
Tamino

X-Query Reference Guide

Version 9.7

April 2015

This document applies to Tamino Version 9.7.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2015 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-XQL-REF-97-20160318

Table of Contents

Preface .. v
1 Expressions .. 1

AbbrevAbsoluteLocPath .. 4
AbbreviatedAxisSpecifier .. 6
AbbreviatedStep .. 8
AbsoluteLocationPath .. 10
AdditiveExpr .. 12
AndExpr ... 14
Argument ... 16
AxisSpecifier ... 18
BetweenExpr .. 20
EqualityExpr ... 22
Expr .. 25
FilterExpr .. 26
FunctionCall ... 27
LocationPath ... 29
MultiplicativeExpr ... 31
NodeTest .. 33
NodeType ... 35
OrExpr .. 37
PathExpr ... 39
Predicate ... 41
PredicateExpr ... 43
PrimaryExpr ... 44
ProximityExpr .. 46
RelationalExpr .. 48
RelativeLocationPath .. 50
SequenceExpr ... 52
SetExpr ... 54
SortByClause .. 56
SortByCharacteristics ... 60
Step ... 62
UnaryExpr .. 64

2 Functions ... 67
avg .. 69
min .. 70
max ... 71
ino:explain .. 72

Index ... 79

iii

iv

Preface

This document is the referencemanual for the X-Query language and describes how each language
construct is defined and used in the current version of Tamino. If there is an XPath equivalent,
you will find a link that points to the description of the corresponding item in the XPath
specification.

X-Query Expressions in Alphabetical OrderExpressions

X-Query Functions in Alphabetical OrderFunctions

v

vi

1 Expressions

■ AbbrevAbsoluteLocPath ... 4
■ AbbreviatedAxisSpecifier .. 6
■ AbbreviatedStep ... 8
■ AbsoluteLocationPath .. 10
■ AdditiveExpr ... 12
■ AndExpr .. 14
■ Argument ... 16
■ AxisSpecifier .. 18
■ BetweenExpr .. 20
■ EqualityExpr ... 22
■ Expr ... 25
■ FilterExpr ... 26
■ FunctionCall ... 27
■ LocationPath .. 29
■ MultiplicativeExpr .. 31
■ NodeTest ... 33
■ NodeType .. 35
■ OrExpr .. 37
■ PathExpr ... 39
■ Predicate ... 41
■ PredicateExpr ... 43
■ PrimaryExpr ... 44
■ ProximityExpr ... 46
■ RelationalExpr .. 48
■ RelativeLocationPath ... 50
■ SequenceExpr .. 52
■ SetExpr ... 54
■ SortByClause ... 56
■ SortByCharacteristics ... 60
■ Step ... 62
■ UnaryExpr ... 64

1

This chapter describes the expressions available in X-Query. The names of the expressions corres-
pond to the language constructs of X-Query. In many cases, these are equivalent to an XPath ex-
pression of the same name. However, in a few cases the meaning is different or the expression
only exists in X-Query, since its serves a special purpose in the context of a database. A syntax
diagram illustrates the definition as it appears in the respective production rule of the X-Query
grammar. The description is followed by an XPath compatibility note and one or more examples.

The most basic parts of the X-Query language are not covered; we summarize them here. Digits,
numbers, and operators are defined as in the lexical rules of the XPath specification (in Section
3.7). However, X-Query adds to the list of operators the special contains operator ~=, which provides
text retrieval capabilities. The list of operator names (OperatorName, defined in XPath, Section 3.7,
Rule 33) is extended by adj, after, before, betw, between, near, intersect. All of these additions
are described below.

The following table lists the expressions available in X-Query, alongwith the correspondingXPath
expressions. An asterisk (*) after the name of an XPath expression indicates that this expression
is implemented differently in X-Query. The link in the XPath column leads you to the expression's
production rule in the XPath specification.

Short DescriptionXPath ExpressionX-Query Expression

select all nodes satisfying some
condition

AbbreviatedAbsoluteLocationPathAbbrevAbsoluteLocPath

specify either child or attribute
axis

AbbreviatedAxisSpecifierAbbreviatedAxisSpecifier

select context node or its parent
node

AbbreviatedStepAbbreviatedStep

location path starting at the root
node

AbsoluteLocationPathAbsoluteLocationPath

add or subtract numeric valuesAdditiveExprAdditiveExpr

check if two or more conditions
are all true

AndExprAndExpr

input to a FunctionCallArgumentArgument

specify axis by nameAxisName *AxisName

specify axis in a location stepAxisSpecifierAxisSpecifier

select nodes based on a value
range

—BetweenExpr

check if two values are equalEqualityExpr *EqualityExpr

general X-Query expressionExprExpr

select a subset of nodes satisfying
some condition

FilterExpr *FilterExpr

call to a functionFunctionCallFunctionCall

select nodes along a pathLocationPathLocationPath

X-Query Reference Guide2

Expressions

http://www.w3.org/TR/xpath/#exprlex
http://www.w3.org/TR/xpath/#exprlex
http://www.w3.org/TR/xpath/#exprlex
http://www.w3.org/TR/xpath/#exprlex
http://www.w3.org/TR/xpath/#NT-AbbreviatedAbsoluteLocationPath
http://www.w3.org/TR/xpath/#NT-AbbreviatedAxisSpecifier
http://www.w3.org/TR/xpath/#NT-AbbreviatedStep
http://www.w3.org/TR/xpath/#NT-AbsoluteLocationPath
http://www.w3.org/TR/xpath/#NT-AdditiveExpr
http://www.w3.org/TR/xpath/#NT-AndExpr
http://www.w3.org/TR/xpath/#NT-Argument
http://www.w3.org/TR/xpath/#NT-AxisName
http://www.w3.org/TR/xpath/#NT-AxisSpecifier
http://www.w3.org/TR/xpath/#NT-EqualityExpr
http://www.w3.org/TR/xpath/#NT-Expr
http://www.w3.org/TR/xpath/#NT-FilterExpr
http://www.w3.org/TR/xpath/#NT-FunctionCall
http://www.w3.org/TR/xpath/#NT-LocationPath

Short DescriptionXPath ExpressionX-Query Expression

performmultiplication, division
and modulo operations

MultiplicativeExprMultiplicativeExpr

check for name of specified nodeNameTestNameTest

check for type or name of
specified node

NodeTest *NodeTest

token representing a type of nodeNodeType *NodeType

check if one of the given
conditions is true

OrExprOrExpr

select a set of nodesPathExprPathExpr

select a subset of nodes forwhich
the predicate is true

PredicatePredicate

expression used in a predicatePredicateExprPredicateExpr

expression without operatorsPrimaryExprPrimaryExpr

specify adjacent values—ProximityExpr

compare two numeric valuesRelationalExprRelationalExpr

select nodes relative to the
context node

RelativeLocationPathRelativeLocationPath

select nodes based on sibling
positioning

—SequenceExpr

select union or intersection of
node sets

UnionExpr *SetExpr

sort a node set—SortByClause

determine sorting order—SortByCharacteristics

select a subset of nodes on a
given axis

StepStep

change number signUnaryExprUnaryExpr

3X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-MultiplicativeExpr
http://www.w3.org/TR/xpath/#NT-NameTest
http://www.w3.org/TR/xpath/#NT-NodeTest
http://www.w3.org/TR/xpath/#NT-NodeType
http://www.w3.org/TR/xpath/#NT-OrExpr
http://www.w3.org/TR/xpath/#NT-PathExpr
http://www.w3.org/TR/xpath/#NT-Predicate
http://www.w3.org/TR/xpath/#NT-PredicateExpr
http://www.w3.org/TR/xpath/#NT-PrimaryExpr
http://www.w3.org/TR/xpath/#NT-RelationalExpr
http://www.w3.org/TR/xpath/#NT-RelativeLocationPath
http://www.w3.org/TR/xpath/#NT-UnionExpr
http://www.w3.org/TR/xpath/#NT-AbbreviatedStep
http://www.w3.org/TR/xpath/#NT-UnaryExpr

AbbrevAbsoluteLocPath

Select nodes on a location path starting at the root node.

Syntax

AbbrevAbsoluteLocPath

Description

Select nodes on the RelativeLocationPath starting at the document root, which is indicated by
the initial //.

Note: If you know the position of the node(s) to be selected in a document tree, the query
will generally run faster. Example: If you want to knowwhich type of medication has been
used for the patients in the current database you need not use //therapy/type, but can use
/patient/therapy/type instead.

Compatibility

It corresponds to the expression AbbreviatedAbsoluteLocationPath defined in XPath, Section
2.5, Rule 10.

Examples

■ Select all doctors who discharged patients:

X-Query Reference Guide4

Expressions

http://www.w3.org/TR/xpath/#NT-AbbreviatedAbsoluteLocationPath
http://www.w3.org/TR/xpath/#NT-AbbreviatedAbsoluteLocationPath

//discharged/doctor

■ Select all persons whose pager numbers begin with a "3":

//name[../@pager ~= '3*']

■ Select all element nodes that are not immediate children of the root element node:

/*//*

Related Expression

RelativeLocationPath

5X-Query Reference Guide

Expressions

AbbreviatedAxisSpecifier

Indicates the axis to be used for selecting nodes in a path expression.

Syntax

AbbreviatedAxisSpecifier

Description

If empty, AbbreviatedAxisSpecifier indicates the child axis. If it is @, it indicates the attribute
axis.

Compatibility

It corresponds to the expression AbbreviatedAxisSpecifier defined in XPath, Section 2.5, Rule
13.

Examples

■ Select the grade of a patient's next of kin. The last step of the location path contains the abbrevi-
ated axis specifier @ plus the name of an attribute node, which would be ./attribute::grade
in the unabbreviated syntax.

/patient/nextofkin/@grade

■ Select the name of a patient's next of kin. The last step of the location path contains the empty
abbreviated axis specifier plus the name of a child node, which would be ./child::name in the
unabbreviated syntax.

X-Query Reference Guide6

Expressions

http://www.w3.org/TR/xpath/#NT-AbbreviatedAxisSpecifier
http://www.w3.org/TR/xpath/#NT-AbbreviatedAxisSpecifier

/patient/nextofkin/name

Related Expressions

StepRelativeLocationPathAxisSpecifier

7X-Query Reference Guide

Expressions

AbbreviatedStep

Select the context node or its parent node.

Syntax

AbbreviatedStep

Description

You can use an AbbreviatedStep to indicate either the context node by using the symbol "." or the
parent node of the context node by using the symbol "..". The symbol "." is short for self::node(),
and ".." is short for parent::node().

Compatibility

It corresponds to the expression AbbreviatedStep defined in XPath, Section 2.5, Rule 12.

Examples

■ Select all DCI diagnoses (select all diagnosis elements of the current context node that have a
value of "DCI"):

//diagnosis[.='DCI']

■ Select all diagnoses that have a headache as symptom (select all diagnosis elements whose
parent node has the element symptoms containing the value "headache"):

X-Query Reference Guide8

Expressions

http://www.w3.org/TR/xpath/#NT-AbbreviatedStep

//diagnosis[../symptoms ~= 'headache']

Related Expression

Step

9X-Query Reference Guide

Expressions

AbsoluteLocationPath

Select nodes on an absolute location path.

Syntax

AbsoluteLocationPath

Description

An AbsoluteLocationPath selects nodes on the absolute location path starting at the document
root. It consists of "/" optionally followed by a relative location path. The operator "/" by itself selects
the root node of the document. If it is followed by a relative location path, then the location path
selects the set of nodes that would be selected by the relative location path relative to the root node
of the document. Alternatively you can use an abbreviated absolute location path.

Compatibility

It corresponds to the expression AbsoluteLocationPath defined in XPath, Section 2, Rule 2.

Examples

■ Select all patients (the child element node of the root node, which is also the doctype element):

X-Query Reference Guide10

Expressions

http://www.w3.org/TR/xpath/#NT-AbsoluteLocationPath

/patient

■ Select all types of medication used (all type nodes that are descendants of a therapy node of
the context node patient):

/patient/therapy//type

■ Select all patients whose names start with "B" (all patient nodes that satisfy the following pre-
dicate expression: surname child nodes of the name nodes that contain words beginning with
"B" or "b"):

/patient[./name/surname ~= 'B*']

Related Expression

RelativeLocationPath

11X-Query Reference Guide

Expressions

AdditiveExpr

Add or subtract numerical values.

Syntax

AdditiveExpr

Description

An AdditiveExpr consists of either a simple MultiplicativeExpr or of two or more
MultiplicativeExpr expressions that are combined by the operators + or -.

Compatibility

It corresponds to the expression AdditiveExpr defined in XPath, Section 3.5, Rule 25.

Examples

■ Select all patients born after 1959 (all patient nodes for which the numeric value of the born
element +1 is greater than 1960):

X-Query Reference Guide12

Expressions

http://www.w3.org/TR/xpath/#NT-AdditiveExpr

/patient[born + 1 > 1960]

■ Select all patients older than 40 years (all patient nodes for which the difference between 2001
and the numeric value of the born element is greater than 40):

/patient[(2001 - ./born) > 40]

Related Expression

RelationalExpr

13X-Query Reference Guide

Expressions

AndExpr

Check if one or more Boolean operands are all true.

Syntax

AndExpr

Description

If all of the operands evaluate to the Boolean value "true", then "true" is returned, otherwise "false".

Compatibility

The operator name must be specified using lower case.

It corresponds to the expression AndExpr defined in XPath, Section 3.4, Rule 22, but is extended
by BetweenExpr. This allows SequenceExpr and ProximityExpr to be used as operands in an
AndExpr.

Examples

■ Select all patients born in 1950 and living in Bradford (all patient nodes that satisfy the following
predicate expression: there is an immediate child node bornwhose numeric value equals 1950
and there is also a descendant child node citywhose string value equals "Bradford"):

X-Query Reference Guide14

Expressions

http://www.w3.org/TR/xpath/#NT-AndExpr

/patient[born = 1950 and .//city = 'Bradford']

■ Select all patients born in 1950 having a phone number:

/patient[born = 1950 and (address/* after postcode)[position() != last()]]

This query demonstrates that you can use a filtered SequenceExpr inside an AndExpr. It effectively
selects all patient nodes for which all the following conditions must be met:
■ it has a child element node bornwhose numeric value equals 1950
■ it has a child element node address
■ the address node has at least three child element nodes that must satisfy these conditions:

■ one of these child nodes has the name postcode
■ a sibling node of postcodemust exist whose position is not the last

There are six possible child nodes for addresswhich in document order are street, housenumber,
city, postcode, country, and phone. Because of the second predicate expression there must be
at least two nodes following a postcode node, but if this is true, then it can only be a phone node.

Naturally you can write such a condition much more simply:

/patient[born = 1950 and address/phone]

This query is somewhat faster, since Tamino does not have to expand address/* (a NameTest)
and there is no need to call two functions used in the nested predicate expression. The second
condition is evaluated to "true" if an element node phone exists that is a child element of address
which in turn is a child element of a patient node.

Related Functions

BetweenExpr

15X-Query Reference Guide

Expressions

Argument

The value to be used as input to a function call.

Syntax

Argument

Description

An Argument can be any expression which is then used as input to a FunctionCall.

Compatibility

It corresponds to the expression Argument defined in XPath, Section 3.2, Rule 17.

Examples

■ Get the number of patients living in Bradford (the argument for count() is the node set containing
patient nodes that satisfy the following filter expression: there are address child nodes that
have a city child node whose string value equals "Bradford"):

count(/patient[address/city = 'Bradford'])

■ Get the number of attributes of the type node (the argument for count() is the node-set consisting
of all attribute nodes that are attached to descendant type element nodes):

X-Query Reference Guide16

Expressions

http://www.w3.org/TR/xpath/#NT-Argument

count(//type/@*)

■ Select all patients without close relatives (all patient nodes that do not have nextofkin child
nodes):

/patient[not(nextofkin)]

Related Expression

FunctionCall

17X-Query Reference Guide

Expressions

AxisSpecifier

The name of an axis or an abbreviation for it.

Syntax

AxisSpecifier

Description

In a location step, an AxisSpecifier determines the initial node set originating in the context
node. In practice it means that you navigate through a document tree in a certain direction that is
specified by the axis. In the unabbreviated XPath syntax, you can use an AxisName to determine
the direction of navigation (for example child:: selects the axis of child nodes in document order
starting at the context node).

Since unabbreviated axis specifiers are not supported in X-Query, you can alternatively use an
AbbreviatedAxisSpecifier to select the child axis (AbbreviatedAxisSpecifier is empty) or the
attribute axis (AbbreviatedAxisSpecifier is "@"). You can further use a SequenceExpr to simulate
navigation on the axes following-sibling and preceding-sibling.

Compatibility

It corresponds to the expression AxisSpecifier defined in XPath, Section 2.1, Rule 5, with the
restriction that AxisName is not supported in X-Query.

Example

Select all medication that has been administered in the form of tablets (starting from the root node
select all descendant type nodes that satisfy the following predicate expression: the value of the
form node on the attribute axis equals the string value "tablet"):

X-Query Reference Guide18

Expressions

http://www.w3.org/TR/xpath/#NT-AxisSpecifier

//type[@form = 'tablet']

Related Expression

Step

19X-Query Reference Guide

Expressions

BetweenExpr

Select nodes based on a value range.

Syntax

BetweenExpr

Description

You can select nodes based on a value range, with the limiting values separated by a comma. The
range is inclusive of the limiting values. If the first value is larger than the second, the values are
implicitly exchanged. The comparison depends on the datatype of the node. If you compare a
string value (Literal) with a string range, then a lexical comparison is performed using the lex-
icographical order. If you compare a string value with a numeric range or a numeric value with
a string range, then any string values are implicitly converted to numbers and a numeric compar-
ison takes place. If the string cannot be converted to a numeric value, then the conversion yields
the special value "NaN" and the comparison fails.

You can think of BetweenExpr as a convenient abbreviation for logical conjunctions of
RelationalExpr, see the compatibility note for an example.

You can use betw as a shorthand for between. However, both variants must be input in lower case.

Compatibility

There is no BetweenExpr defined in XPath. For numeric values, you can simulate this by using
relational expressions. The second example below could be rewritten as:

X-Query Reference Guide20

Expressions

//doctor[@pager >= 2 and @pager <= 5]

As RelationalExpr restricts comparison to numeric values, you cannot in general formulate an
equivalent XPath expression for the first example.

Number and Literal correspond to the respective XPath expressions, as defined in the Section 3.7,
Rules 30 and 29.

Examples

■ Select all doctors whose pager numbers start with "2", "3", "4" (starting from the root node select
all descendant doctor nodes that satisfy the following predicate expression: the string value of
the pager attribute is lexicographically ordered between "2" and "5"):

//doctor[@pager between '2','5']

■ Select all doctors whose pager numbers are between 2 and 5 (all doctor nodes that satisfy the
following predicate expression: the string value of the pager attribute implicitly converted to a
number falls into the interval [2,5]). With our example data, this yields an empty node-set.

//doctor[@pager between 2,5]

■ Select all doctors whose pager numbers are between 2 and 5 (all doctor nodes that satisfy the
following predicate expression: the string value of the pager attribute explicitly converted to a
number falls into the interval [2,5]). As before, this yields an empty node-set.

//doctor[number(@pager) between 2,5]

■ Select all patients born in the 1950's (all patient nodes that satisfy the following predicate ex-
pression: there is an immediate child element bornwhose numeric value is between 1950 and
1959):

/patient[born between 1959,1950]

Tip: Use BetweenExpr instead of AndExprwhere possible. Usually a query such as
//patient[born between 1950, 1953] is much more efficient than the equivalent query
expression //patient[born > 1949 and born < 1954].

Related Expressions

SequenceExpr

21X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#exprlex

EqualityExpr

Check whether two values are equal or not.

Syntax

EqualityExpr

Description

By using the operators = and != you can check if two values are equal or not. In addition, you can
testwith the help of the contains operator ~= if the left operand contains theword pattern specified
by the right operand. The result of the comparison is always one of the Boolean values "true" and
"false". If there is a collation defined for either of the operands or if both operands have the same
collation defined, then the comparison is based on this collation, otherwise it is character-based
(this does not apply for the operator ~=).

When using the white space-separated tokenizer (default), there are also rules for handling char-
acter variants such as umlauts or accented characters. As an example the French "é" and "è" will
be mapped to "e", before comparison takes place. The German umlauts "ä", "ö", and "ü" will be
mapped to "ae", "oe" and "ue" respectively. For a complete and detailed description of how char-
acters are mapped by default and how you can customize this behaviour, please see the section
Unicode and Text Retrieval.

Wildcards

With the contains operator you can perform text retrieval including the use of awildcard character:
the value of the right operand is searched word by word regardless of case. The result is "true", if
it could be found in the node's value irrespective of its location. A word consists of a non-empty
sequence of characters. A wildcard character matches zero or more characters in a word so that a

X-Query Reference Guide22

Expressions

single "*" represents a single word. If the value of the right operand contains more than one word
such as in the expression [node ~= "word1 word2"] then it is treated as [node ~= "word1" adj
"word2"].

The wildcard character is always the asterisk "*" (Unicode value U+002A).

Compatibility

The equality operators = and != correspond to the expression EqualityExpr defined in XPath,
Section 3.4, Rule 23. For the additional X-Query operator ~=, there is no equivalent in XPath.

Examples

The examples below are distinguished according to the tokenizer used. For a given database, you
can set the tokenizer using the Tamino Manager.

Default (white space separated) Tokenizer

■ Select all patients born in 1950 (all patient nodes that satisfy the following predicate expression:
the value of the born child node equals the numerical value 1950):

/patient[born = 1950]

■ Select all patients not born in 1950 (all patient nodes that satisfy the following predicate expres-
sion: the value of the born child node is not equal to the numerical value 1950):

/patient[born != 1950]

■ Select all patients born before 1959:

/patient[born < 1959]

■ Select all patients doing a professional job (all patient nodes that satisfy the following predicate
expression: the value occupation child node contains any case-insensitive formof "Professional"):

/patient[occupation ~= 'Professional']

■ Select all patients doing a professional job (all patient nodes that satisfy the following predicate
expression: the value occupation child node contains any case-insensitive form of "Professional"
which is followed by a single word):

23X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-AxisSpecifier

/patient[occupation ~= 'Professional *']

Note: This predicate expression is equivalent with /patient[occupation ~=

'Professional' adj '*'].

■ Select all patients whose surname contains a word beginning with "At":

/patient/name[surname ~= 'At*']

■ Select all patients whose surname contains a word ending with "ins":

/patient/name[surname ~= '*ins']

■ Select all patients whose surname contains a word with the sequence "ins":

/patient/name[surname ~= '*ins*']

Japanese Tokenizer

Examples using the Japanese tokenizer are available in the section PatternMatching in theXQuery
User Guide.

Related Expression

RelationalExpr

X-Query Reference Guide24

Expressions

Expr

Represents a top-level query expression.

Syntax

Expr

Description

An Expr is the top-level expression which is defined in terms of an OrExpr. This means that every
Expr is an OrExpr and vice versa.

Compatibility

It corresponds to the expression Expr defined in XPath, Section 3.1, Rule 14.

Examples

All examples in the expression reference section use expressions in the sense of Expr.

Related Expressions

ArgumentOrExpr

25X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-Expr

FilterExpr

Select a subset of a given node-set by checking whether they satisfy one or more predicates.

Syntax

FilterExpr

Description

A FilterExpr contains some PrimaryExprwhich constitutes a node-set, and optionally a predicate
which filters the node-set according to the predicate expression.

Compatibility

It corresponds to the expression FilterExpr defined in XPath, Section 3.3, Rule 20.

Example

Select all patients and relatives sharing the surname "Atkins" (a SetExpr filtered by a Predicate
that selects all those names containing a case-insensitive form of "Atkins"):

(/patient/name | /patient/nextofkin/name)[surname ~= 'Atkins']

Related Expressions

PrimaryExprPredicate

X-Query Reference Guide26

Expressions

http://www.w3.org/TR/xpath/#FilterExpr

FunctionCall

Call either a built-in function or a user-defined function.

Syntax

FunctionCall

Description

A FunctionCall expression is evaluated by using the FunctionName to identify a function in the
expression evaluation context function library, evaluating each of the arguments, converting each
argument to the type required by the function, and finally calling the function, passing it the
converted arguments. The result of the FunctionCall expression is the result returned by the ex-
pression.

A FunctionName can be any qualified name (see definition of QName in the XML Namespaces spe-
cification, Section 3, Rule 6) with the exception of those names that are used for a NodeType.
Standard core functions in XPath do not use a namespace prefix, but Tamino-internal functions
use the prefix ino such as ino:id() or ino:explain(). You can also call a function that has been
defined as a server extension in the same way as every other function. However, user-defined
query functions are only available in those databases in which they had been installed as a server
extension.

Compatibility

It corresponds to the expression FunctionCall defined in XPath, Section 3.2, Rule 16.

You can extend the set of builtin query functions by user-defined functions that are registered in
a Tamino database as server extensions (see Tamino X-Tension for more information).

27X-Query Reference Guide

Expressions

http://www.w3.org/TR/REC-xml-names/#NT-QName
http://www.w3.org/TR/xpath/#NT-FunctionCall

Examples

■ Call the Boolean function that always returns "true":

true()

■ Get the number of patients living in Bradford:

count(/patient[address/city = 'Bradford'])

■ Get the query explanation plan for selecting all patients living in cities whose names begin with
"B" or "b":

ino:explain(/patient//city[. ~= 'B*'])

Related Expression

PrimaryExpr

X-Query Reference Guide28

Expressions

LocationPath

Select nodes along a relative or absolute path.

Syntax

LocationPath

Description

A LocationPath selects a set of nodes either relative to the context node if it is a
RelativeLocationPath or relative to the root node if it is an AbsoluteLocationPath. The result
of evaluating a location path expression is the node set containing the nodes selected by the location
path. Location paths can recursively contain expressions that are used to filter sets of nodes.

Compatibility

It corresponds to the expression LocationPath defined in XPath, Section 2, Rule 1.

Examples

■ Select all patients (using a relative location path select all patient nodes starting from the context
node which is the same as the collection's doctype element):

29X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-LocationPath

patient

■ Select all male patients sorted by their first names (using an absolute location path select all
patient nodes that have a child element node sexwhose value matches the pattern "male"; sort
this node-set by the element /patient/name/firstnamewhich must have been defined with
Search-Type set to "Standard" in the schema definition):

/patient[sex ~= 'male'] sortby (./name/firstname)

Related Expressions

RelativeLocationPathAbsoluteLocationPath

X-Query Reference Guide30

Expressions

MultiplicativeExpr

Multiply or divide numeric values.

Syntax

MultiplicativeExpr

Description

A MultiplicativeExpr either consists of a simple UnaryExpr or of two or more operands to
UnaryExpr separated by the operators thatmust be numeric values or can be converted to numeric
values. If at least one operator is not a numeric value or cannot be converted, then the result is
"NaN", a special value to indicate that this is not a number. Otherwise the numeric values are
treated as double-length floating point numbers as specified in IEEE 754. This is also true for the
division operator, although it is called divwhich is commonly used for the division of integer
values (the typical division sign / is already used in path expressions). The modulo operation
(using the operator mod) returns the remainder of a division.

In addition to "NaN" there are two other special values as specified in IEEE 754, namely positive
and negative infinity. These are returned as "1.#INF" and "-1.#INF" respectively. You get these
values if you perform queries such as 2 div 0 or 2 div -0.

Compatibility

It corresponds to the expression MultiplicativeExpr defined in XPath, Section 3.5, Rule 6. This
includes the XPath restriction that numbers cannot be used in scientific notation.

31X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-MultiplicativeExpr

Examples

■ Get the percentage of patients who died (divide the number of any descendant deceased nodes
by the number of patient nodes and multiply that value by 100):

count(//deceased) div count(/patient) * 100

■ Select all patients that were born in the first year of a decade:

/patient[born mod 10 = 0]

Related Expression

AdditiveExpr

X-Query Reference Guide32

Expressions

NodeTest

Check if a node satisfies conditions on the type or name of a node.

Syntax

NodeTest

Description

A NodeTest defines type or name of a node in a NodeTest. It can be a NameTest, a node type as
defined in NodeType or a processing instruction which optionally can have a name that conforms
to the definition of a Literal.

A NameTest is either a name or a wildcard expression matching a set of names. If NameTest is "*",
it matches any name, otherwise it matches a given name.

Using NodeType(), you can select nodes of the specified type ("comment", "node", or "text") on the
relevant axis. As a further type of node, you can select processing instruction nodes (represented
as <?PITarget?>) which may or may not have a Literal. A Literal is a sequence of characters
that is enclosed either in double quotes (then it must not contain a double quote) or in single quotes
(then it must not contain a single quote).

Note: Only processing instruction nodes (PIs) that are nested inside the root node element
can be selected. Any PIs outside are not accounted for, such as the XML declaration that
looks like a PI and declares a document to be an XMLdocument (<?xml version="1.0"?>).

33X-Query Reference Guide

Expressions

Compatibility

It corresponds to the expression NodeTest defined in XPath, Section 2.3, Rule 7with the exception
that in X-Query it formally also subsumes the definition of an unnamed processing instruction
which in XPath is included in the definition of NodeType instead. However, this difference is of
no practical relevance.

NameTest and Literal correspond to the respective XPath expressions, as defined in the Section
3.7, Rules 37 and 29.

Examples

■ Select all child elements of the context node (NameTestmatching any name by using a wildcard;
it is a shorthand for the relative location path child::*)

*

■ Retrieve all children of the context node:

node()

Related Expression

StepNodeType

X-Query Reference Guide34

Expressions

http://www.w3.org/TR/xpath/#NT-NodeTest
http://www.w3.org/TR/xpath/#exprlex
http://www.w3.org/TR/xpath/#exprlex

NodeType

Restrict the type of a node in a NodeTest.

Syntax

NodeType

Description

A NodeType is used in a NodeTest and restrict the node-set to the specified type of node. See the
description to NodeTest for more details.

Compatibility

It corresponds to the expression NodeType defined in XPath, Section 3.7, Rule 38with the exception
that the XPath definition also includes a named processing instruction which in X-Query is sub-
sumed in the definition of NodeTest. However, this difference is of no practical relevance.

Examples

■ Select all comment nodes:

35X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-NodeType

//comment()

■ Retrieve all children of the context node:

node()

Related Expression

Step

X-Query Reference Guide36

Expressions

OrExpr

Check if either of its Boolean conditions is true.

Syntax

OrExpr

Description

The operands are tested if either one of them evaluates to the Boolean value "true".

Compatibility

The operator name can only be specified using lower case.

It corresponds to the expression OrExpr defined in XPath, Section 3.4, Rule 21. Because of the X-
Query definition of AndExpr you can also use SequenceExpr, BetweenExpr, and ProximityExpr as
operands.

Example

Select all patients born in 1950 or 1960 (all patient nodes that satisfy the following predicate ex-
pression: there is an immediate child node bornwhose numeric value equals 1950 or there is an
immediate child node bornwhose numeric value equals 1960):

37X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-OrExpr

/patient[born = 1950 or born = 1960]

Related Expressions

EqualityExprAndExpr

X-Query Reference Guide38

Expressions

PathExpr

Select a set of nodes along a path.

Syntax

PathExpr

Description

Starting from a given point in a document tree, a PathExpr selects a node-set by following a location
path. A path expression can be one of the following:

■ a location path, selecting a set of nodes by following location steps, starting either at the document
root (absolute location path) or at the context node (relative location path),

■ a filter expression selecting a set of nodes e.g. as a result to a function call or an expression en-
closed in parentheses, possibly followed by one or more predicates,

■ a filter expression followed by the path operator /, followed by a relative location path which
starts with the set of nodes resulting from the filter expression,

■ a filter expression followed by the path operator //, followed by a relative location path which
starts anywhere inside the set of nodes resulting from the filter expression

Compatibility

It corresponds to the expression PathExpr defined in XPath, Section 3.3, Rule 19.

39X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#PathExpr

Examples

■ Select all patients (a relative LocationPath starting at the context node which is the doctype
element node patient in our example):

patient

■ Select the answer to all questions (a simple FilterExpr can be just a PrimaryExprwhich is ba-
sically an expression without operator such as a Number):

42

■ Get the number of all patients (a FilterExpr that identifies a node-setwhich results from calling
the standard XPath function count()with all patient nodes as argument):

count(patient)

■ Get the number of all patients who died (a FilterExpr that identifies a node-set which results
from calling the standard XPath function count(); the argument is the set of all patient nodes
that have a descendant node deceased):

count(patient[//deceased])

■ Select the names of all doctors who have discharged patients or had to register a patient's death
provided that the doctor's surname begins with "G" (a FilterExpr enclosed in a parenthesized
PrimaryExpr followed by a Predicate: select the union of the set of any descendant
result/discharged nodes and result/deceased nodes; from this node set select all descendant
name nodes that have an immediate child element node surnamewhose value contains a word
beginning with "G"):

((//result/discharged | //result/deceased)//name)[surname ~= 'G*']

Related Expressions

Location Path

FilterExpr

SetExpr

X-Query Reference Guide40

Expressions

Predicate

Select a node subset by using a predicate expression

Syntax

Predicate

Description

You can use a Predicate in a location step or in a filter expression, both of which identify a node-
set. This node-set is then restricted by applying the PredicateExpr can be used to filter a node set
in a location step.

A predicate can either be a Boolean expression or a numeric expression. A numeric predicate [n]
is short for [position()=n]which is true for all nodes that are the nth child element in the input
node set. If the value of the predicate is not a number, then it is treated as a Boolean expression.

Compatibility

It corresponds to the expression Predicate defined in XPath, Section 2.4, Rule 8.

Examples

■ Select all names in a patient's document (select all descendant child name nodes that are the first
child element node of their respective parent nodes; in our example database, this returns six
name nodes):

41X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-Predicate

//name[1] ↩

■ Select the names of all patients (select all name nodes that are the first child element node of any
child of the root element; this restricts it effectively to /patient/name[1]which returns two
name nodes):

/*/name[1]

■ Select the names of all doctors (select all name nodes that are a child of any descendant doctor
element node of any child of the root element and satisfy the following predicate expression:
they are the last child element of their parent doctor element; since there is only one name node
this is equivalent to //doctor/name[position()=1] so that three name nodes are returned):

//doctor/name[position()=last()]

■ Select all doctors with a pager (all descendant doctor nodes that have a pager attribute node
attached):

//name[@pager] ↩

Related Expressions

StepFilterExpr

X-Query Reference Guide42

Expressions

PredicateExpr

Any expression within a predicate.

Syntax

PredicateExpr

Description

A PredicateExpr can be any X-Query expression. If this expression results in a numeric value,
then it is a numeric predicate, otherwise it is a Boolean predicate. See Predicate for more details.

Compatibility

It corresponds to the expression PredicateExpr defined in XPath, Section 2.4, Rule 9.

Example

Select all patients that have a next of kin (all patient nodes that have at least one immediate child
element nextofkin):

/patient[nextofkin]

Related Expressions

StepPredicateExpr

43X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#NT-PredicateExpr

PrimaryExpr

An expression without operators.

Syntax

PrimaryExpr

Description

A PrimaryExpr defines some basic expressions that are used in a FilterExpr. A Literal is a se-
quence of characters that is enclosed either in double quotes (then it must not contain a double
quote) or in single quotes (then it must not contain a single quote).

Compatibility

It corresponds to the expression PrimaryExpr defined in XPath, Section 3.1, Rule 15with the re-
striction that XPath also supports a VariableReferencewhich is not supported in X-Query.

X-Query Reference Guide44

Expressions

http://www.w3.org/TR/xpath/#NT-PrimaryExpr

Literal and Number correspond to the respective XPath expressions, as defined in the Section 3.7,
Rules 29 and 30.

Examples

■ The string value is a Literal:

'Atkins'

■ Select all data of a patient except his or her name and any remarks (from all immediate child
element nodes of the patient nodes select the siblings following the name node provided that
they are not the last one):

(/patient/* after name)[position() != last()]

You get this result only by enclosing the SequenceExpr in parentheses. Otherwise the predicate
expression would be applied to the name node instead of to the whole sibling node set and this
would yield an empty result set.

Related Expressions

FunctionCallOrExpr

45X-Query Reference Guide

Expressions

http://www.w3.org/TR/xpath/#exprlex

ProximityExpr

Check if two values are equal or positioned close to each other.

Syntax

ProximityExpr

Description

A ProximityExpr can either be an EqualityExpr using the equality operators = and != or the
contains operator ~= or it can use the operators adj and near. The operator adj is used to locate
adjacent values that are in the exact order as specified with the adj operator. The operator near
is used to locate adjacent values irrespective of exact order. The adj and near operators can only
be used on the right side of an expression with the contains operator.

Compatibility

There is no ProximityExpr in XPath.

Examples

■ Select all patient nodes that have the word value "professional" followed immediately by the
word "diver" for the element occupation:

X-Query Reference Guide46

Expressions

/patient[occupation ~= 'professional' adj 'diver']

Note: This is equivalent with the expression [occupation ~= 'professional diver'].

■ Select all patient nodes that have the word "professional" node followed immediately by the
word "diver" (or vice versa) for the element occupation:

/patient[occupation ~= 'professional' near 'diver'] ↩

Related Expression

BetweenExpr

47X-Query Reference Guide

Expressions

RelationalExpr

Compare two values by using relational operators.

Syntax

RelationalExpr

Description

A RelationalExpr can be a simple AdditiveExpr or two or more AdditiveExpr expressions that
are operands to one of the four relational operators < (less than), > (greater than), <= (less than or
equal), and >= (greater than or equal). The comparison results in a Boolean value "true" or "false".

You can compare numeric values as well as string values, which are compared according to lex-
icographic ordering. If there is a collation defined for either of the operands or if both operands
have the same collation defined, then the comparison is based on this collation, otherwise it is
character-based.

Compatibility

It is compatible to the expression RelationalExpr defined in XPath, Section 3.4, Rule 24. However,
in XPath RelationalExpr is restricted to comparison of numeric values.

In contrast to XSLT there is no need to use entity references for the "<" and ">", since the query
string is not processed as an XML instance. But in XSLT a RelationalExpr appears as an attribute

X-Query Reference Guide48

Expressions

http://www.w3.org/TR/xpath/#NT-RelationalExpr

value andmust therefore be referenced; the first example would look as follows: /patient/[born
< 1959].

Examples

■ Select the addresses of all patients whose surname is ordered before "Bl". The patient "Bloggs"
is not in the result set, since "Bl" is positioned before "Bloggs" in the lexicographical order.

/patient/address[../name/surname < 'Bl']

■ Check if the mortality rate is below 10% (check if the number of patient nodes multiplied by
10 is greater than the number of deceased nodes)

count(/patient)*10 > count(//deceased)

Related Expressions

EqualityExprBetweenExpr

49X-Query Reference Guide

Expressions

RelativeLocationPath

Select nodes on a relative location path starting at the context node.

Syntax

RelativeLocationPath

Description

A RelativeLocationPath consists of a sequence of one or more location steps (Step) separated
by one of the path operators / or //. The operator / selects the child nodes of the context node,
while // selects all descendant nodes of the context node, since it is an abbreviation for the full
XPath expression descendant-or-self::node().

Compatibility

It corresponds to the expression RelativeLocationPath defined in XPath, Section 2.4, Rule 3.

Examples

■ Select all patients (a RelativeLocationPath consisting of a single AbbreviatedStep: it selects
the child nodes of the context node, which are the patient element nodes)

X-Query Reference Guide50

Expressions

http://www.w3.org/TR/xpath/#NT-RelativeLocationPath

patient

■ Select all doctors who discharged a patient (a RelativeLocationPath that selects every doctor
element nodewhich is a child of a discharged element nodewhich is a child of a result element
node which is a child of a patient element node which is a child of the context node):

patient/result/discharged/doctor

■ Select all therapies (an abbreviated RelativeLocationPath that selects every medication element
node which is a child of a therapy element node which is a descendant of the context node):

.//therapy/medication

Related Expressions

Step

51X-Query Reference Guide

Expressions

SequenceExpr

Select nodes based on position.

Syntax

SequenceExpr

Description

A SequenceExpr consists either of a single ProximityExpr or of two ormore proximity expressions
that are separated by the operators before or after. With these operators you can select nodes
based on sibling positioning.

The left operand of the before or after operator must be a set of sibling nodes and the right-hand
operand must be an element of this node-set (otherwise an empty node-set will be returned as a
result).

Compatibility

There is no SequenceExpr in XPath. You can use the operators before and after to simulate the
XPath way of selecting nodes along one of the axes preceding-sibling or following-sibling,
see the second and third example.

X-Query Reference Guide52

Expressions

Examples

■ Select remarks to a patient (all descendant remarks element nodes are sibling to some element
node therapy and positioned after that node; in our example database this is true for only one
node; see also next example):

//remarks after therapy

■ Select street and housenumber of all patients' addresses (select all element nodes that are child
nodes of patient/address and select only those that in the document order of siblings are po-
sitioned before the city element):

/patient/address/* before city

■ Select all data of a patient except his or her name and any remarks (from all immediate child
element nodes of the patient nodes select the siblings following the name node provided that
they are not the last one):

(/patient/* after name)[position() != last()]

Please note that you have to use the parentheses here. Otherwise the predicate expressionwould
be applied to the name node and this would yield an empty result set.

Related Expressions

ProximityExpr

53X-Query Reference Guide

Expressions

SetExpr

Select the union or intersection of node sets.

Syntax

SetExpr

Description

With a SetExpr you can select the union or intersection of node sets. A union set is constructed
by using the operator | and contains all nodes that are in any one of the node sets. An intersection
is constructed by using the operator intersect and contains only those nodes that are in all nodes.

Compatibility

It corresponds to the expression UnionExpr defined in XPath, Section 3.3, Rule 18. However, X-
Query adds the intersect operator which is not present in XPath.

Examples

■ Select the union of all medication descendants and diagnosis descendants of patients:

X-Query Reference Guide54

Expressions

http://www.w3.org/TR/xpath/#NT-UnionExpr

/patient//medication | /patient//diagnosis

■ Select the intersection of all patients born in 1950 and patients with medication in tablet form
among all male patients:

/patient[born=1950] intersect /patient[//medication/type[@form='tablet']] intersect ↩
/patient[sex ~= 'male']

■ Certainly, you can write this query easier, for example:

/patient[born=1950 and .//medication/type[@form='tablet'] and sex ~= 'male']

Related Expressions

PredicatePrimaryExprLocation Path

55X-Query Reference Guide

Expressions

SortByClause

Sort a set of nodeswithin or across documents in ascending or descending order. The sort criterion
is specified by a relative location path.

Syntax

SortByClause

Description

In Tamino, you can use a SortByClause for sort operations using the following keywords:

sortby
nodes within a document (intra-document sort)

sortall
multiple documents (inter-document sort)

If there is a collation defined for the element or attribute that is used as sort criterion, then the sort
will be based on that collation. You can specify multiple sort criteria by separating them with a
comma. The default sorting order is ascending, but you can also specify a descending order (see
SortByCharacteristics).

Usage Information

■ It is an error, if the sort argument expression evaluates to more than one node. For example,
given the XML document

X-Query Reference Guide56

Expressions

<A>
Item1
Item2

the error INOXIE8309 will occur when trying A sortby (B) or A sortall (B), since it is not
clear which B node to take as the sort criterion. In cases like these, the following table helps you
finding a unique sort expression (sort standing for sortby and for sortall):

first elementA sort (B[1])

last elementA sort (B[last()])

maximum numerical valueA sort (B[. = max(../B)])

minimum numerical valueA sort (B[. = min(../B)])

maximum string valueA sort (B[not(. < ../B)])

minimum string valueA sort (B[not(. > ../B)])

■ To guarantee a type-conforming sort, you should use a structure index for the doctype in
question that uses at least the setting "CONDENSED" .

■ It is an error to address the parent nodes after applying a sort operation. For example:

/patient/name sortall (.) /..

will yield error INOXIE8345.
■ You can use only one sortall operation at a time. For example,

(/patient/name sortall (.)) sortall (.)

will yield error INOXIE8355.

The following restriction applies to sortby operations within a document:

■ You cannot sort by the results of a function call such as /*/* sortby(position() desc).

Compatibility

There is no SortByClause in XPath.

In previous versions, a sortby expression that is immediately located after the root node (e.g. /A
sortby (.), has the same semantics as /A sortall (.)now, namely performing an inter-document
sorting. This has been retained for compatibility.

57X-Query Reference Guide

Expressions

Examples

■ Select all firstname descendant nodes and return them sorted within each document:

//firstname sortby (.)

This yields the following list of result nodes:

<firstname ino:id="1">Dorothy</firstname>
<firstname ino:id="1">John</firstname>
<firstname ino:id="1">John</firstname>
<firstname ino:id="1">Paul</firstname>
<firstname ino:id="2">A.</firstname>
<firstname ino:id="2">Fred</firstname>

■ Select all firstname nodes in ascending order across documents

//firstname sortall (.)

An error INOXIE8355 will occur, because the example data uses firstname nodes at several
positions in the document tree. You can work around this by using a union set of all six possible
nodes explicitly:

(/patient/name/firstname | /patient/nextofkin/name/firstname | ↩
/patient/submitted/doctor/name/firstname |
/patient/result/deceased/doctor/name/firstname | ↩
/patient/result/discharged/doctor/name/firstname |
/patient/result/transferred/doctor/name/firstname) sortall (.)

This yields the correct list, namely all occurrences of firstname nodes sorted across all document
instances:

<firstname ino:id="2">A.</firstname>
<firstname ino:id="1">Dorothy</firstname>
<firstname ino:id="2">Fred</firstname>
<firstname ino:id="1">John</firstname>
<firstname ino:id="1">John</firstname>
<firstname ino:id="1">Paul</firstname>

■ Get an alphabetically sorted list of all brands of medicine which has been used in the form of
tablets and in liquid form.

X-Query Reference Guide58

Expressions

(//type[@form='tablet'] | //type[@form='liquid']) sortall (@brand)

■ Select all male patients sorted by their surnames using an inter-document sort; sort the node-
set resulting from /patient[sex ~= 'male'] by the element /patient/name and return the list
in descending order:

/patient[sex ~= 'male'] sortall (name desc)

Related Expressions

SetExpr, FilterExprStep

59X-Query Reference Guide

Expressions

SortByCharacteristics

Define the order in which objects are to be sorted.

Syntax

SortByCharacteristics

Description

In Tamino, you can use SortByClause for sorting database objects. The SortByCharacteristics
defines the order in which database objects should be sorted, which can be ascending (using
ascending or asc as shorthand) or descending (using descending or desc as shorthand). The default
sorting order is ascending. See SortByClause for amore detailed description of how sortingworks.

Compatibility

There is no SortByCharacteristics in XPath.

Example

Select all patients sorted by their submission date beginning with the most current one; patients
who were submitted on the same day, should be sorted alphabetically by their name:

X-Query Reference Guide60

Expressions

/patient sortall (submitted/date desc, name asc)

Related Expressions

SortByClause

61X-Query Reference Guide

Expressions

Step

Select a set of nodes starting from a given node-set.

Syntax

Step

Description

A step is specified in a location path in order to select a set of nodes relative to a context node. A
step can also be specified using an abbreviated syntax.

Compatibility

It corresponds to the expression Step defined in XPath, Section 2.1, Rule 4.

Examples

■ Select all medication nodes that are children of a therapy node that are children of a patient
node:

/patient/therapy/medication

■ Using abbreviated syntax, select all diagnosis elements of the current context node that have
a value of "DCI":

X-Query Reference Guide62

Expressions

http://www.w3.org/TR/xpath/#NT-Step

//diagnosis[.='DCI']

■ Using abbreviated syntax, retrieve all diagnosis elements whose parent node has the element
symptoms containing the value "headache":

//diagnosis[../symptoms ~= 'headache']

Related Expressions

PredicateNodeTestAxisSpecifier

63X-Query Reference Guide

Expressions

UnaryExpr

Change the sign of a number.

Syntax

UnaryExpr

Description

The UnaryExpr is a unary operator which changes the sign of a Number. It takes as argument a
SetExprwhich may also be a node set. In that case, it tries to convert the value of the respective
node of the last document in the result set into a numeric value and changes the sign of that
number

Compatibility

It corresponds to the expression UnaryExpr defined in XPath, Section 2.4, Rule 3.

Examples

■ This is simply a Number, the numeric value -3.

-3

■ Change the sign of the numeric value -3.

X-Query Reference Guide64

Expressions

http://www.w3.org/TR/xpath/#NT-RelativeLocationPath

-(-3)

■ Subtract the year of birth of the last patient from the numeric value -2001 (no application of
UnaryExpr):

-2001-patient/born

■ Subtract the year of birth of the last patient from 2001 and change it in a negative value:

-(2001-patient/born)

Related Expressions

AdditiveExpr

65X-Query Reference Guide

Expressions

66

2 Functions

■ avg ... 69
■ min ... 70
■ max .. 71
■ ino:explain ... 72

This chapter describes the functions available in X-Query. Many of them are defined in XPath
with the same syntax and semantics. Please refer to the XPath specification for a more detailed
description. Functions that are not present in XPath are marked with an asterisk. Some of the
functions that are present in XPath are not implemented in X-Query, but you can extend the
functionality of X-Query by writing server extensions implementing the desired function. These
extensions can then be registeredwithin the database server so that they are available for all further
queries.

Short DescriptionFunctionCategory

convert argument to a Boolean valueboolean()Type conversion

convert argument to a numbernumber()

convert argument to a stringstring()

return the smallest integer that is greater than or equal to the
argument's numeric value

ceiling()Arithmetic
functions

return the largest integer that is less than or equal to the argument's
numeric value

floor()

return the integer that is closest to the argument's numeric valueround()

test whether one string starts with another stringstarts-with()String functions

return the average value of a set of numeric values that the argument's
node set contain

avg() *Aggregation

return the number of nodes present in the argument's node setcount()

return the smallest value of a set of numeric values that the
argument's node set contain

min() *

67

http://www.w3.org/TR/xpath/
http://www.w3.org/TR/xpath/#function-boolean
http://www.w3.org/TR/xpath/#function-number
http://www.w3.org/TR/xpath/#function-string
http://www.w3.org/TR/xpath/#function-ceiling
http://www.w3.org/TR/xpath/#section-Number-Functions
http://www.w3.org/TR/xpath/#section-Number-Functions
http://www.w3.org/TR/xpath/#function-floor
http://www.w3.org/TR/xpath/#function-round
http://www.w3.org/TR/xpath/#function-starts-with
http://www.w3.org/TR/xpath/#section-String-Functions
http://www.w3.org/TR/xpath/#function-count

Short DescriptionFunctionCategory

return the largest value of a set of numeric values that the argument's
node set contain

max() *

calculate the total of a set of numeric values that the argument's node
set contain

sum()

return a qualified name representing the name of a nodename()Node Names

return the Boolean value "false"false()Boolean
functions return the negated value of its argumentnot()

return the Boolean value "true"true()

return the position number of the last node in the listlast()Context
information return the position number of the context nodeposition()

return query execution planino:explain() *Analysis

X-Query Reference Guide68

Functions

http://www.w3.org/TR/xpath/#function-sum
http://www.w3.org/TR/xpath/#function-name
http://www.w3.org/TR/xpath/#function-false
http://www.w3.org/TR/xpath/#section-Boolean-Functions
http://www.w3.org/TR/xpath/#section-Boolean-Functions
http://www.w3.org/TR/xpath/#function-not
http://www.w3.org/TR/xpath/#function-true
http://www.w3.org/TR/xpath/#function-last
http://www.w3.org/TR/xpath/#function-position

avg

Return the average of the argument's numeric value.

Syntax

avg (nodeset])

Description

This function returns the average of the numeric value of the nodes of a node set. If you specify a
node set that contains more than one node, all nodes of the set are taken for evaluation.

If necessary, node values are converted to numerical values. If a node value cannot be converted,
then NaN is used. This function returns NaN, if at least one argument is NaN.

Compatibility

There is no avg function in XPath.

Example

Compute the average age of all male patients (subtract from the current year the average value of
the aggregated /patient/born nodes):

2002 - avg(/patient/born[../sex~='male'])

69X-Query Reference Guide

Functions

min

Return smallest value of the argument's numeric value.

Syntax

min (nodeset[, nodeset])

Description

This function returns the minimum numeric value of the nodes of one or more node sets. If you
specify a node set that contains more than one node, all nodes of the set are taken for evaluation.

If necessary, node values are converted to numerical values. If a node value cannot be converted,
then NaN is used. This function returns NaN, if at least one argument is NaN.

Compatibility

There is no min function in XPath.

Example

Retrieve the year of birth of the oldest patient (aggregate all /patient/born nodes and determine
the minimum numerical value):

min(/patient/born)

X-Query Reference Guide70

Functions

max

Return largest value of the argument's numeric value.

Syntax

max (nodeset[, nodeset])

Description

This function returns the maximum numeric value of the nodes of one or more node sets. If you
specify a node set that contains more than one node, all nodes of the set are taken for evaluation.

If necessary, node values are converted to numerical values. If a node value cannot be converted,
then NaN is used. This function returns NaN, if at least one argument is NaN.

Compatibility

There is no max function in XPath.

Example

Retrieve the year of birth of the youngest patient (aggregate all /patient/born nodes anddetermine
the maximum numerical value):

max(/patient/born)

71X-Query Reference Guide

Functions

ino:explain

Retrieve information about query execution for analysis and optimization.

Syntax

ino:explain (query[, level])

Description

This function provides information about the execution plan of a given query. As it is a
Tamino-internal function, it has the namespace prefix ino. It takes as argument any valid query
expression (OrExpr) and an optional level of explanation, which can be one of the values "path"
and "tree". If level is omitted, then basic information about the processing steps involved is
provided. It returns information about the execution plan of the query inside the regular
<xql:result> node of the standard <ino:response>. This information is wrapped up in a new
element <ino:explanation>.

The execution time of a query depends on the number and kind of processes that are needed to
resolve the query. A query is processed in Tamino as follows:

1. Query Parser
It takes as input the query string and parses it. If it does not conform to the syntax rules of X-
Query then an error message will be returned indicating the type of error. If the query can be
successfully parsed, it delivers an input tree for the optimizer.

2. Query Optimizer
The optimizer tries to optimize queries on the level of X-Query by applying a number of
transformations and using the information from the corresponding schema. It performs amongst
others the following kinds of transformation as far as they are applicable:
■ descendants expansion: abbreviated relative or absolute location paths are expanded into a
disjunction of unabbreviated paths

■ wildcard expansion: if you use * in a NameTest, then it will be expanded into a disjunction
of all matched nodes. (e.g. insurance/*would be expanded into insurance/company or
insurance/policynumber)

■ path evaluation in predicate expressions: reformulate path references such as a/b/c[../d]
into a/b[d]/c

■ not() replacement: applying deMorgan rules, the optimizer tries to replace expressions that
use a call of the not() function (e.g. an expression such as not(surname = "Atkins")would
be transformed into surname != "Atkins"

X-Query Reference Guide72

Functions

Example: You use an abbreviated location path in your query such as in patient[.//surname
~= 'Atkins']. From the schema, the optimizer detects that the element surname can occur at
six different positions in a document tree: patient/name/surname,
patient/nextofkin/name/surname, and doctor/name/surname, where doctor can appear under
patient/submitted, result/discharged, result/transferred, and result/deceased. The
optimizer then transforms the filter expression into the following disjunction:

patient[./name/surname ~= 'Atkins' or
./nextofkin/name/surname ~= 'Atkins' or
./submitted/doctor/name/surname ~= 'Atkins' or
./result/discharged/doctor/name/surname ~= 'Atkins' or
./result/transferred/doctor/name/surname ~= 'Atkins' or
./result/deceased/doctor/name/surname ~= 'Atkins']

Instead of searching the complete document tree only these nodes must be visited to see if the
predicate expression holds. As a result, the optimizer delivers a modified tree.

3. Processor-specific Optimizer
This component optimizes the tree with regard to the special needs of the next processing
components. For both, the index processor and the postprocessor, a tree will be generated that
best suits their needs.

4. Index Processor
This component evaluates all predicates containing indexed element nodes. It is further respons-
ible for accessing documents and schemas from the database as well as for composing the XML
document that contains the query result. It is possible that the index processor creates a superset
of the query result which then has to be restricted in the next step. If no further processing is
necessary, then the index processor returns the result set as an instance of xql:result.

5. Postprocessor
Since typically not every node is indexed, there is another processing stage that evaluates ex-
pression with non-indexed nodes. The postprocessor also restricts the result set if the index
processor generated a superset by scanning a doctype or collection. Furthermore it also makes
calls to any query functions. If invoked it will return the complete query result.

A call to ino:explain provides information about which processing components are involved, to
what degree the query can be optimized, and the work load of the index processor and the post-
processor. According to the selected explanation level a different amount of information is returned
inside an element called ino:explanation. This element uses two attributes,
ino:document_processing and ino:preselection that are used as flags and indicate the way the
query is processed. Inside ino:explanation a set of elements can appear that share the namespace
prefix xop. They correspond to expressions in X-Query. For example, the element xop:matches
represents thematch operator '~=', and the node <xop:literal xop:value="Atkins" /> represents
the literal string constant "Atkins". The sections below describing the explanation levels contain
more information aboutwhich principal elements and attributes of the xopnamespace are important
and how they can be used for the purpose of query analysis and optimization.

73X-Query Reference Guide

Functions

Note: The information that is returned by a call of ino:explain() shows the internal
structure of query processing and is subject to changewithout prior notice if this is necessary
because of improvements in the underlying mechanism.

No Explanation Level

In the query result only ino:explanation appears along with its two required attributes. They
mean:

■ ino:preselection: indicates whether a full scan of the doctype or collection will be performed
for the given query. If "TRUE" there is some restriction in the query that can be processed by
the index processor, which means that there may be documents that can be rejected without
calling the postprocessor. "FALSE" indicates a full scan of the doctype or collection.

■ ino:postprocessing: if "TRUE" then the postprocessor will be called.

To retrieve the execution plan for a query looking for patient whose surname contains "Atkins":

ino:explain(patient[.//surname ~= "Atkins"])

The result from the server looks like this (only showing the relevant <xql:result> node):

<xql:result>
<ino:explanation ino:preselection="TRUE" ino:postprocessing="TRUE" />

</xql:result>

Explanation Level "path"

This level shows the query after the optimizer run. Each step of a location path is represented by
its own xop:path element. Nesting of xop:path elements means traversing the location path one
step further along the child axis. Any instance of xop:path uses these attributes:

■ xop:name: name of the element, always present
■ xop:searchtype: search type of the element as defined in the schema, only present if there are
no child elements

■ xop:maptype: mapping type of the element as defined in the schema, if none is defined, the
value is "no".

Using the example from above the returned ino:explanation node contains the following series
of xop:path elements (the larger middle part deleted for brevity):

X-Query Reference Guide74

Functions

<xop:path xop:name="patient" xop:maptype="native">
<xop:path xop:name="name" xop:maptype="infofield">

<xop:path xop:name="surname" xop:maptype="infofield" />
</xop:path>
<xop:path xop:name="nextofkin" xop:maptype="infofield">

<xop:path xop:name="name" xop:maptype="infofield">
<xop:path xop:name="surname" xop:maptype="infofield" />

</xop:path>
</xop:path>
...
<xop:path xop:name="address" xop:maptype="infofield" />

</xop:path>

The "patient" element contains the element name which in turn contains the element surname,
each of them with their schema mapping type definition in the xop:maptype attribute.

Explanation Level "tree"

The structure of ino:explanation acknowledges the query trees that are built andmodified during
query processing. For each tree that is used during processing, there is a corresponding
xop:querytree element that are distinguished by the attribute xop:treetype as follows.

■ Input Tree for Optimizer
This tree represents the original query and is always included in the output of ino:explain().
For example the query patient[.//surname ~= "Atkins"] is represented as follows (nested
elements are indented for better readability):

<xop:querytree xop:treetype="input tree for optimization">
<xop:list_context xop:collection="Patient" />
<xop:element_children />
<xop:nametest xop:name="patient" />
<xop:filter>

<xop:matches>
<xop:transparent>

<xop:curcontext />
<xop:descendant_elem />
<xop:nametest xop:name="surname" />

</xop:transparent>
<xop:literal xop:value="Atkins" />

</xop:matches>
</xop:filter>
<xop:element_children />
<xop:nametest xop:name="address" />

</xop:querytree>

From the collection "Patient" (<xop:list_context xop:collection="Patient" />), those child
element nodes whose name equals "patient" (<xop:nametest xop:name="patient" />) are se-
lected that satisfy the condition set in the filter expression (xop:filter). The filter contains an
expression with the match operator (xop:matches) with two operands appearing in document
order. The left operand is enclosed in xop:transparent as a sequence of elements that selects

75X-Query Reference Guide

Functions

starting from the context node <xop:curcontext /> any descendant elements
(<xop:descendant_elem />)whosenameequals "surname" (<xop:nametest xop:name="surname"
/>). If the value of these descendant "surname" element nodesmatches the literal value "Atkins"
(<xop:literal xop:value="Atkins" />), then they satisfy the filter expression and form the
node set from which all child element nodes with the name "address" should be selected as
result of the query.

■ Output Tree from Optimizer
This tree is not returned when the optimizer run yields an empty result. Using our previous
example, the optimizer converts the original query into a query containing a disjunction as
outlined above. An excerpt of the resulting query tree is shown below. Only the first two clauses
of the disjunction (xop:or) are complete; the structure of the other four clauses is “folded” and
indicated by an ellipsis:

<xop:querytree xop:treetype="output tree from optimization">
 <xop:list_context xop:collection="Patient" />
 <xop:element_children />
 <xop:nametest xop:name="patient" xop:maptype="native" xop:key="id0000000181" />
 <xop:filter>
 <xop:or xop:preselectable="FALSE">
 <xop:matches xop:preselectable="FALSE">
 <xop:transparent>
 <xop:nametest xop:name="name" xop:maptype="infofield" ↩
xop:key="id0000000183" />
 <xop:element_children />
 <xop:nametest xop:name="surname" xop:maptype="infofield" ↩
xop:key="id0000000184" />
 </xop:transparent>
 <xop:literal xop:value="Atkins" />
 </xop:matches>
 <xop:matches xop:preselectable="FALSE">
 <xop:transparent>
 <xop:nametest xop:name="nextofkin" xop:maptype="infofield" ↩
xop:key="id0000000201" />
 <xop:element_children />
 <xop:nametest xop:name="name" xop:maptype="infofield" ↩
xop:key="id0000000203" />
 <xop:element_children />
 <xop:nametest xop:name="surname" xop:maptype="infofield" ↩
xop:key="id0000000204" />
 </xop:transparent>
 <xop:literal xop:value="Atkins" />
 </xop:matches>
 <xop:matches xop:preselectable="FALSE"> ...
 <xop:matches xop:preselectable="FALSE"> ...
 <xop:matches xop:preselectable="FALSE"> ...
 <xop:matches xop:preselectable="FALSE"> ...
 </xop:or>
 </xop:filter>
 <xop:element_children />

X-Query Reference Guide76

Functions

 <xop:nametest xop:name="address" xop:maptype="infofield" xop:key="id0000000190" />
</xop:querytree>

In addition to the transformation of the query, the following attributes have been added:
■ xop:key has as value the internal ID assigned to this node.
■ xop:maptype holds schema, possible values are "infofield", "native".
■ xop:preselectable indicates with the Boolean values "TRUE" and "FALSE" if this part of the
query can be processed by the index processor.

■ Output Tree for Index Processor
This is the tree produced by the process-specific optimizer to be used by the index processor.
It is not returned if database access is not necessary.

<xop:querytree xop:treetype="output tree for index processor">
<xop:list_context xop:collection="Patient" />
<xop:element_children />
<xop:nametest xop:name="patient" xop:maptype="native" xop:key="id0000000181" />
<xop:element_children />
<xop:nametest xop:name="address" xop:maptype="infofield" xop:key="id0000000190" />

</xop:querytree>

■ Output Tree for Postprocessor
This is the tree produced by the process-specific optimizer to be used for the post processor. It
is not returned if postprocessing is not necessary.

<xop:querytree xop:treetype="output tree for document processor">
<xop:list_context xop:collection="Patient" />
<xop:element_children />
<xop:nametest xop:name="patient" />
<xop:filter>

<xop:matches>
<xop:transparent>

<xop:curcontext />
<xop:descendant_elem />
<xop:nametest xop:name="surname" />

</xop:transparent>
<xop:literal xop:value="Atkins" />

</xop:matches>
</xop:filter>
<xop:element_children />
<xop:nametest xop:name="address" />

</xop:querytree>

Compatibility

Neither in XPath nor in XSLT is there an equivalent for this Tamino-specific function.

77X-Query Reference Guide

Functions

Example

Retrieve information about the execution plan of a query looking for patients whose surnames
contain "Atkins":

ino:explain(patient[.//surname ~= "Atkins"])

The result from the server looks as follows (only showing the relevant <xql:result> node):

<xql:result>
<ino:explanation ino:preselection="FALSE" ino:postprocessing="TRUE"/>

</xql:result>

So there is no index on the surname element node and a postprocessor run is necessary. You can
do the following to minimize processing costs:

■ If you know the schema, rewrite the abbreviated path:

patient[name/surname ~= 'Atkins']

■ If you know that the string value you're looking for is the complete value, then use a standard
quality operator such as:

patient[name/surname = 'Atkins']

■ Define an index onto surname.

X-Query Reference Guide78

Functions

Index

A
AbbrevAbsoluteLocPath, 4
AbbreviatedAxisSpecifier, 6
AbbreviatedStep, 8
AbsoluteLocationPath, 10
AdditiveExpr, 12
AndExpr, 14
Argument, 16
avg, 69
AxisSpecifier, 18

B
BetweenExpr, 20

E
EqualityExpr

in Tamino X-Query, 22
Expr, 25

F
FilterExpr

in Tamino X-Query, 26
FunctionCall, 27

I
ino:explain, 72

L
LocationPath, 29

M
max, 71
min, 70
MultiplicativeExpr, 31

N
NodeTest, 33
NodeType, 35

O
OrExpr, 37

P
PathExpr, 39
Predicate, 41
PredicateExpr, 43
PrimaryExpr, 44
ProximityExpr, 46

R
RelationalExpr, 48
RelativeLocationPath, 50

S
SequenceExpr, 52
SetExpr, 54
SortByCharacteristics, 60
SortByClause, 56
Step, 62

U
UnaryExpr, 64

79

80

	X-Query Reference Guide
	Table of Contents
	Preface
	1 Expressions
	AbbrevAbsoluteLocPath
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	AbbreviatedAxisSpecifier
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	AbbreviatedStep
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	AbsoluteLocationPath
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	AdditiveExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	AndExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Functions

	Argument
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	AxisSpecifier
	Syntax
	Description
	Compatibility
	Example
	Related Expression

	BetweenExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	EqualityExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	Expr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	FilterExpr
	Syntax
	Description
	Compatibility
	Example
	Related Expressions

	FunctionCall
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	LocationPath
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	MultiplicativeExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	NodeTest
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	NodeType
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	OrExpr
	Syntax
	Description
	Compatibility
	Example
	Related Expressions

	PathExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	Predicate
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	PredicateExpr
	Syntax
	Description
	Compatibility
	Example
	Related Expressions

	PrimaryExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	ProximityExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expression

	RelationalExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	RelativeLocationPath
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	SequenceExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	SetExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	SortByClause
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	SortByCharacteristics
	Syntax
	Description
	Compatibility
	Example
	Related Expressions

	Step
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	UnaryExpr
	Syntax
	Description
	Compatibility
	Examples
	Related Expressions

	2 Functions
	avg
	Syntax
	Description
	Compatibility
	Example

	min
	Syntax
	Description
	Compatibility
	Example

	max
	Syntax
	Description
	Compatibility
	Example

	ino:explain
	Syntax
	Description
	Compatibility
	Example

	Index

