5 software

Tamino

Transactions Guide

Version 9.7

April 2015

WEBMETHODS



This document applies to Tamino Version 9.7.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2015 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-TRANSACT-97-20160318



Table of Contents

PTOACE ..t v
T INtrodUCHON ...oeiiiiiiii 1
General Transaction CONCEPLS ......c.cociiiiiiiiiiiiiiiiiiiiii e 2
Local Transactions ...........ccocuiiiiiiiiiiiiiiiic e e 4
Global TranSacCtions .........cccuiiuiiiiiiiiiiiii e 5
2 Transaction MOAES .......ccc.eiiiiiiiiiiiiiiiicc e 9
Basic DefiNitions ..........ccoouiiiiiiiiiiiiiiccie e 10
Summary of Transaction Modes ............ccccevviiiiiiiiiiiiiiiiiii 11
3 Isolation Levels and LOCKING .........cccoiiiiiiiiiiiiiiiciccc 15
The Hierarchical Locking Concept of Tamino ..........ccccceecviviiiiiiiiiiiiniiiiiiniiineeen, 16
Concurrency Phenomena in DBMS ...........ccccoiiiiiiiiiiiic 18
Isolation Levels in Tamino .......ccccoociiiiiiiiiiiiiiiiiiiii e 26
Isolation Levels and Concurrency Phenomena ...........cccocoovviiiiiiiiiiiiiiiic 33
Lifetime Of LOCKS .o.viiiiiiiiiieci e 34
General Rules for the Choice of the Isolation Level ............ccccooiiiiiiiiiniiinnnnn 35
4 Transaction Parameters ..........cccccccoviiiiiiiiiiiiiiii 37
The isolationLevel Parameter ............cccocciioiiiiiiiiiiiiiiiiiiiicicc 38
The lockMode Parameter .............cccoceiiiiiiiiiiiiiiiiiiiiec e 38
The querysearchmode Parameter ..........c..cccceoviiiiiiiiiiiiiiiiiiiiiiececcce e 39
The lockWait Parameter ..........ccocveiiiiiiiiiiiiiiiiiiiciieccecceeeee e 40
Time Limits for Transactions ...........ccccueeeiieriiiiiiiniiiiee e 40
5 Deadlocks and Deadlock Prevention ............ccccoeoiiiiiiiiiiiiiniiiniiiiiiicecceccece 43
Deadlock Example .........cccoooiiiiiiiiii 44
Deadlock Prevention ..........c.ociiiiiiiiiiiiiiiiiiiciec e 45
6 Examples and Scenarios ...........cccoceiiiiiiiiiiiiiicc 47
Scenario 1: Read-only Scenario without Consistency Requirements ...................... 48
Scenario 2: Read-only Scenario with Consistency Requirements ...............cc.cc.e..... 51
Scenario 3: Single Insert/Blind Update Scenario ...........c.cccoceviiiiiiiiiiiiciniin, 53
Scenario 4: Read-for-Update Scenario ...........cccceevviiiiiiiiiiiiiiiiiiiiiiiiiiccccecne 54
Scenario 5: Stable CUrsor SCENATIO ........ccccciiiiiiiiiiiiiiii 55
Scenario 6: Deadlock Prevention Scenario .........ccccccevciiiiiiiiiiiiiiiiiiiiiiiciecee 56
A Appendix 1 - Complete Java Code example of Scenario 1 ...........ccocvvviiiiiiiniinnnnnne 57
INA@X it 59







Preface

This document helps you to choose the correct transactional options for your Tamino applications
in order to gain the required degree of concurrency. This just means finding the right balance
between data consistency requirements and the performance of your application. It describes
typical scenarios (sometimes including code examples in various programming languages), but
no extensive documentation of implementation details will be given here. Refer to the reference
documentation for the API of your choice and also to the X-Machine Programming documentation
for such information.

This document is not a general introduction into transaction management, locking, isolation levels,
etc. It assumes you are already familiar with the fundamental concepts of transactionality in
databases and explains the way Tamino provides transactionality. It only provides a small
introduction into the general terms used and additionally it presents some useful links to other
(partly non-Software AG and non-Tamino) documentation on this subject.

This document addresses application designers and experienced application developers who
intend to organize database access to Tamino by their applications in the most efficient manner.

The following topics are discussed in this document:

Introduction The introduction briefly summarizes and clarifies the fundamentals of
transaction processing in database management systems. It also
introduces the most important terms.

Transaction Modes This section explains the different transaction modes which can be
applied in Tamino applications.

Isolation Levels and Locking This section explains the different isolation levels which can be applied
in Tamino applications.

Transaction Parameters This section explains the different locking parameters which can be
applied in Tamino applications.

Deadlocks and Deadlock This section discusses the occurrence of deadlock situations and suitable

Prevention precautions for avoiding them.

Examples and Scenarios This section provides in-depth knowledge about consequences of

choosing various combinations of transaction modes, isolation levels
and locking modes. Typical scenarios are described in this section, partly
with accompanying code examples.

Appendix 1 - Complete Java Code This section provides the complete source code of scenario 1 in Java.
example of Scenario 1




vi



1 Introduction

m General Transaction CONCEPLS ........veveiiiiiiee ettt e e e e e et e e e e e e e st aaeeeae e
B 00l TTANSACHIONS .. eeet ettt e et ettt et
B GlODAI TrANSACHONS ..o e e,




Introduction

Transactionality is a characteristic feature of nearly all DBMSs on the market. Tamino supports
transactionality in its core and its programming interfaces. This chapter gives an introduction to
the elementary concepts of transactionality that apply to Tamino as well as to most other databases.

It is divided in the following sections summarizing the fundamentals of local and global transac-
tions:

General Transaction Concepts

Tamino applications often model real-life processes, in which business objects are accessed and
modified. These modifications must be done in a consistent way, especially if another application
stored the data or the data may be accessed concurrently by other applications. Consequently,
dividing an application into a set of consistent parts (i.e. logical units of work) becomes an essential
design requirement.

From a logical point of view, a transaction represents the smallest unit of work (as defined by the
user) that must be performed in its entirety to ensure logical consistency of the information con-
tained within the database. A transaction may comprise one or more Tamino commands that to-
gether perform the database operations required to complete a logical unit of work.

One criterion for categorizing transactions is whether they affect a single system only or multiple
systems (in a network). In the first case they are classified as local transactions, otherwise they are
classified as distributed (or global) transactions.

To introduce other aspects of transactions, let us just have a look at a simple example:

Imagine, for instance, the transfer of an amount of money (let us say, 50 $) from one bank account
A to another bank account B. Then, the corresponding transaction would have to consist of two
elementary operations:

® The account A must be reduced by 50 $
= and 50 $ must be added to the account B.

In this context, neither operation makes sense alone.
ACID transactions

In order to be logical units of work in the sense just defined, the transactions are required to have
specific properties. These properties are generally known in database theory by the acronym
“ACID” (denoting:

atomic
consistent
isolated
durable

2 Transactions Guide



Introduction

which is defined as follows:

Atomicity
Either the transaction is fully completed or it is not executed at all;

Note: As a consequence of this fact, all actions performed by an atomic transaction will

be undone in case of any failure or interruption.

Consistency
The transaction always has to provide reliable results:

Starting from a consistent state, a transaction transforms a database into another consistent
state.

Isolation
The transaction is independent of any other process that may be run in parallel; other transac-
tions may not be influenced by intermediate results of a transaction.

Durability
Once the transaction is completed, the results remain as permanent data. They are persistent
so that they will never be lost. They should not even get lost in case of a catastrophe.

The main problem of concurrent database access is this:

Operations on documents temporarily create inconsistent database content. This applies both to
the document itself and also to the index data the database creates internally. In order to achieve
consistency, in an ideal database it would be required that applications or queries must never see
these inconsistent states of documents and index data. As a consequence, query and update pro-
cessing must be synchronized in such a database based on the following rules:

1. Itis necessary to ensure that no document will be updated while it is used in query processing.
2. Inmany cases it is necessary to ensure that no document will be accessed from query processing

while it is under update (but Tamino does not generally suppress such dirty reads).

A transaction T is considered as isolated from other transactions if the following conditions are
met:

1. Data written by T's write operations are neither read nor written by other transactions until the
end of transaction T.

2. T does not overwrite “dirty” (uncommitted) data.

3. T does not read “dirty” (uncommitted) data from other transactions.

4. Other transactions do not write data read by T before T completes.

Although in reality transactions run concurrently, i.e. in a parallel manner, a database management

system should ideally behave as if the transactions would be processed sequentially. This goal

can practically be achieved, but only by paying the price and massively applying locks leading to
a reduced degree of concurrency.

Transactions Guide 3



Introduction

Note: In Tamino, synchronization of transactions is implemented based on locking.

Therefore nearly all databases offer some possibilities to correctly adjust the balance between the
requirements of isolation and consistency on one hand and a reduced degree of locking with its
less massive impact on transaction throughput on the other hand depending on your needs.

Commit and Roll back

An active transaction either has to be completed successfully (“committed”) or terminated when
unsuccessful (“rolled back”). In case the latter applies, all objects modified by the rolled back
transaction are reset to their correct prior status. The main task of the application designer is
therefore to first determine which logical units of work exist for the application. The actual com-
position of each logical unit of work depends on the application's design and is directly related
to the business processes to be supported by the application.

A commit command must be issued at the end of each transaction to complete it. Successful execution
of a commit command ensures that all the additions, updates, and/or deletes performed during
the completed transaction are physically applied to the database.

Updates performed during transactions for which a commit command has not been successfully
executed, are not yet permanent. Transactions which have not already been committed can be
made ineffective with the “roll back” command.

Local Transactions

Alocal transaction is defined to be a transaction which affects only one database. A local transaction
is managed directly by the database. A client starts and terminates a local transaction by using
database specific commands.

* Transaction start
If a previous transaction was terminated, a new transaction will be started implicitly.

= Transaction termination
The transaction is terminated either

= explicitly
by one of the following:

® via a commit command
" viaa rollback command

® or implicitly
by one of the following:

® An implicit commit has been performed by auto-commit

® An implicit commit has been forced by disconnect

4 Transactions Guide



Introduction

® An implicit rollback has been caused by a transaction failure such as deadlock, time-out or
something similar.

Global Transactions

This section discusses the difference between distributed transactions in a multi-server-environment
and local transactions in a single server environment. It describes the following aspects of global
transactions:

= Global vs. Local Transactions
= The Two-Phase-Commit Logic

| Note: The terms Global Transaction and Distributed Transaction are used as synonyms in this

document.
Global vs. Local Transactions

Where a local transaction involves only one database, a global transaction encompasses operations
to two or more databases.

If more than one database or even more than one machine gets involved, the situation gets more
complicated as you can no longer assume that the criteria for ACID transactions are fulfilled for
the global transaction even if each single database system fulfills them.

Let us for instance come back to our bank account example from above and assume that in contrast
to the given example the amount of 50 $ is not transferred between two accounts that are available
on the same database system, but between two accounts on two different database systems (for
instance, on a database system on another computer in another town). Even if we assume that
both database systems fulfill the ACID criteria from a stand-alone point of view it is possible that
the system on which account A is reduced by 50 $ commits this process and the other system on
which account B is increased by 50 $ rolls back this process and that neither process is aware of
the existence of the other. The result of this would of course be a violation of consistency. For a
solution of this problem communication between the participating database systems is required
ensuring the ACID properties.

Typically, this is achieved by introducing a two-phase-commit protocol for the communication
between the participating databases.

Transactions Guide 5



Introduction

The Two-Phase-Commit Logic

In a global transaction environment, each participating database is only capable of ensuring the
ACID properties for the operations within the global transaction that are issued on their own data.
None of the participating databases has the overview over the complete transaction; therefore
none of them is capable of ensuring the consistency of the global transaction as a whole. What is
even worse, is the fact that if each participating database would be allowed to decide on its own
the situation could arise that one database decides to commit its sub-transaction whereas the
other rolls its sub-transaction back as described in the above example.

In order to provide ACID properties for a global transaction two things are required:

® There needs to be communication amongst the participating databases.

* Each of the participating databases must relinquish the final control over the outcome of their
respective sub-transactions

The Two Phase Commit Protocol (2PC) was created to provide a solution for this problem. In the
2PC, an additional role is introduced, namely the transaction coordinator. A transaction coordin-
ator is responsible for the coordination of the participating resource managers. A resource manager
is any type of transactional system, mostly in the form of a database system. The transaction co-
ordinator communicates with the participating resource managers, and each resource manager
also communicates with the coordinator.

Another important difference between running a local or a global transaction is the fact that the
application program no longer communicates with a resource manager to start/commit/roll back
a transaction, but needs to do this via the coordinator. The coordinator in turn tells the resource
managers what to do. The 2PC gets its name from the fact that a commit of a global transaction
takes place in 2 phases:

1. Phase 1: prepare
The first step is initiated by the application requesting the coordinator to commit a global
transaction previously started through that coordinator. In the first step, the coordinator asks
all participating resource managers to prepare their sub-transactions and waits for their answers.
During this preparation phase each resource manager must bring itself in a position so that it
can either complete its sub-transaction successfully or roll it back even in the case of a system
crash. This normally involves that the resource managers write essential information to a log
file. Once the coordinator receives an answer from all resource managers, it will also write some
essential information to its own log. Once this is done, the first phase is finished.

2. Phase 2: completion
The second phase, then merely consists of the coordinator asking all the resource managers to
commit their sub-transactions.

By splitting the committing of a transaction in two phases, the coordinator can guarantee that
in the case of a failure, the state of a global transaction can be determined and the consistency
of the data is maintained. If for example the system crashes somewhere during phase 2 (therefore
after the coordinator received the answers of all the resource managers), the coordinator can

6 Transactions Guide



Introduction

inform the resource managers during a system restart to commit their sub-transactions after
all, thus consistently completing the global transaction.

Transactions Guide 7






2 Transaction Modes

m Basic Definitions ....................

= Summary of Transaction Modes




Transaction Modes

This section introduces and explains the most important terms of transactionality in the context
of Tamino, compares the general transaction modes and gives general information about the
locking concept which implements Tamino's transaction support. In detail, the following topics are
discussed here:

Basic Definitions

Before the transaction modes of Tamino will be explained in detail, the main terms used in the
description of the granularity of transaction execution need to be defined exactly.

Session

As with most of the other databases, local transactions within Tamino always take place
within the context of a session. A session manages the connection from an application to the
Tamino database. You can consider sessions as a channel between your application and the
database that is opened at the beginning of the session and closed at the end of the session. In
Tamino, a session is opened with a _connect command and closed with a _disconnect com-
mand. Within the context of the session, a series of single transactions can be performed until
the termination of the session.

| Note: For distributed transactions, there is a many-to-many relationship between sessions

and transactions: Several sessions can belong to one single distributed transaction.

Transaction

As mentioned above in the description of the ACID criteria, a transaction represents the unit
of work (as defined by the user) that must be performed in its entirety to ensure logical con-
sistency of the information contained within the database. Within a session, there is at most
one transaction at a time.

In Tamino, a local transaction always begins with the first command acquiring a lock following
a_connect, _commit, or _rollback command (in the 2 last cases the transaction is started im-
plicitly) and ends when a _commit,_rollback or _disconnect command is issued for the
transaction.

] Note: Every read, insert, update, delete, define or undefine operation opens a transaction

because each of these commands requests locks.

Request

In general, a request can be either a single command or a group of related commands.

Currently all Tamino APIs only support requests consisting of one single command, the only
way to bundle more than one command in a single request is to access Tamino directly via its
HTTP protocol. The terms “request” and “command” can therefore be used synonymously in
most cases. In the examples on the next pages the distinction between “request” and “command”
is maintained only for reasons of completeness.

10

Transactions Guide



Transaction Modes

Command
A command is an elementary operation within the database. All Tamino commands are relevant
in the context of transactionality. Also see the section Transaction-Related Commands of the X-
Machine Programming manual.

An application can communicate with Tamino either directly on the protocol level via HTTP
or through a programming language specific APL

Note: This document explains the general transactional concepts of Tamino independent

of the chosen method of communication. Thus details of particular APIs are not discussed
here (refer to the documentation of the particular API for those) and terms for the various
operations will not always match precisely the term used in your API. Sometimes
command names from X-Machine Programming or the APIs will be used as an example
in this document. For all other APIs there is always a similar command available.

Commands are available for the following elementary operations:

Performing queries on data:

In X-Machine Programming: Use the _xq1 command for queries based on the query language
Tamino X-Query. Use the _xquery command for queries based on the query language Tamino
XQuery 4.

Processing data and storing it in the database:
In X-Machine Programming: Use the _process command to store (insert or update) data. You
can also use the XQuery update insert command to insert data.

Updating data using XQuery
In X-Machine Programming: Use the XQuery update replace command to update data.
Deleting data:

In X-Machine Programming: Use the _delete command to delete data. You can also use the
XQuery update delete command to delete data.

Creating new schema definitions:
In X-Machine Programming: Use the _define command to create new schema definitions.

Deleting schema definitions:
In X-Machine Programming: Use the _undefine command to delete schema definitions.

Summary of Transaction Modes

Tamino offers 2 transaction modes:

Transactions Guide 11



Transaction Modes

1. session-less mode (auto-commit)
The session-less (or auto-commit) transaction mode is intended for executing local transactions
with implicitly committed transactions in a session-less context.

Session-less application
(anonymous session)

© _Process

Regest () Command () ransaction ()

In a session-less context (also called an “anonymous session”), requests run without a user-
defined session. Then every command in a request is executed in a separate (single-command)
transaction and will be implicitly committed if the response code indicates successful execution
or will be implicitly aborted (rolled back) otherwise.

2. local transaction mode
The local transaction mode is intended for executing local transactions with explicitly committed
transactions in a session context.

12 Transactions Guide



Transaction Modes

Session Context

=

A session is established by a connect command. It can consist of one or more transactions
containing one or more single commands that are performed during this session.

A transaction is implicitly started by the first command after a connect command or after the
preceding transaction has completed.

A transaction is either explicitly closed by the application with a rol1back ora commit command,
or implicitly committed when the corresponding session is closed.

] Note: Not every command starts a new transaction, only those commands that trigger a
lock.

Transactions Guide 13



14



3

Isolation Levels and Locking

The Hierarchical Locking Concept of Tamino .........
Concurrency Phenomena in DBMS .....................
Isolation Levels in Tamino ............cccccvvvvvvvvvnnnee.
Isolation Levels and Concurrency Phenomena ......
Lifetime 0f LOCKS ........ocovvieiiiiiiiiiiicic

General Rules for the Choice of the Isolation Level

15



Isolation Levels and Locking

This section explains mechanisms used in Tamino for database access from concurrent transactions.
It explains the terms used and discusses the available isolation levels and their effect on the various
concurrency phenomena.

The topics described in this chapter are:

The Hierarchical Locking Concept of Tamino

Tamino's hierarchical locking concept is introduced here under the headings:

= | ocking Granularities
= | ock Modes

Locking Granularities

Tamino makes use of a hierarchical locking system to implement isolation levels. A hierarchical
locking system is characterized by the fact that locks may be set on different granularities. A lock
set on a higher granularity implicitly sets the same lock on the lower granularities. The locking
system in Tamino currently recognizes the following hierarchy of granularities:

1. database

2. collection

3. doctype

4. document

In practice, the highest level on which Tamino may set a lock is the level of a collection; a full
database lock is never set.

Lock Modes

A locking system works with a set of different lock types, ranging from weaker to stronger locks.
During its lifetime (normally within a transaction) a weaker lock set on an object may be escalated
to a stronger lock.

In total, Tamino makes use of six lock types. They can be coarsely divided into two groups each
consisting of three lock types. The first group contains lock types which affect objects directly; the
second group contains lock types which represent an intention to lock further objects at a finer
granularity.

The explicit lock types are:

16 Transactions Guide



Isolation Levels and Locking

. No lock

This mode represents the absence of any locks. In Tamino this mode is indicated by the term
"unprotected".

. Share (S)

Provides the right to read the object at the granularity on which the lock is set or any object at
a finer granularity and prevents concurrent transactions from holding IX, X or SIX locks. In
Tamino this mode is indicated by the term "shared".

eXclusive (X)

Provides the right to write the object at the granularity on which the lock is set as well as the
right to set any lock on a finer granularity and prevents concurrent transactions from holding
any locks on this or any finer granularity. In Tamino this mode is indicated by the term "protec-
ted".

The intention lock types are:

1.

Intention Share (IS)
Provides the right to set S or IS locks at a finer granularity and prevents concurrent transactions
from holding X locks on this granularity.

. Intention eXclusive (IX).

Provides the right to set S, IS, X, IX or SIX locks at a finer granularity and prevents concurrent
transactions from holding S, X or SIX locks on this granularity.

Share and Intention eXclusive (SIX)
Provides the right to read the object at the granularity on which the lock is set or any object at
a finer granularity and prevents concurrent transactions from holding S, IX, X or SIX locks. In
addition it provides the right to set IX and Xlocks at a finer granularity. The SIX lock is essentially
a union between lock types S and IX.

The following table summarizes the compatibilities of the above mentioned lock types.

Already granted lock
Requested |No [ISIX S SIX X
lock Lock
IS + + + + + -
IX + + + - - -
S + + - 4+ - -
SIX + + - - - -
X + - - - - -
Example

The following scenario gives an example how hierarchical locks are used.

Transactions Guide

17



Isolation Levels and Locking

Assume a transaction T1 in which all accounts that currently have a balance of more than 5000 $
need to be processed. This transaction is running in parallel to other transactions which add and
subtract sums from accounts. The requirement for T1 is that it is guaranteed that all accounts with
a balance of more than 5000 $ are found and also that no transfers are made that would possibly
result in an account to drop below 5000 $ or increase to more than 5000 $ while T1 is executing.
This can be achieved by T1 setting an "S" lock on the doctype in which all the account documents
reside. All other parallel transactions that would like to make modifications to an account set an
"IX" lock on the doctype (indicating the intent to set an "X" lock on one or more documents in the
doctype). The "IX" and "S" locks on the doctype are incompatible. That means that T1 needs to
wait until all existing "IX" locks have been relinquished, and once T1 has acquired the "S" lock, all
other transactions need to wait for their "IX" lock until T1 has finished. In the following sections
it will become clear that in Tamino this behavior is achieved by executing T1 in isolation level
"serializable".

Concurrency Phenomena in DBMS

In databases (Tamino as well as relational databases), various possible scenarios can be considered
that might occur in concurrent transaction processing. The chosen isolation level determines
whether these phenomena may occur or not.

In the following, the most commonly known concurrency phenomena are described:

= | ost Updates

= Dirty Read Operation

= Non-repeatable Read Operation
= The Phantom Effect

| Note: In the following examples mainly X-Query (_xq1) syntax is used. In these cases,

XQuery (_xquery) syntax can be used as well. The only reason for the usage of X-Query
syntax is that the examples are shorter. The example for the phantom effect, however, is
based on XQuery.

Lost Updates

The lost update phenomenon occurs when two or more concurrent transactions read and update
the same data.

Lost updates represent a kind of write/write-dependency. The following situation will lead to the
occurrence of lost updates:

18 Transactions Guide



Isolation Levels and Locking

_xql=Persfiifino:id=1]

_xql=Persfiifino:id=1]

reduce salary by 10 %

] Note: If you would try to perform a second update on one of the transactions, this will fail

as all isolation levels provided by Tamino offer protection against lost updates.

1. Transaction 1 reads a document.

Transactions Guide




Isolation Levels and Locking

2. Transaction 2 then reads exactly the same document.
3. Transaction 1 modifies the document.

4. Transaction 2 modifies the document.

Regardless of whether the commit is accepted or rejected, there would be one update lost in this
situation!

Dirty Read Operation

The dirty read phenomenon may occur when a transaction modifies data and another transaction
reads the same data before the first transaction is committed or rolled back.

20 Transactions Guide



Isolation Levels and Locking

_uql=Pers[i@tino:id=1]

imcrease salary by 10 %

_uql=Pers[i@tino:id=1]

1. Transaction 1 reads a document.
2. Transaction 1 modifies the document.

3. Transaction 2 then reads exactly this modified document before a commit is performed on
transaction 1.

Transactions Guide




Isolation Levels and Locking

4. Transaction 1 performs a roll back.

The result of this scenario is that transaction 2 has read incorrect (“dirty”) data that has never
been committed because transaction 1 has been rolled back afterwards.

Non-repeatable Read Operation

Non-repeatable read phenomena may occur when one transaction reads and modifies data and
the same data is a read by a concurrent transaction multiple times:

22 Transactions Guide



_uql=Pers[i@tino:id=1]

_uql=Pers[i@tino:id=1]

imcrease salary by 10 %

_uql=Pers[i@tino:id=1]

The following situation will lead to the occurrence of such phenomena:

1. Transaction 2 reads a document.

2. Transaction 1 then reads exactly the same document.

Transactions Guide

Isolation Levels and Locking




Isolation Levels and Locking

3. Transaction 1 modifies the document.
4. Transaction 1 performs a commit.
5. Transaction 2 reads the same document again.

The result of the two identical read operations of transaction 2 will not be the same. This might
lead to inconsistencies.

The Phantom Effect

The phantom phenomenon may occur when one transaction establishes a set of documents as the
result of a query and other concurrent transactions insert or delete documents which would have
been part of that set.

24 Transactions Guide



Isolation Levels and Locking

_xquery=let $x:=
input{)/Fers
return sum{$x/@salary)

_xquery=let $x:=
input{)/Fers
return sum{$x/@salary)

1. Transaction 1 reads some data that fulfills some search condition.

2. Transaction 2 inserts a document which would have been part of the result set calculated by
transaction 1.

3. Transaction 3 deletes a document which was part of the result set calculated by transaction 1.

Transactions Gude 2%




Isolation Levels and Locking

4. Both transaction 2 and transaction 3 commit.

5. Transaction 1 executes the same query. The results are different.

Isolation Levels in Tamino

As explained in the previous sections, a number of consistency phenomena may occur as soon as
transactions can execute in parallel. In an ideal world, each transaction would be completely isolated
from all other concurrently executed transactions and none of the above mentioned consistency
phenomena would occur. It is clear however that this would require that to a large extent operations
would have to be serialized. On the other hand not every application has the requirement that
none of the consistency phenomena may occur. Some applications can live very well with a lower
level of consistency.

The question is therefore always to find the right balance between the consistency requirements
on the one hand and the maximization of parallelizing transactions on the other. For this purpose
Tamino offers a number of isolation levels, each providing a different level of consistency. The
isolation level of a transaction defines the degree of visibility of intermediate states of documents
as produced by other concurrent transaction in the database. It is important to understand that
the isolation level of a transaction does not determine to what degree intermediate states produced
by this transaction are visible to other transactions.

Tamino supports the following isolation levels which are listed in order of ascending degree of
isolation:

® "uncommittedDocument”

® "committedCommand"

® "stableCursor"

® "stableDocument"

= "gerializable"
The default values are:

= ]n a session context, the default is "stableDocument”.

® In a session-less context, the default is "uncommittedDocument", unless an XQuery update
command is issued. In that case the isolation level is automatically upgraded to "committed Com-
mand", the next stronger isolation level.

/), Important: The isolation level is a constant property of a transaction. It is determined at the

start of each transaction and cannot be changed during the lifetime of that transaction.

26 Transactions Guide



Isolation Levels and Locking

In the following sections, each one of the isolation levels is described. The description of each
isolation level includes a table which shows exactly which locks are set on the collection, doctype
and document granularities for all relevant operations. The operations listed are:

u
query
These are either X-Query or XQuery queries which retrieve documents or parts thereof from the
database or direct access via similar plain URL addressing.

" process
These are _process commands which either insert a new document or update an existing one.

" delete
These are _delete commands which delete existing documents from the database.

® update(read)
These are the query parts of an XQuery update command.

® update(write)
These are the update parts of an XQuery update command.

= define
These are _define commands.

" undefine
These are _undefine commands.

As the setting of the 1ockMode parameter also has an influence on the locking behaviour of Tamino,
this is indicated in a separate column.

Note that the expression “sensitive XQuery cursor” is used to indicate a cursor over an XQuery
query which is labeled to be “sensitive”, i.e. the parameter _sensitive has been set to the value
"vague". This implies that the result of the query is not calculated at cursor open time but on the
fly.

For more information see The _cursor command in Requests using X-Machine Commands.

Isolation Level uncommittedDocument

This value is the default value for the isolation level parameter if used in database operations in
a session-less context.

In this isolation level the dirty-read situation can occur:

A command within a transaction with this isolation level can read a so-called “dirty” document
at any time, which means that a concurrent transaction has changed the document but might abort
later on.

Another possible situation leading to incorrect results:

Transactions Guide 27



Isolation Levels and Locking

The document content might be outdated in the sense that a concurrent transaction has changed
the content after the current transaction has read it.

This isolation level only protects against lost updates and dirty writes, but not against any other
of the above mentioned concurrency phenomena.

A command can also modify a document if no concurrent transaction is modifying the document,
or no other transaction requires the document to be in a stable state (isolation level "stableCursor"
and higher).

The characteristics of isolation level "uncommittedDocument" are:

® No lost updates.

® No dirty writes/updates.

® Dirty read is possible.

" Read any document at any time.

® Exclusive locks on documents persist until end of transaction.

® For queries using _xq1: No shared locks.

® For queries using _xquery: No shared locks with insensitive cursors but shared lock with sens-

itive cursors.

The following table shows which kinds of locks are applied in isolation level "uncommittedDocu-
ment" depending on database operation and affected granularity:

| Note: For queries the type of locks set depend on the chosen lock mode which is described
later in this document. This lock mode does not have to be confused with the lock type.

Lock Types for Isolation Level "uncommittedDocument"
Action Lock Mode |Collection Doctype Document
query A IS IS )
unprotected| IS IS **)
shared IS IS S
protected IX IX X
process IX IX X
delete IX IX X
update (read) ) *5%) ) x4%)
update ) wx) ) *4%)
(write) X
[up]define X
undefine

*) S for sensitive XQuery cursors, no lock otherwise.

28 Transactions Guide



Isolation Levels and Locking

**) not allowed with sensitive XQuery cursors, no lock otherwise.

***) not applicable. The isolation level "uncommittedDocument" is not possible for XQuery update
commands.

Isolation Level committedCommand

A command within a transaction in this isolation level can read documents that have been modified,
inserted or updated by committed transactions but not documents that have been modified, inserted
or updated by concurrent transactions. This means that the transaction only sees document states
that have been committed but might have been changed by faster concurrent transactions.

The characteristics of isolation level "committedCommand" are:

® No lost updates.

® No dirty writes.

® Only read results of committed transactions (i.e. no dirty read is possible).
® Non-repeatable read is still possible.

® Exclusive locks on documents persist until end of transaction.

= Shared locks for query execution persisting for the duration of a command.
This isolation level protects against dirty reads, but not against non-repeatable reads.

The following table shows which kinds of locks are applied in isolation level "committed Command"
depending on database operation and affected granularity:

| Note: For queries the type of locks set depend on the chosen lock mode which is described

later in this document. This lock mode does not have to be confused with the lock type.

Lock Types for Isolation Level "committedCommand"
Action Lock Mode | Collection  Doctype Document
query A IS IS S¥)
unprotected IS IS **)
shared IS IS S
protected IX IX
process IX IX X
delete IX IX X
update (read) | see query **¥) IX IX see
‘WT query
(write) unchanged |unchanged unchanged X
[up]define X
undefine X

Transactions Guide 29



Isolation Levels and Locking

*) S for sensitive XQuery cursors. This S lock only exists temporarily. In all other cases no lock is held.

**) not allowed with sensitive XQuery cursors.

***) not allowed with lock mode "unprotected"

Isolation Level stableCursor

A transaction with this isolation level guarantees that a document in the cursor result set will not
be changed by concurrent transactions (i.e. will still match the query predicate) in the following

cases:

* In the case of a non-scrollable cursor: until the document has been returned to the requesting
application and the document is no longer in the current fetch set of the cursor.

* In the case of a scrollable cursor: as long as the cursor exists.

The characteristics of isolation level "stableCursor" are:

® No lost updates.

® No dirty writes.

Only read results of committed transactions (i.e. no dirty read is possible).
Keep data in cursor stable until it is no more accessible.
Exclusive locks on documents persist until end of transaction.

Shared locks for query execution until data no more accessible in cursor.

The following table shows which kinds of locks are applied in isolation level "stableCursor" de-
pending on database operation and affected granularity:

| Note: For queries the type of locks set depend on the chosen lock mode which is described

later in this document. This lock mode does not have to be confused with the lock type.

Lock Types for Isolation Level "stableCursor"

Action Lock Mode | Collection  Doctype Document
query A IS IS 5%)
unprotected IS IS **)
shared IS IS S
protected IX IX
process IX IX X
delete IX IX X
update (read) | see query IX IX see
updT ) query
(write) unchanged |unchanged unchanged X

30

Transactions Guide



Isolation Levels and Locking

Lock Types for Isolation Level "stableCursor"
Action Lock Mode | Collection Doctype Document
[up]define X
undefine X

*) S for sensitive XQuery cursors

**) not allowed with sensitive XQuery cursors, no lock otherwise

***) not allowed with lock mode "unprotected"

Isolation Level stableDocument

This value is the default value for the isolation level parameter of transactions within a session
context.

This isolation level guarantees that a document that has been read within the current transaction
cannot be changed by a concurrent transaction until the end of the current transaction. Unqualified
documents can be modified or deleted, new documents can be inserted.

The characteristics of isolation level "stableDocument” are:

® There are no lost updates.

® There are no dirty writes.

Only read results of committed transactions can be obtained (i.e. no dirty read is possible).

® Keep documents stable until end of transaction (repeatable read).

Exclusive locks on documents persist until end of transaction.

Shared locks are used for query result until end of transaction.
This isolation level protects against non-repeatable reads, but not against phantom effects.

The following table shows which kinds of locks are applied in isolation level "stableDocument"
depending on database operation and affected granularity:

Note: For queries the type of locks set depend on the chosen lock mode which is described

later in this document. This lock mode does not have to be confused with the lock type.

Transactions Guide 31



Isolation Levels and Locking

Lock Types for Isolation Level "stableDocument"”
Action Lock Mode | Collection Doctype Document
query A IS IS S
unprotected IS IS **)
shared IS IS S
protected IX IX
process IX IX X
delete IX IX X
update (read) | see query IX IX see
updT ) query
(write) unchanged |unchanged unchanged X
[up]define X
undefine X

**) not allowed with sensitive XQuery cursors, no lock otherwise

***) not allowed with lock mode "unprotected"

Isolation Level serializable

This isolation level guarantees the independence of the result set of a query from any influence
by concurrent transactions. This means that the query result will always be the same.

] Note: It is called "serializable" because the result is the same as if the execution of the

transactions would have been serialized, meaning first transaction T1 would have been
performed completely and afterwards transaction T2 would have been executed.

Isolation level "serializable" protects against all kinds of concurrency phenomena including phantom
effects.

The characteristics of isolation level "serializable" are:

® There are no lost updates.
® There are no dirty writes.
" Repeatable read is guaranteed.

® Exclusive and shared locks on documents persist until end of transaction.

Shared locks on a higher level apply not only on already existing documents, but also prevent
input of new documents that influence query results.

The following table shows which kinds of locks are applied in isolation level "serializable" depend-
ing on database operation and affected granularity:

32 Transactions Guide



Isolation Levels and Locking

| Note: For queries the type of locks set depend on the chosen lock mode which is described
later in this document. This lock mode does not have to be confused with the lock type.

Lock Types for Isolation Level "serializable"
Action Lock Mode | Collection  Doctype Document
query A IS S¥) )

unprotected IS IS **)

shared IS S
protected IX SIX X

process IX SIX X
delete IX SIX X
update (read) | see query IX SIX see
update ™) query
(write) unchanged |unchanged unchanged X
[up]define X
undefine X

*) There is a special handling for _xql=doctypel[@ino:id=?]:ISis applied on doctype level, Sis applied
on document level. The same applies for an equivalent XQuery.

**) Not allowed with sensitive XQuery cursors, no lock otherwise

***) Not allowed with lock mode "unprotected"

Isolation Levels and Concurrency Phenomena

The Dependence between Concurrency Phenomena and Isolation Levels

The relationship between isolation levels and the types of concurrency phenomena which are al-
lowed or forbidden for the individual isolation level can also be expressed in a table:

Isolation Levels and Concurrency Phenomena |Concurrency Phenomenon

Isolation level Lost |Dirty Dirty Non-repeatable Phantom
"uncommittedDocument" Update |Read Write Read Effect
"committedCommand" No |Yes No Yes Yes
"stableCursor" No |No No Yes Yes
"stableDocument" No No No Notin cursor Yes
"serializable" No |No No No Yes

No No No No No

The table shows for each isolation level which concurrency phenomena are possible.

Transactions Guide 33



Isolation Levels and Locking

Lifetime of Locks

In order to be able to achieve a detailed understanding of locking it is essential to know how long
a lock will live. In Tamino, the duration how long locks are held depends on:
" the type of the lock.

" and the chosen isolation level.
The following rules apply:
= IS, IX and SIX locks
All intention locks (IS, IX and SIX) are kept for the duration of the transaction.

® Xlocks
All X locks are also kept for the duration of a transaction.

" Slocks
In all cases where _1ockMode is set to "shared", the Slocks are kept until the end of the transaction.

Otherwise, the amount of time that an S lock is kept depends on the isolation level:

Isolation Level Lifetime of Locks

"uncommittedDocument” |no S locks are set. *)

"committedCommand”  |Slocks are kept for the duration of the command. *)

"stableCursor" S locks are kept for the duration of the cursor.

"stableDocument” S locks are kept for the duration of the transaction.

"serializable" S locks are not explicitly set on the document granularity, S locks set on any

coarser granularity are kept for the duration of the transaction.

Dependence of the Duration of Locks from Isolation Level

| Note: *) except for sensitive XQuery cursors. In that case S locks are kept for the duration

of the transaction. This may be subject of change, however.

34 Transactions Guide



Isolation Levels and Locking

General Rules for the Choice of the Isolation Level

The choice of the isolation level should be made on the basis of the following considerations:

1. The higher the isolation level, the lower the influences from other transactions. Setting the
isolation level to the highest possible value "serializable" means in fact providing a virtual
database to each transaction. You can consider a virtual database as a database where each
transaction is totally isolated from effects of other transactions.

2. The higher the isolation level, the higher the potential impact on the performance. Performance
may be deteriorated for instance by too many deadlock situations occurring between concurrent
transactions or quasi-sequential execution of concurrent transactions caused by a too restrictive
isolation level setting.

3. Keep in mind that isolation levels are technically based on internal locks which will affect more
documents with increasing degree of isolation. For instance, increasing the isolation level can
mean that not only one single document but its whole doctype is locked. Similarly, the time for
which an object is locked may increase significantly by choosing a higher level of isolation.

4. Ttisimportant to understand that Tamino applies locks for query commands based on the index
processing during the evaluation of the query. This means that depending on which indices
are available and which of those are used to evaluate a query documents are locked. In other
words it may well be the case that more documents are locked than those that are returned as
the result of the query. Having appropriate indices defined is therefore not only important for
the speed of queries but also minimizes the number of database objects that are affected by
locks.

These considerations generally apply for all databases, they are not specific to Tamino.

The choice of the adequate isolation level means to find a reasonable compromise in such a way
that you gain as much isolation, synchronization and performance as you need.

Transactions Guide 35



36



4 Transaction Parameters

m The isolationLevel Parameter .....
= The lockMode Parameter ...........

= The querysearchmode Parameter

= The lockWait Parameter ............
= Time Limits for Transactions .......

37



Transaction Parameters

The requirements for the level of data consistency (or transaction isolation) are determined by the
application and may also differ for different types of transactions within the application. It is
therefore the developer's responsibility to tell Tamino which kind of transactional behaviour is
required in order to achieve the correct balance between the required level of concurrency and
transaction isolation.

For this purpose Tamino provides the following parameters which may be manipulated by an
application:

The isolationLevel Parameter

The isolationLevel parameter determines the level of isolation for a transaction and depending
on the isolation level chosen it determines the types of locks that will be set on database objects
for the duration of the transaction as described in Isolation Levels in Tamino. In addition the
locking behaviour of Tamino may by influenced by the 1ockMode parameter.

The default value of the isolationLevel parameter depends on the chosen session mode.

For more information see section The _isolationLevel Parameter of the X-Machine Programming
manual.

The lockMode Parameter

The 1ockMode parameter overrides the default locking behaviour of Tamino as determined by the
isolation level. This effect is also described in detail in Isolation Levels in Tamino.

Overriding the default locking behaviour of Tamino influences the level of isolation achieved
within a transaction and must therefore be used with care. In most cases, there is no need to expli-
citly set a different 1ockMode, the specified setting of the isolationLevel normally should provide
the required functionality.

There are three possible options to choose:

1. "shared"
In most isolation levels setting the 1ockMode parameter to the value "shared" might have only
little or no effect.

2. "unprotected”
Setting the 1ockMode parameter to "unprotected" weakens the locks set by the default behaviour
determined by the chosen isolation level whereas setting the parameter to the value "protected”
result in stronger locks.

38 Transactions Guide



Transaction Parameters

3. "protected”
Strengthening the locks by setting the 1ockMode parameter to "protected” can be used with all
read commands. It raises the locks set on the documents retrieved to an X lock. This may be
useful in situations where a document is read to be updated later in the transaction. By setting
the X lock required for the update already at the time the document is read, the lock escalation
from S to X is avoided and therefore the possibility of deadlock situation may be avoided.

Additionally, the following rules apply:

1. Weakening or strengthening locks for update commands has no effect in most cases.

2. There is no explicit default setting for the TockMode parameter, as Tamino’s locking behaviour
is determined by the chosen isolation level.

For more information, see section The _1ockMode Parameter of the X-Machine Programming manual.

The querysearchmode Parameter

The optional parameter querysearchmode specifies whether a query will run in an atomic way,
i.e. setting index locks until the request completes, or whether it is acceptable for concurrent requests
to access and possibly modify the indexes while the query is running. Thus, the effect of this
parameter is to specify to what extent the locking settings can be weakened during a dirty read
(i.e. with _isolationLevel=uncommittedDocument/none or _lockMode=unprotected, but not
_lockMode=shared or protected). The parameter can be used for a single query at a time, and
cannot be set at a session-wide level. The parameter allows the following settings:

" _querysearchmode=accurate
Allindexes required by the query are locked. This is the default setting, and applies automatically
if the parameter is not specified.

® _querysearchmode=approximate
Indexes required by the query are not locked, but subsequent postprocessing will be performed
if necessary.

® _querysearchmode=nonserialized

Indexes required by the query are not locked, but additional postprocessing is omitted.

For more information, see sections The _xql command and The _xquery command of the X-Machine
Programming manual.

Transactions Guide 39



Transaction Parameters

The lockWait Parameter

With the lock wait mode parameter you can determine the strategy of how to proceed if a resource
required for the transaction is locked. If the lock wait mode is set to "no", the transaction will be
rolled back. Otherwise, if "yes" is chosen, the application will wait for the required resource to
become available.

The default value of this option depends on the chosen session mode.

For more information see section The _TockWa it Parameter of the X-Machine Programming manual.

Time Limits for Transactions

Tamino provides the possibility to specify a transaction time limit for applications or transaction
users. It performs an automatic rol1back operation on transactions that exceed the value of the
specified limit. The following topics are discussed in this context:

= The maximumTransactionDuration Parameter
= The nonActivityTimeout Parameter
= Time Measurement

The maximumTransactionDuration Parameter

The maximumTransactionDuration parameter sets the maximum duration of a transaction. If the
time a transaction takes exceeds this limit, Tamino automatically rolls back the transaction, undoing
all modifications done so far in that transaction and releasing all locks.

] Notes:

1. The user session however remains opened even after the forced rollback.

2. This parameter was previously named _transactionTimeout.

The maximum duration of a transaction is important in case a transaction “hangs”. As long as a
transaction is active, all locks it has acquired remain and may prevent concurrent transactions to
proceed. The reason why a transaction does not terminate may be manifold.

One possible cause is that the application has been implemented in such a way that external re-
sources are used within a transaction which may cause the transaction to wait. In general these
situations are to be avoided. Another cause could be that a deadlock situation has arisen in which
two or more transaction wait for each other to relinquish locks. Tamino detects deadlocks caused
by locks inside of Tamino before a transaction timeout occurs. For deadlocks caused by resources
outside of Tamino, a transaction timeout is the only way by which the deadlock can be resolved.

40 Transactions Guide



Transaction Parameters

The first transaction that is rolled back due to a transaction timeout will relinquish its locks which
may allow other transaction waiting for the release of these locks to continue.

It is recommended to set the maximumTransactionDuration parameter as low as possible so that
Tamino is capable to release locks quickly in case a transaction does not terminate. Obviously, it
is even more important to minimize the possibilities in which transactions do not terminate by
avoiding using external resources which may cause delays within the boundaries of a transaction
and by avoiding deadlock situations.

The default value for the maximumTransactionDuration parameter is set by the Tamino server
property maximum transaction duration.

For more information see section The _maximumTransactionDuration Parameter of the X-Machine
Programming manual.

The nonActivityTimeout Parameter

The nonActivityTimeout parameter sets the maximum time an active Tamino session can be idle.
If an active Tamino session is idle for longer than this time, Tamino automatically rolls back any
open transaction and closes the session. The effect is the same asifa _rollback and _disconnect
is executed in that order. Any attempt by an application to use that session, will result in a Tamino
response with an error code indicating that the session is no longer alive.

For more information see section The _ nonActivityTimeout Parameter of the X-Machine Programming
manual.

Time Measurement

The time measurement for a transaction begins when the first database access (i.e. query, process,
delete, create schema or delete schema commands) occurs after an initiating “connect” command
or a previous commit or rol1back command is executed, and ends when the program issues a
disconnect, commit, or rol1back command.

Transactions Guide 41



42



5 Deadlocks and Deadlock Prevention

= Deadlock Example ...

= Deadlock Prevention

43



Deadlocks and Deadlock Prevention

This section discusses the following topics concerning deadlocks:

Deadlock Example

Deadlock situations can occur when concurrent transactions work on the same set of documents
and attempt to set locks on these documents in a particular order. A typical deadlock situation
occurs if two or more transactions are each waiting for a lock to be released held by one of the
other transactions. If this occurs, Tamino usually detects this and chooses one transaction for
rollback thus releasing all the locks it holds and resolving the deadlock. Finally, a transaction
which is in a deadlock situation will receive a timeout on basis of the transaction timeout parameter,
but normally a deadlock situation should already have been recognized by Tamino before the
transaction is timed out. But also in a timeout situation, one transaction is rolled back releasing
its locks and therefore resolving the deadlock situation.

Deadlock Example 1

Transaction 1 reads document 1 (setting an S lock)
Transaction 1 updates document 1 (setting an X lock)
Transaction 2 reads document 2 (setting an S lock)

Transaction 2 updates document 2 (setting an X lock)

AN

Transaction 1 reads document 2 (attempting to set an S lock, resulting in waiting for the release
of the X lock set by transaction 2)

6. Transaction 2 reads document 1 (attempting to set an S lock, resulting in waiting for the release
of the X lock set by transaction 1)

Now both transactions wait for each other and a deadlock situation has arisen.
Deadlock Example 2

1. Transaction 1 reads document 1 (setting an S lock)
2. Transaction 2 reads document 1 (setting an S lock)
3. Transaction 1 updates document 1 (attempting to get an X lock)

4. Transaction 2 updates document 1 (attempting to get an X lock)

Now also a deadlock situation has arisen.

44 Transactions Guide



Deadlocks and Deadlock Prevention

Deadlock Prevention

Although deadlock situations are detected by Tamino, and do normally not lead to excessive wait
times, a deadlock still results in a rollback of a transaction. It is therefore better to avoid deadlock
situations as much as possible. The most well known technique to avoid deadlocks is to determine
a fixed order in which concurrent transactions acquire their locks.

Transactions Guide 45



46



6 Examples and Scenarios

= Scenario 1: Read-only Scenario without Consistency Requirements .............ooeviiiiiiiiiiiiiie e
= Scenario 2: Read-only Scenario with Consistency RequIreMents ...........ccvvveiiiiiiieiiiiie e
= Scenario 3: Single Insert/Blind Update SCENAMO ............ooiiiiiiiiiiiii e

= Scenario 4: Read-for-Update Scenario .....
= Scenario 5: Stable Cursor Scenario .........

m Scenario 6: Deadlock Prevention Scenario

47



Examples and Scenarios

This chapter covers the following topics:

Scenario 1: Read-only Scenario without Consistency Requirements

In this scenario documents are read from Tamino with the lowest possible consistency requirements.
Documents may be read whose content may contain uncommitted changes of other concurrent
transactions. This may lead to dirty reads and non-repeatable reads as described above. For an explan-
ation of dirty reads and non-repeatable reads refer to section Concurrency Phenomena in DBMS
of this document.

> Cursor-free Approach

If no cursoring is required, single read requests (direct reads or queries) may be issued in a
session-less connection to Tamino without an explicit transaction context. Just choose the
defaultisolation level for session-less context, namely "uncommittedDocument". This avoids
the cost of setting up and maintaining sessions, so this is the fastest alternative.

This choice does not automatically suppress setting locks.

An example Java application which only reads data efficiently in a session-less context without
consistency requirements may for instance look like this example:

® Open a Tamino connection in auto-commit mode by invoking the newConnection method

of the class TConnection on an instance which had been created using TConnectionFactory's
method getInstance.

TConnection connection = null;

String taminoURI = "http://localhost/tamino/myDB";

String collection = "encyclopedia";

// Establish the Tamino connection (by default in auto-commit mode)
connection = TConnectionFactory.getInstance().newConnection( taminoURI );

Create an appropriate accessor object by invoking the newXMLObjectAccessor method of
TConnection.

// Obtain a TXMLObjectAccessor with a DOM object model

TXMLObjectAccessor accessor =
connection.newXMLObjectAccessor(
TAccesslocation.newInstance( collection ),
TDOMObjectModel.getInstance() );

48

Transactions Guide



Examples and Scenarios

" You may additionally set the lock mode associated to this accessor object to the value "un-
protected” in order to avoid any locks. In this manner the highest possible performance for
read operations can be achieved.

// Set the lock mode to unprotected to avoid any Tocks
accessor.setlLockMode(TLockMode.UNPROTECTED) ;

® Perform a read access using the class TQuery and display the result of the query.

// execute a query

TQuery query = <
TQuery.newInstance("/jazzMusician[./instrument=\"trumpet\"]1/name/first");
TResponse response = accessor.query(query);

// display result

TXMLObject xmlObject = response.getFirstXMLObject();
System.out.printin("result: "

+ ((Element)xmlObject.getElement()).getFirstChild().getNodeValue());

Or:
Cursor-based Approach

Alternatively, if cursoring is required you can implement this scenario also with explicit
transactions. A session is therefore required. You need to explicitly specify the lowest possible
isolation level "uncommittedDocument" to be used as it is not the default for session context.

Locks will still be set and cannot always be avoided:
® X-Query allows using the lockmode "unprotected".

Note: Dirty reads are possible for both XQuery and X-Query. However, for some join

operations, XQuery (but not X-Query) might have to read a document more than once.
If the document has been changed between the read operations (which is possible since
the query is not using locks), the XQuery processing detects an inconsistent state and
returns an error 6312.

For instance, an example Java application which only reads data efficiently in a session based
context without consistency requirements could work in the following manner:

® It opens a Tamino connection similarly to the explanation given in the previous example
(Cursor-free Approach).

Transactions Guide 49



Examples and Scenarios

" it switches this connection to session mode in order to work with explicit transactions.

// Establish a transaction context and therefore create a session
TLocalTransaction transaction = connection.uselocalTransactionMode();

and creates a new session implicitly.

These two steps are accomplished by invoking the uselocalTransactionMode method of
the class TConnection.

" [t sets the isolation level of this new session to the value "UNCOMMITTED_DOCUMENT"
by invoking the setIsolationDegree method of the class TConnection.

// Set isolation Tevel to UNCOMMITTED_DOCUMENT
connection.setlsolationDegree(TIsolationDegree.UNCOMMITTED_DOCUMENT) ;

" It creates an appropriate accessor object by invoking the newXMLObjectAccessor method
of TConnection.

" It performs a read access using TQuery and displays the result.

// execute a query
TQuery query = <
TQuery.newInstance("/jazzMusician[./instrument=\"trumpet\"]/name/first");
TResponse response = accessor.query(query,5);
// display result
TXMLObjectIterator xmlObjectIterator = response.getXMLObjectIterator();
while (xmlObjectIterator.hasNext()) {
TXMLObject xmlObject = xmlObjectIterator.next();
System.out.printin("result: "
+ ((Element)xmlObject.getElement()).getFirstChild().getNodeValue());

The degree of locking is very low in all versions of this scenario. It is in fact very close to the
minimum possible degree of locking at all. Processing with very high performance can
therefore be expected.

This scenario is not adequate in the following situations:

® For data with high or medium consistency requirements.

® For data with frequent changes.

50 Transactions Guide



Examples and Scenarios

® If any changes to the data are required.

/) Important: This is the scenario with the lowest degree of consistency of all the scenarios

discussed here.

Scenario 2: Read-only Scenario with Consistency Requirements

This scenario uses the isolation level "committedCommand" which protects against dirty reads,
but not against non-repeatable reads.

The characteristics of this scenario are:

® No lost updates.

® No dirty writes.

® No dirty reads.

® Only results of committed transactions can be read.

® Non-repeatable read may still occur.

® Shared locks are used for query execution. They are released after command execution has fin-

ished.

() Tip: This scenario is recommended for reading access to data with medium consistency re-

quirements that does not change very frequently. The risk of non-repeatable read must not
be high if this scenario shall be used.

This scenario is not recommended in the following situations:

® For data with high consistency requirements.
® For data with frequent changes.

® If any changes to the data are required.
> Cursor-free Approach

= In case no cursoring is required, single read requests (direct reads or queries) can be issued
in a session-less connection to Tamino without an explicit transaction context. Just choose the
correct isolation level for session-less context, namely "committedCommand". No sessions
need to be maintained in this case.

Transaction 1 only uses shared locks which are released after the read command is completely
executed.

For instance, a Java application which only reads already committed data in a session-less
context with basic consistency requirements could look like this:

Transactions Guide 51



Examples and Scenarios

= First the Java application opens a Tamino connection either in auto-commit mode or in
local mode depending on your specific requirements as already described in the previous
scenario.

" It sets the isolation level of the connection object to the value "committedCommand" by
invoking the setIsolationDegree method of the class TConnection.

// Set the isolation level to COMMITTED_COMMAND
connection.setlsolationDegree(TIsolationDegree.COMMITTED_COMMAND) ;

= It creates an appropriate accessor object by invoking the newXMLObjectAccessor method
of TConnection.

= It performs a read access using the class TQuery.

= It displays the result of the query.

// display result

TXMLObject xmlObject = response.getFirstXMLObject();
System.out.printin("result: " + <
((Element)xmlObject.getElement()).getFirstChild().getNodeValue());

Transactions belonging to this scenario will only read data which has been already committed
by other transactions. In this scenario some locks are set that may lead to transactions having
to wait for each other. But locks are only kept per command thus keeping the wait time low.
Non-repeatable read situations may still occur but there will definitely be no dirty reads
anymore.

Non-repeatable Read Operation
A non-repeatable read operation may happen in the following manner:
The following assumptions are made:

Transaction 1 is the transaction considered in this scenario using the isolation level "committed-
Command". Transaction 2 can run on an arbitrary isolation level and use any possible locking
mode.

1. Transaction 1 reads document x

2. Transaction 2 writes document x

3. Transaction 2 performs a commit operation.

4. Transaction 1 reads document x again.

52 Transactions Guide



Examples and Scenarios

Then transaction 1 performs a non-repeatable read operation.

The second read operation will be performed successfully, but the delivered result will be different
from the result obtained in the first step. This is due to the fact that there was a commit operation
performed between the two different read attempts, and the chosen isolation level is "committed-
Command" which is equivalent to showing all committed results to other concurrent transactions.
The locks set by transaction 1 are relinquished after the first read command completed.

Scenario 3: Single Insert/Blind Update Scenario

In this scenario either new documents are inserted or existing documents are updated regardless
of the contents of the database. This means that all database access is done exclusively with the
_process and no read access or updates via XQuery occur. Complete documents are replaced in
the database without previously checking whether the document is already present or what its
content is. This scenario represents the maximum of performance for writing access, but it is of
course limited in its applicability.

Execute the _process commands in session-less context. Do not specify any isolation level or lock
mode explicitly.

It is recommended to apply this scenario if you have to store large amounts of data independently
of conditions.

This scenario cannot be applied if any contents of the database must be read prior to writing to
the database.

For instance, a Java application which only reads already committed data in a session-less context
with basic consistency requirements could look like this:

= First the Java application opens a Tamino connection in auto-commit mode as already described
in the previous scenario.

TConnection connection = null;

String taminoURI = "http://lTocalhost/tamino/myDB";

String collection = "encyclopedia”;

// Establish the Tamino connection in auto-commit mode

connection = TConnectionFactory.getInstance().newConnection( taminoURI );

* It does not set the isolation level or the lock mode explicitly.

= It creates an appropriate accessor object by invoking the newXMLObjectAccessor method of
TConnection.

= It performs a sequence of _process commands in session-less context.

Transactions Guide 53



Examples and Scenarios

// process data

Scenario 4: Read-for-Update Scenario

In this scenario a document is first read and then changed afterwards. At the time the document
is read it is clear (or at least likely) that an update of the document will follow. In order to prevent
deadlock scenarios, the lock required for the update is already set at read time.

The occurrence of deadlock scenarios of the following type can be avoided if the lock mode is set
to "protected" before reading the document:

T1 T2
Read docl |Sondocl

Read docl |Sondocl

Update doc1 |Wait for X on docl

Update docl |Wait for X on docl
Deadlock

The following situation leads to the deadlock as both transactions wait for an X-lock being granted
which will never occur. However, if the an X-lock is set already on reading document 1 (this is
enforced by setting the lock mode to "protected" before reading the document) the following occurs:

T1 T2
Read docl |X on docl

Read docl|S on docl (will not be granted)

Update docl|As X-lock is already on docl

Commit Relinquish lock on docl

Thus the deadlock is resolved as transaction 1 can continue without waiting.
This scenario only makes sense if:

® Deadlock scenarios as described above exist.
® Itis known or at least very likely that the document read will be updated in the same transaction
at the time of the read.

If the conditions above are not met, this may lead to a large number of superfluous X locks. In that
case it might be better to avoid possible deadlocks in another way.

54 Transactions Guide



Examples and Scenarios

Scenario 5: Stable Cursor Scenario

In this scenario the same document is read more than once in the same cursor. The content of the
document is guaranteed to be identical.

In order to accomplish this, the isolation level must be set to "stableCursor".

> Stable Cursor Scenario - Cursor-based Approach

= Working with cursors requires a session context and therefore explicit transactions. The isol-
ation level "stableCursor" needs to be specified explicitly as it is not the default for session
context.

@ Caution: In this scenario locks are kept for the duration of the cursor, thus keeping these

locks for a potentially long period of time.
* This choice can be considered to achieve a medium performance.
For instance, an example Java application which only reads data in a session based context
without consistency requirements could work in the following manner:
" it opens a Tamino connection similarly to the explanation given in the previous examples.

" it switches this connection to session mode in order to work with real transactions.

// Establish a transaction context and therefore create a session
TLocalTransaction transaction = connection.uselocalTransactionMode();

and creates a new session implicitly.
These two steps are accomplished by invoking the useLocalTransactionMode method
of the class TConnection.

" it sets the isolation level of this new session to the value "STABLE_CURSOR" by invoking
the setIsolationDegree method of the class TConnection.

// Set isolation Tevel to STABLE_CURSOR
connection.setlsolationDegree(TIsolationDegree.STABLE_CURSOR);

" it creates an appropriate accessor object by invoking the newXMLObjectAccessor method
of TConnection.

Transactions Guide 55



Examples and Scenarios

// 0Obtain a TXMLObjectAccessor with a DOM object model

TXMLObjectAccessor accessor =
connection.newXMLObjectAccessor(
TAccesslLocation.newInstance( collection ),
TDOMObjectModel.getInstance() );

* it finally accesses the data.

Scenario 6: Deadlock Prevention Scenario

Lock acquisition in a fixed document order can also be used as a means in order to prevent the
occurrence of deadlocks.

56 Transactions Guide



A

Appendix 1 - Complete Java Code example of Scenario 1

The following code represents a complete sample program written in Java and intended for use
with the Tamino API for Java for scenario 1.

import java.io.*;

import
import
import
import
import
import
import

/**

com

com.

com

org.

.softwareag.
softwareag.
.softwareag.
com.
com.
com.

softwareag

softwareag.
softwareag.

tamino.
tamino.
tamino.
.tamino.
.db.
db.

tamino

tamino.

w3c.dom.Element;

* Transaction scenario 01:
* read only access without consistency requirements using a cursor

*/

public class TxScenarioOlb

{

db.
db.

db
db

api
api

.api
.api

api
api

.connection.*;

.accessor.*;

.objectModel.*;

.response.*;

.common.*;
.objectModel.dom.TDOMObjectModel ;

public static void main(String[] args) throws Exception

{

TConnection connection = null;

String taminoURI = "http://localhost/tamino/myDB";
String collection = "encyclopedia”;

try
{

// Establish the Tamino connection (by default in auto-commit mode)

connection = TConnectionFactory.getInstance().newConnection( taminoURI );

// Establish a transaction context and therefore create a session

TLocalTransaction transaction

connection.uselocalTransactionMode();

connection.setlIsolationDegree(TIsolationDegree.UNCOMMITTED_DOCUMENT) ;

// Obtain a TXMLObjectAccessor with a DOM object model

of



Appendix 1 - Complete Java Code example of Scenario 1

TXMLObjectAccessor accessor =
connection.newXMLObjectAccessor(
TAccesslLocation.newInstance( collection ),
TDOMObjectModel.getInstance() );

// Optionally set the lock mode to unprotected to avoid any Tlocks
accessor.setlLockMode(TLockMode.UNPROTECTED) ;

// execute a query

TQuery query =
TQuery.newlInstance("/jazzMusician[./instrument=\"trumpet\"]1/name/first");
TResponse response = accessor.query(query,5);

// display result

TXMLObjectIterator xmlObjectIterator = response.getXMLObjectIterator();
while (xmlObjectIterator.hasNext()) {
TXMLObject xmlObject = xmlObjectIterator.next();
System.out.printin("result: "

+ ((Element)xmlObject.getElement()).getFirstChild().getNodeValue());

}

}

catch (TException e)

{

System.err.printin("Tamino Exception caught: " + e);
}

finally

{

if (connection != null) connection.close();

}
J
}

58 Transactions Guide



Index

Symbols

2PC, 5
logic, 6

A

ACID transactions, 2
anonymous session mode, 12
atomicity, 3

auto-commit mode, 12

C

command
definition, 11
commit, 4
committedCommand, 29
concurrency phenomena, 33
dirty read, 20
introduction, 18
lost update, 18
non-repeatable read, 22
phantom effect, 24
consistency, 3

D

deadlock, 43
definition, 26
dirty read, 20
durability, 3

H

hierarchy levels for locking, 16

isolation, 3

isolation levels, 15
committedCommand, 29
concurrency phenomena, 33

introduction, 18

correct choice, 35
definition, 26
serializable, 32
stableCursor, 30

stableDocument, 31
uncommittedDocument, 27

L

local transaction mode, 12
lock modes, 16
locking
duration of locks, 34
granularities, 16
locking mode, 38
locking wait status, 40
nonActivityTimeout parameter, 41
scenarios, 43
transaction time limit, 40
transactionTimeout parameter, 40
lost update, 18

N

non-repeatable read, 22

P

phantom effect, 24

R

request
definition, 10
rollback, 4

S

serializable, 32
session

definition, 10
session context, 12
sessionless context, 12
stableCursor, 30
stableDocument, 31

T

transaction, 2
ACID transactions, 2
atomicity, 3
commit, 4
comparison global with local, 5

59



Index

consistency, 3

definition, 10

distributed transaction, 5

durability, 3

global transaction, 5

introduction, 2

isolation, 3

rollback, 4

scenario
deadlock prevention, 56
read-for-update, 54
read-only with consistency requirements, 51
read-only without consistency requirements, 48
single insert/blind update, 53
stable cursor, 55

time limit, 40

transaction mode

anonymous session, 12

auto-commit, 12

local transaction, 12

overview, 9

two-phase commit protocol, 5
logic, 6

U

uncommittedDocument, 27

60

Transactions Guide



	Transactions Guide
	Table of Contents
	Preface
	1 Introduction
	General Transaction Concepts
	Local Transactions
	Global Transactions
	Global vs. Local Transactions
	The Two-Phase-Commit Logic


	2 Transaction Modes
	Basic Definitions
	Summary of Transaction Modes

	3 Isolation Levels and Locking
	The Hierarchical Locking Concept of Tamino
	Locking Granularities
	Lock Modes

	Concurrency Phenomena in DBMS
	Lost Updates
	Dirty Read Operation
	Non-repeatable Read Operation
	The Phantom Effect

	Isolation Levels in Tamino
	Isolation Level uncommittedDocument
	Isolation Level committedCommand
	Isolation Level stableCursor
	Isolation Level stableDocument
	Isolation Level serializable

	Isolation Levels and Concurrency Phenomena
	The Dependence between Concurrency Phenomena and Isolation Levels

	Lifetime of Locks
	General Rules for the Choice of the Isolation Level

	4 Transaction Parameters
	The isolationLevel Parameter
	The lockMode Parameter
	The querysearchmode Parameter
	The lockWait Parameter
	Time Limits for Transactions
	The maximumTransactionDuration Parameter
	The nonActivityTimeout Parameter
	Time Measurement


	5 Deadlocks and Deadlock Prevention
	Deadlock Example
	Deadlock Prevention

	6 Examples and Scenarios
	Scenario 1: Read-only Scenario without Consistency Requirements
	Scenario 2: Read-only Scenario with Consistency Requirements
	Scenario 3: Single Insert/Blind Update Scenario
	Scenario 4: Read-for-Update Scenario
	Scenario 5: Stable Cursor Scenario
	Scenario 6: Deadlock Prevention Scenario

	A Appendix 1 - Complete Java Code example of Scenario 1
	Index

