
MIME-S/MIME Developer’s Guide

Version 10.1

October 2017

This document applies to webMethods Integration Server and Software AG Designer Version 10.1 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2017 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Document ID: IS-MIME-DG-101-20171017

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

MIME-S/MIME Developer’s Guide Version 10.1 3

Table of Contents

About this Guide..5
Document Conventions.. 5
Online Information.. 6

Overview of MIME and S/MIME Messages.. 7
Overview... 8
What Is MIME?...8

Basic Structure of a MIME Message.. 8
Header Fields... 9
The Body.. 10
Multipart MIME Messages..10

What Is S/MIME?... 12
Digital Certificates..12
Digital Signatures.. 13

Explicit and Implicit Signatures.. 13
Encryption.. 15

The MIME and S/MIME Services...17
Services Used to Construct MIME and S/MIME Messages..17
Services Used to Extract Data from MIME and S/MIME Messages................................. 17

MIME Messages, MIME Entities, and MIME Objects.. 18

Building MIME and S/MIME Messages.. 19
Overview... 20
Creating a MIME Message...21

How to Create a MIME Message..21
Example—Creating a Single-Part MIME Message... 25
Example—Creating a Multipart MIME Message... 27

Signing a MIME Message.. 29
How to Create a Signed S/MIME Message.. 30
Example—Signing a MIME Message..30

Encrypting a MIME Message... 32
How to Create an Encrypted S/MIME Message... 33
Example—Encrypting a MIME Message...33

Signing and Encrypting a MIME Message... 35
Example—Signing and Encrypting a MIME Message...36

Extracting Data from MIME and S/MIME Messages... 39
Overview... 40
Extracting the Payload from a MIME Message..41

How to Extract the Payload from a MIME Message... 41
Example—Extracting One Part from a Multipart MIME Message..................................... 42
Example—Extracting All Parts from a Multipart MIME Message...................................... 43

M
Table of Contents

MIME-S/MIME Developer’s Guide Version 10.1 4

Extracting the Payload from a Signed MIME Message..44
How Do You Know Whether the Message Is Signed?..45
Working with InputStreams... 45
What Happens when the Signature is Processed?...45
Error Codes and Messages.. 46
How to Extract the Payload from a Signed S/MIME Message..47
Example—Extracting Content from a Signed S/MIME Message...................................... 48

Extracting the Payload from an Encrypted MIME Message...49
How Do You Know Whether the Message Is Encrypted?...49
How to Extract the Payload from an Encrypted S/MIME Message...................................49
Example—Extracting Content from an Encrypted S/MIME Message................................50

Extracting Data from a Signed and Encrypted MIME Message...51
Example—Extracting Content from a Signed and Encrypted S/MIME Message...............51

Index.. 55

M
Odd Header

MIME-S/MIME Developer’s Guide Version 10.1 5

About this Guide

webMethods Integration Server provides built-in services that let you build secure
MIME messages, transport them over the Internet, and extract information from MIME
messages that are passed into the pipeline.

This guide is for users who want to use Software AG Designer to:

Construct MIME messages.

Secure MIME messages by digitally signing and encrypting them.

Extract information from MIME messages such as header fields and content,
decrypting this information if necessary.

Transport MIME messages over the Internet.

Note: This guide describes features and functionality that might or might not be
available with your licensed version of webMethods Integration Server. For
information about the licensed components for your installation, see the
Settings > License page in the webMethods Integration Server Administrator.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies storage locations for services on webMethods
Integration Server, using the convention folder.subfolder:service .

UPPERCASE Identifies keyboard keys. Keys you must press simultaneously
are joined with a plus sign (+).

Italic Identifies variables for which you must supply values specific to
your own situation or environment. Identifies new terms the first
time they occur in the text.

Monospace
font

Identifies text you must type or messages displayed by the
system.

M
Even Header

MIME-S/MIME Developer’s Guide Version 10.1 6

Convention Description

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at hp://
documentation.softwareag.com. The site requires Empower credentials. If you do not
have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

You can find product information on the Software AG Empower Product Support
website at hps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability,
and download products, go to Products.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the Knowledge Center.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at hp://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
http://techcommunity.softwareag.com

M
Odd Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 7

1 Overview of MIME and S/MIME Messages

■ Overview ... 8

■ What Is MIME? .. 8

■ What Is S/MIME? ... 12

■ The MIME and S/MIME Services .. 17

■ MIME Messages, MIME Entities, and MIME Objects .. 18

M
Even Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 8

Overview
This chapter explains what MIME and S/MIME message formats are and identifies their
basic structures, describes how digital certificates and signatures work to identify the
sender of a message, and explains how message encryption helps to ensure the privacy
of a message.

What Is MIME?
MIME (Multipurpose Internet Mail Extensions) is a standard yet flexible message
format that is used to represent messages for transmission over the Internet. The MIME
extensions were added to the Simple Mail Transport Protocol (SMTP) to allow e-mail
transmissions to carry more than simple, 7-bit, textual messages.

The MIME standards allow for the transmission of:

Non-textual content such as images, audio clips, and other binary files

Messages in character sets other than US-ASCII

Multiple files in a single transmission

Although originally developed for the SMTP protocol, MIME can be used by other
Internet technologies (such as HTTP) as a standard messaging format.

Basic Structure of a MIME Message
Like a standard mail message, a MIME message has two basic components: a set of
header fields and a body.

M
Odd Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 9

A simple MIME message

Header Fields
Header fields provide information about the structure and encoding of a message. They
consist of name :value pairs and appear at the top of the message. A MIME-compliant
message must contain the “MIME-Version” header field.

Besides the MIME-Version header field, most messages have additional fields that
supply information to the agent, transport, or application that will convey or consume
the message. For example, when a MIME message carries anything other than plain, US-
ASCII text, it must include the “Content-Type” header field. Messages that are routed
over SMTP will also have the “Date,” “To,” and “From” header fields.

A message may also contain custom header fields that are specific to a particular
agent or application. Such application-specific header fields must be prefixed with the
characters “X-” to distinguish them from the standard header fields defined by the
MIME and/or transport protocols.

This chapter does not aempt to describe the purpose or use of individual header
fields. However, to use MIME effectively, you will need to understand which header
fields your solution requires and know how to set them or interpret them correctly. For
information about header fields, see the following references.

Reference URL

RFC 2076 – Common Internet Message Headers hp://www.imc.org/
rfc2076

http://www.imc.org/rfc2076
http://www.imc.org/rfc2076

M
Even Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 10

Reference URL

RFC 822 – Standard Format of Internet Text Messages hp://www.imc.org/rfc822

RFC 2045 – Multipurpose Internet Mail Extensions hp://www.imc.org/
rfc2045

RFC 2046 – MIME Media Types hp://www.imc.org/rfc204

RFC 2047 – MIME Message Header Extensions for
Non-ASCII Text

hp://www.imc.org/
rfc2047

RFC 2048 – MIME Registration Procedures hp://www.imc.org/
rfc2048

RFC 2049 – MIME Conformance Criteria hp://www.imc.org/
rfc2049

The Body
The body of a MIME message contains the actual content of the message. It is separated
from the last header field by a blank line: a two-byte sequence consisting of an ASCII
carriage return (CR) and an ASCII linefeed (LF) on a line by itself.

The message body can contain any sequence of data, including additional MIME
messages. It is sometimes referred to as the payload. When you send an e-mail message,
the body of your leer resides in the body of a MIME message. Similarly, when you
aach a file to an e-mail message, the content of the file is carried in the body of a MIME
message.

Multipart MIME Messages
One of the key reasons for the development of MIME was to allow the transmission of
multiple files (payloads) in a single message. When a MIME message contains multiple
payloads, it has two kinds of header fields: message headers, which appear only at the
beginning of the message, and part headers, which appear at the beginning of each body
part.

Message headers apply to the entire message. Part headers apply only to the body part
in which they appear. The following example shows a MIME message with two body
parts.

http://www.imc.org/rfc822
http://www.imc.org/rfc2045
http://www.imc.org/rfc2045
http://www.imc.org/rfc204
http://www.imc.org/rfc2047
http://www.imc.org/rfc2047
http://www.imc.org/rfc2048
http://www.imc.org/rfc2048
http://www.imc.org/rfc2049
http://www.imc.org/rfc2049

M
Odd Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 11

A multipart MIME message

If a MIME message has more than one payload, its Content-Type header field must
be set to a multipart content type (for example, Content-Type:multipart/mixed or
Content-Type:multipart/alternative), and it must declare a boundary separator.
The boundary separator is a string that delimits body parts. It must appear before and
after each part in the message. (In the example above, the string X----B164240404-----X is
the boundary separator.)

Note: You may have noticed that the string separating the body parts in the
preceding example includes a few extra characters that are not part of the
separator string declared in the Content-Type header field. This is because

M
Even Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 12

the MIME format requires that two dash characters precede each separator
in the message and two dash characters follow the last separator string in the
message.

When you build a multipart message with webMethods Integration Server, it
automatically sets the Content-Type header to “multipart,” declares the separator string,
and inserts the boundary separators for you.

What Is S/MIME?
S/MIME (Secure Multipurpose Internet Mail Extensions) is a standard message format
that allows MIME messages to be exchanged securely between parties over the Internet.
It provides two security mechanisms—digital signatures and encryption—based on RSA
technology and the Public Key Infrastructure (PKI).

Digital Certificates
PKI employs a system of credentials known as digital certificates, or electronic
documents that represent and identify individual users. A digital certificate is like
an electronic identification card. It positively identifies a particular individual,
organization, or application.

Besides providing information about the owner of the certificate (name, organization,
e-mail address, and so forth), a digital certificate holds the owner’s public key. Under
public/private key technology, a certificate owner has two keys. Parties that want to
exchange messages securely with the certificate owner use the public key published on
the owner’s certificate. Transmissions secured with a public key can only be successfully
processed with the corresponding private key—a secret key that only the certificate owner
has.

Digital certificates are issued and signed by Certificate Authorities (CAs). A CA is
similar to a notary public. Its signature vouches for the identity of the individual or
organization named on the certificate and aests to the validity of the public key. It also
“seals” the certificate with a digital signature, which certifies the certificate’s contents
and prevents it from ever being altered undetected. VeriSign and Entrust are examples
of public CAs. They are considered “root-level” entities. Other intermediaries, such as
financial institutions, are also permied to issue certificates under the authority of a root
CA.

You cannot verify the authenticity of a certificate without having the certificate of the CA
that issued it. If the issuing CA is an intermediary, you must also have the certificate of
its CA. The set of certificates required to trace the authenticity of a certificate back to a
trusted CA is called a certificate chain.

Note: To authenticate a certificate, some recipients require a complete certificate
chain–one that extends all the way back to a root-level CA–while others are
satisfied with a partial chain that goes back to a specific intermediary. Always

M
Odd Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 13

submit a complete chain unless you know for certain that the recipient accepts
partial chains.

Digital Signatures
A digital signature is a special block of data affixed to a message that assures the identity
of the sender and the integrity of the message.

A digital signature secures a message in several ways. First, it contains the sender’s
digital certificate. This allows a recipient to identify the sender and determine whether
the sender is a trusted and authorized party. In this way, digital signatures support the
identification and authorization processes.

Second, a digital signature assures a recipient that the owner of the enclosed certificate
sent the message. A digital signature is produced using the sender’s private key.
If a recipient can successfully “decode” the signature with the public key from the
sender’s certificate, the recipient is positively assured that the message is from the
person or organization identified on that certificate. This characteristic provides both
authentication (the sending party is who it claims to be) and nonrepudiation (the
sending party cannot deny issuing the message).

Finally, a digital signature assures the integrity of the message with a message digest—
a hash code that is mathematically derived from the message itself. When a recipient
opens a signed message, it recalculates the hash code and compares its result to the
original hash code in the signature. If the values don’t match, the recipient knows that
the message was deliberately or inadvertently altered after it was signed.

Explicit and Implicit Signatures
There are two types of digital signatures: explicit signatures and implicit signatures.

An explicit signature is appended as a separate body part to the end of a MIME
message. This format is sometimes referred to as the clear-signing or detached-signature
format. When a MIME entity contains an explicitly signed message, its Content-Type
header field is set to “multipart/signed.” This field also specifies the protocol and
message-integrity algorithm (micalg) used to produce the signature.

Integration Server uses the “pkcs7-signature” protocol and the “SHA-1” integrity
algorithm.

Note: Integration Server automatically sets the Content-Type header field when you
sign a message using the S/MIME services. Your service does not need to do
this.

The following is an example of an explicitly signed MIME message. Notice that the
message has two body parts: the first part contains the payload; the second part contains
the signature.

M
Even Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 14

An explicitly signed message

A message can also be implicitly signed. When you use this technique, the message is
encoded within the signature block, thus preventing the message from being extracted
or read unless the signature is processed by a PKCS-enabled recipient. For this reason,
explicit signatures are preferred because they also make the message available to non-
PKCS recipients.

When a MIME entity contains an implicitly signed message, its Content-Type header
field is set to “application/pkcs7-mime.”

M
Odd Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 15

The following is an example of a text message that has been implicitly signed. As you
can see, the text of the message is not visible.

An implicitly signed message

Encryption
Encryption is a way to ensure privacy by assuring that a message can be read only by
the intended recipient.

Encryption is performed using a pair of keys. The sending party encrypts the message
using the recipient’s public key. The recipient decrypts the message with its private key.
Since the owner of the public key is the only one in possession of the private key, only
the owner can successfully decrypt the message.

Integration Server supports RC2, TripleDES, and DES encryption algorithms. RC2
lets you specify a key length of 40, 64, or 128. TripleDES uses a key length of 192. DES
uses a key length of 64 (in US versions of the product) or 40 (in non-US versions of the
product).

M
Even Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 16

The following is an example of an encrypted message. Note that its Content-Type
header field is set to “application/pkcs7-mime” (required for encrypted messages) and
that the payload contains the encrypted message.

Note: Integration Server automatically sets the Content-Type header field to the
appropriate value when you encrypt a MIME message using the S/MIME
services. Your service does not need to do this.

An encrypted message

Note: Although encryption protects a message from being read by an unintended
party, it does not assure message integrity, nor does it provide authentication
or nonrepudiation. These qualities are guaranteed by digital signatures.

To encrypt a message, you must have the intended recipient’s certificate because it
contains the public key you use to perform the encryption.

Most sites simply contact the parties with whom they want to exchange encrypted
messages and request copies of their certificates (the other parties might e-mail their

M
Odd Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 17

certificates to you, for example). Then, they store the certificates in their file system, a
database, or a special repository for security information.

It does not make any difference where you maintain the certificates of the parties with
whom you want to exchange encrypted messages, as long as the certificates are in X.509
format and can be retrieved by Integration Server at run time.

The MIME and S/MIME Services
The MIME and S/MIME services allow you to build secure MIME objects that you can
send over the Internet. They also allow you to extract information from MIME messages
that are placed in the pipeline, decrypting that information when necessary.

Services Used to Construct MIME and S/MIME Messages
The following table lists services that you use to create MIME messages and optionally
secure them using a digital signature and/or encryption. For information about how you
use these services to create various kinds of MIME messages, see "Building MIME and S/
MIME Messages" on page 19.

Service Description

createMimeData Creates an empty MIME object, which you use to
compose a MIME message.

addMimeHeader Adds one or more header fields to a MIME object.

addBodyPart Adds a body part (headers and content) to a specified
MIME object.

getEnvelopeStream Generates a MIME message from a MIME object.

createSignedData Digitally signs a MIME message.

createEncryptedData Encrypts a MIME message.

createSignedAndEncryptedData Digitally signs a MIME message and then encrypts it.

Services Used to Extract Data from MIME and S/MIME Messages
The following table lists services that you use to extract data from a MIME message.
For information about how you use these services to decrypt, authenticate, and extract

M
Even Header

Overview of MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 18

information from a MIME message, see "Extracting Data from MIME and S/MIME
Messages" on page 39.

Service Description

createMimeData Produces a MIME object from a MIME message stream.

getMimeHeader Retrieves the header fields from a MIME object.

getContentType Retrieves the value of the Content-Type header field
from a MIME object.

getNumParts Reports the number of body parts in a MIME object.

getBodyPartContent Retrieves the content from a specified body part in a
MIME object.

getBodyPartHeader Retrieves the header fields from a specified body part
in a MIME object.

processEncryptedData Decrypts the contents of an S/MIME object.

processSignedData Authenticates the digitally signed contents of a
specified S/MIME object.

MIME Messages, MIME Entities, and MIME Objects
In this book, the term MIME message refers to a complete, top-level MIME message that
is made up of a set of message header fields (including the mandatory MIME Version
header) and a body.

The term MIME entity refers to any block of data composed of header fields and a body.
It can mean either a complete MIME message or a single body part within a multipart
message.

Most MIME services provided by Integration Server do not operate directly on a MIME
message or a MIME entity. Instead, they operate on a MIME object. A MIME object is
a parsed representation of a MIME message that allows webMethods services to add
and/or retrieve the message’s constituent elements (header fields and content). By
convention, the variable that holds a MIME object is called mimeData .

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 19

2 Building MIME and S/MIME Messages

■ Overview ... 20

■ Creating a MIME Message .. 21

■ Signing a MIME Message .. 29

■ Encrypting a MIME Message ... 32

■ Signing and Encrypting a MIME Message .. 35

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 20

Overview
To construct a MIME message with Software AG, you first create an “empty” MIME
object and then populate the object with the appropriate header fields and content. After
puing the required data into the MIME object, you generate a MIME message from the
MIME object.

The following diagram illustrates this process.

Constructing a MIME message

After you create a MIME message, you can digitally sign it—to identify that the message
is being sent by a trusted source—and/or encrypt it.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 21

Creating a MIME Message
To create a MIME message, you use services from the pub.mime folder to create an empty
MIME object, populate the MIME object with header fields and content, and generate the
finished MIME message.

Important: The MIME object is an IData object whose contents you can examine during
testing and debugging. However, the internal structure of this object is
subject to change in future versions of webMethods. Do not explicitly set or
map data to the elements in the MIME object with the pipeline editor. To
add content to a MIME object, you must use only the MIME services that
Integration Server provides for that purpose.

How to Create a MIME Message
The following procedure describes the general steps you take to create a MIME message.

1. Create an empty MIME object using pub.mime:createMimeData. You do not need to pass any
input parameters to this service.

This service returns an empty MIME object named mimeData .

2. Add application-specific message headers with pub.mime:addMimeHeader. If your message
requires application-specific (for example, “X- type” fields) or transport-specific
message headers (for example, “To” and “From” header fields), use addMimeHeader to
specify them. This service takes as input a document called mimeHeader , whose fields
and values specify message header field names and values.

For example, this mimeHeader document...

Name Values

To "xprint mEstimating" <EXPEst@exprint.com>

From "Purch01@GSX.com" <Purch01@GSX.com>

X-Doctype RFQ

X-Severity 5

...would produce the following message header fields:
To: "xprint Estimating" <EXPEst@exprint.com>
From: "Purch01@GSX.com" <Purch01@GSX.com>
X-Doctype: RFQ
X-Severity: 5

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 22

Note that you do not need to explicitly set the following message headers:
Message-ID
MIME-Version

These headers are automatically generated by the service that produces the finished
MIME message. If you explicitly set these fields in mimeHeader , they will be
overwrien when the MIME message is generated.

You may set message headers before or after adding content (performing the next
step 3, below). Either order is permied, as long as you set them before you generate
the finished MIME message.

Tip: Instead of using addMimeHeader to add message headers, you may
alternatively pass a mimeHeader document to createMimeData when you
create the MIME object.

Besides a mimeHeader document, you must pass to addMimeHeader the mimeData
object produced in the previous step 1.

The addMimeHeader service does not return an output value. It simply updates the
mimeData object that you pass to it.

3. Add one or more body parts with the pub.mime:addBodyPart service. This service adds
a single body part (both header fields and content) to the MIME object. To add
multiple body parts, execute addBodyPart once for each part that you want to add. In
the finished message, body parts appear in the order in which you add them—the
first body part you add will be the first body part in the message.

Besides the mimeData object that you produced in step 1, addBodyPart takes three
other parameters: content , contenype , and encoding .

content is an InputStream containing the message content (the payload). Before
invoking addBodyPart, your solution must acquire or generate this content and
place it in the pipeline as an InputStream.

The way in which you acquire the content of your message depends on your
particular solution. For example, you might acquire it from a file or from a back-
end system or manufacture it with a custom-built service. Regardless of how you
acquire your content, keep the following points in mind:

Your content must exist as an InputStream in the pipeline. If it exists in some
other form—for example, a String or a byte[]—you must convert it to an
InputStream before adding it to the MIME object.

The InputStream should contain only the body of the message (the payload).
Do not put header fields in the InputStream. To specify header fields, use the
contenype , encoding , description , and mimeHeader input parameters.

Note: If your InputStream already contains header fields, you can set the
isEnvStream parameter to “true” to tell addBodyPart to pull the header
fields out of the InputStream before adding it to the MIME object. For
additional information about using the isEnvStream parameter, see

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 23

the addBodyPart description in the webMethods Integration Server Built-In
Services Reference.

Do not encode the content before adding it to the MIME object—simply add
it in its original form. If you want to encode the content for transport, set the
encoding parameter (see below).

contenype is a String specifying the value of the entity’s Content-Type header
field. Besides type and subtype, be sure to include any parameters that the
header field requires as shown in the following example:
text/plain;charset=UTF8

For a description of standard content types, see RFC 2046—MIME Media Types at
hp://www.imc.org/rfc2046.

Be aware that when you create a single-part message, the value you specify in
contenype is assigned to the Content-Type header for the entire MIME message.
In this case, contenype will override any value you may have previously set in
mimeHeader (using the addMimeHeader service, for example.)

When you create a multipart message, the value you specify in contenype is
assigned to the Content-Type header for the body part. The Content-Type header
for the entire MIME message is automatically set to multipart/mixed (or to
multipart/subType if the subType parameter was specified when the MIME object
was created.)

encoding is a String specifying the value of the entity’s Content-Transfer-
Encoding header field. This field also specifies the scheme in which you want
the entity’s content encoded. If you set encoding to “base64,” for example, the
getEnvelopeStream service will base64-encode the data in content when it generates
the finished MIME message.

encoding must be one of the following values:

Value Description

7bit Specifies that content is 7-bit, line-oriented text that needs
no encoding.

Use this value when content contains lines of 7-bit, US-
ASCII text (no octets with decimal values greater than 127;
no NULs).

8bit Specifies that content is 8-bit, line-oriented text that needs
no encoding.

Use this value when content contains lines of 8-bit text
(octets with decimal values greater than 127; no NULs).

Note: This encoding value is not recommended for
messages that will be transported via SMTP over
the Internet, because intervening servers that cannot

http://www.imc.org/rfc2046

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 24

Value Description
accommodate 8-bit text may alter your content.
To safely transport 8-bit text, use quoted-printable
encoding instead.

binary Specifies that content contains binary information that
needs no encoding.

Use this value when content contains an arbitrary sequence
of octets (binary data).

Note: This encoding value is not recommended for
messages that will be transported via SMTP over
the Internet, because intervening servers that cannot
accommodate binary data may alter your content.
To safely transport binary data, use base64 encoding
instead.

quoted-
printable

Specifies that content contains 7- or 8-bit, line-oriented
text that you want to encode using the quoted printable
encoding scheme.

base64 Specifies that content contains an arbitrary sequence of
octets (binary data) that you want to encode using the
base64 encoding scheme.

uuencode Specifies that content contains an arbitrary sequence
of octets that you want to encode using the uuencode
encoding scheme.

Be aware that when you create a single-part message the value you specify in
encoding is assigned to the Content-Transfer-Encoding header for the entire
MIME message. This value will override any value you may have previously set
in mimeHeader (using the addMimeHeader service, for example).

When you create a multipart message, the value you specify in encoding is
assigned to the Content-Transfer-Encoding header for the body part. The
Content-Transfer-Encoding header in mimeHeader , if present, specifies the
encoding for the entire MIME message. If Content-Transfer-Encoding is not
specified in mimeHeader , or if the specified value is not valid for a multipart
message, this header defaults to 7bit encoding. (7bit, 8bit, and binary are the only
encoding values valid for multipart messages.)

Note: Besides the content , contenype , and encoding , parameters described above,
the addBodyPart service has a few other optional parameters you can use.
For information about these parameters, see the addBodyPart description in
the webMethods Integration Server Built-In Services Reference.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 25

The addBodyPart service does not return an output value. It simply updates the
mimeData object that you pass to it.

4. Generate the finished MIME message with the pub.mime:getEnvelopeStream service. After
you finish populating the MIME object, invoke getEnvelopeStream to generate a
MIME message. This service takes the populated mimeData object and produces an
InputStream called envStream , containing the finished MIME message.

When getEnvelopeStream generates a MIME message, it does the following:

Generates the Message-ID, MIME-Version, Content-Type, and Content-Transfer-
Encoding message headers and inserts them at the top of the message.

Sets the Content-Type header to “multipart,” generates a boundary string, and
inserts it between body parts if mimeData contains multiple body parts.

Note: If mimeData contains a single body part, getEnvelopeStream will, by
default, create an ordinary, single-part message. Some solutions,
however, want a “multipart” message even if the message contains
only a single body part. If your solution requires this structure, you can
use the createMultipart parameter to tell getEnvelopeStream to generate
a multipart message regardless of the number of body parts it finds in
mimeData.

Encodes the content for each body part according to its encoding value.

Example—Creating a Single-Part MIME Message
The following flow service creates a single-part MIME message that contains a simple
text message.

Flow service that creates a simple MIME message

Step Description

1 This step creates an empty MIME object. It does not take any inputs. It puts an
empty MIME object named mimeData in the pipeline.

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 26

Step Description

2 This step adds two application-specific message headers in the MIME object. If
you view the pipeline, you will see that the mimeHeader input variable is set as
follows:

 Name Value

 X-DocType alert

 X-Severity 9

3 This step generates the content of the message. This example uses a
custom Java service to convert a String containing the following text to an
InputStream:
 We were not able to process your request because the account
 number you gave us has expired. Please correct the account number
 and resubmit your request

In practice, you are more likely to acquire your content from a file, the
network, or a back-end system.

4 This step adds the content produced by step 3 to the mimeData object. If you
view the pipeline, you will note that the stream output variable from step 3 is
linked to this step’s content input variable. Because content contains a simple
text message, the contenype and encoding parameters are set as follows:

 Parameter Value

 contenype text/plain;charset=UTF8

 encoding quoted-printable

 isEnvStream is set to “no” because the payload is not a MIME entity.

5 This step generates the finished MIME message. It takes the mimeData object
that was populated in steps 2 and 4 and produces an InputStream called
envStream that contains the MIME message. At this point, you could pass
envStream to any process that expects a MIME message as input.

6 Because you cannot view an InputStream, this example includes a step that
converts envStream to a String so you can examine the finished message with
Designer. This technique is useful for testing and debugging.

If you examine the contents of string on the Service Result view, you will see a
MIME message similar to the following:

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 27

Step Description

Example—Creating a Multipart MIME Message
The following flow service creates a multipart MIME message that contains three parts:
a simple text message, an XML document, and an image file. The steps you use to create
a multipart message are essentially the same as the ones you use to create a single-part
MIME message—the only difference is that you execute addBodyPart multiple times.

Flow service that creates a multipart MIME message

Step Description

1 This step creates an empty MIME object. It does not take any inputs. It puts
an empty MIME object called mimeData in the pipeline.

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 28

Step Description

2 This step generates the content of the message and adds it to the mimeData
object. If you view the pipeline for the addBodyPart service in this step, you will
see that the stream output variable generated by the stringToStream service is
linked to the content input variable. Because content contains a simple text
message, the contenype and encoding parameters are set as follows:

 Parameter Value

 contenype text/plain;charset=UTF8

 encoding quoted-printable

3 This step creates an XML document from a document (IData object) in the
pipeline, converts that XML document to an InputStream, and then adds
the InputStream to the mimeData object. Because content contains an XML
document, the contenype and encoding parameters are set as follows:

 Parameter Value

 contenype text/xml

 encoding quoted-printable

4 This step gets an image file from disk and adds it to the mimeData object.
Because the file is retrieved as an InputStream, it can be linked directly to
the mimeData object. In this case, content is an image file (binary data), so the
contenype and encoding parameters are set as follows:

 Parameter Value

 contenype image/gif;name="b2b.gif"

 encoding base64

5 This step generates the finished MIME message. It takes the mimeData object
populated in steps 2–4 and produces an InputStream called envStream
that contains the multipart MIME message. At this point, you could pass
envStream to any process that expects a MIME message as input.

6 Because you cannot view an InputStream, this example includes a step that
converts envStream to a String so you can examine the finished message with
Designer. This technique is useful for testing and debugging.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 29

Step Description

If you examine the contents of string on the Service Result view, you will see
a MIME message similar to the following:

Points to keep in mind when building multipart MIME messages:

By default, the Content-Type header field is set to “multipart/mixed.” If you want to
use a different subtype, set the subtype parameter when you invoke createMimeData.

Body parts appear in the message in the order in which you add them to the MIME
object—the first part you add appears first in the message.

If you set message headers (for example, using addMimeHeader) before you add body
parts, those header fields will also be inserted into each body part. To prevent this,
drop the mimeHeader variable from the pipeline before you perform an addBodyPart
step or execute the addMimeHeader step after adding the message’s body parts.

Signing a MIME Message
To digitally sign a MIME message you must have a keystore that contains the signer’s
private key and an associated certificate chain. If you know that the recipient trusts an
intermediate CA in your chain, the keystore can contain a partial chain that extends

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 30

back to that CA. However, if you are not sure which CA the recipient trusts, the keystore
should contain a complete chain.

Note: You are not required to have the signer’s certificate chain to sign a message;
however, if you omit the chain, the recipient must produce the certificate
chain when it receives the message. If you do not supply the signer’s
certificate chain, and the recipient does not have a local copy of it, the
signature verification process will fail. By including the certificate chain with a
signature, you ensure that the recipient will be able to process the signature.

How to Create a Signed S/MIME Message
The following procedure describes the general steps you take to create a signed S/MIME
message.

Important: If you want to create a signed and encrypted MIME message, use the
special service that Integration Server provides for this purpose. For more
information, see "Signing and Encrypting a MIME Message" on page 35.

Before you begin, you must have a keystore alias and a password for at least one key
alias. The credentials provided by the keystore alias and the key alias are used to sign
the message. If you cannot locate these credentials or do not have direct access to them,
consult your Integration Server Administrator.

1. Create an InputStream that contains the MIME message that you want to sign. Use the
procedure outlined in "How to Create a MIME Message" on page 21 to create the
MIME message.

2. Pass your signing credentials to the pub.smime.keystore:createSignedData service. This
service takes an InputStream containing a MIME message and signs it using the
private key and the certificates pointed by the keystore alias and key alias that you
provide. It produces an InputStream containing the signed message.

Example—Signing a MIME Message
The following flow service signs a single-part MIME message. To sign a MIME message,
you must provide the alias of the keystore that contains the signing key, and the alias
of the private key to use for signing. When you run the service from Designer, it will
prompt you for the following:

Input Parameter Description

signersKeyStoreAlias String Alias of the keystore.

signersKeyAlias String Alias of the private key of interest in the keystore.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 31

Flow service that signs a MIME message

Step Description

1 This step creates a MIME message containing a simple text message. It
produces an InputStream called envStream that contains the MIME message
that will be signed.

2 This step generates the signed MIME message. It takes the InputStream from
step 1 and the credentials specified in signersKeyStoreAlias and signersKeyAlias
and produces an InputStream called SMimeEnvStream that contains the signed
message.

3 Because you cannot view the contents of an InputStream, this example
includes a step that converts SMimeEnvStream to a String so you can examine
the finished message with Designer. This technique is useful for testing and
debugging.

If you examine the contents of string on the Service Result view, you will see
a signed S/MIME message similar to the following. Note that this example
creates an explicitly signed message—the message is in one body part and the
digital signature is in another.

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 32

Step Description

Encrypting a MIME Message
To encrypt a MIME message you must have the recipient’s certificate. It contains the
public key required to encrypt the message. To obtain this certificate, ask the parties
with whom you want to exchange encrypted messages to send you their X.509 digital
certificate in DER file format. For example, you might ask a party to e-mail the .DER file
to you or transmit it in a special “certificates only” MIME message, which you can read
using the pub.smime:processCertsOnlyData service.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 33

After receiving the certificate, store it in a location (file system, database, or other
repository) where it can be retrieved by Integration Server at run time. Once you have
access to the recipient’s certificate, you can generate encrypted MIME messages that
only the owner of the certificate can read.

How to Create an Encrypted S/MIME Message
The following procedure describes the general steps you take to create an encrypted S/
MIME message.

Important: If you want to create a signed and encrypted MIME message, use the special
service that Integration Server provides for this purpose. For instructions, see
"Signing and Encrypting a MIME Message" on page 35.

1. Create an InputStream containing the MIME message that you want to encrypt. You can use
the procedure outlined in "How to Create a MIME Message" on page 21 to create
the MIME message.

2. Fetch the recipient’s certificate as a byte[]. If the message will be sent to multiple
recipients, fetch the certificate of each recipient. Load the certificates into a list (a one-
dimensional array) of byte[] such that each element in the list holds the certificate of
single recipient.

3. Pass the certificate and the MIME message to the pub.smime:createEncryptedData service. This
service encrypts the InputStream containing the MIME message and produces a new
InputStream containing the encrypted message.

Example—Encrypting a MIME Message
The following flow service encrypts a MIME message. To run this example, you must
have at least one certificate file. When you run this service from Designer, it will prompt
you for the following:

Input Parameter Description

recipient1CertificateFile The name of the file containing the certificate of the
first intended recipient, for example, d:\netCerts
\partner1cert.der.

recipient2CertificateFile The name of the file containing the certificate of the second
intended recipient. If you want to encrypt the message for
only one recipient, leave this input parameter empty.

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 34

Step Description

1 This step creates a MIME message containing a simple text message. It
produces an InputStream called envStream that contains the MIME message
that will be encrypted.

2 This step loads the recipient’s certificates from the files specified in
recipient1CertificateFile and recipient2CertificateFile . This example uses a
custom Java service to perform this step. You will need to develop a similar
mechanism to load the certificates of the parties to whom you want to send
an encrypted message.

3 This step generates the encrypted MIME message using the InputStream
from step 1 and the certificates from step 2. It produces a new InputStream
called SMimeEnvStream that contains the encrypted message.

4 Because you cannot view the contents of an InputStream, this example
includes a step that converts SMimeEnvStream to a String so you can examine
the finished message with Designer. This technique is useful for testing and
debugging.

If you examine the contents of string on the Service Result view, you will see
an encrypted S/MIME message similar to the one below.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 35

Step Description

Signing and Encrypting a MIME Message
If you want to sign and encrypt a message, you must use the special service,
pub.smime.keystore:createSignedAndEncryptedData, that Integration Server provides for this
purpose.

To use this service, you must provide the credentials for signing a message (the alias of
the keystore and the signing key) and the credentials needed to encrypt a message (the
recipient’s certificate). For information about obtaining these credentials, see "Signing a
MIME Message" on page 29 and "Encrypting a MIME Message" on page 32.

M
Even Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 36

Example—Signing and Encrypting a MIME Message
The following flow service signs and encrypts a MIME message. To run this example,
you must provide the alias of the keystore that contains the signing key, and the alias of
the private key to use for signing.

When you run this service from Designer, it will prompt you for the following:

Input Parameter Description

signersKeyStoreAlias String Alias of the keystore.

signersKeyAlias String Alias of the private key of interest in the keystore.

recipient1CertificateFile The name of the file containing the certificate of the
first intended recipient, for example, d:\netCerts
\partner1cert.der.

recipient2CertificateFile The name of the file containing the certificate of the second
intended recipient. If you want to encrypt the message for
only one recipient, leave this input parameter empty.

Step Description

1 This step creates a MIME message that contains a simple text message. It
produces an InputStream called envStream , containing the MIME message
that will be signed and encrypted.

2 This step generates the signed MIME message. It takes the InputStream
from step 1 and the credentials specified in signersKeyStoreAlias and
signersKeyAlias and produces an InputStream called SMimeEnvStream that
contains the signed and encrypted message.

3 Because you cannot view the contents of an InputStream, this example
includes a step that converts SMimeEnvStream to a String so you can examine
the finished message with Designer. This technique is useful for testing and
debugging.

M
Odd Header

Building MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 37

Step Description

If you examine the contents of string on the Service Result view, you will see
an encrypted S/MIME message similar to the following:

M
Even Header

MIME-S/MIME Developer’s Guide Version 10.1 38

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 39

3 Extracting Data from MIME and S/MIME Messages

■ Overview ... 40

■ Extracting the Payload from a MIME Message ... 41

■ Extracting the Payload from a Signed MIME Message ... 44

■ Extracting the Payload from an Encrypted MIME Message .. 49

■ Extracting Data from a Signed and Encrypted MIME Message .. 51

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 40

Overview
Besides creating MIME messages, you can also use Integration Server services to extract
information (header fields and/or content) from MIME messages that are placed in
the pipeline. However, to gain access to the data within a MIME message, you must
first convert that message to a MIME object. After you convert the message to a MIME
object, you use services such as getMimeHeader, getBodyPartContent, and getBodyPartHeader, to
retrieve the information within it.

The following diagram illustrates this process:

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 41

Extracting the Payload from a MIME Message
To extract information from a MIME message, you use services from the pub.mime folder
to create a MIME object from a MIME message and extract data from it.

How to Extract the Payload from a MIME Message
The following procedure describes the general steps you take to extract data from a
MIME message.

1. Place the MIME message in the pipeline as an InputStream. For the Integration Server
services to work with a MIME message, the message must be passed into the pipeline
as an InputStream. If your solution acquires the MIME message in another form
(such as a String or a byte[]) you must convert it to an InputStream before running
the MIME services against it.

Note: The way in which you acquire a MIME message and put it in the pipeline
will depend on your particular solution. You might retrieve it from a back-
end system, you might read it from a file, or you might receive it from a
custom content handler. Regardless of how you acquire the message, it
must be in the form of an InputStream to be able to use it with the MIME
services.

2. Convert the MIME message to a MIME object using the pub.mime:createMimeData service. Pass
the InputStream containing the MIME message to createMimeData. This service returns
a MIME object called mimeData that contains the message’s constituent elements
(header fields and content). It also returns a set of values indicating whether the
enclosed message is encrypted or digitally signed. (For information about extracting
information from an encrypted and/or signed MIME message, see "Extracting the
Payload from a Signed MIME Message" on page 44 and "Extracting the Payload
from a MIME Message" on page 41.

Important: The MIME object that the createMimeData service returns is an IData
object whose contents you can examine during testing and debugging.
However, the internal structure of this object is subject to change in future
versions of Integration Server. To extract content from a MIME object, you
must always use the MIME services that Integration Server provides for
this purpose. Do not explicitly map data from the elements in the MIME
object with the pipeline editor.

3. Extract the payload from the MIME object using the pub.mime:getBodyPartContent service.
This service takes as input the MIME object that you created in the previous step 2. If
the message contains multiple parts, you can use the index or contentID parameter to
specify which part you want to retrieve, where:

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 42

index is a String that specifies the index number (that is, position number) of the
part whose content you want to retrieve. (Index 0 is the first part, Index 1 is the
second part, and so forth.)

contentID is a String that specifies the value of the content-ID header whose
content you want to retrieve. For example, if you wanted to retrieve the content
of from the part with the “content-ID: AJ9994388-0500,” you would set contentID
to “AJ9994388-0500.”

If you do not specify index or contentID , getBodyPartContent returns the content from
the first body part in the message.

The content of the requested body part is returned as an InputStream named content .

Example—Extracting One Part from a Multipart MIME Message
The following flow service shows how you would extract the content from the second
body part in a three-part MIME message. In this example, the message contains an XML
document that is extracted, parsed, and put in the pipeline.

Flow service that extracts content from a single part

Step Description

1 This step acquires a MIME message. This example calls a helper service
that puts a three-part test message in the pipeline as an InputStream. In a
production solution, it is more likely that a MIME message would be passed
into the pipeline by a content handler or a back-end system.

2 This step takes the MIME message and creates a MIME object (mimeData)
containing the message’s headers and content. If you view the pipeline, you
will note that the InputStream produced by step 1 is linked to this step’s input
variable.

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 43

Step Description

3 This step extracts the payload from the second body part in mimeData . In this
example, the index parameter is set to 1 to select the second body part.

This step returns the payload (in this case an XML document) as an
InputStream named content .

4 This step converts the XML document in content to a String.

5 This step takes the String containing the XML document and parses it,
producing an XML node containing the XML document.

6 This step produces a document (IData object) containing the XML document’s
elements and values.

Example—Extracting All Parts from a Multipart MIME Message
The following flow service shows how you might process each part in a multipart MIME
message sequentially. This example receives a multipart MIME message containing
a unknown number of body parts. After discovering the number of body parts, the
example uses a REPEAT block to extract the payload from each part.

Flow service that extracts the content from multiple parts

Step Description

1 This step acquires a MIME message. This example uses a helper service
that generates a three-part MIME message and puts it in the pipeline as an

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 44

Step Description
InputStream call envStream . In a production solution, it is more likely that a
MIME message would be passed into the pipeline by a content handler or a
back-end system.

2 This step takes the MIME message and creates a MIME object (mimeData)
containing the message’s headers and content. If you view the pipeline, you
will note that the InputStream produced by step 1 is linked to this step’s input
variable.

3 This step inspects the mimeData object and returns the number of body parts
(in this case 3) in a String called numParts .

4 This step sets the following variables that are used by the REPEAT block:

 Variable Value Purpose

 RepeatCounter numParts -1 Sets the counter that specifies the number of
times the REPEAT block needs to re-execute.
Since a REPEAT block always executes once,
this counter is set to one number less than the
total number of body parts in the message.

 PartIndex 0 Initializes the pointer that is used to step
through the body parts in this message.

5 This REPEAT block does the following for each body part in mimeData :

1. Extracts the content

2. Converts the retrieved content to a String

3. Appends that String to a String list

The last step in the block increments PartIndex . If you view the pipeline,
you will see that this variable is linked to the index parameter for the
getBodyPartContent service.

6 This step drops unnecessary variables, leaving only the populated String list
in the pipeline.

Extracting the Payload from a Signed MIME Message
When you pass a signed S/MIME message to createMimeData, it returns an empty MIME
object because it cannot parse signed messages. To extract data from a signed message,

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 45

you must process the message with pub.smime:processSignedData. This service reads an
InputStream containing a signed message, verifies the signature, and returns a MIME
object containing the message’s constituent elements.

Important: A signer’s certificate is authenticated against the set of trusted certificates in
the Integration Server truststore. If your site will receive signed messages,
you must collect the certificates of CAs that you trust and add them to
the truststore. For information about the Integration Server truststore and
obtaining CA certificates, see webMethods Integration Server Administrator’s
Guide.

How Do You Know Whether the Message Is Signed?
If your solution always receives signed messages, you can simply pass those messages to
processSignedData when you receive them. However, if your solution receives both signed
and unsigned messages, you will need to “test” the message to see whether or not it is
signed and pass only signed messages to the processSignedData service.

To discover whether a MIME message is signed, pass it to the createMimeData service and
check the status of the signed variable afterwards. If the value of signed is “true,” you
must pass the message to processSignedData for signature verification.

Working with InputStreams
To work with signed (and encrypted) messages successfully, you need to understand
something about the behavior of an InputStream. InputStreams are transient forms of
data in a flow service. When a service reads an InputStream, it immediately discards the
data within it. This means that once you process a MIME message with createMimeData,
the message no longer exists in the original InputStream object.

This poses a problem if, after running createMimeData on the InputStream, you discover
that it contains a signed or encrypted message. Because the original InputStream has
been emptied, it cannot be passed to the signature-verification or decryption services.
To solve this problem, createMimeData returns a copy of the original InputStream in an
output variable called stream . This is the variable you pass to processSignedData if, after
processing the original message with createMimeData, you discover that it is signed.

What Happens when the Signature is Processed?
When processSignedData processes a signed message, it does the following:

It verifies the digital signature using the signer’s public key.

It compares the signer’s certificate chain to the certificates in Integration Server’s
truststore to determine whether the credentials are authentic and trustworthy.

It extracts the message from the S/MIME message stream, parses it, and puts it in the
pipeline as a MIME object called mimeData .

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 46

Error Codes and Messages
If an error prevents the signature from being verified (for example, if the signer’s
certificate cannot be read or the signature itself is found to be invalid) processSignedData
sets the verify flag to false and reports the cause of the failure in errorCode and
errorMessage as follows:

errorCode errorMessage Signature could not be verified because...

1 Invalid signer
certificate file
information.

The signer’s certificate could not be read. The
variable containing the certificate chain is not
an array object.

2 Certificate at index ‘i ’
is not in recognizable
format.

The signer’s certificate could not be read. The
data at position i in the certificate chain does
not appear to be a certificate.

3 Invalid certificate
input at index ‘i ’.

The signer’s certificate could not be read. The
data at position i in the certificate chain is not
a byte[].

4 Signature cannot be
verified.

The signature was invalid. Either the supplied
certificate does not belong to the original
signer or a message integrity violation has
occurred.

If processSignedData is able to verify the signature, but is not able to authenticate the
certificate of the signer (that is, the certificate could not be confirmed to be from a trusted
source), the verify flag will be true and the errorCode and errorMessage values will be set
as follows.

errorCode errorMessage Certificate could not be authenticated because...

5 Expired certificate
chain.

One or more certificates in the supplied chain
is expired.

6 Error in certificate
chain.

The certificate chain is incomplete or
invalid. For example, the certificate for an
intermediate CA may be missing from the
chain.

7 Untrusted certificate. None of the CAs in the chain are trusted by
this server. None of the certificates could

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 47

errorCode errorMessage Certificate could not be authenticated because...
be matched to a certificate in the server’s
truststore.

If processSignedData is able to verify the signature and authenticate the signer’s certificate,
it does not return errorCode or errorMessage .

Note: Regardless of whether processSignedData is able to verify the signature or
authenticate the certificate, it always returns a MIME object containing the
parsed message.

How to Extract the Payload from a Signed S/MIME Message
The following procedure describes the general steps you take to extract data from a
signed S/MIME message.

1. If you do not know whether the message is signed, pass it to the pub.mime:createMimeData
service. Afterwards, test the state of the signed output parameter. If its value is “true,”
proceed to the next step 2. Otherwise, check whether the message is encrypted
and process it as described in "Extracting the Payload from an Encrypted MIME
Message" on page 49. If the message is neither signed nor encrypted, process it
as an ordinary MIME message as described in "Extracting the Payload from a MIME
Message" on page 41.

2. Pass the message to the pub.smime:processSignedData service to verify the signature. If the
signer’s certificate chain is included in the signature, you do not need to give this
service anything other than the InputStream containing the MIME message. If the
signer’s certificate chain is not embedded in the signature, you must supply it (this
assumes that the signer has given you a certificate chain at some point).

Keep in mind that if the message was passed to createMimeData before this step, the
original InputStream will be empty. In this case, you must pass the stream output
variable produced by createMimeData to the processSignedData service.

3. Test the verify flag and perform error processing as necessary. If the signature cannot
be verified, verify will be false. Your service should contain logic to detect this
condition and react in a prescribed way. For example, it might send the message to
an administrator for a manual inspection or record the event in a log file.

Note: Depending on the nature of the messages your service receives, you may
want to test the encrypted output variable after processing a signature. This
will tell you whether the message had been encrypted before it was signed.
If encrypted is “true,” you will need to decrypt the message in stream .
For procedures, see "Extracting the Payload from an Encrypted MIME
Message" on page 49.

4. Extract the payload from the MIME object using the pub.mime:getBodyPartContent service.
If the enclosed message is not encrypted, processSignedData returns a MIME object

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 48

that contains the message’s constituent elements (header fields and content). At this
point, you can use getBodyPartContent to retrieve the content from the MIME object. For
information about using getBodyPartContent, see "Extracting the Payload from a MIME
Message" on page 41.

Example—Extracting Content from a Signed S/MIME Message
The following flow service extracts the payload from a signed MIME message.

To run this example, you must have a private key, the associated certificate, and the
certificate of the CA that signed it. These credentials are needed by the helper service,
sample.smime.helpers:acquireSignedMsg, which generates the signed test message used in this
example. You will need to edit the first step in the helper service to specify the location
of these files on your system.

This service assumes that the signature contains the signer’s certificate chain, so you do
not need to supply a certificate chain at run time.

Flow service that extracts the content from a signed MIME message

Step Description

1 This step acquires an InputStream containing a signed MIME message. This
example uses a helper service to produce a test message. In a production
solution, it is more likely that a MIME message would be passed into the
pipeline by a content handler or a back-end system.

2 This step takes the InputStream generated in step 1 and processes the
signature. If the signature is valid, this step produces a MIME object called
mimeData , containing the parsed message. If the signature is invalid, this step
returns an empty mimeData object and sets the verify flag to “false.”

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 49

Step Description

3 This step checks whether or not the signature was processed successfully
by testing the value of the output variable verify . If verify is “true,” this step
extracts the payload and converts it to a String. If verify is “false,” this step
collects the error information in the pipeline and passes it to an error-logging
service.

Extracting the Payload from an Encrypted MIME Message
When you pass an encrypted S/MIME message to the createMimeData service, it
returns an empty MIME object, because it cannot parse encrypted messages. To
extract data from an encrypted message, you must decrypt the message with
pub.smime.keystore:processEncryptedData. This service reads an InputStream that contains an
encrypted message, decrypts it using a private key pointed by the keystore alias and key
alias that you supply, and returns a MIME object containing the message’s constituent
elements.

How Do You Know Whether the Message Is Encrypted?
If your solution always receives encrypted messages, you can simply pass those
messages to processEncryptedData when you receive them. However, if your solution
receives both encrypted and clear-text messages, you will need to “test” a message
to see whether or not it is encrypted, and pass only encrypted messages to the
processEncryptedData service.

To discover whether a MIME message is encrypted, pass it to the createMimeData service
and check the status of the encrypted variable afterwards. If the value of encrypted is
“true,” you must pass the message to processEncryptedData to be decrypted.

Note: When you process an InputStream with createMimeData, that InputStream
is emptied and is no longer available to other services. For this reason,
createMimeData returns a copy of the original message stream in the output
variable called stream . You pass this variable to processEncryptedData if the
original InputStream has been emptied by createMimeData. For additional
information about InputStreams, see "Working with InputStreams" on page
45.

How to Extract the Payload from an Encrypted S/MIME Message
The following procedure describes the general steps you take to extract data from an
encrypted S/MIME message.

1. If you do not know whether the message is encrypted, pass it to the pub.mime:createMimeData
service. Afterwards, test the state of the encrypted output parameter. If its value is

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 50

“true,” proceed to the next step 2. Otherwise, test the signed variable to see whether
the message is signed and process it as described in "Extracting the Payload from
a Signed MIME Message" on page 44. If the message is neither signed nor
encrypted, process it as an ordinary MIME message as described in "Extracting the
Payload from a MIME Message" on page 41.

2. Pass the message to the pub.smime.keystore:processEncryptedData to be decrypted. You
must pass three input parameters to this service: the InputStream containing the
encrypted MIME message, the keystore alias that points to the recipient’s keystore,
and the key alias that identifies the recipient’s private key in the keystore.

Keep in mind that if the message was passed to createMimeData prior to this step, the
original InputStream will be empty. In this case, you must pass the stream output
variable produced by createMimeData to the processEncryptedData service.

Note: Depending on the nature of the messages your service receives, you may
want to test the signed output variable after decrypting the message.
This will tell you whether the message had been signed prior to being
encrypted. If signed is “true,” you will need to verify the signature of the
message in stream . For procedures, see "Extracting the Payload from a
Signed MIME Message" on page 44.

3. Extract the payload from the MIME object using the pub.mime:getBodyPartContent
service. If the decrypted message is not signed, the MIME object returned by
processEncryptedData will contain the message’s constituent elements. You use
getBodyPartContent to retrieve the content from this MIME object. For information
about using getBodyPartContent, see "Extracting the Payload from a MIME Message" on
page 41.

Example—Extracting Content from an Encrypted S/MIME Message
To run this example, you must provide the keystore alias and key alias for the
recipient's private key. Some of these credentials are needed by the helper service,
sample.smime.helpers:acquireEncryptedMsg, which generates the test message used in this
example. You will need to edit the first step in the helper service to specify the location
of these files on your system.

When you run this service from Designer, it will prompt you for the following:

Input Parameter Description

recipientsKeystoreAlias String Alias of the recipient’s keystore.

recipientsKeyAlias String Alias of the private key in the recipient’s keystore.

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 51

Flow service that extracts the content from an encrypted MIME message

Step Description

1 This step acquires an InputStream containing an encrypted multipart MIME
message. This example uses a helper service to produce the test message. In a
production solution, it is more likely that a MIME message would be passed
into the pipeline by a content handler or a back-end system.

2 This step takes the InputStream from step 1 and decrypts the message. It
produces a MIME object (mimeData) that contains the decrypted message’s
constituent elements (header fields and content).

3 This step extracts each body part from mimeData and appends it to a String
list.

Extracting Data from a Signed and Encrypted MIME Message
If your solution receives messages that are signed and/or encrypted, your flow service
must test each incoming message and process it appropriately.

Example—Extracting Content from a Signed and Encrypted S/MIME
Message
The following flow service extracts data from MIME and S/MIME messages.

To run this example, you must provide the keystore alias and key alias for the
recipient's private key. Some of these credentials are needed by the helper service,
sample.smime.helpers:acquireSignedAndEncryptedMsg, which generates the test message used
in this example. You will need to edit the first step in the helper service to specify the
location of these files on your system.

M
Even Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 52

When you run this service from Designer, it will prompt you for the following:

Input Parameter Description

recipientsKeystoreAlias String Alias of the recipient’s keystore.

recipientsKeyAlias String Alias of the private key in the recipient’s keystore.

Flow service that extracts the content from a signed and/or encrypted MIME message

Step Description

1 This step acquires an InputStream containing a signed and encrypted MIME
message. This example uses a helper service to produce the test message. In a
production solution, it is more likely that a MIME message would be passed
into the pipeline by a content handler or a back-end system.

2 This step aempts to create a MIME object from the InputStream produced in
step 1.

3 This step tests the encrypted flag to see whether the message is encrypted. If it
is, it obtains the credentials needed to decrypt the message and passes those
credentials and the message to the processEncryptedData service. Note that
the stream output variable is linked to the SMimeEnvStream input parameter,
because the original InputStream from step 1 was emptied by step 2.

Note that if encrypted is “false,” execution falls through to step 4.

M
Odd Header

Extracting Data from MIME and S/MIME Messages

MIME-S/MIME Developer’s Guide Version 10.1 53

Step Description

4 This step tests the signed flag to see whether the message is signed. If it is, it
passes the message to the processSignedData service. Note that the stream
output variable is linked to the SMimeEnvStream input parameter, because
the original InputStream from step 1 was emptied in step 2. (When a message
is decrypted in step 3, the processEncryptedData service produces the stream
used by this step.)

Note that if signed is “false,” execution falls through to step 5.

5 This step extracts the data from the mimeData object produced by the
preceding steps.

M
Index

MIME-S/MIME Developer’s Guide Version 10.1 54

M
Index

MIME-S/MIME Developer’s Guide Version 10.1 55

Index

A
addBodyPart service 17, 22
addMimeHeader service 17
authenticating S/MIME messages 13, 45

B
build_EncryptedSMIME sample service 33
build_MultipartMIME sample service 27
build_SignedAndEncryptedSMIME sample service
36
build_SignedSMIME sample service 30
build_SimpleMIME sample service 25

C
Certificate Authorities 12, 29, 45
certificate chains 12, 29, 45, 46
clear-signing, S/MIME messages 13
Content-Transfer-Encoding header field 22, 23
Content-Type

MIME messages 11
S/MIME messages 13, 14, 15

Content-Type header field 11, 22, 23
createEncryptedData service 17, 33
createMimeData service 17, 18, 41, 47, 49
createSignedAndEncryptedData service 17, 35
createSignedData service 17, 30

D
DER format 30, 32
detached signature, S/MIME messages 13
digest of S/MIME message 13
digital certificates

authenticating 12, 13, 45
Certificate Authorities 12
certificate chains 12
expired certificates 46
getting from partners 16
inability to read 46
invalid chains 46
overview of 12
required to decrypt a message 49
required to encrypt a message 32
required to sign a message 29
required to verify a signature 47
storing locally 16

trusting 13, 45
X.509 format 17

digital signatures 12, 29
authenticating 13, 45
clear-signing 13
detached signature 13
explicit 13
implicit 13, 14
overview of 13
trusting 13, 45
verification failures 46
verification process 45

documentation
using effectively 5

E
encryption of MIME messages 12, 12, 15
error codes, digital signature failures 46
expired certificate error 46
explicit signatures, S/MIME messages 13
extract_EncryptedSMIME sample service 50
extract_MultipartMIME sample service 43
extract_SignedAndEncryptedSMIME sample
service 51
extract_SignedSMIME sample service 48
extract_SimpleMIME sample service 42

G
getBodyPartContent service 18, 40, 47, 50
getBodyPartHeader service 18, 40
getContentType service 18
getEnvelopeStream service 17, 25
getMimeHeader service 18, 40
getNumParts service 18

H
header fields, adding to MIME messages 21

I
implicit signatures, S/MIME messages 13, 14
InputStreams, behavior in flow services 45

K
keystore 29, 30, 30, 35, 36, 49, 50
Keystore 50

M

M
Index

MIME-S/MIME Developer’s Guide Version 10.1 56

message digest, S/MIME messages 13
<$nopage>MIME messages

<Italics>See also<Default Para font>S/MIME
messages 8

MIME messages
acquiring 41
adding content to 17, 20, 22
adding header fields to 17, 20, 21
basic structure of 8, 10
body 10
boundary separator 11
build_EncryptedSMIME example 33
build_MultipartMIME example 27
build_SignedAndEncryptedSMIME example 36
build_SignedSMIME example 30
build_SimpleMIME example 25
content 10
Content-Transfer-Encoding header field 22
Content-Type header field 11, 22, 23
creating 17, 20, 21
creating empty MIME object 17, 20, 21
creating MIME object from 18
decrypting 49, 51
definition of 8
encrypting 32
examples

creating multipart message 27
creating single-part message 25
encrypting a message 33
extracting all body parts 43
extracting data from a message 42
extracting data from a signed and encrypted
message 51
extracting data from a signed message 48
extracting data from an encrypted message 50
signing a message 30
signing and encrypting a message 36

extract_EncryptedSMIME example 50
extract_MultipartMIME example 43
extract_SignedAndEncryptedSMIME example 51
extract_SignedSMIME example 48
extract_SimpleMIME example 42
extracting data from 17, 18, 40, 41
extracting data from encrypted messages 49
extracting data from multipart messages 43
extracting data from signed and encrypted
messages 51
extracting data from signed messages 44
extracting header field from 18, 40

extracting specific body part 42
generating a message stream 20, 25
header fields 9, 9, 21, 21
message headers 10, 21
MIME entities 18
MIME object 18, 20, 40
MIME_Version header field 21
mimeData Object 18, 20, 21, 40, 41
multipart messages 10, 27, 43
number of parts, discovering 18, 43
order of parts 29
part headers 10, 23
payload 10
receiving 41
services 17
signing 29
signing and encrypting 35
testing for encryption 49, 49
testing for signature 45, 47

mimeData Object 18, 20, 21, 40, 41

N
nonrepudiation of S/MIME messages 13

P
private keys 12, 15, 29, 49
processCertsOnlyData service 32
processEncryptedData service 18, 49, 50
processSignedData service 18, 44, 47
Public Key Infrastructure 12
public keys 12, 15

S
<$nopage>S/MIM E messages

<Italics>See also<Default Para font>MIME
messages 12

S/MIME messages
ascertaining identity of sender 13, 45
authentication error codes 46
authentication of 13, 45
build_EncryptedSMIME example 33
build_SignedAndEncryptedSMIME example 36
build_SignedSMIME example 30
Certificate Authorities 12, 29, 45
certificates 12, 16, 29, 32, 45
Content-Type header fields 13, 14, 15
creating 17
creating encrypted messages 32

M
Index

MIME-S/MIME Developer’s Guide Version 10.1 57

creating signed and encrypted mes sages 35
creating signed messages 29, 30
decrypting 49, 51
definition of 12
digital signatures 12, 13, 29
encrypting 12, 15, 32
error codes 46
examples

encrypting a message 33
extracting data from a signed and encrypted
message 51
extracting data from a signed message 48
extracting data from an encrypted message 50
signing a message 30
signing and encrypting a message 36

expired certificates 46
explicit signatures 13
extract_EncryptedSMIME example 50
extract_SignedAndEncryptedSMIME example 51
extract_SignedSMIME example 48
extracting data from 17
extracting data from encrypted messages 49
extracting data from signed and encrypted
messages 51
extracting data from signed messages 44
header fields 14, 15
implicit signatures 13, 14
invalid certificates 46
message digest 13
nonrepudiation of 13
private keys 12, 15, 29, 49
public keys 12, 15
services 17
signature verification error codes 46
signing 29, 30
signing and encrypting 35
testing for encryption 49, 49
testing for signature 45, 47
trusted CAs 29, 45
verifying signature of 42, 45, 47

T
trusted CAs 29, 45, 45

U
untrusted certificate error 46

V

verifying a digital signature 45, 47

X
X.509 format 17, 30, 32

Symbols
<$nopage>certificates.<Italics>See<Default Para
font>digital certificates 12
<$nopage>Multipurpose Internet Mail
Extensions.<Italics>See<Default Para font>MIME 8
<$nopage>Secure Multipurpose Internet Mail
Extensions.<Italics>See<Default Para font>S/MIME
12

	Table of Contents
	About this Guide
	Document Conventions
	Online Information

	Overview of MIME and S/MIME Messages
	Overview
	What Is MIME?
	Basic Structure of a MIME Message
	Header Fields
	The Body
	Multipart MIME Messages

	What Is S/MIME?
	Digital Certificates
	Digital Signatures
	Explicit and Implicit Signatures

	Encryption

	The MIME and S/MIME Services
	Services Used to Construct MIME and S/MIME Messages
	Services Used to Extract Data from MIME and S/MIME Messages

	MIME Messages, MIME Entities, and MIME Objects

	Building MIME and S/MIME Messages
	Overview
	Creating a MIME Message
	How to Create a MIME Message
	Example—Creating a Single-Part MIME Message
	Example—Creating a Multipart MIME Message

	Signing a MIME Message
	How to Create a Signed S/MIME Message
	Example—Signing a MIME Message

	Encrypting a MIME Message
	How to Create an Encrypted S/MIME Message
	Example—Encrypting a MIME Message

	Signing and Encrypting a MIME Message
	Example—Signing and Encrypting a MIME Message

	Extracting Data from MIME and S/MIME Messages
	Overview
	Extracting the Payload from a MIME Message
	How to Extract the Payload from a MIME Message
	Example—Extracting One Part from a Multipart MIME Message
	Example—Extracting All Parts from a Multipart MIME Message

	Extracting the Payload from a Signed MIME Message
	How Do You Know Whether the Message Is Signed?
	Working with InputStreams
	What Happens when the Signature is Processed?
	Error Codes and Messages
	How to Extract the Payload from a Signed S/MIME Message
	Example—Extracting Content from a Signed S/MIME Message

	Extracting the Payload from an Encrypted MIME Message
	How Do You Know Whether the Message Is Encrypted?
	How to Extract the Payload from an Encrypted S/MIME Message
	Example—Extracting Content from an Encrypted S/MIME Message

	Extracting Data from a Signed and Encrypted MIME Message
	Example—Extracting Content from a Signed and Encrypted S/MIME Message

	Index

