
REST Developer’s Guide

Version 10.1

October 2017

This document applies to webMethods Integration Server Version 10.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: IS-RS-DG-101-20171017

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

REST Developer’s Guide Version 10.1 3

Table of Contents

About this Guide..5
Document Conventions.. 5
Online Information.. 6

About Integration Server REST Processing... 7
Overview... 8

How REST Processing Works.. 11
About REST Request Messages..12
How webMethods Integration Server Processes REST Requests...12
Configuring a REST Resource Using the Legacy Approach..13
Processing Requests Using Partial Matching of URL Aliases... 15
Configuring a REST Resource Using the URL Template-Based Approach............................. 16
Sending Responses to the REST Client..20

Status Line...20
Header Fields.. 20
Message Body...20
Setting Responses Using pub.flow:HTTPResponse... 21

Setting Up Your REST Application.. 23
Setting Up a REST Application on Integration Server... 24

Services... 24
Configuration..26

Converting an Existing Application...27

Documenting Your Rest Application... 29
Providing Information About Your Application.. 30

General Information...30
Information About Each Request.. 30
Information About Responses... 32

Index.. 33

M
Even Header

REST Developer’s Guide Version 10.1 4

M
Odd Header

REST Developer’s Guide Version 10.1 5

About this Guide

This guide is for developers using webMethods Integration Server to create REST
applications. This guide assumes basic knowledge of REST concepts and HTTP request
processing and familiarity with Software AG Designer and webMethods Integration
Server.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

M
Even Header

REST Developer’s Guide Version 10.1 6

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.1 7

1 About Integration Server REST Processing

■ Overview ... 8

M
Even Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.1 8

Overview
Representational State Transfer (REST) is an architectural style used to build distributed
hypermedia systems. The World Wide Web is the best known example of such a system.

The focus of REST is on resources rather than services. A resource is a representation of
an object or information. A resource can represent:

A single entity, like a coffee pot you want to purchase from an online shopping site.

A collection of entities, like records from a database.

Dynamic information, like real-time status updates from a monitoring site.

That is, resources are the entities or collections of entities in a distributed system that
you want to post or retrieve or take action on. In a REST style system, each resource is
identified by a universal resource identifier (URI).

Development of REST systems is defined by a series of constraints:

Clients and servers are separate.

Communication between clients and servers is stateless.

Clients can cache responses returned from servers.

There may be intermediate layers between the client and server.

Servers can supply code for the clients to execute.

Clients and servers remain loosely coupled by communicating through a uniform
interface.

The uniform interface is the key constraint that differentiates REST from other
architectural approaches. The characteristics of this interface are:

Requests identify resources.

Responses contain representations of those resources.

Clients manipulate resources through their representations.

Messages are self-descriptive.

The interface employs Hypermedia as the engine of application state (HATEOAS),
which enables the client to find other resources referenced in the response.

One strength of REST is that it leverages the well understood methods supported by
HTTP to describe what actions should be taken on a resource. To be REST-compliant, an
application must support the HTTP GET, POST, PUT, PATCH, and DELETE methods.
Many applications use web browsers to interact with resources on the Internet. web
browsers, however, typically support only the HTTP GET and HTTP POST methods.
To get around this restriction, you can use Integration Server to build REST-compliant
applications that support all five methods.

M
Odd Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.1 9

Integration Server can be a REST server or a REST client. When Integration Server acts
as a REST server, it hosts an application that you write. The application includes services
that you write that instruct Integration Server to process some or all of the HTTP GET,
POST, PUT, PATCH, and DELETE methods in request messages against resources.
When Integration Server acts as a REST client, it sends specially formaed requests to
the REST server.

M
Even Header

REST Developer’s Guide Version 10.1 10

M
Odd Header

How REST Processing Works

REST Developer’s Guide Version 10.1 11

2 How REST Processing Works

■ About REST Request Messages ... 12

■ How webMethods Integration Server Processes REST Requests .. 12

■ Configuring a REST Resource Using the Legacy Approach ... 13

■ Processing Requests Using Partial Matching of URL Aliases ... 15

■ Configuring a REST Resource Using the URL Template-Based Approach 16

■ Sending Responses to the REST Client ... 20

M
Even Header

How REST Processing Works

REST Developer’s Guide Version 10.1 12

About REST Request Messages
REST clients send specially formaed requests to your REST application. The
format of REST requests is determined by the webMethods Integration Server REST
implementation and your specific application, but essentially it conveys the following
information, or tokens, to the REST server:

The HTTP method to execute

The directive

The name of the resource

A simple REST request looks like this:

METHOD /directive/resource_type/resource_id HTTP/1.1

Where... Is the...

METHOD HTTP request method.

directive The type of processing to perform.

resource_type/
resource_id

Resource to act upon.

More complex request messages can contain more explicit information about the
resource.

How webMethods Integration Server Processes REST
Requests
When Integration Server processes a REST request, it parses the tokens and identifies
the HTTP method to execute, locates the resource to act upon, and passes additional
information as input parameters to the services you wrote for your application. The
configuration of the REST resources determines how Integration Server handles the
requests from REST clients. Integration Server provides the following two approaches
for configuring REST resources:

Legacy approach, in which creating a REST resource includes creating the resource
folder and flow services that correspond to supported HTTP methods.

URL template-based approach, in which a URL format serves as a template for client
requests to invoke a REST V2 resource.

The following sections explain the approaches in greater detail.

M
Odd Header

How REST Processing Works

REST Developer’s Guide Version 10.1 13

"Configuring a REST Resource Using the Legacy Approach" on page 13

"Configuring a REST Resource Using the URL Template-Based Approach" on page
16

Configuring a REST Resource Using the Legacy Approach
You can use the legacy approach to create a new REST resource that include the
REST resource folder and the flow services that correspond to HTTP methods. REST
resources generated using the legacy approach are invoked with the rest directive. For
information about the procedure to configure REST resources, see the webMethods Service
Development Help.

On Integration Server the resources of your application are represented as folders within
a package. For each resource, you will write individual services for the HTTP methods
that you want Integration Server to execute against the resource. Those services must
be named _get, _post, _put, _patch, and _delete, and they are stored in the folder for the
resource. For more information, see "Services" on page 24.

Consider a Discussion application that maintains a database of discussions about
different topics. The following examples show how Integration Server would parse these
REST requests.

Example 1

Here is a request to obtain a list of all topics contained in the database, and how
Integration Server parses the request:

GET /rest/discussion/topic HTTP/1.1

Where... Is the...

GET Type of HTTP method to perform. Integration Server maps
this value to the corresponding service on Integration Server,
in this case, the _get service.

rest Type of processing to perform, in this case, Integration Server
REST processing.

Note: For more information about directives, see webMethods
Integration Server Administrator’s Guide.

discussion/topic Location of the _get service for this resource on Integration
Server. In this example, the _get service resides in the topic
folder in the discussion folder (discussion.topic).

Example 2

M
Even Header

How REST Processing Works

REST Developer’s Guide Version 10.1 14

Here is a request to display information about topic number 3419, and how Integration
Server parses the request:

GET /rest/discussion/topic/3419 HTTP/1.1

Where... Is...

3419 An instance of a resource passed into a service as the
$resourceID variable. In the example, the $resourceID variable
narrows the focus of the GET request to topic 3419.

Note: Integration Server assigns the first token after the
folder(s) to the $resourceID parameter. To determine
whether a token represents a folder or the $resourceID ,
Integration Server looks in the current namespace for a
folder that has the same name as the token. If it does not
find a folder with this name, Integration Server assigns
the token to the $resourceID variable. In other words, the
first token (after the directive) that does not correspond
to a folder becomes the $resourceID .

Example 3

Here is a request to display information about a particular comment, 17 for example,
and how Integration Server parses the request:

GET /rest/discussion/topic/3419/comment/17 HTTP/1.1

Where... Is...

comment/17 Additional information that further narrows the information
about the resource. This information is passed into a service
as the $path variable. In the example, comment/17 further
narrows the focus of the GET request to comment 17.

Example 4

Here is a request to display information contributed by participant Robertson in 2009
about topic 17, and how Integration Server parses the request:

GET /rest/discussion/topic/3419/comment/17?year=2009&name=Robertson
HTTP/1.1

Where... Are...

year and name Input variables that are specific to your application. Tokens
specified after the ? must be entered as name/value pairs. In
this example, year=2009 and name=Robertson narrow the

M
Odd Header

How REST Processing Works

REST Developer’s Guide Version 10.1 15

Where... Are...
focus of the GET request to entries that participant Robertson
added to comment 17 in 2009.

Processing Requests Using Partial Matching of URL Aliases
REST URL requests usually include the identifier for a particular resource. However,
because the identifier varies for each instance of a resource, REST requests often do not
exactly match any of the defined URL aliases for a particular resource. To enable you to
define URL aliases for REST resources, Integration Server can use partial matching to
process REST requests. A partial match occurs when a REST request includes only part of
a URL alias. For more information about URL aliases, see webMethods Integration Server
Administrator’s Guide.

Note: You can configure URL aliases only for REST resources configured using the
legacy approach.

When partial matching is enabled and Integration Server receives a REST request URL,
an alias is considered a match if the entire alias matches all or part of the request URL,
starting with the first character of the request URL's path.

For example, assume the following URL aliases are defined:

URL Alias URL Path

a1 rest/purchasing/order

a2 rest/purchasing/invoice

a22 rest/purchasing/admin

a3 invoke/pub.flow/debugLog

When partial matching is enabled, the following request URLs would get different
results:

A request URL of hp://MyHost:5555/a1 matches URL alias a1 exactly. The resulting
URL is hp://MyHost:5555/rest/purchasing/order.

A request URL of hp://MyHost:5555/a2/75909 matches alias a2 because the request
URL's path begins with "a2". The trailing characters of the request URL are retained
and the resulting URL is hp://MyHost:5555/rest/purchasing/invoice/75909.

A request URL of hp://MyHost:5555/a1/75909/customer/0122?terms=net7 matches
alias a1 because the request URL's path begins with "a1". The trailing characters

M
Even Header

How REST Processing Works

REST Developer’s Guide Version 10.1 16

of the request URL are retained and the resulting URL is hp://MyHost:5555/rest/
purchasing/order/75909/customer/0122?terms=net7.

In some cases, a partial match can result in an invalid request. For example, a request
URL of hp://host:5555/a3456 matches alias a3 because the request URL's path
begins with "a3". The trailing characters of the request URL are retained and the
resulting URL is hp://host:5555/invoke/pub.flow/debugLog456. Since there is no
pub.flow:debugLog456 service, this would be an invalid request.

For instructions on enabling partial matching, see webMethods Integration Server
Administrator’s Guide.

Configuring a REST Resource Using the URL Template-
Based Approach
You can use the URL template-based approach to configure REST resources. In this
approach, you define a URL format that serves as a template for client requests to use
and invoke the resources.

REST resources configured using this approach, also known as REST V2 resources, are
invoked with the restv2 directive. For each resource, you must define operations that
include the following:

The format of the URL that REST clients must follow when sending requests to
Integration Server acting as the REST server. Integration Server aempts to match
a request URL received from any application against the URL format defined for a
REST V2 resource operation and determines whether the request URL is valid.

The HTTP methods supported by the resource operation.

The flow service associated with a resource operation. You can either associate an
existing service with a resource operation or create a new service and associate it
with the resource operation.

The URL template-based approach provides you with greater flexibility than the legacy
approach in defining REST resources. For a REST V2 resource, you can define multiple
operations and associate each operation with a URL format, HTTP methods, and a flow
service. In addition, you can edit these details based on your requirements.

Important: You cannot configure REST V2 resources when Integration Server is
deployed in a multitenanted environment.

You cannot migrate the REST resources created using the URL template-
based approach in version 10.0 of Integration Server to a later version.

Considerations for Specifying the URL Format in a REST V2 Resource Operation

Consider the following while defining the URL format in a REST V2 resource operation:

A URL format definition can either include only static parameters or a combination
of both and static and dynamic parameters. The definition cannot include only

M
Odd Header

How REST Processing Works

REST Developer’s Guide Version 10.1 17

dynamic parameters. For example, in the URL format /restv2/customer/{id}/
order/{orderID}, the parameters customer and order are static while {id} and
{eventID} are dynamic.

Enclose dynamic parameters in the URL format within braces ({}). For example,
in the URL format /restv2/customer/{id}, the {id} parameter is dynamic and
represents an aribute of the customer resource.

Two or more dynamic parameters cannot be combined to form a separate parameter.
For example, a parameter {topic}-{id} cannot be formed as a combination of
{topic} and {id}.

Any dynamic parameter that you specify in a URL format must be available as a
variable of type String in the input signature of the flow service associated with
the resource operation. If you specify the option of creating a new flow service
when defining the resource operation, a new service with the specified name is
automatically created with the dynamic parameter in the URL format added to the
input signature.

Note: For information about creating REST V2 resources and defining resource
operations, see webMethods Service Development Help.

While a URL format definition can include multiple dynamic parameters, each
dynamic parameter can appear only once in the URL format.

A URL format cannot include the following characters: & ; = ? @ # | []

Query parameters are not supported in the definition of a URL format. However,
the request URL from the client application to Integration Server can include query
parameters at run time.

Ensure that multiple resource operations for a REST V2 resource do not include
similarly defined URL formats and are associated with the same flow service. This
is because when a client application sends a request URL that matches a defined
URL format, Integration Server cannot invoke the required resource because of the
availability of multiple resource operations defined in a similar manner. In such
a situation, Integration Server issues an error message when saving the REST V2
resource.

For example, a client request GET /restv2/customer/23 issued to an Integration
Server will not be able to invoke the correct resource operation if the Integration
Server has two operations defined as follows:

Resource Operation 1

URL Format: /restv2/customer/{custid}

Supported HTTP Method: GET

Associated Service: custdetails:custorders

Resource Operation 2

URL Format: /restv2/customer/{order}

M
Even Header

How REST Processing Works

REST Developer’s Guide Version 10.1 18

Supported HTTP Method: GET

Associated Service: custdetails:custorders

Examples of Configuring REST Resources Using the URL Template-Based Approach

Consider the Discussion application described earlier in "Configuring a REST Resource
Using the Legacy Approach" on page 13. Using the URL template-based approach,
you can create a REST V2 resource named discussion and define resource operations.
The following examples show resource operations for the created resource and how
Integration Server parses these requests:

Example 1

Consider a REST V2 resource operation configured with the following URL format:

/restv2/discussion/topic/{id}

Here is an example request to display information about a specific topic:

GET /restv2/discussion/topic/236 HTTP/1.1

Where... Is the...

GET HTTP method supported by the resource operation.

Note: Integration Server treats this method as valid only if the
resource and the underlying service are configured to
support the GET method. For more information about
configuring supported HTTP methods for services, see
webMethods Service Development Help.

restv2 Type of processing to perform, in this case, Integration Server
REST processing.

Note: For more information about directives, see webMethods
Integration Server Administrator’s Guide.

discussion Name of the resource on Integration Server.

topic Name of the static parameter in the URL format.

236 Identifier for a topic. Integration Server matches this value
against the dynamic parameter {id} specified in the URL
format.

Note: The id parameter must be available as a variable of
type String in the input signature of the flow service
associated with the resource operation for which you are
defining the URL format. For more information about

M
Odd Header

How REST Processing Works

REST Developer’s Guide Version 10.1 19

Where... Is the...
configuring a resource operation for a REST V2 resource,
see webMethods Service Development Help.

Example 2

Consider a REST V2 resource operation configured with the following URL format:

/restv2/discussion/topic/t-{id}

Here is a request to display information about a topic based on its identifier and how
Integration Server parses the request:

GET /restv2/discussion/topic/t-1591 HTTP/1.1

Where... Is the...

t-1591 Identifier for a topic. In the URL format specified for this
example, t is a static parameter while {id} is a dynamic
parameter. Integration Server matches the value t-1591
against the topic identifier parameters specified in the URL
format (t-{id}).

Note: In this example, Integration Server treats t-1591 as a
valid value considering the URL format specified for the
REST V2 resource operation. However, an identifier that
does not follow the specified format, for example, 236
would be considered invalid.

Example 3

Consider a REST V2 resource operation configured with the following URL format:

/restv2/discussion/topic/t-{id}/comment/{cid}

Here is a request to display information about a particular comment related to a topic,
and how Integration Server parses the request:

GET /restv2/discussion/topic/t-1591/comment/4 HTTP/1.1

Where... Is the...

comment/4 Additional information for the topic with the identifier
t-1591. Integration Server matches this value with the portion
of the request URL after the topic identifier. The value 4 is
matched against the dynamic parameter {cid}.

M
Even Header

How REST Processing Works

REST Developer’s Guide Version 10.1 20

Sending Responses to the REST Client
When Integration Server responds to an HTTP request, the response contains a status
line, header fields, and a message body.

Status Line
The status line consists of the HTTP version followed by a numeric status code and
a reason phrase. The reason phrase is a brief textual description of the status code.
Integration Server will always set the HTTP version to match the version of the client
that issued the request. You cannot change the HTTP version.

You can use the pub.flow:setResponseCode service to set the status code and reason phrase.
You can also set the status code and reason phrase of an HTTP request by adding
a variable named $hpResponse that references the pub.flow:httpResponse document
type to the flow service pipeline. For more information on this document type, see
webMethods Integration Server Built-In Services Reference. If you do not explicitly set the
status code, Integration Server will set it to 200 for successfully completed requests and
an appropriate error code for unsuccessful requests.

HTTP/1.1 defines all the legal status codes in Section hp://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10. Examine these codes to determine which are
appropriate for your application.

Header Fields
You can communicate information about the request and the response through header
fields in the HTTP response. Integration Server will generate some header fields, such
as Set-Cookie, WWW-Authenticate, Content-Type, Content-Length, and Connection.
You can use the pub.flow:setResponseHeader to set Content-Type and other header fields.
You can also set the header fields of an HTTP request by adding a variable named
$hpResponse that references the pub.flow:httpResponse document type to the flow service
pipeline. For more information on this document type, see webMethods Integration Server
Built-In Services Reference.

HTTP/1.1 defines the header fields that can appear in a response in three sections of RFC
2616: 4.5, 6.2, and 7.1. Examine these codes to determine which are appropriate for your
application.

Message Body
The message body usually contains a representation of the requested resource, one or
more URLs that satisfy the request, or both. In some cases, the message body should be
empty, as specified in RFC 2616, Section 4.3

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.3

M
Odd Header

How REST Processing Works

REST Developer’s Guide Version 10.1 21

You can use the pub.flow:setResponse service to explicitly set the message body. You can
also set the message body of an HTTP request by adding a variable named $hpResponse
that references the pub.flow:httpResponse document type to the flow service pipeline. For
more information on this document type, see webMethods Integration Server Built-In
Services Reference. If you do not explicitly set the message body, the output pipeline of
the top-level service will be returned to the client in the message body.

For more information about how Integration Server builds HTTP responses, see
webMethods Integration Server Administrator’s Guide.

Setting Responses Using pub.flow:HTTPResponse
The pub.flow:HTTPResponse document type helps you to set the response headers.
You can add a reference of pub.flow:HTTPResponse document type with the name
$hpResponse to the pipeline and use this pipeline variable instead of invoking the
pub.flow:setResponseCode, pub.flow:setResponseHeader, and pub.flow:setResponse services to set
the response headers.

For more information, see webMethods Integration Server Built-In Services Reference.

M
Even Header

REST Developer’s Guide Version 10.1 22

M
Odd Header

Setting Up Your REST Application

REST Developer’s Guide Version 10.1 23

3 Setting Up Your REST Application

■ Setting Up a REST Application on Integration Server ... 24

■ Converting an Existing Application .. 27

M
Even Header

Setting Up Your REST Application

REST Developer’s Guide Version 10.1 24

Setting Up a REST Application on Integration Server
Integration Server can act as a REST server or REST client. For Integration Server to act
as a REST server, it must host services that perform the GET, PUT, POST, PATCH, and
DELETE methods. These services, which you provide, perform processing that is specific
to your application.

Services
Services for REST Resources Configured Using the Legacy Approach

When you build a REST application on your Integration Server by configuring resources
using the legacy approach, you must include services that correspond to the HTTP
methods you want to provide for each resource. These services must be named as
follows:

Service Description

_get Performs the GET method.

_put Performs the PUT method.

_post Performs the POST method.

_patch Performs the PATCH method.

_delete Performs the DELETE method.

These services reside in folders on your Integration Server in a directory structure that
is specific to your application. For example, the discussion application described in
"Configuring a REST Resource Using the Legacy Approach" on page 13 might have the
following structure as viewed from Software AG Designer:

M
Odd Header

Setting Up Your REST Application

REST Developer’s Guide Version 10.1 25

In addition to the _get, _put, _post, _patch, and _delete services, you can also place a special
service named _default in one or more of the application folders. Integration Server
executes this service if a REST request specifies an HTTP method that is not represented
by a service in the folder. For example, suppose the folder contains the _get, _put, and
_post services, but no _patch or _delete service. If the client issues a DELETE request,
Integration Server will execute the _default service, and pass “DELETE” to it in the
$hpMethod variable.

If a request specifies an HTTP request method that is not represented by a service in the
folder and there is no _default service in the folder, the request fails with the “404 Not
Found” or “405 Method Not Allowed error.” Integration Server issues 404 if the first
token in the URI does not exist in the namespace, or 405 if one or more tokens in the
URI identify elements in the namespace but the URI does not correctly identify a REST
resource folder and a service to execute.

Example 1

A REST resource’s folder contains the _get, _post, and _default services:

If the client sends a... Integration Server responds by...

GET request Executing the _get service

POST request Executing the _post service

DELETE request Executing the _default service

Example 2

A REST resource’s folder contains the _get, _put, and _delete services:

If the client sends a... Integration Server responds by...

GET request Executing the _get service

PUT request Executing the _put service

POST request Issuing error “405 Method Not Allowed”

Additional possible uses for the _default service are:

Direct all REST requests through common code before branching off to individual
GET, PUT, POST, PATCH, or DELETE methods.

Make PUT and POST processing the same by directing PUT and POST requests to
the same code.

M
Even Header

Setting Up Your REST Application

REST Developer’s Guide Version 10.1 26

Services for REST Resources Configured Using the URL Template-Based Approach

The URL template-based approach helps you configure REST resources for an existing
Integration Server service. The HTTP methods that you can configure for a REST
resource are restricted only by the methods that you configure as allowed for the
underlying service. The methods supported by a REST resource must be a subset of the
methods allowed for the service corresponding to the REST resource. For information
about configuring the supported methods for a REST resource and its corresponding
Integration Server service, see the webMethods Service Development Help.

If a REST request specifies an HTTP method that is not allowed for its service, the
request fails with a “405 Method Not Allowed error.

Example 1

A REST service and its corresponding resource support the GET, PUT, and DELETE
services:

If the client sends a... Integration Server responds by...

GET request Executing the GET method

PUT request Executing the PUT method

POST request Issuing error “405 Method Not Allowed”

Note: This example assumes that the request URL is in a format supported by the
REST resource.

Configuration
There are a few things you can configure with respect to REST processing:

Name of the REST directive

Note: You can configure the name of the REST directive only for resources that
use the rest directive, that is, the REST resources configured using the
legacy approach.

If you want to allow clients to specify a name other than “rest” for the REST
directive, you can do so with the wa.server.RESTDirective configuration parameter.
For example, to allow clients to specify “process” for the REST directive, you would
change the property to the following:

watt.server.RESTDirective=process

With this seing, clients can specify “rest” or “process” for the REST directive. In the
following example, the two requests are equivalent:

M
Odd Header

Setting Up Your REST Application

REST Developer’s Guide Version 10.1 27

METHOD /process/discussion/topic/9876 HTTP/1.1

METHOD /rest/discussion/topic/9876 HTTP/1.1

For more information about the wa.server.RESTDirective property, refer to
webMethods Integration Server Administrator’s Guide.

Which ports will accept the rest directive

By default, all Integration Server ports except the proxy port allow use of the rest
directive. You can limit which ports will allow this directive by specifying them on
the wa.server.allowDirective configuration parameter. For more information about
this property, refer to the webMethods Integration Server Administrator’s Guide.

Converting an Existing Application
If you have an existing application that you want to transform into a REST application,
you can consider using the URL template-based approach and configure REST resources
for the application. This is the most straightforward approach you can use to transform
the application.

If you want to use the legacy approach, then you can consider either of the following
approaches to transform the existing application:

Refactor your existing services into _get, _put, _post, _patch and _delete services.

Use the invoke directive, as shown in the following example:

For existing applications that use the invoke directive, you can update a service to
call the pub.flow:getTransportInfo service and then perform a branch on /transport/
http/method to execute the appropriate portions of your existing code, as in the
following example:

Note: If you use the invoke directive, you cannot use the $resourceID and $path
pipeline variables. In addition, you cannot use the _default service.

M
Even Header

REST Developer’s Guide Version 10.1 28

M
Odd Header

Documenting Your Rest Application

REST Developer’s Guide Version 10.1 29

4 Documenting Your Rest Application

■ Providing Information About Your Application .. 30

M
Even Header

Documenting Your Rest Application

REST Developer’s Guide Version 10.1 30

Providing Information About Your Application
It is important to document your REST application so that your customers and partners
will be able to build clients that interact with it correctly. Your documentation should
cover how to:

Send requests to your application

Handle responses from your application

The following sections describe the different areas your documentation should cover.

General Information
Include the following general information about your application:

A list of resource types

In the sample Discussion application described above, resource types would be
discussion and topic.

The HTTP methods your application supports for each resource

In the sample Discussion application, the discussion resource supports GET, but the
topics resource supports DELETE, GET, POST, PATCH, and PUT.

Information About Each Request
Include the following information about each request:

The format of the request URL

For example, documentation for the Discussion application could provide a list of
possible client requests:

Return general information about the Discussion application:

GET /rest/discussion HTTP/1.1

Return a list of all topics contained in the database:

GET /rest/discussion/topic HTTP/1.1

Display entries made by participant Robertson in 2009 to topic 3419:

GET /rest/discussion/topic/3419?year=2009&name=Robertson HTTP/1.1

Which request header fields are required or optional and how your application
responds to them. For example, the Discussion application might specify the
following information to explain which header fields it accepts and how it responds
to them:

M
Odd Header

Documenting Your Rest Application

REST Developer’s Guide Version 10.1 31

Authorization. The Discussion application accepts BASIC and DIGEST
authorization. All requests must include an Authorization header.

Content-Type. Clients should include a Content-Type header with all requests.
Acceptable Content-Type values for requests that contain a body are application/
json, application/xml, text/xml, text/html, and text/plain. For more information
about Content-Types, see webMethods Integration Server Administrator’s Guide.

Accept. Clients can optionally supply an Accept header to indicate the Content-
Type they want the response to use. When you specify the Content-Type for the
Accept header, Integration Server uses the content handler registered to that
Content-Type to respond to the request. For example, if the content handler is
application/json, Integration Server responds to the request with JSON content.
Acceptable values are application/json, application/xml, text/xml, and text/html.
If no Accept header is specified in the request, the response will use text/xml.
For more information about the Accept header, see webMethods Integration Server
Administrator’s Guide.

Whether a body is required and what structure the body should have.

Documentation for the Discussion example might provide the following examples to
illustrate body structure:

Example 1: Creating a new topic

Request:
POST /discussion/topic HTTP/1.1
Host: IS_server:5555
Authorization: BASIC <your-credentials>
Content-Length: <request-body-length>
Content-Type: text/xml; charset=utf-8

Response: If the request was valid, the Discussion application will respond with the
following:
HTTP/1.1 201 Created
Content-Length: 0
ETag: 32619
Location: http://host/discussion/topic/32619

Example 2: Adding an entry to an existing topic

Request:
PUT /discussion/topic=36219 HTTP/1.1
Host: IS_server:5555
Authorization: BASIC <your-credentials>
Content-Length: 17
Content-Type: text/xml; charset=utf-8
comment=I+agree

Response: If the request was valid, the Discussion application will respond with the
following:
HTTP/1.1 200 OK
Content-Length: 0
Location: http://host/discussion/topic/36219?comment=2

M
Even Header

Documenting Your Rest Application

REST Developer’s Guide Version 10.1 32

Information About Responses
Your documentation should include the following to describe the response that
corresponds to each request:

A list of HTTP Status-Codes and Reason-Phrases the application returns and the
circumstances under which it returns them. For a list of possible responses that you
can code your application to return, refer to hp://www.w3.org/Protocols/rfc2616/
rfc2616-sec10.html#sec10.2.

A list of the response header fields you return and what they mean in the context of
your application.

A description of what will appear in the body of the response.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2

M
Index

REST Developer’s Guide Version 10.1 33

Index

A
application services 24

C
configuration 26
converting an existing REST application 27

D
documentation

using effectively 5
documenting your REST application 30

H
header fields of response to REST client 20
HTTP request methods

supported 8

I
invoke directive 27

M
message body of response to REST client 20, 21

P
processing directives

invoke 27
rest 12, 27

R
request messages

format 12
response to REST client

headerfields 20
message body 20, 21
status line 20

REST application
directory structure 24
setting up on Integration Server 24

REST application services 24
rest directive 12

alternative name for 26
REST processing

input parameters 12
passing input to application services 12
request format from REST perspective 12

request parsing 12
supported HTTP request methods 8

REST request messages 12
REST server

setting up on Integration Server 24, 24

S
status line of response to REST client 20

Symbols
$httpMethod input variable 24
$path input parameter 14
$resourceID input parameter 14
_default service 24
_delete service 24
_get service 24
_patch service 24
_post service 24
_put service 24

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	About Integration Server REST Processing
	Overview

	How REST Processing Works
	About REST Request Messages
	How webMethods Integration Server Processes REST Requests
	Configuring a REST Resource Using the Legacy Approach
	Processing Requests Using Partial Matching of URL Aliases
	Configuring a REST Resource Using the URL Template-Based Approach
	Sending Responses to the REST Client
	Status Line
	Header Fields
	Message Body
	Setting Responses Using pub.flow:HTTPResponse

	Setting Up Your REST Application
	Setting Up a REST Application on Integration Server
	Services
	Configuration

	Converting an Existing Application

	Documenting Your Rest Application
	Providing Information About Your Application
	General Information
	Information About Each Request
	Information About Responses

	Index

