queues and services found within
this container

Free - The free memory available in the Realm JVM

Used - The amount of memory available in the Realm JVM

Change - The amount of change in Realm JVM memory between newest update and
previous update

Channel Connections
When a Universal Messaging client connects to a Realm Server, the server maintains
information on the connection (see "Connection Information" on page 462) that is
available through the Universal Messaging Administration API. The API also provides
mechanisms for receiving notification when connections are added and deleted (see the
code example "Connection Watch" using the Administration API).

Connection information is also maintained when Universal Messaging clients subscribe
to channels. This section guides you through channel connection information.

The Universal Messaging Enterprise Manager allows you to view the connections
(channel subscriptions) on a realm and drilldown to view more detailed information
about each connection, such as the last event sent or received, and the rate of events sent
and received from each connection.

To view connections for a channel, select a channel node from the namespace, and select
the 'Connections' tab. This will display a panel containing a table of connections, as
shown in the image below.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 319

Connections have the following aributes:

Protocol - The protocol used in the connection

User - The name of the user connected

Host - The host machine that the user is connecting from

Connection - The local connection id, defined as hostname:local_port

Sub-Name- The named object (see "Channel Named Objects" on page 126)
reference if one has been provided

Filter - The filter string for the subscription if one has been provided

The highlighted connection above shows that the user has subscribed to the
'ClusterRates' channel using the nsp protocol, to localhost. The user has also provided
a named object called 'johnsmith' and a filter of "region='UK'" which will ensure the
user only consumes events with the value 'UK' in the 'region' property of the event
properties.

When a connection is highlighted, there a number of things that can be shown for a the
connection.

Firstly, connections can be disconnected by clicking on the 'Disconnect' buon.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 320

Secondly, by double-clicking on a connection from the table, or by clicking on the 'Show
Details' buon, you are presented with a panel that contains a more detailed look at the
activity for the selected connection. The connection details panel is shown in the image
below.

Connection Details

You will see that there are 2 separate information panels above the graphs once you have
drilled down into a connection. The first of which is labelled Connection Details. This
information contains information about the user connection, such as user name, host
protocol.

Client Environment

Next to this you will see a panel that shows details regarding the client environment for
this user. These includes API language / Platform, Host OS and Universal Messaging
build number

The two graphs, labeled 'Tx Event History' and 'Rx Event History' show the total
(yellow) and rates (red) for events received from the server (TX) and sent to the server
(RX) for the selected connection.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 321

The boom of the connection details panel shows 3 sections of information for the
selected connection, 'Events Sent', 'Events Received' and 'Status'. Each of these are
described below.

Events Sent

The Events Sent section shows the following values:

Total - The total number of events sent by the realm server to this connection

Rate - The rate at which events are being sent by the realm server to this connection

Max - The maximum rate at which events have been sent by the realm server to this
connection

Last Event Type - The type of the last event sent from the realm server

Bytes - Total bytes sent by the realm server to this connection

Events Received

The Events Received section shows the following values:

Total - The total number of events sent by this connection to the realm server

Rate - The rate at which events are being sent by connection to the realm server

Max - The maximum rate at which events have been sent by this connection to the
realm server

Last Event Type - The type of the last event sent from the connection to the realm
server

Bytes - Total bytes sent by this connection to the realm server

Status

The Events Sent section shows the following values:

Connect Time - The amount of time this connection has been connected to the realm
server

Queue Size - The number of events in the outbound queue of this connection (i.e.
events waiting to be sent to the realm server)

Last Tx - The time since the last event was received by this connection from the realm
server

Last Rx - The time since the last event was sent to the server from this connection

Clicking on the 'Show List' buon will take you back to the connections table.

Queue Status
Every time a queue object is selected from the namespace, the first panel to be
displayed on the right hand side of the Enterprise Manager panel is the 'Status' panel.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 322

Configuration information is always displayed at the top section of the Enterprise
Manager when a queue is selected. This configuration information shows queue type, l
(age) and capacity. The queue 'Status' tab shows real-time management information for
the selected queue.

The status panel is split into 2 main sections. The top section shows real time graphs
representing the events pushed and popped from the queue, both in terms of rates (i.e.
per status interval) as well as the totals.

The boom section shows the actual values ploed in the graphs for events pushed and
popped, as well as information about the actual queue store at the server.

The image below shows the status panel for an active cluster queue.

The top most graph in the panel shows the event history for events popped from the
queue. The red line graphs the rates at which events are being popped while the yellow
line graphs the total events popped from the queue.

The boom graph shows the event history for events pushed onto the queue. The red
line graphs the rates at which events are being pushed while the yellow line graphs the
total events pushed to the queue. As the status events are consumed, and the queue
nLeafNode () is updated with the new values for events popped and pushed, the status
panel and its graphs will be updated.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 323

The boom section of the status panel shows 3 types of information : Totals, Rates and
Event Store. These are discussed below.

Totals

The totals section contains the following values:

Published - The total number of events pushed to the queue when the last status event
was consumed

Consumed - The total number of events popped from the queue when the last status
event was consumed

Event ID - The event id of the last event pushed to the queue

Current Connections - The current number of asynchronous consumers on the queue

Total Connections - Total number of asynchronous consumers that have subscribed to
the queue

Rates

The rates section contains the following values:

Published - The current rate of events pushed to the queue, calculated as (total -
previous total) / (interval 1000 milliseconds)

Consumed - The current rate of events popped from the queue, calculated as (total -
previous total) / (interval 1000 milliseconds)

Connections - The current rate of asynchronous subscriptions being made to the
queue

Event Store

The event store section contains the following values:

Used Space - The amount of space in KB used by the queue on the server (either
memory, or disk for persistent / mixed queues)

Events - The current number of events on the queue

% Free - The amount of free space in the queue store (calculated as (used space - (total
space used by all purged or aged events))

Cache Hit - The %age of events popped from the queue event cache as opposed form
the actual physical store if persistent or mixed

Interface Status
Universal Messaging interfaces (see "TCP Interfaces, IP Multicast and Shared Memory"
on page 216) allow users to connect to a Realm using various protocols and ports on
specific physical Network interfaces on the host machine. Interfaces are also available
to users through the Universal Messaging Administration API and can provide useful
status information regarding user connections.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 324

The Enterprise manager provides a summary of this status information for each
interface. This section will describe the status information available for each interface.

To view status information for an interface, you must first select the 'Comms' tab for
the Realm you want to view. This tab contains the interface configurations as well as
Multicast and Shared Memory configurations Select the interface you wish to view from
the list of interfaces in the 'Interfaces'. By selecting the desired interface, you will be
presented with a number of panels, one of which is labeled 'Status'. This panel is shown
in the image below.

The interface status panel has a section that describes the details of the interface status
information. The status information contains 6 values, each of which is described below.

Details Panel

Idle Threads- The number of idle threads, calculated as the total threads from the
interface accept threads pool - the number of threads from the pool currently
accepting connections. Corresponds to available threads

Total Connections - The total number of successful connections made to this interface

Total Failed - The total number of failed connection aempts made to this interface

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 325

Ave Authorisation - The average time it takes a connection to authenticate with the
realm server

Pool Exhausted Count - The number of times that the interface thread pool has had no
threads left to service incoming connection requests. When this count increases, you
should increase the number of accept threads (see "Interface Configuration" on page
222) for the interface

Ave Pool Wait - The average time that a client connection has to wait for the accept
thread pool to provide an available thread. Like the Pool Exhausted count, this is
a good indicator that the number of accept threads for an interface is too low and
needs to be increased

The status panel also shows 2 graphs that depict connection aempts (successful
connections are shown in yellow, failed connection aempts are shown in red) and
authentication times (average authentication times are shown in yellow, and the last
authentication time is shown in red).

Scheduler view
Universal Messaging Enterprise Manager allows managing, deploying and editing
server side scripts for execution in the Universal Messaging scheduler. The scripts
consist of initial tasks, triggered tasks and / or calendar tasks as illustrated in the
following sections.

"Adding Scheduler Scripts" on page 325

"Editing Scheduler Scripts" on page 326

"Scheduler Script Initial Tasks" on page 327

"Scheduler Script Triggered Tasks" on page 328

"Scheduler Scripts Calendar Tasks" on page 329

Adding Scheduler Scripts

The Universal Messaging Enterprise Manager allows deployment of scheduler scripts
that execute on the Universal Messaging realm's scheduler. The editor features syntax
highlighting to facilitate script editing.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 326

Editing Scheduler Scripts

The Universal Messaging Enterprise Manager allows viewing and editing of scripts that
are already deployed on the realm from any location.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 327

Scheduler Script Initial Tasks

Each scheduler script has an initialisation section that allows variable definition as
well as execution of tasks such as realm configuration changes, custom log messages,
interface configuration etc. These can be viewed after they are parsed and validated from
the Enterprise Manager.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 328

Scheduler Scripts Triggered Tasks

Each scheduler script can optionally contain a triggered tasks section. Triggered tasks
are tasks that are executed when certain conditions are met during the operation of the
Universal Messaging realm. For example the image below shows a triggered tasks that
is executed if the realm log level is set to 0 (very verbose) which results to a custom log
message as well as seing the log level to 1.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 329

Scheduler Scripts Calendar Tasks

Each scheduler script can optionally have a calendar tasks section. Calendar tasks are
triggered by calendar events as defined in the scheduler script. The Enterprise Manager
image below shows a calendar tasks that writes a custom log message every 30 minutes
of every hour, of every day or month.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 330

Channel view
Universal Messaging Enterprise Manager allows monitoring, administration and
configuration of every aspect of a Universal Messaging channel, as illustrated in the
following sections.

"Channel Status" on page 331

"Channel Access Control List (ACL)" on page 331

"Channel Joins" on page 332

"Channel Connections" on page 333

"Channel Named Objects" on page 334

"Channel Event Snooping" on page 335

For more information on these screens please see the Management Information section.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 331

Channel Status

The Universal Messaging Enterprise Manager allows monitoring of a channel's status
in terms of publish & consume event totals / rates as well as connection total / rates and
persistent store / memory.

Channel Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging
stores security policies locally or can be driven by any external entitlements service.
Universal Messaging's rich set of entitlements ensure that everything from a network
connection through to a channel/queue creation can be controlled on a per user and/or
host basis. For more information please see the Universal Messaging ACL's FAQ.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 332

Channel Joins

Universal Messaging allows channels to be joined to other channels or queues creating
server side routing tables with the possibility to apply filters based on message content
on the local or a remote Universal Messaging realm.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 333

Channel Connections

Channel subscribers are reported as channel connections and can be monitored /
managed through the Universal Messaging Enterprise Manager.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 334

Channel Named Objects

Channel subscribers can manage their subscription's event id manually or they can
become a named subscriber and let that be managed by the Universal Messaging realm.
The Universal Messaging Enterprise Manager allows complete management of channel
named objects.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 335

Channel Event Snooping

The Universal Messaging Enterprise Manager provides the ability to inspect the contents
of messages remotely using the Snoop panel.

Queue view
Universal Messaging Enterprise Manager allows monitoring, administration and
configuration of every aspect of a Universal Messaging queue, as illustrated in the
following sections.

"Queue Status" on page 335

"Queue Access Control List (ACL)" on page 336

"Queue Joins" on page 337

"Queue Event Snooping" on page 338

For more information on these screens please see the Management Information section.

Queue Status

The Universal Messaging Enterprise Manager allows monitoring of a queue's status in
terms of publish & consume event totals / rates as well as connection total / rates and
persistent store / memory.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 336

Queue Access Control List (ACL)

Universal Messaging offers complete control over security policies. Universal Messaging
stores security policies locally or be driven by any external entitlements service.
Universal Messaging's rich set of entitlements ensure that everything from a network
connection through to a channel/queue creation can be controlled on a per user and/or
host basis. For more information please see the Universal Messaging ACL's FAQ.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 337

Queue Joins

Universal Messaging allows channels to be joined to other channels or queues creating
server side routing tables with the possibility to apply filters based on message content
on the local or a remote Universal Messaging realm.

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 338

Queue Event Snooping

The Universal Messaging Enterprise Manager provides the ability to inspect the contents
of messages remotely using the Snoop panel.

M
Odd Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 339

Using the Enterprise Viewer
The Enterprise Viewer is a read-only version of the Enterprise Manager. Its purpose is to
allow clients to view the Universal Messaging environment without the need for special
administration rights.

Basically, it offers the same views as the Enterprise Manager, but you cannot use it to
modify your Universal Messaging environment in any way. This means, for example,
that you cannot create or delete channels and queues, and you cannot publish any
events.

Starting the Enterprise Viewer

Windows platforms

Windows users can start the Enterprise Viewer by selecting the appropriate component
from the Universal Messaging group in the Windows Start menu.

You can also type a command of the following form on the command line:
<UM_install_dir> \java\<UM_server_name> \bin\nenterpriseview.exe

M
Even Header

Universal Messaging Enterprise Manager

Universal Messaging Administration Guide Version 10.1 340

where <UM_install_dir> is the installation root location and <UM_server_name> is the
name of the Universal Messaging server.

UNIX / Linux platforms

You can launch the Enterprise Viewer on Unix / Linux platforms by starting the
nenterpriseview executable, which you can find at the following location:
<UM_install_dir> /java/umserver/bin/nenterpriseview

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 341

2 Using Command Central to Manage Universal
Messaging

■ Managing Universal Messaging using Command Central ... 342

■ Securing Access to Command Central .. 342

■ Instance Management .. 344

■ Authentication Configuration .. 345

■ Universal Messaging Configuration Types ... 346

■ Universal Messaging Logs ... 374

■ Universal Messaging Administration Types ... 374

■ Universal Messaging Inventory .. 379

■ Universal Messaging Lifecycle Actions .. 379

■ Universal Messaging KPIs ... 379

■ Universal Messaging Run-time Monitoring Statuses ... 380

■ Universal Messaging and the Command Line Interface .. 381

■ Universal Messaging Commands .. 382

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 342

Managing Universal Messaging using Command Central
You can configure and administer Universal Messaging server instances using the
Command Central web or command-line interface.

Command Central uses one of the Universal Messaging ports (interfaces) for
configuration and administration. Command Central checks the ports (interfaces) of
a Universal Messaging server instance in the following order and chooses the first
available port (interface) to connect to the server:

1. Interfaces that use HTTP protocol (nhp)

2. Interfaces that use socket protocol (nsp)

3. Interfaces that use HTTPS protocol (nhps)

4. Interfaces that use SSL protocol (nsps)

Note: Command Central will use a secured port (nhps and nsps) to connect with a
Universal Messaging server instance only if the client-side certificates are not
required for establishing the connection. Command Central does not use ports
that use shared memory protocol (shm).

If there is a disconnection between Command Central and the Universal Messaging
server, Command Central will connect to a new port using the same order used to check
the next available port for communicating with the Universal Messaging server.

Securing Access to Command Central
Secure access to Command Central by performing one or more of the following tasks:

Changing the Authentication Mode
1. Click the Instances tab to view all the available Universal Messaging server

instances.

2. Click an Universal Messaging instance name to access the Dashboard.

The Dashboard contains information about the specific Universal Messaging server
instance such as status, alerts, and KPIs.

3. In the Details section of the Dashboard, click in the Authentication field to change
the authentication mode.

The Authentication Mode dialog box appears.

4. Select one of the following authentication modes:

System default: Use default authentication method.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 343

None: No authentication method is used.

Trusted: Password-less authentication for predefined administrative user account.

Delegated: SAML-based authentication and authorization for the currently logged
in user.

Fixed user: Authenticate the specified administrative user credentials. Provide a
user name and password for the user.

Note: To use basic authentication, you must change the authentication mode
for a run-time component to Fixed User. Command Central uses basic
authentication with a fixed user to communicate with Platform Manager.
With Fixed User authentication, the authentication credentials for the
Platform Manager will be fixed.

Verifying the Outbound Authentication Settings
Use the following steps to verify that Command Central is configured with the correct
outbound authentication seings.

To verify that Command Central is configured with the correct user credentials

1. In Command Central, on the Overview tab for the product component, click .
Check that the product status is Online and the JVM KPIs are updated.

2. On the Logs tab, check the product log for authentication errors.

Using Unix Shell Scripts to Change Connection Credentials for
Managed Products
You can use the following sample Unix shell script to configure basic authentication
credentials for product components managed by Command Central.
NODE_ALIAS=local
USERNAME=Administrator
PASSWORD=secret
RCID=integrationServer-default
RCID=MwsProgramFiles-default
RCID=Universal-Messaging-nirvana
RCID=OSGI-CTP
RCID=OSGI-InfraDC

sagcc get configuration data $NODE_ALIAS $RCID COMMON-LOCAL-USERS-Administrator
-o administrator.xml
sed "s,/>,><Password>${PASSWORD}</Password></User>,g" administrator.xml >
 administrator_new.xml
sagcc update configuration data $NODE_ALIAS $RCID COMMON-LOCAL-USERS
-Administrator -o administrator_new.xml

verify connection
sagcc get monitoring runtimestatus $NODE_ALIAS $RCID -e ONLINE

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 344

Instance Management
You can create and delete Universal Messaging server instances using Command Central
web or command-line interface.

Creating an Instance
To create an instance

1. In the Environments pane, select the environment in which you want to create the new
product instance.

2. Click the Installations tab.

3. Select the installation by clicking the installation name in the table.

4. Click the Instances tab.

5. Click , and select Universal MessagingServer.

6. Specify the following instance properties:

Property Description

Instance name Required. Name of the new
Universal Messaging server instance.
Case-insensitive and can include
upper and lower case alphabetic
characters, digits (0-9), underscores
(_), and non-leading hyphens (-).

NHP interface binding Specific host or IP address to bind.
The instance will bind to all available
interfaces if this field is left blank.

NHP interface port Port number for the Universal
Messaging server instance.

Data directory Absolute path to the data directory
of the Universal Messaging server
instance. Default path "install
directory /UniversalMessaging/
server/instance name " is used if this
field is left blank.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 345

Property Description

License file The registered Universal Messaging
license file. Select one of the
registered license files from the list.

Configuration profile Initial configuration seings for the
Universal Messaging server instance.
Options: webMethods suite use cases,
Standalone use cases, and Custom.

Custom configuration file Required if the Custom option is
chosen as the configuration profile.
Click Browse, and select the custom
profile XML file.

7. Click Next, and then click Finish.

Deleting an Instance
To delete an instance

1. In the Environments pane, select the environment in which you want to create the new
product instance.

2. Click the Instances tab.

3. Select the Universal Messaging instance to be deleted and then click .

4. Click Ok to confirm deletion and then click Finish.

Authentication Configuration
Perform the following steps to enable basic authentication for Universal Messaging
server instance users.

1. Enable basic authentication in the Universal Messagingserver instance. For
information about security and authentication in Universal Messaging, see the
Universal Messaging Concepts guide.

2. Use the user management feature of Command Central to add users to the user.txt
file of the Universal Messaging server instance.

3. Use Universal Messaging Enterprise Manager to set the required ACLs for the
Universal Messaging server instance users.

4. Restart the Universal Messaging server instance, if required.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 346

5. Change the default Authentication Mode from None to Fixed User and provide a new
user name and password.

Universal Messaging Configuration Types
You can configure the following configuration types for a Universal Messaging server
instance:

Internal Users

Licenses

Ports

Memory

Realm ACL

Groups

Properties

JNDI Connection Factories

JNDI Destinations

Channels

Queues

Zone

Java System Properties

Clustering

Working with Universal Messaging Configuration Types
Perform the following steps to add, edit, or delete Universal Messaging configuration
type items in the Command Central web user interface.

Note: The Universal Messaging server instance must be running during
configuration.

To add, edit, or delete an item for an Universal Messaging configuration type

1. Select the Universal Messaging environment from the Environment pane, then click
the instance from the Instances tab.

2. Click the Configuration tab.

3. Select the configuration type from the drop-down list.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 347

Universal Messaging displays the available or default values for the selected
Universal Messaging configuration type.

4. To add an item for the Universal Messaging configuration type, click . Enter the
required values, and click Save.

5. To edit an item for a configuration type, click on the item that you want to update
and then click Edit. Make the necessary changes and click one of the following:

Test to test the configuration type item.

Save to save your changes.

Cancel to cancel the edits to the configuration type item.

6. To delete an item for a configuration instance, click .

User Management
You can add new users, list existing users, change the password of an user, or delete a
user from the user repository.

Information to authenticate the users of a Universal Messaging server instance is
stored in the user repository (users.txt file) of the Universal Messaging server instance.
The users.txt file is generated only after you create a new internal user. The default
path to the user repository (users.txt file) of a Universal Messaging server instance
is Software AG_directory\UniversalMessaging\server\umserver_instance , where
umserver_instance is the name of the Universal Messaging server instance.

The path to the users.txt file is specified in the Server_Common.conf file of the server
instance irrespective of whether you are running the Universal Messaging server
instance as a service or as an application. If you specify a relative path, the users.txt file
will be created in a directory relative to the bin directory of the Universal Messaging
server instance.

You can also use the command line interface commands or internaluserrepo.bat/sh script
to configure users of a Universal Messaging server instance. For more information, see
Software AG Command Central and Software AG Platform Manager Command Reference.

License Management
For a Universal Messaging server, you can configure the license, view the details of the
license that is configured, and retrieve the location of the license file.

Note: You cannot change the location of a Universal Messaging license file.

Ports Configuration
You can view, create, enable, disable, or edit the following Universal Messaging server
ports (interfaces):

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 348

NSP

NHP

NHPS

NSPS

Command Central web user interface displays a table containing a list of ports for
a Universal Messaging server instance. The following basic aributes of a port are
displayed in the table:

Column Description

Enabled Displays if a port is enabled or disabled.

Alias Each interface is associated with an alias that is used to
recognize the port. Each port (interface) on a Universal
Messaging server instance will have an associated alias.

Port Port number. The port number is unique.

Protocol Type of the port (interface). The port uses one of the
following protocols:

NSP (Socket protocol)

NHP (HTTP protocol)

NHPS (HTTPS protocol)

NSPS (SSL protocol)

Type Type of port. For example, STANDARD,
DIAGNOSTIC.

Note: Command Central does not use or report the Universal Messaging server
ports that use the shared memory protocol (shm).

Configure NSP
1. Click , and select NSP.

2. Configure the following properties:

Configure this... To...

Enabled Enable or disable this NSP port (interface).

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 349

Configure this... To...

Adapter alias Provide an alias for the port. Each Universal Messaging
server instance can have an associated alias in the form
of host :port . This alias is used to inform other servers
how to contact this server, if this server is behind a
NAT or a Proxy Server. This alias is not the same as the
Universal Messaging assigned interface alias.

Number Required. Provide a unique port number. The port
number should be unique and cannot be used again in
a Universal Messaging server instance.

Backlog Provide the size of the Internet Protocol (IP) socket
queue.

Bind address The IP address to which to bind this port, if your
machine has multiple IP addresses and you want the
port to use this specific address.

You cannot change this aribute after you create the
port.

Autostart interface Automatically start this port when starting the
Universal Messaging server instance.

Advertise interface Allow the Universal Messaging server instance to send
information about this port to the client.

Allow for inter-realm Allow port communication between two or more
Universal Messaging server instances. For example,
allow communication between clusters, or joins.

Allow client connections Allow clients to connect to this port.

Enable NIO Enable NIO (Network Input/Output) on this port.

Enable policy server Allow the ports to respond to policy requests. You can
run a policy file server on a socket interface that will
automatically handle these requests. Once this is set
up, you will also need to set up a client access policy
in the clientaccesspolicy.xml file in the /install/server/
name/plugins/htdocs directory of the server.

Auth time Provide the time in milliseconds (ms) that the
Universal Messaging server instance waits for the

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 350

Configure this... To...
client to complete the authentication process. Default is
10000 milliseconds.

Accept threads Provide the number of threads processing the accepted
sockets.

Select threads Provide the number of threads allocated for selection.

Send buffer size Provide the size of the socket send buffer.

Receive buffer size Provide the size of the socket receive buffer.

For more information about the basic port properties, see "Interface Configuration"
on page 222.

3. Click Test to validate the entered information or click Save to save changes to the
port.

Configure NHP
1. Click , and select NHP.

2. Configure the following properties:

Connection Basics

Configure this... To...

Enabled Enable or disable this NHP port (interface).

Adapter alias Specify an alias for the port. Each interface on a
Universal Messaging server instance can have an
associated alias in the format host :port . This alias is
used to tell other servers how to contact this server,
if this server is behind a NAT or a Proxy Server. This
alias is not the same as the Universal Messaging
assigned interface alias.

Number Required. Set port number. The port number should
be unique and cannot be used again in a Universal
Messaging server instance.

Backlog Provide the size of the Internet Protocol (IP) socket
queue.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 351

Configure this... To...

Bind address The IP address to which to bind this port, if your
machine has multiple IP addresses and you want the
port to use this specific address.

You cannot change this aribute after you create the
port.

Autostart interface Automatically start this port when starting the
Universal Messaging server instance.

Advertise interface Allow the Universal Messaging server instance to send
information about this port to the client.

Allow for inter-realm Allow port communication between two or more
Universal Messaging server instances. For example,
allow communication between clusters, or joins.

Allow client connections Allow clients to connect to this port.

Enable NIO Enable NIO (Network Input/Output) on this port.

Enable HTTP 1.1 Enable the usage of HTTP 1.1 protocol on this port.

Auth time Provide the time in milliseconds (ms) that the
Universal Messaging server instance waits for the
client to complete the authentication process. Default is
10000 milliseconds.

Accept threads Provide the number of threads processing the accepted
sockets.

Select threads Provide the number of threads allocated for selection.

Send buffer size Provide the size of the socket send buffer.

Receive buffer size Provide the size of the socket receive buffer.

For more information about the basic port properties, see "Interface Configuration"
on page 222.

JavaScript Interface Properties

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 352

Set these properties to configure communication with web clients using JavaScript.
For more information and description about the JavaScript interface properties, see
"JavaScript Interface Panel" on page 224.

Configure this... To...

Enable JavaScript Allow JavaScript client connections using this port
(interface).

Enable WebSockets Toggle the ability for clients to communicate with the
server using the HTML WebSocket Protocol on this
interface.

Enable GZIP for long poll Enable GZIP compression on HTTP long poll
connections.

CORS allow credentials Allow Cross-Origin Resource Sharing (CORS)
credentials.

CORS allowed origins A comma separated list of the host names (and IP
addresses, if they appear in URLs) of the servers that
host your JavaScript application's HTML files.

Important: If this property is not set correctly, many
communication drivers available to JavaScript
clients may fail.

Long poll active delay The time between clients sending long poll requests
to the server in milliseconds. Reducing this may
reduce latency but will increase both client and server
memory, CPU, and network usage.

GZIP minimum
threshold

Set the minimum message size is bytes required for
the server to begin compressing data sent to long poll
clients.

Long poll idle delay The time between clients sending long poll when the
client is in idle mode.

Custom Headers

Custom headers are paired with Header Key/Value pairs which are sent in the HTTP
packets to the client.

3. Click Test to validate the entered information or click Save to save changes to the
port.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 353

Configure NHPS
1. Click , and select NHPS.

2. Configure the following properties:

Connection Basics

Configure this... To...

Enabled Enable or disable this NHPS port (interface).

Adapter alias Provide an alias for the port. Each Universal Messaging
server instance can have an associated alias in the form
of host :port . This alias is used to tell other servers how
to contact this server, if this server is behind a NAT or a
Proxy Server. This alias is not the same as the Universal
Messaging assigned interface alias.

Number Required. Set port number. The port number should
be unique and cannot be used again in a Universal
Messaging server instance.

Backlog Set the size of the Internet Protocol (IP) socket queue.

Bind address The IP address to which to bind this port, if your
machine has multiple IP addresses and you want the
port to use this specific address.

You cannot change this aribute after you create the
port.

Autostart interface Automatically start this port when starting the
Universal Messaging server instance.

Advertise interface Allow the Universal Messaging server instance to send
information about this port to the client.

Allow for inter-realm Allow port communication between two or more
Universal Messaging server instances. For example,
allow communication between clusters, or joins.

Allow client connections Allow clients to connect to this port.

Enable NIO Enable NIO (Network Input/Output) on this port.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 354

Configure this... To...

Enable HTTP 1.1 Enable the usage of HTTP 1.1 protocol on this port.

Auth time Provide the time in milliseconds (ms) that the
Universal Messaging server instance waits for the
client to complete the authentication process. Default is
10000 milliseconds.

Accept threads Provide the number of threads processing the accepted
sockets.

Select threads Provide the number of threads allocated for selection.

Send buffer size Provide the size of the socket send buffer.

Receive buffer size Provide the size of the socket receive buffer.

For more information about the basic port properties, see "Interface Configuration"
on page 222.

JavaScript Interface Properties

Set these properties to configure communication with web clients using JavaScript.
For more information and description about the JavaScript interface properties, see
"JavaScript Interface Panel" on page 224.

Configure this... To...

Enable JavaScript Allow JavaScript client connections using this port
(interface).

Enable WebSockets Toggle the ability for clients to communicate with the
server using the HTML WebSocket Protocol on this
interface.

Enable GZIP for long poll Enable GZIP compression on HTTP long poll
connections.

CORS allow credentials Allow Cross-Origin Resource Sharing (CORS)
credentials.

CORS allowed origins A comma separated list of the host names (and IP
addresses, if they appear in URLs) of the servers that
host your JavaScript application's HTML files.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 355

Configure this... To...

Important: If this property is not set correctly, many
communication drivers available to JavaScript
clients may fail.

Long poll active delay The time between clients sending long poll requests
to the server in milliseconds. Reducing this may
reduce latency but will increase both client and server
memory, CPU, and network usage.

GZIP minimum
threshold

Set the minimum message size is bytes required for
the server to begin compressing data sent to long poll
clients.

Long poll idle delay The time between clients sending long poll when the
client is in idle mode.

Custom Headers

Custom headers are paired with Header Key/Value pairs which are sent in the HTTP
packets to the client.

Security Configuration

Configure this... To specify...

Client authentication Whether or not Universal Messaging requires client
certificates for all requests. Select:

None if Universal Messaging does not require client
certificates for all requests.

REQUIRE_CERTIFICATE if you want Universal
Messaging to require client certificates for all requests.

SSL enabled Whether the port is SSL enabled or not. This aribute is
always set to true for nhps and nsps port.

Keystore type File type of the keystore file. Universal Messaging
supports only the JKS file type.

Keystore server location Location of the keystore file.

Keystore password Password required to access the SSL certificate in the
keystore file.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 356

Configure this... To specify...

Keystore key password Password required to access a specific private key in
the keystore file.

Truststore type File type of the truststore file. Universal Messaging
supports only the JKS file type.

Truststore server location Location of the truststore file.

Truststore password Password required to access the SSL certificate in the
truststore file.

3. Click Test to validate the entered information or click Save to save changes to the
port.

Configure NSPS
1. Click , and select NSPS.

2. Configure the following properties:

Connection Basics

Configure this... To...

Enabled Enable or disable this NSPS port (interface).

Adapter alias Provide an alias for the port. Each Universal Messaging
server instance can have an associated alias in the form
of host :port . This alias is used to tell other servers how
to contact this server if this server is behind a NAT or a
Proxy Server. This alias is not the same as the Universal
Messaging assigned interface alias.

Number Required. Set port number. The port number should
be unique and cannot be used again in a Universal
Messaging server instance.

Backlog Set the size of the Internet Protocol (IP) socket queue.

Bind address The IP address to which to bind this port, if your
machine has multiple IP addresses and you want the
port to use this specific address.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 357

Configure this... To...

You cannot change this aribute after you create the
port.

Autostart interface Automatically start this port when starting the
Universal Messaging server instance.

Advertise interface Allow the Universal Messaging server instance to send
information about this port to the client.

Allow for inter-realm Allow port communication between two or more
Universal Messaging server instances. For example,
allow communication between clusters, or joins.

Allow client connections Allow clients to connect to this port.

Enable NIO Enable NIO (Network Input/Output) on this port.

Enable policy server Allow the ports to respond to policy requests. You can
run a policy file server on a socket interface that will
automatically handle these requests. Once this is set
up, you will also need to set up a client access policy
in the clientaccesspolicy.xml file in the /install/server/
name/plugins/htdocs directory of the server.

Auth time Provide the time in milliseconds (ms) that the
Universal Messaging server instance waits for the
client to complete the authentication process. Default is
10000 milliseconds.

Accept threads Provide the number of threads processing the accepted
sockets.

Select threads Provide the number of threads allocated for selection.

Send buffer size Provide the size of the socket send buffer.

Receive buffer size Provide the size of the socket receive buffer.

For more information about the basic port properties, see "Interface Configuration"
on page 222.

Security Configuration

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 358

Configure this... To specify...

Client authentication Whether or not Universal Messaging requires client
certificates for all requests. Select:

None if Universal Messaging does not require client
certificates for all requests.

REQUIRE_CERTIFICATE if you want Universal
Messaging to require client certificates for all requests.

SSL enabled Whether the port is SSL enabled or not. This aribute is
always set to true for nhps and nsps port.

Keystore type File type of the keystore file. Universal Messaging
supports only the JKS file type.

Keystore server location Location of the keystore file.

Keystore password Password required to access the SSL certificate in the
keystore file.

Keystore key password Password required to access a specific private key in
the keystore file.

Truststore type File type of the truststore file. Universal Messaging
supports only the JKS file type.

Truststore server location Location of the truststore file.

Truststore password Password required to access the SSL certificate in the
truststore file.

3. Click Test to validate the entered information or click Save to save changes to the
port.

Memory Configuration
You can view and update the initial memory size, maximum memory size, and the
extended property (MaxDirectMemorySize) of a Universal Messaging server instance.
When you add or edit an extended property, ensure that you prefix -XX: to the
extended property name.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 359

Realm Access Control Lists (ACLs)
You can configure the permissions for a Universal Messaging server instance by editing
one or more of the following parameters:

Configure... Specify...

Subject User name in the format user@host , or name of an
existing group in the format groupname .

Manage ACL Allow ACL management.

Full Grant full privileges to the user or group.

Access Allow access to the realm.

Configure Allow realm configuration.

Channels Allow channel configuration and administration.

Realm Allow realm configuration and management.

Admin API Allow use of Universal Messaging Admin API.

Manage data groups Allow data groups' management.

Own data groups Allow ownership of data groups.

Publish to data groups Allow publishing to global data groups.

Group Management
You can add, edit, or delete a new security group using the Command Central web user
interface. You can define subjects for a specific group, the subjects can be an existing
group or an individual user in the format user @host . For more information about
Universal Messaging security groups, see "Security Groups" on page 151.

General Properties
You can configure a Universal Messaging server instance by editing the configuration
parameters. The large number of Universal Messaging configuration parameters are
organized into groups. The parameters in each group are organized into two categories:

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 360

Basic and Advanced. The properties in the Basic category are commonly used. The
properties in the Advanced category is less frequently used, and are intended for special
cases or expert users.

Note: You can view and configure properties only when the Universal Messaging
server instance is Online.

Configure this group... To modify...

Audit Seings Parameters to configure what gets logged in the
audit file.

Client Timeout Values Parameters to configure client-server communication
timeout seings.

Cluster Config Parameters to configure clustering.

Comet Config Parameters to configure Comet communication
protocol connection.

Connection Config Parameters to configure client-server connection.

Data Stream Config Parameters to configure data streams.

Environment Config System environment configuration parameters.

Note: You cannot modify the environment
configuration parameters, the parameters are
read-only.

Event Storage Parameters to configure how events are stored, and
retrieved from the server.

Fanout Values Parameters to configure delivery of events to the
clients.

Global Values Parameters to configure various global Universal
Messaging server instance properties. For example,
AllowRealmAdminFullAccess.

Inter-Realm Comms Config Parameters to configure communication across
Universal Messaging server instances.

JVM Management Parameters to configure the JVM used by the
Universal Messaging server.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 361

Configure this group... To modify...

Join Config Parameters to modify join properties.

Logging Config Parameters to modify logging configuration.

Metric Config Parameters to enable or disable system metrics such
as memory usage.

MQTT Config Parameters to configure MQTT.

Plugin Config Parameters for Universal Messaging server plugin
configuration.

Protobuf Config Parameters to configure Google protocol buffers.

Protocol AMQP Config Parameters to configure AMQP connections.

Protocol MQTT Config Timeout value for MQTT connections.

Proxy Forward Config Parameters to configure proxy seings.

RecoveryDaemon Parameters to configure clients that are in recovery
and replaying large number of events.

Server Protection Parameters to configure server protection such as
flow control of producer connections.

Thread Pool Config Parameters for server thread pools.

TransactionManager Parameters for Universal Messaging transaction
engine.

For information about configuration group parameters and their values, see "Realm
Configuration" on page 28.

JNDI Management
You can configure connection factories and destinations in a JNDI namespace using
the Command Central web user interface or the command line. You can perform the
following operations on JNDI entries:

Create

Get

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 362

Update

Delete

JNDI Connection Factories
You can perform create, get, update, and delete operations on the following connection
factory types:

Connection Factory

Topic Connection Factory

Queue Connection Factory

XA Connection Factory

The table describes the connection factory configuration parameters:

Configure... Specify...

Name Required and unique. Name of the new connection
factory. Once created, you cannot edit the
JNDI connection factory name. For example,
connectionfactory1.

Type Required. Type of connection factory selected when
creating the connection factory. For example, XA
Connection Factory.

Note: This field cannot be edited.

Connection URL Required. Universal Messaging server URL for
binding the connection factory. For example, nsp://
umhostname:9000. A cluster of server instances is
specified using a comma-separated list of connection
URLs, for example, nsp://localhost:9000,nsp://
localhost:9010 . You can use a round-robin connection
factory to specify several connection URLs, where each
connection URL can point to a standalone realm or a
cluster. Round-robin connection factories allow clients
to publish messages so that one message or transaction
gets published to the first realm node or cluster, the
next message to the next realm node or cluster, and
so on. For a round-robin connection factory, each
connection URL is bounded by a set of brackets: (nsp://
{hostname}:{port}). Examples:

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 363

Configure... Specify...

(UM1)(UM2)(UM3)(UM4) - Indicates four standalone
server instances: UM1, UM2, UM3 and UM4, four
connections are created.

(UM1,UM2)(UM3,UM4) - Indicates two clusters, one
consisting of UM1 and UM2 and the other consisting
of UM3 and UM4, only two connections are created.

(UM1)(UM2,UM3)(UM4) - Indicates one cluster
consisting of UM2 and UM3, and two standalone
realms, namely UM1 and UM4. A total of three
connections are created.

Note: Round-robin delivery is not supported for XA
Connection Factory.

Durable type Select the durable type. The durable type Named is
selected by default.

Note: You can configure the durable type property only
for Connection Factory and Topic Connection
Factory.

JNDI Destinations
You can perform create, get, and delete operations on the following destination types:

Note: Update operation for JNDI destinations is not supported.

Topics

Queues

The table describes the destination configuration parameters:

Configure... Specify...

Lookup Name Required and unique. Name of the JNDI destination.
Once created, you cannot edit the JNDI destination
name. Name can include upper and lower case
alphabetic characters, digits (0-9), double colon (::),
slash (/), and periods (.), for example, destination1. Use
the double colon (::) for specifying nested name space,
for example, destination1::destination2.

Destination Type Required. Type of destination.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 364

Configure... Specify...

Note: This field cannot be edited.

Store Name Required and unique. Name of the JMS channel
or queue. Once created, you cannot edit the store
name. Store name can include upper and lower case
alphabetic characters, digits (0-9), double colon (::), and
slash (/).

Auto-Create JMS Channel Select to enable auto-creation of JMS channel.

Note: Creating a connection factory and destination with the same name is not
allowed for a Universal Messaging server instance.

Deleting a JNDI destination will not delete the channel or queue that
exists in the Universal Messaging server instance.

Channels Configuration
You can view, create, update, and delete a channel using the Command Central web or
command-line interface.

You can configure the following properties:

Channel Properties

Property... Description..

Name Required. Name of the channel to be created.

Note: Once a channel is created, you cannot edit the
channel name.

Type Type of channel. Universal Messaging channel types:

Transient

Simple

Reliable

Persistent

Mixed (default)

Off-heap

Paged

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 365

Property... Description..

TTL (ms) Specifies how long (in milliseconds) each event is
retained on the channel after being published. For
example, if you specify a TTL of 10000, the events
on the channel will be automatically removed by the
server after 10000 milliseconds. Specify 0 for events to
remain on the channel indefinitely.

Capacity Event capacity of the channel. Specifies the maximum
number of events that can be on a channel, once
published. Specify 0 to store unlimited events. The
maximum channel capacity is 2147483646.

Dead event store Channel or queue to be used to store events that are
purged before being consumed.

Engine Type of engine to be used for the channel. By default,
Universal Messaging retains all events on the channel
for a specified TTL, modify the retention behavior by
selecting JMS engine or Merge engine.

Cluster-wide Selected automatically if the Universal Messaging
server instance is part of a cluster.

Protobuf descriptor Absolute path to the Protocol Buffer (protobuf)
descriptor file that is stored on the machine where
Software AG Platform Manager is installed.

Storage Properties

Property... Description..

Auto-maintenance Select to retain events till they reach their TTL. Cancel
the selection to purge events from the channel storage
file.

Honor capacity Select to prevent publishing of data when the channel
is full. Cancel the selection to purge the oldest
published event.

Enable caching Select for the events to be stored in the cache memory
and reused. Cancel the selection to read and stored in
the file store.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 366

Property... Description..

Cache on reload Select to enable caching during reload.

Enable read buffering Select to enable read buffering for the store on the
Universal Messaging server.

Enable multicast Select to enable multicast client to receive events over
multitask connections.

Read buffer size Read buffer size in bytes.

Sync each write Select to sync each write to the file system.

Sync batch size Configurable only when Sync each write is selected.
Number of events that is to be synced with the file
system at once.

Sync batch time Configurable only when Sync each write is selected.
Time in milliseconds (ms) between syncs with the file
system.

Fanout archive target Target number of events that are wrien to an archive
after fanout.

Priority Priority range. 0 (lowest) to 9 (highest).

Events per spindle Maximum number of events allowed per file.

Stamp dictionary Select to stamp events on the channel by the server.

Channel Keys

Column... Description...

Key name Name of the channel publish key.

Depth Depth of the channel publish key. Depth is the
maximum number of events that can exist on a channel
for a specific key name.

Channel ACL

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 367

Column... Description...

Subject User name in the format user@host or the name of an
existing group.

Manage ACL Select to allow the user or group to manage ACLs.

Full Select to grant full privileges to the user or group.

Purge Select to allow the user or group to purge events.

Subscribe Select to allow the user or group to subscribe to events.

Publish Select to allow the user or group to publish events.

Named Select to allow the user or group to subscribe to named
objects.

Joins

You can add and delete joins, but cannot edit channel join properties.

Column... Description...

Type Type of join. Outgoing: channel is source. Incoming:
channel is destination.

Destination name Destination channel or queue.

Target instance name Name of the target instance. Required only if the
channel or queue is in a remote Universal Messaging
server instance.

Target instance URL URL of the target Universal Messaging server instance
that has the destination channel or queue for the join.

Filter Type the filtering criteria, a string or a regular
expression. Events will be routed to the destination
channel based on the filtering criteria.

Hop count Type the maximum number of subsequent joins.

Event ID Last retrieved event ID.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 368

Column... Description...

Allow purge Select to allow purging of events on the channel.

Archival Select to enable archival join. Archival join is a join
between a channel and a queue where events will not
be checked for duplication.

Queues Configuration
You can view, create, update, and delete a queue using the Command Central web or
command-line interface.

You can configure the following properties:

Queue Properties

Property... Description..

Name Required. Name of the queue to be created. You cannot
edit the queue name.

Type Type of queue. Universal Messaging queue types:

Transient

Simple

Reliable

Persistent

Mixed (default)

Off-heap

Paged

TTL (ms) Specifies how long (in milliseconds) each event is
retained in the queue after being published. For
example, if you specify a TTL of 10000, the events on
the queue will be automatically removed by the server
after 10000 milliseconds. Specify 0 for events to remain
on the queue indefinitely.

Capacity Event capacity of the queue. Specifies the maximum
number of events that can be on a queue once
published. Specify 0 to store unlimited events. The
maximum queue capacity is 2147483646.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 369

Property... Description..

Dead event store Channel or queue to be used to store events that are
purged before being consumed.

Cluster-wide Selected automatically if the Universal Messaging
server instance is part of a cluster.

Protobuf descriptor Absolute path to the Protocol Buffer descriptor file that
is stored on the machine where Software AG Platform
Manager is installed.

Storage Properties

Property... Description..

Auto-maintenance Select to retain events till they reach their TTL. Cancel
the selection to purge events from the queue storage
file.

Honor capacity Select to prevent publishing of data when the queue is
full. Cancel the selection to purge the oldest published
event.

Enable caching Select for the events to be stored in the cache memory
and reused. Cancel the selection to read and stored in
the file store.

Cache on reload Select to enable caching during reload.

Enable read buffering Select to enable read buffering for the store on the
Universal Messaging server.

Enable multicast Select to enable multicast client to receive events over
multitask connections.

Read buffer size Read buffer size in bytes.

Sync each write Select to sync each write to the file system.

Sync batch size Configurable only when Sync each write is selected.
Number of events that is to be synced with the file
system at once.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 370

Property... Description..

Sync batch time Configurable only when Sync each write is selected.
Time in milliseconds (ms) between syncs with the file
system.

Fanout archive target Target number of events that are wrien to an archive
after fanout.

Priority Priority range. 0 (lowest) to 9 (highest).

Events per spindle Maximum number of events allowed per file.

Stamp dictionary Select to stamp events on the channel by the server.

Queue ACL

Column... Description...

Name User name in the format user@host or the name of an
existing group.

Manage ACL Select to allow the user or group to manage ACLs.

Full Select to grant full privileges to the user or group.

Purge Select to allow the user or group to purge events.

Peek Select to allow the user or group to peek events.

Push Select to allow the user or group to push events.

Pop Select to allow the user or group to pop events.

Joins

You can view the following join properties:

Column... Description...

Type Type of join.

Destination name Destination channel.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 371

Column... Description...

Target instance name Name of the target instance. Required only if the target
channel is in a remote Universal Messaging server
instance.

Target instance URL URL of the target Universal Messaging server instance
that has the destination channel for the join.

Remote node Destination channel.

Hop count Maximum number of subsequent joins.

Event ID Last retrieved event ID.

Allow purge Allow purging of events in the queue.

Archival Archival join is a join between a channel and a queue
where events will not be checked for duplication.

Zones
Zones are a logical grouping of one or more Universal Messaging server instances
(realms) that maintain active connections to each other. Each Universal Messaging server
instance can be a member of zero or one zone, but a server instance cannot be a member
of more than one zone. For more information about zones, see the Zones section in the
Universal Messaging Concepts guide.

You can create, edit, or delete a zone using the Command Central web user interface.
You can create Zone with Realms consisting one or more reams, or create Zone with
Clusters consisting one or more Universal Messaging clusters. You can export the zone
configuration using the Export option.

The table describes the zone parameters required to create a zone:

Configure... Specify...

Zone name Required. Name of the zone, it is used to uniquely
identify this zone.

Servers (for Zone with
Realms)

or

Required. Provide server URL and name if you are
creating a Zone with Realms or provide all or one of the
cluster nodes if you are creating a Zone with Clusters.

Server URL: Universal Messaging server URL.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 372

Configure... Specify...

Clustered servers (for
Zone with Clusters)

Server name: Name of the Universal Messaging
server.

Cluster configuration: Automatically populated with
the cluster name.

Note: You can provide any one cluster node and all the
running nodes of the cluster will be added to the
zone.

Java System Properties
You can view, edit, and delete a few Java system properties from the Command Central
web user interface. Restart the Universal Messaging instance for the changes to take
effect.

You can edit the following Java system properties:

Property Description

LICENCE_FILE Name of the license file.

LICENCE_DIR Absolute path to the location of the license file.

DATADIR Absolute path to the location of the data directory.

Note: Modifying the DATADIR property does not copy
the existing data directory to the new location.

You can delete a property value by passing an empty value for the property, this will
revert the property to its default value.

Cluster Management

Before You Create a Universal Messaging Cluster
Before you create or update a Universal Messaging cluster:

Ensure that the server instances that you want to add to the cluster are running.

Verify that the permissions on the server machines allow connections to the other
servers in the cluster.

Ensure that the /naming/defaultContext channel exists only on one or none of the
nodes that will form the cluster. The Universal Messaging server instance used as a

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 373

JNDI provider uses the /naming/defaultContext channel to store JMS references and
JNDI objects. If channels exists on multiple nodes, you cannot create the cluster.

Cluster Configuration Fields

Field Specify...

Cluster Name Unique cluster name.

Server URL Server instances URL (for example, nsp://127.0.0.1:9002) of each
server node.

When you save the cluster details, the Server Name field is
populated with the name of the server corresponding to the
specified server URL.

Cluster Site Name of the site (Optional) to which the server node belongs.

Prime Site Name of the primary site (Optional), if you have configured sites
in the cluster.

Cluster Configuration Tasks Supported
Cluster configuration tasks that you can perform:

Create a cluster of two or more server instances

Add one or more server instances to the existing cluster

Remove one or more server instances from the existing cluster

Upgrade a cluster

Create sites and assign server instances to the sites

Assign a site as the prime site of a cluster

Remove one or more server instances from a cluster site

Remove sites from a cluster

Delete a cluster

Migrate a cluster

Cluster Migration
You can now automatically migrate Universal Messaging clusters using Command
Central composite templates. Use Command Central composite templates to migrate
all the Universal Messaging server instances that are part of the cluster, and add the
following property to resolve the cluster node connections successfully after migration:

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 374

Add the following property to the um-cluster section of the composite template
YAML file present in the following directory: Software AG_directory \profiles\CCE
\data\templates\composite :
 <ClusterSettings>
 ...
 <ExtendedProperties>
 <Property name="migrationType">SAME_HOST or CROSS_HOST </Property>
 </ExtendedProperties>
 </ClusterSettings>

Note: A Universal Messaging server instance mapping file called
remote_realms_bootstrap.conf containing information about the new
Universal Messaging hosts is automatically generated in each of the
Universal Messaging server instances. The mapping file is used to identify
the new hosts, and to form the new cluster.

Universal Messaging Logs
You can view, download, and search all the Universal Messaging logs at one place in the
Command Central web user interface. You can access the logs for a Universal Messaging
server instance by selecting a Universal Messaging instance name and clicking the Logs
tab.

Universal Messaging Administration Types
Command Central lets you administer and monitor the following on a Universal
Messaging server instance:

Durable Subscribers

Channels

Queues

Durable Subscribers
You can search, monitor, and delete durable subscribers for a Universal Messaging
server instance. You can browse and purge events on a specific durable subscriber.

Types of durable subscribers:

Shared

Shared - Queued

Priority

Serial

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 375

Durable

Note: You can purge events only for shared durable subscribers.

The table displays the following durable subscriber aributes:

Attribute Description

Name Name of the durable subscriber.

Channel Name of the channel to which the durable subscriber
belongs.

Durable type Type of the durable subscriber (Shared, Shared -
Queued, Priority, Serial, or Durable).

Last event ID Event ID of the last successfully consumed event.

Outstanding events The number of events outstanding for a particular
durable subscriber.

Note: The outstanding event count displayed for a non-
shared durable is only an estimate.

Last read time The last date and time when the durable subscriber
read, commied, or rolled back an event.

Select a durable subscriber to view:

Durable details

Browse events

Bulk purge

The Durable details page contains the following information about a durable subscriber:

Details

Attribute Description

Name Name of the durable subscriber.

Channel Name of the channel to which the durable subscriber
belongs.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 376

Attribute Description

Durable type Type of the durable subscriber (Shared, Shared -
Queued, Priority, Serial, or Durable).

Cluster-wide Whether the durable subscriber is on a channel that is
part of a Universal Messaging cluster.

Persistent Whether the durable subscriber is persistent.
Persistent durable subscribers retrieve the last event
ID consumed before the Universal Messaging server
instance was restarted.

Selector Events are filtered based on the defined selector.

Status

Attribute Description

Last event ID Event ID of the last successfully consumed event.

Store size (KB) The size of the store available for the Shared - Queued
durable.

Total events The number of outstanding events for the durable
subscriber.

Pending events The number of outstanding events waiting for a
commit or a rollback.

Last read time The last date and time when the durable subscriber
read, commied, or rolled back an event.

Last write time The last time the durable was wrien to. Typically,
this is the last time an event was added to the durable
subscriber.

Connections

Attribute Description

ID Connection ID.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 377

Attribute Description

Mode Client subscription mode (subscription based or
getNext).

Max pending Window size specified by the client.

Acknowledged Total acknowledged events.

Rolled back Total rolled back events.

Pending Event queues waiting to be acknowledged or rolled
back.

Last read time Last time the session acknowledged, rolled back, or
read an event from the durable subscriber.

The Browse events page displays the event list and lets you to browse events for a
durable subscriber. Events are displayed in the order of old to new. A maximum of 1000
events are displayed in the table with a maximum combined size of 10 MB. For example,
if two events of size 10 MB and 100 MB are present for the durable subscriber, only the
event of size 10 MB is displayed, and no other events are displayed. Click Browse events
to refresh the events displayed in the table.

Attribute Description

Event ID Unique ID to identify the event.

TTL (ms) Specifies how long (in milliseconds) each event is
retained.

Tag Shows the tag information of the event if an event tag
exists.

Event data Content of the event.

Note: If the payload is Protocol Buffers (Protobuf), the
event data will contain the message "Protobuf
payload" and not the decoded payload.

Event size (bytes) Size of the event in bytes.

Note: Event size is the total size of the event that is the
sum of event data and event properties.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 378

Attribute Description

Event properties Event properties represented as key-value pairs.

Persistent Shows whether the event is persistent or not.

You can select an event ID to view the event data and event properties.

The Bulk purge option allows you to purge events in bulk for a durable subscriber. You
can purge events by providing an event range, event filter, or purge all the events.

Channels
You can search and monitor the following channel aributes:

Attribute Description

Name Name of the channel.

Event ID Event ID of the last event that was consumed from the
channel. Event ID is -1 if the channel is empty.

Events Number of events in the channel that are yet to be
consumed.

Current Connections Number of current connections to the channel.

% Free Percentage of free storage available in the channel.

Select a channel to view detailed information about the status of the channel and the
durable subscribers (named objects) subscribed to the channel. You can also delete a
durable subscriber subscribed to the channel.

Queues
You can search and monitor the following queue aributes:

Attribute Description

Name Name of the queue.

Event ID Event ID of the last event that was popped from the
queue. Event ID is -1 if the queue is empty.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 379

Attribute Description

Events Number of events in the queue that are yet to be
consumed.

Current Connections Number of current connections to the queue.

% Free Percentage of free storage available in the queue.

Select a queue to view detailed information about the status of the queue.

Universal Messaging Inventory
When you view installations in an environment, Command Central
displays the Universal Messaging server instances listed in the
UniversalMessaging_installationDirectory \UniversalMessaging\server directory of an
installation. Command Central lists all the folders (except the templates) in the server
directory.

Universal Messaging Lifecycle Actions
You can start, stop, and restart a Universal Messaging server instance from the
Command Central web user interface. The following legend describes what each one of
the lifecycle operations.

Start. Start a server instance that has stopped.

Stop. Stop a running server instance.

Restart. Restart a running server instance.

Universal Messaging KPIs
You can view the following key performance indicators (KPIs) to monitor the
performance of the Universal Messaging servers:

KPI Description

JVM Memory Indicates the utilization of JVM memory.

The marginal, critical, and maximum values for this
KPI depend on the maximum memory size of the JVM.

Marginal is 80% of the maximum JVM memory.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 380

KPI Description

Critical is 95% of the maximum JVM memory.

Maximum is 100% of the maximum JVM memory.

Fanout Backlog Indicates the total number of events currently waiting
to be processed by the fanout engine. If the fanout
backlog is more than the critical value, there is a
possibility that the subscribers receive the published
events after some delay.

The KPI uses the following marginal, critical, and
maximum values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water
mark) of fanout backlog. Default is 100.

Queued Tasks Indicates the total number of tasks in the read, write,
and common read/write pools. If the number of read
and write tasks queued is more than the critical value,
it indicates that the Universal Messaging server is
unable to match the speed of the publishers and
subscribers.

The KPI uses the following marginal, critical, and
maximum values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water
mark) of read and write tasks queued. Default is 100.

Universal Messaging Run-time Monitoring Statuses
The Command Central instances page displays the run-time status of a Universal
Messaging server instance in the status column. The Universal Messaging can have one
of the following run-time status:

Online : Server instance is online.

Failed : Server instance failed. For example, the Universal Messaging server
instance stopped unexpectedly due an error or system failure.

Stopped : Server instance is not running.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 381

Stopping : Server instance is stopping.

Unresponsive : Server instance is running, but it is unresponsive. When none of
the server interfaces are connected to the server.

Unknown : Server instance status cannot be determined.

When you have set up a Universal Messaging cluster, the run-time status indicates if a
server instance is:

Online Master : Server instance is online and it is the master node in the cluster.

Online Slave : Server instance is online and it is the slave node in the cluster.

Error : Server instance is part of a cluster that does not satisfy the requisite
quorum.

Universal Messaging and the Command Line Interface
Universal Messaging supports the Platform Manager commands listed below. For
information about the commands, see Software AG Command Central Help. For Universal
Messaging-specific information about using this command, see "Universal Messaging
Commands" on page 382.

Important: When a Universal Messaging server instance is running as a service, you
cannot perform administrative tasks such as check the status or start or stop
the server instance.

Supported commands:

sagcc create configuration data

sagcc delete configuration data

sagcc get configuration data

sagcc update configuration data

sagcc get configuration instances

sagcc list configuration instances

sagcc get configuration types

sagcc list configuration types

sagcc exec configuration validation create

sagcc exec configuration validation delete

sagcc exec configuration validation update

sagcc create instances

sagcc delete instances

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 382

sagcc list instances

sagcc list instances supportedproducts

sagcc get inventory components

sagcc exec lifecycle

sagcc get diagnostics logs

sagcc get diagnostic logs export file

sagcc list diagnostics logs

sagcc get monitoring

sagcc exec administration product

For information about these commands, see Software AG Command Central Help.

Universal Messaging Commands
Instance Management

The following table lists the required parameters that you must include when managing
the Universal Messaging instances using the Universal Messaging instance management
commands:

Command Parameter Description

sagcc create
instances

NumRealmServer,
NumEnterpriseManager,
and
NumTemplateApplications

The product ID for the
Universal Messaging instance.

 instance.name Required. A name for the new
Universal Messaging instance.

 instance.ip Optional. An IP address for the
Universal Messaging server
interface. If you do not specify
a value, 0.0.0.0 is the default
value.

 instance.port Optional. A port number for the
Universal Messaging server. If
you do not specify a value, 9000
is the default port number.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 383

Command Parameter Description

 instance.dataDir Optional. Absolute path to
Universal Messaging server data
directory. If you do not specify
a path, the default directory
location is used for creating
the data directory. Location
of the default directory is:
Universal Messaging_directory\server \umserver

 license.file Optional. Absolute path to the
Universal Messaging license file.
If you do not specify a path, the
default license is used. Location
of the default directory is:
Universal Messaging_directory\server \umserver

 instance.config.profile Optional. Initial configuration
seings for the Universal
Messaging server instance.
Options for the parameter value:

wM: webmethods suite use
cases.

TC: Standalone use cases.

CUSTOM: Custom profile.

 instance.config.file Required if the
instance.config.profile
parameter value is CUSTOM.
Absolute path to the custom
profile XML file.

Important: Universal Messaging does not support sagcc update instances. You
cannot rename a Universal Messaging instance.

Examples:

To check if Universal Messaging supports instance management operations through
Command Central for a node with alias “messagingNode”:
sagcc list instances messagingNode supportedproducts

To create an instance of Universal Messaging server named “umserver” on port
number “9000” of the node with alias “messagingNode”:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 384

To create an instance of Universal Messaging server named “umserver” on port
number “9000” of the node with alias “messagingNode” and having a custom data
directory path and license file:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000
instance.dataDir=Data_Directory_Absolute_Path license.file=
absolute path to the license file

To create an instance of Universal Messaging server named "umserver" on port
number “9000” of the node with alias “messagingNode”, and provide an initial
configuration seings:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000 instance.config.profile=wM or TC

To create an instance of Universal Messaging server named "umserver" on port
number “9000” of the node with alias “messagingNode”, and provide custom initial
configuration seings:
sagcc create instances messagingNode NUMRealmServer instance.name=umserver
instance.ip=0.0.0.0 instance.port=9000 instance.config.profile=CUSTOM
instance.config.file=absolute path to the custom profile XML file

To read the following properties of Universal Messaging server named “umserver":

Port number

Interface IP address

Server data directory path

License path
sagcc list instances messagingNode Universal-Messaging-umserver

To remove the “umserver” Universal Messaging server instance existing on the node
with alias “messagingNode” node:
 sagcc delete instances messagingNode Universal-Messaging-umserver

To create an Enterprise Manager instance named “EM1”:
 sagcc create instances messagingNode instance.name=em1
 instance.ip=0.0.0.0 instance.port=9000

Use the Universal Messaging Instance Manager tool to delete the Enterprise
Manager and Template Applications instances. You cannot use Command Central
commands for deleting these instances as they are not listed in the product
inventory.

Note: You can create a Template Applications instance using the same command
used to create an Enterprise Manager instance.

Universal Messaging Configuration Types

The following table lists the configuration types that Universal Messaging server
instance supports.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 385

Configuration Type Use to...

COMMON-LOCAL-USERS Configure and manage users of a Universal
Messaging server instance. COMMON-
LOCAL-USERS-userId supports configuring
the user ID and password of each user.
By default, the users have administrator
privileges for the Universal Messaging server
instance.

COMMON-LICENSE Configure the Universal Messaging-specific
SagLic license file.

COMMON-LICLOC View the location of a Universal Messaging
server instance’s license file.

You cannot change the location of the license
file.

COMMON-JAVASYSPROPS Extended JVM options.

UM-JNDI-CF Configure the following JNDI connection
factories:

Connection Factory

Topic Connection Factory

Queue Connection Factory

XA Connection Factory

UM-JNDI-DEST Configure the following JNDI destinations:

Topics

Queues

COMMON-CLUSTER Configure an active/active Universal
Messaging cluster.

COMMON-MEMORY Configure the size of the initial memory,
maximum memory, and the maximum direct
memory (extended property) of a Universal
Messaging server instance.

COMMON-PORTS Configure the Universal Messaging server
interfaces.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 386

Configuration Type Use to...

Note: You cannot change the protocol, bind
address, port number, or alias of a port
of an existing server interface.

If you change the SSL certificates of a
secured interface, you must restart the
interface.

UM-ZONE Create and manage Universal Messaging
zones.

UM-CHANNELS Create and manage Universal Messaging
channels.

UM-QUEUES Create and manage Universal Messaging
queues.

UM-REALM-ACL Manage Universal Messaging Access Control
List (ACL).

UM-GROUPS Manage Universal Messaging security groups.

COMMON-SYSPROPS DEPRECATED. Use COMMON-
JAVASYSPROPS.

User Configuration

You can use the command line interface commands, web user interface, or
internaluserrepo.bat/sh script to configure users of a Universal Messaging server
instance.

You can perform the following user configuration tasks on a Universal Messaging server
instance from the command line interface:

List the path and the users existing in the user repository using the
sagcc get configuration instances node_alias Universal-
Messaging-umserver command.

Retrieve information about a specific user using the
sagcc get configuration instances node_alias Universal-
Messaging-umserver COMMON-LOCAL-USERS-user name command.

Add new users to the user repository using the
sagcc create configuration data node_alias Universal-
Messaging-umserver COMMON-LOCAL-USERS --input absolute path to the
XML file containing the user ID and password command.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 387

Update or change the password of an existing user using the
sagcc update configuration data node_alias Universal-
Messaging-umserver COMMON-LOCAL-USERS-user name --input absolute path
to the XML file containing new password command.

Delete existing users from the user repository using the
sagcc delete configuration data node_alias Universal-
Messaging-umserver COMMON-LOCAL-USERS-user name command.

Information to authenticate the users of a Universal Messaging server instance is stored
in the user repository (users.txt file). The path of the user repository users.txt file is
specified in the Server_Common.conf file of the Universal Messaging server instance
irrespective of whether you are running Universal Messaging as a service or as an
application. The users.txt file is generated only after you create a new internal user. The
default path for the Universal Messaging user repository (users.txt file) is Universal
Messaging directory\server\umserver instance. While creating the user repository, if
you specify a relative path, the users.txt file will be created in a directory relative to the
bin directory of the Universal Messaging server instance.

Examples:

To list the path of the user repository and the users of a Universal Messaging server
instance:
sagcc get configuration instances sag01 Universal-Messaging-umserver

where umserver is the name of the Universal Messaging server instance, and sag01
is the alias name of the installation where umserver is running.

To retrieve information of a Universal Messaging server instance user:
sagcc get configuration instances sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user1

where umserver is the name of the Universal Messaging server instance, sag01 is the
alias name of the installation where umserver is running, and user1 is the user ID of
the user.

To add a user to a Universal Messaging server instance:
sagcc create configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS --input c:\inputxmls\user2.xml

where umserver is the name of the Universal Messaging server instance, sag01 is the
alias name of the installation where umserver is running, and user2.xml is file that
contains the user ID and the password of the new user.

Format of the user2.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<User id="user2">
<Password>test</Password>
</User>

To update the password of a Universal Messaging server instance user:
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user2 --input c:\inputxmls\user2.xml

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 388

where umserver is the name of the Universal Messaging server instance, sag01 is the
alias name of the installation where umserver is running, and user2.xml is the file
that contains the new password of the specified user.

To delete a Universal Messaging server instance user:
sagcc delete configuration data sag01 Universal-Messaging-umserver
COMMON-LOCAL-USERS-user2

where umserver is the name of the Universal Messaging server instance, sag01 is the
alias name of the installation where umserver is running.

License Configuration

You can view the content and the location of the license file, and change the license file
of a Universal Messaging server instance.

View the license details of a Universal Messaging server instance using the
sagcc get configuration data node_alias Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging command.

View the license location of a Universal Messaging server instance using the
sagcc get configuration data node_alias Universal-Messaging-umserver
COMMON-LICLOC-Universal-Messaging command.

Add a Universal Messaging license key file with the specified alias to the Command
Central license key manager using the sagcc add license-tools keys license
key alias -i absolute path to the license file command.

Update a license key file assigned to the specified license key alias using sagcc
update configuration license node_alias Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging license key alias.

Examples:

To view the license details of a Universal Messaging server instance with "Universal-
Messaging-umserver" component ID that runs in the installation with alias name
“sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-LICENSE-Universal-Messaging

To view the license file location of a Universal Messaging server instance with
"Universal-Messaging-umserver" component ID that runs in the installation with
alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-LICLOC-Universal-Messaging

To add a Universal Messaging license key file with the license key alias "um_lic" to
the Command Central license key manager:
sagcc add license-tools keys um_lic -i C:\umlicense\new_license.xml

To update a license key file assigned to the license key alias "um_lic" with
"Universal-Messaging-umserver" component ID that runs in the installation with
alias name “sag01” :
sagcc update configuration license sag01 Universal-Messaging-umserver

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 389

COMMON-LICENSE-Universal-Messaging um_lic

Port Configuration

You can create, update, and delete a port for a Universal Messaging server instance.

Create a port using the sagcc get configuration data node_alias Universal-
Messaging-umserver COMMON-PORTS --input_port_configuration.xml --
password Command Central password command.

The input port configuration XML file should be of the following format:
<PortSettings>
 <Port alias="nhp1">
 <Enabled>true</Enabled>
 <Type>STANDARD</Type>
 <Number>9001</Number>
 <Protocol>NHP</Protocol>
 <Backlog>100</Backlog>
 <ExtendedProperties>
 <Property name="autostart">true</Property>
 <Property name="allowforinterrealm">true</Property>
 <Property name="authtime">1000</Property>
 <Property name="EnableNIO">true</Property>
 <Property name="acceptThreads">2</Property>
 <Property name="receivebuffersize">1310721</Property>
 <Property name="SelectThreads">4</Property>
 <Property name="advertise">true</Property>
 <Property name="allowclientconnections">true</Property>
 <Property name="Backlog">100</Property>
 <Property name="Alias"/>
 <Property name="keyAlias"/>
 <Property name="sendbuffersize">1310721</Property>
 <Property name="EnableHTTP11">true</Property>
 <Property name="EnableJavaScript">true</Property>
 <Property name="CORSAllowCredentials">true</Property>
 <Property name="CORSAllowedOrigins">*</Property>
 <Property name="AjaxLPActiveDelay">100</Property>
 <Property name="EnableWebSockets">true</Property>
 <Property name="EnableGZipLP">true</Property>
 <Property name="MinimumBytesBeforeGZIP">1000</Property>
 <Property name="AjaxLPIdleDelay">60000</Property>
 <Property name="header1Name">foo</Property>
 <Property name="header1Value">bar</Property>
 <Property name="header1UserAgent">mozilla</Property>
 </ExtendedProperties>
 </Port>
</PortSettings>

Update or modify a port's configuration using the sagcc get configuration data
node_alias Universal-Messaging-umserver COMMON-PORTS-port name
--input_port_configuration.xml --password Command Central password
command.

Delete a port configuration using the sagcc get configuration data
node_alias Universal-Messaging-umserver COMMON-PORTS-port name
--input_port_configuration.xml --password Command Central password
command.

Examples:

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 390

To create a port for a Universal Messaging server instance with "Universal-
Messaging-umserver" component ID that runs in the installation with alias name
“sag01”, where input_port.xml is an XML file containing port configuration
information:
sagcc create configuration data sag01 Universal-Messaging-umserver
 COMMON-PORTS --input_port.xml --password myccpassword

To update or modify port configuration for a Universal Messaging server instance
with "Universal-Messaging-umserver" component ID that runs in the installation
with alias name “sag01”, where input_port.xml is an XML file containing the
updated port configuration information, and nhp1 is the name of the port to be
updated:
sagcc update configuration data sag01 Universal-Messaging-umserver
 COMMON-PORTS-nhp1 --input_port.xml --password myccpassword

To delete a port for a Universal Messaging server instance with "Universal-
Messaging-umserver" component ID that runs in the installation with alias
name “sag01”, where input_port.xml is an XML file containing the updated port
configuration information, and nhp1 is the name of the port to be deleted:
sagcc delete configuration data sag01 Universal-Messaging-umserver
 COMMON-PORTS-nhp1 --input_port.xml --password myccpassword

Realm ACL Configuration

You can view the realm ACL configuration information in XML format using the sagcc
get configuration data node_alias Universal-Messaging-umserver UM-REALM-
ACL command.

Examples:

To view the realm ACL configuration information for a Universal Messaging server
instance with "Universal-Messaging-umserver" component ID that runs in the
installation with alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-REALM-ACL

Security Groups

You can retrieve the security group configuration data for a Universal Messaging
server instance using sagcc get configuration data node_alias Universal-
Messaging-umserver UM-GROUPS-group name command.

Example:

To retrieve the security group configuration information for a Universal Messaging
server instance with "Universal-Messaging-umserver" component ID that runs in the
installation with alias name “sag01”:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-GROUPS-Everyone

General Properties Configuration

You can view configuration properties for a specific configuration group by using the
sagcc get configuration data command.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 391

You can update the configuration properties by using the sagcc update
configuration data command.

For information about configuration properties, see "General Properties" on page 359.

Examples:

To view the cluster configuration properties for the Universal-Messaging-
umserver server instance:
sagcc get configuration data sag01 Universal-Messaging-umserver
COMMON-SYSPROPS-Data_Stream_Config

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. Data_Stream_Config is the name of the configuration
group.

To update cluster configuration properties for Universal-Messaging-umserver
server instance:
sagcc update configuration data sag01 Universal-Messaging-umserver
COMMON-SYSPROPS-Data_Stream_Config --input c:\datastreamconfig.properties

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

COMMON-SYSPROPS-Cluster_Config is the configuration instance ID where COMMON-
SYSPROPS is the configuration type and Data_Stream_Config is the name of the
configuration group.

datastreamconfig.properties is the properties file containing the modified
configuration parameters.

The properties file should contain parameter values in the following format:
FanoutTaskQueueSize=66
FanoutTraversalType=2
MaxSessionIdSize=14
MonitorTimer=10000
OffloadMulticastWrite=false
ParallelFanoutThreshold=50
SendInitialMapping=true

Important: Parameter names are case sensitive. For parameter values of enumeration
type, set values ranging from 0 to n to map to the corresponding
enumeration values in the Command Central user interface. For example, in
the above properties file, FanoutTraversalType=2 will be mapped to the
value Reversed Order.

Note: The sagcc update configuration data command exits and displays an
error at the first instance of a wrong parameter definition. For example, in the
above example, the command will exit displaying an error if MonitorTimer is
assigned a string value.

JNDI Configuration

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 392

You can create, view, update, and delete a JNDI asset. Ensure that the Universal
Messaging server instance is running before running the following commands.

View all the configuration types for a Universal Messaging server instance using the
sagcc get configuration types node_alias Universal-Messaging-umserver
command.

View all the configuration instances for a Universal Messaging server instance
using the sagcc get configuration instances node_alias Universal-
Messaging-umserver command.

Create a new JNDI connection factory by passing parameters defined in
an XML file using the sagcc create configuration data node_alias
Universal-Messaging-umserver UM-JNDI-CF -i absolute path to the
XML file command. You can create the following connection factory types:
ConnectionFactory, TopicConnectionFactory, QueueConnectionFactory, and
XAConnectionFactory.

The XML file should contain the parameters in the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
 <name>connection_factory_name </name>
 <type>connection_factory_type </type>
 <url>connection_factory_binding_url </url>
 <durableType>type of durable </durableType>
</connectionFactory>

Note: The parameters name, type, and url are required, and the durableType
parameter is optional.

Create a new JNDI destination by passing parameters defined in an XML file
using the sagcc create configuration data node_alias Universal-
Messaging-umserver UM-JNDI-DEST -i absolute path to the XML file
command. You can create the following destination types: Topic and Queue.

The XML file should contain the parameters in the following format:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<destination>
 <name>destination_name </name>
 <type>destination_type </type>
 <storeName>jms_channel_or_queue_name </storeName>
 <autoCreateDest>true/false </autoCreateDest>
</destination>

name parameter can include upper and lower case alphabetic characters, digits (0-9),
double colon (::), slash (/), and periods (.), for example, destination1. Use the double
colon (::) for specifying nested name space, for example, destination1::destination2.
A combination of special characters in a name is not allowed, for example,
destination1::destination2/destination3. storeName parameter can include upper
and lower case alphabetic characters, digits (0-9), double colon (::), slash (/), and
underscores (_) but cannot include periods (.).

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 393

Retrieve information about a specific JNDI connection factory using the sagcc get
configuration data node_alias Universal-Messaging-umserver UM-JNDI-
CF-connection_factory_name command.

Retrieve information about a specific JNDI destination using the sagcc get
configuration data node_alias Universal-Messaging-umserver UM-JNDI-
DEST-destination_name command.

Update a JNDI connection factory by passing the new parameters defined in an
XML file using the sagcc update configuration data node_alias Universal-
Messaging-umserver UM-JNDI-CF-connection_factory_name -i absolute
path to the XML file command.

Important: You can update the URL and the durableType property, you cannot
update the name of the connection factory.

Delete a JNDI connection factory using the sagcc delete configuration
data node_alias Universal-Messaging-umserver UM-JNDI-
CF-connection_factory_name command.

Delete a JNDI destination using the sagcc delete configuration data
node_alias Universal-Messaging-umserver UM-JNDI-DEST-destination_name
command.

Note: Deleting a JNDI destination will not delete the channel or queue that exists
on the Universal Messaging server instance.

Examples:

To view all the configuration types for a Universal Messaging server instance:
sagcc get configuration types sag01 Universal-Messaging-umserver

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To view all the configuration instances for a Universal Messaging server instance:
sagcc get configuration instances sag01 Universal-Messaging-umserver

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To create a new JNDI connection factory by passing parameters defined in an XML
file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF -i C:\jndi\connecton_factory.xml

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-JNDI-CF is the configuration type and C:\jndi
\connecton_factory.xml is the absolute path to the XML file in which the
parameters are defined. Example of properties defined in the XML file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
 <name>connectionfactory1</name>

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 394

 <type>ConnectionFactory</type>
 <url>nhp://124.597.890:9100</url>
 <durableType>Shared</durableType>
</connectionFactory>

To create a new JNDI destination by passing parameters defined in an XML file:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST -i C:\jndi\destination.xml

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-JNDI-DEST is the configuration type and C:\jndi
\destination.xml is the absolute path to the XML file in which the parameters are
defined. Example of properties defined in the XML file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<destination>
 <name>topicLookup</name>
 <type>destination1</type>
 <storeName>topic1</storeName>
 <autoCreateDest>true</autoCreateDest>
</destination>

To retrieve information about a specific JNDI connection factory:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionfactory1

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-JNDI-CF is the configuration type and
connectionfactory1 is the name of the JNDI connection factory from which
information is to be retrieved.

To retrieve information about a specific JNDI destination:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST-destination1

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-JNDI-DEST is the configuration type and
destination1 is the name of the JNDI destination from which information is to be
retrieved.

To update a JNDI connection factory by passing the new parameters defined in an
XML file:
sagcc update configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionfactory1 -i C:\jndi\update.xml

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-JNDI-CF is the configuration type,
onnectionfactory1 is the name of the connection factory to be updated, and
C:\jndi\update.xml is the absolute path to the XML file in which the updated
parameters are defined. Example of properties defined in the XML file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<connectionFactory>
 <name>connectionfactoryupdated</name>
 <type>ConnectionFactory</type>
 <url>nhp://124.597.890:9100</url>
 <durableType>Serial</durableType>
</connectionFactory>

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 395

To delete a JNDI connection factory:
sagcc delete configuration data sag01 Universal-Messaging-umserver
UM-JNDI-CF-connectionfactory1

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-JNDI-CF is the configuration type and
connectionfactory1 is the name of the JNDI connection factory.

To delete a JNDI destination:
sagcc delete configuration data sag01 Universal-Messaging-umserver
UM-JNDI-DEST-destination1

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-JNDI-DEST is the configuration type and
destination1 is the name of the JNDI destination.

Usage Notes

Updating JNDI destinations is not supported.

Creating a connection factory and destination with the same name is not allowed for
a Universal Messaging server instance.

Channel and Queue Configuration

Ensure that the Universal Messaging server instance is running before running the
following commands.

View all the configuration instances for a Universal Messaging server instance
using the sagcc get configuration instances node_alias Universal-
Messaging-umserver command.

Create a channel on a Universal Messaging server instance using the sagcc
create configuration data node_alias Universal-Messaging-umserver
UM-CHANNELS -i absolute path to the XML file containing channel
properties command .

Update a channel on a Universal Messaging server instance using the sagcc
update configuration data node_alias Universal-Messaging-umserver
UM-CHANNELS-channel_name -f xml -i absolute path to the XML file
containing channel properties command.

Create a queue on a Universal Messaging server instance using the sagcc create
configuration data node_alias Universal-Messaging-umserver UM-
QUEUES -i absolute path to the XML file containing queue properties
command .

Update a queue on a Universal Messaging server instance using the sagcc update
configuration data node_alias Universal-Messaging-umserver UM-
QUEUES-queue_name -f xml -i absolute path to the XML file containing
channel properties command.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 396

Retrieve the configuration information of a specific channel using the sagcc get
configuration data node_alias Universal-Messaging-umserver UM-
CHANNELS-channel_name command.

Retrieve the configuration information of a specific queue using the sagcc get
configuration data node_alias Universal-Messaging-umserver UM-
QUEUES-queue_name command.

Examples:

To view all the configuration instances for a Universal Messaging server instance:
sagcc get configuration instances sag01 Universal-Messaging-umserver

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To create a channel on a Universal Messaging server instance:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS -i C:\Channels\channel_create.xml

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-CHANNELS is the configuration type and
channel_create.xml is an XML file containing the channel aributes of the new
channel that is created.

Format of the channel_create.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Channel>
 <name>channelname</name>
 <type>Persistent</type>
 <ttl>0</ttl>
 <capacity>0</capacity>

</Channel>

To update a channel on a Universal Messaging server instance:
sagcc update configuration data sag01 local Universal-Messaging-umserver
UM-CHANNELS-channel_name -f xml -i C:\Channels\channel_edited.xml

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-CHANNELS is the configuration type. channel_name
is the name of the channel and channel_edited.xml is an XML file containing the
channel aributes to be updated.

Format of the channel_edited.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Channel>
 <name>channel_name</name>
 <type>Persistent</type>
 <ttl>50000</ttl>
 <capacity>50000</capacity>
 <deadEventStore/>
 <engine>JMS Engine</engine>
......
</Channel>

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 397

To create a queue on a Universal Messaging server instance:
sagcc create configuration data sag01 Universal-Messaging-umserver
UM-QUEUES -i C:\queues\queue_create.xml

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. UM-QUEUES is the configuration type and
queue_create.xml is an XML file containing the aributes of the new queue.

Format of the channel_create.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Queue>
 <name>queuename</name>
 <type>Persistent</type>
 <ttl>78</ttl>
 <capacity>99</capacity>
 <parent>umserver</parent>

</Queue>

To update a queue on a Universal Messaging server instance:
sagcc update configuration data sag01 local Universal-Messaging-umserver
UM-QUEUES-queue_name -f xml -i C:\queues\queue_edited.xml

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-CHANNELS is the configuration type. queue_name is
the name of the queue and queue_edited.xml is an XML file containing the queue
aributes to be updated.

Format of the queue_edited.xml file:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Queue>
 <name>queue_name</name>
 <type>Persistent</type>
 <ttl>50000</ttl>
 <capacity>50000</capacity>
 <deadEventStore/>
 <engine>JMS Engine</engine>
......
</Queue>

To retrieve configuration information of a specific channel:
sagcc get configuration data sag01 Universal-Messaging-umserver UM-CHANNELS
-channelname

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-CHANNELS is the configuration type and channelname
is the name of the channel.

To retrieve configuration information of a specific queue:
sagcc get configuration data sag01 Universal-Messaging-umserver UM-QUEUES
-queuename

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-QUEUES is the configuration type and queuename is the
name of the queue.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 398

Zones Configuration

Ensure that the Universal Messaging server instances are running before running the
following commands.

Retrieve zone configuration information for a Universal Messaging server
instance using the sagcc get configuration data node_alias Universal-
Messaging-umserver UM-ZONE command.

Create a zone using the sagcc create configuration data node_alias
Universal-Messaging-umserver UM-ZONE -i=path to the XML file
containing the zone configuration command.

Note: Provide the absolute path to the XML file if the XML file is not in the same
directory from which the command is run.

Update a zone using the sagcc update configuration data node_alias
Universal-Messaging-umserver UM-ZONE -i=path to the XML file
containing the updated zone configuration command.

Note: Provide the absolute path to the XML file if the XML file is not in the same
directory from which the command is run.

Delete a zone using the sagcc delete configuration data node_alias
Universal-Messaging-umserver UM-ZONE command. The delete command deletes
the zone in which umserver belongs. You can remove specific server instances from a
zone by removing the server instances in the updated zone configuration XML file,
and then using the update zone command.

Examples:

To retrieve zone configuration information for a Universal Messaging server
instance:
sagcc get configuration data sag01 Universal-Messaging-umserver UM-ZONE

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-ZONE is the configuration type for zones.

To create a zone:
sagcc create configuration data sag01 Universal-Messaging-umserver UM-ZONE
 -i=C:\zones\zone_create.xml

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-ZONE is the configuration type for zones. And,
c:\zones\zones_create.xml is the absolute path to the location where the zone
configuration XML file is located.

Format of the zone_create.xml file for zone with realms:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
 <name>RealmZone</name>
 <type>Realm</type>
 <realms>

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 399

 <server name="um_realm1">
 <url>nsp://localhost:9701</url>
 </server>
 <server name="um_realm2">
 <url>nsp://localhost:9702</url>
 </server>
 </realms>
 <clusters/>
</Zone>

Format of the zone_create.xml file for a zone with clusters:
<?xml version="1.0" encoding="UTF-8"?>
<Zone>
 <name>ClusterZone</name>
 <type>Cluster</type>
 <realms />
 <clusters>
 <server name="um_cluster1">
 <url>nsp://localhost:9704</url>
 <clusterName />
 <status />
 </server>
 <server name="um_cluster2">
 <url>nsp://localhost:9705</url>
 <clusterName />
 <status />
 </server>
 </clusters>
</Zone>

To update a zone:
sagcc update configuration data sag01 Universal-Messaging-umserver UM-ZONE
 -i=C:\zones\zone_update.xml

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-ZONE is the configuration type for zones. And,
c:\zones\zone_update.xml is the absolute path to the location where the zone
configuration XML file is located.

Note: zone_update.xml file should be in the same format as the XML file used to
create zones. You can substitute the updated configuration values in place
of the old values.

To delete a zone:
sagcc delete configuration data local Universal-Messaging-umserver UM-ZONE

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-ZONE is the configuration type for zones.

Cluster Configuration

Before you create or update a Universal Messaging cluster:

Make sure the server instances that you want to add to the cluster are running.

Verify that the permissions on the server machines allow connections to the other
servers in the cluster.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 400

Make sure the /naming/defaultContext channel exists only on one or none of the
nodes that will form the cluster. The Universal Messaging server instance used as a
JNDI provider uses the /naming/defaultContext channel to store JMS references and
JNDI objects. If channels exists on multiple nodes, you cannot create the cluster.

If you have created custom composite templates for Command Central 9.9 or earlier,
ensure that you remove the Universal Messaging server instance name suffix from
COMMON-CLUSTER configuration type in the composite template when applying
the composite template in Command Central 9.10 or later. For example,

In Command Central 9.9 and earlier:
um-cluster:
 description: Cluster configuration for two UM instances
 products:
 NUMRealmServer:
 ${node.host}:
 instance.port: ${um.instance.port}
 instance.ip: ${um.host}
 runtimeComponentId: Universal-Messaging-${instance.name}
 configuration:
 Universal-Messaging-${instance.name}:
 COMMON-CLUSTER:
 COMMON-CLUSTER-${instance.name}: &umClusterConfig
 Name: ${um.cluster}
 Servers: # two UM instances cluster
 Server:
 -
 "@name": ${um.host}
 URL: "nsp://${um.host}:${um.instance.port}"
 -
 "@name": ${um.host2}
 URL: "nsp://${um.host2}:${um.instance.port2}"

In Command Central 9.10 and later:
um-cluster:
 description: Cluster configuration for two UM instances
 products:
 NUMRealmServer:
 ${node.host}:
 instance.port: ${um.instance.port}
 instance.ip: ${um.host}
 runtimeComponentId: Universal-Messaging-${instance.name}
 configuration:
 Universal-Messaging-${instance.name}:
 COMMON-CLUSTER:
 COMMON-CLUSTER: &umClusterConfig
 Name: ${um.cluster}
 Servers: # two UM instances cluster
 Server:
 -
 "@name": ${um.host}
 URL: "nsp://${um.host}:${um.instance.port}"
 -
 "@name": ${um.host2}
 URL: "nsp://${um.host2}:${um.instance.port2}"

Create a Universal Messaging cluster:

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 401

To create an active/active cluster of Universal Messaging server instances, input the
cluster configuration details in an XML file to the sagcc create configuration data
command.

Configure... By specifying...

Cluster name Cluster name that is unique to an installation.

Server
instances

Name, URL, and port of each server node.

Sites
(Optional)

Name of the site to which each server node belongs.

siteName is a server level property.

Primary site
(Optional)

Name of the primary site, if you have configured sites in the
cluster.

primeSite is a cluster level property that holds the name of the
site, which is flagged as isPrime.

To create a new cluster with the following configurations specified in the
umSalesClusterConfig.xml file:

Cluster name: umSales

Cluster sites: site1 and site2

Primary site: site1

Server instances in site1: um9000, um9001

Server instances in site2: um9002, um9003
sagcc create configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER --input C:\inputxmls\umSalesClusterConfig.xml

where sag01 is the alias name of the installation where Universal-Messaging-
um9001 server instance is running. The cluster configurations are specified in the
umSalesClusterConfig.xml file as shown:
<?xml version="1.0" encoding="UTF-8"?>
<ClusterSettings>
 <Name>umSales</Name>
 <Servers>
 <Server name="um9000">
 <URL>nsp://127.0.0.1:9000</URL>
 <ExtendedProperties>
 <Property name="siteName">site1</Property>
 </ExtendedProperties>
 </Server>
 <Server name="um9001">
 <URL>nsp://127.0.0.1:9001</URL>
 <ExtendedProperties>
 <Property name="siteName">site1</Property>
 </ExtendedProperties>

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 402

 </Server>
 <Server name="um9002">
 <URL>nsp://127.0.0.1:9002</URL>
 <ExtendedProperties>
 <Property name="siteName">site2</Property>
 </ExtendedProperties>
 </Server>
 <Server name="um9003">
 <URL>nsp://127.0.0.1:9003</URL>
 <ExtendedProperties>
 <Property name="siteName">site2</Property>
 </ExtendedProperties>
 </Server>
 </Servers>
 <ExtendedProperties>
 <Property name="primeSite">site1</Property>
 </ExtendedProperties>
</ClusterSettings>

To retrieve the following details of the Universal Messaging cluster in an XML file,
specify one of the server instances of the cluster in the sagcc get configuration data
command.

Name of the cluster

Name, URL, and port of each Universal Messaging server instance in the cluster

Site information, if sites are configured

Examples:

To view the details of the cluster configuration of the um9001 Universal Messaging
server instance:
sagcc get configuration data sag01 Universal-Messaging-um9001 COMMON-CLUSTER

where sag01 is the alias name of the installation where Universal-Messaging-um9001
server instance is running.

To update a Universal Messaging cluster:

The XML file used for configuring a cluster must contain all the specifications for
the cluster. When you update a cluster, you only edit the parameters that specify the
change; other specifications in the cluster configuration file should not be changed. You
can make these Universal Messaging cluster configurations changes:

To... Edit the cluster configuration XML file to...

Add one or more server instances to the
existing cluster

Include the name, URL, and port of the
server instances that you want to add to
the cluster.

Remove one or more server instances
from the existing cluster

Remove the specifications of the server
instances that you want to remove from
the existing cluster.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 403

To... Edit the cluster configuration XML file to...

Create sites and assign server instances
to sites

Set the siteName extended property of
the corresponding server instances.

Assign a site as the prime site of a
cluster

Assign the name of the prime site to the
primeSite cluster level property.

Remove one or more server instances
from a cluster site

Remove the siteName extended
property of the corresponding server
instances.

Remove sites from a cluster Remove the site definitions of all the
server instances in the cluster.

Usage notes:

A Universal Messaging server instance can be part of only one cluster.

If you remove all the server instances from a site, the site will be deleted. Server instance
deletion is not allowed if the deletion operation leaves less than two server instances in
the cluster

Example when running on Command Central

To update the configuration of the cluster that contains the um9001 server instance:
sagcc update configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER --input C:\inputxmls\umSalesClusterConfig.xml

where sag01 is the alias name of the installation where Universal-Messaging-um9001
server instance is running.

To delete Universal Messaging cluster:

Delete the cluster by specifying one of the server instances of the cluster using the sagcc
delete configuration data command.

Example:

To delete the cluster that contains the um9001 server instance:
sagcc delete configuration data sag01 Universal-Messaging-um9001
COMMON-CLUSTER

where sag01 is the alias name of the installation where Universal-Messaging-um9001
server instance is running.

Migrate a Universal Messaging cluster:

You can migrate a Universal Messaging cluster automatically even if the nodes are
installed on multiple hosts.

To automatically migrate a Universal Messaging cluster:

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 404

1. Add the following extended property to the source Universal Messaging cluster
configuration XML file:
<ExtendedProperties>
 <Property name="crossHostMigration">true</Property>
 </ExtendedProperties>

2. Run the sagcc update configuration data command.

A remote realms bootstrap configuration file is created in the Universal
Messaging_directory /bin.

Monitoring Channels and Queues

You can retrieve information about channels and queues using the following commands:

View the list of administration namespaces using the sagcc get administration
component node_alias Universal-Messaging-umserver command.

Retrieve all the configuration information about a channel in XML format using the
sagcc get configuration data node_alias Universal-Messaging-umserver
UM-CHANNELS-channel name command.

Retrieve information about the options available for monitoring channels
using the sagcc get administration component node_alias Universal-
Messaging-umserver channels command.

List the channels on a Universal Messaging server instance using the sagcc get
administration component node_alias Universal-Messaging-umserver
channels list command.

Retrieve the status of a specific channel in TSV format using sagcc get
administration component node_alias Universal-Messaging-umserver
channels status name=channel name command.

Retrieve a list of durable subscribers on a specific channel in TSV format using
the sagcc get administration component node_alias Universal-
Messaging-umserver channels durablesubscribers name=channel name
command.

Delete a durable subscriber subscribed to a channel using sagcc exec
administration component node_alias Universal_Messaging-umserver
channels deletedurablesubscriber name=channel_name
durablesubscriber=durable subscriber name

Examples:

To view the list of administration namespaces:
sagcc get administration component sag01 Universal-Messaging-umserver

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To retrieve all the configuration information about a channel:
sagcc get configuration data sag01 Universal-Messaging-umserver
UM-CHANNELS-channelname

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 405

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. UM-CHANNELS is the configuration type and
channelname is the name of the channel from which the information is to be
retrieved.

To retrieve information about the options available for monitoring channels:
sagcc get administration component sag01 Universal-Messaging-umserver channels

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To retrieve the list of channels on a Universal Messaging server instance:
sagcc get administration component sag01 Universal-Messaging-umserver channels
list

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. list is the command to list all the channels in a server
instance.

To retrieve the status of a specific channel in TSV format:
sagcc get administration component sag01 Universal-Messaging-umserver channels
status name=channel_name

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.channel_name is the channel name for which the status is
to be retrieved.

To retrieve a list of durable subscribers on a specific channel in TSV format:
sagcc get administration component sag01 Universal-Messaging-umserver channels
durablesubscribers name=channel_name

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. channel_name is the name of the channel from which the
durable subscribers list is to be retrieved.

To delete a durable subscriber subscribed to a channel:
sagcc exec administration component sag01 Universal_Messaging-umserver channels
deletedurablesubscriber name=channel_name durablesubscriber=durable_subscriber_name

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. channel_name is the name of the channel, and
durable_subscriber_name is the name of the durable subscriber that has to be
deleted from this channel.

Monitoring Durable Subscribers

You can monitor durable subscribers using the following commands:

View the list of administration namespaces using the cc get administration
component node_alias Universal-Messaging-umserver command.

Retrieve information about the options available for monitoring durable subscribers
using thecc get administration component node_alias Universal-
Messaging-umserver durablesubscribers command.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 406

Retrieve the list of durable subscribers of an Universal Messaging server instance
using:

sagcc get administration component node_alias Universal-
Messaging-umserver durablesubscribers list -f xml command for XML
format.

sagcc get administration component node_alias Universal-
Messaging-umserver durablesubscribers list -f tsv command for TSV
format.

sagcc get administration component node_alias Universal-
Messaging-umserver durablesubscribers list -f csv command for CSV
format.

Retrieve the aributes of a specific durable subscriber using:

sagcc get administration component node_alias Universal-
Messaging-umserver durablesubscribers details channel=channel_name
name=durable subscriber name -f xml command for XML format.

sagcc get administration component node_alias Universal-
Messaging-umserver durablesubscribers details channel=channel_name
name=durable subscriber name -f TSV command for TSV format.

sagcc get administration component node_alias Universal-
Messaging-umserver durablesubscribers details channel=channel_name
name=durable subscriber name -f CSV command for CSV format.

Retrieve specific aributes of the durable subscribers using the cc get
administration component node_alias Universal-Messaging-umserver
durablesubscribers list -f tsv or csv properties=comma separated
attribute list command.

Retrieve the list of events for a durable subscriber using the cc get
administration component node_alias Universal-Messaging-umserver
durablesubscribers getDurableEvents durableName=durable name
chanName=channel name

Purge a specified range of events using the cc get administration component
node_alias Universal-Messaging-umserver durablesubscribers
purgeStartEndID startEID=start event ID endEID=end event ID
durableName=durable subscriber name chanName=channel_name

Purge all events using the cc get administration component node_alias
Universal-Messaging-umserver durablesubscribers purgeAll
durableName=durable subscriber name chanName=channel_name command.

Purge events by filtering events using the cc get administration component
node_alias Universal-Messaging-umserver durablesubscribers
purgeFilter durableName=durable subscriber name chanName=channel_name
filter=the filter expression command.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 407

Delete a durable subscriber using the sagcc exec administration component
node_alias Universal-Messaging-umserver durablesubscribers delete
channel=channel_name name=durable subscriber name

Examples:

To list all the administration namespaces:
sagcc get administration component sag01 Universal-Messaging-umserver

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To retrieve information about the options available for monitoring durable
subscribers:
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running.

To retrieve the list of durable subscribers in a Universal Messaging server instance:

XML format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f xml

TSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f tsv

CSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f csv

To retrieve aributes of the durable subscribers:

XML format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channelname name=durable_subscriber_name
-f xml

TSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channelname name=durable_subscriber_name
-f tsv

CSV format
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers details channel=channelname name=durable_subscriber_name
-f csv

sag01 is the alias name of the installation where Universal-Messaging-
umserver server instance is running. channelname is the name of the channel, and
durable_subscriber_name is the name of the durable subscriber from which the
aributes are to be retrieved.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 408

To retrieve the aributes specific aributes of a durable subscriber:
sagcc get administration component sag01 Universal-Messaging-umserver
durablesubscribers list -f tsv properties=name,channel,lastEventID,
outStandingEvents

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. name, channel, lastEventID, and outStandingEvents
are aribute values to be retrieved.

To retrieve the list of events for a durable subscriber:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers getDurableEvents durableName=durablename
chanName=channelname

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. durablename is the name of the durable subscriber, and
channelname is the name of the channel on which the durable subscriber exists.

To purge a specified range of events:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeStartEndID startEID=10 endEID=20
durableName=durablename chanName=channelname

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. startEID is the the start event ID for the range, endEID
is the end event ID of the range, durablename is the name of the durable subscriber,
and channelname is the name of the channel on which the durable subscriber exists.

To purge all the events for a durable subscriber:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeAll durableName=durablename chanName=channelname

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. durablename is the name of the durable subscriber, and
channelname is the name of the channel on which the durable subscriber exists.

To purge events by filtering events:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers purgeFilter durableName=durablename chanName=channelname
filter=size BETWEEN 10.0 AND 12.0

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. durablename is the name of the durable subscriber, and
channelname is the name of the channel on which the durable subscriber exists.

To delete a durable subscriber:
sagcc exec administration component sag01 Universal-Messaging-umserver
durablesubscribers delete channel=channelname name=DS3

sag01 is the alias name of the installation where Universal-Messaging-umserver
server instance is running. channelname is the name of the channel on which the
durable subscriber exists, and durablename is the name of the durable subscriber.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 409

Inventory

sagcc get inventory components and sagcc list inventory components gets
and lists Universal Messaging inventory:

The commands retrieve information about the Universal Messaging server instances
configured in the Universal Messaging_directory\server directory in an installation.
Information from all the folders under the server directory, except templates, is
displayed.

Property Value

Display name Universal-Messaging-ServerInstanceName

Run-time component ID Universal-Messaging-ServerInstanceName

Product ID NUMRealmServer

Run-time component category PROCESS

Note: ServerInstanceName can include upper and lower case alphabetic characters,
digits (0-9), and underscores (_) but cannot include hyphens (-), periods (.),
and colons (:).

Lifecycle Actions

The following table lists the actions that Universal Messaging supports with the sagcc
exec lifecycle command and the operation taken against a Universal Messaging
server when an action is executed.

Action Description

start Starts theUniversal Messaging server instance. When
successful, the Universal Messaging server instance run-time
status is set to ONLINE.

stop Stops the Universal Messaging server instance. The
Universal Messaging server run-time status is STOPPED.

restart Stops, then restarts the Universal Messaging server instance.
The Universal Messaging server run-time status is set to
ONLINE.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 410

Key Performance Indicators

sagcc get monitoring runtimestate and sagcc get monitoring state
commands provide information about the following key performance indicators (KPIs)
for a Universal Messaging server instance:

KPI Description

JVM memory usage Indicates the utilization of JVM memory.

The KPI uses the following marginal, critical, and
maximum values:

Marginal is 80% of the maximum JVM memory.

Critical is 95% of the maximum JVM memory.

Maximum is 100% of the maximum JVM memory.

Fanout backlog Indicates the total number of events currently waiting to
be processed by the fanout engine. If the fanout backlog
is more than the critical value, there is a possibility that
the subscribers receive the published events after some
delay.

The KPI uses the following marginal, critical, and
maximum values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark)
of fanout backlog. Default is 100.

Tasks queued for
read and write

Indicates the total number of tasks in the read, write,
and common read/write pools. If the number of read
and write tasks queued is more than the critical value, it
indicates that the Universal Messaging server instance
is unable to match the speed of the publishers and
subscribers.

The KPI uses the following marginal, critical, and
maximum values:

Marginal is 80% of the maximum value.

Critical is 95% of the maximum value.

Maximum is 100% of the peak value (high-water mark)
of read and write tasks queued. Default is 100.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 411

For more information about the Universal Messaging server instance KPIs, see
information about monitoring Universal Messaging server instance in "Universal
Messaging Run-time Monitoring Statuses" on page 380.

Run-time Monitoring Statuses

sagcc get monitoring runtimestatus command lists the run-time statuses for a
Universal Messaging server instance, the following table lists the run-time statuses.

Note: Universal Messaging server instance does not return the STARTING and
STOPPING statuses.

Run-time Status Meaning

ONLINE Universal Messaging server instance is
running.

FAILED Universal Messaging server instance is not
running due to some failure. LOCK file exists.

STOPPING Universal Messaging instance is being
stopped. LOCK file exists.

STOPPED Universal Messaging server instance is not
running because it was shut down normally.
LOCK file does not exist.

UNRESPONSIVE Universal Messaging server instance does not
respond to a ping operation. LOCK file exists
and the Universal Messaging server instance is
running.

UNKNOWN The status of Universal Messaging server
instance cannot be determined.

ONLINE_MASTER Server instance is online and it is the master
node in the cluster.

ONLINE_SLAVE Server instance is online and it is the slave
node in the cluster.

ERROR Server instance is part of a cluster that does
not satisfy the requisite quorum.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 412

Migrating a Universal Messaging Server Instance

Ensure that the target Universal Messaging has the migration utility installed.

For information about the migration utility, see Upgrading Software AG Products.

Note: These commands must be run in the context and order documented
in Upgrading Software AG Products. Otherwise, you may experience
unpredictable results, possibly including corruption of your installation and
data.

View the command line help for the migration utility using the sagcc list
administration product node_alias NUMRealmServer migration help
command.

Migrate all Universal Messaging server instances present in a source installation
using sagcc exec administration product node_alias NUMRealmServer
migration migrate srcDir=SAG_Installation_directory command.

Note: Use this command when migrating from Universal Messaging server
version 9.8 and later.

Start migration by providing the source Universal Messaging instance
name using the sagcc exec administration product node_alias
NUMRealmServer migration migrate srcDir=SAG_Installation_directory
instanceName=instance_name[,instance_name,instance_name...] command .

Note: Use this command when migrating from Universal Messaging server
version 9.8 and later.

Start migration by passing arguments and using the migrate.dat file using the sagcc
exec administration product node_alias NUMRealmServer migration
migrate srcDir=SAG_Installation_directory importFile=migrate.dat
command.

Note: Use this command when migrating from Universal Messaging server 9.0
through 9.7. The arguments silent is set to true and continueOnError is
set to false by default.

Start migration using the Zip file from the old product installation using the sagcc
exec administration product node_alias NUMRealmServer migration
migrate srcFile=old_installation.zip importFile=migrate.dat command.

Start migration using the Zip file from the old product installation
and specifying the source Universal Messaging instance name
using sagcc exec administration product node_alias
NUMRealmServer migration migrate srcFile=old_installation.zip
instanceName=instance_name[,instance_name,instance_name...] command.

M
Odd Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 413

View APIs under the migration namespace using the sagcc list administration
product node_alias NUMRealmServer migration command.

View if Universal Messaging supports migration as a custom API using the sagcc
list administration product node_alias NUMRealmServer command.

Examples:

To view command line help:
sagcc list administration product sag01 NUMRealmServer migration help

sag01 is the alias name of the installation where NUMRealmServer server instance is
running. migration is the namespace for the custom Command Central API. Help is
the command to view the migration tool's command line help.

To migrate all Universal Messaging server instances present in a source installation:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG

sag01 is the alias name of the installation where NUMRealmServer server instance
is running. migration is the namespace for the custom Command Central API.
migrate is the command to access the migration tool. scrDir is the source
Software AG installation directory.

To start migrating an older server instance to a new NUMRealmServer server instance
by providing the source instance name:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG
instanceName=umserver1,umserver2

sag01 is the alias name of the installation where NUMRealmServer server instance
is running. migration is the namespace for the custom Command Central API.
migrate is the command to access the migration tool. scrDir is the source
Software AG installation directory. instanceName is the comma separated names of
the Universal Messaging instances that are to be migrated.

To start migrating an older server instance to a new NUMRealmServer server instance
using the migrate.dat file:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcDir=C:\SoftwareAG
silent=true importFile=migrate.dat

sag01 is the alias name of the installation where NUMRealmServer server instance
is running. migration is the namespace for the custom Command Central API.
migrate is the command to access the migration tool. scrDir is the source
Software AG installation directory. importFile specifies the data file containing the
migration seings.

To start migration using the Zip file from the old product installation:
sagcc exec administration product sag01 NUMRealmServer
migration migrate srcFile=99Src.zip importFile=migrate.dat

sag01 is the alias name of the installation where NUMRealmServer server instance
is running. migration is the namespace for the custom Command Central API.

M
Even Header

Using Command Central to Manage Universal Messaging

Universal Messaging Administration Guide Version 10.1 414

migrate is the command to access the migration tool. scrFile argument is used
to provide the name of the Zip file from the source Universal Messaging instance.
importFile specifies the archive file path containing migration seings.

To view APIs under the migration namespace for the NUMRealmServer server
instance:
sagcc list administration product sag01 NUMRealmServer migration

sag01 is the alias name of the installation where NUMRealmServer server instance is
running.

To view if Universal Messaging supports migration as a custom API:
sagcc list administration product sag01 NUMRealmServer

sag01 is the alias name of the installation where NUMRealmServer server instance is
running.

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 415

3 Command Line Administration Tools

■ Introduction to the Administration Tools ... 416

■ Starting the Tools using the Tools Runner Application .. 416

■ Performing Standard Administration Tasks on Realms and Clusters .. 418

■ Running a Configuration Health Check ... 418

■ Collecting Realm Information ... 428

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 416

Introduction to the Administration Tools
Universal Messaging provides a set of command line tools that allow you to perform
many of the common actions available through Universal Messaging. Examples of how
to use the tools are also provided.

The tools can in general be grouped into the following categories:

Category Description

General
administration
tasks

This is a set of tools for performing many of the
common administration actions available through
Universal Messaging.

For example, the CreateChannel tool allows you to
create a channel on a specified realm, with a number of
optional arguments - including TTL, ACLs, and many
more - available through the parameters passed to the
tool.

Configuration
health checker

This tool allows you to check your configuration
setup for either a single realm or for a cluster. The tool
notifies you of any errors or inconsistencies in your
setup.

You can run the health check on a running system
(realm or cluster). You can also run the health
check offline on the basis of XML files containing
the configuration of a realm or cluster (one XML
configuration file per realm).

These tools are described in the following sections.

Starting the Tools using the Tools Runner Application
To run a tool, you start the Tools Runner application and pass the name of the required
tool as a parameter to this application, as well as any additional parameters required by
the tool.

The Tools Runner application is located in <Software_AG_directory> /
UniversalMessaging/tools/runner.

To start the Tools Runner application, use the appropriate command for Windows or
Linux:

Windows:

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 417

runUMTool.bat

Linux:
runUMTool.sh

If you run Tools Runner with no arguments, this displays a list of installed tools, as well
as instructions for using the Tools Runner, as shown in the following image.

Running a Tool

To run a specific tool, you pass the name of the tool as the first argument to the Tools
Runner application. Doing so without any additional arguments will print the usage for
the specific tool. For example, running
runUMTool.bat CreateChannel

will print the usage for the CreateChannel tool. The usage contains a description of the
tool, and a list of the required and optional arguments that you can supply. Arguments
which have a specific set of legal values will have these values displayed here. Also
included in the usage are command line examples of running the tool.

To run a tool with additional arguments, each of the required arguments must be
specified in the command. For example, the CreateChannel tool requires both a realm
name and channel name to be specified:
runUMTool.bat CreateChannel -rname=nsp://localhost:9000 -channelname=channel

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 418

Additional optional arguments can be appended to the command in the same way;
adding a channel type to the CreateChannel tool command would then be:
runUMTool.bat CreateChannel -rname=nsp://localhost:9000 -channelname=channel -type=R

Performing Standard Administration Tasks on Realms and
Clusters
Using the Tools Runner application, you can launch command line tools for performing
standard administration tasks on realms and clusters.

Tools are available to perform the following tasks:

Creating, deleting and monitoring channels and queues

Creating clusters

Adding, modifying and deleting interfaces (HTTP, HTTPS, SSL, Sockets)

Adding and deleting ACL entries for channels, queues and realms

For example, the CreateChannel tool allows you to create a channel on a specified realm,
with a number of optional arguments - including TTL, ACLs, and many more - available
through the parameters passed to the tool.

To see the complete set of administration tools available, start the Tools Runner
application without any parameters, as described in the section "Starting the Tools using
the Tools Runner Application" on page 416.

The names of the administration tools are self-explanatory, for example:

CreateChannel

DeleteChannel

GetChannelInfo

ListChannels

MonitorChannels

Running a Configuration Health Check
Overview

The HealthChecker is a tool for checking the correctness of a realm or cluster
configuration.

The tool is primarily intended for use by Software AG support staff for analyzing
possible problems in customer configurations, but you might also find it useful for
checking your configuration.

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 419

The tool can be used in the following ways:

To check the configuration of a live realm (which can be a single entity or a node
of a cluster) or a cluster. If the realm is a node of the cluster, the checks will also be
automatically executed against all the other cluster members.

To do an offline check of the configuration of a realm or cluster, based on
configuration information that has been exported to XML files. Each such XML file
contains the configuration data of a realm, regarding channels, queues, durables,
datagroups, etc. The tool will only run the checks against all the cluster members if
their XML paths are given explicitly in the call of the tool.

Typical configuration aspects that can be checked in a clustered realm are:

Datagroups:

Datagroups belonging to a cluster must be present on all nodes of the cluster and
their aributes must be the same.

Durables:

Durables belonging to clusterwide channels should also be clusterwide. They must
be present on all nodes of the cluster and their aributes must be the same.

Joins:

Joins between clusterwide channels must be present on all nodes of the cluster and
their aributes have to be the same.

Stores:

Stores belonging to a cluster must be present on all nodes of the cluster and their
aributes and properties must be the same.

Typical configuration aspects that can be checked in a non-clustered realm are:

Durables:

Durables belonging to a non-clustered realm must be non-clusterwide and must be
aached to a non-clusterwide channel.

Stores:

Some store configurations may impact the performance of the system and they need
to be highlighted.

Checks against a live realm

The checks that can be run against a live realm are the following:

Name of Check Description Default
check?

DataGroupMismatchCheck Check if datagroups are coherent across
all nodes of the cluster.

Y

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 420

Name of Check Description Default
check?

DurableMismatchCheck Check if durables are coherent across all
nodes of the cluster.

Y

DurableSubscriberLargeStoreCheckCheck the number of remaining events
to be consumed in a shared durable.
If the number is greater than the
threshold a warning will be displayed.
The default value for the threshold is
1000.

This check takes an additional
parameter -threshold that allows
you to specify a custom value for the
threshold.

Y

EnvironmentStateCheck Check and display the status of a
running environment.

The HealthChecker first checks if the
server configuration property Enable
Flow Control in the configuration
group Server Protection (see the
note after this table) is set to true. If it
is set to true then the HealthChecker
will check what percentage of memory
is taken by events from the whole heap
memory. If the percentage is between
70 and 80, or between 80 and 90, or
above 90, an appropriate warning will
be displayed.

The general idea is that Server
Protection mechanism gradually slows
the consumption of events from clients
when a certain threshold is reached,
and 70-80, 80-90 and >90 are these
thresholds.

The degree of slowing down is marked
by these three server configuration
properties: FlowControlWaitTimeOne,
FlowControlWaitTimeTwo and
FlowControlWaitTimeThree. These
represent a period of time, measured
in milliseconds, by which client
publishing requests will be delayed

Y

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 421

Name of Check Description Default
check?

when the corresponding threshold has
been reached.

Threshold 70%-80%: A warning
message is displayed that client
publishing requests will be delayed
by FlowControlWaitTimeOne
milliseconds.

Threshold 80%-90%: A warning
message is displayed that client
publishing requests will be delayed
by FlowControlWaitTimeTwo
milliseconds.

Threshold 90%-100%: An error
message is displayed that client
publishing requests will be delayed
by FlowControlWaitTimeThree
milliseconds.

FixLevelCheck Check if the nodes of a given cluster
have matching fix levels.

Y

JNDIStatusCheck Check JNDI status and mismatches for
stores.

Y

JoinMismatchCheck Check if joins are coherent across all
nodes of the cluster.

Y

ResourcesSafetyLimitsCheck Check that channel/queue resources
have either TTL or Capacity configured
to a non-zero value. If both of these
values are zero, this means that the
channel/queue is not configured with
any safety limits.

ServerProtectionConsistencyCheckCheck if the server configuration
properties in the configuration group
Server Protection group (see the
note after this table) are coherent across
the nodes of a cluster against a running
environment.

Y

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 422

Name of Check Description Default
check?

StoreMemoryCheck Check the memory usage of stores. Y

StoreMismatchCheck Check if stores are coherent across all
nodes of the cluster.

Y

StoreWarningsCheck Check store warnings on the specified
realm.

A "Y" in the column "Default check?" indicates that the check is included in the -
mode=default seing (see the topic The -mode parameter below).

Note: For further information about the server configuration parameters and the
configuration group Server Protection mentioned in the table above, see
the section "Realm Configuration" on page 28.

Checks against a realm's stored XML configuration

The checks that can be run against a stored XML configuration are the following:

Name of Check Description Default
check?

XMLDataGroupMismatchCheck Check if datagroups are coherent
across all nodes of the cluster.

Y

XMLDurableMismatchCheck Check if durables are coherent across
all nodes of the cluster.

Y

XMLFixLevelCheck Check if the nodes of a given cluster
have matching fix levels.

Y

XMLJNDIStatusCheck Check JNDI status and mismatches
for stores.

Y

XMLJoinMismatchCheck Check if joins are coherent across all
nodes of the cluster.

Y

XMLResourcesSafetyLimitsCheck Check that channel/queue resources
have either TTL or Capacity
configured to a non-zero value. If
both of these values are zero, this

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 423

Name of Check Description Default
check?

means that the channel/queue is not
configured with any safety limits.

XMLServerProtectionConsistencyCheckCheck if the server configuration
properties in the configuration
group Server Protection are
coherent across the nodes of a cluster
against the exported configurations
from the nodes.

Y

XMLStoreMismatchCheck Check if stores are coherent across
all nodes of the cluster.

Y

XMLStoreWarningsCheck Check store warnings on the
specified realm.

Command Usage

The syntax is as follows:
runUMTool HealthChecker [-rname=<rname> | -xml=/path/to/xml1,...]
 [-check=<checktype>[,<checktype> ...]]
 [-mode=<modetype>]
 [-include=<checktype>[,<checktype> ...]]
 [-exclude=<checktype>[,<checktype> ...]]
 [-<additionalParameter1>=<value>] [-<additionalParameter2>=<value>] ...

Displaying help text

To display a help text showing a summary of the command usage, call the
HealthChecker without parameters:
runUMTool HealthChecker

Running a health check of a running realm
runUMTool HealthChecker -rname=–rname=nsp://localhost:11000

This will run the HealthChecker tool against the given running realm.

Running a health check of a stored realm configuration
runUMTool HealthChecker -xml=/path/to/xml1.xml, /path/to/xml2.xml

This will run the HealthChecker tool against the realm configurations stored in the given
XML files.

The -check parameter

This parameter allows you to explicitly specify the check or checks that you want to be
executed. No other checks will be included. This parameter can only be used together

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 424

with the -rname or -xml parameter; the other additional parameters have no meaning in
the context of -check so they can't be used.

Example - Execute only the Store Warnings Check check against the running realm:
runUMTool HealthChecker –rname=nsp://localhost:11000
 -check=StoreWarningsCheck

Example - Execute only the Store Warnings Check and Fix Level Check checks
against the running realm:
runUMTool HealthChecker –rname=nsp://localhost:11000
 -check=StoreWarningsCheck, FixLevelCheck

The -mode parameter

This parameter allows you to select a predefined set of checks without having to name
the checks explicitly. The -mode and -check parameters are mutually exclusive.

The mode parameter can take one of the following values:

default - this value selects the recommended minimal subset of checks. This is the
default option.

all - this mode selects all checks.

If neither -mode nor -check is specified, the default set of checks will be executed.

The -include and -exclude parameters

You can use the -include and -exclude parameters to further refine the set of checks
that have been selected by the -mode parameter. You can use -include and -exclude in
the same call of the health checker, as long as they do not specify the same check.

include - Run all checks from the set defined by the -mode parameter, and
additionally include the check or checks specified by this parameter. The parameter
may contain a single check or a comma-separated list of checks.

exclude - Run all checks from the set defined by the -mode parameter, except the
specified check or checks. The parameter may contain a single check or a comma-
separated list of checks.

The -<additionalParameter> parameters

Some of the health checks allow you to specify one or more additional parameters
when calling the HealthChecker. The name and purpose of each additional parameter is
specific to the individual health check being run.

For example, the DurableSubscriberLargeStoreCheck check allows you to specify the
additional parameter -threshold=<value>, which defines a threshold for the number
of remaining events to be consumed in a shared durable.

The following general rules apply:

Each additional parameter has a default value, so if you do not specify the additional
parameters explicitly, the default values will be taken.

If multiple additional parameters and multiple checks are specified, each individual
check uses only its own additional parameters.

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 425

The additional parameters can be given in any order.

Checks that do not require additional parameters will ignore the additional
parameters.

Syntax Examples

Example - Execute all available checks for live realm check:
runUMTool HealthChecker –rname=nsp://localhost:11000 -mode=all

Example - Execute all the available checks except the ones mentioned.
runUMTool HealthChecker –rname=nsp://localhost:11000
 -mode=all –exclude=JNDIStatusCheck, FixLevelCheck, JoinMismatchCheck

Example - Execute the default set of checks, adding the StoreWarningsCheck which is
not part of the default set.
runUMTool HealthChecker –rname=nsp://localhost:11000
 -mode=default –include= StoreWarningsCheck

Example - Execute the default set of checks but excluding the JNDIStatusCheck,
FixLevelCheck and adding the StoreWarningsCheck.
runUMTool HealthChecker –rname=nsp://localhost:11000
 -mode=default –include= StoreWarningsCheck
 –exclude=JNDIStatusCheck, FixLevelCheck

Note: The previous examples are based on live checks using the -realm parameter.
The same logic applies if you use the -xml parameter instead, but the names
of the checks need to be adapted to the appropriate XML checks.

Full Example

The following example compares the XML configuration files of two realms in a cluster.
The realms are named realm0 and realm1, and their configuration files are named
clustered_realm0.xml and clustered_realm1.xml.

XML configuration file clustered_realm0.xml for realm0:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<NirvanaRealm name="realm0" exportDate="2016-11-08Z"
 comment="Realm configuration from realm0" version="BuildIdentifier"
 buildInfo="BuildIdentifier">
 <ClusterSet>
 <ClusterEntry name="cluster1">
 <ClusterMember name="realm1" rname="nsp://localhost:11010/"
 canBeMaster="true"/>
 <ClusterMember name="realm0" rname="nsp://localhost:11000/"
 canBeMaster="true"/>
 </ClusterEntry>
 </ClusterSet>
 <ChannelSet>
 <ChannelEntry>
 <ChannelAttributesEntry name="channel1" TTL="0" capacity="5" EID="0"
 clusterWide="true" jmsEngine="false" mergeEngine="false"
 type="PERSISTENT_TYPE"/>
 <StorePropertiesEntry HonorCapacityWhenFull="false"
 SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
 PerformAutomaticMaintenance="false" EnableCaching="true"

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 426

 CacheOnReload="true" EnableReadBuffering="true"
 ReadBufferSize="10240" Priority="4" EnableMulticast="false"
 StampDictionary="0" MultiFileEventsPerSpindle="50000"/>
 <ChannelJoinSet>
 <ChannelJoinEntry filter="" hopcount="50" to="channel2"
 from="channel1" allowPurge="false" archival="false"/>
 </ChannelJoinSet>
 </ChannelEntry>
 <ChannelEntry>
 <ChannelAttributesEntry name="channel2" TTL="0" capacity="0" EID="0"
 clusterWide="true" jmsEngine="false" mergeEngine="false"
 type="RELIABLE_TYPE"/>
 <StorePropertiesEntry HonorCapacityWhenFull="false"
 SyncOnEachWrite="false"
 SyncMaxBatchSize="0" SyncBatchTime="0"
 PerformAutomaticMaintenance="false"
 EnableCaching="true" CacheOnReload="true"
 EnableReadBuffering="true"
 ReadBufferSize="10240" Priority="4" EnableMulticast="false"
 StampDictionary="0" MultiFileEventsPerSpindle="50000"/>
 <DurableSet>
 <durableEntry name="durable1" EID="-1" outstandingEvents="0"
 clusterWide="true" persistent="true"
 priorityEnabled="false" shared="true"/>
 </DurableSet>
 </ChannelEntry>
 </ChannelSet>
 <QueueSet>
 <QueueEntry>
 <ChannelAttributesEntry name="queue1" TTL="0" capacity="0" EID="0"
 clusterWide="true" jmsEngine="false" mergeEngine="false"
 type="RELIABLE_TYPE"/>
 <StorePropertiesEntry HonorCapacityWhenFull="false"
 SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
 PerformAutomaticMaintenance="true" EnableCaching="true"
 CacheOnReload="true" EnableReadBuffering="true"
 ReadBufferSize="10240" Priority="4" EnableMulticast="false"
 StampDictionary="0" MultiFileEventsPerSpindle="50000"/>
 </QueueEntry>
 </QueueSet>
</NirvanaRealm>

XML configuration file clustered_realm1.xml for realm1:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<NirvanaRealm name="realm1" exportDate="2016-11-16Z"
 comment="Realm configuration from realm1"
 version="BuildIdentifier" buildInfo="BuildIdentifier">
 <ClusterSet>
 <ClusterEntry name="cluster1">
 <ClusterMember name="realm1" rname="nsp://localhost:11010/"
 canBeMaster="true"/>
 <ClusterMember name="realm0" rname="nsp://localhost:11000/"
 canBeMaster="true"/>
 </ClusterEntry>
 </ClusterSet>
 <ChannelSet>
 <ChannelEntry>
 <ChannelAttributesEntry name="channel1" TTL="0" capacity="5" EID="0"
 clusterWide="true" jmsEngine="false" mergeEngine="false"
 type="RELIABLE_TYPE"/>
 <StorePropertiesEntry HonorCapacityWhenFull="false"
 SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
 PerformAutomaticMaintenance="false" EnableCaching="true"

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 427

 CacheOnReload="true" EnableReadBuffering="true"
 ReadBufferSize="10240" Priority="4" EnableMulticast="false"
 StampDictionary="0" MultiFileEventsPerSpindle="50000"/>
 <ChannelJoinSet>
 <ChannelJoinEntry filter="" hopcount="10" to="channel2"
 from="channel1" allowPurge="false" archival="false"/>
 </ChannelJoinSet>
 </ChannelEntry>
 <ChannelEntry>
 <ChannelAttributesEntry name="channel2" TTL="0" capacity="0" EID="0"
 clusterWide="true" jmsEngine="false" mergeEngine="false"
 type="RELIABLE_TYPE"/>
 <StorePropertiesEntry HonorCapacityWhenFull="false"
 SyncOnEachWrite="false" SyncMaxBatchSize="0" SyncBatchTime="0"
 PerformAutomaticMaintenance="false" EnableCaching="true"
 CacheOnReload="true" EnableReadBuffering="true"
 ReadBufferSize="10240" Priority="4" EnableMulticast="false"
 StampDictionary="0" MultiFileEventsPerSpindle="50000"/>
 </ChannelEntry>
 </ChannelSet>
 <DataGroupSet>
 <DataGroupEntry>
 <DataGroupAttributesEntry name="dg1" id="3422373812" priority="1"
 multicastenabled="false"/>
 </DataGroupEntry>
 </DataGroupSet>
</NirvanaRealm>

From a first analysis we can say that these two realms belong to the same cluster
(cluster1) and that they both contain various stores, joins and data groups.
But let's see what happens when we run the HealthChecker tool specifying
both XML files and running all the checks. Note that we need to exclude the
XMLServerProtectionConsistencyCheck since the specified XML files do not contain
the RealmConfiguration section.

Here is the call of the tool (using Windows syntax) and the result:
runUMTool.bat HealthChecker -xml=clustered_realm0.xml,clustered_realm1.xml
 -exclude=XMLServerProtectionConsistencyCheck
HealthChecker Tool - Version: 1.0
XML JOIN MISMATCHES CHECK
ERROR: Join from (channel1) to (channel2) HopCount mismatch [realm1] does not
 equal [realm0]
XML JNDI PROPERTIES CHECK
WARN: Realm realm0: No JNDI entry for store channel1
WARN: Realm realm0: No JNDI entry for store channel2
WARN: Realm realm0: No JNDI entry for store queue1
WARN: Realm realm1: No JNDI entry for store channel1
WARN: Realm realm1: No JNDI entry for store channel2
XML DURABLE STATUS CHECK
ERROR: Could not find durable (durable1) on realm [realm1] but it is present
 on [realm0]
XML FIX LEVEL CHECK
XML STORE MISMATCHES CHECK
WARN: Store (channel1) Type mismatch [realm1] does not equal [realm0]
ERROR: Could not find store (queue1) on realm [realm1] but it is present
 on realm [realm0]
XML DATAGROUP MISMATCHES CHECK
ERROR: Could not find Data Group (dg1) on realm [realm0] but it is present
 on realm [realm1]

These errors and warnings tell us:

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 428

Joins: a join between two clusterwide channels has to be the same on all the nodes -
in our case there is a mismatch in the HopCount;

JNDIs: these simple warnings are saying: "Are you sure that you don't need any
JNDI for these stores?";

Durables: if a durable is clusterwide, then it has to be present on all the other nodes
(and it has to be the same);

Stores: if a store is clusterwide, then it has to be the same on all the other nodes.

Datagroups: the same rule applies for datagroups, which are always clusterwide and
have to be present on all the other nodes.

Collecting Realm Information
Overview

RealmInformationCollector is a command-line tool that gathers files and live data
from one or more Universal Messaging realm servers. The tool can be executed in live
and offline mode:

Live mode: In live mode, the specified Universal Messaging realm server(s) must be
running.

The tool will collect files that contain operational data for each running realm
server, but will also aempt to connect to and gather information directly from each
running server process.

Offline mode: In offline mode, the specified Universal Messaging realm server(s) must
be offline.

In this mode, the tool will only collect files that contain operational data for each
realm server.

The mode of operation (either offline or live) is a mandatory argument and must
be specified when running the tool. You must ensure that the specified Universal
Messaging realm servers are stopped when -mode=offline, or running when -
mode=live.

Depending on the mode, the tool will collect different files. For example, in live mode,
it will not collect the content of realm server's "data" directory, because this might cause
failures on the server.

The tool collects information by executing a list of collectors. Each collector is responsible
for gathering a specific subset of the realm's information.

Collectors for a live realm server

The collectors that can be run against a live realm server are shown in the following
table. Path names of files and directories given in the table are the installation defaults.

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 429

Name of Collector Description Default
collector?

env Collects environment information from a running
realm server.

This includes all JVM system properties and the
list of Universal Messaging interfaces.

Y

healthchecker Acquires health information from a running
realm server using the HealthChecker tool. See
the section "Running a Configuration Health
Check" on page 418 for details.

Y

heapdump Acquires a heap dump from a running realm
server using the jmap tool that is available in
the Oracle-based JDK included in the Universal
Messaging distribution kit.

installlogs Collects the product's installation log files.

These files are located in <InstallDir>/
install/logs.

Y

instancemgr Collects the realm server's manager log.

This file is located in
<InstallDir>/UniversalMessaging/tools/
InstanceManager/instanceLog.txt.

Y

jaas Collects the JAAS configuration of a realm server.

This file is located in
<InstallDir>/UniversalMessaging/server/
<realmname>/bin/jaas.conf.

Y

license Collects the license file of a realm server.

This file is located in
<InstallDir>/UniversalMessaging/server/
<realmname>/licence.xml.

Y

plugins Collects the plugins directory of a realm server.

This directory is located at
<InstallDir>/UniversalMessaging/server/
<realmname>/plugins.

Y

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 430

Name of Collector Description Default
collector?

realmconfig Collects the realm configuration properties of
a realm server. The properties are listed in the
section "Realm Configuration" on page 28. The
collector delivers the configuration properties as a
serialized XML file.

Y

secfile Collects the security file of a realm server.

This file is located at
<InstallDir>/UniversalMessaging/server/
<realmname>/bin/secfile.conf.

Y

tanukiconf Collects the Tanuki service wrapper configuration
of a realm server.

This includes the files nserver.conf,
nserverdaemon.conf, Server_Common.conf
and Custom_Server_Common.conf, located at
<InstallDir>/UniversalMessaging/server/
<realmname>/bin.

Y

tanukilogs Collects Tanuki service wrapper logs of a realm
server.

This file is located at
<InstallDir>/UniversalMessaging/server/
<realmname>/bin/UMRealmService.log.
If there are any rolled log files in
addition to the current log file, for
example UMRealmService.log.1 and
UMRealmService.log.2, these are collected also.

Y

threaddump Generates three thread dumps of a realm server.
The dumps are taken at 15-second intervals.
Having three dumps instead of one can make it
easier to analyze time-related thread issues.

Y

A "Y" in the column "Default collector?" indicates that the collector is included by default
when you run the RealmInformationCollector tool.

Collectors for an offline realm server

The collectors that can be run against an offline realm server are the following (collectors
that can be used also against a live realm server are indicated). Path names of files and
directories given in the table are the installation defaults.

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 431

Name of Collector Description Default
collector?

data Collects the data directory of a realm server.

The location of this directory is
<InstallDir>/UniversalMessaging/server/
<realmname>/data.

installlogs (Same as the live collector) Y

instancemgr (Same as the live collector) Y

jaas (Same as the live collector) Y

license (Same as the live collector) Y

logs Collects logs of a realm server

The location of the file is
<InstallDir>/UniversalMessaging/server/
<realmname>/data/nirvana.log. If there are
any rolled log files in addition to the current log
file, for example nirvana.log_<timestamp1>
and nirvana.log_<timestamp2>, these are
collected also.

Y

plugins (Same as the live collector) Y

secfile (Same as the live collector) Y

tanukiconf (Same as the live collector) Y

tanukilogs (Same as the live collector) Y

Command Usage

The syntax is as follows:
runUMTool RealmInformationCollector
 -mode=live|offline [-username=<username> -password=<password>]
 -instance=*|<instanceName>[,<instanceName> ...]
 [-include=<collectorName>[,<collectorName> ...]]
 [-exclude=<collectorName>[,<collectorName> ...]]
 [-outputfile=<dir_or_file>]

Displaying help text

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 432

To display a help text showing a summary of the command usage, call the
RealmInformationCollector tool without parameters:
runUMTool RealmInformationCollector

The -mode parameter

This parameter allows you to select the execution mode of the tool. The mode parameter
is mandatory and can take one of the following values:

live - the RealmInformationCollector tool will collect operational data files for
each running realm server and also aempt to connect and gather information
directly from each running realm server

offline - the tool will collect operational data files only

In live mode, all specified realm servers (see the -instance parameter) must be
running, whereas in offline mode, all specified realm servers must be stopped.

Also in live mode, the following collectors will connect to each specified running realm
server to gather information, and will store the information in the following files under
UniversalMessaging/server/<InstanceName>/generated in the generated archive:

Collector name Generated file

env envinfo.txt

realmconfig RealmConfig.xml

healthchecker healthchecker.txt

threaddump Three thread dump files, generated at 15-second intervals,
named threaddump_<timestamp>.txt

The -username and -password parameters

When establishing the connection to a live realm server, the
RealmInformationCollector tool will authenticate using the current operating system
user. It is therefore recommended to run the RealmInformationCollector tool using
the same user as the one used to run the realm server.

You can specify a different user using the -username and -password arguments.

The -instance parameter

This parameter allows you to select the set of realm servers to collect information from.
The parameter is mandatory and must contain either a single realm server name or
a comma-separated list of realm server names. The specified realm servers must be
available in the installation where the RealmInformationCollector tool is run from.
You can specify -instance=* to select all installed realm servers.

The -include and -exclude parameters

M
Odd Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 433

You can use the -include and -exclude parameters to further refine the set of collectors
that have been selected by the -mode parameter. You can use -include and -exclude in
the same call of the RealmInformationCollector tool as long as they do not specify the
same collector name.

include - Run all default collectors available with the specified -mode parameter,
and additionally include the collector or collectors specified by this parameter. The
parameter may contain a single collector name or a comma-separated list of collector
names.

exclude - Run all default collectors available with the specified -mode parameter,
except the specified collector or collectors. The parameter may contain a single
collector name or a comma-separated list of collector names.

The -output parameter

Specifies the path where the generated zip archive will be stored.

If the path specifies a directory without a filename, the directory must already exist.
The archive file will be generated in the specified directory using the following naming
convention:
<InstallDir> _<mode>_<timestamp>.zip

For example, if the product installation directory is C:\SoftwareAG and the
RealmInformationCollector tool is executed with -mode=live, the generated archive
will be named for example SoftwareAG_live_20171120100757940.zip

If the path specifies a directory with a filename, the directory must already exist but the
file must not already exist, and the tool will use the filename you specify.

If the parameter is not specified, the tool will generate an archive with a name
corresponding to the naming convention mentioned above, and store the archive under
the directory <InstallDir>/UniversalMessaging/tools/runner.

Syntax Examples

Example: Execute default collectors in offline mode against the umserver instance:
runUMTool RealmInformationCollector -mode=offline -instance=umserver

Example: Execute default collectors and also the optional collector data in offline mode
against the umserver instance:
runUMTool RealmInformationCollector
 -mode=offline -instance=umserver -include=data

Example: Execute default collectors and the optional collector data, excluding the jaas
collector, in offline mode against all realm server instances:
runUMTool RealmInformationCollector
 -mode=offline -instance=* -include=data -exclude=jaas

Example: Execute default collectors in live mode against the umserver instance:
runUMTool RealmInformationCollector -mode=live -instance=umserver

M
Even Header

Command Line Administration Tools

Universal Messaging Administration Guide Version 10.1 434

Example: Execute the default collectors and the optional collector heapdump in live mode
against the umserver instance:
runUMTool RealmInformationCollector
 -mode=live -instance=umserver -include=heapdump

Example: Execute the default collectors and the optional collector heapdump, excluding
the jaas collector, in live mode against the umserver and umserver2 instances:
runUMTool RealmInformationCollector
 -mode=live -instance=umserver,umserver2 -include=heapdump -exclude=jaas

Example: Execute the default collectors and the optional collector heapdump in live
mode against the umserver instance and specify a custom location of the generated zip
archive:
runUMTool RealmInformationCollector
 -mode=live -instance=umserver -include=heapdump
 -outputfile=C:/SoftwareAG_umserver_live.zip

Operational Issues

On Windows, if the product installation directory path is too long, acquiring a live
heap dump may fail with the error "CreateProcess error=267, The directory name is
invalid". You can work around this error by configuring the -outputFile parameter
to use a shorter directory/file path, for example C:/SoftwareAG_live.zip.

The RealmInformationCollector tool does not support connecting via SSL-
secured network interfaces to the realm server. If all realm server network interfaces
are secured using SSL, live collectors which need to connect to the server (env,
realmconfig, healthchecker, threaddump) will fail to connect to the server.
You can work around this by configuring a temporary non-SSL secured network
interface.

Live heap dump generation is available with the Oracle-based JVM only.

The RealmInformationCollector tool might fail to acquire a live heap dump if the
tool run with a different operating system user than the one used for running the
realm server. It is recommended to run the tool with the same operating system user
that was used to run the realm server.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 435

4 Universal Messaging Administration API

■ Introduction ... 436

■ Administration API Package Documentation ... 439

■ Namespace Objects ... 439

■ Realm Server Management ... 445

■ Security ... 452

■ Management Information ... 456

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 436

Universal Messaging provides a feature rich Administration API capable of capturing
all metrics, management and audit information from Universal Messaging realms. The
API allows you to control and administer all aspects of any Universal Messaging realm
or clusters of realms.

Universal Messaging's Enterprise Manager GUI has been wrien entirely using the
Universal Messaging Administration API as a means of demonstrating how useful the
API can be for the management of your messaging infrastructure.

Some example code showing how to use the Universal Messaging management API can
be found in the examples section.

The Administration API is available in the following languages:

Java

C#.NET

C++

Note: The Administration APIs for C# and C++ are deprecated and will be removed
from the product distribution in the next official release.

Introduction
Getting Started

The Universal Messaging Admin API (see the Package Documentation) allows
management, configuration, audit and monitoring of all aspects of a Universal
Messaging realm server.

The starting point for the Admin API is connecting to a realm. In order to connect to a
realm using the Admin API, you need to ensure you are familiar with the concept of
an RNAME. Once you have the RNAME that corresponds to your realm, you can then
connect to the realm.

The way you connect to a realm is by constructing an nRealmNode object. The nRealmNode
object is the main object you need to access all of the objects you wish to configure,
monitor and manage:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

Universal Messaging namespace

Access to resources on a Universal Messaging realms, or indeed objects in a multi
Universal Messaging realm server namespace, is based on a simple tree structure, where
the nRealmNode is the root of the tree. All nodes within the tree are subclasses of a base
class nNode. From the root, it is possible to obtain references to all child nodes. Child
nodes may be other realm nodes, containers (folders containing other realms, channels
etc), channels and queues.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 437

For example, to obtain an enumeration of all child nodes within a realm node, simply
call the following:

Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

From this enumeration you can then perform operations on the child nodes. For
example, if you have a realm with 1 channel and 1 queue, and wanted to find the
number of events currently on each, the following code would do that:

Example: Finding out how many events are on a channel / queue

Java:
 while (children.hasMoreElements()) {
 nNode child = (nNode)children.nextElement();
 if (child instanceof nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 System.out.println("Leaf node contains "+leaf.getCurrentNumberOfEvents());
 }
 }

C#:
while (children.MoveNext()){
 nNode child = (nNode)children.Current;
 if (child is nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 Console.WriteLine("Leaf node contains "+leaf.getCurrentNumberOfEvents());
 }
 }

C++:
void searchNodes(fSortedList nodes)
 for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 nNode *pNode = iterator->second;
 int type = pNode->getType ();
 if (type == fBase::LEAFNODE)
 {
 printf("Leaf node contains %ll events",pNode->getCurrentNumberOfEvents());
 }
 }
}

The namespace structure is dynamic and is managed asynchronously for you, so as
and when objects are created, deleted modified, stopped or started, the namespace will
manage those state changes and keep the structure up to date automatically.

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 438

Management / Configuration / Security

As well as the namespace nodes, there are also other objects that can be obtained from
the nodes but which are not part of the namespace tree structure.

For example, from an nRealmNode it is possible to obtain the following objects:

nClusterNode - The cluster node that this realm may be part of, allowing the
administration of Universal Messaging realm clusters

nACL - The realm acl object (see "Realm Entitlements" on page 153), allowing control
of the ACL permissions (see "Access Control Lists" on page 452)

nInterfaceManager - The realm interface manager, allows me to add, remove, stop, start
interfaces on a realm (see "Interfaces" on page 445)

nSchedulerManager - the scheduler manager allows me to control scheduled tasks (see
"Scheduling" on page 447) on the realm

nConfigGroup - an enumeration of these corresponds to all configuration (see "Config"
on page 448) and tuning parameters for a given realm.

From an nLeafNode which could be a channel or a queue, the following objects are
available:

nACL - The leaf node acl object, allows me to control acl permissions (see "Channel
Entitlements" on page 155) for resources

nJoinInfo - All join information associated with a channel or queue

Monitoring

As well access to the channel resources as described above, there are also many
monitoring tools available to developers that provide information asynchronously as
and when events occur on a realm. This can be extremely useful in ongoing real time
management of one or more Universal Messaging Realm servers.

For example, for a realm node you can provide listeners for the following :

Connections - get notified as new connections (see "Connection Information" on page
462) to the realm occur, showing connection information

Creation / Deletions / Stop / Start - get notified when new objects are created, deleted,
modified, stopped or started (see "nRealmNode" on page 456) (for example new
channels being created, acls being changed etc)

State Changes - get notified when changes occur to any of the objects in the
namespace (see "nLeafNode" on page 460), such as events being published /
consumed. All updates are asynchronously received from the realm server and the
API manages those changes for you.

Audit / Logging - when security or state changes occur, get notified of audit events, as
well as remotely receiving log file information from the server.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 439

The following sections in this guide will work through in more detail, each of what has
been discussed above.

Administration API Package Documentation
The Administration API is provided in the package com.pcbsys.nirvana.nAdminAPI

The API documentation is available in the Universal Messaging Reference Guide section of
the documentation.

Namespace Objects

nRealmNode
Universal Messaging's namespace contains objects that can be administered, monitored
and configured. The nRealmNode object in the nAdminAPI, corresponds to a Universal
Messaging Realm server process. The nRealmNode is used to make an admin connection
to a realm.

In order to connect to a realm you need to ensure you are familiar with the concept of
an RNAME. Once you have the RNAME that corresponds to your realm, you can then
construct the nRealmNode and connect to the corresponding realm. This is achieved by the
following calls:

Java:
String[] RNAME={"nsp://127.0.0.1:9000"};
nSessionAttributes nsa=new nSessionAttributes(RNAME);
nRealmNode realm = new nRealmNode(nsa);

C++:
std::string rName = "nsp://127.0.0.1:9000";
nSessionAttributes* nsa=new nSessionAttributes(rName);
nRealmNode* realm = new nRealmNode(nsa);

By constructing an nRealmNode, and connecting to a realm, the realm node will
automatically begin receiving status information from the realm periodically, as well as
when things occur.

nRealmNode

The nRealmNode is the root of a Universal Messaging Realm's namespace, which is a tree
like structure that contains child nodes. The tree nodes are all subclasses of a base class
nNode. Each node corresponds to one of the following node subclasses:

nRealmNode - other realm nodes that have been added to this realm's namespace

nContainer - folders, if there was a channel called /eur/uk/rates, there would be a child
nContainer node called, 'eur' which would have a child called 'uk' etc.

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 440

nLeafNode - these correspond to channels and queues

The nRealmNode itself is a subclass of the nContainer class. To obtain an enumeration of
all child nodes within a realm node, simply call the following:

Java:
Enumeration children = realm.getNodes();

C#:
System.Collections.IEnumerator children = realm.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

Once you have this enumeration of nodes, you can then perform the various operations
on those nodes available through the nAdminAPI.

If you know the name of the child node you wish to obtain a reference to, you can use
the following method:

Java:
nNode found = realm.findNode("/eur/uk/rates");

C++:
nNode* found = realm->findNode("/eur/uk/rates");

Which should return you an nLeafNode that corresponds to the channel called '/eur/uk/
rates'.

As well as obtaining references to existing nodes, it is also possible to create and delete
channels and queues using the nRealmNode. For example, to create a channel called '/eur/
fr/rates', we would write the following code:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.SIMPLE_TYPE);
cattrib.setName(“/eur/fr/rates”);
nLeafNode channel = realm.createChannel(cattrib);

C++:
nChannelAttributes* cattrib = new nChannelAttributes();
cattrib->setMaxEvents(0);
cattrib->setTTL(0);
cattrib->setType(nChannelAttributes.SIMPLE_TYPE);
cattrib->setName(“/eur/fr/rates”);
nLeafNode* channel = realm->createChannel(cattrib);

To remove channel or a queue, you can simply call the following method on your realm
node (using the channel created above):
realm.delLeafNode(channel);

C++:
realm->delLeafNode(channel);

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 441

For more information on Universal Messaging Administration, please see the API
documentation, and the "Enterprise Manager Guide" on page 11.

nLeafNode (Channels and Queues)
Once you are familiar with the concept of the Universal Messaging Namespace, as
discussed in the nRealmNode guide (see "nRealmNode" on page 439), you can then
begin to use the other administration objects associated with a realm's Namespace.

In this section the nLeafNode is discussed. It is assumed you are aware of how to
create an nRealmNode for this section, and have a general understanding of Universal
Messaging's publish / subscribe and message queue technologies

nLeafNode

The nLeafNode is either a channel or a queue, and is, as it's name suggests, an end point
of a branch of the namespace tree. An nLeafNode's parent is always an instance of
nContainer. Since nRealmNode is a subclass of nContainer, sometimes an nLeafNode's
parent is also an instance of an nRealmNode. For example, consider the following 2
channels within the namespace:
/eur/uk/rates
/rates

The nLeafNode that corresponds to the channel '/eur/uk/rates' will have a parent which
is an instance of nContainer, and is called 'uk', whereas the nLeafNode that corresponds
to the channel '/rates' has a parent which is also an instance of nContainer, however is
is also an instance of an nRealmNode (i.e. the namespace root), since it does not contain
any folder information in it's name.

As channels and queues are created, they are added to the nRealmNode's tree structure
as nLeafNodes. This is all managed for you and does not require you to modify the
structure. However it is possible to be notified when changes to the namespace occur so
that your application can handle it as you see fit. This is discussed in more detail in the
Management Information section of this guide.

To determine if an nLeafNode is a channel or a queue, there are 2 simple methods you
can use. The following code snippet search the namespace and print out whether each
leaf node it finds is a channel or a queue.

Example : Find channels and queues in the namespace

Java:
public void searchNodes(nContainer container)
 Enumeration children = container.getNodes();
 while (children.hasMoreElements()) {
 nNode child = (nNode)children.nextElement();
 if (child instanceof nContainer) {
 searchNodes((nContainer)child);
 } else if (child instanceof nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 if (leaf.isChannel) {
 System.out.println("Leaf Node "+leaf.getName()+" is a channel");
 } else if (leaf.isQueue()) {

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 442

 System.out.println("Leaf Node "+leaf.getName()+" is a queue");
 }
 }
 }
}

C#:
public void searchNodes(nContainer container)
System.Collections.IEnumerator children = realm.getNodes();
while (children.MoveNext()){
 nNode child = (nNode)children.Current;
 if (child is nContainer) {
 searchNodes((nContainer)child);
 } else if (child is nLeafNode) {
 nLeafNode leaf = (nLeafNode)child;
 if (leaf.isChannel) {
 Console.WriteLine("Leaf Node "+leaf.getName()+" is a channel");
 } else if (leaf.isQueue()) {
 Console.WriteLine("Leaf Node "+leaf.getName()+" is a queue");
 }
 }
 }
}

C++:
void searchNodes(fSortedList nodes)
 for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 nNode *pNode = iterator->second;
 int type = pNode->getType ();
 if (type == fBase::LEAFNODE)
 {
 if(iterator->second->isChannel()){
 printf("Leaf Node %s is a Channel");
 } else if(iterator->second->isQueue()){
 printf("Leaf Node %s is a Queue");
 }
 }
 else if (type == fBase::CONTAINER)
 {
 searchNodes(((nContainer*)pNode)->getNodes());
 }
 }
}

In the above code example, by the searchNodes(realm) method searches the namespace
from the realm node, and this isChannel() and isQueue() methods are used to determine
whether each leaf node is a queue or a channel.

Associated with each leaf node, is the nChannelAributes for the queue or channel,
this is obtained by using the getAttributes() method, so it is possible to determine the
characteristics of each leaf node.

Each leaf node also has an associated nACL object that can be modified to change
security permissions for users. This is discussed in more detail in the security section of
this guide.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 443

Realm Federation
A Universal Messaging Realm is an instance of the server and a container for resources.
Each Universal Messaging Realm defines a namespace of its own but it is possible to
merge the namespaces of multiple Realms into one large one. This is known as realm
federation.

Note: Clustering and Realm Federation are mutually exclusive. If a realm is a
member of a cluster, you cannot use the realm for federation. Similarly, if a
realm is part of a federation, the realm cannot be used for clustering.

While adding a Universal Messaging Realm into the namespace of another, there is one
compulsory options and two optional. The compulsory option is the RNAME of that
Realm. The optional parameter is the mount point that the Realm should be added in the
existing Realm.

If you are specifying the name of the Realm you are adding it should be specified exactly
as it appears in the Enterprise Manager. It appears adjacent to the globe icon specifying
the realm to which this realm is being added.

A Universal Messaging Realm can also be added to another Realm's namespace using
the Enterprise Manager (see "Realm Federation" on page 443).

A Realm is added into the namespace of another programmatically as follows.

Java, C#:
//Create an instance of the Universal Messaging Realm object to be added
String rname = "nsp://remoteHost:9002";
nRealm nr = new nRealm(realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr.setMountPoint(mountPnt);
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession.addRealm(nr);

C++
//Create an instance of the Universal Messaging Realm object to be added
string rname = "nsp://remoteHost:9002";
nRealm* nr = new nRealm(realmName, rname);
//Set the mountpoint in the local realm's Namespace
nr->setMountPoint(mountPnt);
//Add the remote realm to the local one.
//assuming mySession has already been connected to your local realm
mySession->addRealm(nr);

Example Usage of a Federated Universal Messaging Namespace

You can then provide filters for channel joins across the multiple realms you have added
to the namespace. This allows you to ensure that events are routed to the correct channel
based on the content of the event.

Note: For a description of the general principles involved in creating channel joins,
see the section Creating Channel Joins. The description details the usage based

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 444

on the Enterprise Manager, but the same general principles apply if you are
using the API.

For example, if channel1 on Realm1 is joined to channels channel2, channel3, channel4,
channel5 on realms Realm2, Realm3, Realm4, Realm5, and each event is published using
an nEventProperties dictionary that contains a key called 'DESTINATION'.

If each channel join from channel1 is created with a filter, for example for the join from
channel1 to channel2 on Realm2 the filter would be:
DESTINATION='realm2'

This guarantees only those events that are published to channel1 and that contain
'realm2' in the 'DESTINATION' key will be published to channel2 on Realm2.

For further example code demonstrating adding Universal Messaging Realms to a
names space please see the addRealm example.

Channel Join
Joining a channel to another allows you to set up content routing such that events on the
source channel will be passed on to the destination channel also. Joins also support the
use of filters thus enabling dynamic content routing.

Channels can be joined using the Universal Messaging Enterprise Manager GUI or
programmatically.

In joining two Universal Messaging channels there is one compulsory option and
two optional ones. The compulsory option is the destination channel. The optional
parameters are the maximum join hops and a JMS message selector to be applied to the
join.

Note: For a description of the general principles involved in creating channel
joins, see the section Creating Channel Joins in the Administration Guide. The
description details the usage based on the Enterprise Manager, but the same
general principles apply if you are using the API.

Channel joins can be created using the nmakechanjoin join sample application which
is provided in the bin directory of the Universal Messaging installation. For further
information on using this example please see the nmakechanjoin example page.

Universal Messaging joins are created as follows:

Java, C#:
//Obtain a reference to the source channel
nChannel mySrcChannel = mySession.findChannel(nca);
//Obtain a reference to the destination channel
nChannel myDstChannel = mySession.findChannel(dest);
//create the join
mySrcChannel.joinChannel(myDstChannel, true, jhc, SELECTOR);

C++:
//Obtain a reference to the source channel
 nChannel* mySrcChannel = mySession->findChannel(nca);

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 445

 //Obtain a reference to the destination channel
 nChannel* myDstChannel = mySession->findChannel(dest);
 //create the join
 mySrcChannel->joinChannel(myDstChannel, true, jhc, SELECTOR);

Realm Server Management

Interfaces
Universal Messaging Realm servers provide the ability for connections to be made
using any available physical network interface on the server machine. For example, if a
machine has 4 physical network interfaces, Universal Messaging provides the ability to
bind specific network interface addresses to specific ports and different protocols. This
provides the ability to run segment the communication between client and server. There
is no limit to the number of separate interfaces that can be run on a Universal Messaging
realm server.

For example, a Realm Server that is visible to Internet users may have 4 Network
cards, each one having its own physical IP address and hostname. Two of the network
interfaces may be externally visible, while the other 2 may be only visible on internal
sub-nets.

The 2 external interfaces may be specified as using nhp, and nhps on ports 80 and 443
respectively, since for firewall purposes, these ports are the most commonly accessible
ports to external clients connecting to the realm. The remaining internal interfaces,
visible to internal client connections do not have the same restrictions, and so could be
defined as using nsp and nsps protocols on other ports, say 9000 and 9002 respectively.

What this guarantees is separation of internal and external connections based on
network interface and protocol.

nInterfaceManager

When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 439), you can access an object called nInterfaceManager,
which provides the ability to add, modify, delete, stop and start interfaces on the
Universal Messaging realm. To get access to this object, you can call the following
method from a realm node:

Java, C#:
nInterfaceManager iMgr = realm.getInterfaceManager();

C++:
nInterfaceManager* iMgr = realm->getInterfaceManager();

Using the nInterfaceManager object you can then obtain a list of known interfaces for
that realm:

Java:
Vector ifaces = iMgr.getInterfaces();

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 446

C#:
List ifaces = iMgr.getInterfaces();

C++:
int numInterfaces; nInterfaceStatus** pTemp = iMgr->getInterfaces(numInterfaces);

All interfaces extend a base class called nInterface. There are 4 types of interface object
that correspond to the different types of protocols that an interface can use. These are:

nSocketInterface - standard socket interface, Universal Messaging protocol is nsp

nHTTPInterface - hp interface, Universal Messaging protocol is nhp

nSSLInterface - ssl socket interface, Universal Messaging protocol is nsps

nHTTPSInterface - hps interface, Universal Messaging protocl is nhps

Each of these interface objects contain standard configuration information and allows
the same operations to be performed on them. For example, if there is an interface called
'nsp1', and you wanted to change the 'autostart' property to true (i.e. make the interface
start automatically when the realm is started) this can be achieved with the following
code:

Java, C#:
nInterface iface = iMgr.findInterface("nsp0");
 iface.setAutostart(true);
 iMgr.modInterface(iface);

C++:
nInterface* iface = iMgr->findInterface("nsp0");
iface->setAutostart(true);
iMgr->modInterface(iface);

Which will modify the interface configuration at the server, stop and restart the
interface. When performing a modInterface operation, if you are modifying the interface
that your nRealmNode is connected to, you will be disconnected and reconnected when
the interface restarts. This is important to remember when using the stop method of
an interface too, since if you stop the interface you are connected to, you cannot start
it again, since your connection needs to be active, and the stop operation will close
your connection. If you wish to restart an interface you should therefore do it from a
connection which has been made via another interface.

Example: creating an NHPS interface

You can create an NHPS interface using code such as the following:
nRealmNode rnode = ...;
nHTTPSInterface nhps = new nHTTPSInterface("0.0.0.0", 9443,
autoStart);
nhps.setKeyStore(keystore);
nhps.setKeyStorePassword(kpass);
nhps.setPrivateKeyPassword(kpass);
nhps.setTrustStore(tstore);
nhps.setTrustStorePassword(tpass);
rnode.getInterfaceManager().addInterface(nhps);

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 447

Scheduling
Universal Messaging Realm servers provide the ability for scheduling tasks. Tasks can
be scheduled to execute based on certain conditions being met.

These conditions can be either time based (scheduling) or event based (triggers).

Universal Messaging scheduling is achieved through the creation of numerous
scheduling scripts. Each script can contain multiple definitions of triggers and tasks.

The Universal Messaging server parses these scripts and sets up the triggers and tasks
accordingly. For more information on the script grammar, there is a section in the
enterprise manager guide which deals with writing scheduling scripts.

nSchedulerManager

When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 439), you can access an object called nSchedulerManager,
which provides you with the ability to add, modify, delete scheduling scripts. To get
access to this object, you can call the following method from a realm node:

Java, C#:
nSchedulerManager sMgr = realm.getSchedulerManager();

C++:
nSchedulerManager* sMgr = realm->getSchedulerManager();

Using the nSchedulerManager object you can then obtain a list of scheduler objects for
the realm:

Java:
Enumeration schedulers = sMgr.getNodes();

C#:
System.Collections.IEnumerator schedulers = sMgr.getNodes();

C++:
fSortedList nodes = pNode->getNodes();

This method returns an enumeration of nScheduler objects. The nScheduler objects each
correspond to a particular scheduling script.

The following code shows you how to construct a new scheduler object using a sample
script that will log a message to the realm server log every hour, signified by the 'every
60' condition: {Please Note: typically this script would be read from a script file or it
could be entered directly into the realm enterprise manager GUI.}

Java, C##:
String source = "scheduler myScheduler {\n";
 String logString = "Sample script : ";
 source += "\n";
 source += "\n";
 source += " initialise{\n";

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 448

 source += " Logger.setlevel(0);\n";
 source += " }\n";
 source += " every 60"{\n";
 source += " Logger.report(\""+logString+"\");\n";
 source += " }\n";
 source += "}\n";
 sMgr.add(source, "user@localhost", false);

C++:
stringstream s;
 s<<"scheduler myScheduler {\n";
 string logString = "Sample script : ";
 s<<"\n";
 s<<"\n";
 s<<"initialise{\n";
 s<<"Logger.setlevel(0);\n";
 s<<"}\n";
 s<<"every 60"{\n";
 s<<"fLogger::report(\""+logString+"\");\n";
 s<<"}\n";
 s<<"}\n";
 sMgr->add(source, "user@localhost", false);

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Config
Universal Messaging Realm servers contain a large number of configurable parameters
These parameters can be modified using the nAdminAPI.

The Universal Messaging Realm config can also be managed via the Realm enterprise
manager (see "Realm Configuration" on page 28). This also provides a useful guide to
the configuration groups and their specific config entities.

nConfigGroup

When connected to a realm, and using a reference to an nRealmNode object (see
"nRealmNode" on page 439), you can access configuration objects that correspond to
a group of configuration entries. To get access to the config groups, call the following
method from a realm node:

Java, C#
Enumeration children = realm.getNodes();

C++
fSortedList nodes = pNode->getNodes();

The enumeration will contain a number of nConfigGroup objects. Each nConfigGroup
contains a number of nConfigEntry objects, each one corresponds to a specific
configurable parameter in the realm server.

For example, to change the log level of the realm server, we need to obtain the config
group called 'GlobalValues' and set the 'fLoggerLevel' property:

Java, C#:

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 449

nConfigGroup grp = realm.getConfigGroup("fLoggerLevel");
nConfigEntry entry = grp.find("fLoggerLevel");
entry.setValue("0");

C++
nConfigGroup* grp = realm->getConfigGroup("fLoggerLevel");
nConfigEntry* entry = grp->find("fLoggerLevel");
entry->setValue("0");

For a definitive list of available configuration groups and their specific properties please
see "Realm Configuration" on page 28 in the enterprise manager guide.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Clustering
Universal Messaging provides the ability to group Realm servers together to form
a cluster. A cluster is a logical group of realm servers that share common resources.
The resources and any operations performed on then are replicated across all cluster
members. Clients connecting to 'Realm A' in cluster 1, are able to access the same logical
objects as clients connecting to Realms B or C in cluster1.

The state of these objects is fully replicated by each realm in the cluster. For example,
if you create a queue (queue1) within cluster 1, it is physically created in realms A,
B and C. If there are 3 consumers on queue1, say one on each of realms A, B and C
respectively, each realm in the cluster will be aware as each message is consumed and
removed from the different physical queue1 objects in the 3 realms.

If one of the realms within cluster1 stops, due to a hardware or network problems, then
clients can automatically reconnect to any of the other realms and start from the same
point in time on any of the other realms in the cluster.

This ensures a number of things:

Transparency - Any client can connect to any Universal Messaging realm server
within a cluster and see the same cluster objects with the same state. Clients
disconnected from one realm will automatically be reconnected to another cluster
realm.

24 x 7 Availability - If one server stops, the other realms within the cluster will take
over the work, providing an always on service

Scalability - Large number of client connections can be managed across multiple
servers within a cluster

nClusterNode

Using the nAdmin API, if you wish to create a cluster that contains 3 realms, and you
know the RNAME values for all 3, then the following call will create the cluster.

Java, C#, C++:
String[] RNAME= {"nsp://127.0.0.1:9000", "nsp://127.0.0.1:10000","nsp://127.0.0.1:11000"};
nRealmNode realms[] = new nRealmNode[RNAME.length];

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 450

nClusterMemberConfiguration[] config = new nClusterMemberConfiguration[RNAME.length];
for (int x = 0; x < RNAME.length; x++) {
 // you don't have to create the realm nodes
 // here, since the member configuration will create
 // them for you from the RNAME values
 realms[x] = new nRealmNode(new nSessionAttributes(RNAME[x]));
 config[x]=new nClusterMemberConfiguration(realms[x], true);
}
nClusterNode cluster = nClusterNode.create("cluster1", config);

Once the cluster node is created, each realm node within the cluster will know of the
other realms within the cluster, and be aware of the cluster they are part of. For example,
calling the following method:

Java, C#, C++:
nClusterNode cluster = realms[0].getCluster();

will return the cluster node just created with the realm with nsp://127.0.0.1:9000 for an
RNAME.

Cluster nodes contain information about the member realms (nRealmNode objects)
as well as the current state of the cluster members. This information can be found by
calling the getClusterConnectionStatus() method on the cluster node, which returns a vector
of nClusterStatus objects, each of which corresponds to a realm.

nRealmlNode

Once a realm becomes part of a cluster, channels and queues can be created that are part
of the cluster, as well as standard local resources within the realms. For example, if you
were to us the following calls:

Java, C#, C++:
nChannelAttributes cattrib = new nChannelAttributes();
cattrib.setMaxEvents(0);
cattrib.setTTL(0);
cattrib.setType(nChannelAttributes.PERSISTENT_TYPE);
cattrib.setClusterWide(true);
cattrib.setName(“clusterchannel”);
nLeafNode=.createChannel(cattrib);
realms[0].createChannel(cattrib);

This would create a channel that is visible to all realms within a cluster. Any
administrative changes made to this channel such as ACL modifications will also be
propagated to all cluster members in order for the channel to be kept in sync across all
realms.

Inter-Cluster Connections

Inter-cluster connections can be created programmatically through the Administration
API. To do this, connect to a realmNode in each cluster and then do the following:

Java, C#, C++:
cluster1realm1.getCluster().registerRemoteCluster(cluster2realms1.getCluster());

Similarly, the inter-cluster connection can be removed programmatically:

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 451

Java, C#, C++:
cluster1realm1.getCluster().deregisterRemoteCluster(cluster2realm1.getCluster());

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Multicast
A common way to add a multicast configuration is via the Enterprise Manager (see
"Multicast Configuration" on page 227) but you can also do this programmatically.

Creating the nMulticastConfiguration

In order to create an nMulticastConfiguration object you need to specify two parameters:

multicastAddress - Multicast IP address to use

adapter - Network adapter address of your multicast configuration

Java, C#:
String multicastAddress = "227.0.0.98";
 String adapter = "10.150.12.1";
 nMulticastConfiguration mConf = new nMulticastConfiguration(multicastAddress, adapter);

C++:
std::string multicastAddress = "227.0.0.98";
 std::string adapter = "10.150.12.1";
 nMulticastConfiguration* mConf = new nMulticastConfiguration(multicastAddress, adapter);

Enabling multicast for cluster communication

In order to use multicast for intra-cluster communication you need to set a flag on the
nMulticastConfiguration:

Java, C#:
mConf.setUseForCluster(true);

C++:
mConf->setUseForCluster(true);

Enabling multicast on DataGroups

When you create a DataGroup you have the option to enable multicast delivery.
However you also need to enable multicast for DataGroups on the multicast
configuration:

Java, C#:
mConf.setUseForDataGroups(true);

C++:
mConf->setUseForDataGroups(true);

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 452

Then (after the configuration has been applied) when you create a DataGroup you need
to set the enableMulticast flag to true:

Java, C#:
boolean enableMulticast = true;
 String name = "newGroup";
 mySession.createDataGroup(name,enableMulticast);

C++:
bool enableMulticast = true;
 std::string name = "newGroup";
 mySession->createDataGroup(name,enableMulticast);

Applying the multicast configuration

In order to register the new configuration on the server you will need to connect to a
Universal Messaging Realm and establish an nRealmNode (see "nRealmNode" on page
439). You can then get a reference to the nMulticastManager:

Java, C#:
nMulticastManager mMgr = realm.getMulticastManager();

C++:
nMulticastManager* mMgr = realm->getMulticastManager();

You can now use the nMulticastManager to send the new configuration to the server:

Java, C#:
mMgr.addMulticastConfiguration(mConf);

C++:
mMgr->addMulticastConfiguration(mConf);

Security

Access Control Lists
The Universal Messaging Administration API allows Access Control Lists (ACLs) to
be set using the nACL object defines a set of nACLEntry objects that consist of a user
subject and a value that corresponds to the operations permied for that subject. With an
nACL object, it is possible to added, delete and modify acl entries for specific subjects.

The nACL Object

There are subclasses of the base nACLEntry object. These are :

nRealmACLEntry - defines permissions for a specific subject on the Universal
Messaging Realm server itself

nChannelACLEntry - defines permissions for a subject on a channel or queue

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 453

ACL Lists can contain any combination and number of user@host entries, along with
Security Groups (see "Nirvana Admin API - Nirvana Security Groups" on page 453).

Nirvana Admin API - Nirvana Security Groups
The Administration API allows groups of users to be defined. These groups can then be
used in ACL lists in-place of individual ACL entries for each user.

Security Groups can contain any number of users (user@host pairs), and may also
include other Security Groups.

A new security group can be registered as follows:

Java, C#, C++:
 nSecurityGroup grp = new nSecurityGroup("mySecurityGroup");
 grp.add(add(new nSubject("user@host");
 realmNode.getSecurityGroupManager.registerSecurityGroup(grp);

The SecurityGroupManager can be used to edit memberships of multiple groups at the
same time, for example:

Java, C#, C++:
 nSecurityGroupManager mgr = realmNode.getSecurityGroupManager();
 mgr.registerGroupMembers(group,members);
 //Members can be a single subject(user@host), a group, or a collection
 //containing many subjects, groups or a combination of these.

Once a security group has been registered, it can be added into ACL lists as you would
normally add a user@host entry. Subsequent changes to the membership of the group
will be reflected in which users have permissions for the corresponding resources.

Java, C#, C++:
 nSecurityGroup grp = securityGroupManager.getGroup("myGroupName");
 nChannelACLEntry aclEntry = new nChannelACLEntry(grp);
 aclEntry.setFullPrivileges(true);
 leafNode.addACLEntry(aclEntry);

Groups can also be deregistered from the realm. This will remove the group and will
remove the group reference from all ACL lists where the group currently appears. As
with the other examples, this can be done via the nSecurityGroupManager:

Java, C#, C++:
 mgr.deregisterSecurityGroup(grp);

As with all ACLs in Universal Messaging, privileges are cumulative. This means that,
for example, if a user is in a group which has publish permissions on a channel, but not
subscribe permissions, the user will no be able to subscribe on the channel. Then, if an
ACL entry is added on the channel for his specific username/host pair, with subscribe
but no publish permissions, the user will then be able to both subscribe (from the non-
group ACL permission), and publish (from the group ACL permission).

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 454

Deeply nested Security Groups hierarchies are generally discouraged, since this type
of configuration can negatively impact the speed of checking ACLs, and may result in
worse performance than a shallow hierarchy.

Realm Access Control List (nACL)
When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 439), you can access an the realm's acl object. This object
contains a list of nRealmACLEntry objects that represent a subject and a set permissions
for various operations on a realm.

You can also, add, delete and modify acl entry objects. To obtain the realm acl object,
simply call the following method from a realm node:

Java, C#:
nACL acl = realm.getACLs();

C++:
nACL* acl = realm->getACLs();

nRealmACLEntry

Once you have the acl object, you can then add, remove or modify acl entries:

To find a specific acl entry from the realm acl, you can search the acl using the subject.
For example, if I wished to change the default permissions for the *@* subject (i.e. the
default permission for a realm), I could use the following code:
nRealmACLEntry entry = acl.find("Everyone");
 entry.setFullPrivileges(false);
 acl.replace(entry);
 realm.setACLs(acl);

C++:
nRealmACLEntry* entry = acl->find("Everyone");
 entry->setFullPrivileges(false);
 acl->replace(entry);
 realm->setACLs(acl);

which would set the full privileges flag to false for the default subject.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Channel Access Control List (nACL)
When connected to a Universal Messaging realm server ,with a reference to an
nRealmNode object (see "nRealmNode" on page 439) it is possible to get a reference
to an nLeafNode (see "nLeafNode (Channels and Queues)" on page 441) that
corresponds to a channel. This can then be used to get access the node's nACL . This
object contains a list of nChannelACLEntry objects that represent a subject and a set

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 455

permissions for various operations on a channel. There is a separate nChannelACLEntry
object for each subject that has been permissioned on the nLeafNode.

You can also, add, delete and modify ACL entry objects.

In order to obtain a reference to the correct channel ACL object for a channel called "/
products/prices", simply call the following method from a realm node:

Java, C#, C++:
nLeafNode chan = realm.findNode("/products/prices");
 nACL acl = chan.getACLs();

C++:
nLeafNode* chan = realm->findNode("/products/prices");
nACL* acl = chan->getACLs();

nChannelACLEntry

Once you have the ACL object, you can then add, remove or modify acl entries:

To find a specific ACL entry from the channel ACL, the ACL object can be searched
using the subject.

For example, to change the default permissions for the *@* subject (i.e. the default
permission for the channel), the following code can be used:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
 entry.setFullPrivileges(false);
 acl.replace(entry);
 chan.setACLs(acl);

C++:
nChannelACLEntry* entry = acl->find("Everyone");
 entry->setFullPrivileges(false);
 acl->replace(entry);
 chan->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to modify channel ACLs programmatically or to see
example of modifying ACLs using the enterprise manager.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Queue Access Control List
When you have connected to a realm, and have a reference to an nRealmNode object
(see "nRealmNode" on page 439), and an nLeafNode (see "nLeafNode (Channels and
Queues)" on page 441) that corresponds to a queue, you can access the node's ACL
object. This object contains a list of nChannelACLEntry objects that represent a subject
and a set permissions for various operations on a queue.

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 456

You can also, add, delete and modify acl entry objects. To obtain the queue ACL object,
simply call the following method from a realm node:

Java, C#:
nLeafNode queue = realm.findNode("/eur/uk/orders");
 nACL acl = queue.getACLs();

C++:
nLeafNode* queue = realm->findNode("/eur/uk/orders");
 nACL* acl = queue->getACLs();

Once you have the acl object, you can then add, remove or modify acl entries:

nChannelACLEntry

To find a specific ACL entry from the queue ACL, you can search the ACL using the
subject. For example, if I wished to change the default permissions for the *@* subject
(i.e. the default permission for the queue), I could use the following code:

Java, C#:
nChannelACLEntry entry = acl.find("Everyone");
entry.setFullPrivileges(false):
acl.replace(entry);
queue.setACLs(acl);

C++:
nChannelACLEntry* entry = acl.find("Everyone");
entry->setFullPrivileges(false):
acl->replace(entry);
queue->setACLs(acl);

which would set the full privileges flag to false for the default subject.

Click here to see example of how to add queue ACLs programmatically or to see
example of modifying ACLs using the enterprise manager.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Management Information

nRealmNode
The Universal Messaging admin API provides real time asynchronous management
information on all objects within a realm server. By creating an nRealmNode (see
"nRealmNode" on page 439), and connecting to a realm, information is automatically
delivered to the nRealmNode object from the realm. This information is delivered
periodically in summary form, and also as and when the state changes for one or all of
the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 457

all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained
through the nAdmin API for the nRealmNode object:

Status Information

The nRealmNode extends nContainer, that extends nNode which is a subclass of
Observable, so when the status information is received for a realm node, (by default
this is every 5 seconds although it is configurable (see "Realm Configuration" on page
28) by seing the StatusBroadcast property under the Global Values config group) the
nRealmNode will trigger the update callback on any known Observers. For example, if
you write a class that implements the Observer interface, it can be added as an observer
as follows:

Java, C#, C++:
realm.addObserver(this);

Assuming 'this' is the instance of the class implementing Observer, then the
implementation of the update(Observable obs, Object obj) will be notified that the realm node
has changed.

When regular status events are sent, the Observable object referenced in the update
method will be the realm node that you added your observer to, and the Object will be
null.

State Change Events

When events occur on a realm node that you have added an observer to, the Observable/
Observer mechanism will notify you of the details of that event. For example, the
following implementation of the update method of the Observer interface demonstrates
how to detect that a new channel or queue has been created or deleted :

Java, C#:
public void update(Observable obs, Object obj){
 if (obs instanceof nContainer) {
 if (obj instanceof nLeafNode) {
 nLeafNode leaf = (nLeafNode)obj;
 nContainer cont = (nContainer)obs;
 if (cont.findNode(leaf) == null) {
 // node has been deleted
 System.out.println("Node "+leaf.getName()+" removed");
 } else {
 // node has been added
 System.out.println("Node "+leaf.getName()+" added");
 }
 }
 }
}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 458

 if (obs->getType() == fBase::CONTAINER) {
 if (obj->getType() == fBase::LEAFNODE) {
 nLeafNode leaf = (nLeafNode*)obj;
 nContainer cont = (nContainer*)obs;
 if (cont->findNode(leaf)) {
 // node has been deleted
 printf("Node %s removed",leaf->getName());
 System.out.println("Node "+leaf.getName()+" removed");
 } else {
 // node has been added
 printf("Node %s added",leaf->getName());
 }
 }
 }
}

Any changes to the realm ACL will also use the same notification mechanism. For
example, if an ACL entry was changed for a realm, the update method would be fired
calling with the realm node object and the nACLEntry that had been modified.

Logging and Audit

An nRealmNode allows you to asynchronously receive realm log file entries as well as
audit file entries as they occur.

Firstly, for receiving asynchronous log file entries, there is an interface called
nLogListener which your class must implement. This interface defines a callback method
called report(String) that will deliver each new log entry as a string. Once implemented,
the following call will add your log listener to the realm node:

Java, C#, C++:
realm.addLogListener(this);

Assuming 'this' is the instance of the class implementing the nLogListener interface.

The following is an example of the report(String) method implementation:

Java, C#:
public void report(String msg) {
 System.out.println("LOG "+msg);
}

C++:
printf("Log : %s\n", msg);

Secondly, realm servers provide an audit file that tracks object creations and deletions,
acl changes, connection aempts and failures. This information can be very useful for
tracking who has created ACL entries for example and when they were done.

This information, as with log file entries can be asynchronously received by
implementing an interface called nAuditListener. This interface defines a callback
method called audit(nAuditEvent) that delivers contains the details of the audit entry.
Once implemented, the following call will add your log listener to the realm node:

Java, C#, C++:
realm.addAuditListener(this);

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 459

Assuming 'this' is the instance of the class implementing the nAuditListener.

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

nClusterNode
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
439), and connecting to a realm, information is automatically delivered to the realm
node from the realm. This information is delivered periodically in summary form, and
also as and when the state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of
all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section discusses the following different types of information that can be obtained
through the nAdmin API for the nClusterNode object. The nClusterNode corresponds to
a cluster that 2 or more realms are members of. Each nRealmNode will have access to its
cluster node object once it has been added to a new or existing cluster:

Status Information

Firstly, in order to detect that a cluster node has been created, one has to observer the
realm to which you are connected. When the realm is added to a cluster, the Observer/
Observable mechanism will notify you of the cluster creation.

As well as implementing the Observer interface to detect new clusters, there is an
interface that can be used to be notified of specific cluster events when clusters already
exist. This interface is the nClusterEventListener. The interface defines various methods
that enable your program to receive callbacks for specific cluster events. When the status
changes for a cluster node, this will trigger an callback on any known listeners of the
nClusterNode. For example, when you have constructed your nRealmNode, if your class
implements the nClusterEventListener interface, then we can do the following:

Java, C#:
realm.addObserver(this);
nClusterNode cluster = realm.getCluster();
if (cluster != null) {
 cluster.addListener(this);
}

C++:
pRealm->addObserver(this);
nClusterNode *pCluster = pRealm->getCluster();
pCluster->addListener(this);

If the realm is not part of a cluster, then the getCluster() method will return null.
However, by adding an observer to the realm, if a cluster is created that contains the

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 460

realm you are connected to, the update() method of the Observer implementation will
notify you that a cluster has been created. For example, the following code demonstrates
how to detect if a cluster has been created with the realm you are connected to as a
member:

Java, C#:
public void update(Observable o, Object arg) {
 if (arg instanceof nClusterNode) {
 System.out.println("New cluster formed, name = "+((nClusterNode)arg).getName());
 ((nClusterNode)arg).addListener(this);
 }
}

C++:
nNode *pNode = iterator->second;
int type = pNode->getType ();
 if (type == fBase::LEAFNODE)
 {
 ((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode, this));
 }

For more information on how to monitor cluster nodes programmatically please see the
appropriate code example.

For more information on how to monitor cluster nodes using the enterprise manager
please see the enterprise manager guide.

For more information on Universal Messaging Administration, please see the API
documentation and the Enterprise Manager Guide.

nLeafNode
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
439), and connecting to a realm, information is automatically delivered to the realm
node from the realm. This information is delivered periodically in summary form, and
also as and when the state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of
all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section will discuss the basic information that can be obtained through the nAdmin
API for the nLeafNode object:

Status Events

The nLeafNode extends nNode which is a subclass of Observable, so when the status
information is received for a leaf node, (this occurs only when things change on the
channel or queue, i.e. acl, connections, events published / consumed etc) the nLeafNode

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 461

will trigger the update callback on any known Observers. For example, if you write a
class that implements the Observer interface, then we can do the following:

Java, C#:
Enumeration children = realm.getNodes();
while (children.hasMoreElements();
 nNode child = (nNode)children.nextElement();
 if (child instanceof nLeafNode) {
 child.addObserver(this);
 }
}

C++:
pNode->addObserver(this);
pNode->addConnectionListener(new nRealmWatch(this));
fSortedList nodes = registerNodes(pNode->getNodes());
for (fSortedList::iterator iterator = nodes.begin(); iterator != nodes.end(); iterator++)
 {
 if (type == fBase::LEAFNODE)
 {
 ((nLeafNode*)pNode)->addListener(new nChannelWatch((nLeafNode*)pNode, this));
 }
 }

Assuming 'this' is the instance of the class implementing Observer, then the
implementation of the update(Observable obs, Object obj) will be notified that the leaf node
has changed.

When events occur on a leaf node that you have added an observer to, the Observable/
Observer mechanism will notify you of the details of that event. For example, the
following implementation of the update method of the Observer interface demonstrates
how to detect that a channel or queue acl has been added or deleted:

Java, C#:
public void update(Observable obs, Object obj){
 if (obs instanceof nLeafNode) {
 if (obj instanceof nACLEntry) {
 nLeafNode leaf = (nLeafNode)obs;
 nACLEntry entry = (nACLEntry)obj;
 if (leaf.isChannel()) {
 // acl modified / added / deleted
 System.out.println("Channel "+leaf.getName()+" acl event for "+entry.getSubject());
 } else {
 // acl modified / added / deleted
 System.out.println("Queue "+leaf.getName()+" acl event for "+entry.getSubject());
 }
 }
 }
}

C++:
void ObservableMapping::update(Observable *pObs, void *pObj)
{
 if (obs->getType() == fBase::LEAFNODE) {
 if (obj->getType() == fBase::ACLENTRY) {
 nLeafNode leaf = (nLeafNode*)obs;
 nACLEntry entry = (nACLEntry*)obj;
 if (leaf->isChannel()) {
 // acl modified / added / deleted

M
Even Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 462

 printf("Channel %s acl event for %s",leaf->getName(),+entry->getSubject());
 } else {
 // acl modified / added / deleted
 printf("Queue %s acl event for %s",leaf->getName(),+entry->getSubject());
 }
 }
 }
}

For more information on Universal Messaging Administration, please see the API
documentation, and the Enterprise Manager Guide.

Connection Information
Universal Messaging's admin API provides real time asynchronous information on all
objects within a realm server. By creating an nRealmNode (see "nRealmNode" on page
439), and connecting to a realm, information is automatically delivered to the realm
node from the realm. This information is delivered periodically in summary form, and
also as and when the state changes for one or all of the objects managed within a realm.

Before reading this section it may be useful to look at the management information
available via the Universal Messaging enterprise manager. A full description of
all Realm management screens is available in the enterprise manager guide. All
functionality seen in the enterprise manager can be easily added to bespoke admin and
monitoring processes as it is wrien entirely using the Universal Messaging Admin API.

This section will discuss the connection information that is available through the
nAdmin API for the nRealmNode and the nLeafNode objects:

nRealmNode Connections

The nRealmNode provides the ability to be notified of connections to the realm, and
when connections are closed. When a client aempts a connection, a callback will be
made that gives the details of the connection, such as the user name, hostname, protocol
and connection id. When a user connection is closed, again, you will receive notification.
This information can be useful for monitoring activity on a realm.

In order to receive this kind of information, you need to implement the
nConnectionListener class. This class defines 2 methods, newConnection and
delConnection. To receive notifications, you can use the following method:

Java, C#, C++:
realm.addConnectionListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when
connections are made or closed with the realm.

nLeafNode Connections

Universal Messaging provides the ability to issue notifications of connections to
leaf nodes. Connections to leaf nodes correspond to subscriptions on a channel, so
when a user subscribes to a channel or removes the subscription, you can be notified.

M
Odd Header

Universal Messaging Administration API

Universal Messaging Administration Guide Version 10.1 463

Notification is via a callback that contains the details of the connection, such as the user
name, hostname, protocol, connection id, durable name and subscription filter.

In order to receive this kind of information, you need to implement the
nConnectionListener class. This class defines 2 methods, newConnection and
delConnection. To receive notifications, you can use the following method:

Java, C#:
leafaddListener(this);

C++:
leaf->addListener(this);

Assuming 'this' is the instance of the class implementing nConnectionListener, then the
implementation of the newConnection and delConnection methods will be notified when
channel subscriptions are made or removed.

	Table of Contents
	Overview
	Universal Messaging Enterprise Manager
	Introduction
	Getting Started
	Tab-by-Tab Overview

	Administration Using Enterprise Manager
	Enterprise View
	Realm Administration
	Creating and Starting a Realm Server
	Connecting to Multiple Realms
	Disconnecting from Realms
	Editing Connection Information
	Realm Profiles
	Realm Federation
	Realm Configuration

	Zone Administration
	Cluster Administration
	Creating a Cluster
	Deleting Clusters
	Modifying Clusters
	Cluster Channel Administration
	Cluster Queue Administration
	Viewing Cluster Information
	Manage Inter-Cluster Connections
	Creating and Managing Clusters with Sites

	Channel Administration
	Creating Channels
	Editing Channels
	Copying Channels
	Creating Channel Joins
	Channel Snoop
	Channel Publishing
	Channel Named Objects

	DataGroup Administration
	Creating DataGroups
	Adding Existing DataGroups to DataGroups
	Removing DataGroups from DataGroups
	Deleting DataGroups

	Queue Administration
	Creating Queues
	Editing Queues
	Copying Queues
	Queue Snoop

	Using ACLs for role-based Security
	Security Groups
	Realm Entitlements
	Channel Entitlements
	Queue Entitlements
	Interface VIA Rules

	Scheduling
	Universal Messaging Scheduling : Writing Schedule Scripts
	Universal Messaging Scheduling : Calendar Triggers Schedules
	Universal Messaging Scheduling : Conditional Triggers
	Universal Messaging Scheduling : Tasks
	Universal Messaging Scheduling: Editor
	Scheduler Examples
	Universal Messaging Scheduling : Example Realm Script
	Universal Messaging Scheduling : Store Triggers Example
	Universal Messaging Scheduling : Interface Triggers Example
	Universal Messaging Scheduling : Memory Triggers Example
	Universal Messaging Scheduling : Realm Triggers Example
	Universal Messaging Scheduling : Cluster Triggers Example
	Universal Messaging Scheduling : Counter Trigger Example
	Universal Messaging Scheduling : Time Triggers Example
	Universal Messaging Scheduling : Configuration Example

	Integration with JNDI
	TCP Interfaces, IP Multicast and Shared Memory
	Overview of Working with Interfaces
	Creating Interfaces
	Starting Interfaces
	Modifying Interfaces
	Stopping Interfaces
	Deleting Interfaces
	SSL Interfaces
	Interface Configuration
	JavaScript Interface Panel
	Interface plugins
	Multicast Configuration
	Shared Memory Configuration
	Creating an SSL network interface to a Universal Messaging Realm Server
	How to generate certificates for use

	Plugins
	File Plugin
	XML Plugin
	Proxy Passthrough Plugin
	REST Plugin
	SOAP Plugin
	Servlet Plugin

	XML Configuration: Overview
	XML Configuration: Exporting To XML
	XML Configuration: Importing From XML
	XML Configuration: Sample XML File for EXPORT

	Management and Monitoring Sections
	Enterprise view
	Management Information
	Enterprise Summary
	Clusters Summary
	Clusters Status
	Realms Summary
	Realm Status
	Realm Monitoring
	Universal Messaging Enterprise Manager : Logs Panel
	Realm Connections
	Threads Status
	Top
	Audit Panel
	Container Status
	Container Monitor Panel
	Channel Status
	Data Group Status
	Channel Connections
	Queue Status
	Interface Status

	Scheduler view
	Channel view
	Queue view

	Using the Enterprise Viewer

	Using Command Central to Manage Universal Messaging
	Managing Universal Messaging using Command Central
	Securing Access to Command Central
	Changing the Authentication Mode
	Verifying the Outbound Authentication Settings
	Using Unix Shell Scripts to Change Connection Credentials for Managed Products

	Instance Management
	Creating an Instance
	Deleting an Instance

	Authentication Configuration
	Universal Messaging Configuration Types
	Working with Universal Messaging Configuration Types
	User Management
	License Management
	Ports Configuration
	Configure NSP
	Configure NHP
	Configure NHPS
	Configure NSPS

	Memory Configuration
	Realm Access Control Lists (ACLs)
	Group Management
	General Properties
	JNDI Management
	JNDI Connection Factories
	JNDI Destinations

	Channels Configuration
	Queues Configuration
	Zones
	Java System Properties
	Cluster Management
	Before You Create a Universal Messaging Cluster
	Cluster Configuration Fields
	Cluster Configuration Tasks Supported
	Cluster Migration

	Universal Messaging Logs
	Universal Messaging Administration Types
	Durable Subscribers
	Channels
	Queues

	Universal Messaging Inventory
	Universal Messaging Lifecycle Actions
	Universal Messaging KPIs
	Universal Messaging Run-time Monitoring Statuses
	Universal Messaging and the Command Line Interface
	Universal Messaging Commands

	Command Line Administration Tools
	Introduction to the Administration Tools
	Starting the Tools using the Tools Runner Application
	Performing Standard Administration Tasks on Realms and Clusters
	Running a Configuration Health Check
	Collecting Realm Information

	Universal Messaging Administration API
	Introduction
	Administration API Package Documentation
	Namespace Objects
	nRealmNode
	nLeafNode (Channels and Queues)
	Realm Federation
	Channel Join

	Realm Server Management
	Interfaces
	Scheduling
	Config
	Clustering
	Multicast

	Security
	Access Control Lists
	Nirvana Admin API - Nirvana Security Groups
	Realm Access Control List (nACL)
	Channel Access Control List (nACL)
	Queue Access Control List

	Management Information
	nRealmNode
	nClusterNode
	nLeafNode
	Connection Information

