
Tamino

X-Tension: Tamino Server Extensions

Version 9.7

April 2015

This document applies to Tamino Version 9.7.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2015 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-SERVEXT-97-20160318

Table of Contents

X-Tension: Tamino Server Extensions .. v
1 Introduction ... 1
2 Prerequisites .. 5

Developing Tamino Server Extensions Using the X-Tension Builder 6
3 Tamino Server Extension Functions .. 7

Server Extension Objects .. 8
Types of Server Extension Functions ... 8
Function Naming ... 9
Query Functions ... 9
Trigger Functions ... 13
Shadow Functions .. 17
Mapping Functions .. 19
Initial Server Extension Functions ... 23
Server Event Functions ... 24

4 Administrating Tamino Server Extensions ... 27
Installing a Tamino Server Extension ... 28
Private and Public Classpaths for Java .. 30
Dialog for Setting the Private Classpath .. 30
Specifying Java Options ... 32
Modifying the Properties of a Server Extension .. 33
Modifying the Properties of a Server Extension Function 34
Upgrading a Server Extension ... 34
Uninstalling a Server Extension ... 35
Switch for the Tamino Server Extension Trace ... 36

5 Calling Tamino Server Extensions ... 37
6 Failure of Tamino Server Extension Functions .. 39
7 Building a Tamino Server Extension Package ... 41

Programming Languages and Development Tools ... 73
Building a Direct Infrastructure-Based Tamino Server Extension Package 42
Building a Java-Based Tamino Server Extension Package 42
Using the X-Tension Builder .. 42
Using Direct Infrastructure .. 59

8 Developing Tamino Server Extensions .. 61
Constructors and Destructors .. 62
String and Memory Handling .. 63
Specialities of Different Infrastructure/Language Combinations 65
Callbacks .. 65
Exceptions .. 86
Version Numbers ... 87

9 Debugging Java Server Extensions .. 89
10 Tracing Tamino Server Extensions .. 91

Activating SXS Trace .. 92
Deactivating SXS Trace ... 93

iii

Programming User-Defined Trace Information ... 93
Viewing SXS Trace Information ... 94
Deleting SXS Trace Information ... 95

11 X-Tension Tools .. 97
Modifying the Public Java Classpath ... 98
Analyzing Arbitrary Objects .. 100
Viewing a Package File ... 111

12 Tamino Server Extension Examples ... 113
A Example: XSLT Server Extension .. 115

Requirements .. 116
Known Limitations ... 116
Installation .. 117
Query Functions for Transformation ... 117
Administrative Issues ... 118
A Simple Transformation Example .. 121

Index ... 123

X-Tension: Tamino Server Extensionsiv

X-Tension: Tamino Server Extensions

X-Tension: Tamino Server Extensions

This document informs you about Tamino X-Tension, the component of Tamino that provides
tools for the development, implementation, administration and execution of Tamino server
extensions.

This information is primarily intended for configuration managers (incorporation of legacy data,
accessing non-Tamino data sources), application logic experts (document analysis) and Tamino
administrators (extending Tamino for business demands, administrating server extensions).

The most important aspects of Tamino X-Tension are described in the following documents:

Introduction

Prerequisites

Tamino Server Extension Functions

Administrating Tamino Server Extensions

Calling Tamino Server Extensions

Failure of Tamino Server Extension Functions

Building a Tamino Server Extension Package

Developing Tamino Server Extensions

Debugging Java Server Extensions

Tracing Tamino Server Extensions

X-Tension Tools

Analyzing Arbitrary Objects

Tamino Server Extension Examples

Javadoc

v

vi

1 Introduction

Tamino X-Tension enables you to develop, implement, administrate and execute Tamino server
extensions. Tamino server extensions can be used to extend the Tamino Server functionality by
adding user-defined logic. The fields of extensibility cover query language, trigger and mapping
functionality. For a description of the calling contexts in the Tamino Server, see the documentation
for Tamino X-Query, Tamino XQuery and the Tamino XML Schema User Guide, as well as for the
Tamino Schema Editor. For server extension function types related to these contexts, see the section
Tamino Server Extension Functions.

Functionality that can be added to the Tamino Server by using Tamino server extensions includes:

■ Content-based mapping to/from Tamino and other data sources. For detailed explanations, see
the section Callbacks;

■ User-defined functions, as documented in the section Query Functions;
■ Calling applications such as message forwarding or the EntireX XML Wrapper triggered by

document processing independent of mapping.

In order to extend the Tamino functionality, you install Tamino one or more server extension
packages in a Tamino database. The extension packages contain, amongst other things, Tamino
server extension objects based on the calling infrastructure, which may be Direct or the Java Vir-
tual Machine (JVM).

Server extensions that are implemented in libraries that can be loaded and executed dynamically
by Tamino X-Tension are said to use the Direct infrastructure. Server extension objects can be
written in Java, C++ or in any programming language that can create a shared library or DLL with
the C calling convention. Methods of these objects can then be used to extend the Tamino Server's
query, trigger or mapping functionality.

Information to help you develop server extension function code is contained in the documents
Tamino Server Extension Functions and Developing Tamino Server Extensions (the latter treats
topics such as constructors, destructors, restrictions for Java-based server extensions, what are

1

callbacks and how are they used). Knowledge of the chosen programming language and its devel-
opment environment is assumed throughout this document.

A thorough investigation of the problem to be solved and the schema definitions involved is ne-
cessary before developing a Tamino server extension.

Creating and installing Tamino server extension packages is easy, thanks to the Tamino X-Tension
tools.

Several infrastructures are supported by the X-Tension technology. The term “infrastructure” here
means the media used to link user code into the Tamino Server. One or more programming lan-
guages can be used to implement a server extension for a specific infrastructure.

RemarksOperating SystemLanguageInfrastructure

Local/Inproc modes possibleAny (without restriction)C++, other (must be able to create a
share library or DLL with the C
calling convention)

Direct

Cross-platform development
possible

Any that supports JavaJava onlyJava

Local mode means that the server extension is executed in a process separated from that of the
Tamino server. This mode is recommended for testing purposes. It does not provide the high
performance that is available with Inproc mode, but serious errors that might be produced by the
server extension do not crash the Tamino server.

Inproc mode means that the server extension is executed in the same process as the Tamino server.
It provides better performance than local mode, since the call parameters and any callbacks that
might be used do not have to be passed back and forth between two different processes. However,
if the server extension produces a severe error during processing, it can crash the Tamino server.

Local mode and inproc mode are available as follows:

Inproc mode possibleLocal mode possibleInfrastructure/Language

yesyesDirect

yesnoJava

To help you develop Tamino server extension packages, Tamino X-Tension provides a range of
development tools (they are included in the Tamino installation kit). These tools guide you step-
by-step through the process, from creating a project into which you can insert your function code
to generating a package file ready for installation. These development tools have been chosen to
ensure a stable and secure environment for the development of Tamino server extensions and
later for their execution in Tamino databases. We strongly recommended you to use these tools.

X-Tension: Tamino Server Extensions2

Introduction

■ X-Tension Builder
The Tamino X-Tension Builder can be used for server extension functions written in Direct/C++
or in Java. For a detailed description, see the section Using the X-Tension Builder.

■ Object Analyzer
The Tamino Object Analyzer can be used to check whether available files (of type DLL, SO, TLB,
CLASS, JAR or EXE) are suitable for use as Tamino server extensions. It can also be used to select
some functions from a great number of functions and create a package file ready for installation.
For a detailed description, see the section Analyzing Arbitrary Objects.

■ Package Viewer
The Tamino Package Viewer can be used to view the contents of a server extension package.

The Server Extensions Administration part of the Tamino Manager provides facilities for installing
and administrating server extensions in a Tamino database. It is described in the section Admin-
istrating Tamino Server Extensions.

Server extensions can be traced using the SXS Trace. The SXS Trace and its handling is described
in the section Tracing Tamino Server Extensions.

See the section Tamino Server Extension Examples for information about examples of each type
of server extension function in C++ and Java.

In addition, we recommend that you read the document Utilizing Server Extensions.

3X-Tension: Tamino Server Extensions

Introduction

4

2 Prerequisites

■ Developing Tamino Server Extensions Using the X-Tension Builder ... 6

5

Administrating Tamino server extensions requires system administrator privileges.

The following sections describe more prerequisites for developing Tamino server extensions.

Developing Tamino Server Extensions Using the X-Tension Builder

To develop Java-based server extensions, a Java compiler (javac) environment is required; this is
delivered with Tamino. For full use of the Tamino Builder for Java, the path to the JDK binaries
must be included in the system path environment variable. The X-Tension Builder for Direct infra-
structure may work correctly without JDK support, but Java is not available then.

X-Tension: Tamino Server Extensions6

Prerequisites

3 Tamino Server Extension Functions

■ Server Extension Objects ... 8
■ Types of Server Extension Functions .. 8
■ Function Naming ... 9
■ Query Functions ... 9
■ Trigger Functions .. 13
■ Shadow Functions ... 17
■ Mapping Functions .. 19
■ Initial Server Extension Functions ... 23
■ Server Event Functions .. 24

7

The information in this chapter is broken down as follows:

Server Extension Objects

Tamino server extensions follow the object oriented approach. From this point of view, server
extensions are objects and server extension functions are their methods.

One server extension object may have an arbitrary number of server extension functions as
methods. These can also be functions of different types.

Server extensions have constructors and destructors. In Direct/C++ and Java server extensions, the
standard constructors and destructors that are provided with the programming language are used.

Tamino server extensions can have member variables. In programming languages that support
object orientation, they are handled in the usual way. More details can be found in the section
Developing Tamino Server Extensions.

A Tamino server extension object is created when one of its methods is used for the first time. The
object lasts for the duration of the associated XML session. In the case of an anonymous session,
the object lasts for the duration of the associated transaction or request.

Types of Server Extension Functions

Tamino X-Tension supports the following server extension function types according to the context
of execution:

■ Query Functions

that are explicitly called from within X-Query queries;
■ Trigger Functions

that are used for executing functions when storing or deleting a related document independent
of mapping;

■ Shadow Functions

that are used to create index values for non-XML documents as a shadow of the original;
■ Mapping Functions

that are used for storing, retrieving, or deleting documents and called by Tamino document
processing, composing or on delete;

■ Initial Functions

X-Tension: Tamino Server Extensions8

Tamino Server Extension Functions

that allow initializing functions to be executed on the server extension object prior to any query,
trigger or mapping function execution;

■ Server Event Functions

that ensure transaction consistency.

A server extension can contain multiple mapping, trigger, shadow and query functions, but at
most one initial function and one server event function. Usually, mapping functions appear as a
complete set (one map in function, one map out function, one delete function and one event
function that handles at least the commit and rollback events).

Note: All server extension function types are supported for all X-Tension infrastructures.
Implementation-specific details are indicated where appropriate.

Function Naming

A single server extension can contain multiple server extension functions.

The function name must be unique within the Tamino database. If a Tamino Server includes sev-
eral server extensions, the function name defined in the source code, the “internal name”, may
not be unique. Therefore when a server extension is installed, each function is given a unique
“external name”. By default, the external name is the dot-separated concatenation of the server
extension name and the function's internal name, for example: MyExtension.FirstFunction. If a
name conflict occurs, the Tamino X-Tension Object Analyzer can be used to change the external
function name. For query extension functions, it is even possible to change the external name after
installation, using the Tamino Manager. Such functions will often be called directly by Tamino
database users, so for the convenience of XQuery users we recommend changing the functions'
external names immediately after installation to short, easily remembered names.

Query Functions

Query functions are used to extend Tamino's query languages XQuery and X-Query. You can
define shortcuts for complex queries and create custom-defined filters. Multiple query functions
can be contained in a single server extension object.

The information about query functions is broken down into the following sections:

■ Query Function Parameters and Data Types
■ Query Function Call Syntax
■ Conversion of Query Function Parameters

9X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

■ Query Functions in X-Query/XQuery

Query Function Parameters and Data Types

A query function has zero or more “in” parameters and exactly one return value.

Direct and Java

A query function has n parameters and one return value.

The XML data types allowed for the parameters and the return value and their equivalents in
Direct and Java are shown in the following table:

JavaDirect/C++DirectionXML

booleansxdboolinxs:boolean

booleansxdbool *return valuexs:boolean

Stringsxdstringinxs:string

Stringsxdstring *return valuexs:string

doublesxddoubleinxs:double

doublesxddouble *return valuexs:double

floatsxdfloatinxs:float

floatsxdfloat *return valuexs:float

intsxdintinxs:int

intsxdint *return valuexs:int

Stringsxdstringinino:XML-OBJ

Stringsxdstring *return valueino:XML-OBJ

Passing Parameters

■ Use the ByVal attribute for input parameters.
■ Reference parameters (i.e. without the ByVal attribute) are always input/output.
■ Retval parameters are real return values, e.g.:

Function SXSEvent(ByVal status As Long) As Long
SXSEvent = 0

End Function

■ No HRESULT parameter.
■ A server extension with a retval parameter is implemented as a Function.
■ A server extension without a retval parameter is implemented as a Sub.

X-Tension: Tamino Server Extensions10

Tamino Server Extension Functions

Query Function Call Syntax

A query function is called as part of an X-Query/XQuery request using its external name (see the
section FunctionNaming). The parameters are passed as a list, separated by commas and enclosed
in parentheses. String constants must be enclosed in quotation marks. The calling syntax is inde-
pendent of the infrastructure and language.

Syntax:

<external function name> ([<parameter> { [, <parameter>] }])

Examples:

MyFunc('Input-String', 13)
MyFunc(/a/b, count(/c/d))

Notes:

1. String constants in server extension query functions must be enclosed in single or double quo-
tation marks, otherwise they are interpreted as XPath expressions.

2. A string containing double quotation marks must be enclosed in single quotation marks; for
example: query ('ino:name="sample"').

Conversion of Query Function Parameters

As shown in the example in the section Query Function Call Syntax, parameters can be passed
as constants or expressions. These expressions again can contain query functions: built-in functions
or server extension functions.

First, expressions are evaluated, then they are converted into the data type required by the function
if possible, and finally they are passed to the function. If it is not possible to convert an expression,
a runtime error occurs.

Parameters are converted according to the rules defined by the W3C specification for the conver-
sion of query function parameters.

For example, if the result of a query expression, a node set, is passed as a parameter of the data
type string, this is done as if the built-in query function string() were applied to the query ex-
pression. This returns the string content of the node set's first XML node. If the result of the same
query expression were passed as a parameter of the data type XML Object, the result would be a
completely different value, namely the whole node set in its string representation.

Caution: If the quotation marks are omitted for a string constant, the Tamino Server attempts
to evaluate the string as a query expression. This can produce erroneous results that are
very difficult to interpret.

11X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

http://www.w3.org/TR/xpath/#section-Function-Calls
http://www.w3.org/TR/xpath/#section-Function-Calls

Even return values are converted if possible. Special attention must be paid to the data type XML
Object. For this data type a syntactically correct string representation of a node set must be returned.
There is one exception: a simple string can also be processed if it does not contain XML tags or
angle brackets.

Query Functions in X-Query/XQuery

Query functions can appear at different locations within an X-Query expression. The data type of
a query function's return value must be valid at the place where the query function is located
within the query expression. The different possible locations are discussed in the following:

■ Query Functions at Root Level
■ Query Functions in Filters

Query Functions at Root Level

This is as if a query function were entered instead of an XML query.

Examples:

MySubString('abcdefg',2,4)
MyFunc('Hello',/a/b,12)

At such a location, the function is evaluated once and the return value is inserted into the Tamino
response document. The return value can have any of the data types specified in the table in the
section Query Function Parameters and Data Types.

If a parameter is a query expression, the expression is evaluated and the resulting node set is
passed as a parameter (after conversion, if necessary).

In the second example, nodes “b” in the node set of all documents of document type “a” are passed
to MyFunc as the second parameter.

Query Functions in Filters

Example:

/a/b[name~=MyFunc('Hello', c/d,4)]

For such a call, the data type of the function's return value must be convertible into the type required
by the filter expression.

The function is called as often as required by the number of nodes found by the query /a/b. The
return value is inserted into the filter expression to be evaluated there.

A query expression as parameter is evaluated relative to the context.

X-Tension: Tamino Server Extensions12

Tamino Server Extension Functions

Let /a/b in the example above result in a node set of three nodes: n1, n2 and n3. The function is
called three times. As the second parameter, Tamino passes each time a part of the node set
/a/b/c/d: at the first call the part lying under n1, at the second call the part lying under n2 and at
the third call the part under n3. After each function call the return value of MyFunc is compared
with name of the current node, and the result decides whether it will be part of the result document
or not.

If a query expression with an absolute path as the parameter specification is evaluated, the whole
of the document which contains the current node from whence the function was called is scanned.

Example:

/a/b[firstname~=MyFunc('Hello', /a/b/c/d,4)]

The MyFunc function is called as often as elements b of document type a are available. For each
single function call, only the current document a is considered when evaluating the second function
parameter.

Trigger Functions

XML documents or elements contained in XML documents can be associated with a function which
is executed using the sub-node's content, but independent of mapping. Moreover, the result of
the function can influence the result of the request, but it may not alter the document's structure
or content. There are three types of trigger functions:

■ For storage or processing: the Insert Trigger,

which is executed after the validation phase during processing;
■ For updating: the Update Trigger,

which is executed after the validation phase during the updating of an XML document;
■ For deletion: the Delete Trigger,

which is executed when an XML document is to be deleted from the database.

Note: If an X-Machine _process command specifying the ino:id or ino:docname of an ex-
isting document is used in order to replace the existing document, Tamino uses the update
trigger twice rather than using a delete trigger followed by an insert trigger. This is indicated
below for the situation The document update changes a node "A" under the Execution heading
of the Update Trigger section.

Multiple triggers can be contained in a single server extension. Depending on the action to be
performed, you can include a complete set of trigger functions (one insert trigger, one update
trigger and one delete trigger) in a server extension, but this is not mandatory.

13X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

Execution

Triggers can only be executed if they have been associated with schemas after installing the server
extension package in a Tamino database. Insert, update and delete triggers that propagate errors
by using the exception mechanism (as described in the sectionExceptions) cause the current request
to fail and thus prevent the whole document from being successfully stored, retrieved or deleted.
The sequence of execution when multiple triggers are used is undefined and can vary according
to the request content, optimization or Tamino version. Nevertheless, the trigger is called only if
the request has been successfully executed so far. Subsequent request execution may fail and the
server extension's event function is notified. See the section Tamino Server Extension Examples
for information about sample mapping programs.

Insert Trigger

The Tamino Server calls trigger functions when an XML document with a schema containing a
trigger set to “Action/onInsert” is to be stored by the Tamino Server.

The part of a document that is associated with the trigger is passed to the server extension function,
along with administrative information.

An insert trigger function has four input parameters whose data types are as follows:

JavaDirectXML TypeMeaningPosition

stringsxdstringxs:stringcollection1

stringsxdstringxs:stringdoctype2

stringsxdstringxs:stringino:id3

stringsxdstringino:XML-OBJXML Object4

The collection, the doctype and the ino:id of the document are passed for information to the
server extension function. The information may not be persistent, as the subsequent request exe-
cution may be erroneous and the document may not be stored.

The XML Object represents the (part of the) document to be processed and therefore contains its
string representation.

An insert trigger function may be used to verify the respective part of the document or to act upon
its content.

Execution

An insert trigger is only executed if the document node contains a value or if there is a default
value. If an optional node is not available or the document node is empty and there is no default
value, the trigger function is not executed. Insert triggers are executed before any mapping takes
place. If a default value is defined, a map-in function is called.

X-Tension: Tamino Server Extensions14

Tamino Server Extension Functions

Update Trigger

The Tamino Server calls an update trigger function when an XML document with a schema con-
taining a trigger set to “Action/Update” (update trigger) is to be updated by the Tamino Server.
An update trigger function has five input parameters, whose data types are as follows:

JavaDirectXML TypeMeaningPosition / Direction

stringsxdstringxs:stringcollection1 / in

stringsxdstringxs:stringdoctype2 / in

stringsxdstringxs:stringino:id3 / in

stringsxdstringino:XML-OBJXML Object old state4 / in

stringsxdstringino:XML-OBJXML Object new state5 / in

The collection, the doctype and the ino:id of the document are passed for information to the
server extension function in every calling context. This is the information that was used to retrieve
the part of the document. The XML Object old state represents the (part of the) document before
the update and contains its string representation. The XML Object new state represents the (part
of the) document after the update and contains its string representation. Update trigger functions
may be used to perform some action based upon the updating of a document.

Execution

There are different update situations, which influence the execution behavior of the trigger and
the parameters passed to it. Let there be a node A in the schema, which is related to an update
trigger. Let this node A contain sub-documents.

1. The document is updated in a sub-document of A but A itself remains unchanged.

The update trigger is executed for each altered A, with “XML Object old state” and “XML Object
new state” representing the node A and its sub-document before and after the update.

2. The document update removes a node A.

The update trigger is executed once for each removed A, with “XML Object old state” representing
the node A before its removal and “XML Object new state” being NULL.

3. The document update creates a node A.

The update trigger is executed once for each inserted A, with “XML Object old state” being
NULL and “XML Object new state” representing the node A after its insertion.

4. The document update changes a node A.

The update trigger is executed twice for each altered A. The first time, “XML Object old state”
represents the node A before the update and XML Object new state is NULL. The second time,
“XML Object old state” is NULL and “XML Object new state” represents the node A after the
update.

15X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

This behavior reflects the flexibility of XML update, which allows updating documents in the
above mentioned situations for one or more nodes in one request.

Delete Trigger

Delete triggers are called when an XML document is to be deleted from the Tamino Server.

The Tamino Server calls trigger functions when an XML document with a schema containing a
trigger set to “Action/onDelete” is to be deleted by the Tamino Server.

The part of a document that is associated with the trigger is passed to the server extension function,
along with administrative information.

A delete trigger function has the same four parameters as an insert trigger function. The data types
are as follows:

JavaDirectXML TypeMeaningPosition

stringsxdstringxs:stringcollection1

stringsxdstringxs:stringdoctype2

stringsxdstringxs:stringino:id3

stringsxdstringino:XML-OBJXML Object4

The collection, doctype and ino:id of the document are passed for information to the server
extension function. This information is used to retrieve the part of the document for deletion.

The XML Object represents the (part of the) document to be deleted and contains its string repres-
entation.

Delete trigger functions may be used to validate the deletion of a document or to act upon the
content to be removed.

Execution

Delete triggers are only executed if the document node contains a value. If an optional node is not
available or if the document node is empty, the trigger function is not executed.

See the section Tamino Server Extension Examples for information about programming examples.

X-Tension: Tamino Server Extensions16

Tamino Server Extension Functions

Shadow Functions

A shadow function is used to create a shadow document in Tamino for a non-XML document that
can be stored in Tamino or in an external location. If tsd:storeShadowOnly is defined in the schema,
the shadow document is stored in Tamino but the non-XML document is not copied into Tamino.

A shadow document is an XML document, generated using user-written logic, that can contain
information such as metadata, index values and other generated values for the corresponding
non-XML document. The purpose of the shadow document is to store information that can be
used for queries that would not be possible on the original non-XML document.

The schema that defines the non-XML document must also contain appropriate schema statements
to indicate that a shadow function will be used. See the discussion on Using Shadow Functions
in the section Storing Non-XML Objects in Tamino in the Tamino XML Schema User Guide for details.
When Tamino processes the non-XML document, the instance is passed as a parameter of binary
or textual data type to the shadow function, which builds the shadow document. This shadow
document is then passed to the X-Machine for further inserting and index processing. The result
is stored as a shadow of the original non-XML document.

The general rules covering the behavior of shadow documents and the original non-XML documents
are as follows:

■ When an XQuery or X-Query query is issued, Tamino examines the shadow documents and
not the non-XML documents.

■ If the non-XML document is stored in Tamino and a delete command is issued to delete the
document, Tamino deletes both the shadow document and the non-XML document.

■ When an existing non-XML document is replaced (i.e. old document removed and replaced by
a new one), the corresponding shadow document is deleted and a new shadow document is
created.

■ Shadow documents cannot be updated or deleted by using xquery update or xquery delete
commands.

■ If plain URL addressing is used for retrieval, Tamino returns the non-XML document and not
the shadow document. If the non-XML document is stored outside Tamino, an HTTP status 404
(file not found) is returned. For details of plain URL addressing, see the section Requests using
Plain URL Addressing in the X-Machine Programming guide).

A shadow function can be implemented in any programming language that is supported by X-
Tension, using any supported infrastructure. Like mapping functions and trigger functions, a
shadow function has a defined signature and a restricted execution context (here it is limited to
insertion of non-XML documents).

A shadow function can be part of any server extension's object. Its execution is part of the request,
transaction and session processing, like the execution of a mapping function or trigger function.

17X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

The non-XML document that corresponds to the shadow function can contain pure text or “real”
binary content, so the shadow function type comes with two kinds of signatures, which are called
according to the actual content of the document. Tamino determines whether a non-XML document
should be treated as a text document or a binary document solely on the basis of the document's
media type (see the sectionMedia Type Requirements in theX-Machine Programming guide for details).
Thus, for example, Tamino stores base64-coded binary objects as text or binary objects depending
on the media type setting.

Signature for onTextInsert Functions

Shadow functions related to the node of onTextInsert are defined with the following parameter
structure:

JavaDirectXML TypeMeaningPosition / Direction

stringsxdstringxs:stringcollection1 / in

stringsxdstringxs:stringdoctype2 / in

stringsxdstringxs:stringdoctypeURL3 / in

stringsxdstringxs:stringino:id4 / in

stringsxdstringxs:stringino:docname5 / in

stringsxdstringxs:stringnon-XML-Text6 / in

stringsxdstringino:XML-OBJShadow-XML7 / retval

Signature for onBinaryInsert Functions

Shadow functions related to the node of onBinaryInsert are defined with the following parameter
structure:

JavaDirectXML TypeMeaningPosition / Direction

stringsxdstringxs:stringcollection1 / in

stringsxdstringxs:stringdoctype2 / in

stringsxdstringxs:stringdoctypeURL3 / in

stringsxdstringxs:stringino:id4 / in

stringsxdstringxs:stringino:docname5 / in

Byte Arraysxdstringino:Binarynon-XML-Binary6 / in

stringsxdstringino:XML-OBJShadow-XML7 / retval

When Tamino processes a non-XML document, it accepts any type of input (text in any format,
binary data of any kind) from the calling context as an input parameter and delivers it without
change to the shadow function. The XML schema data types xs:hexBinary and xs:base64Binary
as defined in xmlschema-2 do not serve this purpose because they use encoding (hex or base64)
with conversion procedures. Therefore the Tamino data type ino:Binary has been designed. Its
values are handed to the shadow function (binary type) in its language dependent representation.

X-Tension: Tamino Server Extensions18

Tamino Server Extension Functions

http://www.w3.org/TR/xmlschema-2/

Mapping Functions

XML documents or elements of them can be stored native, i.e. “as-is”, in the Tamino database, or
using the X-Node.

In addition, a more dynamic kind of mapping can be performed using Tamino server extensions:
the “Mapping to Function”. XML documents or parts of them are passed to or taken from a user-
defined mapping function. In this case, mapping functions must be used to handle the sub-docu-
ment completely.

There are three types of mapping functions:

■ One for storage or processing: the map-in function,

which is executed when mapping the verified document;
■ one for retrieval or composition: the map-out function,

which is executed when retrieving the document nodes; and
■ one for deletion: the map-delete function,

which is executed when an XML document is to be deleted from the database.

Multiple mapping functions can be contained in a single server extension. Usually you should
include a complete set of mapping functions (one map-in function, one map-out function and one
delete function) in a server extension.

Execution

Mapping functions can only be executed if they have been associated with schemas after installing
the server extension package in a Tamino database. Mapping server extension functions which
propagate errors cause the current request to fail, and thus prevent the whole document from
being successfully stored, retrieved or deleted.

The sequence of execution of mapping functions and server extensions is undefined and can vary
according to the request content, optimization or Tamino version. Nevertheless, the mapping
function is called only if the request has been successfully executed so far. Subsequent request
execution may fail and the server extension's event function is notified.

See the sectionTaminoServer ExtensionExamples for information about sample mapping programs.

19X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

Map-In Functions

Map-in functions are called by the Tamino Server when an XML document is stored by the Tamino
Server. The map-in function is called for the part of the document where the associated schema
storage type is set to "Map XTension" and the onProcess property is defined.

The part of the document that is mapped to a server extension function is passed to the server
extension function, along with administrative information.

A map-in function has three or four parameters, whose data types are as follows:

JavaDirectXML TypeMeaningPosition / Direction

intsxdintxs:intObject ID1 / in

intsxdintxs:intElement ID2 / in

Stringsxdstringino:XML-OBJXML Object3 / in

StringBuffersxdstring *xs:stringNode Info4 (optional) / out

The Object ID and Element ID are used to uniquely identify the data that is passed to the server
extension function in the specific database.

The XML Object represents the (part of the) document to be processed and already validated. It
contains the string representation of a well-formed XML document or fragment.

The optional fourth parameter can be used by the server extension function to store arbitrary in-
formation in the Tamino database, which can only be accessed in a successive map-in or map-delete
server extension function.

Map-in functions may be used to store those parts of an XML document that are mapped to a
server extension function outside of the Tamino database. The Object ID and Element ID are
database-specific keys, given from the Tamino Server. No semantic is associated with them.

The Node Info can be used to conveniently store customer-specific information about where the
data is stored, for example the name of a file in which the data is stored, or an SQL command that
delivers the data as a result, if it is stored in a third party relational database.

The Node Info is transparent to the Tamino Server and is only interpreted by corresponding map-
out and delete functions if specified by the Tamino server extension developer. The fourth para-
meter is optional. However, if the function does not support this parameter, there is no way in
which node information can be stored or used.

Note: Remember to define a corresponding map-out function for each map-in function you
develop, otherwise you will not be able to retrieve the data stored with your map-in function.

X-Tension: Tamino Server Extensions20

Tamino Server Extension Functions

Considerations for key building:

Although Object ID and Element ID uniquely identify the subdocument within a single Tamino
Server, you should take the following into consideration when designing the key for storing, re-
trieving and deleting the mapped data:

■ Object ID and Element ID may change when the database is unloaded/loaded, for example
when the Tamino Data Loader is used for mass loading and unloading of data. The Node Info
is invariant under massload.

■ Object ID, Element ID and Node Info remain unchanged when the database undergoes backup
or restore/recovery processes.

■ Different databases may use the same internal keys.
■ The database name may change as the result of a Tamino Administrator rename database

command.

You should consider defining a key independent of Object ID, Element ID and database-name
and keeping it in the Node Info parameter of the map-in function, where it can be used in all
other cases of mapping.

Execution

Map-in functions are only executed if the document node contains a value. If an optional node is
not available or the document node is empty, the map-in function is not executed.

See the section Tamino Server Extension Examples for information about programming examples.

Map-Out Functions

Map-out functions are called by the Tamino Server when an XML document is to be retrieved
from the Tamino Server. The map-out function is called for the part of the document where the
associated schema storage type is set to "Map XTension" and the onCompose property is defined.

A map-out function has three or four parameters, whose data types are as follows:

JavaDirectXML TypeMeaningPosition / Direction

intsxdintxs:intObject ID1 / in

intsxdintxs:intElement ID2 / in

StringBuffersxdstring *ino:XML-OBJXML Object3 / out

StringBuffersxdstring *xs:stringNode Info4 (optional) / in/out

The Object ID and the Element ID are used to uniquely identify the data to be retrieved by the
server extension function.

The XML Object represents the (part of the) document to be retrieved and must contain the string
representation of an XML document or its parts that are valid against the schema used. The passed

21X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

string must be either the valid string representation of a node set or a character string of printable
characters containing neither "<" nor ">".

The optional fourth parameter contains the node information that was passed to the Tamino
Server by a previously called map-in function. As an in-out parameter it may be changed by the
map-out function. If the previously called map-in function did not pass any node information,
this parameter is an empty string (of length zero). The fourth parameter is optional. However, if
the function does not support this parameter, there is no way in which node information can be
accessed.

A map-out function can be used to retrieve those parts of an XML document stored outside of the
Tamino database by a previous map-in function.

Execution

The map-out function is executed only if the corresponding sub-node was previously inserted.
Consequently, no optional sub-nodes can be newly generated by means of map-out functions.
The map-out output is validated against the schema definition. The document composition may
fail if the validation fails.

See the section Tamino Server Extension Examples for information about programming examples.

Map-Delete Functions

Map-delete functions are called by the Tamino Server when an XML document is to be deleted
from the Tamino database. The map-delete function is called for the part of the document where
the associated schema storage type is set to "Map XTension" and the onDelete property is defined.

A map-delete function has two or three parameters, whose data types are as follows:

JavaDirectXML TypeMeaningPosition / Direction

intinxs:intObject ID1 / in

intinxs:intElement ID2 / in

Stringinxs:stringNode Info3 (optional) / in

The Object ID and the Element ID are used to uniquely identify the data to be deleted.

The optional third parameter contains the additional node information that had previously been
passed from the map-in or map-out function to the Tamino Server.

Map-delete functions can be used to delete those parts of an XML document stored outside of the
Tamino database by a previous map-in function.

See the section Tamino Server Extension Examples for information about programming examples.

X-Tension: Tamino Server Extensions22

Tamino Server Extension Functions

Execution

The delete function is executed only if the corresponding sub-node was previously inserted.

See the section Tamino Server Extension Examples for information about programming examples.

Initial Server Extension Functions

As Tamino server extension objects are created implicitly by the Tamino Server, it is not possible
to use constructors that pass parameters when an extension function is called. But it is often useful
to initialize member variables with different values. If a server extension function – regardless of
type – needs configuration information or the establishing of an initial environment, this can be
achieved by executing an initial server extension function. Default values are associated with the
parameters of initial functions when they are installed. These default values can be changed by
the Tamino administrator using the Tamino Manager.

It is up to the Tamino server extension developer and the execution environment to decide which
initialization should be performed, but mostly it will be used to set member variables, establish
connections to external data-sources, etc. These initial settings remain valid unless modified by
another server extension function until the session in which the server extension is executed ends.
We recommend using server extension event functions to do the housekeeping for initialized actions
if necessary.

The init function can have any number of input parameters, but no output or return parameter.
The data types of the parameters are as follows:

JavaDirect/C++XML Type

booleansxdboolxs:boolean

stringsxdstringxs:string

doublesxddoublexs:double

floatsxdfloatxs:float

intsxdintxs:int

stringsxdstringino:XML-OBJ

Each parameter definition must have an associated default value that matches the corresponding
type definition, otherwise a runtime error may occur. The X-Tension development tools (X-Tension
Builder, the X-Tension Object Analyzer and the X-Tension Administration) allow the definition
of these default values but do not enforce them. The values also can be set after the installation of
the server extension by using the server extension administration features of the Tamino Manager.

23X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

Execution

Each server extension can contain at most one init function, which is implicitly called immediately
before the first execution of any of its query, mapping or trigger functions, but after the objects
constructor, if any. Subsequently, no parameter value is passed from the calling Tamino context,
but all values are taken by default as denoted during development, analysis or modification after
installation. In case of an error the init function should throw an error, which is propagated as the
result of the current Tamino Server request.

Server Event Functions

If a server extension function is called repeatedly within a command request, transaction or user
session, the same instance of the server extension object is used (see the section Calling Tamino
Server Extensions).

For complex programming, it is therefore necessary to be able to react to Tamino Server events
such as commit or rollback, end of request or end of session, for example in order to undo modi-
fications initiated by a function call when a rollback was performed. Server event functions serve
this purpose.

Each server extension object can contain at most one server event function.

A server event function has two parameters, whose data types are as follows:

JavaDirectXML TypeMeaningPosition / Direction

intsxdintxs:intState1 / in

intsxdint*xs:intReturn Code2 / return value

The first parameter indicates the event that happened, as listed in the following table. The second
parameter contains a return code. In general, the return code should be set to zero, indicating
success.

The following table shows the Tamino Server events that can and should be handled by a server
event function:

ValueTamino Server Event

0XML_REQUEST_END

1XML_COMMIT

2XML_ROLLBACK

3XML_CONNECTION_END

4XML_SUB_COMMIT

5XML_SUB_ROLLBACK

X-Tension: Tamino Server Extensions24

Tamino Server Extension Functions

Direct

These events are defined as enum types in the file sxdinc.h.

Java

These events are defined as constants in the Java-based interface for server extensions, SXSJBase.

Execution

Generally, the Server event function of a server extension object is called if at least one server ex-
tension function of type trigger, mapping or query of this object was called at least once during
the corresponding period. The same event can be forwarded to several server extensions. In detail:

XML_SUB_COMMIT / XML_SUB_ROLLBACK

These events only occur in user sessions. At the end of a command, they are reported to all server
extension objects from which a function was called while processing the command. These com-
mands can occur several times within a request (see the section Order of Execution of Commands in
theX-Machine Programmingdocumentation for related information). They are used in a user session
like subtransactions.

XML_COMMIT / XML_SUB_ROLLBACK

These events occur in user sessions when the user sends a commit or rollback command to the
Tamino Server. At the end of a transaction they are reported to all server extension objects from
which an arbitrary function was called within the same transaction.

In anonymous sessions each command is treated as a transaction of its own and closed with auto-
commit or auto-rollback. At the end of each command, an XML_COMMIT or XML_ROLLBACK
is reported to all server extension objects from which an arbitrary function was called within the
same command.

XML_REQUEST_END

This event is reported to all server extension objects from which an arbitrary function was called
within the same request. (Only “usage” requests are considered. A user-issued commit or rollback,
which from the Tamino Server's point of view is also a request, does not lead to the XML_RE-
QUEST_END event; it only results in XML_COMMIT or XML_ROLLBACK. The same is true for
a session's end.)

XML_CONNECTION_END

This event is reported to all server extension objects from which an arbitrary function was called
during the corresponding session, i.e. to all server extension objects that were initialized in the
context of this session.

Server event functions are restricted in functionality:

25X-Tension: Tamino Server Extensions

Tamino Server Extension Functions

Notes:

1. Server event functions can only call system callback or HTTP callback functions.

2. As Server event functions are processed after termination of the XML request which makes the
server extension function calls, they cannot call callbacks implying database operations.
Therefore XML callbacks and ODBC callbacks cannot be used within Server event functions.
If an XML callback is used in a Server event function, a runtime error occurs. If an ODBC callback
is used, an error message is output.

3. Exceptions should not be thrown in Server event functions. They are caught, but have no effect.

See the section Tamino Server Extension Examples for information about programming examples.

X-Tension: Tamino Server Extensions26

Tamino Server Extension Functions

4 Administrating Tamino Server Extensions

■ Installing a Tamino Server Extension ... 28
■ Private and Public Classpaths for Java .. 30
■ Dialog for Setting the Private Classpath ... 30
■ Specifying Java Options ... 32
■ Modifying the Properties of a Server Extension .. 33
■ Modifying the Properties of a Server Extension Function ... 34
■ Upgrading a Server Extension ... 34
■ Uninstalling a Server Extension .. 35
■ Switch for the Tamino Server Extension Trace ... 36

27

Tamino server extensions can be administrated from the Tamino Manager. The administration
tasks related to a server extension are performed on a running database. This means that a database
must have been created and started before you can perform the following tasks:

Installing a Tamino Server Extension

To install a Tamino server extension, you need a package file of type SXP. This file must have been
created using one of the following:

■ Tamino X-Tension Builder;
■ X-Tension Object Analyzer.

Any number of Tamino server extensions can be installed in a given Tamino database. One Tamino
server extension can be installed in several Tamino databases.

During the installation process, entries are made in the Tamino file system and the Tamino database
system.

If you want to install a Java-based server extension that calls classes from one or more external
JAR or ZIP files, you must modify the public or private Java classpath to include the respective
JAR or ZIP files. The public classpath can be set for all Java-based server extensions of all databases
on the file system, whereas the private classpath applies to a single Java-based server extension
installed in a database only. For more information about administration and the calling hierarchy,
see the section Dialog for Setting the Private Classpath.

Note: Mapping, trigger and shadow functions can only be executed if you associate them
with schemas after installing the server extension package. For a detailed description of
schema definition, see the documentation of the Tamino Schema Editor.

To install a Tamino Server extension

1 Start the Tamino Manager.

Expand the Databases object under the Tamino node.

Start and expand the database into which you want to install the server extension package.

2 Select the Server Extensions object.

3 From the context menu, choose Install Extension.

4 The Install Server Extension on Database page appears:

X-Tension: Tamino Server Extensions28

Administrating Tamino Server Extensions

Enter your name in the Installation User text box.

Enter the full path name (including the file name) of the server extension package (your-
file.sxp) to be installed in the Package file text field; alternatively, browse to the directory
that contains the server extension package to be installed and select the package.

Choose OK to install the server extension.

The JobMonitor page appears, informing you about the success or failure of the installation.

After installation, the name of the server extension is included under the expanded Server Exten-
sions object in the Tamino Manager. Select the server extension to display a summary of information,
or expand it and select individual functions for more details. You can also expand individual
functions to view details of the associated parameters.

If you try to install a server extension object that is already installed in the database, you will receive
an error message.

If you are installing a Java server extension that needs a private classpath, a page appears, which
allows you to define the private classpath. The private classpath can be set for a single server ex-
tension in a database. The value initially supplied in this field is the configured classpath, if this
value exists.

You can either enter the private classpath directly in the Private Classpath field, or choose the
Edit button to enter a dialog for constructing the private classpath. This is described in the section
Dialog for Setting the Private Classpath below.

Then choose OK.

29X-Tension: Tamino Server Extensions

Administrating Tamino Server Extensions

Private and Public Classpaths for Java

The public classpath can be set for all Java server extensions of all databases on the file system,
whereas the private classpath relates to a single Java server extension installed in a database only.
During execution of a Java server extension the private classpath precedes the public classpath,
which overrules the standard classpath setting of the environment variable CLASSPATH. Using the
private Java classpath, the public Java classpath and the environment variable CLASSPATH leads
to the search path of the mentioned hierarchy. As the X-Tension class loader is derived from the
standard class loader, classes, JAR files and ZIP files are recognized. The following abbreviation
allows you to avoid lengthy path expressions for JAR files contained in the same directory in
private or public Java classpaths: to add all JAR files in a directory (e.g. D:\X\Y) to the private or
public classpath, you can enter either the directory name alone or the directory name followed by
.jar into the classpath (e.g. D:\X\Y.jar). Other expressions with wildcard characters are not
supported. Please observe that the search hierarchy is not defined when using the "*.jar" expression.
Different classes with the same fully qualified class name should therefore be avoided.

Dialog for Setting the Private Classpath

Several dialogs contain an Edit button that opens a subdialog that allows you to construct the
private classpath. When you choose this button, the following dialog appears (the example assumes
that the currently-defined classpath is "C:\Program Files\;C:\MyFiles"):

X-Tension: Tamino Server Extensions30

Administrating Tamino Server Extensions

When the classpath comprises several paths, as in this example, each path is displayed on a separate
line. This makes it easier to add and remove paths and to change the order of the existing paths.
A path can point to a directory or to a JAR file within a directory.

The existing classpath can be extended by adding one or more paths to the beginning or end of
the existing classpath definition.

To add a new path to the existing classpath definition

1 Enter a new path in the New Path field. You can either enter the path value directly or use
the Browse... button to search for the required path;

2 Choose thePrecede Path button to add the new path to the start of the classpath, or theAppend
Path button to add the new path to the end of the classpath.

The order in which the paths appear in the classpath can be changed as follows:

To change the position of a path within the classpath

1 Select the path to be moved in the list of paths displayed;

31X-Tension: Tamino Server Extensions

Administrating Tamino Server Extensions

2 Choose the Move Up button to move the path one position towards the start of the classpath,
or choose the Move Down button to move the path one position towards the end of the
classpath.

The classpath can be shortened by removing paths from the classpath.

To remove a path from the existing classpath definition

1 Select the path to be removed from the list of paths displayed;

2 Choose the Delete button.

You can use the Delete all button to clear the classpath. If you use this button, it is not necessary
to select the paths before deleting them.

The path names in the list of paths are not scrollable, so long path names are truncated in the dis-
play. When you select a path in the list of paths, it is also displayed in the Selected Path field. This
field is horizontally scrollable, so if a path name is long, you can scroll in this field to see its full
value.

Specifying Java Options

When starting Tamino with Java X-Tension usage switched on, options can be specified to influence
the behavior of the JVM. These user-specified options can be used, for example, to configure the
size of the JVM or to debug Java server extensions.

The options are specified as a character string, the first character of which serves as a delimiter
for the options that follow. For example, entering the string

$-Xms64m$-Xmx64m

would result in the two parameters -Xms64m and -Xmx64m being passed to the JVM at startup.

To modify the Java options

1 Start the Tamino Manager.

Select the database for which you want to add Java options;

2 Select the Properties object, then select the X-Tension properties group;

3 Choose Modify. This opens the dialog for setting or modifying the X-Tension properties;

4 Enter a new value for the X-Tension Java options in the Configured Value column. Placing
the cursor over the question-mark icon in the Details column displays a tool tip that includes
a brief description of the property. If you choose the button All Defaults, all of the properties
are reset to their default values/settings;

X-Tension: Tamino Server Extensions32

Administrating Tamino Server Extensions

5 Choose OK to apply the changes;

6 The new value(s) will take effect when the server is started or restarted.

The user options that have been specified are displayed in the job log when the Tamino server is
started. If they are invalid, a warning message displaying the options is issued and the Tamino
server starts with the internal default options.

Caution: Certain JVM parameter settings may have an adverse effect on the performance of
the Tamino Server and/or Java server extensions.

Setting the Java classpath using this property may not work or may have unexpected side-effects.
Please use the appropriate methods documented in the sections X-Tension Tools – Modifying the
Public Java Classpath and Administrating Tamino Server Extensions – Dialog for Setting the
Private Classpath to set the appropriate global or private classpath.

Modifying the Properties of a Server Extension

If you choose the Modify Extension button, the Modify Server Extension page appears, in which
you can modify the execution mode of a Direct-based server extension as well as the external
names of functions.

To modify the properties of a server extension object

1 Start the Tamino Manager.

Expand the Databases object.

Start and expand the database containing the server extension you want to modify;

2 Expand the Server Extensions object;

3 Select the server extension that you want to modify;

4 From the context menu choose Modify Extension ;

5 The Modify Server Extension page appears;

Some of the fields are read-only, others such as External Name can be modified. Make your
changes as required.

For Java server extensions, the field Private Classpath is offered, which allows you to modify
the value of the private classpath. See the section Dialog for Setting the Private Classpath
above for details;

6 Choose OK to modify the server extension.

33X-Tension: Tamino Server Extensions

Administrating Tamino Server Extensions

Modifying the Properties of a Server Extension Function

You can change the external name of a server extension query function in the Modify Function
View.

To modify the server extension function

1 Start the Tamino Manager.

Expand the Databases object.

Start and expand the database which contains the server extension with the function you
want to modify;

2 Expand the Server Extensions object;

3 Expand the server extension which contains the function you want to modify;

4 Select the server extension function you want to modify;

5 From the context menu, choose Modify Function;

6 The Modify Function page appears.

Enter the new name for the function in the External Name text box.

Choose OK to modify the name.

The JobMonitor page appears, informing you about the success or failure of the modification.

Upgrading a Server Extension

A server extension is upgraded when the server extension version information is increased (in
Java this is the sxsVersion variable), and then the server extension is installed using the normal
installation procedure.

The following rules should be taken into account when modifying an existing server extension:

■ All changes made to existing interfaces should be done with care, since for example applications
or schemas may have dependencies on these interfaces .

■ Changing things such as default values should be done using the administration interface and
not by creating a new version of a server extension.

■ Creating new interface methods or functions is the most appropriate form of modifying a server
extension package.

X-Tension: Tamino Server Extensions34

Administrating Tamino Server Extensions

■ If a server extension is installed in multiple Tamino databases of differing versions, the use of
new functionality or callbacks is not allowed, because the older versions of Tamino do not un-
derstand these callbacks.

■ Upgrading a server extension that is shared by multiple databases means implicitly upgrading
the extension for all databases. Databases that are not active at that time will be upgraded the
next time they are started.

■ Upgrading may only take place if a server extension is not currently in use (across all databases
that share this extension).

Hint: When upgrading a server extension, we strongly advise you not to change the Install.xml,
class, JAR, DLL or shared library files in the server extension install directory, since the next
server restart or recovery from backup may overwrite them. Instead, you should install new versions
using the System Management Hub server extension installation procedures following the rules
above.

Uninstalling a Server Extension

Uninstalling a Tamino server extension means deleting the database entries and file system entries,
including any associated files.

When you start the uninstallation of a server extension, the server extension is locked for all Tamino
sessions started thereafter. A server extension that is in use cannot be uninstalled, therefore the
installation process waits until all sessions that are using the corresponding server extension have
terminated; then the uninstallation is performed. If the sessions have not terminated within 150
seconds, the uninstallation is aborted with an error message.

Prerequisites for Mapping, Trigger and Shadow Functions

A server extension containing server extension functions that are referenced by schemas should
only be uninstalled after all schema references to these functions have been removed. If this server
extension function is not available but there are still references in the schema, a runtime error occurs.

To uninstall a Tamino server extension

1 Close any applications (e.g. Microsoft Windows Explorer) that are accessing server extension
files or their directories, because otherwise inconsistent data may remain;

2 Start the Tamino Manager.

Expand the Databases object.

Start and expand the database from which you want to uninstall a server extension;

3 Expand the Server Extensions object;

35X-Tension: Tamino Server Extensions

Administrating Tamino Server Extensions

4 Select the server extension that you want to uninstall;

5 From the context menu, choose Uninstall Extension;

6 The Uninstall Server Extension from Database page appears, showing related schemas if
they exist. If you choose to uninstall a server extension with related schemas, the schemas
will become invalid;

Choose OK to uninstall the server extension.

The JobMonitorpage appears, informing you about the success or failure of the uninstallation.

Switch for the Tamino Server Extension Trace

To activate or deactivate server extension tracing

1 Start the Tamino Manager.

Start and select the database;

2 Select the Server Extensions object;

3 From the context menu, choose the X-Tension Settings button;

4 The Specify X-Tension Settings page appears;

To activate tracing, check the box; to deactivate tracing, remove the check mark. Choose OK to
activate or deactivate tracing. It is deactivated by default whenever the Server is restarted, to
prevent unintended tracing. Trace output is written to the collection ino:SXS-Trace and can be
queried or deleted there. For detailed information, see the sectionTracing Tamino Server Extensions.

X-Tension: Tamino Server Extensions36

Administrating Tamino Server Extensions

5 Calling Tamino Server Extensions

When the Tamino Server calls a server extension function for the first time in a given XML session,
an instance of the server extension object that implements the server extension function is initialized.
If the same server extension function is called again within the same XML session, this same instance
of the server extension object is used. When an XML session ends, all server extension objects that
were created by that session are destroyed. In the case of sessionless XML requests (running in
so-called anonymous sessions), the life cycle of the server extension object is the XML transaction
instead of the XML session.

If a second XML session calls the same server extension function, the call is handled in a separate
instance of the server extension object. This means that any data held as a member variable of the
server extension object is protected from concurrent calls, whereas global variables would be
shared by both instances. Data that is held as a member variable of a server extension object is
kept for the duration of an XML session (or XML transaction in the case of anonymous sessions)
and can be used by a subsequent call of the same server extension function.

37

38

6 Failure of Tamino Server Extension Functions

If a server extension fails, the entire XML request of which this is a part fails. The response document
generated by Tamino contains information about the nature of the error. If the request was made
in an anonymous session, the current transaction is implicitly rolled back. If the function was
called from a request that was part of a user's session, the user must evaluate the response document
and decide whether or not to perform a rollback.

A server extension function fails:

■ when it throws an exception (see the section Exceptions for more information);
■ when programming errors in server extension code lead to exceptions (for example, memory

violations for a C++ or Direct server extension or OutOfBoundsExceptions for a Java-based
server extension);

■ in Direct or Java-specific error situations;
■ if the server extension function attempts to write to the Tamino database using anXML callback

and this attempt fails, the call of the whole server extension function fails. The response document
contains either a detailed error message coded by the server extension developer or a general
error message referring to the error situation.

39

40

7 Building a Tamino Server Extension Package

■ Programming Languages and Development Tools .. 73
■ Building a Direct Infrastructure-Based Tamino Server Extension Package ... 42
■ Building a Java-Based Tamino Server Extension Package ... 42
■ Using the X-Tension Builder .. 42
■ Using Direct Infrastructure ... 59

41

This document explains how you can build server extension packages based on Direct and Java-
based infrastructures using the Tamino X-Tension Builder. Server extensions can be written in
C++, Java or any language that supports dynamic loading of object libraries.

Programming Languages and Development Tools

The following combinations of programming languages and infrastructures are supported by
Tamino Tools and/or described in this documentation:

JavaDirectInfrastructures / Programming Languages

-Direct/C++ X-Tension Builder

X-Tension Builder-Java

Building a Direct Infrastructure-Based Tamino Server Extension Package

Server extensions written in C++ or any programming language that supports the dynamic loading
of object libraries can be executed using the Direct infrastructure of Tamino X-Tension. The X-
Tension Builder supports the development of server extension packages based on this infrastruc-
ture.

Building a Java-Based Tamino Server Extension Package

TheTaminoX-TensionBuilder supports the development of Java-based server extension packages
on Microsoft Windows and UNIX platforms. The infrastructure is established by means of a JVM
attached to the Tamino Server process. The usage of Java is restricted to avoid harmful influences
on the Tamino Server.

Using the X-Tension Builder

This section tells you how to build a server extension package. The X-Tension Builder supports
developing server extensions using the Direct and Java-based infrastructures. For information
about what Tamino server extensions are and how they can be developed, see the Introduction
and the sections Tamino Server Extension Functions and Developing Tamino Server Extensions.
The individual steps related to building a server extension package - which is what you need when
you want to install a server extension into a database - are described in the following sections:

■ Creating a Server Extension Project

X-Tension: Tamino Server Extensions42

Building a Tamino Server Extension Package

■ Opening an Existing Server Extension Project
■ Adding a Server Extension Function to an Existing Server Extension Project
■ Compiling the Server Extension Class File
■ Generating Javadoc Comments for a Server Extension Class File
■ Packaging a Server Extension

Creating a Server Extension Project

The Tamino X-Tension Builder is used to create a server extension project. The tool automatically
generates files containing all of the code required by the infrastructure-specific parts of the program
and for communication with the Tamino Server. You are responsible for implementing the func-
tionality. This section explains how to use the tool to set up a new project.

To create a server extension project

1 Create the directory or folder where the source files for your project are to be stored. Use
different directories for different projects!

2 Microsoft Windows:

■ Start the Tamino X-Tension Builder from the Tamino program group under the Windows
Start menu.

UNIX:

■ Call the script inosxbuilder.sh from the command line.

3 The Tamino X-Tension Builder appears and displays an empty screen.

Choose New from the File menu to open a new project.

4 The first of two dialog boxes appears:

43X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

5 You can create either a Direct/C++ server extension or a Java-based server extension. Select
the appropriate radio button. The following description shows the results of choosing the
Java-based infrastructure for the server extension; the results of choosing the Direct infrastruc-
ture are similar.

Enter a name for the server extension. This name is used to reference the object within Tamino.

The text box for the short description is filled in automatically. You can edit this text, and
also the text in the Author box.

Choose Next.

6 A second dialog box appears:

X-Tension: Tamino Server Extensions44

Building a Tamino Server Extension Package

Enter a package name for the Java class. To ensure unique naming, Software AG recommends
that you use your domain name in the package name.

The class name is filled in automatically. You can edit this text.

Enter the private classpath (if needed).

Enter the directory where the source files are to be stored, or chooseBrowse... to select a drive
and directory.

If you keep the check mark in the Insert Javadoc comments box, you can generate Javadoc
comments for your new server extension object and any server extension function that you
include in the project after compiling the class file.

When you have made all desired changes, choose Finish to create the new project.

Note:

■ If the specified directory had already been used for a previous project, the following message
is displayed:

45X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

If you select OK in the message box, the Install.xml file will be overwritten. If you choose
theCancel button, you are returned to the previous dialog, where you can choose a different
directory.

7 A list of files that will be created is displayed:

These two skeleton files are of special interest to the server extension developer:

your-project.java
The source file to which the signature of a server extension function is added using the
Add Function menu item from the Project menu and into which the developer's function
code has to be inserted;

Install.xml
The installation file which is required to install the finished server extension package. The
XML server uses this file to put information about the server extension object into the re-
pository.

Choose OK to create the files.

X-Tension: Tamino Server Extensions46

Building a Tamino Server Extension Package

8 The source file your-project.java is opened in the editing window of the Tamino X-Tension
Builder:

At various points in the generated framework code, you will find comments of the form:

// TODO: ...

Add your code after these comment lines.

Save the file.

9 This file can be edited as described in the section Adding a Server Extension Function to an
Existing Server Extension Project.

Opening an Existing Server Extension Project

You can open a previously-generated server extension project with the Tamino X-Tension Builder
at any time to edit and manipulate the source file (add the signature of a server extension function
and the function code, compile and pack the server extension object) as long as the server extension
has not yet been installed in one or more databases.

To open an existing server extension project

1 Microsoft Windows:

47X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

■ Start the Tamino X-Tension Builder from the Windows Start menu.

UNIX:

■ Call the script inosxbuilder.sh from the command line.

2 Choose Open from the File menu of the Tamino X-Tension Builder.

3 The Select Server Extension Project dialog box appears:

Browse to the drive and directory that contains the Install.xml file for the project.

Select the file and choose Open.

4 The your-project.java source file for this server extension project appears in the Tamino X-
Tension Builder's editing window.

You can view all source files for the project by selecting the filename in the tree displayed in
the left-hand frame of the X-Tension Builder.

Note: You should not change the Install.xml file. If you do change it, for example if you
change parameter names, you must also make these changes in the your-project.java
source file.

X-Tension: Tamino Server Extensions48

Building a Tamino Server Extension Package

Note: It is not possible to install different versions of a server extension at the same time. If
you want to make changes to the function code of a server extension that is installed in a
database without uninstalling it, create a new project specifying a different name for the
server extension, add the modified function code, and compile and pack the project as
usual with the Tamino X-Tension Builder.

Adding a Server Extension Function to an Existing Server Extension Project

You can add any number of map-in, map-out, map-delete, trigger, query and shadow functions,
but only one init or event function to a server extension object.

We recommend including a complete set of mapping functions (one map-in, one map-out and
one delete function) or trigger functions in a server extension object. Implement an init function
to perform initializing actions prior to first function execution. Usually you will also need an event
function to react to commit or rollback events.

To add a server extension function to an existing server extension project

1 With the source file (your-project.java) open in the editing window, choose Add Function...
from the Project menu.

2 The Add X-Tension Function dialog box appears:

Enter the name of the server extension function in the Function Name text box.

Either:

■ Select the Function Type drop-down list box for the server extension function.

49X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

If you choose Map In Function, Map Out function or Delete Function, parameters with
default names and types are generated automatically, and the Add button changes to Add
Node Info, which can be used to add the nodeinfo parameter to the function.

Choose OK to add the map-in function to your server extension.

Or:

■ Choose Add.

The Add parameter dialog box appears:

X-Tension: Tamino Server Extensions50

Building a Tamino Server Extension Package

Enter a name for the parameter you want to define and select the XML type and attribute.

Choose OK.

The Add parameter dialog box appears again, allowing you to add all the parameters that
are required for the type of server extension function you want to define.

When you have specified all of your parameters, choose the Function Type (only function
types with suitable parameter lists are enabled). Missing mandatory parameters are added.

Optional parameters can be reordered. Select the parameter you want to move to another
position, and the up and down arrows are enabled if reordering is allowed for that para-
meter.

If you select one of the displayed parameters, the Remove and Edit buttons are enabled.

Query function selected as Function Type

■ If you choose Query Function from the Function Type drop-down list box, the Edit return
parameter dialog box appears, where you can define a return value:

Select the appropriate type (XML document or character string) of the value to be returned
by your query function from the XML drop-down list box. (If you select "XML-OBJ", the
XML document processor parses the result. If the result is not a well-formed XML document,
the parser fails with the error message INOXPE8702 Invalid document prolog.)

Choose OK.

The Add Extension Function dialog box appears again with the Add button changed to
Add Optional, allowing you to generate an arbitrary number of optional parameters for a
query function. All of these parameters must be input parameters.

51X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

Optional parameters can be reordered. Select the parameter you want to move to another
position, and the up and down arrows are enabled if reordering is allowed for that para-
meter.

If you select one of the displayed parameters, the Remove and Edit buttons are enabled.

Choose OK to add the function's signature to the source file (your-project.java) and the
Install.xml file.

3 The following predefined code is displayed:

X-Tension: Tamino Server Extensions52

Building a Tamino Server Extension Package

4 At various points in the generated framework code, you will find comments of the form:

// TODO: ...

Add your code after these comment lines.

5 Save the file.

Compiling the Server Extension Class File

When you have made all entries to the source file, the class file for the server extension must be
compiled before the server extension can be packed. The class file is compiled using the packaging
information that is specified in the second dialog box for creating a new project.

The server extension class file can only be compiled if you have installed a Java compiler (by default
this is installed as part of the standard Tamino installation procedure) and set the system environ-
ment variable path to point to it.

To compile the server extension class file

1 With the source file (your-project.java) open in the editing window:

Either:

■ Choose Compile from the Project menu.

Or:

53X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

■ Choose Copy Compile Command from the Project menu.

This copies the compile command to the clipboard. You can now paste it at a command
prompt (so-called “DOS box”), where it can be executed.

2 The source file appears, showing messages about the compilation process in the Result Frame.

■ If errors occurred, correct your function code and recompile the file.

Generating Javadoc Comments for a Server Extension Class File

If the Insert Javadoc comments check box was selected in the second dialog box for creating a
new project, you can generate Javadoc comments for the server extension class file and include
them in the server extension package.

To generate Javadoc comments

1 With the source file (your-project.java) open in the editing window, choose Call Javadoc
from the Project menu.

2 A list of the created files appears:

The HTML file that is named after your project and stored in the directory where the class
file is located is of special interest to the server extension developer. The other files are stored
in the project's main directory.

Close the box.

X-Tension: Tamino Server Extensions54

Building a Tamino Server Extension Package

Packaging a Server Extension

When the server extension class file has been successfully compiled and, if desired, the Javadoc
comments have been generated, the server extension package can be created.

To create a server extension package

1 With the source file (your-project.java) open in the editing window, choose Pack Server
Extension from the Project menu.

2 The first Pack Server Extension dialog box appears:

Choose Change Directory... if you want to create the package in a directory other than the
default.

Choose Next to continue, or Finish to complete the wizard using default values.

3 The second Pack Server Extension dialog box appears, displaying the Java executables
available for the specified server extension object:

55X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

Select one of the displayed executables and choose Add... to include it into the package. If
you want to exclude an executable you have specified from the package to be created, select
it and choose Remove. Full path and Relative destination directory are displayed automat-
ically. You cannot edit them.

Choose Next to continue, or Finish to complete the wizard using default values.

4 The third Pack Server Extension dialog box appears, displaying a help file (HTM, HTML,
XML and TXT) for the server extension object.

The relative destination directory of the selected help file is displayed.

If you want to exclude a help file you have specified from the package to be created, choose
Clear.

X-Tension: Tamino Server Extensions56

Building a Tamino Server Extension Package

The Reference text field can be used to specify a bookmark in the help file. In this case, the
help file will start at the position indicated by the bookmark.

Choose the Choose... button.

The References available list box appears showing the bookmarks available in the current
help file.

Select a bookmark.

Choose OK.

5 The fourth Pack Server Extension dialog box appears:

A help file for the individual server extension function is displayed, together with the relative
destination directory.

57X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

Choose Browse... to select a different help file than the one suggested in the dialog box, or
choose Clear to remove a help file.

The Reference text field can be used to specify a bookmark in the help file. In this case, the
help file will start at the position indicated by the bookmark.

Choose the Choose... button.

The References available list box appears, showing the bookmarks available in the current
help file:

Select a bookmark.

Choose OK.

Choose Finish to complete the wizard actions.

Note: The complete help information may be contained in one file. This file can be
specified repeatedly; for example, for the server extension object (as described in step
3) and for any server extension function that you select in the current page.

If you want to include all files generated using the Call Javadoc item in the Project menu,
select all the files, one after the other, for all functions or one of the functions contained in the
selected executable.

6 A list of the files to be included in the package is displayed:

X-Tension: Tamino Server Extensions58

Building a Tamino Server Extension Package

Choose OK to create the server extension package.

The package file (your-project.sxp) can now be installed as described in the section Installing a
Tamino Server Extension.

Using Direct Infrastructure

Server extensions written in C++ or any other programming language that supports dynamic
loading of object libraries can be executed using Tamino X-Tension's Direct infrastructure. The X-
Tension Builder supports the development of Direct/C++ server extension packages.

To create a server extension project

■ Open a project in the X-Tension Builder. On the first page there is a button Direct. Select this
button and you will be guided through the whole building procedure using the Direct infra-
structure. The procedure is very similar to that described for the X-Tension Builder.

59X-Tension: Tamino Server Extensions

Building a Tamino Server Extension Package

60

8 Developing Tamino Server Extensions

■ Constructors and Destructors .. 62
■ String and Memory Handling ... 63
■ Specialities of Different Infrastructure/Language Combinations ... 65
■ Callbacks ... 65
■ Exceptions ... 86
■ Version Numbers ... 87

61

This section describes how server extensions can be implemented. The Direct and Java infrastruc-
tures can be used. Direct extensions are written in C++; Java extensions are of course written in
Java. First decide on the infrastructure that you want to use before choosing the programming
language. The tool to be used depends on this decision. For related information about Tamino
server extensions and how they can be developed, see the Introduction and the section Tamino
Server Extension Functions.

As described in the section Building a Tamino Server Extension Package, it is easy to create
Tamino server extensions using the tools provided with Tamino. Basic knowledge of C++ or Java
is sufficient to create simple but effective server extensions. We recommend using these tools
whenever you develop a Tamino server extension.

Note: The use of external synchronization mechanisms within a server extension that is not
under control of the Tamino Server / X-Machine can lead to problems. Such problems can
include deadlocks that cannot be resolved by the X-Machine's deadlock resolution capabil-
ities; this may lead to requests hanging up, either completely or until a transaction timeout
occurs. Therefore, for example, the Java code in a server extension should not use Java-
based locking.

The following sections, which address some specific programming issues, should help you write
valid function code.

Constructors and Destructors

Constructors and destructors that are required for object-oriented programming can also be used
in Tamino server extensions. As Tamino server extension objects are created implicitly by the
Tamino Server, if one of its extension functions is called, it is not possible to use constructors that
pass parameters, with the exception of the callback handle in the Direct infrastructure (see below).

Direct

You can use common C++ constructors. Note that two types of constructors can be called when a
Direct server extension is initialized:

■ Constructors that can accept one single parameter of type SXDCHandle. This type of constructor
must be available if callbacks are to be used in the Direct server extension's code. The SXD-
CHandle parameter is the callback handle that must be used for all callbacks. We recommend
storing this handle in a member variable of the server extension's class:

X-Tension: Tamino Server Extensions62

Developing Tamino Server Extensions

CMyExtension::CMyExtension (SXDCHandle h)
: m_callback (h)

{
// more initializations here

}

■ The default constructor (i.e. a constructor without parameters). In this case no callbacks are
available.

Java

You can use the common Java constructors. Note that the default constructor (this is one without
any parameters) is called when a Java server extension is initialized. If you do not define any
constructors in your server extension class, this default constructor is implicitly provided by Java.
As stated above, constructors with parameters cannot be called by the Tamino Server; instead,
you should use an initial function. If for some reason your server extension class contains one or
more constructors with one or more parameters, you must also define a default constructor without
any parameters; otherwise an error occurs when initializing the class.

Initial Functions

The initial function can be generated automatically if the Tamino server extension development
tools are used. You can find detailed information in the section Initial Server Extension Functions.

String and Memory Handling

Direct

For all kinds of string parameters (including the XML type “ino:XML-OBJ”) and byte arrays, the
special data type “sxdstring” must be used. For return and output values, sxdstrings must be al-
located by the callback functions:

sxdstring AllocString (wchar_t*)
Input can be a zero-terminated ASCII or wide character string or a string constant.

sxdstring AllocStringByte (void*, sxdulong)
Used for binary data.

Strings allocated by these functions (including input parameters) may be freed by

■ FreeString

However, it is not mandatory to use FreeString, as the memory used for a Direct server extension
is released when a server extension object is deleted.

63X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

For reading operations, you may treat strings of type sxdstring like common wide character
strings (see the examples).

There are two more string handling functions:

■ sxdulong StringLen (sxdstring)
■ sxdulong StringByteLen (sxdstring)

to get the length of string variables.

Examples:

Get the callback handle in the constructor (see above):

MyExtension::MyExtension (SXDCHandle h)
:m_callback (h)

{ ... }

Have a query function:

sxdstring MyExtension:::myQuery(sxdstring input)
{

// allocate a wide character string myBuffer
swprintf(myBuffer, L "This was the input: %", input);

sxdstring retval = m_callback->AllocString(myBuffer);
free (myBuffer);

return retval;
}

Caution: Do not assign a string constant to an output parameter of type sxdstring*, for ex-
ample *nodeinfo=L"abc"; instead, use *nodeinfo = m_callback -> AllocString
(L"abc");

Java

All Java string objects used as “in” and “out” parameters are initialized by the Tamino Server and
can be used in the server extension function. You must write code in the server extension function
to initialize any java.lang.String that is used as a return value.

As is usual in Java, it is not necessary to free or delete objects.

X-Tension: Tamino Server Extensions64

Developing Tamino Server Extensions

Specialities of Different Infrastructure/Language Combinations

The information in this section is broken down as follows:

■ Restrictions for Java Server Extensions

Restrictions for Java Server Extensions

To ensure the stability of the Tamino Server and the Java Virtual Machine, the following operations
are locked for Java-based server extensions. Any attempt to call them leads to a security exception:

■ Exit the Java Virtual Machine;
■ Modify or stop Java system threads;
■ Redefine the standard I/O streams;
■ Define your own security manager;
■ Modify Java security configuration aspects such as policy, security provider, identifications,

and private keys.

As the Java Virtual Machine runs in batch mode, the standard I/O streams cannot be used in
server extensions. Output has no effect. To avoid long waits when trying to read from standard
input, this stream is set to null, so any attempt to read from it immediately leads to a null pointer
exception.

Callbacks

Arbitrary database calls to arbitrary databases, including the Tamino Server, can be implemented
in a server extension function via the standard database interfaces. In general, however, it is more
desirable to access databases from within the same session and transaction context as the Tamino
Server session in which the server extension function is called. Databases can be accessed in this
way by using Tamino callbacks. Tamino callbacks are interfaces to the Tamino Server that can be
used in a server extension function. They provide access to the various databases that can be at-
tached by the Tamino Server, and also to system information available in the running Tamino
Server.

The following categories of callbacks are supported:XML callbacks,ODBC callbacks and system
callbacks.

For information about runtime errors that can result from callback calls and the handling of these
errors, see the section Callback Error Handling.

65X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

XML Callbacks

XML callbacks support X-Machine command requests to the running Tamino database. The callback
functions and their corresponding X-Machine commands are listed in the following table:

X-Machine CommandCallback Function

_adminSxsXMLAdmin

_defineSxsXMLDefine

_deleteSxsXMLDelete

_processSxsXMLProcess

_undefineSxsXMLUndefine

_xqlSxsXMLXql

_xquerySxsXMLXQuery

These X-Machine commands are described in the section Requests using X-Machine Commands of
the X-Machine Programming documentation.

There is an additional callback function, SxsXMLGetMessage, to get messages from the Tamino
Server.

The following administration functions are available in the SxsXMLAdmin callback:

■ ino:DisplayIndex
■ ino:Index

All other administration functions mentioned in the documentation section X-Machine Program-
ming > Requests using X-Machine Commands > The _admin command are unavailable.

Notes:

1. When an XML callback is used, the following database commands cannot be issued: open
database session, close database session, commit and rollback. These commands are
implicitly handled by the Tamino Server.

2. An XML callback cannot be used within an event function.

X-Tension: Tamino Server Extensions66

Developing Tamino Server Extensions

Direct

The following functions are methods of the callback handle and must be called using m_callback->
<function name> (<arglist>):

sxdint SxsXMLXQuery (sxdstring collection, sxdstring query, sxdresult* result);

sxdint SxsXMLXql (sxdstring collection, sxdstring query, sxdstring* response);

sxdint SxsXMLProcess (sxdstring collection, sxdstring xmlDoc, sxdstring* response);

sxdint SxsXMLDefine (sxdstring xmlSchema, sxdstring* response);

sxdint SxsXMLUndefine (sxdstring collection, sxdstring schema, sxdstring doctype, ↩
sxdstring* response);

sxdint SxsXMLDelete(sxdstring collection, sxdstring query, sxdstring* response);

sxdint SxsXMLAdmin (sxdstring command, sxdstring* response);

sxdint SxsGetDocument (sxdstring collection, sxdstring doctype, sxduint inoid, ↩
sxdresult* result);

sxdint SxsGetDocument (sxdstring collection, sxdstring doctype, sxdstring documentId, ↩
sxdresult* result);

sxdint SxsXMLGetMessage(sxdstring* msgContent);

Input parameters of type sxdstring must be allocated using m_callback -> AllocString() and
freed after the call using m_callback -> FreeString(). The output parameters response and
msgContent must be valid pointers to an sxdstring, and their contents should be null. The output
parameter result must be a valid pointer to an sxdresult, and its contents should be valid (the
constructor guarantees this).

Java Calls

int SxsXMLXQuery (String collection, String query, Result result);

int SxsXMLXql (String collection, String query, StringBuffer response);

int SxsXMLProcess (String collection, String xmlDoc, StringBuffer response);

int SxsXMLDefine (String xmlSchema, StringBuffer response);

int SxsXMLUndefine (String collection, String schema, String doctype, StringBuffer ↩
response);

int SxsXMLDelete (String collection, String query, StringBuffer response);

67X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

int SxsXMLAdmin (String command, StringBuffer response);

int SxsGetDocument (String collection, String doctype, int inoid, Result result);

int SxsGetDocument (String collection, String doctype, String documentID, Result ↩
result);

int SxsXMLGetMessage (StringBuffer msgContent);

The output parameters response and msgContent must be initialized StringBuffer objects, and
their content should be the empty string. On return, they contain the response document of the
XML request or the Tamino Server message.

Meaning of Parameters (For All Infrastructures)

The parameters used in the syntax descriptions above have the following meanings:

MeaningParameter

The name of the collection upon which the callback operates. For the SxsXMLDefine function,
this is the name that is assigned to the newly-created collection. For the other requests, it must
be the name of a collection that already exists in the database.

collection

XML document for the command _process.xmlDoc

XML schema document for the command _define.xmlSchema

The syntax of each X-Machine command is defined in the section Requests using X-Machine
Commands of the section X-Machine Programming.

collection
The name of the collection upon which the callback operates. For the SxsXMLDefine function,
this is the name that is assigned to the newly-created collection. For the other requests, it is
the name of an existing collection.

reqContent
The valid input for this parameter can be found in the description of the appropriate X-Machine
command in the X-Machine Programming documentation.

X-Tension: Tamino Server Extensions68

Developing Tamino Server Extensions

The Meaning of sxdresult (Direct) and Result (Java)

The output parameter of the callback functions SxsXMLXQuery and SxsGetDocument is of type
sxdresult (Direct) or Result (Java).

In the case of the Direct infrastructure, sxdresult is a class of the form:

class sxdresult
{

public:

sxdresult();
virtual ~sxdresult();

/* is result a string? */
sxdbool isString() const;

/* is result a binary? */
sxdbool isBinary() const;

/* get media type of result */
sxdstring getMediaType() const;

/* get string value if isString is true else SXD_NULL */
sxdstring getStringValue() const;

/* get binary value if isBinary is true else SXD_NULL */
sxdbinary getBinaryValue() const;

}

In the case of the Java infrastructure, Result is a class:

public class Result
{

public Result();

// Reset to an empty but valid result set.
public void reset();

// Get the media type of the result.
public String getMediaType();

// Is this a string value?
public boolean isString();

// Get the result value as a string.
// @returns the string value or an empty string
public String getStringValue();

// Is this a binary value?
public boolean isBinary();

69X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

// Get the result value as a binary (byte array).
// @returns the binary value or a zero length byte array
public byte[] getBinaryValue();

}

Return Values and Output Parameters

For all infrastructures, the return values and output parameters are as follows:

A return code of 0 indicates success; anything else indicates that the call failed. For more information
about errors, see the section Callback Error Handling.

After a successful call, the content of the output parameter response is as follows:

Content of output parameter responseCallback function

The node set resulting from the specified XQuery, enclosed in the tags <xq:result> ...
</xq:result> as from the Tamino response document.

SxsXMLXQuery

The node set resulting from the specified X-Query, enclosed in the tags <xql:result>
... </xql:result> as from the Tamino response document.

SxsXMLXql

A node<ino:object ino:collection="..." ino:doctype="..." ino:id="...">
containing the collection name, document type and ID of the processed XML document
as from the Tamino response document.

SxsXMLProcess

If the return value of any callback function is nonzero and SxsGetMsgNo() reports a Tamino
Server error (see Callback Error Handling), then the function SxsGetMsgText() should be called.
The output parameter msgContent of this function contains a message as it would have appeared
in the node <ino:messageline>=...</ino:messageline> of the Tamino response document.

A complete example of the usage of an XML callback including appropriate error handling can
be found in the section Callback Error Handling.

Note that XML callbacks can be used recursively. For example, an XML document contains an
element that is mapped to a server extension function that uses an XML callback to send an Sx-
sXMLProcess() request to the Tamino Server. The resulting XML document provided by the Tamino
Server also contains an element that is mapped to the same server extension function, which is
called recursively. In such cases the following points should be taken into consideration:

■ Any data stored in a member variable of the server extension function object or any other object
created in the server extension function context can be overwritten during the recursive server
extension function call, and may therefore have been changed when the XML request returns.

■ It is the responsibility of the server extension function developer to prevent infinite loops. The
SXS infrastructure makes some checks that attempt to prevent excessive recursion.

X-Tension: Tamino Server Extensions70

Developing Tamino Server Extensions

For SxsXMLXql()
The node set resulting from the passed XML query, enclosed in the tags
<xql:result>...</xql:result> as known from the Tamino response document.

For SxsXMLProcess()
A node <ino:object ino:collection="..." ino:doctype="..." ino:id="..."> containing
the collection name, document type, and ID of the XML document that was just processed, as
known from the Tamino response document.

If the return value of any callback function is non-zero and SxsGetMsgNo reports a Tamino
Server error (see Callback Error Handling below), then the function SxsGetMesText() should be
called. The out parameter msgContent of this function contains a message as it would have appeared
in the node <ino:messageline>=...</ino:messageline> of the Tamino response document.

A complete example of the usage of an XML callback including appropriate error handling can
be found in the section Callback Error Handling below.

The callback function SxsXMLXql() can now return namespace-clean results. This means that the
results can be passed directly to any standard XML parser. This option is controlled by a parameter
that can be accessed using the Tamino Manager: start the Tamino Manager, then in the tree view
selectManagedHosts > localhost > Tamino >Databases > database_name > Properties > X-Tension.
The option X-Tension callback namespace clean is displayed, and by choosing the command
Modify you can display a screen in which you can change the value of this parameter from "yes"
to "no" or vice versa. The default value of the X-Tension callback namespace clean parameter
for all new databases is "yes". The default value of the X-Tension callback namespace clean
parameter for a database that has been converted by using the Tamino Manager Set version
command and that has server extensions installed is "no"; this ensures backward compatibility
with old server extensions that add namespace declarations to the results returned by the SxsXM-
LXql() callback function.

Note:

XML callbacks can be used recursively. For example, an XML document contains an element that
is mapped to a server extension function which uses an XML callback to send an SxsXMLProcess()
request to the Tamino Server. The resultant XML document provided by the Tamino Server also
contains an element that is mapped to the same server extension function, which is called recurs-
ively. The following points should be taken into consideration in such cases:

■ Any data stored in a member variable of the server extension function object or any other object
created in the server extension function context can be overwritten during the recursive server
extension function call, and may therefore have been changed when the XML request returns.

■ It is the responsibility of the server extension function developer to prevent infinite loops.

71X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

Examples

The following section shows some examples in the various infrastructures. Error handling has
been omitted for the sake of clarity.

Direct

sxdstring collection = m_callback->AllocString(L"MyCollection");
sxdstring query = m_callback->AllocString(L"/MyDoctype/Node_A[anyId='5']");
sxdstring response = SXD_NULL;

int ret = m_callback->SxsXMLXql(collection, query, &response);

if (ret != 0)
{

// do any error handling, see chapter Callback Error Handling
}

// do any work ...

Java

String collection = "MyCollection";
String query = "/MyDoctype/Node_A[anyId='5']";
StringBuffer response = new StringBuffer();

int ret = SxsXMLXql(collection, query, response);

if (ret != 0)
{

// do any error handling, see chapter Callback Error Handling
}

// do any work ...

ODBC Callbacks

ODBC callbacks support calls to any relational database that can be accessed via the Microsoft
Windows ODBC Manager as a system DSN (Data Source Name).

ODBC callbacks are [currently] only available for Microsoft Windows ODBC Manager.

The parameter types used within an ODBC callback are defined in the Sqltypes.h file, which is
stored in the directory ...\Microsoft Visual Studio\VC98\Include. This file can be included in a
server extension using an ODBC callback.

X-Tension: Tamino Server Extensions72

Developing Tamino Server Extensions

Character data is given and received as byte arrays in the encoding of the respective data source,
which is commonly ASCII. Since Tamino stores XML data as Unicode strings, conversion may be
necessary.

The next sections describe how you can allocate ahandle andmemory, and whichODBC functions
are supported for Direct and Java.

Note: ODBC callbacks cannot be used within event functions. ODBC functions can be used
in init functions to establish ODBC connections.

Allocating Handles

Connect Handles

Connect handles are required to access a database. They are allocated as follows:

Direct call:

SQLRETURN SxsSQLGetConnect(SQLTCHAR* dbName,
SQLTCHAR* userName,
SQLTCHAR* password,
sxdint* dbHandle);

Java call:

public int SxsSQLGetConnect(String dbName,
String userName,
String password,
IntRef Handle);

All infrastructures:
This call is used instead of the calls of the common ODBC interface that are used to prepare a
connection. This call delivers the connect handle if a valid ODBC database name was provided.
Note that this handle is not a valid ODBC handle and cannot be used for ODBC calls (its data
type is not SQLHDBC but a simple long integer). The server extension function developer can
access an ODBC database using ODBC calls independently of the Tamino Server, but he or
she must perform all of the ODBC steps required to set up a connection and to close it again
later.

The handle is only valid when using the Tamino Server ODBC callback interface. This interface
implements a subset of the functions provided with the ODBC core level, version 3. The common
ODBC calls are used with the prefix "Sxs", for example SxsSQLExecute(). The usage and the
parameters of the functions are the same as for the original ODBC functions, with the exception
of handles, which are long integers.

73X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

Statement Handles

Statement handles are allocated as follows:

Direct:
All ODBC callbacks are methods of the callback handle.

SQLRETURN SxsSQLAllocHandle(short hdType,
sxdint dbCHandle,
sxdint* dbSHandle);

This call does not return an ODBC handle of data type SQLHSTMT; rather, it returns a long
integer that can only be used with the Tamino Server ODBC callback interface. This function
can only be used with the HandleType SQL_HANDLE_STMT. This also applies to the function
SxsSQLGetDiagField.

SQLRETURN SxsSQLFreeHandle(short hdType, sxdint dbCHandle);

Java:

public int SxsSQLAllocHandle(short HandleType,
int InputHandle,
IntRef OutputHandle);

This call does not return an ODBC handle; rather, it returns an integer that can only be used
with the Tamino Server ODBC callback interface. SxsSQLGetDiagField and SxsSQLFreeHandle
must also be of the HandleType SQL_HANDLE_STMT.

A statement handle allocated with SxsSQLAllocHandle() must be freed using:

public int SxsSQLFreeHandle(short HandleType,
int Handle);

Allocating Memory

Java:
The byte arrays for the result values must be initialized with the length that is also given as a
parameter using new byte [BufferLength]. IntRef is an auxiliary class for output parameters
as well as for in and out parameters. It represents a reference to an integer with the following
methods:

X-Tension: Tamino Server Extensions74

Developing Tamino Server Extensions

public IntRef(int initVal);

public int getVal();

public void setVal(int newVal);

All parameters of type IntRef must be initialized.

The Other Supported ODBC Functions

Direct:

SQLRETURN SxsSQLPrepare(sxdint StatementHandle,
SQLTCHAR* StatementText,
SQLINTEGER TextLength);

SQLRETURN SxsSQLBindParameter(sxdint StatementHandle,
SQLUSMALLINT ParameterNumber,
SQLSMALLINT InputOutputType,
SQLSMALLINT ValueType,
SQLSMALLINT ParameterType,
SQLUINTEGER ColumnSize,
SQLSMALLINT DecimalDigits,
SQLPOINTER ParameterValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER * StrLen_or_IndPtr);

SQLRETURN SxsSQLGetData(sxdint StatementHandle,
SQLUSMALLINT ColumnNumber,
SQLSMALLINT TargetType,
SQLPOINTER TargetValue,
SQLINTEGER BufferLength,
SQLINTEGER *StrLen_or_Ind);

SQLRETURN SxsSQLBindCol(sxdint StatementHandle,
SQLUSMALLINT ColumnNumber,
SQLSMALLINT TargetType,
SQLPOINTER TargetValue,
SQLINTEGER BufferLength,
SQLINTEGER *StrLen_or_Ind);

SQLRETURN SxsSQLGetDiagField(SQLSMALLINT HandleType,
sxdint Handle,
SQLSMALLINT RecNumber,
SQLSMALLINT DiagIdentifier,
SQLPOINTER DiagInfo,
SQLSMALLINT BufferLength,
SQLSMALLINT *StringLength);

SQLRETURN SxsSQLExecute(sxdint StatementHandle);

75X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

SQLRETURN SxsSQLFetch(sxdint StatementHandle);

SQLRETURN SxsSQLCloseCursor(sxdint StatementHandle);

Java:

public int SxsSQLPrepare(int StatementHandle,
String StatementText);

public int SxsSQLBindParameter(int StatementHandle,
short ParameterNumber,
short InputOutputType,
short ValueType,
short ParameterType,
int ColumnSize,
short DecimalDigits,
byte[] ParameterValuePtr,
int BufferLength,
IntRef StrLen_or_IndPtr);

public int SxsSQLGetData(int StatementHandle,
short ColumnNumber,
short TargetType,
byte[] TargetValue,
int BufferLength,
IntRef StrLen_or_IndPtr);

public int SxsSQLBindCol(int StatementHandle,
short ColumnNumber,
short TargetType,
byte[] TargetValue,
int BufferLength,
IntRef StrLen_or_IndPtr);

public int SxsSQLGetDiagField(short HandleType,
int Handle,
short RecNumber,
short DiagIdentifier,
byte[] DiagInfoPtr,
short BufferLength,
IntRef StringLengthPtr);

public int SxsSQLExecute(int StatementHandle);

public int SxsSQLFetch(int StatementHandle);

public int SxsSQLCloseCursor(int StatementHandle);

X-Tension: Tamino Server Extensions76

Developing Tamino Server Extensions

Examples

This section shows some examples in the various infrastructures. Error handling has been omitted
for the sake of clarity.

Direct

sxdint ConnectHdl = 0;
SQLRETURN sqr = 0;

sqr = m_callback->SxsSQLGetConnect(m_callback->AllocString(L"Meyer"),
m_callback->AllocString(L"secret"),
m_callback->AllocString(L"MySqlDB"),
&Connecthdl);

sxdint StmtHdl = 0;

sqr = m_callback->SxsSQLAllocHandle(SQL_HANDLE_STMT, ConnectHdl, &StmtHdl);
sqr = m_callback->SxsSQLPrepare(StmtHdl,

m_callback->AllocString(L"select * from hotel"),
19);

sqr = m_callback->SxsSQLExecute(StmtHdl);
sqr = m_callback->SxsSQLFetch(StmtHdl);

int ExpectedLength = 1000;
char Result[1000];

sqr = m_callback->SxsSQLGetData(StmtHdl, 1, SQL_C_CHAR,
Result, ExpectedLength, NULL);

// evaluate or copy Result anyway, perform some more calls using StmtHdl ...

sqr = m_callback->SxsSQLFreeHandle(SQL_HANDLE_STMT, StmtHdl);

// ODBC disconnect will be done by Tamino Server

Java

IntRef connectHdl = new IntRef(0);
int sqr = 0;

sqr = SxsSQLGetConnect("MySqlDB", "Meyer", "secret", connectHdl);

IntRef stmtHdl = new IntRef(0);

sqr = SxsSQLAllocHandle(SQL_HANDLE_STMT, connectHdl.getVal(), stmtHdl);

sqr = SxsSQLPrepare(stmtHdl.getVal(), "select * from hotel");
sqr = SxsSQLExecute(stmtHdl.getVal());
sqr = SxsSQLFetch(stmtHdl.getVal());

77X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

int bufferLength = 1000;
byte[] resBuffer = new byte[bufferLength];
IntRef resIndicator = new IntRef(0);

sqr = SxsSQLGetData(stmtHdl.getVal(), 1, SQL_C_CHAR, resBuffer,
bufferLength, resIndicator);

// evaluate or copy Result anyway, perform some more calls using stmtHdl ...

sqr = SxsSQLFreeHandle(SQL_HANDLE_STMT, stmtHdl.getVal());

// ODBC disconnect will be done by Tamino Server

System Callbacks

System callbacks can be used in all types of server extensions to obtain information about the
Tamino Server. The following system callback methods are available:

■ Callback Method SxsSystem
■ Callback Method SxsGetHttpHeaderField
■ Callback Method SxsSetProperty

Callback Method SxsSystem

The following call types are available:

DescriptionSysBufCall Type for Java / Call Type for Direct

Flag indicating whether the database is a
replication database

"YES"/"NO"IS_REPLICATION /
SX_IS_REPLICATION

The server parameter indicating the JVM
options in use

stringJVM_USEROPTIONS /
SX_JVM_USEROPTIONS

user ID as stringUSERID / SX_USERID

session ID as
string

SESSIONID / SX_SESSIONID

The server parameter indicating whether the
server is in read-only mode

"YES"/"NO"SERVER_READ_ONLY /
SX_SERVER_READ_ONLY

The server parameter indicating the XML
default encoding (for responses from Tamino)

stringXML_DEF_ENCODING /
SX_XML_DEF_ENCODING

The server parameter indicating the XML
default tokenizer (possible values:
“white-space separated”, “Japanese”)

stringXML_DEF_TOKENIZER /
SX_XML_DEF_TOKENIZER

The server parameter indicating the X-Node
default encoding (for external data sources
accessed by Tamino)

stringXNODE_DEF_ENCODING /
SX_XNODE_DEF_ENCODING

X-Tension: Tamino Server Extensions78

Developing Tamino Server Extensions

DescriptionSysBufCall Type for Java / Call Type for Direct

The server parameter indicating whether Java
server extensions can be used

"YES"/"NO"XTENSION_JAVA_USAGE /
SX_XTENSION_JAVA_USAGE

The server parameter indicating whether
Direct server extensions can be used

"YES"/"NO"XTENSION_DIRECT_USAGE /
SX_XTENSION_DIRECT_USAGE

All call types for the method SxsSystem() of the callback classes CSXSJavaCallback and
CSXSDirectCallback are constant enumerations that are inherited from ASXJBase (for Java) or
defined in sxenum.h (with prefix SX_, for Direct).

Direct

The following function is available:

sxdint SxsSystem(sxdint callType, sxdstring *ppXMLBuf);

The available call types are defined as constants in the callback interface sxenum.h.

Java

The following method is available:

public int SxsSystem(int callType,
StringBuffer pSysBuf);

The call types are defined as constants that are known to the server extension by inheritance from
ASXJBase.

Callback Method SxsGetHttpHeaderField

The HTTP header callback function can be used in all types of server extensions to obtain inform-
ation about the current request's HTTP header. All HTTP header fields specified in the table below
can be accessed by this method. String constants, which match the W3C standard HTTP header
field name definitions, are defined for these fields. They are available in the language-dependent
include files. A non-zero return code is issued if the HTTP header field name cannot be found
among the current HTTP header fields. The following string constants are available:

MeaningHTTP Header Field (Software AG)Call String Constants

The remote IP address of the
client's host

REMOTE_ADDRREQUEST_CLIENT_ADDRESS

The media type of the documentDocument-Mime-TypeREQUEST_DOCUMENT_MEDIATYPE

The request methodREQUEST_METHODREQUEST_METHOD

The server host name of the HTTP
server

SERVER_HOSTREQUEST_SERVER_HOST

The request stringQUERY_STRINGREQUEST_STRING

79X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

MeaningHTTP Header Field (Software AG)Call String Constants

The URI of the requestURIREQUEST_URI

HTTP Header Field (W3C)Call String Constants

Accept-CharsetREQUEST_ACCEPTED_CHARSETS

Content-TypeREQUEST_MEDIATYPE

Accept-LanguageREQUEST_PREFERRED_LANGUAGE

Direct

The following function is available:

sxdint SxsGetHttpHeaderField(sxdstring attrName,
sxdstring *ppXMLBuf);

The attrName string is the HTTP header field name. The file sxdinc.h defines constant values for
fields in the above tables.

Java

The following method is available:

public int SxsGetHttpHeaderField(String attrName,
StringBuffer pSysBuf);

The attrName string is the HTTP header field name. The constant values for fields in the above
tables are known to the server extension by inheritance from ASXJBase.

Callback Method SxsSetProperty

The callback SxsSetProperty allows a value to be set in the Tamino response document. Currently
the only value that can be set is the media type.

To set the media type, specify the following parameter:

DescriptionParameter mediaTypeParameter property

This specifies that the media type
defined in the response document
will be the value given.

A text string such as "text/xml"
representing a media type.

SX_PROPERTY_RSP_MEDIATYPE

For some combinations of media type and server extension return parameter type, Tamino escapes
the XML content in the response document according to the standard XML escaping rules ("<"

X-Tension: Tamino Server Extensions80

Developing Tamino Server Extensions

becomes "<" etc.). The rules determining when escaping is used are summarized in the following
table:

Return parameter type is xs:stringReturn parameter type is ino:XML-OBJ

XML content is not escapedXML content is escapedMedia type specifies non-XML
text document

XML content is escapedXML content is not escaped but the
contents must be well-formed XML

Media type specifies XML
document

See the section Media Type Requirements in the documentation for X-Machine Programming for a
summary of the media type rules used by Tamino.

Notes:

1. If you set the media type using this callback method, the Tamino response wrapper is suppressed.
See also the section Suppressing the Tamino Response Wrapper in the X-Machine Programming
Guide for related information.

2. One of the examples provided with the Tamino distribution kit shows how to construct a doc-
ument with an arbitrary media type specified in a stylesheet. It is in the directoryExamples/Server
Extension/Java_Query_XSLT under the Tamino installation directory.

Direct

The following function is available:

sxdint SxsSetProperty(sxdint property,
sxdstring value);

Java

The following method is available:

public int SxsSetProperty(int property,
String value);

81X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

Callback Error Handling

Runtime errors because of callbacks called from server extensions can occur for many reasons.
They can result from the communication mechanism between Tamino Server and server extension
(a Java error), from the Tamino mechanism for calling server extensions, from the Tamino Server
itself (in the case of an XML callback or a system callback), from a database other than a Tamino
database, or from the ODBC mechanism (in the case of anODBCcallback). Therefore special error
handling is provided for server extension callback functions. Errors produced by callbacks are
reported to the calling server extension and can only be evaluated there.

If the callback call is successful, the callback function returns the value 0.

If the return value is non-zero, the following functions can be used to obtain more information:

Direct

sxdint SxsGetMsgNo();

sxdstring SxsGetMsgText();

sxdint SxsGetSqlMsgNo();

sxdint SxsGetInoMsgNo();

Java

int SxsGetMsgNo();

String SxsGetMsgText();

int SxsGetSQLMsgNo();

int SxsGetInoMsgNo();

All Infrastructures

SxsGetMsgNo() always returns a special message code for a server extension callback.

SxsGetMsgText() always returns the corresponding message text.

The messages and codes that can occur are listed in the section Server Extension Messages.

Depending upon the situation, the other callback error functions produce the following results:

X-Tension: Tamino Server Extensions82

Developing Tamino Server Extensions

Tamino Server Errors (All Infrastructures)

If SxsGetMsgNo() reports a Tamino Server error, an error occurred while processing the XML re-
quest in the Tamino Server. SxsGetInoMsgNo() can be used to obtain the Tamino message code.
Then the Tamino documentation can be used to find out the reason for the error. Such an error
can occur for an XML callback or the system callback. If errors occur in case of an XML callback,
SxsXMLGetMessage() should always be called. For the syntax, see the section XML Callbacks.
This function returns the content of the "ino:messageline" as it appears in the response document
of the Tamino Server.

SQL Errors in ODBC (All Infrastructures)

If SxsGetMsgNo() reports a general SQL error, SxsGetSqlMsgNo() can be used to obtain the return
value of the original ODBC function (SQLRETURN). (This value is usually also returned for an
ODBC callback.) The ODBC callback function SxsSQLGetDiagField() can be used to retrieve more
information from the ODBC driver or foreign database involved. Then the ODBC documentation
can be used to find out the reason for the error.

Other Errors (All Infrastructures)

All other messages refer to errors occurring while processing the callback functionality. They have
to be interpreted using the messages listed in the section Server Extension Messages.

XMLWrite Errors (All Infrastructures)

XML callbacks that write to a database [SxsXMLDefine(), SxsXMLProcess(), SxsXMLDelete(), Sx-
sXMLXQuery()] can produce special situations that have to be considered.

If such a callback returns a non-zero value and a subsequent SxsGetInoMsgNo() returns a non-
zero error code, then a Tamino Server error has occurred. To ensure database consistency in such
cases, the entire server extension call must fail (return non-zero). This causes the enclosing trans-
action to fail and actions to be rolled back.

In this case, the server extension developer should ensure that the necessary clearing up is done.
(It does not make sense to issue more XML callback calls that initiate write operations, because
they would be rolled back at the end of the transaction.) Then a server extension exception should
be thrown. Its error code and text are returned to the Tamino user in the response document of
the current request (see the section Exceptions). If no exception is implemented by the server ex-
tension developer, an exception is initiated at the return of the server extension function causing
the server extension function and the request to fail containing MessageNo and Text of the original
SXGetInoMsgNo(), SXSXMLGetMessage(). The message text of the exception is included in the
response document to inform the Tamino user.

Failure of a function and, as a consequence, the failure of the request from which the function was
called automatically cause a rollback in the case of an anonymous session. In a user session the
user must perform a rollback command explicitly.

83X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

Server Extension Messages

The following table shows the error codes [available by calling SxsGetMsgNo()], the error texts
[available by calling SxsGetMsgText()] and some explanations:

ExplanationError textError code JavaError code Direct

Memory was
exhausted during
callback call.

Not
enough
memory

-SXS_CALLB_NO_MEM_NO

A Tamino Server error
occurred. Use

Tamino
Server

INO_ERRORSXS_CALLB_INO_ERROR_NO

SxsGetInoMsgNo() toerror
retrieve the messagewhen
number, then refer tocalling a

callback the manual for more
information.

An ODBC error
occurred. Use

SQL
error

SQL_CALLB_ERROR (ODBC
callback only)

SXS_CALLB_SQL_ERROR_NO (ODBC
callback only)

SxsGetSqlMsg() or thewhen
return code of the justcalling a

callback called ODBC callback
function to get the
SQLRETURN value,
then refer to the ODBC
manual for more
information.

Wrong use of
SxsSQLAllocHandle().

Callback
used an

ILLEGAL_HANDLE_TYPE
(ODBC callback only)

SXS_CALLB_ILLEGAL_HDL_TYPE_NO
(ODBC callback only)

Only statementinvalid
handles may be
allocated in callbacks.

handle
type

There was an attempt
to perform a commit or

Commit
or

ILLEGAL_SQL_COMMAND
(ODBC callback only)

SXS_CALLB_ILLEGAL_SQL_CMD_NO
(ODBC callback only)

rollback. This is not
allowed in callbacks.

rollback
not
allowed

An ODBC callback
function with a

Invalid
data

INVALID BUFFER (ODBC
callback only)

SXS_CALLB_INVALID_BUFFER_PTR_NO
(ODBC callback only)

parameter of typebuffer
pointer StringBuffer (Java) was

called, but the passed
variable had not been
allocated using
SxsAlloc() / new
StringBuffer.

X-Tension: Tamino Server Extensions84

Developing Tamino Server Extensions

Examples

Error Handling for an XML Callback Call

Direct

sxdint ret = SxsXMLXql(collection, query, &response);

if (ret)
{

m_callback->ThrowException(SXS_CALLB_NO_MEM_NO,
m_callback->AllocString(L"xql callback failed"));

}

Java

int ret = SxsXMLXql(collection, query, response);

if (ret != 0) {

 int msgNo = SxsGetMsgNo(); // identify the callback error

 switch (msgNo) {

 case INO_ERROR:

 StringBuffer msgBuf = new StringBuffer();
 int inoMsgNo = SxsGetInoMsgNo(); // Get the Tamino Server message ↩
number
 ret = SxsXMLGetMessage(msgBuf); // Get the Tamino Server messageline
 SxsException(inoMsgNo, msgBuf); // Signal exception to the SXS caller
 break;

 default:

 String msg = SxsGetMsgText(); // Get the SXS message corresponding
 // to callback error
 SxsException (msgNo, msg); // Signal exception to the SXS caller

 }
}

85X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

Error Handling for an ODBC Callback Call

Java

int ret = SxsSQLExecute(StmtHdl);

if (ret != 0) {

 int msgNo = SxsGetMsgNo(); // identify the callback error

 switch (msgNo) {

 case INO_ERROR:

 StringBuffer msgBuf = new StringBuffer();
 int inoMsgNo = SxsGetInoMsgNo(); // Get the Tamino Server message ↩
number
 ret = SxsXMLGetMessage(msgBuf); // Get the Tamino Server messageline
 SxsException(inoMsgNo, msgBuf); // Signal exception to the SXS caller
 break;

 case SQL_CALLB_ERROR:
 int sqlMsgNo = SxsGetSQLMsgNo(); // Get the SQL message number from ↩
ODBC
 String msg = SxsGetMsgText(); // Get the SXS message for ODBC error
 SxsException(sqlMsgNo, msg); // Signal exception to the SXS caller
 break;

 default:
 String msg = SxsGetMsgText(); // Get the SXS message corresponding
 // to callback error
 SxsException(msgNo, msg); // Signal exception to the SXS caller

 }
}

Exceptions

If a server extension function throws an exception, the function call fails and returns with an error
to the Tamino Server. The Tamino Server rolls back the current XML transaction and inserts the
exception text (error code and error text as far as available) into the response document of the re-
quest that called the server extension function.

Direct

Developers can throw their own C++ exceptions. They must be derived from std::exception.

X-Tension: Tamino Server Extensions86

Developing Tamino Server Extensions

throw MyException ("This is an error");

A pointer to such an exception object can also be thrown:

throw new MyException ("This is an error");

Additionally, the callback method

m_callback->ThrowException (errnr, msg)

can be called.

The following method can be used to generate a warning rather than an exception:

sxdvoid SxsWarning (sxdlong warnNum, sxdstring msg);

Java

Developers can implement their own Java exceptions. These and any standard Java exceptions
are handled as described above.

Additionally, the method void SxsException (int errNo, String msg) can be used to signal
the caller that an exception occurred in the server extension, but it does not throw a Java exception
itself. This ensures that the session is rolled back and that the error number and message appear
in the response document, even if the developer does not throw a Java exception or if the corres-
ponding exception is caught later.

The following method can be used to generate a warning rather than an exception:

void SxsWarning (int warnNum, String msg);

All Infrastructures

Note: Exceptions thrown from event functions do not make sense, because they are only
processed when the current request has terminated. They are caught, but they are not shown
to the user.

Version Numbers

A two-part version number of the form major.minor is associated with each Tamino server extension.
By default, the version number "1.0" is allocated when a server extension is created. You can change
the version number at any time during the server extension's lifecycle.

For more information about the relevance of the server extension version number, see Upgrading
a Server Extension.

87X-Tension: Tamino Server Extensions

Developing Tamino Server Extensions

Direct

To change the version number of a Direct server extension, edit a comment in the server extension's
header file. Assuming the server extension is called MySXS and its corresponding header file is
MySXS.h, you will find a comment in the file MySXS.h of the form:

/**
* Tamino Server Extension MySXS
* @version 2.3
* @author Bob
*/

Edit the comment @version 2.3 as required. The version number is incorporated automatically
when this file is processed during compilation to produce the wrapping structures and methods.

Java

To change the version number of a Java server extension, change the constructor of the static field
sxsVersion. For example:

static final SXSVersion sxsVersion = new SXSVersion(2, 3); // version now 2.3

X-Tension: Tamino Server Extensions88

Developing Tamino Server Extensions

9 Debugging Java Server Extensions

The simplest way to debug a Java server extension is to attach a Java debugger to the running
JVM. By specifying appropriate X-Tension Java options, you can make the JVM initialization wait
during Tamino server startup until a debugger is attached.

Any Java IDE that supports JDWP (Java Debug Wire Protocol) should be suitable. NetBeans (from
http://www.netbeans.org/), for example, uses the following JVM options:

-Xdebug -Xrunjdwp:transport=dt_socket,address=xxxx,server =y

where xxxx should be replaced by the relevant address.

The following generic steps should be followed to debug a Java server extension.

Caution: This should only be done on a test database, as it may result in significant perform-
ance degradation.

To debug a Java server extension

1 Add the required string to the X-Tension Java options (as documented in Administrating
Tamino Server Extensions – Specifying Java Options).

2 Start the Tamino Server. The server start process will wait until you have attached the Java
debugger.

3 Set breakpoint(s) as required in the Java sources of your server extension.

4 Start the Java IDE and attach it to the Tamino server's JVM (usually by entering the host and
port number specified in the JVM options). The start process of the Tamino server will now
complete.

5 Execute the server extension you want to debug. Execution stops if it reaches a breakpoint,
and you can use all of your Java IDE's debugging functionality.

6 To stop debugging, let the server extension execute until it terminates. Stop the server with
Tamino Manager and end the Java IDE debugging session.

89

http://www.netbeans.org/

7 Remove the debugging string from the X-Tension Java options.

8 Restart the Tamino server in normal operation mode.

X-Tension: Tamino Server Extensions90

Debugging Java Server Extensions

10 Tracing Tamino Server Extensions

■ Activating SXS Trace ... 92
■ Deactivating SXS Trace .. 93
■ Programming User-Defined Trace Information ... 93
■ Viewing SXS Trace Information .. 94
■ Deleting SXS Trace Information ... 95

91

SXS Trace is a mechanism that enables you to obtain information from the interface between
Tamino Server and server extension functions. In cases where a Tamino server extension behaves
unexpectedly, this information may help to determine whether the problem lies in the server ex-
tension or the Tamino Server. Server extension developers can define their own traces to add
specific information to the SXS Trace.

SXS Trace is activated and deactivated from the Tamino Manager.

The information written by SXS Trace can be accessed using standard XQuery or X-Query queries.
All these queries are to be entered in the Query field of the Tamino Interactive Interface.

SXS Trace supports the following actions:

Activating SXS Trace

SXS Trace is activated for a whole database. All server extension functions called from XML requests
are traced.

SXS Trace should be deactivated whenever it is no longer needed. It is deactivated by default each
time the Tamino Server is started, in order to prevent unintended tracing.

To activate SXS Trace

1 Start the Tamino Manager.

Expand the Databases object.

Start and expand the database containing the server extensions that you want to trace.

2 Select the Server Extensions object.

3 Choose Extension Settings.

The X-Tension Settings page appears.

4 Mark the X-Tension Trace Switch. Confirm with OK.

X-Tension: Tamino Server Extensions92

Tracing Tamino Server Extensions

Deactivating SXS Trace

No server extension function called from XML requests will be traced after deactivating SXS Trace.
However, SXS Trace information that has been recorded remains.

To deactivate SXS Trace

1 Start the Tamino Manager.

Expand the Databases object.

Start and expand the database containing the server extensions that you no longer want to
trace.

2 Select the Server Extensions object.

3 Choose Extension Settings.

The X-Tension Settings page appears.

4 Remove the check mark for X-Tension Trace Switch. Confirm with OK.

Programming User-Defined Trace Information

Server extension developers can define their own information to be included in the SXS Trace by
using the following function:

Java call

SXSTrace(String text);

SxsTrace(String text);

To activate and retrieve the SXS Trace information, see the sections Activating SXS Trace and
Viewing SXS Trace Information.

93X-Tension: Tamino Server Extensions

Tracing Tamino Server Extensions

Direct

SXSTrace (sxdstring text);

Viewing SXS Trace Information

As long as SXS Trace is activated, trace information is automatically written and stored in XML
documents of the collection ino:SXS-Trace in the Tamino Server. Insertions into ino:SXS-Trace are
committed immediately after each entry; they are not part of the current transaction.

The information comprises the function name, date and time, session ID, the parameter values
when entering a server extension function and after the return of this function, the parameter
values passed to and returned from a callback, and exceptions. Server extension developers can
define their own information to be included in the SXS Trace. For details, see the section Program-
ming User-Defined Trace Information.

Database administrators can use standard XQuery or X-Query queries on the collection ino:SXS-
Trace in the XQuery or X-Query tab of the Tamino Interactive Interface to access the trace inform-
ation.

The following examples show how special trace information can be retrieved in XPath format.

Start the Tamino Interactive Interface from the Tamino program group under the Windows Start
menu. In the Database URL field, enter "http://localhost/tamino/your_database" and in the Col-
lection field, enter "ino:SXS-Trace".

Then enter one of the following commands in the Query field and choose the Query button:

ino:SXS-Trace
Shows all trace information stored in Tamino.

ino:SXS-Trace[FunctionEnter/@Name="MySXF"]
Shows all trace information for the "MySXF" server extension function.

ino:SXS-Trace/FunctionEnter[@Name="MySXF"]
Shows all trace information about the call of the "MySXF" server extension function.

ino:SXS-Trace/FunctionReturn[@Name="MySXF"]/Parameter
Shows all trace information about the return parameters of the "MySXF" server extension
function call.

ino:SXS-Trace[FunctionEnter/@Name="MySXF"]/CallbackEnter
Shows all trace information about all callbacks that were used in the "MySXF" server extension
function.

X-Tension: Tamino Server Extensions94

Tracing Tamino Server Extensions

ino:SXS-Trace[FunctionEnter/@Name="MySXF"]/Exception
Shows all trace information about an exception that resulted from a call of the "MySXF" server
extension function.

Deleting SXS Trace Information

SXS Trace information in the collection ino:SXS-Trace must be deleted manually, using the Tamino
Interactive Interface.

To delete the SXS Trace

1 Start the Tamino Interactive Interface from the Windows Start menu. In the Database URL
field enter "http://localhost/tamino/your database" and in theCollection field enter "ino:SXS-
Trace";

2 Choose the Delete tab and enter

ino:SXS-Trace

in the Delete Query field.

This deletes all the trace information from the collection ino:SXS-Trace. You can also delete inform-
ation selectively from the collection ino:SXS-Trace by specifying appropriate X-Query queries in
the Delete field of the Tamino Interactive Interface.

Note: Deleting information from ino:SXS-Trace is irreversible, i.e. it is not possible to rollback
the delete operation.

95X-Tension: Tamino Server Extensions

Tracing Tamino Server Extensions

96

11 X-Tension Tools

■ Modifying the Public Java Classpath ... 98
■ Analyzing Arbitrary Objects .. 100
■ Viewing a Package File ... 111

97

The information in this section is broken down as follows:

Modifying the Public Java Classpath

You can modify the public classpath for Java server extensions. A modified classpath applies to
all Java server extensions in all Tamino databases on this host. During execution of a Java server
extension, the public classpath precedes the standard classpath setting.

To add all the JAR files in a directory (e.g. D:\X\Y) to the private classpath, you can specify the
directory name followed by *.jar in the classpath (e.g. D:\X\Y*.jar). Other expressions with
wildcard characters are not supported.

To modify the public classpath

1 Start the Tamino Manager.

Select the X-Tension Tools node and choose X-Tension Settings from the context menu. The
X-Tension Settings dialog appears:

You can either enter the new classpath in the Public Classpath field directly or select the Edit
button, which opens the Modify Classpath dialog:

X-Tension: Tamino Server Extensions98

X-Tension Tools

2 In the Modify Classpath dialog, you can use the Browse... button to navigate to the required
location, then choose the Precede Path or Append Path button to add the location to the start
or the end of the classpath.

At this stage, the individual paths that make up the complete classpath are displayed on
separate lines. The classpath is constructed by appending these paths in the order shown,
starting from the top. You can change the position of any path in the list by selecting it and
using the Move Up and Move Down buttons to move it to the required position. The part of
the display in which the path names are listed cannot be scrolled horizontally, so path names
that are wider than the available display area are not completely visible. In this case, you can
select the path name, which then appears in the Selected Path field. This field can be scrolled
horizontally.

To delete a path name from the list, select it and use the Delete button. To delete all of the
path names from the list, use the Delete all button.

When you have defined the required list of paths, choose OK to return to the X-Tension
Settings dialog.

3 In the X-Tension Settings dialog, choose OK to save the public classpath definition.

99X-Tension: Tamino Server Extensions

X-Tension Tools

Analyzing Arbitrary Objects

If you have any DLL, EXE, TLB, CLASS, or JAR files that were not created by theTaminoX-Tension
Builder and you want to determine whether they contain classes or methods that could be used
as server extension functions, you can use the X-Tension Object Analyzer. If there are any suitable
classes or methods, you can use the X-Tension Object Analyzer again to create a server extension
package, which is what you need when you want to install a server extension into a database.

The X-Tension Object Analyzer is started from the Tamino Manager.

The X-Tension Object Analyzer must not be run more than once in parallel.

The typical steps to create a server extension package are:

■ Analyzing an Object
■ Entering Additional Information for a Server Extension Object
■ Entering Additional Information for a Direct Server Extension Object
■ Entering Additional Information for a Java Server Extension Object
■ Selecting Server Extension Functions
■ Deselecting Server Extension Functions
■ Modifying Function Parameters
■ Creating a Server Extension Package
■ Deleting a Server Extension Object

A successfully analyzed object that does not satisfy your requirements can be deleted from the
Tamino Manager.

Analyzing an Object

To find out whether a DLL, EXE, TLB, CLASS or JAR file contains code that could be used as a
server extension function, the file must be analyzed.

To analyze an object

1 Start the Tamino Manager.

2 Select and expand the X-Tension Tools.

3 Select the Object Analyzer.

4 In the context menu, choose Analyze Object.

5 The Analyze Object page appears:

X-Tension: Tamino Server Extensions100

X-Tension Tools

Enter the full path of the file to be analyzed (including the file name) in the File to analyze
text box, or choose Browse... and select the drive, directory and file.

In the Additional files text box you can specify more CLASS or DLL files by entering the full
path of the file to be analyzed (including the file name), or by choosingBrowse... and selecting
the drive, directory and file.

Choose Add to add the files you want. Note that a file that you have selected but not added
to the list will not be included in the analyzed object. Repeat these steps as often as required.
To delete a file from the list, select it and choose Remove.

Choose OK to continue.

6 If the specified file is a JAR file, the Analyze Java Class page appears:

Select a file from the Class to analyze text box and choose OK to continue. Ensure that this
file is the main or entry class.

The Job Monitor page appears, informing you about success or failure of the analysis.

If the object was successfully analyzed, its name is now included under the expanded X-Tension
Object Analyzer object in the Tamino Manager.

101X-Tension: Tamino Server Extensions

X-Tension Tools

Entering Additional Information for a Server Extension Object

Additional information can be entered for a server extension object and its functions. You can
modify the name of a server extension object, its description, the author and the external name of
server extension functions.

To enter additional information for a server extension object

1 Start the Tamino Manager.

Select and expand the Object Analyzer to display the analyzed server extension objects in
the tree view.

2 Select the server extension object for which you want to enter additional information.

3 Choose Modify Extension.

4 The Modify Server Extension page appears.

The Extension Name text field contains the name of the object. This name can be changed if
required. If you enter a new name for the object, this name will be valid after packaging the
object.

In the Description text field you can enter a brief description of the server extension. The
descriptions of CLASS and JAR files that were not developed with the current X-Tension
Builder can be changed; the descriptions of DLL files cannot be changed.

In the Author text field you can enter the name of the developer of the server extension.

In the Function Name text field you can enter the external name of the server extension
function.

XML metacharacters such as "&", "<" and ">" are not allowed in the fields Extension Name,
Author, Description and Function name.

Choose OK to save the entries.

The Job Monitor page appears, informing you about success or failure of the modifications.

If the message reports success, you must select a function from the server extension object before
you can create a server extension package.

X-Tension: Tamino Server Extensions102

X-Tension Tools

Entering Additional Information for a Direct Server Extension Object

Additional information can be entered for a server extension object and its functions, and the name
of a server extension object can be modified. Help files that you specify here are included in the
server extension package.

To enter additional information for a Direct server extension object

1 Start the Tamino Manager.

Select and expand the Object Analyzer to display the analyzed server extension objects in
the tree view.

2 Select the Direct server extension object for which you want to enter additional information.

3 Choose Edit Details.

4 The Edit Details of Object page appears.

The path of the object is displayed in the Object pathname text field. The path cannot be
changed from this dialog.

The Extension name text field contains the name of the object. This name can be changed if
required. If you enter a new name for the object, this name will be valid after packaging the
object.

In the Short description text field you can enter a brief description of the server extension.
The description can be changed in the case of EXE files, but not in the case of DLL files.

In theAuthor name text field you can enter the name of the developer of the server extension.

XML metacharacters such as "&", "<" and ">" are not allowed in the fields Author name and
Short description.

If known, enter the full path of the object's help file (including the file name) in the Help file
text box; otherwise, choose Browse... and select the drive, directory and file. Help files must
be of type HTM, HTML, XML or TXT.

If there are other help files associated with the object, enter the full path name of the file (in-
cluding the file name) in the Additional help file text box or choose Browse... and select the
drive, directory and file. Choose Add to add the help file to the list of additional help files.
Note that a file you have selected but not added to the list will not be included in the analyzed
object. Repeat these steps as often as required. To delete a help file from the list, select the file
and choose Remove.

Choose OK to save the entries.

The Job Monitor page appears, informing you about success or failure of the modifications
and the help file specifications.

103X-Tension: Tamino Server Extensions

X-Tension Tools

If the message reports success, you must select a function from the server extension object before
you can create a server extension package.

Entering Additional Information for a Java Server Extension Object

Additional information can be entered for a server extension object and its functions, and the name
of a server extension object can be modified. Help files that you specify here are included in the
server extension package.

To enter additional information for a Java server extension object

1 Start the Tamino Manager.

Select and expand the Object Analyzer to display the analyzed server extension objects in
the tree view.

2 Select the Java server extension object for which you want to enter additional information.

3 Choose Edit Details.

4 The Edit Details of Object page appears.

The path of the object is displayed in the Object pathname text field. The path cannot be
changed from this dialog.

The Extension name text field contains the name of the object. This name can be changed if
required. If you enter a new name for the object, it will be valid after packaging the object.

In the Short description text field you can enter a brief description of the server extension.
The descriptions of CLASS and JAR files that were not developed with the current X-Tension
Builder can be changed; the descriptions of DLL files cannot be changed.

In theAuthor name text field you can enter the name of the developer of the server extension.

XML metacharacters such as "&", "<" and ">" are not allowed in the fields Extension name,
Author name and Short description.

The value of the private classpath can be changed in the Private Classpath field. You can use
the Edit button to open a subdialog in which you can specify the private classpath. See the
section Dialog for Setting the Private Classpath for usage details.

If known, enter the full path of the object's help file (including the file name) in the Help file
text box; otherwise, choose Browse... and select the drive, directory and file. Help files must
be of type HTM, HTML, XML or TXT.

If there are other help files associated with the object, enter the full path name of the file (in-
cluding the file name) in the Additional help file text box, or choose Browse... and select the
drive, directory and file. Choose Add to add the help file to the list of additional help files.
Note that a file you have selected but not added to the list will not be included in the analyzed

X-Tension: Tamino Server Extensions104

X-Tension Tools

object. Repeat these steps as often as required. To delete a help file from the list, select it and
choose Remove.

Choose OK to save the entries.

The Job Monitor page appears, informing you about success or failure of the modifications
and the help file specifications.

If the message reports success, you must select a function from the server extension object before
you can create a server extension package.

Selecting Server Extension Functions

To be able to create a server extension package, at least one function must have been selected from
the analyzed object. You can choose from one of the following options:

Selecting a Server Extension Function with Defaults;

Selecting and Modifying a Server Extension Function;

Selecting all Server Extension Functions;

Modifying a Server Extension Function and Parameters.

Selecting a Server Extension Function with Defaults

To select a server extension function with default settings for a server extension object

1 Start the Tamino Manager.

Select and expand the X-Tension Tools.

Select and expand the Object Analyzer.

2 Expand a server extension object to display the associated server extension functions in the
tree view.

3 Select the server extension function for which you want the default settings.

4 Choose Select with Defaults.

The Select function ... page appears, showing whether selecting the function was successful.

105X-Tension: Tamino Server Extensions

X-Tension Tools

Selecting and Modifying a Server Extension Function

To select and modify a server extension function

1 Start the Tamino Manager.

Select and expand the X-Tension Tools.

Select and expand the Object Analyzer.

2 Expand a server extension object to display the associated server extension functions in the
tree view.

3 Select the server extension function that you want to modify.

4 Choose Select and Modify.

5 The Select and Modify Function page appears.

The Function name text field contains the name of the function. It cannot be changed.

Select the appropriate type for the function from the Function type drop-down list box.

In the Short description text field you can enter a brief description of the server extension
function.

XML metacharacters such as "&", "<" and ">" are not allowed in the field Short Description.

If known, enter the full path of the object's help file (including the file name) in the Help file
text box; otherwise, choose Browse... and select the drive, directory and file. Help files can
be of any type, but HTM, HTML, XML or TXT is recommended.

If there are other help files associated with the function, enter the full path name of the file
(including the file name) in the Additional help file text box or choose Browse... and select
the drive, directory and file, then choose Add to add the help file to the list of additional help
files. Note that a file you have selected but not added to the list will not be included in the
analyzed object. Repeat these steps as often as required. To delete a help file from that list,
select the file and choose Remove.

Choose OK to save the entries and to select the function automatically.

The Job Monitor page appears, informing you about success or failure.

X-Tension: Tamino Server Extensions106

X-Tension Tools

Selecting all Server Extension Functions

To select all Server Extension functions

1 Start the Tamino Manager.

Select and expand X-Tools.

Select and expand the Object Analyzer to display the analyzed server extension objects in
the tree view.

2 Select the server extension object whose functions you want to select.

3 Choose Select all Functions.

The Job Monitor page appears, informing you about success or failure of the selection.

Modifying a Server Extension Function and Parameters

In the Modifying a Server Extension Function and Parameters dialog, the external name, the de-
scription of a server extension function and the XML data types of function parameters can be
changed.

To modify a server extension function and parameters

1 Start the Tamino Manager.

Select and expand the X-Tension Tools.

Select and expand the Object Analyzer.

2 Expand a server extension object to display its associated server extension functions in the
tree view.

3 Select the server extension function that you want to modify.

4 Choose Modify Function.

5 The Modify Function page appears.

The Name text field contains the name of the function. It cannot be changed.

In theExternalName text field you can enter the external name of the server extension function.

In theDescription text field you can enter a brief description of the server extension function.

XML metacharacters such as "&", "<" and ">" are not allowed in the field Description.

The parameter name can be changed for Java class files.

The XML data type of a parameter can be changed if a list box is displayed.

107X-Tension: Tamino Server Extensions

X-Tension Tools

Choose OK to save the entries and to select the function automatically.

The Job Monitor page appears, informing you about success or failure.

Deselecting Server Extension Functions

If selected functions are not needed, you can deselect all functions, or you can deselect individual
functions.

Deselecting all Server Extension Functions

To deselect all server extension functions

1 Start the Tamino Manager.

Select and expand X-Tools.

Select and expand the Object Analyzer to display the analyzed server extension objects in
the tree view.

2 Select the server extension object whose functions you want to deselect.

3 Choose Deselect all Functions.

The Job Monitor page appears, informing you about success or failure of the deselection.

Deselecting Individual Server Extension Functions

To deselect one server extension function

1 Start the Tamino Manager.

Select and expand X-Tools.

Select and expand the Object Analyzer.

2 Expand a server extension object to display the associated server extension functions in the
tree view.

3 Select the server extension function that you want to deselect.

4 Choose Deselect Function.

The Job Monitor page appears, informing you about success or failure of the deselection.

X-Tension: Tamino Server Extensions108

X-Tension Tools

Modifying Function Parameters

When a server extension function has been selected, its parameters can be modified.

To modify a function parameter

1 Start the Tamino Manager.

Select and expand X-Tension Tools.

Select and expand the Object Analyzer.

2 Expand one of the displayed server extension objects.

3 Expand a selected server extension function to display the associated parameters in the tree
view.

4 Select the parameter that you want to modify.

5 Choose Modify Parameter.

6 The Modify Parameter page appears:

The internal name of the parameter is displayed in the Parameter Name text box. This can be
changed in the case of Java parameters.

The other parameters such as the host language type (the example shows the host language
type to be "Java") and direction are displayed but they cannot be changed. The XML data
type can be changed if a list box is displayed.

For Init functions, the default values must be specified in the Default Value text field.

Choose OK to modify the parameter.

The Job Monitor page appears, indicating whether the modification was successful or not.

Creating a Server Extension Package

When you have analyzed an object, selected the functions you want, andmade anymodifications
you want, you can create a server extension package.

To create a server extension package

1 Start the Tamino Manager.

Select and expand X-Tension tools.

Select and expand the Object Analyzer.

2 Select the server extension object that you want to pack.

109X-Tension: Tamino Server Extensions

X-Tension Tools

3 Choose Pack Extension.

4 The Pack Server Extension page appears.

The Destination directory text box contains the full path of the directory in which the server
extension package will be created. The default directory is ...\Tamino\Server Extensions\Pack.
You can change the directory by entering a path or choosing Browse... to select a drive and
directory.

Tick the Overwrite existing package check box if you want to overwrite an existing package
with the same name.

Choose OK to create the server extension package.

The Job Monitor page appears, informing you about success or failure of the creation of the
package file.

The package file (your-file.sxp) can be installed in a Tamino database as described in the section
Installing a Tamino Server Extension.

Deleting a Server Extension Object

If you discover that a server extension object that was successfully analyzed is not useful for your
purpose, you can delete it.

To delete a server extension object

1 Start the Tamino Manager.

Select and expand X-Tools.

Select and expand the Object Analyzer object.

2 Select the server extension object that you want to delete.

3 Choose Forget Object to delete it.

The Job Monitor page appears, informing you about success or failure of the deletion.

X-Tension: Tamino Server Extensions110

X-Tension Tools

Viewing a Package File

To find out whether a package contains valid code that is useful for your purpose

1 Start the Tamino Manager.

Select and expand X-Tension Tools.

Select and expand Package Viewer.

In the context menu, choose Analyze Object.

2 The View Package page appears:

Browse to an *.sxp file and select it. Choose OK.

The name of the server extension package appears in the tree view. Here the package can be
expanded and viewed, just like any other server extension object. After viewing, the package
file is automatically deleted when the Package Viewer tree is collapsed.

If the package is useful, you can install the *.sxp file in the database.

111X-Tension: Tamino Server Extensions

X-Tension Tools

112

12 Tamino Server Extension Examples

Complete examples of all types of server extensions written in C++ and Java are provided in the
Tamino installation directory. In addition, an XSLT server extension example is described in detail
in the appendix Example: XSLT Server Extension of this document.

The following examples, which are available in the Tamino installation directory, are named after
the infrastructure and function type: Direct Mapping, Direct Query, Direct Trigger, Java Mapping,
Java Query, Java Trigger. Each example includes all sources and information to build, administrate
and execute the corresponding example case. On Windows platforms, these are hosted in the sub-
directories:

Examples\Server Extensions\Direct_Mapping

Examples\Server Extensions\Direct_Query

Examples\Server Extensions\Direct_Trigger

Examples\Server Extensions\Java_Mapping

Examples\Server Extensions\Java_Query

Examples\Server Extensions\Java_Trigger

Examples\Server Extensions\Java_Query_XSLT

The corresponding UNIX directory names are: Examples/Server_Extensions/...

These directories contain all the files that are generated when creating package files using the
Tamino X-Tension Builder. Detailed explanations and use-cases are included in the Readme.txt
files.

The *.sxp files contain, among other things, the executable files that can be installed and executed
in Tamino databases. The Install.xml files describe the interface to the server extension, which is

113

necessary for administration and execution. A copy of the Install.xml file is included in the *.sxp
file for easy administration.

Some of the supplied pre-built packages (*.sxp files) are compiled and packed for Microsoft Win-
dows platforms only. You may need to rebuild the projects and create new *.sxp files to suit a
different target platform. Please check the Readme.txt file for further information.

The *.cpp and *.java files are source files that can be opened in a text editor to view the function
code.

An example of a shadow function is currently not available.

X-Tension: Tamino Server Extensions114

Tamino Server Extension Examples

A Example: XSLT Server Extension

■ Requirements ... 116
■ Known Limitations .. 116
■ Installation .. 117
■ Query Functions for Transformation ... 117
■ Administrative Issues ... 118
■ A Simple Transformation Example .. 121

115

The XSLT server extension, written in Java, is designed to perform XSLT transformations on XML
documents in the Tamino database. Database queries can extract the input XML document(s) and
the XSLT stylesheet from Tamino, and the resulting document can be redirected back to the client
or written to another collection within the same Tamino database. There are several configuration
options available to control the behavior of the XSLT server extension.

The Tamino kit includes sample files that you can use for testing the server extension. They are
available under the Tamino installation directory Examples/Server Extension/Java_Query_XSLT in
the following subdirectories:

examples
Contains the sample schemas, input data and XSLT stylesheets;

config
Contains the configuration schema and sample configurations for Saxon and Xalan;

src
Contains the source code (Java), Install.xml, internal interface HTML documentation for the
server extension and the prebuilt X-Tension package file (sxp).

The following sections are available:

Requirements

The current release of Software AG Tamino XML Server.Tamino

Any Java XSLT processor implementing TrAX (Transformation API for XML), such
as Saxon or Xalan.

XSLT Processor

■ Saxon is available at http://saxon.sourceforge.net/.
■ Xalan can be downloaded from http://xml.apache.org/xalan-j/.

The Java API for XML Parsing, jaxp.jar, is available at http://jaxp.java.net/.Java API for XML Parsing

Known Limitations

The known limitations in the current implementation of the XSLT server extension are listed here:

■ There is currently no mechanism for maintaining cache consistency if the XSLT stylesheet is
changed in the Tamino database. This could become an issue if you are developing a stylesheet
in the database. In this case the cache should be turned off.

X-Tension: Tamino Server Extensions116

Example: XSLT Server Extension

http://saxon.sourceforge.net/
http://xml.apache.org/xalan-j/
http://jaxp.java.net/

Installation

The JAR files previously mentioned in the Requirements section, namely jaxp.jar and the XSLT
processor, must be added to the class path before installing the XSLT server extension software
package. The section Configuration describes how to select the XSLT processor of your choice.
The XSLT server extension is contained in the package XSLT.sxp. Refer to the section Installing a
Tamino Server Extension for information about installing server extensions and adding JAR files
to the Java class path.

Query Functions for Transformation

The XSLT server extension has two separate query functions to perform XSLT transformations on
XML data in Tamino. Both of them add wrapper elements to the input data and the result document.
These wrapper elements are fully configurable through the SXS-Configuration document, and
also through the run-time configuration parameters input_wrapper and result_wrapper. The
default values are "XSLT_input" and "XSLT_result". If these parameter values are empty, no input
or result wrapper is applied before or after the transformation, respectively. If an input wrapper
is applied, thus adding a new root element, the result of the input query expression passed as the
first argument (see below) does not have to be a single document; it may consist of zero or more
documents. Furthermore, note that a stylesheet may require some adaptation if an input wrapper
is being applied.

The media-type attribute of the xsl:output element in the stylesheet can be used to control the
value of the content-type HTTP header that is returned to the client.

transform

This query function performs an XSLT transformation on an XML document extracted from a
Tamino collection using an XSLT stylesheet queried from another collection. The result is returned
to the client.

The following parameters are provided:

ExplanationXML TypeMeaningParameter

The query expression that extracts from Tamino the XML input
document to be transformed. This query refers to the collection
passed in the URL.

XML-OBJQuery expression1

The name of the collection in Tamino that contains the XSLT
stylesheet.

xs:stringStylesheet Collection2

The query expression to extract the XSLT stylesheet from
Tamino.

xs:stringStylesheet Query3

117X-Tension: Tamino Server Extensions

Example: XSLT Server Extension

Usage of this function is illustrated in the section A Simple Transformation Example.

Administrative Issues

This section provides information on administrative issues involved with using the XSLT server
extension.

■ Storing Stylesheets
■ Configuration
■ Cache Management

Storing Stylesheets

There are two strategies for loading stylesheets:

■ Load them into the collection ino:etc without providing a schema;
■ Define a schema, for instance by using the enclosed schema file xsl_stylesheet.tsd. This file defines

a doctype named xsl:stylesheet in the collection stylesheet.

Configuration

A Tamino SXS server extension query function is provided in order to manage the configuration
of the XSLT server extension in conjunction with an SXS-Configuration XML document inside
Tamino.

Syntax:

configuration (configkey, configvalue)

For more information on the syntax, please refer to the section Query Function Call Syntax.

Description
configvalueconfigkey

Sets the state of the cache either on or off.ON/OFFcache_state

Specifies the maximum number of stylesheets that can be held
in the cache.

1 - 255cache_size

X-Tension: Tamino Server Extensions118

Example: XSLT Server Extension

Description
configvalueconfigkey

Specifies the XSLT transformation factory Java class package to
use, e.g. for:

■ Saxon (default):

Class Packagetransformer_factory

com.icl.saxon.TransformerFactoryImpl

■ Xalan:

org.apache.xalan.processor.TransformerFactoryImpl

Shows the current configuration values. The resulting XML
document is described below.

(ignored)show

Refreshes the current configuration with the values contained
in the SXS-Configuration for this server extension.

(ignored)refresh

Specifies the update state of the server extension. This determines
whether the values contained in the SXS-Configuration for this
server extension should be updated. If the update state is set to
off, any changes made to this server extension via this
configuration function apply to the current session only.

ON/OFFupdate

Specifies the name of the input wrapper. Default is XSLT_input.stringinput_wrapper

Specifies the name of the result wrapper. Default isXSLT_result.stringresult_wrapper

The XML document returned by configuration("show","") is as follows:

...
<xql:result>
 <XSLT>
 <configuration>
 <show>
 <value name="cache_state">ON</value>
 <value name="cache_size">128</value>
 <value ↩
name="transformer_factory">com.icl.saxon.TransformerFactoryImpl</value>
 <value name="input_wrapper">XSLT_input</value>
 <value name="result_wrapper">XSLT_result</value>
 <value name="update">ON</value>
 </show>
 </configuration>
 </XSLT>
</xql:result>
...

119X-Tension: Tamino Server Extensions

Example: XSLT Server Extension

Based on the included schema file SXS-Configuration.tsd, a collection named SXS-Configuration
(containing a single doctype "SXS-Configuration") can be defined.

The following is an example of an "SXS-Configuration" document:

<SXS-Configuration name="XSLT">
<value name="cache_state">ON</value>
<value name="cache_size">128</value>
<value name="transformer_factory">com.icl.saxon.TransformerFactoryImpl</value>
<value name="input_wrapper">myOwnInput</value>
<value name="result_wrapper">myOwnResult</value>
<value name="update">ON</value>

</SXS-Configuration>

Sample configuration documents for use with Saxon (default) and Xalan are enclosed in this
package:

■ SXS-Configuration_Saxon.xml
■ SXS-Configuration_Xalan.xml

Cache Management

The XSLT server extension provides a Tamino SXS server extension query function in order to
manage the stylesheet cache.

Syntax:

cache (operation)

For more information on the syntax, please refer to the section Query Function Call Syntax.

Description<operation>

The cache("show") operation queries the stylesheet cache and returns an XML
document describing its current contents.

show

The cache("clear") operation deletes all entries in the stylesheet cache.clear

The cache("delete=cache_key") operation requires the addition of a cache key
value to delete an individual stylesheet from the stylesheet cache. To list valid cache
key values, use the show operation.

delete=cache_key

The following shows a typical XML document returned by the cache("show") operation:

X-Tension: Tamino Server Extensions120

Example: XSLT Server Extension

...
<xql:result>
 <XSLT>
 <cache>
 <show_cache>
 <cache_entries>
 <entry key="ino:etc/xsl:stylesheet[@ino:id=12]">
 <value ↩
name="transformer_factory">com.icl.saxon.TransformerFactoryImpl</value>
 <value name="loaded">Mon Sep 17 04:12:16 EDT 2003</value>
 <value name="last_used">Tues Sep 20 09:32:47 EDT 2003</value>
 <value name="usage_count">19</value>
 </entry>
 <entry key="ino:etc/xsl:stylesheet[@ino:docname='mytransform']">
 <value ↩
name="transformer_factory">com.icl.saxon.TransformerFactoryImpl</value>
 <value name="loaded">Mon Sep 17 03:15:26 EDT 2003</value>
 <value name="last_used">Weds Sep 21 10:22:57 EDT 2003</value>
 <value name="usage_count">3</value>
 </entry>
 </cache_entries>
 </show_cache>
 </cache>
 </XSLT>
</xql:result>
...

A Simple Transformation Example

In order to provide some hands-on experience, the following section gives step-by-step instructions
for performing a simple transformation. The following example documents are contained in this
kit:

DescriptionDocument

The example data collection schemaNASCAR_Drivers.tsd

The example dataNASCAR_Drivers.xml

The example stylesheetNASCAR_Drivers_to_XML.xsl

The name of the Tamino database used in this example is "MyDB".

Tip: As an alternative to HTTP, you may use the Tamino Interactive Manager to perform
queries.

To perform a simple transformation

1 Define the schema (NASCAR_Drivers.tsd) in the database.

121X-Tension: Tamino Server Extensions

Example: XSLT Server Extension

2 Process the input data (NASCAR_Drivers.xml) into collection NASCAR_Drivers.

Note: This file contains multiple documents.

3 Process the XSLT stylesheet (NASCAR_Drivers_to_XML.xsl) into the ino:etc collection for
"MyDB". Note the "ino:id" for the processed document (ino:id=1 for this example).

4 Verify the existence of the following documents in the database:

http://localhost/tamino/MyDB/NASCAR_Drivers?_xql=NASCAR_Drivers
http://localhost/tamino/MyDB/ino:etc?_xql=xsl:stylesheet[@ino:id=1]

5 Perform the transformation using X-Query:

http://localhost/tamino/MyDB/NASCAR_Drivers?_xql=XSLT.transform
(NASCAR_Drivers,'ino:etc','xsl:stylesheet[@ino:id=1]')

6 Perform the transformation using XQuery:

http://localhost/tamino/MyDB/NASCAR_Drivers?_xquery= {?serialization
method="XSLT.transform" parameter='ino:etc'
parameter='xsl:stylesheet[@ino:id=1]'?} for $d in input()/NASCAR_Drivers return
$d

where:

http://localhost/tamino/MyDB/NASCAR_Drivers
specifies the host, the database and the input data collection;

?_xql=
is the command verb to perform a query (the query expression follows after the = sign);

XSLT.transform
uses the transform query function contained in the XSLT server extension;

NASCAR_Drivers
is the query expression that extracts the input data from the collection;

'ino:etc'
is the collection that contains the XSLT stylesheet;

'xsl:stylesheet[@ino:id=1]'
is the query expression that extracts the stylesheet.

X-Tension: Tamino Server Extensions122

Example: XSLT Server Extension

Index

A
administration

server extension, 27
analyze object

server extension, 100

B
build

server extension package, 41

C
callback

ODBC, 72
server extension

overview, 65
system, 78
XML, 66

callback method
SxsGetHttpHeaderField, 79
SxsSetProperty, 80
SxsSystem, 78

classpath
private

setting for server extension, 30
public

setting for server extension, 98
constructor

server extension, 62

D
destructor

server extension, 62

E
example

server extension, 113

F
function types

server extension, 8

H
HTTP header

accessing
in server extension, 79

I
initial function

server extension
overview, 23

installation
server extension, 28

M
mapping function

server extension
overview, 19

modify
server extension function properties, 34
server extension properties, 33

O
ODBC callback, 72

P
package

server extension
building, 41

private classpath
setting for server extension, 30

public classpath
modify for server extension, 98

Q
query function

server extension
overview, 9

S
server event function

server extension
overview, 24

123

server extension
accessing HTTP header, 79
administration, 27
analyze object, 100
callback

overview, 65
constructor, 62
destructor, 62
developing, 61
examples, 113
function types, 8
initial function

overview, 23
installation, 28
mapping function

overview, 19
prerequisites for using, 5
query function

overview, 9
server event function

overview, 24
setting private classpath, 30
setting public classpath, 98
shadow function

overview, 17
trace feature, 36, 91
trigger function

overview, 13
uninstall, 35

server extension package
build, 41

using X-Tension Builder, 42
server extension project

create
using X-Tension Builder, 43

server extensions
introduction, 1
overview, v

shadow function
server extension

overview, 17
SxsGetHttpHeaderField

callback method, 79
SxsSetProperty

callback method, 80
SxsSystem

callback method, 78
system callback, 78

T
trace feature

server extension, 36, 91
trigger function

server extension
overview, 13

X
X-Tension

introduction, 1
overview, v

X-Tension Builder
use to create server extension package, 42

XML callback, 66

X-Tension: Tamino Server Extensions124

Index

	X-Tension: Tamino Server Extensions
	Table of Contents
	X-Tension: Tamino Server Extensions
	1 Introduction
	2 Prerequisites
	Developing Tamino Server Extensions Using the X-Tension Builder

	3 Tamino Server Extension Functions
	Server Extension Objects
	Types of Server Extension Functions
	Function Naming
	Query Functions
	Query Function Parameters and Data Types
	Query Function Call Syntax
	Conversion of Query Function Parameters
	Query Functions in X-Query/XQuery
	Query Functions at Root Level
	Query Functions in Filters

	Trigger Functions
	Insert Trigger
	Update Trigger
	Delete Trigger

	Shadow Functions
	Mapping Functions
	Map-In Functions
	Map-Out Functions
	Map-Delete Functions

	Initial Server Extension Functions
	Server Event Functions

	4 Administrating Tamino Server Extensions
	Installing a Tamino Server Extension
	Private and Public Classpaths for Java
	Dialog for Setting the Private Classpath
	Specifying Java Options
	Modifying the Properties of a Server Extension
	Modifying the Properties of a Server Extension Function
	Upgrading a Server Extension
	Uninstalling a Server Extension
	Switch for the Tamino Server Extension Trace

	5 Calling Tamino Server Extensions
	6 Failure of Tamino Server Extension Functions
	7 Building a Tamino Server Extension Package
	Programming Languages and Development Tools
	Building a Direct Infrastructure-Based Tamino Server Extension Package
	Building a Java-Based Tamino Server Extension Package
	Using the X-Tension Builder
	Creating a Server Extension Project
	Opening an Existing Server Extension Project
	Adding a Server Extension Function to an Existing Server Extension Project
	Compiling the Server Extension Class File
	Generating Javadoc Comments for a Server Extension Class File
	Packaging a Server Extension

	Using Direct Infrastructure

	8 Developing Tamino Server Extensions
	Constructors and Destructors
	String and Memory Handling
	Specialities of Different Infrastructure/Language Combinations
	Restrictions for Java Server Extensions

	Callbacks
	XML Callbacks
	Direct
	Java Calls
	Meaning of Parameters (For All Infrastructures)
	The Meaning of sxdresult (Direct) and Result (Java)
	Return Values and Output Parameters
	Examples
	Direct
	Java

	ODBC Callbacks
	Allocating Handles
	Allocating Memory
	The Other Supported ODBC Functions
	Examples
	Direct
	Java

	System Callbacks
	Callback Method SxsSystem
	Callback Method SxsGetHttpHeaderField
	Callback Method SxsSetProperty

	Callback Error Handling
	Server Extension Messages

	Exceptions
	Version Numbers
	Direct
	Java

	9 Debugging Java Server Extensions
	10 Tracing Tamino Server Extensions
	Activating SXS Trace
	Deactivating SXS Trace
	Programming User-Defined Trace Information
	Viewing SXS Trace Information
	Deleting SXS Trace Information

	11 X-Tension Tools
	Modifying the Public Java Classpath
	Analyzing Arbitrary Objects
	Analyzing an Object
	Entering Additional Information for a Server Extension Object
	Entering Additional Information for a Direct Server Extension Object
	Entering Additional Information for a Java Server Extension Object
	Selecting Server Extension Functions
	Selecting a Server Extension Function with Defaults
	Selecting and Modifying a Server Extension Function
	Selecting all Server Extension Functions
	Modifying a Server Extension Function and Parameters

	Deselecting Server Extension Functions
	Deselecting all Server Extension Functions
	Deselecting Individual Server Extension Functions

	Modifying Function Parameters
	Creating a Server Extension Package
	Deleting a Server Extension Object

	Viewing a Package File

	12 Tamino Server Extension Examples
	A Example: XSLT Server Extension
	Requirements
	Known Limitations
	Installation
	Query Functions for Transformation
	transform

	Administrative Issues
	Storing Stylesheets
	Configuration
	Cache Management

	A Simple Transformation Example

	Index

