
Web Services Stack Guide

Configuration

Version 8.0 SP4

March 2010

This document applies to WSS Guide Version 8.0 SP4.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2010 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Table of Contents

1 Configuration .. 1
2 Web Services Stack Runtime ... 3

Understanding axis2.xml Configuration ... 4
Run-Time Configuration .. 9
Server-side Configurations .. 12
Client-side Configurations ... 13
MTOM in Web Services Stack .. 13

3 Security .. 15
Message-Level Security .. 16
Transport-Level Security .. 24
Client Authentication ... 31

4 Transports .. 37
TCP Transport .. 38
JMS Transport ... 41
Mail Transport .. 45

5 Monitoring and Logging ... 53
SOAP Monitor .. 54
Logging .. 56

6 Eclipse Plug-in ... 59
Introduction .. 60
Creating and Removing a Web Service Package .. 61
Configuring a Web Service Package .. 62
Enabling Advanced Policy Configurations .. 64
Deploying and Undeploying a Web Service Package .. 65
Registering a Web Service Package in CentraSite .. 66

iii

iv

1 Configuration

This document introduces the configuration tasks in Web Services Stack (WSS).

Configuration provides users with sets of instructions on the features of the product and shows
how to configure and use Web Services Stack for managing, monitoring, and securing services.

The information is organized under the following headings:

Details on the configurations of axis2.xml, client, server, and MTOM.Web Services Stack Runtime

Configurations for securing themessage content and the communication
channel.

Security

Configuration of Web Services Stack for sending and receiving of
messages over different transports.

Transports

Configuration ofWeb Services Stack facilities formonitoring and logging.Monitoring and Logging

Describes Web Services Stack basic tool for packaging, configuring, and
deploying web service archives.

Eclipse Plug-in

1

2

2 Web Services Stack Runtime

■ Understanding axis2.xml Configuration .. 4
■ Run-Time Configuration ... 9
■ Server-side Configurations .. 12
■ Client-side Configurations ... 13
■ MTOM in Web Services Stack .. 13

3

The information is organized under the following headings:

Understanding axis2.xml Configuration

Following are the top-level elements that can be seen in the axis2.xml configuration file:

1. Parameters
In Axis 2, a parameter is a name value pair. Each top level parameter available in the axis2.xml
file (direct sub-elements of a root element) is transformed into properties in AxisConfiguration.
Therefore, if you want to access the top level parameters in the configuration document, you
must use the AxisConfiguration in the running system.

Following is the correct way of defining a parameter:

<parameter name="name of the parameter" >parameter value </parameter>

2. Transport Receivers
You must use a corresponding transport receiver for every other transport that Axis 2 runs on.
Following is an example of how you can add and define transport receivers in the axis2.xml file:

<transportReceiver name="http"
class="org.apache.axis2.transport.http.SimpleHTTPServer">
 <parameter name="port" >6060</parameter>
 </transportReceiver>

The attribute name of the transportReceiver property is the name of the transport itself. It
can be HTTP, TCP, SMTP, etc. As soon as the system starts up, or when you set the transport
at the client side, you actually load the transport that you have specified. The class attribute
defines the actual Java class that implements the interfaces required for the transport. Transports
can have zero parameters, but they can also have one or more than one. Nevertheless, the cor-
responding transport receiver gives access to the parameters.

3. Transport Senders
You can register transport senders in the system in the same way as transport receivers. Later,
at run time, those senders can be used to sendmessages. As an example, considerAxis 2 running
under Tomcat. In this case, Axis can use TCP rather HTTP transport senders to send messages.
Following is the way to specify transport senders:

Configuration4

Web Services Stack Runtime

<transportSender name="http"
class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">
 <parameter name="PROTOCOL" locked="xsd:false">HTTP/1.0</parameter>
 </transportSender>

In the preceding example, the attribute name is the name of the transport. The attribute class is
the implementation class of the corresponding transport. Transport senders can have zero or
more than one parameters in the same way as transport receivers. If there are any parameters
specified, then you can access them at run time through the corresponding transport.

4. Phase Orders
The specifying order of phases in the execution chain has to be done using a phase order element.
Following is an example of such an element:

<phaseOrder type="inflow">
 <phase name="TransportIn"/>
 .
 .
</phaseOrder>

If you want to add a handler that must go into that phase, you can do that by adding directly
a handler element into it. In addition, configurations for handler chains in Axis 2 are also done
in the phase order element.

Following is an example of the complete configuration of the order of phases in the execution
chain with specified corresponding handlers:

<phaseOrder type="InFlow">
<!-- System pre-defined phases -->
<phase name="Transport">
<handler name="RequestURIBasedDispatcher"
class="org.apache.axis2.engine.RequestURIBasedDispatcher">
<order phase="Transport"/>
</handler>
<handler name="SOAPActionBasedDispatcher"
class="org.apache.axis2.engine.SOAPActionBasedDispatcher">
<order phase="Transport"/>
</handler>
</phase>
<phase name="Security"/>
<phase name="PreDispatch"/>
<phase name="Dispatch" class="org.apache.axis2.engine.DispatchPhase">
<handler name="RequestURIBasedDispatcher"
class="org.apache.axis2.engine.RequestURIBasedDispatcher"/>
<handler name="SOAPActionBasedDispatcher"
class="org.apache.axis2.engine.SOAPActionBasedDispatcher"/>
<handler name="AddressingBasedDispatcher"
class="org.apache.axis2.engine.AddressingBasedDispatcher"/>
<handler name="RequestURIOperationDispatcher"
class="org.apache.axis2.engine.RequestURIOperationDispatcher"/>

5Configuration

Web Services Stack Runtime

<handler name="SOAPMessageBodyBasedDispatcher"
class="org.apache.axis2.engine.SOAPMessageBodyBasedDispatcher"/>
<handler name="HTTPLocationBasedDispatcher"
class="org.apache.axis2.engine.HTTPLocationBasedDispatcher"/>
</phase>
<!-- System pre-defined phases -->
<!-- After Postdispatch phase module author or service
author can add any phase he or she wants -->
<phase name="MyOwnPhase"/>
<phase name="soapmonitorPhase"/>
</phaseOrder>

The attribute type represents the type of message flow and can be only one of the following
kinds:
■ In-Flow
■ Out-Flow
■ In-FaultFlow
■ Out-FaultFlow

The following diagram shows a sample message flow with default phases:

In addition to the <handler> child element allowed inside the phaseOrder, the other possible
element is the <phase> element. It represents available phases in the execution chain. Following
is the right way to specify phases inside phaseOrder:

<phase name="Transport"/>

In this example, name is the name of the phase.

There are two types of phases: pre-defined ones (required by Axis 2) and user-defined ones. In
addition to the pre-defined phases, a user can add user-defined phases to the flows in the con-
figuration file. For the in-flow, user-defined phases can be added only after the PostDispatch
pre-defined phase. This is because theAxis 2 engine keeps the flow related information attached
to the operations, and it is only after the Dispatch phase that the operation is found. There are
no rules restricting the placement of user-defined phases in the out-flow. If any of the user-
defined phases has the same name as that of a pre-defined phase, the engine fails to operate.

Configuration6

Web Services Stack Runtime

Web Services Stack 8.0 uses Axis 2 1.4 with the following definition of the default pre-defined
system phases for the In-Flows:
■ <phase name="Transport"/>
■ <phase name="Addressing"/>
■ <phase name="PreSecurity"/>
■ <phase name="Security"/>
■ <phase name="PreDispatch"/>
■ <phase name="Dispatch"/>
■ <phase name="RMPhase"/>
■ <phase name="OperationInPhase"/>
■ <phase name="soapmonitorPhase"/>

Add your own phases after the system ones in In-Flows.

Web Services Stack 8.0 usesAxis 2 1.4with the following definition of default pre-defined system
phases for the Out-Flows:
■ <phase name="soapmonitorPhase"/>
■ <phase name="OperationOutPhase"/>
■ <phase name="RMPhase"/>
■ <phase name="PolicyDetermination"/>
■ <phase name="MessageOut"/>
■ <phase name="PreSecurity"/>
■ <phase name="Security"/>

Add your own phases before the system ones in Out-Flows.

Important: Do not change the order of the system pre-defined phases in all four kinds of
flows. If you want to add a new phase, you can do that after the system pre-defined
phase, as is done in the default axis2.xml file.

7Configuration

Web Services Stack Runtime

5. Module References
If you want to engage a module system-wide, you can do so by adding a top-level module
element in the axis2.xml file. Following is an example of how to do it:

<module ref="addressing"/>

The parameter ref in the preceding example is the module name that is going to be engaged
system-wide.

6. Listeners (Observers)
In Axis 2, AxisConfiguration is observable, so that one can register observers into that, and they
are automatically informed whenever a change occurs in AxisConfiguration. The observers are
informed of the following events:
■ Deploying a service
■ Removing a service
■ Activating/Deactivating a service
■ Deploying a module
■ Removing a module

Registering observers is very useful for additional features (such as RSS feed generation). Those
observers provide service information to subscribers. The correct way of registering observers
is the following:

<listener class="org.apache.axis2.ObserverIMPL">
 <parameter name="RSS_URL" >http://127.0.0.1/rss</parameter>
 </listener>

The parameter class represents an observer implementation class. The implementation class
must implement AxisObserver interface, and the class has to be available in the classpath.

7. Message Formatters
The Web Services Stack axis2.xml file has defined new mesage formatters for the following
content types to extend the default functionality provided by Axis2:
■ ="text/xml"
■ ="application/xml"
■ "application/soap+xml"

Configuration8

Web Services Stack Runtime

The new definitions are as follows:

<messageFormatter contentType="text/xml"
 class="com.softwareag.formatters.RawXMLFormatter" />
<messageFormatter contentType="application/xml"
 class="com.softwareag.formatters.RawXMLFormatter" />
<messageFormatter contentType="application/soap+xml"
 class="com.softwareag.formatters.RawXMLApplicationXMLFormatter"/>

8. Message builders
TheWeb Services Stack axis2.xmlfile has defined newmesage builders for the following content
types to extend the default functionality provided by Axis2:
■ ="text/xml"
■ ="application/xml"
■ "application/soap+xml"

The new definitions are as follows:

<messageBuilder contentType="text/xml"
 class="com.softwareag.builders.RawXMLMessageBuilder"/>
<messageBuilder contentType="application/soap+xml"
 class="com.softwareag.builders.RawXMLMessageBuilder"/>
<messageBuilder contentType="application/xml"
 class="com.softwareag.builders.RawXMLMessageBuilder"/>

The precedingmessage builders extend the default functionality provided byAxis 2 and handle
some specific scenarios.

Note: See the axis2.xml file for additional information about the possible settings and their
values. The file also contains additional comments and samples.

Run-Time Configuration

This section provides information on the configuration of global runtime through the axis2.xml
file.

In Axis 2, there are three kinds of configuration files for configuring the system - the axis2.xml, the
services.xml, and the module.xml:

■ axis2.xml for the global configuration

The file is used for configuration of the client side and the server side of all the deployed web
services.

■ services.xml for the service configuration

9Configuration

Web Services Stack Runtime

The file is used for the configuration of web services and is only contained in service archives
(AAR).

Note: The service archive (AAR) is in theWEB-INF\services\ folder.

■ module.xml for the module configuration

The file is used for the configuration of modules and is only contained in module archives
(MAR).

Note: The module archive (MAR) is in theWEB-INF\modules\ folder.

There are some additional Web Services Stack-specific configuration files:

1. SMH Agents Configuration Files:
■ The deployclient.properties file that is used by SMH for the deployment functionality provided
by it

■ The argusagent.properties file that is used by SMH for the Agents

For information on the deployclient.propertiesfile and the argusagent.propertiesfile, see the overview
of The Administration Tool

2. Client-side Configuration Files:
■ The wsclientsec.properties file.

For information on the wsclientsec.properties file, see the heading "Client-side Configuration"
ofMessage-Level Security.

Following are details on the axis2.xml configuration and on the properway of adding and registering
elements in axis2.xml:

In Axis 2, there are two kinds of axis2.xml configuration files - one for the configuration of the web
service (server-side config file) and another one for configuration of the client of the web service
(client-side config file).

Following is a screenshot of the locations of the occurrences of the axis2.xml file.

Note: The installation folders of Web Services Stack are under \SoftwareAG\<Web Services
Stack> folder.

Configuration10

Web Services Stack Runtime

The first location is in the conf folder of the Web Services Stack tree. This is the file that is used for
configuring a stand-alone server (server-side configuration).

The second location is the conf folder of the <Web Services Stack> folder\repository folder. This is the
file for configurations of the client side of web services (client-side configuration).

The third location is the conf folder of the \<Web Services Stack> folder\webapp\META-INF folder.
This is the file for configurations of the server side of web services (server-side configuration).

■ axis2.xml files for the server-side configuration;

Two different versions of the axis2.xml file are used for configuration of the web service (server-
side config file)

The files for the web service (server-side config file) are placed into two different locations:

in \<Web Services Stack> folder\webapp\WEB-INF\conf after the Web Services Stack installation
(see the preceding screen capture);

in \<Web Services Stack> folder\conf\ for the configuration of a stand-alone server.

The file for the client of the web service (client-side config file) is usually stored in the so-called
client repository - \<Web Services Stack> folder\repository\conf.

Caution: The axis2.xml file contains important information such as the user name and
password for the administration console logon:

Systems administratorsmust change these default credentials and protect access to the axis2.xml
configuration file because the administration console is the key to many functional operations
including activating and deactivating of web services.

11Configuration

Web Services Stack Runtime

Server-side Configurations

Following are details on the HTTPS Deployment configurations performed at server side. These
are the configurations for secured access to the Admin and Deploy Servlets.

If you run the Web Services Stack runtime under both HTTP and HTTPS you may also want to
disable unsecured HTTP access to the Admin and Deploy Servlets. This can be done by uncom-
menting the two security constraints in theWEB-INF/web.xml.

The functionality of the Deploy Servlet is used in the Eclipse plug-in. For details, see Deploying
and Undeploying a Web Service Package.

For details on the Admin Servlet, see Admin Servlet.

To allow access over HTTPS only

■ Modify theWEB-INF/web.xml file by uncommenting the following two security constraints:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>DeployServlet</web-resource-name>
 <url-pattern>/sagdeployer/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <security-constraint>
 <web-resource-collection>
 <web-resource-name>AxisAdminServlet</web-resource-name>
 <url-pattern>/axis2-admin/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Configuration12

Web Services Stack Runtime

Client-side Configurations

There is only one Web Services Stack-specific configuration at client side.

Following are details on how to take advantage ofWS-Security by giving a value to the parameter
securityConfigFile:

<parameter name="securityConfigFile">wsclientsec.properties</parameter>

The value of the parameter in the preceding example is the relative (or absolute) path to the prop-
erties file that contains security-related information.

This file must be part of the client’s CLASSPATH.

For more information about the configuration ofwsclientsec.properties file, see the heading "Client-
side Configuration" fromMessage-Level Security.

MTOM in Web Services Stack

Apache Axis 2 supports Base64 encoding, SOAP with Attachments & MTOM (SOAP Message
Transmission Optimization Mechanism).

MTOM is a W3C specification that focuses on solving the "Attachments" problem.

Binary content often has to be re-encoded to be sent as text datawith SOAPmessages.MTOMallows
you to selectively encode portions of the message. In that case, you can send base64 encoded data
as well as externally attached raw binary data.

For details of MTOM, see the specification at http://www.w3.org/TR/2004/PR-soap12-mtom-
20041116/.

Following are some useful configurations that you need to get use of MTOM in Web Services
Stack.

The parameter <parameter name="enableMTOM">…</parameter> can be set at all permitted levels
(global level in axis2.xml, service level in services.xml, operation level in services.xml, etc.). It is up
to the user to decide where to apply MTOM and to set that parameter in axis2.xml or service.xml).

<parameter name="enableMTOM">…</parameter> can have three different values:

13Configuration

Web Services Stack Runtime

http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/
http://www.w3.org/TR/2004/PR-soap12-mtom-20041116/

■ "true"
If this value is set, then the engine always responds with MTOM-ized messages in cases of in-
cluded binary data of schema type "xmime:base64Binary". For example, <xsd:element
minOccurs="0" name="binaryData" type="xmime:base64Binary"/>.

■ "false"
If this value is set, then the response is always non-MTOM-ized, no matter whether the request
is MOTM-ized or not.

■ "optional"
If this value is set, then the response isMTOM-ized only if the request isMTOM-ized. Otherwise,
it is non-MTOM-ized.

Note: Setting the value to "optional" prevents you from failures.

Configuration14

Web Services Stack Runtime

3 Security

■ Message-Level Security ... 16
■ Transport-Level Security ... 24
■ Client Authentication .. 31

15

Web Services Stack has security facilities for securing themessage content, support forHTTP basic
authentication, SSL support for securing the communication channel, and user authentication
based on Software AG SIN LoginModules.

This chapter covers the following topics:

Message-Level Security

This section covers the following topics:

■ Overview
■ Server-side Configuration
■ Client-side Configuration

Overview

The symmetric message security and the asymmetric message security are both part of the WS-
Security specification. Message-level security is applied between the web service client and the
web service itself in both directions.

Message-level security secures themessage content itself, but it does not secure the communication
channel. This is in contrast to transport-level security, where the communication channel is secured.
To apply message security, you have to make several configurations on both the client side and
the server side.

There are many different ways you can configure message-level security, based on your security
needs. For examples, seeWeb Services Security: SOAPMessage Security 1.1 andWS-Security
Policy Language.

Web Services Stack provides an Eclipse plug-in graphical user interface that can be used to create
the needed security configuration. You can install the plug-in in Eclipse and use it to create web
service archives (that is, AAR archives). For more information, see Eclipse Plug-in.

Security configurations in Web Services Stack are based onWS-Security Policy specification.

Configuration16

Security

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf
http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

Server-side Configuration

You can configure the server side by changing the properties in the services.xml file

You need a keystore file that contains the X.509 certificate of the server. It may also contain client
public keys.

You can re-use initialized (loaded) keystore instances by caching them the first time they are
loaded. Any other configuration (such as key aliases and password callback handlers) will be re-
trieved from the Rampart configuration separately for every invocation.

You have the option to set caching globally in the axis2.xml for all services that are deployed in
Web Services Stack runtime, or for a service, service group, specific operation or message in the
services.xml descriptor of your service. However, keep inmind that keystore caching is permessage
because the keystore configuration itself may be different for each message.

To enable keystore caching

■ Set the parameter cacheCryptoInstances to “true”.

<parameter name="cacheCryptoInstances">true</parameter>

Note: When a service is undeployed or simply stopped any cached keystoreswill be removed.
You can deactivate (stop) services using theAdministrationmodule or deacivate and undeploy
(delete completely the service and all its files) using the Administration Tool of the System
Management Hub.

Depending on the security policy, the clientmay be required to send the token used for encryption
signature within the message itself. Thus, there is no need to have all client certificates at the
server side. Rampart, however, still verifies whether the certificates are trustworthy and therefore
requires that at least the certificate of the issuer is present in the truststore. In this case, instruct
Rampart/WSS4J (used to sign the request) to use the client’s certificate.

Following is the value assigned to the <encryptionUser> field:

<encryptionUser>useReqSigCert</encryptionUser>

“useReqSigCert” is a special fictional encryption user that is recognized by the security module.
In this case, your certificate (that is used to verify your signature) is used for the encryption of the
response. Thus, it is possible to have only one configured encryption user for all clients that access
the service.

17Configuration

Security

Look at the following example of symmetric binding security configuration in the services.xml
file:

<ramp:encryptionUser>client</ramp:encryptionUser>

The original value "client" is in fact an example of an alias for a client’s certificate that has to be
stored into the keystore used at server side.

If you want to authenticate a client who uses a user name token, you have to provide a password
callback handler class to validate the user name and the password received from the client.

When you provide a password using the callback handler class, youmake a check towards a given
authentication module. The module may be a JAAS module, or some other one.

Note: This authentication mechanism applies to the user name security token and is used
in a similar way with other security tokens, too.

The keystore properties can be configured by adding a Rampart custom policy assertion to the
services.xml file. Following is an example of symmetric binding security configuration in the ser-
vices.xml file:

<wsp:Policy wsu:Id="User defined"
xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:SymmetricBinding
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:ProtectionToken>
 <wsp:Policy xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy">
 <sp:X509Token
sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/IncludeToken/Never">
 <wsp:Policy>
 <sp:WssX509V3Token10/>
 <sp:RequireDerivedKeys/>
 </wsp:Policy>
 </sp:X509Token>
 </wsp:Policy>
 </sp:ProtectionToken>
 <sp:AlgorithmSuite
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy>
 <sp:Basic128/>
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>

Configuration18

Security

 <sp:Strict/>
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp/>
 </wsp:Policy>
 </sp:SymmetricBinding>
 <sp:Wss10 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <sp:Policy>
 <sp:MustSupportRefKeyIdentifier/>
 <sp:MustSupportRefIssuerSerial/>
 </sp:Policy>
 </sp:Wss10>
 <sp:SignedSupportingTokens
xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy">
 <wsp:Policy/>
 </sp:SignedSupportingTokens>

<ramp:RampartConfig xmlns:ramp="http://ws.apache.org/rampart/policy">
 <ramp:user>service</ramp:user>
 <ramp:encryptionUser>client</ramp:encryptionUser>

<ramp:passwordCallbackClass>com.softwareag.wsstack.pwcb.PasswordCallbackHandler</ramp:passwordCallbackClass>
 <ramp:signatureCrypto>
 <ramp:crypto provider="org.apache.ws.security.components.crypto.Merlin">
 <ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.type">JKS</ramp:property>
 <ramp:property
name="org.apache.ws.security.crypto.merlin.file">service.jks</ramp:property>
 <ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.password">openssl</ramp:property>
 </ramp:crypto>
 </ramp:signatureCrypto>
 <ramp:encryptionCypto>
 <ramp:crypto provider="org.apache.ws.security.components.crypto.Merlin">
 <ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.type">JKS</ramp:property>
 <ramp:property
name="org.apache.ws.security.crypto.merlin.file">service.jks</ramp:property>
 <ramp:property
name="org.apache.ws.security.crypto.merlin.keystore.password">openssl</ramp:property>
 </ramp:crypto>
 </ramp:encryptionCypto>
 </ramp:RampartConfig>
 </wsp:All>
 </wsp:ExactlyOne>
 </wsp:Policy>

You can configure the keystores for signing and encrypting using the customRampart configuration
(the code listing in bold in the preceding example.

19Configuration

Security

Configurations on the server side can also be done using the Web Services Stack Eclipse plug-ins.
With the Eclipse plug-in, you can complete the preceding configuration using graphical user in-
terface.

For more information, see Eclipse Plug-in,Web Services Security: SOAPMessage Security 1.1,
andWS-Security Policy Language.

Client-side Configuration

When you use the client API to invoke web services that require security, you can specify security
configuration settings through a properties file.

Specify in the client axis2.xml configuration file the file name and the path to it. This file must be
a part of the client’s CLASSPATH file. This file holds the required parameters for the client config-
uration, that is, the securityConfigFile parameter:

<parameter
name="securityConfigFile">D:/wsdev/SampleWSClient/wsclientsec.properties
</parameter>

If you do not define such a parameter, the client implementation looks for a wsclientsec.properties
file in the current working directory.

If a securityConfigFile parameter exists but the file specified cannot be found, you get an excep-
tion. If the parameter is not defined or a wsclientsec.properties file is not present in the current
working directory, then the configuration loading routine does not throw any exceptions.

Note: The loading of the security configuration settings takes place only if the web service
policy contains security assertions (that is only if the security module is engaged).

Following is the list of the supported configuration keys:

DescriptionKey

This is the user's name. It is used by the WS-Security functions for the following functions:USERNAME

■ The UsernameToken function sets this name in the UsernameToken.
■ The signing function uses this name as the alias name in the keystore to get the user's certificate and the private key to
perform signing.

■ The encryption function uses this parameter as fallback if ENCRYPTION_USER is not set.

.

The user's name for encryption. The encryption function uses the public key of this user's certificate to encrypt the
generated symmetric key. If this parameter is not set, then the encryption function falls back to the USERNAME parameter
to get the certificate.

ENCRYPTION_USER

Configuration20

Security

http://www.oasis-open.org/committees/download.php/16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf
http://specs.xmlsoap.org/ws/2005/07/securitypolicy/ws-securitypolicy.pdf

DescriptionKey

The alias of the key pair in the keystore, to get the private key used for the signature. If this is not set, the signature
function falls back to USERNAME property.

USER_CERTIFICATE_ALIAS

The STS alias is used as an encryption user in case of a STS authentication.STS_ALIAS

The policy validator callback class is responsible for validating the security header against the security policy. The default
callback class is the org.apache.rampart.PolicyBasedResultsValidator.

POLICY_VALIDATOR_CLASS

Defines whether timestamp precision is in milliseconds.TIMESTAMP_PRECISION_IN_MS

The default value is TRUE.

The expected values are TRUE or FALSE.

This parameter is passed towss4jWSSConfig. The setting concerns the Timestamp element thatmay be required/ included
in the security header. If the precision is set to be in milliseconds, the timestamp is written in milliseconds, otherwise
the time stamp is written in the following simple date format: yyyy-MM-dd'T'HH:mm:ss'Z'

Timestamp time-to-live in seconds. An integer value is expected. Default is 300.TIMESTAMP_TTL

Used in timestamp validation where the timestamp creation timestampmust not be later than current time plus the time
skew. The max time skew is an integer and is expected in seconds. Default is 300.

TIMESTAMP_MAX_SKEW

A class that implements the javax.security.auth.callback.CallbackHandler callback interface. The security
module loads the class and calls the callbackmethod to get the password. That classmust have a public default constructor
with no parameters.

PASSWORD_CALLBACK_HANDLER_CLASS

A list of Xpath expressions that refer to nodes that must be MTOM-optimized. The configured value is a semicolon
delimited list of Xpath expressions. Note that if this property is set, it overwrites any previously configured list of
expressions and does not add them to the list.

OPTIMIZE_PARTS_EXPRESSIONS

OPTIMIZE_PARTS_NAMESPACES A list of namespaces that is taken into consideration when searching for the nodes that are to be MTOM-optimized. It is
essential for the correct retrieval of the nodes from the document, that the namespace prefixes used in the
OPTIMIZE_PARTS_EXPRESSIONS list are recognized by the optimizing utility. It has by default following registered
namespaces:

 xmlns:ds=http://www.w3.org/2000/09/xmldsig#
 xmlns:xenc=http://www.w3.org/2001/04/xmlenc#
 xmlns:wsse=http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
 xmlns:wsu=http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

plus all the declared namespaces here. That property is expected as a semicolon delimited list of XML namespace
declarations (for example, OPTIMIZE_PARTS_NAMESPACES=xmlns:ns1=http://myns1;xmlns:ns2=http://myns2
).

Note: If this property is set, it overwrites any previously configured list of namespaces and does not add them to the
list.

The WSS4J-specific Crypto implementation that is to be used for generating the signature. It can be set to one of the
following:

CRYPTO_PROVIDER_SIGN

■ org.apache.ws.security.components.crypto.Merlin is the default one if the property is not set.
■ org.apache.ws.security.components.crypto.BouncyCastle

21Configuration

Security

DescriptionKey

The signature keystore provider.KEYSTORE_PROVIDER_SIGN

If not set the JVM uses the default (normally Sun’s) keystore provider. For additional information, refer to
java.security.Provider javadocs.

The signature keystore type. If not set, the JVMuses the default keystore type (normally “jks”). For additional information,
refer to the java.security.KeyStore#getDefaultType() method javadocs.

KEYSTORE_TYPE_SIGN

The signature keystore file.KEYSTORE_FILE_SIGN

The signature keystore password.KEYSTORE_PASSWORD_SIGN

The WSS4J-specific Crypto implementation to use for encryption. It can be set to one of the following:CRYPTO_PROVIDER_ENCRYPT

■ org.apache.ws.security.components.crypto.Merlin

This is the default one if the property is not set.
■ org.apache.ws.security.components.crypto.BouncyCastle

The encryption keystore provider. If not set the JVM uses the default (normally Sun’s) keystore provider.KEYSTORE_PROVIDER_ENCRYPT

For additional information, refer to java.security.Provider javadocs.

The encryption keystore type. If not set, the JVM uses the default keystore type (normally “jks”).KEYSTORE_TYPE_ENCRYPT

For additional information, refer to java.security.Provider javadocs.

The encryption keystore file.KEYSTORE_FILE_ENCRYPT

The encryption keystore password.KEYSTORE_PASSWORD_ENCRYPT

The WSS4J-specific Crypto implementation to use for protection in case of a STS. Currently, it can be set to one of the
following:

CRYPTO_PROVIDER_STS

■ org.apache.ws.security.components.crypto.Merlin is the default one if the property is not set.
■ org.apache.ws.security.components.crypto.BouncyCastle

The keystore provider used in case of a STS. If not set the JVM uses the default (normally Sun's) keystore providerKEYSTORE_PROVIDER_STS

For additional information, refer to java.security.Provider javadocs.

The keystore type used in case of a STS. If not set, the JVM uses the default keystore type (normally JKS).KEYSTORE_TYPE_STS

For additional information, refer to thejava.security.KeyStore#getDefaultType() method javadocs.

The keystore file used in case of a STS.KEYSTORE_FILE_STS

The keystore password used in case of a STS.KEYSTORE_PASSWORD_STS

The type of the keystore specified under KEYSTORE_SSL_LOCATION.SSL_KEYSTORE_TYPE

The password for the keystore specified under KEYSTORE_SSL_LOCATION. This property corresponds to the JSSE
javax.net.ssl.keyStorePassword system property.

SSL_KEYSTORE_PASSWORD

The keystore file for SSL authentication. This property corresponds to the JSSE javax.net.ssl.keyStore system
property.

KEYSTORE_SSL_LOCATION

For more information, refer to the JSSE Reference Guide.

Configuration22

Security

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

DescriptionKey

Note: Specifying the keystore is required only if the remote SSL server requires client authentication.

The truststore file for SSL authentication. The client requires that the server's certificate is installed in this truststore and
it is trusted. This property corresponds to the JSSE javax.net.ssl.trustStore system property. If the property is
not set the client falls back to <java-home>lib/security/jssecacerts and <java-home>/lib/security/cacerts in that order.

TRUSTSTORE_SSL_LOCATION

Note: For more information, refer to the JSSE Reference Guide.

The password for the truststore specified under TRUSTSTORE_SSL_LOCATION. This property corresponds to the
javax.net.ssl.trustStorePassword system property.

TRUSTSTORE_SSL_PASSWORD

Note: For more information, refer to the JSSE Reference Guide.

Note: The last five entries actually refer to transport-level security configuration (SSL set-
tings).

The configuration loading routine puts all those entries in the client options. Thus, you can overwrite
any particular option every other time Rampart is to be executed. For example, all security keys
can be specified programmatically using the Web Services Stack client options:

//create the WS Stack client:
IWSStaxClient client = ...

...

IWSOptions options = client.getWSOptions();

options.setProperty(WSClientConstants.KEYSTORE_PASSWORD_SIGN, "changeit");
options.setProperty(WSClientConstants.KEYSTORE_FILE_SIGN, "C:\\client.jks");

//set the options, overwriting the ones loaded from the wsclientsec.properties //file:
client.setOptions(options);

//execute the client
client.sendReceive(...);

The Rampart is afterwards configured through a Rampart assertion that is generated by the
RampartConfigLoader handler. The Web Services Stack client takes care of engaging that handler
if Rampart itself is engaged. The function of the RampartConfigHandler is basically to gather all
the security configuration keys, build up the Rampart configuration assertion, and put it as a
property in the message context options where Rampart can find it.

23Configuration

Security

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Transport-Level Security

This section covers the following topics:

■ Prerequisites for the Setup and Use of Transport-Level Security
■ SSL with Client Authentication
■ Setup and Use of HTTP Basic Authentication

Prerequisites for the Setup and Use of Transport-Level Security

Transport-level security addresses the problem of securing web service conversation by securing
the communication channel instead of the message data itself. Although the web service security
policy specification does not state that the transport-level security requires the use of HTTP
transport over SSL, it is the most typical use case.

This section provides details on the configuration and usage of web service communication over
HTTPS.

To enable transport-level security, configure your application server to use SSL:

To configure Tomcat to use SSL at server side

1 Navigate to <TOMCAT_INSTALL_DIR>\conf and open the server.xml file to configure an SSL
Connector.

Note: <TOMCAT_INSTALL_DIR> is the path where your copy of Tomcat is installed.

2 The configured scheme needed for the SSL communication is https. The required parameters
are listed in the following table:

DescriptionProperty name

The path to the keystore file that is used by Tomcat to decrypt the
requests and encrypt the responses.

KEYSTORE_FILE_PATH

The password that protects the keystore.KEYSTORE_PASSWORD

The alias that identifies the key pair in the keystore (in case there ismore
than one public-private key pair in the keystore).

ENCRYPTION_KEY_ALIAS

Configuration24

Security

Following is a sample code listing for an SSL connector configuration:

<Connector port="8443" maxHttpHeaderSize="8192" maxThreads="150"
 minSpareThreads="25" maxSpareThreads="75" enableLookups="false"
 disableUploadTimeout="true" acceptCount="100" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"

keystoreFile="="<KEYSTORE_FILE_PATH>"
keystorePass="<KEYSTORE_PASSWORD>"
keyAlias="<ENCRYPTION_KEY_ALIAS>"/>

Note: The value of the connector port is "8443" because this is the standard Tomcat
HTTPS port.

If a server declares explicitly the use of the HTTPS transport in its services.xml, you have to define
that such a transport listener is defined in the axis2.xml configuration file. Otherwise, the runtime
throws an exception while trying to deploy the respective service.

As of Web Services Stack ver. 8.x, the com.softwareag.wsstack.transport.http.HTTPListener
and the com.softwareag.wsstack.transport.http.HTTPSListener are introduced to solve the
problem when Web Services Stack is served by a servlet container.

In that case, the actual transport receiver is the SAGAdminServlet that registers itself as an HTTP
listener only. However, you still need to have an HTTPS listener configured in the axis2.xml file.
The com.softwareag.wsstack.transport.http.HTTPSListener is a full functional replacement
of the previously available org.apache.axis2.transport.http.HTTPSListener in Web Services
Stack 1.2.

To use the new HTTPS listener, uncomment the respective configuration in the axis2.xml file
shipped with Web Services Stack. Following is a sample configuration:

<transportReceiver name="https"
class="com.softwareag.wsstack.transport.http.HTTPSListener">
 <parameter name="port">8443</parameter>
 </transportReceiver>

In this code listing, the configured port number must be set to the port configured for the HTTPS
connector of the servlet container. The newly configured HTTPSListener is responsible for gener-
ating correct endpoint addresses in the WSDL and supplying a SessionContext, although the
actual requests are served by the SAGAdminServlet.

In this case, the SSL configuration uses only server authentication (see clientAuth="false" in the
preceding configuration) and the client encrypts automatically the requests with the server public
key.

25Configuration

Security

To configure SSL at the client side

1 The client must send a request against HTTPS endpoint with a port that is equal to the one
specified at server side (that is "8443").

2 Set the properties in your security configuration file. You can configure this file as a parameter
in the axis2.xml configuration file:

<parameter
name="securityConfigFile">your client security config file path
</parameter>

For information on the axis2.xml configuration file, seeWeb Services Stack Runtime.

If you do not define a security configuration file, the client uses information in the wsclient-
sec.properties file in the current working directory.

Or:

Use the Web Services Stack client API to set the required properties:

//create the WS Stack client:
IWSStaxClient client = ...

...

IWSOptions options = client.getWSOptions();

options.setProperty(WSClientConstants.KEYSTORE_PASSWORD_SIGN, "changeit");
options.setProperty(WSClientConstants.KEYSTORE_FILE_SIGN, "C:\\client.jks");

//set the options, overwriting the ones loaded from the wsclientsec.properties
//file:
client.setOptions(options);

//execute the client
client.sendReceive(...);

Configuration26

Security

The following security properties at the client side relate to the SSL configuration:

DescriptionProperty name

The type of the keystore specified under the
KEYSTORE_SSL_LOCATION.

SSL_KEYSTORE_TYPE

The password for the keystore specified under
KEYSTORE_SSL_LOCATION. This property corresponds to the
JSSE javax.net.ssl.keyStorePassword system property.

SSL_KEYSTORE_PASSWORD

The keystore file for SSL authentication. This property corresponds
to the JSSE javax.net.ssl.keyStore system property. Note

KEYSTORE_SSL_LOCATION

that specifying the keystore is required only if the remote SSL server
requires client authentication.

For more information, refer to the JSSE Reference Guide.

The truststore file for SSL authentication. The client requires that
the server's certificate is installed in this truststore and it is trusted.

TRUSTSTORE_SSL_LOCATION

This property corresponds to the JSSE
javax.net.ssl.trustStore system property. If the property is
not set, the client falls back to <java-home>lib/security/jssecacerts and
<java-home>/lib/security/cacerts in that order.

For more information, refer to the JSSE Reference Guide.

The password for the truststore specified under
TRUSTSTORE_SSL_LOCATION. This property corresponds to the
javax.net.ssl.trustStorePassword system property.

TRUSTSTORE_SSL_PASSWORD

For more information, refer to the JSSE Reference Guide.

SSL with Client Authentication

1. Server-side Configuration
The Tomcatweb servermay also be configured to use a client certificate to encrypt the transferred
data.

To use client authentication with Tomcat

Set the following parameters in the HTTPS connector settings in the Tomcat server.xml config-
uration file.

1 Set clientAuth to "true".

2 Set the keystore properties.

3 Set the truststore properties.

27Configuration

Security

http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/jsse/JSSERefGuide.html

Important: You can also configure the truststore location of Tomcat by starting it with the
respective Java system property, because if the truststore properties are not set in your
configuration, Tomcat uses the default Java trusted authority keystore.

To configure the truststore location of Tomcat by starting it with the respective Java system property

■ Add the following options when starting Tomcat:

-Djavax.net.ssl.trustStore=your_path_to/truststore.jks
-Djavax.net.ssl.trustStorePassword=your_password
)

Use the following settings to configure the truststore properties in the HTTPS connector:

DescriptionProperty name

The TrustStore file to use to validate client certificates.truststoreFile

The password to access the truststore. This defaults to the value of keystorePass.truststorePass

Add this element if your are using a different format for the truststore than you are
using for the keystore. The keystoreType defaults to "JKS".

truststoreType

Look at the following example to see a sample of the connector configuration:

<Connector port="8443" maxHttpHeaderSize="8192"
maxThreads="150" minSpareThreads="25" maxSpareThreads="75"
enableLookups="false" disableUploadTimeout="true"
acceptCount="100" scheme="https" secure="true"
clientAuth="true" sslProtocol="TLS"
keystoreFile="<KEYSTORE_FILE_PATH>"
keystorePass="<KEYSTORE_PASSWORD>"
keyAlias="<KEY_ALIAS>"
truststoreFile="<TRUSTSTORE_FILE_PATH>"
truststorePass="<TRUSTSTORE_PASSWORD>"
truststoreType="<TRUSTSTORE_TYPE>"/>

Note: If you encounter a problem with a service that declares the usage of the HTTPS
transport in its services.xml descriptor, uncomment the respective HTTPS listener config-
uration in the axis2.xml file shipped with Web Services Stack. For details, see how to
configure Tomcat to use SSL at server side in Prerequisites for the Setup and Use of
Transport-Level Security

Configuration28

Security

2. Client-side Configuration
It is also possible to use client certificate with theWeb Services Stack client, although additional
work is needed to use the Java 1.4 compatible HTTP sender (utilizing the Jakarta Commons
HttpClient component). In order tomake the Commons HttpClient use client certificate for the
encryption one needs to register a new HTPPS socket factory since the default one does not
handle the case with the client certificate. The Commons HttpClient library does not provide
the appropriate socket factory implementation but there is one in the contribpackage (commons-
httpclient-contib) that is part of the commons-httpclient project, namely
AuthSSLProtocolSocketFactory. This can be set in the following way:

IWSStaxClient client = ...
...
ProtocolSocketFactory socketactory = new AuthSSLProtocolSocketFactory(
 new File("keystore.jks").toURL(),
 "keystorePassword",
new File("truststore.jks").toURL(),
 "truststorePassword");
Protocol authhttps = new Protocol("https", socketactory, 8443);
client.getWSOptions().setProperty(HTTPConstants.CUSTOM_PROTOCOL_HANDLE,
 authhttps);

Setup and Use of HTTP Basic Authentication

To use the HTTP basic authentication, you must configure a specific endpoint that is to use the
HTTP basic authentication scheme. The needed configuration is not server-specific and is part of
the J2EE specification.

To configure a specific endpoint to use the HTTP basic authentication scheme

1 Open your web application descriptor of Web Services Stack (the web.xml file that is located
in the \webapps\wsstack\WEB-INF directory).

2 Add a security constraint for a particular URL.

In the following sample code listing, the constraint is the web service endpoint. The relative
URL that you are securing is <url-pattern>/services/ut_asym_xpath</url-pattern>:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>Protected Pages</web-resource-name>
 <url-pattern>/services/ut_asym_xpath</url-pattern>
 <http-method>POST</http-method>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>

29Configuration

Security

</security-constraint>
<security-role>
 <role-name>tomcat</role-name>
 <description>Web Services Stack user realm</description>
 </security-role>
<login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>Basic Authentication</realm-name>
</login-config>

Note: Set <role-name>tomcat</role-name> to configure a role that ensures client authentic-
ation. This configuration is server-specific.

The httpmethods from the preceding code listing can be used for different purposes.

Note: For more information, see Java™ Servlet Specification version 2.4.

With the <http-method> tag, you can list the "http"methods that require authentication. By remov-
ing <http-method>GET</http-method>, you can access the ?wsdl formed URLwithout authentic-
ation (for example, http://myhost:port/MyWebContext/MyService?wsdl). If no httpmethods are listed
explicitly in the configuration, all httpmethods require authentication by default.

When using Tomcat, you can use the HTTP basic authentication with tomcat-users.xml.

Note: Software AG Tomcat Kit is not installed in one location as with any other arbitrary
installation of Apache Tomcat and does not contain a default tomcat-users.xml. If tomcat-
users.xml is missing in your Tomcat configuration directory (\Documents and Settings\All
Users\Application Data\Software AG\Tomcat\v5.5\conf), you must create it.

To use the HTTP basic authentication with tomcat-users.xml

1 Define the role name in the tomcat-users.xml.

Following is a sample of a tomcat-users.xml file:

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>
</tomcat-users>

Note: For information on how roles are defined in Tomcat, see Tomcat documentation.

2 Restart Tomcat for the changes to take effect.

Once you have configured your endpoint for HTTP basic authentication, you can configure your
web service client, so that it is aware of the changes.

Configuration30

Security

http://jcp.org/en/jsr/detail?id=154

To configure your web service client to use HTTP basic authentication

1 Supply the HttpTransportProperties.Authenticator object

2 Set the user name to “tomcat”.

3 Set the password to “tomcat”.

4 Set this configuration as an option of the web service client.

Following is a sample code listing of a web service client implementation when you want to use
HTTP basic authentication:

IWSStaxClient client = (IWSStaxClient)WSClientFactory.newClient(
 WSClientConstants.STAX_WSCLIENT,
 "C:/ut_asym_xpath.wsdl",
 null,
 null,
 "C:\\Software AG\\WS-Stack\\repository");

HttpTransportProperties.Authenticator auth = new
 HttpTransportProperties.Authenticator();
auth.setUsername ("tomcat");
auth.setPassword ("tomcat");
auth.setPreemptiveAuthentication (true);

IWSOptions options = client.getWSOptions();
options.setProperty(
 org.apache.axis2.transport.http.HTTPConstants.AUTHENTICATE,auth);
client.setOptions(options);

Important: In the above example, you must supply the HttpTransportProperties. Authen-
ticator object first, and then set up a user name and a password according to the configured
Tomcat role. Finally, you need to set this configuration as an option of the web service's
client.

Client Authentication

Web Services Stack provides amechanism for authenticating clients inWeb Services Stack runtime
layer using the common JavaAuthentication andAuthorization Service (JAAS) security framework.

Software AG Security Infrastructure (SIN) provides you with an implementation of JAAS
LoginModules for client authentication.

When you log on using JAAS LoginContext, a javax.security.auth.Subject is produced. That
subject contains user principals and credentials and is available to anyone on the execution
chain through the message context.

31Configuration

Security

Web Services Stack collects all available security credentials from the client request and populates
them in SIN SagCredentials. After that, the logon process is performed in the policy validator
implementation of Rampart.

The information is organized under the following headings:

■ JAAS Configuration
■ Security Credentials
■ Implementation of Password Callback Handlers
■ Implementations of Policy Validation Callbacks
■ Authentication Steps

JAAS Configuration

Before you can log on, you must configure JAAS. For information about the JAAS configuration
file, see SIN documentation in the webMethods Product Suite 8.0 folder on the Software AG Docu-
mentation Web site.

Security Credentials

There are two types of user credentials that are used for authentication in Web Services Stack:

■ Transport-level credentials
Transport-level credentials refer to the communication channel used for the message exchange
and are specific for the respective transport that is used. Web Services Stack extracts those cre-
dentials from the HTTP(S) transport only:
■ User name and password, in the case of a basic HTTP authentication
■ A client certificate chain in the case of a client certificate used for encryption of the transferred
data

■ Message-level credentials
In the case of message-level credentials, Web Services Stack can extract those from the SOAP
security header:
■ A user name and a password if you use UsernameTokenwith plain text password
■ X509Certificate used for the signatures if there are signed parts or elements in the message

Configuration32

Security

http://documentation.softwareag.com
http://documentation.softwareag.com

Implementation of Password Callback Handlers

You use password callback handlers in particular identifiers to provide passwords, which are
used in the following use cases:

■ Passwords that are needed by theWeb Services Stack securitymodule to build user name tokens
and to create signatures to send messages.

■ Passwords that are required for validation of incoming username tokens and decryption of the
content of incoming messages.

The callback handlers can retrieve passwords from configuration files, data bases, LDAP servers,
or other application components which are used for user management (for example Security In-
frastructure).

Web Services Stack has a predefined set of password callback handlers, which facilitate different
scenarios for retrieving passwords. You can use these handlers directly or you can develop your
own password callback handlers out of them. The following password callback handlers are
available:

■ com.softwareag.wsstack.pwcb.ConfigFilePasswordCallbackHandler

The password callback handler retrieves identifier-password pairs from a configuration file and
then loads the pairs which can be used to find the needed password for a particular identifier.
The configuration file must be in XML format and similar to the configuration file of the Web
Services Stack (axis2.xml). You can provide a configuration file to the callback handler as follows:
■ You can specify the configuration file in the Web service archive. In the services.xml file, you
add a PWCBConfigFile parameter, which is set to point to the configuration file resource on
the service class path. The class path includes the service archive, the libraries which are in
the service archive, the web application class path (all jar files inWEB-INF/lib and theWEB-
INF/classes class folder) and so on.

<serviceGroup>
 <service name="Sample_Web_Service">
 <parameter name="PWCBConfigFileLocation"> configuration_file_location
</parameter>
 ...
 </service>
</serviceGroup>

■ If you do not specify the configuration file resource, by default the callback handler searches
for a resource with name users.xml in the service class path. If it is not available, a
FileNotFoundException is thrown.

33Configuration

Security

The same password callback handler is also available at the client side if there is no service
archive. Then, presumably, the configuration file is users.xml and is searched on the class path
of the client. Then it is loaded as a resource.

■ com.softwareag.wsstack.pwcb.LdapPasswordCallbackHandler

The password callback handler retrieves identifier-password pairs from an LDAP server and
then loads the pairs which can be used to find the needed password for a particular identifier.
To retrieve data from the server, you set the URL of the LDAP server as well as some more
properties in the handler. These properties are passed to the handler in a common properties
file. You can provide a common properties file to the callback handler as follows:
■ You can specify the location of the common properties file in the Web service archive. In the
services.xml file, you add a PWCBLDAPPropFile parameter, which is set to point to the location
of the properties file. The location of the file can be any valid path from which the handler
can load the file (for example, conf/my-ldap.properties).

<serviceGroup>
 <service name="Sample_Web_Service">
 <parameter name="PWCBLDAPPropFileLocation"> common_properties_file_location
</parameter>
...
 </service>
</serviceGroup>

■ You can set the name of the common properties file to ldap.properties and place the file into
the root directory of the Web service archive. If you do not provide an explicit properties file
in the services.xml file, the password callback handler is configured to use a default properties
file (ldap.properties) from the root directory.

■ You can set the name of the common properties file to ldap.properties and place the file into a
Java archive (.jar file) which resides in the /WEB-INF/lib orWEB-INF/classes directories (for
example, pwcb-server.jar). If the password callback handler does not discover the properties
file in a pre-set directory, or in the root directory of the Web service archive, it searches for
the file into a central location on the class path of the handler and loads the properties file as
a resource. If this process is unsuccessful, a FileNotFoundException is thrown.

The same password callback handler is also available at the client side if there is no service
archive. Then, presumably, the configuration file is users.xml and is searched on the class path
of the client. Then it is loaded as a resource.

The Web Services Stack installation contains samples of custom password callback handlers (on
provider and consumer sides) which retrieve identifier-password pairs from configuration files
or LDAP servers. You canfind the samples in the following location: /samples/PWCBHandlersExample.
The folder contains the following projects:

■ PWCBHandlersExampleServices

Configuration34

Security

This project enables you to create custompassword callback handlers for the sampleWeb service
providers. The sampleWeb service archives are ready to be deployed on the application server.

■ PWCBHandlersExampleClient

This project enables you to create custom client password callback handlers for the consumption
of the sampleWeb service providers. The consumer samples are ready to be executed standalone
and do not require an application server which hosts the Web service providers. However, you
can modify the clients to discover and consumeWeb services that reside and are configured on
a remote application server. Formore information, see the readme.txtfilewhich is in the consumer
project.

Note that these sample projects enable you to create custom password callback handlers. They do
not enable you to reuse handlers which retrieve identifier-password pairs from a common central
location.

Implementations of Policy Validation Callbacks

In the wsstack-jaas.jarmodule, there are ready-to-use policy validator implementations that may
be configured and used easily to log on.

Following are examples of those implementations:

■ com.softwareag.wsstack.jaas.callback.SimpleSINPolicyValidatorCallback
Attempts to log on with all available credentials (message-level credentials are with higher
priority over transport-level credentials) against the JAAS logon context. Specify the login context
name as a parameter under the key sin.jaas.login.context. The resulting JAAS login subject is available
as a property of the message context under the key sin.jaas.subject.

■ com.softwareag.wsstack.jaas.callback.ServletRequestLoginPolicyValidatorCallback
Attempts to log on using the servlet request resource populated in the SIN credentials list.
Specify the login context name as a parameter under the key sin.jaas.login.context. The resulting
JAAS logon subject is available as a property of the message context under the key sin.jaas.subject.

■ com.softwareag.wsstack.jaas.callback.MultiLoginPolicyValidatorCallback
Attempts to log on first with transport-level credentials and then again with message-level cre-
dentials. Specify the login context name as a parameter under the key sin.jaas.login.context. The
name of the transport login context is available as a parameter under the key
sin.jaas.transport.login.context (the default value is WSS_Transport_IS) and formessage-level credentials
logging on under sin.jaas.msg.login.context (the default value is WSS_Message_IS). The resulting subjects
are respecivtely populated as properties of themessage context under the keys sin.jaas.transport.subject
and sin.jaas.msg.subject.

These policy validator callbacks extend the standard callback that is provided by Rampart. This
means that all basic functionality for validating security policy conformation is still present.

Note: To use one of the preceding callbacks, specify the policyValidatorCbClass in the
Rampart policy assertion.

35Configuration

Security

Authentication Steps

This section provides you with guidelines on the authentication steps when you use SIN in Web
Services Stack.

To authenticate using SIN

You must include the path to SIN JAR in the classpath. All classes that are used in the JAAS con-
figuration file must also be set in the classpath.

1 Configure the JAAS configuration file.

2 Configure a web service to do the following:

■ Specify the policyValidatorCbClass in the Rampart configuration policy assertion.

Following is a sample code listing of the Rampart policy assertion with specified
policyValidatorCbClass:

<ramp:RampartConfig xmlns:ramp="http://ws.apache.org/rampart/policy">
 <ramp:user>service</ramp:user>
 <ramp:encryptionUser>client</ramp:encryptionUser>
<ramp:policyValidatorCbClass>
com.softwareag.wsstack.jaas.callback.MultiLoginPolicyValidatorCallback
 </ramp:policyValidatorCbClass>

■ Specify the LoginContext name as a parameter on one of the web service levels (global
level in axis2.xml; service group level in the services.xml; service level in services.xml; operation
level in services.xml; message level in services.xml)

With those settings, you are authenticated when logging on by SIN.

For information about the authentication steps, see SIN documentation in the webMethods Product
Suite 8.0 folder on the Software AG Documentation Web site.

Configuration36

Security

http://documentation.softwareag.com

4 Transports

■ TCP Transport .. 38
■ JMS Transport .. 41
■ Mail Transport .. 45

37

Web Services Stack supports sending and receiving of messages over the following transports:

■ HTTP
■ TCP
■ JMS
■ Mail

HTTP is the single transport activated in the defaultWeb Services Stack installation. The following
instructions show how to configure and activate the other transports supported by Web Services
Stack.

The information is organzied under the following headings:

TCP Transport

There are no prerequisites for the activation of TCP transport.

■ Activating TCP Transport (Server-side Configuration)
■ Enabling WS-Addressing
■ Forcing Deployment Over TCP Transport Only
■ Invoking a Web Service Over TCP Transport (Client-side Configuration)

Activating TCP Transport (Server-side Configuration)

To activate TCP transport in Web Services Stack

1 Go to the web application server where the Web Services Stack runtime is installed.

2 Open the axis2.xml configuration file under the /webapps/wsstack/WEB-INF/conf directory.

3 Uncomment the sections that define the transport receiver and transport sender with
name="tcp":

<transportReceiver name="tcp" ... />
<transportSender name="tcp" ... />

The only parameter required for the transport receiver is its port number. The suggested default
value is 6060.

Note: Restart the Web Services Stack runtime for the modifications to take effect.

Configuration38

Transports

Enabling WS-Addressing

Since the TCP transport has no application level headers (and no target endpoint URI), you need
WS-Addressing to dispatch the service.

Note: WS-Addressing is not enabled in the default Web Services Stack installation.

To enable WS-Addressing

■ Engage theWS-Addressing module globally by adding in the axis2.xml configuration file the
following line:

<module ref="addressing"/>

Or:

Engage the WS-Addressing module on a <service> level. Engagement is for the service that
is deployed on TCP transport.

You can enable WS-Addressing in the services.xml configuration file by adding the following
line:

<service ...>
 <transports>
 <transport>tcp</transport>
 </transports>
 <module ref="addressing"/>
 ...
 </service>

Or:

EnableWS-Addressing by using theWeb Services Stack Eclipse plug-in. To do so, selectEnable
WS-Addressing from theModules list in the Services tab.

For more information about working with theWeb Services Stack Eclipse plug-in, see Eclipse
Plug-in.

39Configuration

Transports

Forcing Deployment Over TCP Transport Only

If not explicitly configured, a web service is deployed over all activated transports in the Web
Services Stack runtime. In this case, the web service is accessible at all enabled endpoints.

You may, however, want to restrict a web service to be accessible only over TCP transport.

To deploy over TCP transport only

■ Configure the web service’s services.xml file by adding the following on the <service> level:

<service ...>
 <transports>
 <transport>tcp</transport>
 </transports>
 ...
</service>

Or:

Use Web Services Stack Eclipse plug-in at deployment time.

To do this, select TCP Transport from the list of transports in the Services tab.

Note: Since TCP transport has no application level headers, and thus no target endpoint
URI, you need WS-Addressing to dispatch the service. If WS-Addressing is not globally
enabled, you have to enable it for the service.

Invoking a Web Service Over TCP Transport (Client-side Configuration)

To make a call to a web service over TCP transport, configure the client’s repository.

To invoke a web service over TCP

1 Uncomment the sections that define the transport receiver and transport sender with
name=“tcp” in the client’s axis2.xml configuration file:

<transportReceiver name="tcp" ... />
<transportSender name="tcp" ... />

Configuration40

Transports

2 Engage globally the WS-Addressing module (addressing.mar) in the client’s axis2.xml file:

<module ref="addressing"/>

3 Ensure theWS-Addressing module (addressing.mar) is present in the /modules directory in the
client’s repository.

JMS Transport

■ Prerequisites
■ Activating JMS Transport (Server-Side Configuration)
■ Forcing Deployment Over JMS Transport Only
■ Invoking a Web Service Over JMS Transport (Client-side Configuration)

Prerequisites

Following are guidelines to the prerequisites for the activation of JMS transport.

To install and start a message broker

In order to achieve JMS communication, you need a message broker that handles the distribution
of messages between communicating parties. Web Services Stack does not include a built-in
message broker. This requires the use of an external one. Apache ActiveMQ is an open source
message broker that you candownload fromhttp://activemq.apache.org/activemq-411-release.html.

■ Extract the files from the downloaded archive into a directory of your choice. For example,
ACTIVEMQ_HOME.

After the installation, ActiveMQ is running with a basic configuration that is sufficient for its in-
tegration with the Web Services Stack.

Note: If youwant to terminate the broker, type the CTRL-C command in the comand prompt
in which it is running.

Run the ActiveMQ message broker

1 Open the command prompt

2 Nnavigate to the ACTIVEMQ_HOME/bin directory

3 Run the activemq.bat file.

You can find more about installing and using Apache ActiveMQ open source message broker at
http://activemq.apache.org/getting-started.html.

41Configuration

Transports

http://activemq.apache.org/activemq-411-release.html
http://activemq.apache.org/getting-started.html

To provide additional libraries for the Web Services Stack runtime

Configuring Web Services Stack to work with Apache ActiveMQ message broker requires the
provision of additional libraries for the Web Services Stack runtime.

1 Go to the ACTIVEMQ_HOME/lib directory.

2 Copy the following libraries to the <web_app_server>/webapps/wsstack/WEB-INF/lib directory
of the Web Services Stack runtime in the web application server:

■ activemq-core-4.1.1.jar
■ activeio-core-3.0.0-incubator.jar
■ geronimo-jms_1.1_spec-1.0.jar
■ geronimo-j2ee-management_1.0_spec-1.0.jar

Note: You need those libraries for any client that invokes a service over JMS transport.

Activating JMS Transport (Server-Side Configuration)

To activate JMS transport in Web Services Stack

1 Go to the web application server, where the Web Services Stack runtime is installed

2 Open the axis2.xml configuration file under the /webapps/wsstack/WEB-INF/conf directory.

3 Uncomment the sections that define the transport receiver and transport sender with
name="jms":

<transportReceiver name="jms" ... />
 <transportSender name="jms" ... />

4 Define the custom connection factories

You can define custom connection factories as parameters under JMS transport receiver. They
can be used by the services deployed over JMS transport. Refer to the axis2.xml configuration
file to see the sample connection factories that the JMS transport receiver configuration includes.

Note: One of the connection factories is named as default for use by services that do
not explicitly specify in their services.xml configuration file the connection factory they
want to use.

Those connection factories are associated with Apache ActiveMQ implementation whose
libraries are required for the Web Services Stack runtime. Each connection factory specifies
the following parameters:

Configuration42

Transports

■ An initial naming factory class
■ Naming provider URL
■ The JNDI name of an actual JMS connection factory.

Web Services Stack can run with the default configuration of Apache ActiveMQ. In this case,
you only have to uncomment the JMS transport receiver and JMS transport sender configur-
ation in the axis2.xml file.

Note: You must always run the message broker before you start Web Services Stack.

Forcing Deployment Over JMS Transport Only

If not explicitly configured, a web service is deployed over all activated transports in the Web
Services Stack runtime. However, you can restrict a web service to be deployed over JMS transport
only.

To deploy over JMS transport only

■ Configure the web service’s services.xml file by adding the element in bold:

<service ...>
<transports>
 <transport>jms</transport>
 </transports>
 ...
</service>

Or:

UseWeb Services Stack Eclipse plug-in at deployment time by selecting JMS Transport from
the list of transports in the Services tab.

Note: You can also specify the destination where the service listens for messages, as well
as the name of the connection factory to be used. The service can use one of the connection
factories defined within the JMS transport receiver in the axis2.xml configuration file.

43Configuration

Transports

To specify the name of the connection factory

■ Configure the web service’s services.xml file by adding the element in bold:

<service ...>
 <transports>
 <transport>jms</transport>
 </transports>
 <parameter name="transport.jms.ConnectionFactory"
locked="true">myQueueConnectionFactory</parameter>
 <parameter name="transport.jms.Destination"
locked="true">dynamicQueues/TestQueue</parameter>

...
 </service>

Note: Those values are samples. The connection factory can be any of the connection
factories defined in axis2.xml and the destination name can be anything.

Or:

Use Web Services Stack Eclipse plug-in to add the two parameters in the table in the section
Properties in the Services tab.

To use the Web Services Stack Eclipse plug-in to add the first of the preceding parameters to the table in
the section Properties in the Services tab

1 Choose the Add button.

2 Type "transport.jms.ConnectionFactory" for name.

3 "myQueueConnectionFactory" (or another connection factory defined in axis2.xml) for value.

4 SelectOK.

To use the Web Services Stack Eclipse plug-in to add the second of the preceding parameters to the table
in the section Properties in the Services tab

1 Choose the Add button.

2 Type "transport.jms.Destination" for name.

3 "dynamicQueues/TestQueue" (or other value of your choice) for value.

4 SelectOK.

Note: These parameters are optional. If they are not specified, the service uses the default
connection factory (named as default in the configuration of the JMS transport receiver in
the axis2.xml file) and listens for messages on a JMS queue by the same name as the name
of the service.

Configuration44

Transports

For more information about working with the Web Services Stack Eclipse plug-in, see Eclipse
Plug-in.

Invoking a Web Service Over JMS Transport (Client-side Configuration)

To make a call to a web service over JMS transport, you have to configure the client’s repository.

To invoke a web service over JMS

1 Uncomment the sections that define the transport receiver and transport sender with
name=“jms” in the client’s axis2.xml configuration file:

<transportReceiver name="jms" ... />
<transportSender name="jms" ... />

2 Engage globally the WS-Addressing module (addressing.mar) in the client’s axis2.xml file.

<module ref="addressing"/>

3 Ensure theWS-Addressing module (addressing.mar) is present in the /modules directory in the
client’s repositor.

Mail Transport

The information is organized under the following headings:

■ Prerequisites
■ Activating Mail Transport
■ Forcing Deployment Over Mail Transport Only
■ Invoking a Web Service Over Mail Transport
■ Sample Client Configuration

Prerequisites

To activate mail transport in Web Services Stack, you need the following prerequisites:

■ Install, Configure and Start a Mail Server

45Configuration

Transports

■ Create Accounts in the Mail Server

Install, Configure and Start a Mail Server

The activation of mail transport in Web Services Stack requires a mail server that transfers e-mail
messages. The Apache Java Enterprise Mail Server (James) is an open source SMTP and POP3
mail server that is used by Web Services Stack.

To install Apache James server

1 Download the archive with the binary distribution of the Apache James mail server from ht-
tp://james.apache.org/download.cgi.

2 Extract the files from the downloaded archive to a JAMES_HOME directory of your choice.

3 Start and stop the mail server once so that it unpacks its configuration files.

To open the configuration files for editing

1 Open the command prompt.

2 Navigate to JAMES_HOME/bin directory.

3 Run run.bat to start the server.

4 Use the CTRL+C command to stop the mail server.

5 Type the ipconfig/all command to check your network configuration.

Note: You need this information for the next instruction (configuring the DNS servers).

To configure the DNS servers in the mail server

1 Open the config.xml file under the JAMES_HOME/apps/james/SAR-INF directory

2 Find the tag <dnsserver> and enter the IP address of each DNS server from your network
configuration as shown in the following example:

<dnsserver>
 <servers>
 <server>[DNS.Server.IP.address]</server>
 <server>...</server>
 </servers>
 ...
</dnsserver>

Note: Apache James mail server requires the valid IP addresses of the DNS servers in
your network configuration.

Configuration46

Transports

http://james.apache.org/download.cgi
http://james.apache.org/download.cgi

3 Start the mail server again.

You can readmore about the configuration of Apache Jamesmail server in the "Configuring James"
section of the James server documentation at http://james.apache.org/server/2.3.1/index.html.

Create Accounts in the Mail Server

After you have installed and configured your mail server, you have to create accounts. You need
to create a mail account that represents the e-mail address of the Web Services Stack runtime.
Additional accounts can be created to correspond to different clients.

To create an account

1 Start the Apache James mail server if it is not started.

To startApache James Server, run the console commandprompt, navigate to JAMES_HOME/bin
directory and run run.bat.

2 Start James Remote Manager Service (this tool is used for administration purposes).

Run the console command prompt and type the following telnet command:

telnet localhost 4555

Port number 4555 is the default port, where the RemoteManager Service starts. It is configured
in the James configuration file (JAMES_HOME/apps/james/SAR-INF/config.xml). If you have
changed the default port number in a previous step, use the new value in the preceding
command

3 Log on the Remote Manager. You are prompted for the logon ID and password. They are
configured in the James configuration file (JAMES_HOME/apps/james/SAR-INF/config.xml).
The initial values are "root" for both, the ID and the password, unless you have changed them.

Type "root" for the logon ID and for the password.

4 Create the account. The command for adding a new user is adduser username password.
After executing the command, you get a confirmation.

47Configuration

Transports

http://james.apache.org/server/2.3.1/index.html

Type the following command:

adduser server wsstack

5 Exit the Remote Manager Service using the quit command.

After you have executed the commands in the command prompt, you get a result similar to
the following one:

>telnet localhost 4555

 JAMES Remote Administration Tool 2.3.1
 Please enter your login and password
 Login id:
 root
 Password:
 root
 Welcome root. HELP for a list of command
 adduser server wsstack
 User server added
 quit
 Bye

Activating Mail Transport

There are prerequisites for the activation of mail transport. Refer to the folowing instruction and
the description of the required parameters for the transport receiver and the transport sender.

To activate mail transport in Web Services Stack

1 Go to the /webapps/wsstack/WEB-INF/conf directory.

2 Open the axis2.xml configuration file.

3 Configure the context root of Web Services Stack runtime.

In the axis2.xml file, find the parameter with the name contextRoot. Uncomment it (if it is
commented) and ensure that its value is "wsstack":

<parameter name="contextRoot" locked="false">wsstack</parameter>

4 Activate the mail transport receiver and the mail transport sender.

Configuration48

Transports

In the axis2.xml file find and uncomment the sections that define the transport receiver and
the transport sender with name=“mailto”:

<transportReceiver name="mailto" … />
<transportSender name="mailto" … />

The parameters under the transport receiver and the transport sender have fake default values.
They need to be verified.

Required Parameters for the Transport Receiver

The following table lists the required paramters and their description:

DescriptionParameter

The host name (or IP address)where the Jamesmail server is running.

If the server is running on the samemachine as theWeb Services Stack
runtime, then the value can be "localhost" or "127.0.0.1".

mail.pop3.host

The user name of a user registered in the James mail server.

The user name in the following sample code is the user registration
from the example in the preceding topic "Creating accounts in the
mail server".

mail.pop3.user

The user’s corresponding password for his account.transport.mail.pop3.password

The value "pop3" is expected for that parameter.mail.store.protocol

This parameter is responsible for the followng values:transport.mail.replyToAddress

■ Supplies the endpoint reference for the response and represents
the server email address.

■ Contains theuser name specified in themail.pop3.userparameter
and the server name of James mail server, separated by the @ sign.

Note: The server name is configured in the
JAMES_HOME/apps/james/SAR-INF/config.xml configuration file. If
you have not specified a different one, the initial value is "localhost".

Controls the time interval (in milliseconds) for checking the mail
server for new messages.

transport.listener.interval

Note: This parameter is optional. If omitted, its default value is =
"3000 " milliseconds (which equals to 3 seconds).

49Configuration

Transports

Following is a sample code listing of the usage of the required parameters for the transport
receiver:

<transportReceiver name="mailto"
class="org.apache.axis2.transport.mail.SimpleMailListener">
 <parameter name="mail.pop3.host">localhost</parameter>
 <parameter name="mail.pop3.user">server</parameter>
 <parameter name="transport.mail.pop3.password">wsstack</parameter>
 <parameter name="mail.store.protocol">pop3</parameter>
 <parameter name="transport.mail.replyToAddress">server@localhost</parameter>
 <parameter name="transport.listener.interval">3000</parameter>
</transportReceiver>

Required Parameters for the Transport Sender

The following table lists the required paramters and their description:

DescriptionParameter

The host name (or IP address), where James mail server is running.

It corresponds to the mail.pop3.host parameter under the Mail
transport receiver.

mail.smtp.host

Corresponds to the value of mail.pop3.user parameter of the
transport receiver.

mail.smtp.user

Corresponds to the value of transport.mail.pop3.password
parameter of the transport receiver.

transport.mail.smtp.password

Corresponds to the value of mail.transport.replyToAddress
parameter of the transport receiver.

mail.smtp.from

Following is a sample code listing of the usage of the required parameters for the transport
sender:

<transportSender name="mailto"
class="org.apache.axis2.transport.mail.MailTransportSender">
 <parameter name="mail.smtp.host" locked="false">localhost</parameter>
 <parameter name="mail.smtp.user">server</parameter>
 <parameter name="transport.mail.smtp.password">wsstack</parameter>
 <parameter name="mail.smtp.from">server@localhost</parameter>
</transportSender>

Configuration50

Transports

Forcing Deployment Over Mail Transport Only

If you want to restrict a web service to be deployed only over Mail transport, you must add the
following element in the web service’s services.xml file:

<service ...>
 <transports>
 <transport>mailto</transport>
 </transports>
 ...
</service>

Note: If not configured explicitly, a web service is deployed over all activated transports in
the Web Services Stack runtime.

Invoking a Web Service Over Mail Transport

To call a web service over mail transport, configure the client’s repository.

To configure the client's repository

1 In the client’s axis2.xml configuration file, find and uncomment the sections that define the
transport receiver and transport sender with name=“mailto”:

<transportReceiver name="mailto" ... />
<transportSender name="mailto" ... />

2 Check the parameters under the mail transport receiver and the mail transport sender. You
must configure the user name, the password, and the e-mail address of a user registered in
the Jamesmail server. That usermust be different from the one configured in theWeb Services
Stack runtime.

For details, see Activating Mail Transport.

51Configuration

Transports

Sample Client Configuration

Following is a sample code listing of client configurationwith a user that is registered in the James
mail server. The user name is "client" and the password is "pass":

<transportReceiver name="mailto"
class="org.apache.axis2.transport.mail.SimpleMailListener">
 <parameter name="mail.pop3.host">localhost</parameter>
 <parameter name="mail.pop3.user">client</parameter>
 <parameter name="mail.store.protocol">pop3</parameter>
 <parameter name="transport.mail.pop3.password">pass</parameter>
 <parameter name="transport.mail.replyToAddress">client@localhost</parameter>
 <parameter name="transport.listener.interval">3000</parameter>
</transportReceiver>

<transportSender name="mailto"
class="org.apache.axis2.transport.mail.MailTransportSender">
 <parameter name="mail.smtp.host">localhost</parameter>
 <parameter name="mail.smtp.user">client</parameter>
 <parameter name="transport.mail.smtp.password">pass</parameter>
 <parameter name="mail.smtp.from">client@localhost</parameter>
</transportSender>

Configuration52

Transports

5 Monitoring and Logging

■ SOAP Monitor .. 54
■ Logging ... 56

53

This chapter covers the logging facility and the utility for monitoring of SOAP messages.

The information is organized under the following headings.

SOAP Monitor

This section provides details on the SOAP monitoring utility in Web Services Stack.

The information is organized under the following headings:

■ Overview
■ Using the SOAP Monitor

Overview

The distribution of Web Services Stack comes with a SOAP monitor that allows users to monitor
SOAPmessages exchanged betweenweb service clients andweb services running inWeb Services
Stack.

SOAP messages are shown with the structure that they have after they have passed all system
phases in the Axis 2 engine. This means that the original SOAP messages, sent by a user, can be
visually different, but semantically equal to the ones shown into the SOAP monitor. Examples of
such a case are MTOM SOAP messages. SOAP monitor shows the binary data exchanged “by
value” (included into the SOAP message itself). On the other hand, the original SOAP message
has MIME parts in it.

For example, take a binary date shown into a TCPMon (another monitor). To make easy to under-
stand, only part of the message related to the MTOM-ized binary data is shown:

<<ns1:binaryData><xop:Include
href="cid:1.urn:uuid:EFF202258F699D83131220514272228@apache.org"
xmlns:xop="http://www.w3.org/2004/08/xop/include" /></ns1:binaryData>
…
--MIMEBoundaryurn_uuid_EFF202258F699D83131220514272117
Content-Type: text/plain
Content-Transfer-Encoding: binary
Content-ID: <1.urn:uuid:EFF202258F699D83131220514272228@apache.org>

text
--MIMEBoundaryurn_uuid_EFF202258F699D83131220514272117—

Configuration54

Monitoring and Logging

The binary date that a SOAP monitor shows is the following:

<ns1:binaryData>dGV4dA==</ns1:binaryData>

As you can see, the binary data is shown “by value”. This is because it was already processed by
the system phases of the Axis 2 engine.

Using the SOAP Monitor

SOAP monitor is disabled by default.

To enable SOAP monitor

1 Open the web.xml file that is located in theWEB-INF directory of the wsstack webapp.

2 Uncomment the <servlet-name>SOAPMonitorService</servlet-name> part.

3 Uncomment the <servlet-mapping> part.

4 Extract the following SOAPMonitor classes from soapmonitor.jar and copy them directly under
the expanded wsstack context root:

org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet$ServiceFilterPanel.class
 org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet$SOAPMonitorData.class
 org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet$SOAPMonitorFilter.class
 org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet$SOAPMonitorPage.class

org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet$SOAPMonitorTableModel.class

org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet$SOAPMonitorTextArea.class
 org\apache\axis2\soapmonitor\applet\SOAPMonitorApplet.class

Important: Ensure you keep the classes packaging structure.

There is no effect if you try to replce this step with any of the following:

■ Copy the soapmonitor.jar into theWEB-INF \lib
■ Copy the classes from soapmonitor.jar intoWEB-INF\classes

55Configuration

Monitoring and Logging

5 Engage the soapmonitor Axis 2 module globally in the axis2.xml by adding the following line:

<module ref="soapmonitor"/>

You can engage it in the same way for a service in the services.xml file.

6 Restart Tomcat or the wsstack webapp.

7 Go to http://<host>:<port>/wsstack/SOAPMonitor to start using the SOAP monitor.

For more details on the SOAPmonitor configuration, see http://ws.apache.org/axis2/1_4_1/soap-
monitor-module.html.

Logging

This section provides details on the logging facility in Web Services Stack.

The information is organized under the following headings:

■ Overview
■ log4J Logging Levels
■ "Argus Agents" Logging

Overview

Web Services Stack uses Apache Common Logging (JCL) and its log4J facility. The JCL provides
thin-wrapper log implementations for other logging tools, including the default log4J.

For details on log4J, refer to Apache logging services at http://logging.apache.org/log4j/1.2/in-
dex.html.

Note:

The distribution ofWeb Services Stack comeswith a log4j.properties file and a commons-logging.prop-
erties file by default. You can find them in <Web Services Stack_Install_Folder>/webapp\wsstack\WEB-
INF\classes.

Note: Those files are also included in the wsstack.warweb archive in <Web Services
Stack_Install_Folder>/webapp, in case you deployWeb Services Stack another servlet container
or application server.

To enable log4J

■ Place the commons-logging.properties file into the given module classpath.

Configuration56

Monitoring and Logging

http://ws.apache.org/axis2/1_4_1/soapmonitor-module.html
http://ws.apache.org/axis2/1_4_1/soapmonitor-module.html
http://logging.apache.org/log4j/1.2/index.html
http://logging.apache.org/log4j/1.2/index.html

log4J Logging Levels

The log4j.properties files comewith a default value of the logging level. You can change those values
according to the requirements of your system.

The default logging level is info. Following are the standard levels in descending (in terms of
priority) order:

■ fatal

■ error

■ warn

■ info

■ debug

■ trace

Note: A lower level covers all levels above it. For example, if warn is set, then all logs of level
error and fatal are logged, too.

It is important to ensure that the log messages are appropriate in content and severity. See the
following table for guidelines on the usage of logging levels:

UsageLogging Level

Severe errors that cause premature termination. Expect these to be immediately visible on a
status console.

fatal

Other run-time errors or unexpected conditions. Expect these to be immediately visible on a
status console.

error

Use of deprecated APIs, poor use of API, error-like situations, other run-time situations that
are undesirable or unexpected, but not necessarily "wrong". Expect these to be immediately
visible on a status console.

warn

Interesting run-time events (start /shut down). Expect these to be immediately visible on a
console, so be conservative and keep to a minimum.

info

Detailed information on the flow through the system. Expect these to be written to logs only.debug

More detailed information. Expect these to be written to logs only.trace

57Configuration

Monitoring and Logging

"Argus Agents" Logging

Web Services Stack provides a logging mechanism for its agent programs that use the System
Management Hub administration functionality. These agent programs are called "argus agents".
They manipulate the Web Services Stack environment under the System Management Hub web
interface. See Administration Tool for details.

If you experience problems when using the administration tool, you must enable the logging for
the "argus agents" to see a detailedmessage log. It is recommended to use this loggingmechanism
onlywhen youwant to search for faults in the operation of the system.Otherwise, the performance
of your interface might slow down.

To enable logging for the "argus agents"

1 Open the registry editor.

2 Go to HKEY_LOCAL_MACHINE\SOFTWARE\Software AG\System Management Hub\Products\Web Services

Stack\Versions\Parameters\enableLog

3 Switch the registry parameter enableLog to "1".

You can find the output log file in <Web Services Stack_Install_Folder>/argus/wsstack.log.

Configuration58

Monitoring and Logging

6 Eclipse Plug-in

■ Introduction .. 60
■ Creating and Removing a Web Service Package ... 61
■ Configuring a Web Service Package ... 62
■ Enabling Advanced Policy Configurations ... 64
■ Deploying and Undeploying a Web Service Package .. 65
■ Registering a Web Service Package in CentraSite ... 66

59

This chapter describes theWeb Services Stack basic tool for packaging, configuring, and deploying
web service archives.

Introduction

The Packaging and Configuration Eclipse plug-in provides a graphical user interface that you can
use to do the following:

■ Create web service archives
■ Configureweb service archives in variousways (including advanced configurations like address-
ing, security, transactional behavior, and others)

■ Deploy web service archives to the Web Services Stack runtime
■ Register web service archive in CentraSite

The Web Services Stack installation installs the Eclipse plug-in by default with webMethods De-
signer. If you want to use your own installation of Eclipse 3.4 SP2, you must first install the plug-
in with the Installer.

These archives are located under SoftwareAG\webMethods\eclipse\updates.

To install the Eclipse plug-in in your own Eclipse installation

1 Open Eclipse.

2 Go toHelp -> Software Updates -> Available Software

3 Select Add site….

4 Select Archive.

Browse to the <eclipse\updates> folder of your Web Services Stack installation and select the
com.softwareag.common.zip archive inside.

5 Select Install… and follow the instructions.

6 Repeat steps 2 through 6 for eclipse.wss.<verison_number>.UpdatePackage.0000.zip.

The version number of the particular update package is a three-digit number which depends
on the version of the current installation. You can construct the version number using the
version of the release (omitting any periods in the number) and the SP version (using the
number of the SP release). For example, if you want to update a Web Services Stack 8.0 SP4
installation, the version number of the update package is 804, and the file name is: ec-
lipse.wss.804.UpdatePackage.0000.zip.

Important: CentraSite Eclipse plug-in is a prerequisite for the proper functioning of the
CentraSite registration plug-in is.

Configuration60

Eclipse Plug-in

Creating and Removing a Web Service Package

Following are guidelines on creating (or removing) web service packages with the Eclipse plug-
in.

After you have created a new project, Software AGWeb Services Stack/ Add Web Service
Package appears in the context menu of the Java projects in the Package Explorer view. You use
this option to create a new deployment archive and add it to the project.

Note: One project might have several packages associated with it.

To create a web service package using the Eclipse plug-in wizard

1 Select Software AGWeb Services Stack ->Add Web Service Package...

2 Specify name and container of the package. By default, the container is the project itself.

3 Select a service source file. This may be either a WSDL file or Java class.

Important: The files must be part of the project. External files can not be added.

4 Add additional meta-information files. These are files to be included in the package under
the meta-inf directory.

5 Add additional files to be included into the service package. These are files to be included in
the package under the root directory.

6 The archive is created.

61Configuration

Eclipse Plug-in

To remove a web service package using the wizard

1 Select Software AGWeb Services Stack ->Remove Web Service Package

2

Note: This command is valid only for previously added web service package.

Configuring a Web Service Package

After creating the archive, the editor provides an interface to configure the settings of the package
itself, the services, contained in it, and the operations of the services. This imposes three different
layouts: archive view, services view, and operation view. The different views appear as different
tabs in Web Services Stack. There is one more additional tab that contains a textual view of the
services.xml file, but it displays a read-only version of the file that cannot be modified directly.

In the outline view of Eclipse, the package structure is represented in a tree view. The package itself
is the root element of the tree; the second level contains the services; the third level contains the
operations. Selecting an item changes the view in the editor to the view corresponding to the se-
lected item.

In the archive view, you can add additional files to the root of the package or to themeta-inf direct-
ory. You can also add additional Java files (POJOs) that adds additional services to the archive.

In the services view, you can select any of the available services in the archive. After that you can
perform various configurations on it:

■ Add custom description
■ Add message receivers
■ Configure the transports on which the service is accessible

Configuration62

Eclipse Plug-in

■ Enable and configure the available modules like WS-Addressing, WS-Reliable Messaging, and
WS-Security

The available transports are: HTTP, HTTPS, TCP, and JMS transport. If no transport is selected,
then all transports that are enabled on the server are available to the service.

In the operations view, you can select any of the operations in the package by selecting a service
from the drop down list and one of its operations. The available configurations on the operation
level are:

■ Setting the message receiver class
■ Adding parameters
■ Enabling and configuring service modules

63Configuration

Eclipse Plug-in

Enabling Advanced Policy Configurations

The available policy configurations on a <service> level and on an <operation> level are WS-Ad-
dressing, WS-Reliable Messaging, and WS-Security.

By selecting Enable WS-Addressing check box, you enable WS-Addressing module.

WhenWS-Reliable Messaging is selected, you must provide a value for the inactivity time period
that is by default 600 000 milliseconds by default.

By selecting the EnableWS-Security check box, a new configuration view is opened in the editor.
You have three types of security to choose from: Transport Security (SSL), Message-level Security
with symmetric binding, and Message-level Security with asymmetric binding. When you select
Enable WS-Security check box, Transport Security with SSL and HTTPS transport are chosen by
default. The Addressing module is engaged always when the Security module is engaged. You
must provide a keystore configuration in the cases of message-level security and a Password
callback class if Authenticationwith user name token is selected.

For details on message-level security and transport, see Security.

The keystore configuration includes the location of the server keystore file, the keystore password,
aliases of the certificates to be used for signing and encryption, user (default user name for username
token and alias of the certificate for signing if the last is not specified in the corresponding field)
and the password callback class. You can specify a policy validator callback class to ensure that
the security header corresponds to the policy in the services.xml file. If the class is not explicitly
specified, there is a default policy validator callback class that is used.

You also have the option to enable standard message security to sign header, sign body, encrypt
body, or include timestamp. Else, you can write an XPath expression to encrypt and sign arbitrary
parts of the message. For the authentication, you can use either X.509 certificate, or a Username
token. You can also choose to engage WS-Secure Conversation.

The other service modules available are WS-Addressing and WS-Reliable Messaging. When WS-
Reliable Messaging is selected, you must provide a value for the inactivity time period that is 600
000 milliseconds by default.

With the editor, you can save policy configurations in a file that you can later reuse by choosing
the button Save Policy as... and load it when needed as saved policy.

Configuration64

Eclipse Plug-in

Deploying and Undeploying a Web Service Package

When the package is set and configured, it can be deployed to Web Services Stack by choosing
Deploy Web Services Package in the project context menu.

Important: The default deploy location of Web Services Stack is "localhost" (that is, default
Web Services Stack running in default Tomcat) at port 49981. It is recommended that users
configure a deploy target with the real hostname instead of "localhost".

Type in the following information:

■ The URL of the Web Services Stack deploy servlet

The default servlet is /wsstack/sagdeployer.
■ The user name and password

These authentication credentials are the same as the credentials for administration that are
configured in the axis2.xml file. The default user name is "admin" and the default password is
"axis2".

Note: See Changing Logon Credentials for details on changing the default user name and
password at first logon.

The default servlet name is /wsstack/sagdeployer.

65Configuration

Eclipse Plug-in

The context menu of the package has also the Undeploy Web Services Package command.When
it is selected, a window is opened containing the same required information as for the deploy
command.

The Eclipse console provides feedback on the execution of the operations.

Registering a Web Service Package in CentraSite

Another option from the context menu of the package is to register it in CentraSite. Web Service
Stack Eclipse UI provides a context menu on AAR service files to register the service using the
JAXR interface to CentraSite. The registration process requires authentication to CentraSite with
user name and password credentials. These credentials give access to exactly those Organizations
in CentraSite the user is authorized to register service into.

Note: Create and configure organization with CentraSite tooling. However, there is always
a "Default Organization".

Configuration66

Eclipse Plug-in

Following is a sample screen capture to illustrate the use of the required parameters for the regis-
tration:

The required parameters are as follows:

■ Host - the host of the CentraSite instance
■ Product ID – CentraSite product ID
■ Port - the port of the CentraSite instance
■ Repository Path - the path under which the package is registered
■ Authentication data like user name, password and organization

Important: To have the registration functionality available in Eclipse environment, youmust
have CentraSite Eclipse plug-ins as a prerequisite.

Prior to registration, deploy the service in aWeb Service Stack runtime. For details, seeDeploying
and Undeploying a Web Service Package.

Description of the Registration Process

1. The service is registered in the CentraSite Registry via the WSDL.

For details on importing web services, see section User Interface -> Using the Asset Catalog ->
Publishing a New Asset into the Catalog -> Adding an Asset to the Catalog Using an Importer -> Im-
porting Web Services in CentraSite documentation at Software AG documentation Web site.

2. The WSDL and the service archive is stored in the CS Repository.

67Configuration

Eclipse Plug-in

http://documentation.softwareag.com/default.htm

For details, see User Interface -> Using the Asset Catalog -> Publishing a New Asset into the Catalog
-> Adding an Asset to the Catalog Using an Importer -> Importing Web Services in CentraSite docu-
mentation at Software AG documentation Web site.

3. The service object gets an external link to the archive.

For details on storing objects (e.g. service archive, or any other object) in the CentraSite Support-
ingDocument Library, see sectionUser Interface ->Using the Asset Catalog -> Attaching a Supporting
Document to an Asset in CentraSite documentation at Software AG documentation Web site.

Configuration68

Eclipse Plug-in

http://documentation.softwareag.com/default.htm
http://documentation.softwareag.com/default.htm

	Configuration
	Table of Contents
	1 Configuration
	2 Web Services Stack Runtime
	Understanding axis2.xml Configuration
	Run-Time Configuration
	Server-side Configurations
	Client-side Configurations
	MTOM in Web Services Stack

	3 Security
	Message-Level Security
	Overview
	Server-side Configuration
	Client-side Configuration

	Transport-Level Security
	Prerequisites for the Setup and Use of Transport-Level Security
	SSL with Client Authentication
	Setup and Use of HTTP Basic Authentication

	Client Authentication
	JAAS Configuration
	Security Credentials
	Implementation of Password Callback Handlers
	Implementations of Policy Validation Callbacks
	Authentication Steps

	4 Transports
	TCP Transport
	Activating TCP Transport (Server-side Configuration)
	Enabling WS-Addressing
	Forcing Deployment Over TCP Transport Only
	Invoking a Web Service Over TCP Transport (Client-side Configuration)

	JMS Transport
	Prerequisites
	Activating JMS Transport (Server-Side Configuration)
	Forcing Deployment Over JMS Transport Only
	Invoking a Web Service Over JMS Transport (Client-side Configuration)

	Mail Transport
	Prerequisites
	Install, Configure and Start a Mail Server
	Create Accounts in the Mail Server

	Activating Mail Transport
	Forcing Deployment Over Mail Transport Only
	Invoking a Web Service Over Mail Transport
	Sample Client Configuration

	5 Monitoring and Logging
	SOAP Monitor
	Overview
	Using the SOAP Monitor

	Logging
	Overview
	log4J Logging Levels
	"Argus Agents" Logging

	6 Eclipse Plug-in
	Introduction
	Creating and Removing a Web Service Package
	Configuring a Web Service Package
	Enabling Advanced Policy Configurations
	Deploying and Undeploying a Web Service Package
	Registering a Web Service Package in CentraSite

