5 software~

webMethods Mobile Designer Native User Interface
Reference

Version 10.1

October 2017

WEBMETHODS

This document applies to webMethods Mobile Designer Version 10.1 and to all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2011-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: MD-NUI-101-20171017

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

Table of Contents

Table of Contents

ADOUL thiS GUILE.......cererercrrerererecs s s a e s anene s 5
DOCUMENT CONVENTIONS........oveeieiireiieisiee st 5
ONlNE INFOMMALION. ... 6

Mobile Designer Native User Interface...........coecveinnncscsnnnnnncssssnnsese s ssssssssesssssssssseses 7
About the Native User Interface (NativeUI) Library...........cccooevrniincncsnccncncene 8
Look-and-Feel When Using the NativeUl Library.........cccccveeviinininniisvcssss s 8
About Using the NativeUl LIDrary.........cccovvvviiissssss e 10
Mobile APPlICAtION DESIGN......cvreeiririeirieierriceets st 11
Hierarchy of NativeUl Objects for a User Interface...........cocoveevvicceiscccessscecesin 12
Indicating that a Project Uses the NativeUl Library..........ccoovvviiivvsvvssecee e 15
Setting Up the Application Code to Use the NativeUl Library..........cocoeovvvvevennnicnnnns 15
Setting and Querying NativeUl Object AtHDULES..........ccoreveirieircrcere e 16
Handling Events Generated by USer ACHONS..........cccccviicieiiiecccc e, 16
Transitioning Between WINdows and VIEWS...........ccvriineneesesesee s 18
Defining the Layout of Objects in the User Interface..........ccccvvvvcceivieccescccces e, 19

Controlling the Inner Padding of Parent OBJECtS.........cccceeivcccveerccee e 19
Positioning Elements in @ Parent ODJECE...........cooviiniciciccce, 21
Sizing Child ElEmENtS........cceveiecceece s 23
Controlling the Vertical Spacing Between Child Elements...........ccccocoeevviviccenicccennn, 25
Controlling the Horizontal Alignment of Elements...........cccoiviriininncc, 26
Using Tables to Control the Layout of Elements..........cccccvvieciiviccieccceccees 27
Managing ObJECE FOCUS.........ccuiuiuiieiiictcte ettt 32
Background Colors and IMAgES...........curuiueinieciriiirienieirieisee e 33
Adding Support for Right-to-Left Languages..........cceeueviirceiiiicee e 34
Using Multiple Panes for Tablet User INterfaces...........cccocevviicveiieiecceececece e 37
Managing the Layout Of Panes..........ccorirniineeeses e 38
Designing Applications to Run on Both Tablets and Smaller Devices............ccccvvvenneee. 39
Determining the Device Size at RUN TiME.........cocceiivicicieeccee e 39
Adding Panes t0 @ WINAOW...........cciiiiiiirireeeseeeeeses e 40
Side VIEWS OF PANES?.......cuiieiiieiieisieis ettt 41
JAVASCIIPE BHAGE.ocveviicctcce bbbt bbb 42
Maintaining GOOT SECUMMEY.........ccvvivrriiririciirieie e 42
Sending a message to JavaScript from Java...........ccccevviieennscc e, 43
Evaluating an Arbitrary Chunk of JavaScript Code.........cccoevviiriiniiiceeeeeeee e 43
Sending a message to Java from JavaScript...........cccoenirnis 43
TADDEA VIBWS.....ceeeesicte ettt 44
Integration in MoDile DESIGNET.........ccciiiiiiiiierere e 45

List VIEWS @nd EIEMENLS........c.oviriireerscees s 45
Native User Interface (NativeUl) ObjJects..........cocrunmimrninsnnmmnnsssssssssssssssssssesssesaes 47

webMethods Mobile Designer Native User Interface Reference Version 10.1 3

Table of Contents

About the NatiVeUl ODJECES..........oiuiiiiriieiricisee s 49
NUIAIEIDIAI0P. .1ttt a s es 50
NUIBULONEIBMENL........coevieeiicieietss et ees 54
NUIChECKDOXBULION.........cvivivititiiiiicecteee ettt et 55
NUICONLAINETEIBMENL........... oo 57
NUID@IEENIIY ...ttt s 59
NUIDIIOGWINAOW.ceoei bbb 62
NUIDISPIAYODJECL.........cecvcteie et 67
NUIDIOPAOWNISIENTIY......vcviicecicii i 67
NUIEIEMENTDISPIAY.t 70
NUIENETYEIBMENL. ...ttt 71
NUIMAGEEIBMENL.......cocviiiieiiiee ettt 73
NUILISTEIBMENL.......ovivtctcccece bbbt 73
NUILISEVIEW. ...t 75
NUINAVDULONEIBMENT. ...t 77
NUINGVVIBW. ...ttt ettt bbb bbbt bbb s s e 81
NUIODJECE.....oe e bbbt bbb 86
NUIProgressanimEIEMENL. ..o 86
NUIRAAIOCRECKDOX.vcviviictctcicce et 89
NUISEAICAENIY......viiectcicccs ettt 91
NUISEPAratorEIEMENL ..ottt s 93
NUISPACETEIBMENL.......cocicei e 95
NUISWILCRBULION. ... 95
NUITADIEBULLON. ... 96
NUITADIECEIIEIBMENL.......oeieiiiiiee et bbbt 98
NUITADIEEIBMENL. ... 99
NUITADIETOWEIBMENT.........ecee e 101
NUITADVIBW........oiiii ettt ettt bbbt bbbt bbbt b bbbt 101
NUITEXHIRIAEIBMENL.........eicece e 102
NUITIMEIODJECL. ...ttt 104
NUIVIEWDISPIAY ...t 104
NUIWEDVIBW. ... 109
NUIWEDVIEWCAIIBACK. ..ot 113
NUIWEDVIEWEIBMENT........ovteccccceceete e 113
NUIWINAOWDISPIAY.......cocveviiiiicteieiiece et 116

webMethods Mobile Designer Native User Interface Reference Version 10.1 4

About this Guide

This guide describes the Mobile Designer native user interface that you can use to create
user interfaces for mobile applications. It contains information for both application
designers who want to design user interfaces for mobile applications and developers
who want to code user interfaces for mobile applications.

Document Conventions

Convention Description
Bold Identifies elements on a screen.
Narrowfont Identifies storage locations for services on webMethods

Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace Identifies text you must type or messages displayed by the

font system.

{} Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

webMethods Mobile Designer Native User Interface Reference Version 10.1 5

Online Information

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.
Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at http://techcommunity.softwareag.com. You can:

B Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation” as an area of interest.

B Access articles, code samples, demos, and tutorials.

®m Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

®m Link to external websites that discuss open standards and web technology.

webMethods Mobile Designer Native User Interface Reference Version 10.1

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

Mobile Designer Native User Interface

1 Mobile Designer Native User Interface

m About the Native User Interface (NativeUI) Library ... 8
m Look-and-Feel When Using the NativeUl LIDrary ... 8
B About Using the NativeUl LIDrary ...t 10
B Mobile APPlICAtION DESIGNc.ovieieeieirieiieieee et 11
m Hierarchy of NativeUl Objects for @ User INterfaceocceevviccvciiieceescece s 12
m Indicating that a Project Uses the NativeUl Library ... 15
m Setting Up the Application Code to Use the NativeUl Librarycccccovvveeevviiiceiicccnnen, 15
m Setting and Querying NativeUl Object AfrDULESccoiriiiriicce s 16
m Handling Events Generated by USEr ACHIONSc.ccccceiiiiiiiciccicccce e e 16
m Transitioning Between Windows and VIEWScccoevirniincnsesee e 18
m Defining the Layout of Objects in the User INterfaceccoccceeeviccrceiieceeeeecce e 19
B Managing ODBJECE FOCUSc.uiiiriiriiiiiees s 32
m Background Colors and IMAJESccooiriiiriieiniiiicte s 33
B Adding Support for Right-to-Left Languagesccccouveeiiiiiicreeisecce e 34
m Using Multiple Panes for Tablet User INterfaces ... 37
B JAVaSCriPt BAAGE ..o 42
B TADDEA VIBWS ...t 44
B List Views and EIBMENTScooiiiiiicc s 45

webMethods Mobile Designer Native User Interface Reference Version 10.1 7

Mobile Designer Native User Interface

About the Native User Interface (NativeUl) Library

The webMethods Mobile Designer native user interface (NativeUI) library provides a
standard way to create user interfaces that match the expected behavior of a platform.
For example, you can use the NativeUI library to define a user interface that works
equally well on the Android, iOS, Windows Phone, Windows 8 (x86 architecture
version), and Windows RT (ARM architecture version) platforms. The resulting user
interface typically matches the behavior and look-and-feel that is expected on each
target device. For more information, see "Look-and-Feel When Using the NativeUI
Library" on page 8.

Note: For Windows 8 and RT, only Windows Store/Metro applications are
supported. See also the list of SDK versions that Mobile Designer supports in
Using webMethods Mobile Designer.

Mobile Designer is installed with several sample applications, many of which use the
NativeUI library. The NativeUI library is made up of several objects. The descriptions of
these objects in "Native User Interface (NativeUI) Objects" on page 47 include code
samples that illustrate how to use each of the NativeUI objects.

Some NativeUI objects are relatively simple, such as buttons or text entry fields. Others
objects are more complex, such as navigation bars or scrollable containers. Each of the
NativeUI objects maps to an object on the target device, allowing the user interface

to adapt to all target platforms, including devices with touchscreen user interfaces,
physical keyboards, and other input methods.

Look-and-Feel When Using the NativeUl Library

You use the NativeUI library to create the user interface for your mobile application.
When you compile your application, the NativeUI Class implementation for each
platform is replaced by the native version of these classes that will execute when the
application is running on the target device.

This class controls how a NativeUI object behaves and looks on the target device. The
class to which Mobile Designer translates a NativeUI class depends on whether the
NativeUI library has platform-specific support for the platform.

® When the NativeUl library includes platform-specific support for a platform, Mobile
Designer translates the NativeUI classes into platform-specific classes. As a result,
a user interface object renders as expected on the target device, using the platform
look-and-feel and behavior.

The NativeUI provides support for several platforms, such as Android, iOS,
Windows Phone, Windows 8, and Windows RT.

For example, if you use the NativeUI object nUICheckboxButton and compile
your application for an iOS device, Mobile Designer translates NativeUI object

webMethods Mobile Designer Native User Interface Reference Version 10.1 8

Mobile Designer Native User Interface

nUICheckboxButton to the iOS UISwitch class. As a result, when the user interface
displays on the iOS device, it uses the iOS UISwitch class to render the check box.

® When the NativeUI library does not include platform-specific support for a platform,
Mobile Designer uses a general, graphical skin. In this case, the user interface
renders on the target device using a general graphical skin rather than a platform-
specific look-and-feel.

The general graphical skin renders all of the available NativeUI objects, including
features such as on-screen pop-up keyboards.

NativeUl and Phoney Skins

Phoney is a phone simulator that is not platform-specific. You can use Phoney to test
your mobile applications. For more information, see Using webMethods Mobile Designer.

When you use the NativeUI library for your mobile application user interface and run
the application in Phoney, the look-and-feel for the user interface depends on whether
Mobile Designer provides platform-specific skins for the platform you are simulating in
Phoney.

® When Mobile Designer includes platform-specific skins for a simulated platform,
Phoney renders the user interface using the Phoney platform-specific skin.

The platform-specific Phoney skins do not provide an exact representation of how
the user interface will look on the platform. However, the platform-specific Phoney
skins do allow you to get a better idea of how your application's user interface looks
in the target platform. The Phoney skins attempt to match a platform's look-and-feel.

® When Mobile Designer does not include a platform-specific skin for a simulated
platform, Phoney renders the user interface using the general graphical skin.

While developing your mobile applications, using Phoney saves you time because you
can use Phoney to quickly visualize your application's user interface rather than having
to deploy your application to a target device.

Phoney Skins for the iOS Platform

The look-and-feel for the iOS platform changed between iOS 6 and iOS 7. Mobile
Designer provides Phoney skins for both the iOS 6 and iOS 7 version. By default, the
version of the iOS Phoney skin that Mobile Designer uses depends on the type of iOS
device you are simulating in Phoney.

®m If you are simulating an iOS device that supports iOS 7, Mobile Designer uses the
iOS 7 Phoney skin for the simulated iOS device.

®m If you are simulating an iOS device that does not support iOS 7, Mobile Designer
uses the iOS 6 Phoney skin.

The iOS devices that do not support iOS 7 are the first generation iPhone, iPhone 3G,
iPhone 3GS, first generation iPad, first generation iPod Touch, iPod Touch 2G, iPod
Touch 3G and iPod Touch 4G.

You can override the default that Phoney uses for an iOS device
using the MD PFRENDERER IOS_ VERSION run-time parameter. Set the

webMethods Mobile Designer Native User Interface Reference Version 10.1 9

Mobile Designer Native User Interface

MD PFRENDERER IOS VERSION to 6 to explicitly indicate you want to use the iOS 6
Phoney skin or 7 to explicitly indicate you want to use the iOS 7 Phoney skin.

If you want the setting to apply to all iOS devices that your application supports, set the
parameter in the project_defaults_.xml file, which is located in the project’s target folder.
To apply the setting to a specific iOS device, set the property in the target file for that iOS
device, target_name .xml.

For example, if you are simulating an iPhone 5 in Phoney and want to use the iOS 6
Phoney skin, use:

<param name="MD PFRENDERER TIOS VERSION" int="6"/>

For more information about setting parameters, see Using webMethods Mobile Designer.

About Using the NativeUl Library

Use the NativeUl library to develop the user interface for a mobile application. It is
recommended that you have your mobile application user interface design complete
before starting to develop it using the NativeUI library.

Design Considerations
When designing the user interface:

m Review information about designing mobile applications. See "Mobile Application
Design" on page 11.

® Understand the NativeUI object hierarchy. See "Hierarchy of NativeUI Objects for a
User Interface" on page 12.

m If the application will run on a tablet device, you can design the user interface to use
multiple panes. See "Using Multiple Panes for Tablet User Interfaces" on page 37.

®m If you want the application to run on both tablet devices and smaller devices, you
need to design for both. See "Designing Applications to Run on Both Tablets and
Smaller Devices" on page 39.

Developing the User Interface Using the NativeUl Library

To create a user interface using the NativeUI library, use the Mobile Designer Java
AP], specifically the classes in the com.softwareag.mobile.runtime.nui package. The classes
in this package control the NativeUI objects at the specific device level. Each NativeUI
object maps to a platform-specific object for a target device, such as Apple’s iPhone 4
and Google’s Android. Additionally, you can write your own extensions to the Mobile
Designer NativeUl by extending any of the supplied classes or by creating new classes
that add functionality.

To use the NativeUl library for an application, you must set up the Mobile Designer
project to indicate that the library is needed when compiling the application. For more
information, see "Indicating that a Project Uses the NativeUI Library" on page 15.

See the following for information that is useful when coding the application:

webMethods Mobile Designer Native User Interface Reference Version 10.1 10

Mobile Designer Native User Interface

"Setting Up the Application Code to Use the NativeUI Library" on page 15
"Setting and Querying NativeUI Object Attributes" on page 16

"Handling Events Generated by User Actions" on page 16

"Transitioning Between Windows and Views" on page 18

"Defining the Layout of Objects in the User Interface" on page 19
"Managing Object Focus" on page 32

"Background Colors and Images" on page 33

"Adding Support for Right-to-Left Languages" on page 34

"Using Multiple Panes for Tablet User Interfaces" on page 37

Mobile Application Design

Before coding a mobile application, you should design the application and determine its
user interface.

Designing a Mobile Application

The first stage in a development process is design. Designing a mobile application
involves defining the content, goals, and process flow of the application. During this
stage, you should not be concerned with how the user will physically interact with the
application. It is recommended that the outcome of the design phase is a thorough flow
diagram that will enable you to effectively develop the application.

Designing the Mobile Application User Interface

After you design the application, you know the underlying processes that the
application will need. You then design the user interface to determine how the user will
interact with the application to achieve the application’s intended functionality and
goals.

When designing the user interface, determine the best way to present the required
information to the user. A good approach is to start with a hub-and-spoke style
application map that defines screens and the interactions with those screens to achieve
all steps within the application process flow. You can then draft the various individual
screens using wireframe illustrations.

The Mobile Designer NativeUI library simplifies designing the user interface because it
allows you to be less concerned with platform-specific differences of the target devices.

When designing a user interface for a mobile device, keep in mind:

m The size of a mobile device is much smaller than traditional, desktop applications.
As a result, you will need to divide the information that you present to the user into
multiple screens. Mobile applications tend to use a linear methodology, allowing the
user to move from one screen to the next working on a single task at a time.

webMethods Mobile Designer Native User Interface Reference Version 10.1 1"

Mobile Designer Native User Interface

B Screen resolution can vary within platforms. As a result, deploying to a particular
platform might mean building the application at more than one resolution. For
example, Android devices running version 2.3 often had screen resolutions of
320x480 pixels. However, it is not uncommon for Android devices running version
4.0 to have resolutions of 720x1280 pixels. Using the NativeUI simplifies this because
the NativeUI adapts to the varying screens sizes and resolutions, allowing text,
buttons, and other user interface objects to render correctly. However, you still need
to carefully consider the position and size of the objects you display in the user
interface, including graphic images.

® High-resolution tablet devices require very large-size graphics for their high-density
screens, that is more pixels per inch (PPI).

® Avoid designing a platform-specific user interface for an application that will run on
many platforms. For example, if you design your application’s user interface using
Windows Phone user interface design, the unique interface mechanics of Windows
Phone might be impossible to render on other platforms. Additionally, users might
find the unique interface mechanics hard to use because they are unfamiliar with
them.

®m Using the NativeUl library with little to no custom objects reduces issues, such as
resolution dependency, localization, and accessibility.

B Be aware that user interface elements might not render the same way within a
platform due to changes between versions of the platform. For example, the design
of the Apple iOS On/Off switch changed visually between version 4.x and 5.x of the
operating system. Also, the Apple iOS numeric keypad looks different on the iPad
from the iPhone.

Hierarchy of NativeUl Objects for a User Interface

The NativeUI follows a strict hierarchy of visible components.
m Windows are at the top of the user interface hierarchy.

A window defines the visible bounds of the NativeUI display. The application first
displays a window. The application can then add views (that is, menus and screens)
and other items related to the application inside the window. A window can:

m Use the device’s full display
m Use the device’s full display excluding a status bar

m Be a dialog that uses only a portion of the device’s display

webMethods Mobile Designer Native User Interface Reference Version 10.1 12

Mobile Designer Native User Interface

Carrier = 10:28 AM =)
— » Title 1
. Back Buttons
Username
Default Button
Mick
Centre Button 1 Badlogin - check your
Left Button | username and password
Right Button 4 |
Inactive Button u |u
UNITED MOTORS GROUP Checkbox Y aFE oK
Aulomative Englneering
Financial Services
Car Rental
Group 0 Radiobox
full display full display Dialog

excluding a status bar

An application might only require one window that the application uses to display
each of the application screens as the user navigates between them. However, if the
application requires window overlay, you can add multiple window support to the
application.

Depending on the requirements of the window and the target platform, different
additional features might be present. For example, on some platforms an overlay
dialog might include a title bar that allows a user to reposition the dialog on device’s
display. Another example is that a title bar might contain a Close button.

If an application runs on a tablet device, you might want to use multiple panes
within a window. You can then add views into the panes. For more information, see
"Using Multiple Panes for Tablet User Interfaces" on page 37.

®m Views are second level in the user interface hierarchy.

The application displays a view within a window. Views are analogous to individual
menus or screens in a user interface flow. A view can have a header bar, soft key
labels, or encompass the entire window. Mobile Designer provides some custom
views that automate the creation of common displays. For example, the nUINavView
object is a view for navigation.

webMethods Mobile Designer Native User Interface Reference Version 10.1 13

Mobile Designer Native User Interface

Carrier & 10:28 AM =)
— : Title 1
. Back Buttons
Username
Default Button f
Mick
Centre Button Bad login - check your
username and password
Left Button] P
bR d
Right Button 4 L
Inactive Button u H
UNITED MOTORS GROUP Checkbox VoEE oK
Automotive Engineering i l J
Fimancial Services
Car Renial
Group 0 Radiobox
I.I:-:-E:\:-t‘.

®m Elements are the last level of the user interface hierarchy.

Applications can add elements into views. Elements are singular display items
or control items. Elements can have focus, and they can be selected. Examples of
elements are images, buttons, and text fields.

Camier & 10:28 AM = .
Title 1

Username
Default Button r
. Mick
Centre Button Bad login - check your -
Left Button usemame and password
Right Button \ E
Inactive Button H
UNITED MOTORS GROUP Checkbox Y oFE oK
Amomaltive Engineering
Financial Sarvices)
Car Rental
Group 0 Radiobox

Elements can visually respond differently on different platforms and devices. For
example, an edit field might present an overlay keyboard on one device to enter the
data, while on another device, edit could represent an in-line triple-tap text entry.

webMethods Mobile Designer Native User Interface Reference Version 10.1 14

Mobile Designer Native User Interface

Indicating that a Project Uses the NativeUl Library

If you want to use the NativeUI library for the user interface of an application, you must
configure the Mobile Designer project for that application to indicate:

You want Mobile Designer to include the NativeUI library when compiling the
application.

You want the core canvas hierarchy to include the CanvasNativeUl class. For more
information about the CanvasNativeUI class, see webMethods Mobile Designer Java
API Reference.

To specify that a project uses the NativeUl library:

1.
2.

Open the _defaults_.xml file, which is located in the project’s targets directory.

Add the following NativeUI properties to the _defaults_.xml file, specifying the
values shown:

<property name="project.runtime.uses.nativeui" value="true"/>
<property name="mobiledesigner.runtime.core.class.ui" value="nui"/>

Save and close the _defaults_.xml file.

Setting Up the Application Code to Use the NativeUl Library

When coding the application, be sure to import com.softwareag.mobile.runtime.nui.* and
extend the CanvasNativeUl class.

To set up the application code to use the NativeUl library

1.

Add the following line to the application to import com.softwareag.mobile.runtime.nui.”.
import com.softwareag.mobile.runtime.nui.*

Add a line to the application similar to the following to extend the CanvasNativeUl
class.

public class MyCanvas extends CanvasNativeUI

In this example, the primary canvas class is MyCanvas. java. In the sample code line,
replace MyCanvas with the name of the primary canvas class you are using.

Add lines to the application that are similar to the following so that the primary
canvas class implements the onCreateMainWindow and nUIEventCallback methods.

protected nUIWindowDisplay onCreateMainWindow ()
public boolean nUIEventCallback (nUIObject object, int evt type)

When the application starts, the NativeUI system is initialized. After the NativeUI
system is initialized, the application invokes the onCreateMainwWindow method to
create your primary nUIWindowDisplay.

webMethods Mobile Designer Native User Interface Reference Version 10.1 15

Mobile Designer Native User Interface

Caution: The application should not try to create any NativeUI components until
after invoking onCreateMainWindow. Platform-specific setup occurs along
with the creation of the main window.

Setting and Querying NativeUl Object Attributes

The NativeUI objects have attributes associated with them. For example, an object might
have a width attribute or a Height attribute.

You can set attribute values in two ways:

B You can initially set an attribute value for an object by passing the value as part of
the object’s constructor when creating the object.

m After the object is created, you can change the value using a setter, for example
setWidth().

Note: You cannot change attribute values that are set in the constructor unless
there is a corresponding setter for the attribute.

In addition to setting attribute values, once an attribute is created, you can query its
value using a getter, for example getWidth().

Note: You might have to wait until the element is drawn on the screen before
getting platform-level display metrics, such as the object’s width, height,
and X/Y coordinates. For example, some platform widgets might return
misleading values for their height, such as 0 (zero), when the widget has not
been rendered on the screen.

Handling Events Generated by User Actions

When a user interacts with the application, for example, pressing a button in the user
interface, events can be generated.

About Listeners

You should set up the application so that it listens for events and takes appropriate
measures to handle events. To listen for events, set up the application to implement the
nUIEventListener class and register the classes as event listeners. As a result, the application
receives events related to the currently active NativeUI object.

You can define listeners for individual NativeUI objects so that an object can have its
own listener or an alternate listener. To do so, add the listener directly to the object using
nUIObject.addEventListener().

webMethods Mobile Designer Native User Interface Reference Version 10.1 16

Mobile Designer Native User Interface

Types of Events

The types of events for which an application can listen are defined in the nUIConstants
class. For more information, see webMethods Mobile Designer Java API Reference.

An application can listen for:
® Events that the NativeUI system generates

When a user interacts with a NativeUI object in an application’s user interface, the
NativeUI system generates an event. For example, an EVT GAIN FOCUS event is
generated when an object gains focus. The events that the NativeUI system can
generate are defined by com.softwareag.mobile.runtime.nui.nUlConstants.

m HTTP events

The HTTP events are EVT TRIGGER HTTP SUCCESS and EVT TRIGGER HTTP FATIL.
These events are not related to any specific Mobile Designer classes. The HTTP
events are available if the application requires this functionality.

m Custom-defined events

You can define custom events. CUSTOM EVENT CODEO is the first constant value that is
not reserved for use within the NativeUI system. When defining custom events, you
can assign constant values that are equal to or greater than this value.

Sample Code that Manages Event Handling

The following code sample shows how the Mobile Designer NativeUIHelloWorld
sample application manages event handling:

//see MyCanvas.java
public boolean nUIEventCallback (nUIObject object, int evt type)
{

switch (object.nuiid)

{

case NUIID START PROGRESS:

if (evt type == EVT TRIGGER)
transitionToView (main view, onCreateEndView())
break;
case NUIID END BACK:
if (evt _type == EVT TRIGGER)
transitionToView (main view, onCreateStartView()):;
break;

}

return true;

}

Setting a Unique Identifier for NativeUl Objects So that You Can Identify Them When Listening for
Events

When an event occurs, the NativeUI system passes the NativeUI object that generated
the event and the event type to the event listener. Each NativeUI object has a unique
identifier. This unique identifier is the nuiid value that the application passed

to the constructor when creating the NativeUI object. In this example that uses

webMethods Mobile Designer Native User Interface Reference Version 10.1 17

Mobile Designer Native User Interface

NUIID START PROGRESS, the following code shows the NUIID START PROGRESS unique
identifier:
//Specify the ID for the start progress button.

//Use any number as long as it is unique.
public static final int NUIID START PROGRESS = 0x01020101;

//After specifying the ID, in onCreateStartView ()
start view.add(new nUIButtonElement (NUIID START PROGRESS, "Progress");

Tip: If you are not concerned about events for a NativeUI object, specify a -1 for
the nuiid value that you pass to the constructor.

Return Values from Event Processing

After an application handles an event, it should return true or false to indicate
whether the NativeUI system should perform the default behavior for the event. In most
cases, the application should return true to indicate that the NativeUI system should
perform its default behavior for the event.

Transitioning Between Windows and Views

An application initially displays a window. Once a window is displayed, to display a
view within a window or display another window, the application needs to perform a
transition to the new location.

m To transition to a new view within a window, use the transitionTo and transitionFrom
methods in the nUIWindowDisplay class.

m To transition to a new window, use the nUIController class.

For more information about the nUIWindowDisplay and nUIController classes, see webMethods
Mobile Designer Java API Reference.

The following code sample is a portion of the code from the Mobile Designer
NativeUIHelloWorld sample application. It shows how to use the transitionTo and
transitionFrom methods in an application:

private void transitionToView (nUIViewDisplay new view, int pane)
{
int transition = nUIController.TRANSITION APPEAR;
nUIViewDisplay old view = main view;
if (old view != null)
{
if (0ld view.nuiid < new view.nuiid)
transition = nUIController.TRANSITION LEFT;
else if(old view.nuiid > new view.nuiid)
transition = nUIController.TRANSITION RIGHT;
main window.transitionFrom(old view, transition, pane);
}
main window.add (new view) ;
main window.transitionTo (new view, transition, pane);
main view = new view;

}

The code sample illustrates how to replace a window’s current view with a new one by:

webMethods Mobile Designer Native User Interface Reference Version 10.1 18

Mobile Designer Native User Interface

1. Using the transitionFrom method to transition away from the current view.
2. Using the add method to add the new view to the window.
3. Using the transitionTo method to transition to the newly added view.

The code sample uses a view’s unique identifier to determine the transition direction
(either TRANSITION LEFT Or TRANSITION RIGHT). If the new view has a lower unique
identifier, the code transitions one way. If the new view has a higher unique identifier,
it transitions the other way. This transition logic represents only one approach. There
are other transition logic approaches that you can use to meet the requirements of your
mobile application.

The NativeUI systems supports the following transition properties that are defined in
the com.softwareag.mobile.runtime.nui.nUlController class:

TRANSITION APPEAR
TRANSITION FADE
TRANSITION LEFT
TRANSITION RIGHT
TRANSITION UP
TRANSITION DOWN

All platforms support the TRANSITION APPEAR property. However, platforms might
substitute alternative solutions for the other nUIController class transition properties.

Defining the Layout of Objects in the User Interface

To create a user interface, code the application to first add a window object. Inside a
window, place a view. The application can then add additional NativeUI objects into the
view. For more information, see "Hierarchy of NativeUI Objects for a User Interface" on
page 12.

NativeUI objects can be thought of as parent objects and elements. Parent objects contain
other NativeUI objects, which are referred to as elements. Examples of parent objects are
views, scrollable containers, and table cells. Examples of elements are text entry fields,
buttons, and images.

Controlling the Inner Padding of Parent Objects

Parent objects have inner padding. If an object is displayable, that is an object that inherits
from nUIDisplayObject, and is also an object in which you can insert child elements, you
can control a parent object’s inner padding using the following attributes of the parent
object:

webMethods Mobile Designer Native User Interface Reference Version 10.1 19

Mobile Designer Native User Interface

Inner Padding Description
Attribute
InnerX Defines the distance from the parent object’s left edge to where

child elements are drawn.

Innery Defines the distance from the parent object’s top edge to where
child elements are drawn.

InnerWidth Defines the parent object’s usable width in which you can add
content.
InnerHeight Defines the parent object’s usable height in which you can add
content.
InnerY
InnerX $
’ § I------ -------I
<> 1
I
: E
I's
:-.(—Innnrw dth———l %
o
=

1
1
1
L-------------

The parent object’s inner padding causes the child elements to be indented from the
edges of the parent. This is a useful concept to take advantage of when you do not want
items to touch the edges of screens or borders.

Element

: Element

Parent Object

webMethods Mobile Designer Native User Interface Reference Version 10.1 20

Mobile Designer Native User Interface

The NativeUI objects have default inner padding values. At the nUIDisplayObject level,
all the attribute values are set to 0 (zero). However, the attribute values are overridden
for some displayable NativeUI objects to match the expectations for each platform.
Specifically, the objects for tables, views, and scrollable containers might override the
default values. When using NativeUI objects for an application, you can override the
default inner padding attribute values to meet the needs of your application.

If you set the attribute value for Innerx, but not Innerwidth, by default the Innerwidth
value is determined by mirroring the Innerx padding on the other side.

InnerWidth = overall width available - (2 * InnerX)

Similarly, if you set the attribute value for Innery, but not InnerHeight, by default the
InnerHeight value is determined by mirroring the Innery padding on the bottom edge.
InnerHeight = overall height available - (2 * InnerY)

If you do not want to use this default behavior, you can explicitly set the Innerwidth
and InnerHeight attributes for an object.

Note: If you explicitly set the Innerwidth and InnerHeight attributes to set the
width and height of the parent object, your application logic will also have
to handle any size adjustments due to the resizing of the parent object or
changes to orientation of the device.

Positioning Elements in a Parent Object

By default, when an application adds elements to a parent object, the elements are
positioned vertically, one below the other, starting at the top of the parent object.

|
]
1
1
Element 2 E
1

: Element 3 E

Parent Object

m
e
=
e
=
-
e

The elements are indented based on the inner padding of the parent object. When
originally displayed the first element is spaced from the top of the parent object based on
the vertical inner padding. For more info, see "Controlling the Inner Padding of Parent
Objects" on page 19.

If you place elements in a scrollable parent object, for example a view or scrollable
container, when a user scrolls through the contents, the top padding is not maintained.

webMethods Mobile Designer Native User Interface Reference Version 10.1 21

Mobile Designer Native User Interface

i Element 1 E i Element 1 i

| Elements I

I

]

Spacing at the top is Top spacing is not maintained
based on the parent during scrolling.

object’s inner padding.

If you want to position child elements side by side within a parent object, use a table and
place elements within table cells. For more information, see "Using Tables to Control the
Layout of Elements" on page 27.

]

Element

Parent Object

As an alternative to using the default layout or positioning elements using a table, you
can use absolute positioning. To do so, set the X, v, and width attributes of the child
elements that you add to the parent object. While absolute positioning gives you the

webMethods Mobile Designer Native User Interface Reference Version 10.1 22

Mobile Designer Native User Interface

greatest amount of control for exact positioning, using absolute positioning prevents the
application’s user interface from automatically adapting to:

m Different size devices
m Different size of user interface elements among the various platforms
B Re-aligning user interface elements when the orientation of the device is changed

If you use absolute positioning, you must add logic to your application to handle these
types of issues.

Sizing Child Elements

The height of a child element is determined by the data for the element.

Note: For most elements (buttons, text, images, etc.), using the Height attribute
to explicitly set the number of pixels for the element’s height is not
recommended.

For the width of an element, you can use the default, or you can set the child element’s
width attribute to explicitly specify the number of pixels to use for the element’s width.

The default element width is the width of its parent object minus the inner padding.
For more information about a parent object’s inner padding, see "Controlling the Inner
Padding of Parent Objects" on page 19.

width of parent
minus inner padding

e width of elements >

Element

<« width of parent—— ==

Parent Object

If you nest parent objects, child elements placed in the inner parent object are narrower
because the inner padding values are compounded. For example, you might nest a
scrollable container inside a view. Elements added to the view have the width of the
view’s inner width. However, elements added to the scrollable container are narrower
due to the inner padding of both the view and the scrollable container.

webMethods Mobile Designer Native User Interface Reference Version 10.1 23

Mobile Designer Native User Interface

| Element :

i Element E

i Scrollable Container
i

I

I

1 I
|| Element [
|

View

Element

Element

View and Scrollable Container
Both Use Inner Padding

When nesting NativeUI objects, you might want to adjust the inner padding of objects.
For example, in the example of a scrollable container inside the view, if you set the
scrollable container’s Innerx to 0 (zero), the widths of the elements both in the view and
the scrollable container will be the same.

i]
Element i

1

1

1

| Element :
L y

Only Scrollable Container
Has Inner Padding

In other instances, you might want to remove the inner padding from the outer NativeUI
object. For example, you might have a view that contains a scrollable container, but no
other child elements. The scrollable container might contain additional elements. In this
situation, the inner padding of the view compounded with the inner padding of the
scrollable container results in wasted screen space. As a result, you might want to set the
view’s InnerX and InnerY values to 0 to remove excess padding.

webMethods Mobile Designer Native User Interface Reference Version 10.1

24

Mobile Designer Native User Interface

Controlling the Vertical Spacing Between Child Elements

By default, the space between the elements is determined by the
InterElementYSpacing attribute of the parent view. The application can alter
the space between the elements by specifying a pixel value for the parent view’s
InterElementYSpacing attribute.

I Element 1

Element 2

!

[Element 3

nterElementYSpacing

of the parent View

Parent Object

If you want additional space between two elements, use the following NativeUI objects:

®m Insert the nUISpacerElement NativeUI object to add additional white space between
two elements. Use the nUISpacerElement NativeUI object’s Height attribute to specify
the pixel height of the white space.

m Insert the nUISeparatorElement NativeUI object to display a horizontal line between
two elements. Use the nUISeparatorElement NativeUI object’s Height attribute
to specify the pixel height of the nUISeparatorElement object. The horizontal line
displays in the vertical center of the object.

When determining the vertical height you want to use for the nUISpacerElement
and nUISeparatorElement objects, take into consideration that the parent view’s
interElementYSpacing also displays around the object.

webMethods Mobile Designer Native User Interface Reference Version 10.1 25

Mobile Designer Native User Interface

[
| Element
|
1
1 A 1
1 \r‘ |
froorresrmisnnns s dinesnnis s 1 n o tYSpacing
I Spacer F e e U
SR 1 of the parent View
: A I
1
I Y I
i Element
Parent Object
Note: When using grouped buttons on platforms where grouped buttons are

supported (primarily iOS), buttons in the same group will not have
vertical space between them, regardless of the value of the parent view’s
InterElementYSpacing attribute.

Controlling the Horizontal Alignment of Elements

You can control the horizontal alignment of some elements. If a NativeUI object has a
setHalign method, for example, nUITextfieldElement object, you can use the method to control
the object’s horizontal alignment to align its contents left, center, or right within the
parent object. Similarly, other NativeUI objects might use a setAlign method, such as the
nUlImageElement object.

Even if visually, an element does not use the full screen width, as usual, subsequent
elements are added one below the other. For example, consider an example where you
have two text elements, where the first is left-aligned and the second is right-aligned.
Visually, the text in the elements might not span the entire width of the screen.

webMethods Mobile Designer Native User Interface Reference Version 10.1 26

Mobile Designer Native User Interface

Using Tables to Control the Layout of Elements

If you want a more complex layout than just elements positioned vertically, one below
the other, you can use tables for your layout. When you use tables, you can:

m Use background colors or Images to change the background of the entire table, entire
rows, and/or individual cells.

® Add borders around cells and control the thickness of the cell borders.

®m Position elements side by side by placing the elements in table cells.

B Span cells horizontally and or vertically.

Using tables allows you to precisely position elements while still allowing your user
interface to scale to all devices, platforms, font sizes and orientations.

Controlling Inner Padding and Spacing In Tables

When using tables (nUITableElement objects) for element layout, you need to consider
the table’s inner padding and the cell spacing within a table. Additionally, table cells
(nUlTablecellElement objects) also have inner padding. You control inner padding and
spacing using the following attributes.

NativeUl Object Attribute Description
Table InnerX Defines the distance from the
(nUITableElement object) table’s left edge to where table

cells are drawn.

InnerY Defines the distance from the
table’s top edge to where table
cells are drawn.

InnerWidth Defines the table’s usable width in
which you can add content.

InnerHeight Defines the table’s usable height
in which you can add content.

cellSpacingWidth Defines the distance between the
table columns.

cellSpacingHeight Defines the distance between
table rows.

webMethods Mobile Designer Native User Interface Reference Version 10.1 27

Mobile Designer Native User Interface

NativeUl Object Attribute Description

Table cell InnerX Defines the distance from a cell’s

(nUITablecellElement object) left edge to where child elements
are drawn.

InnerY Defines the distance from a cell’s
left edge to where child elements
are drawn.

InnerWidth Defines a cell’s usable width in

which you can add content.

InnerHeight Defines a cell’s usable height in
which you can add content.

table tahle table
/" InnerY cellSpacingHeight cellSpacingWidth
table
Inmerk ™.
=
o
I
12
cell L =
- ar
lnnery =
I cell 1 cell I
1 InnerWidth | I | InnerHeight |
I | 1 |
cell .~
Innerx < table InnerWidth »
Table

The use of InnerX, InnerY, InnerWidth, and InnerHeight attributes in tables and table
cells is the same as for any parent object. For more information, see "Controlling the
Inner Padding of Parent Objects" on page 19.

Adding Background Colors, Images and Borders

You can set the background color and Image of tables (nUITableElement objects), table
rows, (nUITablerowElement objects), and table cells (nUITablecellElement objects). Additionally,
you can add borders around the cells in a table. You control background colors, Images
and borders using the following attributes.

webMethods Mobile Designer Native User Interface Reference Version 10.1 28

Mobile Designer Native User Interface

NativeUl Object Attribute Description
Table Bgcolor Defines the background color
(nUITableElement object) for the entire table.

BackgroundDrawable Defines the background color or
Image for the entire table.

CellBorderColor Defines the color for the
borders drawn around the cells
in the table.

CellBorderThickness Defines the width of the
borders drawn around the cells
in the table. Specify a pixel
value for the width. If you do
not want the cells to have a
border, specify 0 (zero).

Table row Bgcolor Defines the background color
(nUITablerowElement object) for an entire row.

BackgroundDrawable Defines the background color or
Image for an entire row.

Table cell Bgcolor Defines the background color
(nUITablecellElement object) for a cell.

BackgroundDrawable Defines the background color or
Image for a cell.

The following illustrates using the attributes for background color and cell borders.

webMethods Mobile Designer Native User Interface Reference Version 10.1 29

Mobile Designer Native User Interface

. hackground of the table is set using the tables Bgcolor attribute

. background of row 1 is set using the row's Bgeolor attribute

. backgrounds of cells 1 & 3in row 2 are set using the cells' Bgeolor attributes

. cell borders are set using the table's CellBorderColor and CellBorderThickness attributes

In the illustration above:

For row 1, the row background color is set to green. Because no background colors
are set for the cells in row 1, the row background color displays in the cells.

For row 2, the background color for the row is not set. As a result, the table
background color displays for the row. Cells 1 and 3 in row 2 have a background
color set to blue. The background color is not set for the cell 2 in row 2, so it takes on
the background color of the table.

The table’s cell borders are set to dark blue. As a result, all cells in the table have a
dark blue border.

Sizing Table Columns, Rows, Cells, and the Elements Placed in Cells

When you add a table (nUITableElement object) to a parent object, the table uses the full
width available in the parent object. The following describes how columns, rows, cells,
and elements are sized.

For columns, you specify the relative column width sizes when using the constructor
to create a nUITableElement object. For example, if you specify 1, 2, 1, the constructor
creates a table with 3 columns where column 1 and 3 are half the size of column 2. In
other words, column 1 uses 25% of the table width, column 2 uses 50% of the table
width, and column 3 uses the remaining 25%.

For table rows (nUITablerowElement objects), by default, the height of a row is determined
by the height of the cells that the row contains. If you want, you can set the Height
attribute of a nUITablerowElement object to specify a pixel value to use for the row

webMethods Mobile Designer Native User Interface Reference Version 10.1 30

Mobile Designer Native User Interface

height. However, if the cells in the table are larger than the pixel value you specity,
the content is clipped.

m Forcells (nUlTablecellElement objects):

m Cell width is determined by the size of the column in which the cell resides, and
also taking into consideration the column spacing, which is the gap between
columns in the table. The column spacing is set using the Cel1SpacingWidth
attribute of the nUITableElement object.

m Cell height, by default, is determined by the height of the cell’s contents
and inner padding. If you want, you can set the Height attribute of a
nUITablecellElement object to specify a pixel value to use for the cell height.
However, if the contents of a cell is larger than the pixel value you specify, the
content is clipped.

You can span table cells both horizontally or vertically. To span cells
horizontally, use the Hspan attribute of the nUITablecellElement object. To span cells
vertically, use the Vspan attribute of the nUITablecellElement object.

m Forelements that you place in table cells, the element width and height is determined
the same as placing the elements in any parent object. For more information, see
"Sizing Child Elements" on page 23.

Positioning Elements in Table Cells

When an application adds elements into a table cell, the elements are positioned
vertically, one below the other, starting at the top of the table cell. The elements are
indented based on the table cell’s inner padding. You can control the spacing between
elements in a table cell the same as you control vertical spacing for any parent object.
For more information, see "Controlling the Vertical Spacing Between Child Elements" on
page 25.

You can leave cells empty. For example, an application might use a single row table with
column widths set to 25%, 50%, 25% of the table width. To have a button that is 50% the

webMethods Mobile Designer Native User Interface Reference Version 10.1 31

Mobile Designer Native User Interface

size of the table width display in the center of the screen, the application can place the
button in the center cell, leaving the outer cells empty.

empty cells

You can use the vAlign attribute of the nUITablecellElement object to vertically align the
contents of a cell. This is useful when tables contain cells that are vertically spanned, and
also when the elements in table cells can potentially be of different heights (images, text,
buttons, etc.). The vAlign attribute allows applications to vertically align elements in a
manner that looks good on the device.

VAlign VAlign
set to top set to bottom

Managing Object Focus

In an application’s user interface, when a NativeUI object gains focus, its appearance
changes to indicate that it is ready for user interaction, such as to receive input from

a finger tap or keyboard. How the appearance of a NativeUI object changes depends
on the platform. Platforms use different visual clues, such as highlighting the object,
making the object visually distinct, or changing the color of the background behind the
object.

webMethods Mobile Designer Native User Interface Reference Version 10.1 32

Mobile Designer Native User Interface

The NativeUI system has default behavior for whether a newly added object gains focus.
By default, when adding a view to a window or a focusable NativeUI object to a view,
the following behavior occurs:

m If the parent object does not already contain an object that has focus, the newly
added object gains focus.

m If the parent contains an object that has focus, the focus does not change when the
new object is added to the view or window.

You can override the default behavior for NativeUI objects that are a subclass of the
nUIDisplayObject class by using the parent.setChildFocus(child_to_focus_on) method.

Background Colors and Images

The background of most NativeUI elements can be changed using two properties,
Bgcolor and BackgroundDrawable. Setting a value for Bgcolor will override any
previously set BackgroundDrawable, and similarly, setting a BackgroundDrawable will
override any previous Bgcolor.

Bgcolor is the older of the two properties, and has been extended in Mobile Designer
9.12 to support more NativeUI elements (as platform support allows). As the name
suggests, Bgcolor can only influence background colors. Setting Bgcolor's value to
nUIDisplayObject.COLOR BACKGROUND NORMAL (0xFFFEOOFF), will be taken as a
special value and corresponds to whatever the platform would normally do for this
element, so it cannot be set directly as a literal color value.

BackgroundDrawable, on the other hand, is a new property added to Mobile Designer
9.12. Using BackgroundDrawable, it is possible to get a much wider set of options for a
NativeUI object. A new package, com.softwareag.mobile.runtime.nui.background, contains the
three types of background classes that can be set:

B ColorBackground for raw color values (including the literal value of
COLOR BACKGROUND NORMAL, if that is desired),

B PatternImage for Images (with optional tiling or scaling as memory and platform
support allows), and

B DefaultBackground for the default background behaviour for this element. Use the
static reference DefaultBackground.DEFAULT if you wish to reset a NativeUI object
to it's default background.

Wherever possible, consider using the BackgroundDrawable property in preference to
Bgcolor.

webMethods Mobile Designer Native User Interface Reference Version 10.1 33

Mobile Designer Native User Interface

Adding Support for Right-to-Left Languages

The right-to-left (RTL) or left-to-right (LTR) property of a writing system is commonly
referred to as its directionality. The NativeUI library has methods to support locales that
require right-to-left directionality, such as Hebrew and Arabic.

You can change the directionality of the entire application's user interface to use right-
to-left directionality. However, if necessary, an application can use a mix of right-to-left
and left-to-right directionality.

Based on the platform on which an application is running, using right-to-left
directionality for a user interface might change:

m Default alignment of the NativeUI objects and the text within the objects
m Position of the Back buttons and header menus within the user interface
® Ordering of the columns within the nUITableElement NativeUI object
|

Positioning of the carat within the nUIEntryElement NativeUI object

Controlling the Directionality of an Application

The following table describes the NativeUI classes and methods you use to control
directionality of an application:

NativeUl Class Description

nUIConstants Use the following integers to represent the directionality:
B TEXT DIRECTION LTR for left-to-right directionality

B TEXT DIRECTION_RTL for right-to-left directionality

nUIController Use the following methods to control the global behavior of the
application:

m deviceSupportsAppDirectionality() method

The deviceSupportsAppDirectionality() method indicates whether the
platform supports a specified directionality at run time. The
method returns true if the platform supports the directionality or
false if it does not. The method might return false for one of the
following reasons:

® Directionality support for the platform was unavailable
through the NativeUl system at the current time.

m The device’s locale settings do not allow a directionality
change at the current time.

webMethods Mobile Designer Native User Interface Reference Version 10.1 34

Mobile Designer Native User Interface

NativeUl Class Description

m The platform does not support the directionality due to other
platform-specific issues.

m void setAppDirectionality(int direction) method

Use the void setAppDirectionality(int direction) method to set the
directionality. For direction, specify either TEXT DIRECTION RTL for
right-to-left or TEXT DIRECTION_LTR for left-to-right.

After changing the directionality, the getAppDirectionality() method
immediately reflects the new direction.

At the application’s next update cycle iteration, the NativeUI
heartbeat thread invokes CanvasNativeUl.appDirectionalityChanged)
with the new direction.

Note: You can override the CanvasNativeUl.appDirectionalityChanged ()
method in your Canvas class if you need to handle changes
in the application directionality. Because your initial
Canvas class already extends CanvasNativeUl, you do not
have to use a separate class to override this function.

m getAppDirectionality() method

The getAppDirectionality() method returns the application’s current
global directionality setting, either TEXT DIRECTION LTR Or
TEXT DIRECTION RTL.

nUITableElement Use the following methods to manage the directionality within a
nUITableElement NativeUI object:

®m Use the setlgnoreDirectionality() method to have the NativeUI system
ignore the application’s current directionality setting.

If an application’s directionality is set to right-to-left, by default,
the table’s column order is reversed. If you do not want the
columns reversed, use this method to ignore the directionality
setting for the table columns. For example, you might want this
if the table contains images that you want displayed in a specific
order regardless of the application’s directionality.

m Use the getlgnoreDirectionality() method to determine whether the
application directionality will affect the ordering of columns
within the table. The method returns true if column ordering will
be affected by the application directionality or false if column
ordering will not be affected.

webMethods Mobile Designer Native User Interface Reference Version 10.1 35

Mobile Designer Native User Interface

Exceptions to Right-to-Left Directionality

The following lists situations when the application’s directionality is not enforced:

If an application explicitly sets the position of a NativeUI object, for example, using
the setX method, the NativeUI system does not override the position. Similarly,

if an application explicitly sets the alignment of a NativeUI object, for example,
using the setHAlign method, the NativeUI system does not override the alignment.
Only NativeUI objects that have the default position and alignment are subject to
directionality changes.

The nUIWebviewElement and nUIWebView NativeUI objects are not subject to the
application’s directionality. To change the directionality of text within these
NativeUI objects, use the HTML D1IR attribute, for example, <HTML DIR="RTL"> Or
<p DIR="RTL">.

The charting APIs are not subject to the directionality of an application. In most
platforms, right-to-left text displays using a right-to-left direction. However, chart
and axis reordering is not performed.

Platform-Specific Notes and Issues

When an application uses a right-to-left directionality, how objects in the user interface
display depends on the platform's support for right-to-left setups. Wherever possible,
the NativeUI system attempts to use the platform-specific conventions for when a device
uses a right-to-left locale.

Platform Notes

Android B Android version 11 and higher support right-to-left

directionality. In previous versions, right-to-left support
depends on OEM additions to the Android code base to
ensure font availability and right-to-left text rendering.

m The nUICheckboxButton, nUIRadioCheckbox, and
nUIDropdownlistEntry NativeUI objects display using left-
to-right directionality. Additionally, non-custom dialog
boxes, that is, those created using the nUIAlertDialog
NativeUI object, might also retain left-to-right alignments.

iOS ®m The following NativeUI objects display using left-to-right

directionality.

m nUICheckboxButton
m nUIDropdownlistEntry
m nUIRadioCheckbox

= nUINavView

® The buttons within a nUIDialogWindow NativeUI object
display using a left-to-right directionality.

webMethods Mobile Designer Native User Interface Reference Version 10.1 36

Mobile Designer Native User Interface

Platform

Notes

Windows Phone
Windows 8
Windows RT

At this time, Windows Phone, Windows 8 and Windows
RT do not support right-to-left directionality.

J2ME (Phoney)

The NativeUI system attempts to provide directionality
features similar to those that other platforms provide.
In general, the NativeUI system makes the functionality
align with that provided by Android and iOS.

Using Multiple Panes for Tablet User Interfaces

The NativeUI window object, nUIWindowDisplay, allows you to define multiple panes in
a window. Using multiple panes in a window is primarily useful when creating user
interfaces for tablet devices that have larger screen sizes.

By default, the nUIWindowDisplay object has two panes, one with a nUIViewDisplay object

for the main pane and a nUINavView object for navigation. You can configure the
nUIWindowDisplay object to accept additional nUIViewDisplay and nUINavView objects, allowing
the application to use multiple panes to take advantage of the larger screen size.

Important: Before creating an application that uses multiple panes, ensure the target
platforms on which the application will run support windows with multiple

panes.

NativeUlDemo Sample

The Mobile Designer NativeUIDemo sample application is an example of an application
that uses multiple panes. It is also an example of an application that runs on both tablet
devices and smaller devices, altering the user interface based on the device size. The
following shows a screenshot of the NativeUIDemo.

webMethods Mobile Designer Native User Interface Reference Version 10.1 37

Mobile Designer Native User Interface

Elements Tables
Buttons Lt beaxt Right text
Containers Loit Bution Right Butten

Charts

Date / Time 5 100.00

Dialogs
Entries
Images

Tables

Toxtiields

Web Views

If the NativeUIDemo application determines that it is running on a tablet device, it

uses multiple panes. To determine whether it is running on a tablet, the application
derives the screen size of the device on which it is running. The NativeUIDemo sample
considers a tablet to be a device with a screen size that exceeds six inches diagonally. For
more information, see "Determining the Device Size at Run Time" on page 39.

Managing the Layout of Panes

The common layout for tablet applications in landscape mode is to divide the screen into
two panes with a smaller, navigation pane and a larger, main pane.

When using the NativeUl, you have complete control over the layout of the panes. By
default, the nUIWindowDisplay object has a navigation pane and a main pane. The main
pane occupies all space that is not used by the navigation pane. You can add additional
panes and divide the window into as many panes as you need.

You should carefully plan how to arrange and size the panes. Consider how the panes
will work on screens with differing resolutions and how device orientation will affect
the usability of the application.

Important: It is recommended that you do not use overlapping panes.

You can add logic to your application that determines the size of the panes at run time.
For example, the NativeUIDemo sample uses a flexible method to determine the size
of its panes. The application sets the width of the left pane to the smaller of either 40%
of the overall screen width or 2 inches. As a result, the user interface is usable even if

webMethods Mobile Designer Native User Interface Reference Version 10.1 38

Mobile Designer Native User Interface

the application is running on a small table in portrait mode. The application sets the
height of the left pane to the full screen height less the height of the navigation bar. The
right, main pane fills the remaining space. For more information, see "Adding Panes to a
Window" on page 40.

Designing Applications to Run on Both Tablets and Smaller Devices

You can create applications that support both multiple panes aimed for larger devices,
such as tablets, and single screens aimed for smaller devices, such as smartphones.
When designing the application, it is recommended that you initially design the
application flow for the multiple-pane version as a set of features that you can degrade
gracefully to accommodate the single-screen version. Alternatively, you can design the
single-screen version, and after the application is complete, convert it to a multiple-pane
application.

When designing the application flow, be sure to consider the differences between
displaying information using multiple panes vs. a single pane. For example, the flow
for a single-screen application tends to be linear. Because the logic is more linear, the
behavior of the Back button is somewhat predictable. When designing the application
flow for an application that will use multiple panes, you can divide the tasks between
the panes. Action in one pane can trigger changes in other panes. Because of the
possibility of changes being triggered in separate panes, in a multiple-pane application,
it is less obvious how and when to display the Back button.

Another example of a difference is the navigation bar. For a single-screen application
that is aimed for smaller devices with limited screen size, you might need to limit the
icons displayed on the navigation bar. When using multiple panes for a larger device,
you have more room to display icons. Additionally, you can split the contents of the
navigation bar across multiple panes.

When creating an application that supports both multiple-pane and single-screen
versions, you need to add logic to determine when to use the logic for the multiple-pane
version or the single-screen version. One method is to base the decision by determining
the size of the device. For more information, see "Determining the Device Size at Run
Time" on page 39.

Determining the Device Size at Run Time

If a target platform supports multiple panes, one way to determine whether to use the
multiple-pane logic rather than use a single-screen logic is by determining the size of the
device on which the application is running. After determining the size of the device, the
application can then execute the appropriate logic for the device size.

At run time, the physical screen size of the device is not available because this
value is not stored anywhere. However, the application can determine the screen
size by checking the screen resolution against the screen’s pixels per inch (PPI).
The screen resolution and PPI values are stored in the device profile. At run
time, the application can query the values using the CURRENT SCREEN_ WIDTH,

webMethods Mobile Designer Native User Interface Reference Version 10.1 39

Mobile Designer Native User Interface

CURRENT SCREEN HEIGHT and CURRENT SCREEN PPI variables, which are part of the
com.softwareag.mobile.runtime.core.CanvasDimensions class.

Note: Not all device profiles will contain PPI information. Handsets targets
that are "generic for any resolution” (that is, Android3xAPI) will use
a dynamic canvas and will set CURRENT SCREEN PPI directly, as will
targets for specific handsets. Generic targets for a given resolution (that
is, Android320x480 and WindowsPhoneWVGA) will need to query
System.getProperty("mobiledesigner.display.ppi”) directly.

You code the application to determine what size is considered a tablet. For example, the
logic might consider that any device with a screen size that exceeds six inches diagonally
is a tablet.

To see sample code that performs this logic, review the code in the Mobile Designer
NativeUIDemo sample.

Adding Panes to a Window

By default, the NativeUI nUIWindowDisplay object has two panes, Pane 0 and Pane 1. Pane
1 is for navigation using the nUINavView object. Pane 0 is the main pane and occupies all
space that Pane 1 does not use.

The code examples in this section show how to add an additional third pane to the left
side of a window.

The following code example is for a setPaneDimensions method. It defines the dimensions
for three panes: the main pane, the navigation pane, and the additional side pane. The
code explicitly defines the dimensions of the side pane and the navigation pane. The side
pane occupies 40% of the total screen width or two inches, whichever is the smaller. The
pane for the navigation bar uses the full width of the screen. The main pane occupies the
remaining available space.

int mainpane = 0;
int navpane = 1;
int sidepane = 2;

nUIWindowDisplay main window;
nUINavView main navbar view;
protected void setPaneDimensions ()
{
int sidepane width = Math.min ((CURRENT SCREEN WIDTH * 40) / 100,
CURRENT SCREEN PPI * 2);
int navbar height = 0;
if (main navbar view != null)
//the navigation bar is not used everywhere in the application
{
navbar height = main navbar view.getHeight ();
}
int height = main window.getHeight ()

main window.setPaneDimensions (sidepane, new int [] { 0, 0, sidepane width,
height - navbar height });
main window.setPaneDimensions (mainpane, new int [] { sidepane width, 0,

CURRENT SCREEN WIDTH - sidepane width, height - navbar height });
//navigation pane is full-width and calculated automatically.

}

webMethods Mobile Designer Native User Interface Reference Version 10.1 40

Mobile Designer Native User Interface

After defining the setPaneDimensions method, it can be invoked during onCreateMainWindow
when creating the main window of the application. By doing so, the setPaneDimensions
method creates the pane structure. You should define the pane structure as soon as the
screen dimensions and screen pixels per inch (PPI) are available.

The following code example shows how to create the main pane, navigation pane,
and side pane, as well as showing how to set transitions. Note that the logic adds the
navigation pane before setting the pane dimensions so that the setPaneDimensions
method can adjust the height.

nUIViewDisplay main view, side view;
//onCreateMainWindow is called from CanvasNativeUTI.
protected nUIWindowDisplay onCreateMainWindow ()

{

main window = new nUIWindowDisplay (NUIID MAIN WINDOW) ;
main window.add (onCreateMainNavbarView()) ;

main view = onCreateMainView () ;
side view = onCreateSideView ()
setPaneDimensions (); //size panes according to contents

transitionToView (main view, mainpane);
transitionToView (side view, sidepane);
return main window;

}

Note: By default, the NativeUI system assumes that the application uses two panes,
Pane 0 and Pane 1, and uses the default size for each. If an application uses
additional panes, the NativeUI system must be aware of the additional
panes. To do so, in onCreateMainWindow, the application logic should call the
setPaneDimensions method before adding content to panes higher than 1. In the
above example, that means before adding content to the additional side pane,
Pane 2.

As shown in the code sample below, you can also use the setPaneDimensions method to
handle changing the pane sizes when the orientation of a device changes, for example,
turning an iPad from landscape to portrait. Whenever the orientation of a device
changes, sizeChanged() is called.
public void sizeChanged(int new width, int new height)
{

// IMPORTANT to do this first to enable internal handling

// that needs to happen when the canvas size changes.
super.sizeChanged (new width, new height);

setPaneDimensions () ;

}

Side Views or Panes?

As well as using the concept of panes to manage nUIViewDisplay objects within a
nUIWindowDisplay, it is also possible to nominate views as "side views". These can be
used to provide pop-open "side menu" or "toolbox"-style functionality for an application.
The table below will compare and contrast the use of panes and side views. As a general
rule of thumb, side views will be more useful for phone screens than on tablet devices,
but are available for both.

webMethods Mobile Designer Native User Interface Reference Version 10.1 41

Mobile Designer Native User Interface

Side View

Panes

Pop-open when needed.

Will obscure or displace other content
when open (possibly including
nUINavViews).

Can be defined once to provide a
global pop-open "toolbox" for the
entire application.

Only 2 side views per Window
possible at once (left and right).

Fixed x/y positions and height (width
configurable).

More space-efficient with smaller
devices.

Blocks interaction in other Views when
visible.

JavaScript Bridge

Intended to be always-open.

Exists in its own space within the
Window.

Usually changes content throughout
the application's life-cycle.

Multiple panes possible.

Arbitrary layouts possible.

Better side-by-side layout of data and

controls for larger devices.

Allows for interaction across multiple
Views concurrently.

With version 9.10 of Mobile Designer, it is now possible to exchange messages
between compiled Java code and a running JavaScript instance inside a nUIWebView or

nUIWebviewElement.

Note:

While most JavaScript engines implement a wide set of common

functionalities, care must be taken to detect and handle any differences
between the various platforms. Mobile Designer will not attempt to adjust
your HTML or JavaScript code in order to make it more compatible.

Maintaining good security

It is important to be aware that exchanging messages between JavaScript and Java can
have various security implications. It is vital, therefore, that the developer considers
tully which web pages may be loaded inside a nUIWebView or nUIWebviewElement, which
messages may potentially be passed to and from that page, and how they are handled.

webMethods Mobile Designer Native User Interface Reference Version 10.1 42

Mobile Designer Native User Interface

The developer may wish to consider implementing some or all of the items on this non-
exhaustive list:

m Checking Object.equals() on the nUIWebView or nUIWebviewElement making calls from
JavaScript into Java.

®m Using processURL() callbacks to create a URL whitelisting system and/or tracking the
currently loaded web page.

m Passing a secret token into JavaScript from Java or an external server before accepting
calls from JavaScript back into Java.

®m Disabling callbacks with a boolean until they are expected.

m Obfuscating JavaScript code for release builds.

Sending a message to JavaScript from Java

Messages are sent using the callJavaScript() method on the nUIWebView or nUIWebviewElement.
The developer needs to specify the name of a JavaScript function to call, and an array of
java.lang.String objects for the functions's arguments. If no arguments are required, a String
array of length 0 should be used. Example for two JavaScript functions, myFirstMethod|()
and mySecondMethodWithArgs(param1, param2):

//call myFirstMethod () to do something

myWebView.callJavaScript ("myFirstMethod", new String[]{}):;

//call mySecondMethodWithArgs with "one" and "two" as arguments
myWebView.callJavaScript ("mySecondMethodWithArgs", new String[]{"one", "two"});

Using callJavaScript() in this manner will cause execution on the Java side to wait for a
return value. It is also possible to pass an additional parameter to callJavaScript() that will
allow the JavaScript function to return a String value to Java. Pass in a reference to a
class that implements the NativeUI interface com.softwareag.mobile.runtime.nui.lJSCallback.

Evaluating an Arbitrary Chunk of JavaScript Code

With callJavaScript(), messages are passed from Java into an existing method hosted on
the JavaScript side. Sometimes, this can be unsuitable for the application, and only a few
simple lines of JavaScript need to be evaluated. For this, the method evaluateJavaScript()
can be called.

As with callJavaScript(), there are two ways to call evaluateJavaScript(). One is to take

a String containing the JavaScript code, run synchronously, and return a String

result (if applicable). The other method will take an additional object conforming to
com.softwareag.mobile.runtime.nui.lJSCallback, and run asynchronously, returning any result at
a later time.

Sending a message to Java from JavaScript

Sometimes, events inside the browser may require the support of additional Java code,
either for speed, or to add functionality. For this purpose, Mobile Designer provides

webMethods Mobile Designer Native User Interface Reference Version 10.1 43

Mobile Designer Native User Interface

an additional callback method in nUIWebviewCallbackExt that developers can implement.
This method is called onJavaScriptCallback(). After creating a nUIWebviewCallbackExt and
associating it with a nUIWebView or nUIWebviewElement, this callback can be accessed
through the JavaScript function MDInterface.javaScriptCallback(clazz, method, parameters). It
is expected that clazz and method will be directly convertable from a JavaScript-style var
into a java.lang.String, and the parameters argument will become an array of Strings. On
the Java side, the developer will need to implement the logic required to handle the
onJavaScriptCallback() method. Calls coming from the JavaScript side will be routed directly
to this method. Although the parameters passed suggest the use of class names and
methods, this is not set in stone, and the developer may wish to implement logic that
differs from this pattern.

Tabbed Views

With version 9.12 of Mobile Designer, it is now possible to create a "Tabbed View" (also
sometimes known as a "Segmented View") using the new nUITabView Object. This new
type of View allows an application to switch between different but related NativeUI
Views using a simple left/right swipe gesture. It may be used in place of a standard
nUIViewDisplay as the child of a nUIWindowDisplay. For a visual reference, Google provide
some images at https://material.google.com/components/tabs.html that illustrate the
concept.

< Process Details ; % Process Details % Process Details

EzcalationProcess

EzcalationProcess EzcalationProcess
C Ze0-11B0-1db0-bBIS-
f3

“ Cus Zel-1180-1db0-bEIE-

C Fel-1180-1db0-bEIE

SUMMARY
=] o Escalation Task (ID:7373) Mone 5
P i
k@ L .
3 Smar af
= Excalatizn
= WDk E
E S0kt
| — g
Croated
: g
Last Modified

Instance Interation

A nUITabView with 3 tabs

Each individual Tab in a nUITabView comprises of two things. Firstly, there is the content
itself. This is a normal nUIViewDisplay Object with standard tables, buttons, etc. as required
to lay out the application's content. The second part of a Tab is its label. The label
describes the content that will be found in that tab, and on Android and iOS may be

webMethods Mobile Designer Native User Interface Reference Version 10.1 44

https://material.google.com/components/tabs.html

Mobile Designer Native User Interface

simple text such as "Network", an LCDUl Image, or both. Complex arrangements may be
created with nUITableButton. For Windows Phone, only simple text labels are supported
at the time of writing. For Windows Tablet devices, there is currently no support for
Tabbed Views.

Integration in Mobile Designer

Content is provided to a nUITabView through an ITabViewProvider interface. Application
developers will need to create a class that implements this interface, and assign it to an
instance of nUITabView. The nUITabView Object will query the methods in ITabViewProvider
at runtime to determine how to draw its contents. The getNumberOfTabs() method will be
called to determine how many tabs are required. This method will be called only once,
near the creation time of the native objects on-screen. For every tab, createTabElement(int
index) will be called to create the tab's label, and createTabView(int index) will be called to
create the tab's contents. A nUITabViewListener can be used to get notifications when a tab
is selected. Example code for nUITabView can be seen in the _NativeUIDemo_ Sample
Project.

List Views and Elements

With version 10.1 of Mobile Designer, it is now possible to display long lists using two
classes that conform to IListRenderer: nUIListView and nUIListElement. These new list Objects
allow an application to load and display long lists in a more efficient manner.

Simple Buttons

Test Switch

webMethods Mobile Designer Native User Interface Reference Version 10.1 45

Mobile Designer Native User Interface

Carriar ¥ DG P L

£ Back Hative List view soc+ B B I

Static Header

Simple Buttons Tap
Test Switch
Title 1
Description with ¥
bty s far row 1

To use nUlListeElement or nUIListView you must implement two interfaces and assign them
to the list view:

m |ListProvider to provide data to the list view, and

m |IListListener to get notifications from the list view. For detailed information, refer to
webMethods Mobile Designer Java API Reference.

The Pull-to-refresh functionality is also available. By default, this functionality is disabled.
Call the enablePullToRefresh(true) method to enable it. When you pull to refresh, the
onRefresh() method is called. With this method a bigger amount of data can be loaded in
an asynchronous way and thereby prevent the user interface is blocked. When the data
is loaded, you can hide the top spinner by calling hideSpinner(IListListener.POSITION_TOP)
and notify the list view, that data was changed by calling the update() method. Refer

to the detailed example in the com.softwareag.mobile.nativeuidemo.view.ListView class of the
NativeUIDemoNew project.

With the current API it is very easy to implement endless scrolling with a few steps.

At first, configure the list view to notify you if the scrolling process has reached a
specified amount of remaining elements and therefore more data can be loaded. For
example, by calling setScrollThreshold(10) you are informed if the amount of elements

is reached when less than 10 elements can be scrolled. When this point is reached,
onScrollThresholdReached() will be called. In this method, you can show the bottom spinner
and load more data in an asynchronous way. When the data is loaded, you must hide
the bottom spinner with hideSpinner(IListListener.POSITION_BOTTOM) and notify the list view
that new data is available by calling the update() method.

For a better performance, use special methods for inserting, deleting and updating rows,
instead of using the update() method.

webMethods Mobile Designer Native User Interface Reference Version 10.1 46

Native User Interface (NativeUl) Objects

2 Native User Interface (NativeUl) Objects

B About the NatiVEUI ODJECLS ... s 49
B NUIAIBIDIAIOG ..ottt 50
B NUIBULONEIBMENT ... 54
B NUICHECKDOXBUION ..ot 55
B NUICONAINEIEIBMENT ...t 57
B NUIDALEENIIY .o 59
B NUIDIGIOGWINAOW ..ot 62
B NUIDISPIAYODJECE ...t 67
B NUIDrOPAOWNISIENIIY ©..oviieiiiiiici et nenenes 67
B NUIEIEMENIDISPIAY ... 70
B NUIENITYEIEBMENT ..ot 71
B NUIIMAGEEIBMENL ... 73
B NUILISEEIBMENT ... s 73
B NUILISEVIBW <o 75
B NUINGVDUONEIBMENT ... 77
B NUINGVVIBW ..o 81
B NUIODJECE ..ottt 86
B NUIProgressanimEIBMENLccociiiiiciceeee e 86
B NUIRAAIOCNECKDOX ... s 89
B NUISEAChENITY oot 91
B NUISEParatorEIBMENLcceiiiiceeece b 93
B NUISPACETEIEMENL ..ot 95
B NUISWIChBULION ... 95
B NUITEDIEBULION ..o 96
B NUITADIECEIEIBMENT ... 98
B NUITADIBEIBMENT ... 99

webMethods Mobile Designer Native User Interface Reference Version 10.1 47

Native User Interface (NativeUl) Objects

B NUITADIErOWEIBMENT ... s 101
B NUITADVIBW ..o 101
B NUITEXIAEIAEIEMENT ... e 102
B NUITIMEIODIECL ..ottt 104
B NUIVIEWDISPIAY ©oovvveieiiiiss st 104
B NUIWEDVIBW ... 109
B NUIWEDVIEWCAIIBACKcoivviiiiiiiciccie 113
B NUIWEDVIEWEIBMENT ... 113
B NUIWINAOWDISPIAY ..vcviviiiiiiicisss et 116

webMethods Mobile Designer Native User Interface Reference Version 10.1 48

Native User Interface (NativeUl) Objects

About the NativeUl Objects

The webMethods Mobile Designer native user interface (NativeUI) library provides
a standard way to create user interfaces for mobile applications that run on multiple
platforms. The NativeUI library is made up of NativeUI objects.

The NativeUI library includes platform-specific support for several platforms. When
the NativeUI has platform-specific support, the NativeUI maps each NativeUI object
to a platform-specific object for a target device. As a result, when the user interface

is rendered on a target device, the user interface displays using the platform-specific
object. For example, you might want to include a check box in the mobile application’s
user interface. To do so, you can use the NativeUI object nUICheckboxButton. The
nUICheckboxButton object maps to:

m android.widget.CheckBox for an Android device

m UISwitch for an iOS device

m ToggleButton for a Windows Phone device

m Windows.Ul.Xaml.Controls.Button for a Windows RT/Windows 8 device

If you are developing an application for a platform for which the NativeUI library does
not have platform-specific support the NativeUI library includes general versions of
the objects. As a result, when the user interface is rendered on a target device, the user
interface displays using the general graphical object.

For more information about the look-and-feel of the NativeUI objects, see "Look-and-
Feel When Using the NativeUI Library" on page 8.

This Mobile Designer documentation describes the NativeUI objects in the NativeUI
library. The description includes screen shots to provide samples for how an object
displays on the various platforms. The screen shot for the “Other” platform illustrates
the general graphical skin that is used for a platform for which the NativeUI library
does not include platform-specific support. For additional information about the
NativeUI objects, see information about the com.softwareag.mobile.runtime.nui package in the
webMethods Mobile Designer Java API Reference.

Naming Conventions for NativeUl Objects

The names of the NativeUI objects begin with the prefix "nUI", followed by the object's
name, which is then followed by the name of the object’s parent. For example, the
NativeUI check box object is a subtype of the NativeUI button object. Its name is
nUICheckboxButton, where the object’s name is Checkbox and parent name is Button.

Font Sizes Used Text in the NativeUl Objects

When displaying text in a NativeUI object, the font size of the text is based on the
platform’s user interface guidelines and usability requirements. The font sizes are
expressed as the following;:

B nUIConstants.size tiny

webMethods Mobile Designer Native User Interface Reference Version 10.1 49

Native User Interface (NativeUl) Objects

B nUIConstants.size small
B nUIConstants.size medium
B nUIConstants.size large
B nUIConstants.size huge

Typically, a NativeUI object uses the medium size font on most devices. You cannot
override the default font sizes. However, some elements will allow you to override
the font size used on a per-object basis, either expressed as a percentage value of the
predefined sizes, or as a direct value.

The physical size of a font on one platform might not match the physical size on another

platform. For example, a large, medium, or small font on an Android device might not
match the small, medium, and large font sizes on iOS devices.

nUlAlertDialog

com.softwareag.mobile.runtime.nui.nUlAlertDialog

Use to display a small pop-up that contains information. Use the pop-up to:

B Present information to the user.

®m Interact with the user by displaying a simple question, for example, a question
requiring a “yes” or “no” answer.

Usage Notes

®m Include at least one button in a nUIAlertDialog object.

® The following are platform-specific considerations:

Android Android devices support no more than three buttons and
ignores additional buttons.

i0OS When using more than two buttons, iOS devices stack
the buttons vertically in an alert dialog. Software AG
recommends limiting the number of buttons to four or five.

Windows Phone Windows Phone devices use the button labels as the
determinant for the number of buttons allowed in the alert
dialog. Software AG recommends limiting the number of
buttons to five when the labels are short, averaging four
letters. Windows Phone devices might truncate labels if
screen space is not available.

webMethods Mobile Designer Native User Interface Reference Version 10.1

50

Native User Interface (NativeUl) Objects

Windows RT Windows RT/Windows 8 support no more than three buttons
Windows 8 and ignores additional buttons.
Example

This code sample displays an alert dialog with two buttons. Illustrations of how the
example code is rendered on various platforms follows the code sample.

nUIAlertDialog alertDialog = new nUIAlertDialog

(

NUIID MY ALERT DIALOG,

"Lorem Ipsum",

"Dolor sit amet?",

new String[]{"Lorem", "Ipsum"},

new int[] {NUIID BUTTON LOREM, NUIID BUTTON IPSUM}
) i

Platform Platform-Specific Class and lllustration

Android Dialogs and the android.app.AlertDialog

Loremn Ipsum

Dolor sit amet?

| Lorem IpEwm |

i0OS 7 UlAlertView

webMethods Mobile Designer Native User Interface Reference Version 10.1 51

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

i0OS 6 UlIAlertView

I .,
Lorem Ipsum

Dolor sit amet?

Lorem Ipsum

Windows Phone Popup

webMethods Mobile Designer Native User Interface Reference Version 10.1

52

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

lorem ipsum

Daolor sit amet?

Windows RT Windows.ULPopups.MessageDialog
Windows 8

Dolor sit amel?

Lorem Ipsum

webMethods Mobile Designer Native User Interface Reference Version 10.1 53

Native User Interface (NativeUl) Objects

nUIButtonElement

com.softwareag.mobile.runtime.nui.nUIButtonElement

Use to display a single button that contains a text label.

Usage Notes

m The nUIButtonElement class extends the nUIElementDisplay class.
B Based on the platform, the nUIButtonElement object exhibits different behavior and
appearance.
® The following lists the default horizontal text alignment of the button label based on
the platform:
Android Button label is aligned left
i0S Button label is aligned left
Windows Phone Button label is aligned centered
Windows RT Button label is aligned centered
Windows 8
Example

This code sample displays a button. Illustrations of how the example code is rendered on
various platforms follows the code sample.

view.add (new nUIButtonElement (NUIID MY BUTTON, "nUIButtonElement"));

Platform Platform-Specific Class and lllustration

Android android.widget.Button

nUIButtonElerment

i0S 7 UlIButton

nUlButtonElemeant

iOS 6 UlIButton

webMethods Mobile Designer Native User Interface Reference Version 10.1 54

Native User Interface (NativeUl) Objects

Platform

Platform-Specific Class and lllustration

Windows Phone

Windows RT
Windows 8

Other

nUlButtonElement

Windows system Button class

For more information, see System.Windows.Controls.Button.

rJIButton Element

Windows.UIL. Xaml.Controls.Button

nlliEuttenElement

nUICheckboxButton

com.softwareag.mobile.runtime.nui.nUICheckboxButton

Use to display a check box.

Usage Notes

m Valid states for the check box are 0 (zero) meaning clear and 1 (one) meaning

selected.

® The nUICheckboxButton object provides the following check box types. Use the type that
is most appropriate for your application’s target platforms.

B nUICheckboxButton.TYPE DEFAULT, which indicates the application uses the
check box type that is considered the most appropriate for the target platform.

B nUICheckboxButton.TYPE OFF ON indicates a check box that uses “On” and

l/Off/l .

B nUICheckboxButton.TYPE YES NO specifies a check box that uses “Yes” and
“No”. For platforms that do not support yes/no check boxes, Mobile Designer
implements a nUIButtonElement object with equivalent “Yes” and “No” text labels.

The default state for a check box is 0 (zero), meaning clear, off, or no.

webMethods Mobile Designer Native User Interface Reference Version 10.1 55

http://msdn.microsoft.com/en-us/library/system.windows.controls.button.aspx

Native User Interface (NativeUl) Objects

Example

This code sample displays a check box. Illustrations of how the example code is
rendered on various platforms follows the code sample.

view.add (new nUICheckboxButton (NUIID MY CHECKBOX, "nUICheckboxButton")):;

Platform Platform-Specific Class and lllustration
Android android.widget.CheckBox
Cleared Selected

nUICheckboxButton " (nUICheckboxButton

i0S 7 UlSwitch
Cleared Selected
Ll nlJi [
iOS 6 UlSwitch
Cleared Selected
nUICheckboxButton " OFF nUICheckboxButton @M

Windows Phone ToggleButton

Cleared Selected

. nUICheckboxButton nUICheckboxButton

Windows RT Windows. UL Xaml.Controls.CheckBox

Windows 8

Other Cleared Selected
nUICheckboxButton | nUICheckboxButton

webMethods Mobile Designer Native User Interface Reference Version 10.1 56

Native User Interface (NativeUl) Objects

nUlContainerElement

com.softwareag.mobile.runtime.nui.nUIContainerElement
Use to display a container that holds other NativeUI objects.

You can set the container’s attributes to allow scrolling. For example, the application
might use the container to hold long pieces of text that exceeds the viewable area,
allowing the user to scroll through the text.

Usage Notes

B Set the Height attribute to set height of the object. By default, the nUIContainerElement
object occupies the remaining width of the parent object. However, you can adjust
the width of the nUIContainerElement object using the width attribute.

®m If you want to use a scrolling nUIContainerElement object in a view, ensure that the
parent nUIViewDisplay object does not allow scrolling.

Caution: Setting the Hscrollable attribute to true to allow horizontal scrolling
currently results in undefined behavior.

® The following are platform-specific considerations:

Android The Innerx and Innery default values are 0 (zero).
i0S The Innerx and Innery default values are 0 (zero).
Windows Phone The Innerx and Innery default values are 0 (zero).
Windows RT The Innerx and Innery default values are 0 (zero).
Windows 8

Example

This code sample displays the nUIContainerElement object between two nUIButtonElement
objects. Illustrations of how the example code is rendered on various platforms follows
the code sample.

//Add buttons to help demonstrate the bounds of the container.
view.add (new nUIButtonElement (-1, "nUIButtonElement 1"));

nUIContainerElement my container = new nUIContainerElement (-1);

my container.setHeight (150);

my container.add(new nUITextfieldElement (-1, LOREM IPSUM STRING)) ;
view.add (my container);

view.add (new nUIButtonElement (-1, "nUIButtonElement 2"));

webMethods Mobile Designer Native User Interface Reference Version 10.1 57

Native User Interface (NativeUl) Objects

Platform

Platform-Specific Class and lllustration

Android

i0S 7

i0S 6

Windows Phone

Windows RT
Windows 8

android.widget.ScrollView with RelativeLayout.LayoutParams

nUlButtonElement 1

consectetur adipisicing elit_..r-.'ed

o eiusmod tempor incididunt ut
labore et dolore magna aliqua. Ut

nUIButtonElement 2

UlView with a UlScrollView

nUlButtonElemeant 1

consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore
et dolore magna aliqua. Uit enim ad

nUIButtonElemeant 2

UlView with a UlScrollView

nUlButtonElement 1

R ———
consectetur adipisicing elit, sed do
ausmod tempor incididunt ut labore
et dolore magna aligua. Lt enim ad

nUlButtonElemeant 2

System.Windows.Controls.Canvas with the ScrollViewer

nUIButtonElement 1

nUlButtonElement 2

Windows.UI. Xaml.Controls.Canvas with internal ScrollViewer

webMethods Mobile Designer Native User Interface Reference Version 10.1

58

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Other
niIButtonElement 1

N AL AT L My
conseclelur adipisicing elit, sed
do eiusmod tempor incididunt ut
labore et dolore magna aliqua.
Lt enim ad minim veniam, quis
nesirud exercitation ullamco

nUlButtonElement 2

nUIDateEntry

com.softwareag.mobile.runtime.nui.nUIDateEntry

Use to display a date or time selector control.

Usage Notes

m Use the Format attribute to indicate whether you want a date or time selector

control:

For this type of selector Specify the following for the Format attribute
Date with day, month, and nUIDateEntry.dd MM yyyy

year

Time with hours and minutes nUIDateEntry.HH mm

B When getting the Date attribute after an EVT POST EDIT call to a nUIDateEntry
object, only the information for the requested Format is valid. Data outside the
specific Format is undefined.

Example

This code sample displays a date selector control. Illustrations of how the example code
is rendered on various platforms follows the code sample.

view.add (new nUIDateEntry (NUIID MY DATE, null)); //null = current date

Platform Platform-Specific Class and lllustration

Android DatePickerDialog

webMethods Mobile Designer Native User Interface Reference Version 10.1 59

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Closed Open

OB/06S2012

Set date
+ + +

Jun j 08 §2012

i0S7 UlDatePicker
Closed Open
I
< Cance
September 18 2013
i0S 6 UlDatePicker

webMethods Mobile Designer Native User Interface Reference Version 10.1 60

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Closed Open
Carrier T 5:56 FM —_
oaro6/2012 ﬁ

July | 9 [2013

Windows Phone Microsoft.Phone.Controls.DatePicker or TimePicker

For information, see User Experience Design Guidelines for
Windows Phone.

Closed Open

911272002
CHOOSE DATE

webMethods Mobile Designer Native User Interface Reference Version 10.1 61

http://msdn.microsoft.com/en-us/library/hh202915(v=VS.92).aspx
http://msdn.microsoft.com/en-us/library/hh202915(v=VS.92).aspx

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Windows RT Windows.UI. Xaml.Controls.Button and ListBox
Windows 8
Other Closed Open
— I
0B/062012
TN
8 | Jun 2012

8],4

nUIDialogWindow

com.softwareag.mobile.runtime.nui.nUIDialogWindow

Use to display a pop-up window.

Usage Notes
B You can add a nUIViewDisplay object to the nUIDialogWindow object.

® The nUIDialogWindow object does not support multiple panes, the nUINavView object, or
nUINavbuttonElement object.

Example

This code sample displays a pop-up window. Illustrations of how the example code is
rendered on various platforms follows the code sample.
nUIDialogWindow custom dialog = new nUIDialogWindow (NUIID MY CUSTOM DIALOG) ;

nUIViewDisplay view = new nUIViewDisplay(-1);
view.add (new nUITextfieldElement (-1, "Lorem")) ;

webMethods Mobile Designer Native User Interface Reference Version 10.1 62

Native User Interface (NativeUl) Objects

view.add (new nUIEntryElement (NUIID ENTRYELEMENT IPSUM, "Ipsum"));

view.add (new nUIEntryElement (NUIID ENTRYELEMENT DOLOR, "Dolor")):;
nUITableElement button table = new nUITableElement (-1, new int[] {50, 50});
nUITablerowElement tr = new nUITablerowElement (-1);

{
nUITablecellElement tc = new nUITablecellElement (-1);

{
tc.add (new nUIButtonElement (NUIID BUTTON SIT, "Sit"));

}

tr.add(tc) ;
tc = new nUITablecellElement (-1);

{
tc.add (new nUIButtonElement (NUIID BUTTON AMET, "Amet"));

}

tr.add (tc) ;

}
button table.add(tr):;
view.add (button table);
custom dialog.add(view) ;

Platform Platform-Specific Class and lllustration

Android android.app.Dialog

iOS 7 - iPhone UlView initialized with a UIModalPresentationFormSheet

Note: On an iPhone, the nUIDialogWindow object occupies the entire
screen.

webMethods Mobile Designer Native User Interface Reference Version 10.1

63

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Lorem

Ipsim

Dolor

Sit Amet

iOS 7 - iPad UlView initialized with a UIModalPresentationFormSheet

iOS 6- iPhone UlView initialized with a UIModalPresentationFormSheet in iOS
6

Note: On an iPhone, the nUIDialogWindow object occupies the entire
screen.

webMethods Mobile Designer Native User Interface Reference Version 10.1 64

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Carrier = 11:40 AM =]
Loram
| Ipsum |
. 4
sit Amet
iOS 6 - iPad UlView initialized with a UIModalPresentationFormSheet in iOS

Windows Phone

6

System.Windows.Controls.Primitives.Popup

webMethods Mobile Designer Native User Interface Reference Version 10.1

65

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Lorem

|prsanm

CEN
poo |
TR | = —

Windows RT Windows.UIL Xaml.Controls.Primitives.Popup
Windows 8
Lorem
Ipsum
Dolor
Sit Amel

webMethods Mobile Designer Native User Interface Reference Version 10.1 66

Native User Interface (NativeUl) Objects

nUIDisplayObject

com.softwareag.mobile.runtime.nui.nUIDisplayObject

The nUIDisplayObject class is a base class for Display NativeUI objects. The
nUIElementDisplay, nUIViewDisplay, and nUIWindowDisplay classes extend the nUIDisplayObject
class.

Usage Notes

®m When specifying the width and Right attributes, you can specify just one of these
attributes. Mobile Designer infers the value of the attribute you do not define from
the value of the defined attribute.

® When specifying the Height and Bottom attributes, you can specify just one of these
attributes. Mobile Designer infers the value of the attribute you do not define from
the value of the defined attribute.

B The x and Left coordinate position attributes are equivalent. You can specify just
one of them.

m The Y and Right coordinate position attributes are equivalent. You can specify just
one of them.

B The default value for inner padding attributes is 0 (zero).

Display objects, such as tables and views, might override the default inner padding
values.

® By default, the inner width and height values match the values for the x and v
padding on the Right and Bottom of the object.

You can configure the object's width and Height attribute values to prevent this
duplication.

nUIDropdownlistEntry

com.softwareag.mobile.runtime.nui.nUIDropdownlistEntry

Use to display a drop-down list that contains selection items.

Usage Notes

®m If a drop-down list contains less than five items, consider using the nUIRadioCheckbox
object instead.

Example

This code sample displays a drop-down list. Illustrations of how the example code is
rendered on various platforms follows the code sample.

webMethods Mobile Designer Native User Interface Reference Version 10.1 67

Native User Interface (NativeUl) Objects

String[] list items = new String[] {"Lorem", "ipsum", "dolor", "sit", "amet"};
view.add (new nUIDropdownlistEntry (NUIID MY DROPDOWNLIST, list items));

Platform Platform-Specific Class and lllustration
Android android.widget.Spinner
Closed Open

Larem -

IpEUm

dalar

i0OS 7 UIPickerView

webMethods Mobile Designer Native User Interface Reference Version 10.1 68

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Closed Open
L |
£ Cancel
Larem
Lorem
Ipsum
i0S 6 UlIPickerView
Closed Open
Lorem
Lorem
Windows Phone System.Windows.Controls.ListBox

webMethods Mobile Designer Native User Interface Reference Version 10.1 69

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Closed Open

dolor

an
amet

Windows RT Windows.UIL. Xaml.Controls.ListBox
Windows 8

Other Closed Open

C—
B |

ipsum

ik

Lorem

dolor
sit

amel

nUIElementDisplay

com.softwareag.mobile.runtime.nui.nUIElementDisplay

The nUIElementDisplay class is the base class for Element NativeUI objects. The
nUIElementDisplay class overrides the parent's v attribute and inner padding values.

By default, Element NativeUI objects display one below the other in their parent unless
the application specifically position the Element objects.

webMethods Mobile Designer Native User Interface Reference Version 10.1 70

Native User Interface (NativeUl) Objects

nUIEntryElement

com.softwareag.mobile.runtime.nui.nUIEntryElement

Use to display a text entry box. You can restrict the user input to alphanumeric
characters or only numbers. You can mask the field's contents, making the field suitable
for a user to enter passwords or personal identifier numbers (PIN)s.

Usage Notes

B Set the Format attribute to indicate the type of text allowable in the text entry field.
Use one of the following values:

Value Meaning

* Alphanumeric field

N* Numeric-only field

H** Hidden (masked) alphanumeric password field
HN* Hidden (masked) PIN field

m If the value of the Format attribute includes # indicating a hidden (masked) field, the
value of the Lines attribute is always set to 1. The Lines attribute sets the number of
text entry lines in the nUIEntryElement NativeUI object.

m Use the HintText attribute to provide text to indicate what the user should enter
in the entry field. The text displays in the entry field, typically in a light gray, and
disappears as soon as the user starts typing in the field.

The following lists platform considerations:

i0S Hint text does not display in multi-line entry boxes.

Windows Phone Hint text does not display in hidden (masked) alphanumeric
password fields or hidden (masked) PIN fields.

Example

This code sample displays a text box. Illustrations of how the example code is rendered
on various platforms follows the code sample.

view.add (new nUIEntryElement (NUIID MY ENTRY, "nUIEntryElement"));

webMethods Mobile Designer Native User Interface Reference Version 10.1 71

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Android android.widget.EditText
Normal With Focus
O
i0S 7 UlTextField for a single-line text boxUITextView for a multi-line
text box
Normal With Focus
nUIEnRtryElement rlIEntryElement
iOS 6 UlTextField for a single-line text boxUITextView for a multi-line

Windows Phone

Windows RT
Windows 8

Other

text box

Normal With Focus

nUIEntryElement nl IEntrg,rEIe-menﬂ
System.Windows.Controls.TextBox

Normal With Focus

nUlEntryElement nUIEntryE sment]

Windows.UIL. Xaml.Controls.TextBox or PasswordBox

Normal With Focus

nUIEniryElement nUIEniryElement |

webMethods Mobile Designer Native User Interface Reference Version 10.1 72

Native User Interface (NativeUl) Objects

nUlimageElement

com.softwareag.mobile.runtime.nui.nUlimageElement

Use to display an image.

Usage Notes

B You can make a simple image behave like a button and generate EVT TRIGGER events
by calling setTriggerable(true) when creating the image.

® The following are platform-specific considerations:

Android The nUlImageElement object is the android.widget.ImageView
class.
i0S The nUlImageElement object is the Ullmage class. For more

information, see iOS Developer Library’s Drawing and
Creating Images.

Windows Phone The nUlImageElement object is the
System.Windows.Controls.Image class.

Windows RT The nUlimageElement object is the
Windows 8 Windows.UI. Xaml.Controls.Image class.

nUIListElement

com.softwareag.mobile.runtime.nui.nUIListElement

Use to add a scrollable list of elements to the view. Elements are fetched on an as-needed
basis.

Usage Notes

Windows Phone and Windows 8/Windows RT do not support pull-to-refresh, spinners,
or infinite scrolling events.

Example

This code sample instantiates the user's IListViewProvider class, MyListProvider, and then uses
it for the creation of a nUIListElement with a fixed height.

MyListProvider provider = new MyListProvider();
nUIListElement list = new nUIListElement (provider) ;
list.setHeight (400) ;

view.add (list);

webMethods Mobile Designer Native User Interface Reference Version 10.1 73

http://developer.apple.com/library/ios/#documentation/2ddrawing/conceptual/drawingprintingios/HandlingImages/Images.html
http://developer.apple.com/library/ios/#documentation/2ddrawing/conceptual/drawingprintingios/HandlingImages/Images.html

Native User Interface (NativeUl) Objects

Android

i0S

RecyclerView

< MNative List View ++

L sathamm

=imple Buttons

Test Switch

Custom implementation based around UlTableView.

Carriar ¥ J:DE P -

< Back Natlve List view sccd+ [[08

Static Header

Simple Buttons :
ap
Test Switch
Title 1
Description with 3

twis lines far row 1

webMethods Mobile Designer Native User Interface Reference Version 10.1

74

Native User Interface (NativeUl) Objects

Windows Phone Based around System.Windows.Controls.Canvas with the
ScrollViewer.

Native List View

% software

Search for_

Simple Buttons Tap

Windows RT Based around Windows.Ul.Xaml.Controls.Canvas with internal
ScrollViewer.

nUIListView

com.softwareag.mobile.runtime.nui.nUIListView

A View that contains a single nUIListElement, filling the entire space available to it.

Usage Notes

Windows Phone and Windows 8/Windows RT do not support pull-to-refresh, spinners,
or infinite scrolling events.

Example

This code sample instantiates the user's IListViewProvider class, MyListProvider, and then uses
it for the creation of a nUIListView with header text and a back button.

MyListProvider 1 provider = new MyListProvider();

nUIListView list view = new nUIListView (-1, 1 provider);

list view.setHeadertext ("A nUIListView");

nUINavbuttonElement ne = new nUINavbuttonElement (NUIID BACK BUTTON, "Back",
nUINavbuttonElement.TYPE BACK, null);

list view.add (ne);

webMethods Mobile Designer Native User Interface Reference Version 10.1 75

Native User Interface (NativeUl) Objects

Android

i0S

RecyclerView

< MNative List View ++

L sathamm

=imple Buttons

Test Switch

Custom implementation based around UlTableView.

Carriar ¥ J:DE P -

< Back Natlve List view sccd+ [[08

Static Header

Simple Buttons :
ap
Test Switch
Title 1
Description with 3

twis lines far row 1

webMethods Mobile Designer Native User Interface Reference Version 10.1

76

Native User Interface (NativeUl) Objects

Windows Phone Based around System.Windows.Controls.Canvas with the
ScrollViewer.

Native List View

% software

Search for_

Simple Buttons Tap

Windows RT Based around Windows.Ul.Xaml.Controls.Canvas with internal
ScrollViewer.
nUINavbuttonElement

com.softwareag.mobile.runtime.nui.nUINavbuttonElement

Use to display a button within a nUIViewDisplay object or a nUINavView object.

Usage Notes

B To use the nUINavbuttonElement object as a Back button,
set the nUINavbuttonElement object’s Type attribute to
nUINavbuttonElement.TYPE BACK.

Note: Do not use the nUINavbuttonElement object as a Back button in a
nUINavView.

® When using the nUINavbuttonElement object as a Back button in a nUIViewDisplay
object, you do not need to define an icon to use for the nUINavbuttonElement object.

When a user presses a physical Back button or touches a Back area on a touchscreen,
the nUINavbuttonElement object reacts to the user interaction.

webMethods Mobile Designer Native User Interface Reference Version 10.1 77

Native User Interface (NativeUl) Objects

® When using the nUINavbuttonElement object as a button in a nUINavView object,
define the Text and Icon attributes for the button.

® When specifying an image with the Icon attribute, the file must be a PNG file. For
information about using graphics in a mobile application, see Preparing Graphics
for Your Mobile Application and Icon Creation and Usage for webMethods Mobile
Designer.

®m The following are platform-specific considerations:

Android ® The nUINavbuttonElement object is a android.view.Menultem
class. For more information, see Menus.

B When you use the nUINavbuttonElement object in a nUINavView
object, at least the Text or the Icon attributes must be
supplied.

® When you use the nUINavbuttonElement object in a
nUIViewDisplay object:

m The button displays in the header
bar. This support is only available if
android.nativeui.view.header.version is set to
the newer style header bar introduced with Ice Cream
Sandwich.

m If you set the Type attribute to
nUINavbuttonElement.TYPE BACK, if the Android
device has a physical Back button, the Back button
is used. Otherwise, if the newer style header bar
introduced with Ice Cream Sandwich is in use, Android
draws a Back button in the header.

m If you use the HeaderText attribute and space
is not available for both the header text and the
nUINavbuttonElement objects, the header text is truncated.

m Itis recommended that you insert no more than 3
nUINavbuttonElement objects in a nUIViewDisplay object.

m The Icon attribute is required. The icon will be used if
it is supplied. If not, the Text attribute is used instead.
Please provide a brief text for the attribute because the
text will be cropped at a width 1.5 times the width of the
standard Icon width.

®m The size of the image you specify with the Icon attribute for
a pop-up menu is based on the density of the screen of the
device:

= Low density (Idpi) images is 36x36 pixels.

webMethods Mobile Designer Native User Interface Reference Version 10.1 78

http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Preparing+Graphics+For+Your+Mobile+application
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Preparing+Graphics+For+Your+Mobile+application
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Icon+Creation+and+Usage+for+webMethods+Mobile+Designer
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Icon+Creation+and+Usage+for+webMethods+Mobile+Designer
http://developer.android.com/guide/topics/ui/menus.html

Native User Interface (NativeUl) Objects

® Medium density (mdpi) images is 48x48 pixels.
m High density (hdpi) images is 72x72 pixels.

Note: Extra high density (xdpi) is not applicable.

®m The size of the image you specify with the Icon attribute
for an action bar is based on the density of the screen of the
device:

® Medium density (mdpi) images is 32x32 pixels.
m High density (hdpi) images is 48x48 pixels.
m Extra high density (xdpi) images is 64x64 pixels.

Note: Low density (ldpi) is not applicable.

i0S ® The nUINavbuttonElement object is a UITabBarltem class.

® When you use the nUINavbuttonElement object in a nUINavView
object:

m The Text and Icon attributes are required.

m When specifying an image with the Icon attribute, the
image should be 32x32 pixels for a non-Retina display
or 64x64 pixels for a Retina display. Additionally, the
image should be black on transparent. The iOS device
automatically adds highlighting and gradients at run
time.

® When you use the nUINavbuttonElement object in a
nUIViewDisplay object:

®m The button displays in the header bar.

m If you set the Type attribute to
nUINavbuttonElement.TYPE BACK, the button displays
in the left of the header.

®m The Icon or Text attribute is required. If you specify
both, Icon is used.

m If you specify only the Text attribute, the iOS devices
draws the text inside a button.

m When specifying an image with the Icon attribute, it is
recommended that the image be 24x24 pixels for a non-
Retina display or 48x48 pixels for a Retina display. The
i0S device draws the icon without additional borders.

webMethods Mobile Designer Native User Interface Reference Version 10.1 79

Native User Interface (NativeUl) Objects

Windows Phone

Windows RT
Windows 8

m If you use the HeaderText attribute and space
is not available for both the header text and the
nUINavbuttonElement objects, the header text is truncated.

m For an iPhone running iOS, it is recommended that you
insert no more than 3 nUINavbuttonElement objects in a
nUIViewDisplay object.

m For an iPad running iOS, it is recommended that you
insert no more than 6 nUINavbuttonElement objects in a
nUIViewDisplay object.

The nUINavbuttonElement object is a ApplicationBarlconButton
or ApplicationBarMenultem class.

When you use the nUINavbuttonElement object in a nUINavView
object:

m The Text and Icon attributes are required. For more
information, see Application Bar Overview for Windows
Phone.

® When specifying an image with the Icon attribute, the
image should be 27x27 pixels. Additionally, the image
should be white on transparent. The Windows Phone
device automatically adds the circle around the icon at
run time.

When you use the nUINavbuttonElement object in a
nUIViewDisplay object:

m The button displays in a pop-up menu.

m If you set the Type attribute to
nUINavbuttonElement.TYPE BACK, the Windows
Phone device uses the physical Back button and does not
draw a Back button.

m The Text attribute is required.

® You can insert any number of nUINavbuttonElement objects
in a nUIViewDisplay object.

The nUINavbuttonElement object is a
Windows.UI. Xaml.Controls.Button class.

When specifying an image with the Icon attribute,

the image should be 48x48 pixels. When you use the
nUINavbuttonElement object in a nUINavView object, the Windows
RT/Windows 8 device automatically adds the circle around
the icon at run time. Otherwise, you have to add the circle
yourself.

webMethods Mobile Designer Native User Interface Reference Version 10.1 80

http://msdn.microsoft.com/en-us/library/ff431813(v=vs.92).aspx
http://msdn.microsoft.com/en-us/library/ff431813(v=vs.92).aspx

Native User Interface (NativeUl) Objects

B You can insert any number of nUINavbuttonElement objects in a
nUINavView or nUIViewDisplay object, limited only by the screen
width.

® When you use the nUINavbuttonElement object in a nUINavView
object, the Text and Icon attributes are required.

B When you use the nUINavbuttonElement object in a
nUIViewDisplay object:

m The button displays in the header bar.

m The Icon attribute is required.

nUINavView

com.softwareag.mobile.runtime.nui.nUINavView
Use to display the navigation view.

The navigation view has different formats based on the platform. For example, for some
platforms the navigation view might display as a menu bar that is always visible and
uses both icons and text. For other platforms, the navigation view might have hidden
menu items that are displayed only when a user presses a button.

Usage Notes

B You can add nUINavbuttonElement objects to the nUINavView object.

Note: The nUINavbuttonElement object should not represent Back
buttons. That is, the object’s Type attribute should not be set to
nUINavbuttonElement.TYPE BACK.

®m The following are platform-specific considerations:

Android m Software AG recommends limiting the number of buttons
you add to a nUINavView object to six buttons. If you add
more than six buttons, a more button displays on some
Android devices.

® Android devices support two formats of the navigation
view. Set the android.nativeui.navview.version
property to control the format you want to use. You can set
this property in the project’s _defaults_.xml file or in the
handset-specific targets xml file. These files are located in
the project’s targets directory.

m Set the property to 1 to use the older style pop-up menu
that Android 2.3 and earlier used.

webMethods Mobile Designer Native User Interface Reference Version 10.1 81

Native User Interface (NativeUl) Objects

m Set the property to 2 to use the newer style menu
introduced with Ice Cream Sandwich.

i0S m Software AG recommends limiting the number of buttons
you add to a nUINavView object on an iPhone in full-screen
portrait mode to eight buttons.

Windows Phone m Software AG recommends limiting the number of buttons
you add to a nUINavView object to five buttons. If you add
more than five buttons, five display and the remaining
buttons are accessible through the pop-up menu as a list
without icons.

Windows RT B The navigation view displays as a pop-up menu that
Windows 8 occupies the full width of the screen.

m Software AG recommends creating only one nUINavView
object at a time.

m Software AG recommends limiting the number of buttons
you add to a nUINavView object to six buttons.

Example

This code sample displays a navigation view. Illustrations of how the example code is
rendered on various platforms follows the code sample.

protected nUIViewDisplay onCreateMainNavbarView ()
{
//loadImage calls Image.createImage () with the appropriate path and file
extension.
navbar view = new nUINavView (NUIID NAV VIEW) ;
navbar view.setVscrollable (false);
navbar view.setBgcolor (0);
navbar_view.add(new nUINavbuttonElement (-1, "Lorem",
loadImage ("ChartArea"))):
navbar view.add (new nUINavbuttonElement (-1, "Ipsum",
loadImage ("ChartPie")));
navbar view.add (new nUINavbuttonElement (-1, "Dolor",
loadImage ("ChartBar"))):
return navbar view;

Platform Platform-Specific Class and lllustration

Android - Custom code to emulate a split Action Bar
Ice Cream Sandwich

webMethods Mobile Designer Native User Interface Reference Version 10.1 82

http://developer.android.com/design/patterns/actionbar.html

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Android - android.view.Menu
2.3

Lorem Ipsum Dc-nl;r
i0OS 7 UlTabBar

webMethods Mobile Designer Native User Interface Reference Version 10.1 83

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
|
£ Back
~] [] 1
iOS 6 UlTabBar
Carrier 6:24 FM —]

Windows Phone - Microsoft.Phone.Shell. ApplicationBar
compact

webMethods Mobile Designer Native User Interface Reference Version 10.1

84

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Windows Phone - Microsoft.Phone.Shell. ApplicationBar
expanded

Windows RT Windows.UI Xaml.Controls.AppBar
Windows 8

webMethods Mobile Designer Native User Interface Reference Version 10.1

85

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

nUIObject

com.softwareag.mobile.runtime.nui.nUIObject

The nUIObject class is the base class for all NativeUI objects. Do not instantiate this object
directly.

nUIProgressanimElement

com.softwareag.mobile.runtime.nui.nUIProgressanimElement

Use to display an animated status indicator that an application can display to indicate
background activity is in progress.

Example

This code sample displays a status indicator. Illustrations of how the example code is
rendered on various platforms follows the code sample.

view.add (new nUIProgressanimElement (NUIID MY PROGRESSANIM)) ;

Platform Platform-Specific Class and lllustration

Android android.widget.ProgressBar

webMethods Mobile Designer Native User Interface Reference Version 10.1 86

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

i0S 7 UIActivityIndicatorView

Note: The progress indicator is in the top right of the screen.

.
{|'Z::-\

i0S 6 UIActivityIndicatorView

webMethods Mobile Designer Native User Interface Reference Version 10.1

87

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Carrier 7 4125 PM -

E"’ ;

Windows Phone System.Windows.Controls.ProgressBar

Note: You can display the progress animation object as part of the
header bar of the current view.

Windows RT Windows.UI. Xaml.Controls.ProgressBar

webMethods Mobile Designer Native User Interface Reference Version 10.1 88

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Windows 8

nUIRadioCheckbox

com.softwareag.mobile.runtime.nui.nUIRadioCheckbox

Use to display a single radio button that uses two states, selected or cleared.

Usage Notes

B You can place a radio button in a group with other radio buttons, and enable the user
to select only one of the available radio button options. To do so, set the GroupID
attribute of the buttons in the group to the same value.

Example

This code sample displays a radio button. Illustrations of how the example code is
rendered on various platforms follows the code sample.

view.add (new nUIRadioCheckbox (NUIID MY RADIOCHECKBOX, "nUIRadioCheckbox")) ;

Platform Platform-Specific Class and lllustration

Android android.widget.RadioButton

webMethods Mobile Designer Native User Interface Reference Version 10.1 89

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Cleared Selected
nUlRadiaCheckbox ® | nUIRadioCheckbox
i0S 7 UlButton
Note: The radio button displays a check next to the selected item.
Cleared Selected
nUIRadicCheckbox nUIRadioCheckbox o
iOS 6 UlButton

Windows Phone

Windows RT
Windows 8

Other

Note: The radio button displays a check next to the selected item.

Cleared Selected

nUIRadiaCheckbox nUIRadioCheckbox o
RadioButton
Cleared Selected

. nUIRadioCheckbox G nUIRadiaCheckbox

Windows.UI. Xaml.Controls.RadioButton

Cleared Selected

nUiRadioCheckbox # | nUIRadioCheckbox

webMethods Mobile Designer Native User Interface Reference Version 10.1 90

Native User Interface (NativeUl) Objects

nUISearchEntry

com.softwareag.mobile.runtime.nui.nUISearchEntry

Use to display a search entry field. You can restrict the user input to alphanumeric
characters or only numbers.

Note: The nUISearchEntry NativeUI object is similar to the nUIEniryElement NativeUI
object except that the nUISearchEntry object does not allow masking the entry
field.

Usage Notes

B Set the Format attribute to indicate the type of text allowable in the text entry field.
Use one of the following values:

Value Meaning
* Alphanumeric field
N* Numeric-only field

B The entered text is always visible in the search entry field. If you need to mask the
field's contents, for example to use for a field where a user enters passwords or
personal identifier numbers (PIN)s, use nUIEntryElement object instead.

m Use the HintText attribute to provide text to indicate what the user should enter
in the entry field. The text displays in the entry field, typically in a light gray, and
disappears as soon as the user starts typing in the field.

m The following are platform-specific considerations:

Android B Android devices generate an EVT_TRIGGER event when a
user selects the button adjacent to the text field.

i0OS m iOS devices generate an EVT_TRIGGER event when a user
presses the Search or Enter key.

m Hint text does not display in multi-line entry boxes.
Windows Phone ® Windows Phone devices generate an EVT_TRIGGER event

when a user selects the button adjacent to the text field or
when a user presses a Search or Enter key.

Windows RT ® Windows RT/Windows 8 devices generate an
Windows 8 EVT_TRIGGER event when a user selects the button

webMethods Mobile Designer Native User Interface Reference Version 10.1 91

Native User Interface (NativeUl) Objects

Other

Example

adjacent to the text field or when a user presses the Enter
key.

m Devices generate an EVT_TRIGGER event when a user
presses the Search or Enter key.

This code sample displays a search entry field. Illustrations of how the example code is
rendered on various platforms follows the code sample.

view.add (new nUISearchEntry (NUIID MY SEARCH ENTRY, "nUISearchEntry"));

Platform

Platform-Specific Class and lllustration

Android (API <
14)

Android (APl >=
14)

i0S 7

i0S 6

Custom object based around android.widget.EditText with an
android.widget.ImageButton

Normal With Focus

nUlSearchEntry E nUlSearchEntry

android.widget.SearchView

Normal With Focus

nlSeanchEntry

K, s

i ':,ﬁ nllSearchEntry

UlSearchBar

Normal With Focus
nliSaarchEntry } nliSaarchEmnin

UlSearchBar

Normal With Focus
nlISmarchEntry ALISearchEntng

webMethods Mobile Designer Native User Interface Reference Version 10.1 92

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Windows Phone TextBox with the Button
Normal With Focus

IZ:}T*":II nUlSearchEntry IZ:}'L":]I nliSearchEntnd

Windows RT Custom element based on Windows.UI. Xaml.Controls.Button
Windows 8 and TextBox
Other Normal With Focus

QnUISaarchEnlry QnUISaarchEnlry|
nUISeparatorElement

com.softwareag.mobile.runtime.nui.nUISeparatorElement

Use to display a horizontal line that separates blocks of content.

Usage Notes

B Setting the Height attribute alters the padding above and below the horizontal,
separator line. It does not alter the size of the line itself.

Example

This code sample displays a horizontal, separator line. Illustrations of how the example
code is rendered on various platforms follows the code sample.

view.add (new nUISeparatorElement (-1))

Platform Platform-Specific Class and lllustration

Android Custom android.view.View

webMethods Mobile Designer Native User Interface Reference Version 10.1 93

Native User Interface (NativeUl) Objects

Platform

Platform-Specific Class and lllustration

i0S 7

i0S 6

Windows Phone

Other

s n .mu_.,u_.r
Ell:—lrn egﬂt massa "m:I ligula pretium

N Idldll:‘lt ut labore et dolore magna

UlView customized with a horizontal rule between content
blocks

Pallentesque impardiat turpls i tellus
slemantum at aliquam massa auctor. Eliam aget
massa sod Bgula pretium dapidus nec at risus. .

Lorem ipsurn dolor 88 amed, consacbabur
adipigicang all, sad do suamod temg
incididunt ut labome et delors magna aligua, U

UlView customized with a horizontal rule between content
blocks

Pallentosque impondiet furpis id tellus elemoentum
at aliquarn massa awclor. Elam sget massa sed
Eguda pratium dapibus nec et fsus. Aenaan ...

Larem ipsum golor 54 amat. consectatur
adipisicing elit, sad do siusmod tempsor incididunt
ut labare et dolors magna aligua. Lt enim ad mi...

System.Windows.Controls.Border

Pelantesque imperdiat turpis id
telus elementum al abguam massa
auctor. Etiam eget massa sed ligula

Lorem ipsuny dolor sit amet,
onsectetur adipisicing elit, sed do
ensmod ternpor incididunt ut labore

webMethods Mobile Designer Native User Interface Reference Version 10.1 94

Native User Interface (NativeUl) Objects

nUISpacerElement

com.softwareag.mobile.runtime.nui.nUISpacerElement

Use to add blank space between NativeUI objects to create extra padding.

Usage Notes
®m Use the Height attribute to set the appropriate size for the blank space.

B You can set the height directly using setHeight().

nUISwitchButton

com.softwareag.mobile.runtime.nui.nUISwitchButton

Use to display a single Switch that may optionally have a text label.

Usage Notes
m The nUISwitchButton class extends the nUIButtonElement class.

® Based on the platform, the nUISwitchButton exhibits different behaviour and
appearance.

m The nUISwitchButton will always have two states, on (true) and off (false).

® The default state of a nUISwitchButton is off, which corresponds to 0 (zero), false, or
clear.

®m Additional methods are provided to change the state of the nUISwitchButton that accept
and return boolean values.

Example

This code sample displays two types of switch. The first has a text label, and the second
does not. Illustrations of how the labelled switch are rendered on various platforms
follows the code sample.

view.add (new nUISwitchButton (NUIID LABEL SWITCH,"nUISwitchButton"));//with label
view.add (new nUISwitchButton (NUIID SIMPLE SWITCH)); //without label

Platform Platform-Specific Class and lllustration

Android android.support.v7.widget.SwitchCompat

webMethods Mobile Designer Native User Interface Reference Version 10.1 95

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Off On
nUISwitchButton 9
i0S UlSwitch
Off On
nUlSwitchButton nUISwitchButton

Windows Phone Microsoft.Phone.Controls.ToggleSwitch

Off On

Windows RT Windows.UIL Xaml.Controls.ToggleSwitch
Windows 8

nUISwitchButton nUlSwitchButton

Off B On |

nUITableButton

com.softwareag.mobile.runtime.nui.nUITableButton

Use to display a table that contains other NativeUI objects and acts as a button.

webMethods Mobile Designer Native User Interface Reference Version 10.1 96

Native User Interface (NativeUl) Objects

Example

This code sample displays a nUITableButton object that contains an image and text.
Illustrations of how the example code is rendered on various platforms follows the code
sample.

nUITableElement table;
nUITablerowElement tr;
nUITablecellElement tc;

//loadImage calls Image.createImage () with the appropriate path and file extension.
Image person = loadImage ("PersonRealisticSingle") ;
table = new nUITableElement (-1, new int[]{30,70});
{
tr = new nUITablerowElement (-1) ;
{
tc = new nUITablecellElement (-1);
{
tc.add (new nUIImageElement (-1, person));
tc.setVspan(2);
tc.setVAlign (nUIConstants.center) ;
}
tr.add(tc);

tc = new nUITablecellElement (-1) ;
{
nUITextfieldElement header = new nUITextfieldElement (-1, "Lorem
Ipsum.") ;
header.setHAlign (nUIConstants.left) ;
tc.add (header) ;
}
tr.add(tc);
}
table.add (tr) ;

tr = new nUITablerowElement (-1);

{
//empty cell, cell above us spans into here.
tc = new nUITablecellElement (-1);
tr.add(tc) ;

tc = new nUITablecellElement (-1);
{
nUITextfieldElement details = new nUITextfieldElement (-1, "Dolor
sit amet, consectetur adipisicing elit, sed do eiusmod tempor.");
details.setMaxLines (2) ;
details.setFontSize (nUIConstants.size small);
details.setHAlign (nUIConstants.left);
tc.add (details);
}
tr.add (tc);
}
table.add(tr);
}
nUITableButton person with text =
new nUITableButton (NUIID_MY_PERSON_TABLEBUTTON) b
person with text.add(table);
view.add (person with text);

webMethods Mobile Designer Native User Interface Reference Version 10.1 97

Native User Interface (NativeUl) Objects

Platform Illustration

Android

Lorem Ipsum.

1 Dolor sit amet, consectetur

adipisicing elit, sed do

i0S7 Larem lpsum.

i0S 6

Windows Phone

1 Dalar sit afel, condactatur

adipisicing elil, sed 30 8lUsMo

Lorem Ipsum.
& Do it amed, consachatur
adipisicing olf, sed do slusmod...

Other Laorem Ipsum.
; Dokor sit amet

consectetur afipisicing

nUITablecellElement

com.softwareag.mobile.runtime.nui.nUITablecellElement

Use to add a table cell to a table row (nUITablerowElement).

Usage Notes

The nUITablecellElement object sets the InnerX attribute to screen_width divided by 128,
and InnerY attribute to screen_height divided by 256 on all platforms.

A table cell can contain more than one child object. The table cell objects are
positioned and aligned in a manner similar to a nUlViewDisplay object.

Use the Bgcolor attribute to set the table cell’s background color. To specify a color,
set the Bgcolor attribute to an integer that is based on a 32-bit Alpha Red Green Blue
(ARGB) format. You can use any solid color. If you specify an Alpha value that is not
opaque (0xFF), the behavior of the table cell object is undefined. Setting a Bgcolor
will override any previous BackgroundDrawable that has been set.

Use the BackgroundDrawable attribute to set the table cell's background drawable.
A background drawable may be a solid color, defined by a ColorBackground Object,
or an Image defined by a Patternlmage. Specifying a background color with an

webMethods Mobile Designer Native User Interface Reference Version 10.1 98

Native User Interface (NativeUl) Objects

alpha value that is not opaque (0xFF) will result in undefined behaviour. Setting a
BackgroundDrawable will override any previous Bgcolor that has been set.

nUITableElement

com.softwareag.mobile.runtime.nui.nUITableElement

Use to display a table that is composed of nUITablerowElement and nUITablecellElement
objects.

Usage Notes

Use the Bgcolor attribute to set the table’s background color. By default, the
background color is transparent. To change the color, set the Bgcolor attribute

to an integer that is based on a 32-bit Alpha Red Green Blue (ARGB) format. You
can use any solid color. If you specify an Alpha value that is not opaque (OxFF),
the behavior of the table object is undefined. Setting a Bgcolor will overrride any
previous BackgroundDrawable set.

Use the BackgroundDrawable attribute to set the table cell's background drawable.
A background drawable may be a solid color, defined by a ColorBackground
Object, or an Image defined by a PatternImage. Solid colors with an alpha value
that is not fully opaque (0xFF) will exhibit undefined behaviour. Setting a
BackgroundDrawable will override any previous Bgcolor that has been set.

Use the Relwidths attribute to specify an array of integer values that provide a
relative width for each column.

A table occupies the space available from the parent container, minus any padding.
The actual pixel width of each column is determined using the following formula:
column px width = (table px width * column rel width) / sum of all rel widths

Consider the width limitations of the target devices when determining the number
of columns to use in a table.

The Relwidths attribute can be updated after the table has been created, however,
the number of columns in the table must remain constant.

Examples

This code sample creates a table with two equal-width columns.
new nUITableElement (-1, new int [] { 1, 1 });
This code sample uses percentage values to create a table with three columns,

where the middle column is twice as wide as the first and last columns. The column
percentages should add up to 100%.

new nUITableElement (-1, new int [] { 25, 50, 25 });
This code sample creates a table using nUITableElement, nUITableButton,

nUITablerowElement, and nUITablecellElement. Illustrations of how the example code is
rendered on various platforms follows the code sample.

webMethods Mobile Designer Native User Interface Reference Version 10.1 99

Native User Interface (NativeUl) Objects

nUITableElement table;
nUITablerowElement tr;
nUITablecellElement tc;

table = new nUITableElement (-1,
{

new int [] {

tr = new nUITablerowElement (-1);
{
tc = new nUITablecellElement

{

(=1);
tc.add (new nUITextfieldElement (-1,
ér.add (tc);
tc = new nUITablecellElement

{

(=1);
tc.add (new nUITextfieldElement (-1,
ér.add (tc);
iable.add (tr);
tr =
{

new nUITablerowElement (-1);

tc = new nUITablecellElement

{

(-1);
tc.add (new nUIButtonElement (-1,
}
tr.add
tc =
{

ne;tiéiTablecellElement (-1);
tc.add (new nUIButtonElement (-1,
ér.add (tec);
éable.add (tr);
iiew.add(table);

70,

30 });

"Lorem")) ;

"ipsum")) ;

"dolor"));

"Sit")),.

Platform lllustration

Android ipsum

i0S 7 Lararm ipsum

i0S 6 Loram ipsum
dalar &it

Windows Phone Larem ipsum

webMethods Mobile Designer Native User Interface Reference Version 10.1

100

Native User Interface (NativeUl) Objects

Platform lllustration
Other Lorem ipsum
daolor it
hUITablerowElement

com.softwareag.mobile.runtime.nui.nUITablerowElement

Use to add a row to a table (nUlTableElement). The table row contains one or more
nUITablecellElement objects.

Usage Notes

Use the Bgcolor attribute to set the table row’s background color. By default, the
background color is transparent. To change the color, set the Bgcolor attribute to an
integer that is based on a 32-bit Alpha Red Green Blue (ARGB) format. You can use
any solid color. If you specify an Alpha value that is not opaque (OxFF), the behavior
of the table row object is undefined. Setting a Bgcolor will override any previous
BackgroundDrawable set.

Use the BackgroundDrawable attribute to set the table row's background drawable.
A background drawable may be a solid color, defined by a ColorBackground Object,
or an Image defined by a Patternlmage. An alpha value that is not fully opaque
(0xFF) will exhibit undefined behaviour. Setting a BackgroundDrawable will
override any previous Bgcolor that has been set.

nUITabView

com.softwareag.mobile.runtime.nui.nUITabView

Use to group multiple, similar Views together.

Usage Notes

The following are platform-specific considerations:

Windows Phone Support is only available for Tab labels containing Text.
Windows RT/ Support is not available on this platform.
Windows 8

webMethods Mobile Designer Native User Interface Reference Version 10.1 101

Native User Interface (NativeUl) Objects

Example

See _NativeUIDemo_ sample project for code.

Platform Platform-Specific Class and lllustration

Android android.support.design.widget. TabLayout and
android.support.v4.view.ViewPager

i0S Custom implementation based around the UlScrollView class

Windows Phone Microsoft.Phone.Controls.Pivot

nUITextfieldElement

com.softwareag.mobile.runtime.nui.nUITextfieldElement

Use to display plain text in a label or for a block of text.

Usage Notes

® The following are platform-specific considerations:

Android ® By default, the HAlign attribute, which specifies the
horizontal alighment of the text, is set to left.

B By default, the TextColor attribute, which specifies the text
color, is set to white.

®m For the ClipType attribute, Android devices support
CLIP TYPE CLIP, which indicates that Android devices
truncate the text if it is too long to display.

iOS ® By default, the HAlign attribute, which specifies the
horizontal alignment of the text, is set to center.

® By default, the TextColor attribute, which specifies the text
color, is set to black.

®m For the ClipType attribute, iOS devices support
CLIP TYPE ELLIPSIS, which indicates thatiOS devices
truncate the text that is too long to display and add an
ellipsis to indicate the text has been truncated.

Windows Phone B By default, the HAlign attribute, which specifies the
horizontal alignment of the text, is set to left.

webMethods Mobile Designer Native User Interface Reference Version 10.1 102

Native User Interface (NativeUl) Objects

Example

® By default, the TextColor attribute, which specifies the text

color, is set to black when using a light theme and is set to
white when using a dark theme. For more information, see
Theme Resources for Windows Phone.

m For the ClipType attribute, Windows Phones support the

following:

B CLIP TYPE CLIP, which indicates that Windows Phones

truncate the text if it is too long to display. This is the

default.

®m CLIP TYPE ELLIPSIS, which indicates that Windows
Phones truncate the text that is too long to display and
add an ellipsis to indicate the text has been truncated.

This code sample displays plain text. [llustrations of how the example code is rendered
on various platforms follows the code sample.

view.add (new nUITextfieldElement (NUIID MY TEXTFIELD,

"nUITextfieldElement")) ;

Platform Platform-Specific Class and lllustration
Android TextView
nITextfieldElement
i0S 7 UlLabel
nUITaxtfieldElamant
i0S 6 UlLabel

Windows Phone

Other

nlUITextfisldElament

System.Windows.Controls.TextBlock

nUITextfield Element

nUITextfieldElement

webMethods Mobile Designer Native User Interface Reference Version 10.1

103

http://msdn.microsoft.com/en-us/library/ff769552(v=VS.92).aspx

Native User Interface (NativeUl) Objects

nUITimerObject

com.softwareag.mobile.runtime.nui.nUITimerObject

Use to add a timer object that waits a set period of time and then performs an automatic
callback event after the time period elapses.

Usage Notes

B You can use the timer object to count up to a timestamp as a literal value. Set the
ActionTime attribute to the required timestamp value and set the Time attribute
using System.currentTimeMillis().

nUIViewDisplay

com.softwareag.mobile.runtime.nui.nUIViewDisplay

Use to create a view that contains other NativeUI objects. A view can contain any object
except a nUIWindowDisplay object or another nUIViewDisplay object.

Usage Notes

B You can add a view (nUIViewDisplay) to a nUIWindowDisplay object.

® The following are platform-specific considerations:

® Android devices support two formats for the header bar. Set the
android.nativeui.navview.version property to control the format you want
to use. You can set this property in the project’s _defaults_.xml file or in the
handset-specific targets xml file. These files are located in the project’s targets
directory.

m Set the property to 1 to use the older style pop-up menu that Android 2.3 and
earlier used.

m Set the property to 2 to use the newer style menu introduced with Ice Cream
Sandwich.

m The Innerx and Innery attributes are set as follows:

Platform InnerX Attribute Value InnerY Attribute Value
Android 0 (zero) 0 (zero)

i0S screen_width /40 0 (zero)

Windows Phone screen_width [40 screen_height /40

webMethods Mobile Designer Native User Interface Reference Version 10.1 104

Native User Interface (NativeUl) Objects

m The following tables lists the number of nUINavbuttonElement objects that you can
display in a nUIViewDisplay object based on platform:

Platform nUINavbuttonElement objects allowed in a nUIViewDisplay object
Android 1-3
i0S iPhone: 1-3

iPad: 1-6

Windows Phone No limit

m With Windows Phone and Windows RT/Windows 8 platforms, there is a
limitation imposed on the size of images used for the background. This is
approximately 2000 pixels for Windows Phone, and 8000 pixels for Windows
RT/8. This can become noticeable if the background is set to scroll with the
content in the View.

Example
This code sample creates a view. Illustrations of how the example code is rendered on
various platforms follows the code sample.

nUIViewDisplay view = new nUIViewDisplay (NUIID WEBVIEWELEMENT VIEW) ;
view.setHeadertext ("nUIViewDisplay") ;

nUINavbuttonElement ne = new nUINavbuttonElement (NUIID BACK BUTTON, "Back",
nUINavbuttonElement.TYPE BACK, null);
view.add (ne) ;

Platform Platform-Specific Class and lllustration

Android - View

Ice Cream Sandwich
For more information about user interface design on

Android devices, see Android User Interface.

webMethods Mobile Designer Native User Interface Reference Version 10.1 105

http://developer.android.com/guide/topics/ui/index.html

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

{ :j; nUlViewDisplay

Android - View

2.3
For more information about user interface design on

Android devices, see Android User Interface.

i0S 7 UlView

webMethods Mobile Designer Native User Interface Reference Version 10.1 106

http://developer.android.com/guide/topics/ui/index.html

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

£ Back nUNiewDisplay

iOS 6 UlView

Carrier 3:38 FM —

Windows Phone System.Windows.Controls.ContentControl

webMethods Mobile Designer Native User Interface Reference Version 10.1

107

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

nuiviewdisplay

webMethods Mobile Designer Native User Interface Reference Version 10.1 108

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Other
4 nUViewDisplay

nUIWebView

com.softwareag.mobile.runtime.nui.nUIWebView

Use to create a container for the nUl\WebviewElement object, which is an object that allows
for the display of rich web content. This Object allows the developer to pass messages
between the Java code and the JavaScript runtime in the browser. For guidelines on how
to approach this, see "JavaScript Bridge" on page 42.

Usage Notes

® The browser engines that mobile platforms use have differences in terms of how
they display objects and support of JavaScript. You might need to develop platform-
specific changes to support your content. Mobile Designer does not change your raw
HTML content.

webMethods Mobile Designer Native User Interface Reference Version 10.1 109

Native User Interface (NativeUl) Objects

B Avoid invoking the Javascript alert() method from inside a nUIWebView object. For
security reasons, some manufacturers configure their devices to block displaying
an alert dialog that results from a call to the Javascript alert() call. As an alternative,
consider one of the following;:

m Pass an event back to your Java code using a class that implements
nUIWebviewCallBack, which in turn can then open a nUlAlertDialog object, if an alert
dialog is required.

m Use other web-based elements to display the alert information directly within
your web page.

® The Windows RT/Windows 8 platform does not support locally hosted images in a
nUIWebView.

®m There are two properties that react slightly differently depending on the platform.
m bgcolor

The bgcolor can be set at any time under iOS, and the web page will be redrawn
to react to the change. Under Android, the changes to the bgcolor will only take
affect when the webview redraws in response to changes in content (i.e. when
the setURL() or setHTMLText() methods are called). For both platforms, the extent
to which the web content is effected by this call is dependant on the rendering
engine used in the browser itself, as well as the HTML content being displayed.

m Scaling web content to fit

This property is only usable on iOS. All other platforms ignore it. The setting will
only affect page contents when the content of the page is changed (i.e. via setURL()
or setHTMLText()).

There is currently no support for altering bgcolor, changing the scaling of content to fit
or enabling/disabling overscrolling for Phoney or the C# platforms (Win Phone, RT).

Example

This code sample creates a Web view with navigation to the parent menu. Illustrations of
how the example code is rendered on various platforms follows the code sample.

protected nUIViewDisplay onCreateWebView ()
{

nUIWebView web view = new nUIWebView (NUIID WEB VIEW) ;

web view.setHeadertext ("nUIWebView") ;

web view.setURL ("http://www.wikipedia.org/");

nUINavbuttonElement ne = new nUINavbuttonElement (NUIID BACK TO START BUTTON,
"Back",

nUINavbuttonElement.TYPE BACK, null);

web view.add (ne) ;

return web view;

}

Platform Platform-Specific Class and lllustration

Android android.webkit.WebView

webMethods Mobile Designer Native User Interface Reference Version 10.1 110

Native User Interface (NativeUl) Objects

Platform

Platform-Specific Class and lllustration

-
_) WIKIPEDIA
I— English & -

ERGELR

That e Eyilaqsaii
BT D00 wrscien
Espaiiol

L enciclopeiia bbre
BT 300 arbcwloy

[rrre—_T kP

= —

_.‘|||:L'1n-un-u+

P T
Srpaaks o Samrmd o Semanitg o Tiokor 1 Fepaisoaas 1 Tersg Vil

H&H
FU-EnEn
THE 000 2R
Desurtsch

D% freve Engyiiopidie
T 60 BREn brbibed
Framgais

L encyclopddie hbre
180 000 antibe
Polski

Wolna mmcykiapedia

BT 350+ hasel

L
mmEENEE
R T

T —
@+ Sewealdima » Comooe
el

Adriuara « Alsmasminch « WRT o Ansgors = Armdspahics = Avbrians -

Kyl Ay « Ararbaycan £ s ol s+ B Baryemann ¢
iOS 7 UIWebView
£ Back nUIWebView

*) WIKIPEDIA

Erglish Eapadiol
This Frisg Evipiog L g
£ 329 000+ ace 1048 00+ aicuienk
Py BxE
CHOMOIA It F U —AMER
1 St X0 £V 7S oo EW
Deutsch Frangals
Lo sy Errphmedtior Ly Bbve
1839 B i 1 7 0 Eoies
Polgki Italiang
Wil [ra
il D00 Pkl 1 O D00 o
Paruguin X
A eecacicpicha v LA EE S
ToMl D00+ arfigoa TI5 i W
WITTT 1 000 000+
i0S 6 UIWebView

webMethods Mobile Designer Native User Interface Reference Version 10.1

111

Native User Interface (NativeUl) Objects

Platform

Platform-Specific Class and lllustration

Windows Phone

Windows RT
Windows 8

Carrier T

6:00 FM —

-
.y WIKIPEDIA
{) [[Engien n(.)

English
Tree Frow Eccpiopuntaa
G s el

Espafiod

L it ieie
B 00 it
Pyccumi
AN S i e
i 80 crared
Raliang
Lencciopedia iors
B 000 v
Portugués

A e e
L Ty

JII[] 100 vods

Bl
AU-TINREA
The 000 £8
Deutschi

i B Eriyhileyidai
1 2R3 GO0 At
Francais

L pcpki Mg
1 230 GO0+ wemcien
Polski

v pncyhopedur
BT 000 Fuiriad

C -4
BEAaNER
900 W0

Microsoft.Phone.Controls.WebBrowser

Windows.UI. Xaml.Controls.WebView

WIKIPEDIA

English B4
Fhe Froe Eacyoiopechs 7) —EBEBR
00 O+ atarhe B oo B
Espaihal - @, Dewrtsch
La anciciopedd fhve ."H.E'&.ﬁ Ik
500 0
Pydcinai !.,\11‘, “Francais
RO 'i.-rm{}.l—.rm Mot J
BI5 0L+ o CiPET T
e A oo
italiar HL L
Lanciciopeais Merd o P
119000 o S g 000 e
Partuguis sy
A encciapdais Bre [SEEpt e
743 000+ artigoa 0 1K 9

Sgarch » Suchen « Rechercher « Zosken « Ricerca «
Sruka] « Buscar « Mowcx « B - Busca « S8k -

webMethods Mobile Designer Native User Interface Reference Version 10.1

112

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

Other The nUIWebView object is not supported when deployed on mobile
devices, but will be provided through JavaFX (if available) when
running in Phoney.

nUIWebviewCallBack

Use to monitor when a user clicks a URL, and control the resulting action that the
application takes in response to the user clicking the URL.

To use nUIWebviewCallBack, register a class that implements nUIWebviewCallBack with the
web-based NativeUI object that contains the URL you want to monitor, for example,

a nUIWebView or nUIWebviewElement object. When a user clicks a URL in the web-based
NativeUI object, the application code can then take an appropriate action. For example,
you might code the application to:

® Change the URL before passing it to the containing web-based NativeUI object to
redirect the NativeUI object.

B Return a null to prevent a page load. This is useful when navigation to a new URL is
not needed.

® Queue a new NativeUI event to allow the web-based NativeUI object to interact with
the rest of the application.
Usage Notes

® The Windows RT/Windows 8 platform does not support URL events via
nUIWebViewCallBack.

nUIWebviewElement

com.softwareag.mobile.runtime.nui.nUIWebviewElement

Use to display rich Web content from a local or remote source. This Object allows the
developer to pass messages between the Java code and the JavaScript runtime in the
browser. For guidelines on how to approach this, see "JavaScript Bridge" on page 42.

Usage Notes

m The browser engines that mobile platforms use have differences in terms of how
they display objects and support of JavaScript. You might need to develop platform-
specific changes to support your content. Mobile Designer does not change your raw
HTML content.

B Avoid invoking the Javascript alert() method from inside a nUIWebviewElement object.
For security reasons, some manufacturers configure their devices to block displaying

webMethods Mobile Designer Native User Interface Reference Version 10.1 113

Native User Interface (NativeUl) Objects

an alert dialog that results from a call to the Javascript alert() call. As an alternative,
consider one of the following;:

m Pass an event back to your Java code using a class that implements
nUIWebviewCallBack, which in turn can then open a nUIAlertDialog object, if an alert
dialog is required.

m Use other web-based elements to display the alert information directly within
your web page.

m The Windows RT/Windows 8 platform does not support locally hosted images in a
nUIWebViewElement.

®m There are two properties that react slightly differently depending on the platform.
= bgcolor

The bgcolor can be set at any time under iOS, and the web page will be redrawn
to react to the change. Under Android, the changes to the bgcolor will only take
affect when the webview redraws in response to changes in content (i.e. when
the setURL() or setHTMLText() methods are called). For both platforms, the extent
to which the web content is effected by this call is dependant on the rendering
engine used in the browser itself, as well as the HTML content being displayed.

= Scaling web content o fit

This property is only usable on iOS. All other platforms ignore it. The setting will
only affect page contents when the content of the page is changed (i.e. via setURL()
or setHTMLText()).

There is currently no support for altering bgcolor, changing the scaling of content to fit
or enabling/disabling overscrolling for Phoney or the C# platforms (Win Phone, RT).

Example

This code sample displays rich web content from a website. Illustrations of how the
example code is rendered on various platforms follows the code sample.

nUIWebviewElement webelement =

new nUIWebviewElement (NUIID MY WEBVIEWELEMENT) ;
webelement.setHeight (250) ;
webelement.setURL ("http://www.wikipedia.org/") ;
view.add (webelement) ;

Platform Platform-Specific Class and lllustration

Android android.webkit.WebView

webMethods Mobile Designer Native User Interface Reference Version 10.1 114

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration

©"y) WiKIPEDIA

Englighh 4]

(]

The Frae Encichpsia FU-ENER

i0S 7 UIWebView
I

¢ Back nUMWebviewElement

7)) WikIPEDIA

| Erglsh

iOS 6 UIWebView

Carrier 5 6:00 PM

U

©y) WikiPEDIA

) | Erglish

Windows Phone Microsoft.Phone.Controls.WebBrowser

nuiwebvieweleme

WIKIPEDIA

Enlish SE 3]

e Fraer Erxcpiopnedir 71 —ESEEER

o0

Windows RT Windows.UIL. Xaml.Controls.WebView

webMethods Mobile Designer Native User Interface Reference Version 10.1 115

Native User Interface (NativeUl) Objects

Platform Platform-Specific Class and lllustration
Windows 8
Other The nUIWebViewElement object is not supported when deployed

on mobile devices, but will be provided through JavaFX (if
available) when running in Phoney.

nUIWindowDisplay

com.softwareag.mobile.runtime.nui.nUIWindowDisplay

Use to add a window.

Usage Notes

®m By default, the window has two panes, Pane 0 and Pane 1.
m Use Pane 0 for the main pane. It occupies all available space.
m Use Pane 1 for navigation using the nUINavView object.

m Panes are useful when supporting large mobile devices, such as tablets. For
information about using panes, see "About the Native User Interface (NativeUT)
Library" on page 8.

B You can add a nUlViewDisplay object to a nUIWindowDisplay object.

® Windows can also hold nUIviewDisplay Objects as "side views", to provide a pop-
open side menu throughout the application.

webMethods Mobile Designer Native User Interface Reference Version 10.1 116

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Mobile Designer Native User Interface
	About the Native User Interface (NativeUI) Library
	Look-and-Feel When Using the NativeUI Library
	About Using the NativeUI Library
	Mobile Application Design
	Hierarchy of NativeUI Objects for a User Interface
	Indicating that a Project Uses the NativeUI Library
	Setting Up the Application Code to Use the NativeUI Library
	Setting and Querying NativeUI Object Attributes
	Handling Events Generated by User Actions
	Transitioning Between Windows and Views
	Defining the Layout of Objects in the User Interface
	Controlling the Inner Padding of Parent Objects
	Positioning Elements in a Parent Object
	Sizing Child Elements
	Controlling the Vertical Spacing Between Child Elements
	Controlling the Horizontal Alignment of Elements
	Using Tables to Control the Layout of Elements

	Managing Object Focus
	Background Colors and Images
	Adding Support for Right-to-Left Languages
	Using Multiple Panes for Tablet User Interfaces
	Managing the Layout of Panes
	Designing Applications to Run on Both Tablets and Smaller Devices
	Determining the Device Size at Run Time
	Adding Panes to a Window
	Side Views or Panes?

	JavaScript Bridge
	Maintaining good security
	Sending a message to JavaScript from Java
	Evaluating an Arbitrary Chunk of JavaScript Code
	Sending a message to Java from JavaScript

	Tabbed Views
	Integration in Mobile Designer

	List Views and Elements

	Native User Interface (NativeUI) Objects
	About the NativeUI Objects
	nUIAlertDialog
	nUIButtonElement
	nUICheckboxButton
	nUIContainerElement
	nUIDateEntry
	nUIDialogWindow
	nUIDisplayObject
	nUIDropdownlistEntry
	nUIElementDisplay
	nUIEntryElement
	nUIImageElement
	nUIListElement
	nUIListView
	nUINavbuttonElement
	nUINavView
	nUIObject
	nUIProgressanimElement
	nUIRadioCheckbox
	nUISearchEntry
	nUISeparatorElement
	nUISpacerElement
	nUISwitchButton
	nUITableButton
	nUITablecellElement
	nUITableElement
	nUITablerowElement
	nUITabView
	nUITextfieldElement
	nUITimerObject
	nUIViewDisplay
	nUIWebView
	nUIWebviewCallBack
	nUIWebviewElement
	nUIWindowDisplay

