
Tamino

Tamino API for Java

Version 10.11

November 2021

This document applies to Tamino Version 10.11 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: TAJ-DOC-1011-20211101

Table of Contents

Tamino API for Java ... vii
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I Release Notes ... 5
2 Release Notes .. 7

Binary Compatibility .. 8
Global Transactions .. 8
Secured Database Connections .. 8
Prepared XQuery ... 8
Support for Internationalization and Localization .. 9
Exceptions .. 9
Use of New Serialization Pragma .. 10
Use of Cursor Parameter _scroll ... 11
Use of _maximumrequestduration Parameter ... 11
Cancel Requests .. 12
Xquery Prepare and Execute .. 13
User Schema with Cyclic Imports .. 14
Weaker Locking on Long-Lasting Index Access .. 14
Domain Authentication .. 15
Isolation Levels ... 15
Schema definition ... 16
Explain Query .. 16
Query Count ... 16
Tamino XQuery .. 16
Retry Handler ... 17
Pre- and Postconditions ... 17
Xerces V2.5.0 ... 17
JDOM 1.0 .. 17
General Entities .. 18
XML Documents: Encoding Information ... 18
Connection Pooling .. 18
List Databases ... 18

II Introduction .. 19
3 Introduction ... 21

III Tamino API for Java Component Profile and Set-up .. 23
4 Tamino API for Java Component Profile and Set-up .. 25

Component Profile ... 26
Deployment .. 27
Supported Character Encodings .. 28
Reference Documentation .. 30

IV ... 31

iii

5 Say Hello! ... 33
XMLGreeting: Inserting an XML Document ... 34
ProcessXMLGreeting: Operating in Local Transaction Mode 37
NonXMLGreeting: Inserting Non-XML Data .. 58
ProcessNonXMLGreeting: Operating in Local Transaction Mode with
Non-XML Data ... 42

6 Architectural Overview ... 43
API Overview ... 44
Tamino API Components ... 45
Exception Handling ... 46
Interfaces .. 65
Access Methods and Response Processing .. 52

V Doing More with the API ... 55
7 Get Personal ... 57

Inserting and Querying Documents .. 58
Inserting and Querying Documents Using Schemas 60

8 SAX Package: Using SAX Object Model .. 63
Overview .. 64
Construct a TSAXObjectModel .. 65
Obtain a SAX Accessor ... 66
Running the Example ... 66

9 DOM4J: Adding an Object Model ... 67
Object Models ... 68
Assembling a New Object Model ... 70
Using the DOM4J Object Model: A Sample ... 75

10 All that Jazz .. 77
Conceptual model .. 78
Schema Definition .. 79
Populating the Database .. 87
Joining Documents ... 88
Testing Integrity Constraints .. 95
Testing for Unique Keys ... 100

11 Reference Documentation .. 105
VI Webserverless Access Via the Tamino API for Java .. 107

12 Webserverless Access Via the Tamino API for Java ... 109
Usage .. 110
Installation .. 110
Security Considerations ... 111
Limitations .. 111

VII Performance Tips and Tricks .. 113
13 Performance Tips and Tricks ... 115

Using Cursoring ... 116
Using XML Parsers ... 116
Using Large XML Documents with Many Nodes .. 116

VIII Measuring Operation Duration .. 119

Tamino API for Javaiv

Tamino API for Java

14 Measuring Operation Duration ... 121
Operation and Measured Values .. 122
Architecture and Technical Concepts ... 123
Controlling Duration Measurement ... 124
Running the Get Personal Example with Duration Measurement 125

IX Appendix: Examples in Code .. 129
15 Appendix: Examples in Code .. 131

Say Hello! .. 132
Persons .. 132
All that Jazz .. 133
DOM4J .. 133

Index ... 135

vTamino API for Java

Tamino API for Java

vi

Tamino API for Java

This document provides information about the Tamino API for Java. This API is completely
object-oriented, has a very flexible design, and allows convenient access to data stored in the
Tamino XML Server. It is implemented in Java.

This document is for software developers who want to create applications on the basis of data
stored in the Tamino XML Server.

The latest features and modifications since the last release.Release Notes

What is the Tamino API for Java? A brief summary.Introduction

The components offered by the Tamino API for Java, for
manipulating data in a Tamino XML Server.

Tamino API for Java Component Profile
and Set-up

A very simple example that inserts a friendly greeting into an
existing database.

Say Hello!

An overview that explains the general architecture.Architectural Overview

Further examples that show you how to use the Tamino API for
Java.

Doing More with the API

The reference documentation for the Tamino API for Java in
Javadoc format.

Tamino API for Java: Javadoc Reference
Information

The reference documentation for the JDOM object model in
Javadoc format.

Object Model: Javadoc Reference
Information

How to access Tamino through the Tamino API for Java without
a web server.

Webserverless Access via the Tamino
API for Java

Useful hints to streamline a Tamino API for Java application's
design.

Performance Tips and Tricks

Find out where your application spends most of its execution
time.

Measuring Operation Duration

An overview of references to complete code listings of the
examples discussed in this documentation.

Examples in Code

vii

viii

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Tamino API for Java2

About this Documentation

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Tamino API for Java

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

4

I Release Notes

5

6

2 Release Notes

■ Binary Compatibility ... 8
■ Global Transactions ... 8
■ Secured Database Connections ... 8
■ Prepared XQuery .. 8
■ Support for Internationalization and Localization .. 9
■ Exceptions ... 9
■ Use of New Serialization Pragma ... 10
■ Use of Cursor Parameter _scroll ... 11
■ Use of _maximumrequestduration Parameter .. 11
■ Cancel Requests ... 12
■ Xquery Prepare and Execute ... 13
■ User Schema with Cyclic Imports ... 14
■ Weaker Locking on Long-Lasting Index Access ... 14
■ Domain Authentication ... 15
■ Isolation Levels ... 15
■ Schema definition .. 16
■ Explain Query ... 16
■ Query Count ... 16
■ Tamino XQuery ... 16
■ Retry Handler ... 17
■ Pre- and Postconditions .. 17
■ Xerces V2.5.0 ... 17
■ JDOM 1.0 .. 17
■ General Entities .. 18
■ XML Documents: Encoding Information ... 18
■ Connection Pooling .. 18
■ List Databases .. 18

7

This document contains an overview of the features of the Tamino API for Java that have been
introduced or modified since the original release with Tamino V.3.1.

Binary Compatibility

All programs that ran under version 4.1 should run under version 8.x, with the following exception:

■ Exceptions have introduced a new parameter (Locale) in their constructors.

Global Transactions

Version 8.x supports global transactions using the two-phase commit (2PC) concept. In order to
use this feature, call the overloaded useGlobalTransactionMode()method of the TConnection
interface.

Secured Database Connections

Version 8.x supports secure database connections, which can be created with the help of security
tokens. The factory class TConnectionFactory has an overloaded method newConnection() that
accepts SecurityTokens as parameter. In order to use this feature, the file cstUtils.jarmust be added
to the execution classpath. This file is normally located in $INODIR\$INOVERS\SDK\TaminoAPI4J\lib.

Prepared XQuery

The prepared query has now been simplified.

Old style:

declare variable $y:string as xs:string external for $q in
input()/DataTypes[string=$y:string] return $q

Tamino API for Java8

Release Notes

New style:

declare variable $y as xs:string external for $q in
input()/DataTypes[string=$y] return $q

The following code sample shows typical usage:

// Get tamino connection, use local transaction mode
connection = getConnection();
connection.useLocalTransactionMode();

// Get XML object accessor
accessor = connection.newXMLObjectAccessor();

// Prepare XQuery using connection object
TPreparedXQuery query = connection.prepareQuery("declare variable $y as xs:string ↩
external for $q in
 input()/DataTypes[string=$y] return $q");
// Bind external variables
query.bindString(new QName("y"),"String");

// Execute prepared XQuery
TResponse response = accessor.xquery(query);

Support for Internationalization and Localization

A connection can now be created by specifying a locale. See the Javadoc of TConnectionFactory
for further details.

Exceptions

All exception classes that are inherited from TException can use Local to specify internationalized
messages. The class hierarchy of the TException interface can be found at
javadoc/JavaTaminoAPI/com/softwareag/tamino/db/api/common/TException.html

Note: Existing programs that werewritten to runwith earlier versions of Tamino and throw
exceptions in their code or custom exceptions derived directly or indirectly from TException
will cause compilation errors if used with Tamino version 8.x.

9Tamino API for Java

Release Notes

Use of New Serialization Pragma

With version 4.4, Tamino enables you to customize the presentation of the result of an XQuery.
With this new facility Tamino XQuery can manage both first-rate database querying and front-
end publishing in a single step, thus making the handling of XML data even easier and faster than
ever. The output of such anXQuerywas always serialized using a standardized responsewrapper.

The TXMLObjectAccessorwill handle wrapped or unwrapped XML results and
TNonXMLObjectAccessorwill handle nonXML results. In order to find out whether a query will
return wrapped or unwrapped XML data, the accessor must know the serialization specification.
The serialization specification can be specified as a part of an XQuery expression, or it can be set
using setter methods of TXQuery class.

Code Sample

Retrieve response as plain text

TXMLObjectAccessor accessor = connection.newXMLObjectAccessor(
TAccessLocation.newInstance(COLLECTION), TDOMObjectModel.getInstance());
TXQuery xquery = new TXQuery("for $q in input()/Account return $q");
xquery.setOutputMethod(TOutputMethod.TEXT);
TResponse response = accessor.xquery(xquery);
System.out.println("Response as a STRING -->" + response.getQueryContentAsString());

OR

TXMLObjectAccessor accessor = connection.newXMLObjectAccessor(
TAccessLocation.newInstance(COLLECTION), TDOMObjectModel.getInstance());
TXQuery xquery = new TXQuery("{?serialization method='text' ↩
media-type='text/plain'?}for $q in
input()/Account return $q");
TResponse response = accessor.xquery(xquery);
System.out.println("Response as a STRING -->" + response.getQueryContentAsString());

Retrieve response as nonXML document

TNonXMLObjectAccessor accessor = connection.newNonXMLObjectAccessor(
TAccessLocation.newInstance(COLLECTION));
TXQuery xquery = new TXQuery("declare namespace tf =
\"http://namespaces.softwareag.com/tamino/TaminoFunction\" " +
"declare namespace ino= \"http://namespaces.softwareag.com/tamino/response2\" " +
"input()/ino:nonXML[tf:getInoId(.)=5]/..");
xquery.setOutputMethod(TOutputMethod.INODOCUMENT);
TResponse response = accessor.xquery(xquery);
//Get inputStream from response.
TInputStream inputStream = response.getQueryContentAsStream(); ↩

Tamino API for Java10

Release Notes

Use of Cursor Parameter _scroll

Until the previous release, the _scroll parameter had always been set to "yes", even if the user
did not intend to move backward in a cursor. The current implementation optionally enables a
user to set the _scroll parameter to "no", in order to gain better performance.

Code Sample

Using XML Accessor

xmlAccessor.setScrollType(TScroll.NO);
TResponse result = streamAccessor.query(query, 5);

Using Stream Accessor

streamAccessor.setScrollType(TScroll.NO);
TInputStream inputStream = streamAccessor.openCursor(TQuery.newInstance(docType), ↩
1, 5);

Use of _maximumrequestduration Parameter

In Tamino, the response time of a single request depends on a number of factors, e.g. the presence
of indexes, locks of concurrent transactions, amount of data to be searched or sorted, etc. Thus,
an application can be blocked for a considerable time because a single request takes quite some
time. In particular, similar requests might have performedwell in the past. Often, such a situation
is resolved only by timeouts e.g. in the HTTP layer or the transaction timeout in Tamino. On the
other hand, a user might issue a request that – intentionally or unintentionally – consumes a lot
of Tamino resources and blocks other requests.

Until now the XML maximum query duration property was available with Tamino. But this
property is applicable for XQuery andX-Query only. A newparameter, _maximumrequestduration,
has been introduced to limit the maximum elapsed time for all requests to a database.

11Tamino API for Java

Release Notes

Code Sample

// Get Accessor object to execute requests.
TXMLObjectAccessor accessor = connection.newXMLObjectAccessor(

TAccessLocation.newInstance(COLLECTION), TDOMObjectModel.getInstance());

// Set maximum request duration in seconds.
accessor.setMaximumRequestDuration(2);

Cancel Requests

Currently it is not possible to stop requests sent to Tamino through the Tamino API for Java. Once
started, a query executes (i.e., consumes CPU cycles, main memory, and I/O capacity) until all
results are delivered or until an error condition occurs. The user has no chance to cancel a long
running request (and thus stop resource consumption).

In the current version of Tamino, the server provides this feature. Application-owned requests
can be cancelled using the Tamino API for Java.

Code Sample

/*
 * In order to cancel any request, it is required to set as cancellable.
 * It is recommended to set the client application name for ease of tracing / ↩
debugging.
 */
accessor.setCanBeCancelled(true);
accessor.setApplicationName("myApplication");
//Execute requests (XQuery, X-Query, process, define etc) using accessor
//... ...

/* In order to cancel above request, client application need to call cancelRequests()
 * on same accessor object concurrently.
 */
accessor.cancelRequests();

// Note that cancelRequests() will cancel all active requests issued using same ↩
accessor object.

Tamino API for Java12

Release Notes

Xquery Prepare and Execute

In order to separate the compilation of an XQuery from its execution, Tamino 4.4 provides an in-
terface for preparing and executing queries. Two new commands have been introduced: _prepare
and _execute.

To support this feature in Tamino API for Java , the class
com.softwareag.tamino.db.api.accessor.TPreparedXQuery has been implemented.

The lifetime of a prepared query is determined by a connection (session). Therefore the TConnection
interface provides a factory method for creating an instance of TPreparedXQuery. Note that a
prepared query can only be used in the context of a session. Thismeans that LocalTransactionMode
must be used when working with prepared queries. A prepared query can be executed using an
XML object accessor.

In order to pass parameters to a query, XQuery provides external variables. An external variable
gets its value from the evaluation context (client application). The Tamino API for Java provides
several external variable binding APIs.

Code Sample

// Get tamino connection, use local transaction mode
connection = getConnection();
connection.useLocalTransactionMode();

// Get XML object accessor
accessor = connection.newXMLObjectAccessor();

// Prepare XQuery using connection object
TPreparedXQuery query = connection.prepareQuery("declare variable $y:string as ↩
xs:string external for $q in
 input()/DataTypes[string=$y:string] return $q");
// Bind external variables
query.bindString(new QName("http://www.softwareag.com","y","string"),"String");

// Execute prepared XQuery
TResponse response = accessor.xquery(query);

13Tamino API for Java

Release Notes

User Schema with Cyclic Imports

The Tamino API for Java now supports multiple or cyclic schema DEFINE and UNDEFINE oper-
ations.

Code Sample

Define Schema Cluster

//Get Tamino connection and schema definition accessor
TConnection connection = connectionFactory.newConnection(URI);
tsd3Accessor = connection.newSchemaDefinition3Accessor(TDOMObjectModel.getInstance());

//create schema documents as TXMLObjects
TXMLObject[] schemaObjects = new TXMLObject[2];
schemaObjects[0] = schemaObject1;
schemaObjects[1] = schemaObject2;
//define schema cluster
tsd3Accessor.define(schemaObjects);

Undefine Schema Cluster

//Get Tamino connection and schema definition accessor
TConnection connection = connectionFactory.newConnection(URI);
tsd3Accessor = connection.newSchemaDefinition3Accessor(TDOMObjectModel.getInstance());

//create undefined items
TUndefineItem[] undefineItems = new TUndefineItem[2];
undefineItems[0] = new TUndefineItem("collectionName","schema1name"); ↩

Weaker Locking on Long-Lasting Index Access

A new parameter has been introduced in Tamino 4.4 to support weaker locking on long-lasting
index access operations:

_QUERYSEARCHMODE={"approximative"|"accurate"|"nonserialized"}

Where:

"accurate"
represents the current behavior (this is the default);

"approximative"
specifies the new behavior;

Tamino API for Java14

Release Notes

"nonserialized"
is similar to mode approximative, but omits post-processing.

In order to support this feature in the Tamino API for Java, the new class TQuerySearchMode is
introduced to represent the _QUERYSEARCHMODE parameter value.

The TQuery class represents the XQuery expression that is to be executed. To the send parameter
_QUERYSEARCHMODEwith XQuery, the following getter/setter APIs have been added in the TQuery
class:

setQuerySearchMode(TQuerySearchMode mode)
TQuerySearchMode getQuerySearchMode()

You can find detailed information about the query search mode in the X-Machine Programming
documentation.

Code Sample

TQuery query = new TQuery("Account");
query.setQuerySearchMode(TQuerySearchMode.APPROXIMATE);
TResponse response = accessor.query(query);

Domain Authentication

It is possible to specify a domain when creating a TConnection instance.

Isolation Levels

The Tamino XML Server uses an enhanced locking algorithm, providing several isolation levels.
Each isolation level has different effects on parallel transactions. The interface TConnection in the
package com.softwareag.tamino.db.api.connection provides access to the transactional para-
meters which define the behavior of Tamino when dealing with concurrent access of data. The
parameters are:

LockwaitMode
IsolationLevel
LockMode
IsolationDegree

Additionally, a subset of the transactional parameters may also be defined with the accessors. For
detailed information, see the Javadoc reference section in the online documentation.

15Tamino API for Java

Release Notes

Tip: The previous API version returned default values if the transactional parameters were
not changed explicitly. Now null values indicate the Tamino default values.

Schema definition

Methods in the interfaces TSchemaDefinition3Accessor and TStreamAccessor in the package
com.softwareag.tamino.db.api.accessor allow you to specify a TDefineMode. This permits
definition of a schemawith validation. For detailed information, see the Javadoc reference section
in the online documentation.

Explain Query

The class TQueryBuilder offers methods to build a TQuery instance for an “explain” query. It can
be used to retrieve information about query execution for analysis and optimization.

Query Count

The interface TXMLObjectIterator in the package com.softwareag.tamino.db.api.objectModel
has additionalmethods to get the total number of resulting objects for a query issued to the Tamino
XML Server. This query count is only available for queries that have been issued using the query
method, specifying a quantity (i.e. when the Tamino cursoring mechanism is being used). The
Tamino XML Server only returns a query count if the calculation does not require the creation of
the result set as a whole. In other words, Tamino XML Server only returns a query count if it is
not expensive to calculate.

Tamino XQuery

The Tamino API for Java supports two query languages: Tamino X-Query and Tamino XQuery
(note the hyphen).

XQuery is supported by the new classes TXQuery and TXQueryBuilder in the package
com.softwareag.tamino.db.api.accessor. XQueries can be executed in the interfaces
TXMLObjectAccessor and TStreamAccessor.

X-Query, the former query language of the TaminoXMLServer, can still be used, e.g. formigration
purposes.

Tamino API for Java16

Release Notes

Retry Handler

If a request to the Tamino XML Server fails, a retry handler will retry the request. In the case of a
transaction timeout (session lost), the retry handler will set up a new session to the Tamino XML
Server and associate it with the TConnection object. This is only possible if the last successful
command was commit or rollback. For all other failures, the retry handler will retry the request
up to 10 times, with an increasing time interval between successive retries.

You can disable retries by calling TPreference.getInstance().setUseRetryHandler(false) in
the package com.softwareag.tamino.db.api.common.

Tip: If you create a new connection from the TConnectionFactory to determine whether a
database is available, you should disable the retry handler before doing so. Failure to do
so results in a long waiting time if the database is inaccessible.

Pre- and Postconditions

The exceptions TPreconditionViolation and TPostconditionViolation in the package
com.softwareag.tamino.db.api.common are no longer part of the API. It is not recommended to
catch pre- and postcondition violations thrown by the API in client components. Nevertheless,
the API components may still throw runtime exceptions in the case of a contract violation.

Xerces V2.5.0

The Tamino API for Java comes with the Xerces V2.5.0 Java XML parser.

JDOM 1.0

The Tamino API for Java comes with JDOM 1.0.

17Tamino API for Java

Release Notes

General Entities

Previous versions of thisAPI set theApache-Xerces-specific feature http://apache.org/xml/features/non-
validating/load-external.dtd. This feature simplified the parsing of XML documents, because the
DTDwas not searched and therefore no problems arose if theDTDdid not exist orwas non access-
ible. However, this caused general entities to be lost; they were neither translated nor kept.

In the current version of the API, the parser by default attempts to translate general entities.

If you want to maintain compatibility with older versions of the API, set the preference property:
TPreference.getInstance().setUseApacheLoadExternalDTD(false);.

XML Documents: Encoding Information

The encoding information stored in the database currently gets lost. For TXMLObjectAccessor, this
is because the underlying SAX parsers ignore the encoding information. For the TStreamAccessor
implementation, this happens because no encoding information is recognized.

Connection Pooling

The Tamino API for Java offers the possibility to pool physical Tamino connections. For more in-
formation, see the reference documentation of the class TConnectionPoolManager in the package
com.softwareag.tamino.db.api.connection.

List Databases

The Tamino API for Java offers the possibility to retrieve the list of available databases for a given
Tamino XML Server. For more information, see the reference documentation of the class
TConnectionFactory in the package com.softwareag.tamino.db.api.connection and in partic-
ular the methods getDatabases().

Tamino API for Java18

Release Notes

II Introduction

19

20

3 Introduction

The Tamino API for Java offers an object-oriented programming interface to the Tamino XML
Server. You can use it towrite client applications that access andmanipulate data stored in Tamino
databases. As such it performs the same task as the HTTP Client API for Java, but does so in a
more flexible way and is not restricted to a specific object model. You can use the Tamino API for
Java with Tamino XML Server, Version 4.1.1.4 and later.

The Tamino API for Java:

■ supports different models for accessing data in Tamino (DOM, JDOM, SAX, and stream);
■ supports standards JAXP and DOM2;
■ supports local and global (XA) transactions;
■ introduces well-defined exception handling with localization support;
■ hides the native interface and communication logic of the Tamino XML Server

The following section introduces you to the individual components of the Tamino API for Java.
We then present a simple “Hello World” example with which you can become acquainted with
programming the Tamino API for Java.

21

22

III Tamino API for Java Component Profile and Set-up

23

24

4 Tamino API for Java Component Profile and Set-up

■ Component Profile ... 26
■ Deployment .. 27
■ Supported Character Encodings ... 28
■ Reference Documentation ... 30

25

The Tamino API for Java can be used to access and manipulate data stored in the Tamino XML
Server as well as for applications which deploy a Tamino XML database.

Component Profile

Here you will find general information about the APIs and how to deploy them.

The Tamino API for Java is automatically installed if you choose the option "Complete" of the
Tamino XML Server installation. For more information, refer to the installation section of the
Tamino XML Server documentation.

Component Profile for the Tamino API for Java

All platforms supported by Tamino XML Server.Supported Platforms

The Tamino API for Java can be used with all versions of the Tamino XML Server
not older than version 2.3.1. Please check the documentation of the Tamino XML
Server for the supported features.

Required Software

As prerequisite for developing and running applications using the Tamino API for
Java you need a fully installed Java. The Tamino API for Java has been tested
successfully using Java 7.

<TaminoInstallDir>/SDK/TaminoAPI4J (henceforth called <TaminoAPIDir>)Location of Installed
Component

Library - Tamino API for Java:Component Files

<TaminoAPIDir>/lib/TaminoAPI4J.jar
<TaminoAPIDir>/lib/TaminoAPI4J-l10n.jar
<TaminoAPIDir>/lib/TaminoAPI4J-l10n_en.jar

Note: Installing additional language packs requires that the localizedmessages .JAR
files of the corresponding locale are included:

<TaminoAPIDir>/lib/TaminoAPI4J-l10n_<locale>.jar

Library - Additional .jar Files:

<TaminoAPIDir>/lib/cstUtils.jar
<TaminoAPIDir>/lib/utx.jar
<TaminoAPIDir>/lib/xts.jar
<TaminoAPIDir>/lib/javaJDOM.jar

Tracing:

<TaminoAPIDir>/lib/log4j.jar

Part of the bundled third-party software as mentioned below.

Examples:

Tamino API for Java26

Tamino API for Java Component Profile and Set-up

Component Profile for the Tamino API for Java

<TaminoAPIDir>/examples/JavaTaminoAPIExamples.jar

In <TaminoAPIDir>/lib you will find the required versions of:Bundled Software

Apache Xerces 2 (xercesImpl.jar, xmlParserAPIs.jar)
JDOM (jdom.jar)
log4j.jar

Important: The Tamino XML Server supports the new schema definition language based on
XML Schema (XSD), whereas earlier versions support TSD4 and TSD3 (versions up to
Tamino XML Server v4.4) or TSD2 (versions up to Tamino XML Server v2.3.1).

Deployment

To work with the Tamino API for Java

You need a running Tamino XMLServer in order to deploy anAPI. If youwant to access an existing
Tamino database, you must know its URI (such as http://localhost/tamino/mydb).

1 Set your CLASSPATH environment variable so that it includes all the .jar files contained in the
directory <TaminoAPIDir>/lib. For information on how to set an environment variable, please
consult the documentation for your operating system.

2 Make sure that programs of the Java Runtime Environment such as the compiler javac or the
interpreter java are either of version 1.3 or of version 1.4 . You can check the version by entering
java -version.

To use the examples of the Tamino API for Java

■ Examples that use the TaminoAPI for Java are packaged in the file JavaTaminoAPIExamples.jar.
You can extract them into the current directory by using the jar utility:

jar xf <TaminoAPIDir>/examples/JavaTaminoAPIExamples.jar

The .jar archive expands to a directory hierarchy. In the subdirectory com/software-
ag/tamino/db/api/examples, you will find the examples. The source code as well as class files
are provided.

27Tamino API for Java

Tamino API for Java Component Profile and Set-up

Supported Character Encodings

The Tamino API for Java supports the standard character encodings and their well known aliases,
as shown in the following list. Please observe that TaminoXMLServermay support other encodings
than those listed here.

Well known aliasesEncoding Name

950, cp950, csBig5, ibm-1370_VSUB_VPUA, x-big5Big5

850, csPC850Multilingual, IBM850cp850

857, csIBM857cp857

860, csIBM860, IBM860cp860

861, cp-is, csIBM861, IBM861cp861

862, cp867, cspc862latinhebrewcp862

cp863, csIBM863, IBM863cp863

csIBM864cp864

865, csIBM865, IBM865cp865

866, csIBM866cp866

868, cp-ar, csIBM868, IBM868cp868

869, cp-gr, csIBM869cp869

csEUCPkdFmtJapanese, eucjis, Extended_UNIX_Code_Packed_Format_for_Japanese,
ibm-33722_VPUA, ibm-eucJP, X-EUC-JP

EUC-JP

csEUCKR, ibm-970_VPUA, ibm-eucKR, X-EUC-KREUC-KR

ibm-1392gb18030

1383, chinese, cp1383, csGB2312, csISO58GB231280, EUC-CN, gb, gb2312-1980,
GB_2312-80, ibm-1383, ibm-1383_VPUA, ibm-eucCN, iso-ir-58, X-EUC-CN

GB2312

CP936, ibm-1386_VSUB_VPUA, MS936, zh_cn, windows-936GBK

CCSID01140, CP01140, cpibm1140, ebcdic-us-37+euroIBM01140

CCSID01141, CP01141, cpibm1141, ebcdic-de-273+euroIBM01141

CCSID01142, CP01142, cpibm1142, ebcdic-dk-277+euro, ebcdic-no-277+euroIBM01142

CCSID01143, CP01143, cpibm1143, ebcdic-fi-278+euro, ebcdic-se-278+euroIBM01143

CCSID01144, CP01144, cpibm1144, ebcdic-it-280+euroIBM01144

CCSID01145, CP01145, cpibm1145, ebcdic-es-284+euroIBM01145

CCSID01146, CP01146, cpibm1146, ebcdic-gb-285+euroIBM01146

CCSID01147, CP01147, cpibm1147, ebcdic-fr-297+euroIBM01147

CCSID01148, CP01148, cpibm1148, ebcdic-international-500+euroIBM01148

CCSID01149, CP01149, cpibm1149, ebcdic-is-871+euroIBM01149

cpibm37, ebcdic-cp-us, ebcdic-cp-ca, ebcdic-cp-wt, ebcdic-cp-nl, cp37, cp037, 037IBM037

Tamino API for Java28

Tamino API for Java Component Profile and Set-up

Well known aliasesEncoding Name

CP1026, csIBM1026, Ibm-1026_STDIBM1026

273, CP273, cpibm273, csIBM273, ebcdic-deIBM273

277, csIBM277, cpibm277, EBCDIC-CP-DK, EBCDIC-CP-NO, ebcdic-dkIBM277

278, cp278, cpibm278, csIBM278, ebcdic-cp-fi, ebcdic-cp-se, ebcdic-svIBM278

280, CP280, cpibm280, csIBM280, ebcdic-cp-itIBM280

284, CP284, cpibm284, csIBM284, ebcdic-cp-esIBM284

285, CP285, cpibm285, csIBM285, ebcdic-cp-gb, ebcdic-gbIBM285

cp290, csIBM290, EBCDIC-JP-kanaIBM290

297, cp297, cpibm297, csIBM297, ebcdic-cp-frIBM297

IBM367

420, cp420, csIBM420, ebcdic-cp-ar1IBM420

424, cp424, csIBM424, ebcdic-cp-heIBM424

500, CP500, cpibm500, csIBM500, ebcdic-cp-be, ebcdic-cp-chIBM500

IBM852

IBM855

IBM857

IBM862

IBM864

IBM869

CP870, csIBM870, ibm-870, ibm-870_STD, ebcdic-cp-roece, ebcdic-cp-yuIBM870

871, CP871, cpibm871, csIBM871, ebcdic-cp-is, ebcdic-isIBM871

CP918, csIBM918, , ebcdic-cp-ar2, ibm-918_STD, ibm-918_VPUAIBM918

ISO-2022-CN-EXT

ISO-2022-CN

csISO2022JPISO-2022-JP

csISO2022KRISO-2022-KR

iso-8859-15

8859-1, cp819, csISOLatin1, IBM819, ISO_8859-1:1987, iso-ir-100, l1, latin1ISO-8859-1

8859-2, 912, cp912, csISOLatin2, ISO_8859-2:1987, iso-ir-101, l2, latin2iso-8859-2

8859-3, 913, cp913, csISOLatin3, iso-ir-109, l3, latin3iso-8859-3

8859-4, 914, cp914, csISOLatin4, ISO_8859-4:1988, iso-ir-110, l4, latin4iso-8859-4

8859-5, 915, cp915, csISOLatinCyrillic, cyrillic, ISO_8859-5:1988, iso-ir-144iso-8859-5

1089, 8859-6, arabic, asmo-708, cp1089, csISOLatinArabic, ecma-114, ISO_8859-6:1987,
iso-ir-127

iso-8859-6

813, 8859-7, cp813, csISOLatinGreek, ecma-118, elot_928, greek, greek8, ISO_8859-7:1987,
iso-ir-126

iso-8859-7

916, cp916, csISOLatinHebrew, Hebrew, 8859-8, ISO_8859-8:1988, iso-ir-138iso-8859-8

29Tamino API for Java

Tamino API for Java Component Profile and Set-up

Well known aliasesEncoding Name

8859-9, 920, cp920,latin5, csISOLatin5, ISO_8859-8:1989, iso-ir-148, l5iso-8859-9

cp878, cskoi8r, koi8KOI8-R

943, cp943, cp932, csShiftJIS, csWindows31J, MS_Kanji, pck, sjis, windows-31j, x-sjisShift_JIS

874, cp874, cp9066, ms874, windows-874TIS-620

ANSI_X3.4-1968, ASCII, ANSI_X3.4-1986, cp367, csASCII, ISO_646.irv:1983,
ISO_646.irv:1991, ISO646-US, iso-ir-6, us

US-ASCII

cp1201, UTF16_BigEndian, x-utf-16beUTF-16BE

cp1200, UTF16_LittleEndian, x-utf-16leUTF-16LE

cp1208, cp65001UTF-8

csUnicode, ISO-10646-UCS-2, ucs-2UTF-16

cp1250windows-1250

cp1251windows-1251

cp1252windows-1252

cp1253windows-1253

cp1254windows-1254

cp1255windows-1255

cp1256windows-1256

cp1257windows-1257

cp1258windows-1258

Reference Documentation

The reference documentation for the Tamino API for Java. You will find the documentation about
packages and classes/interfaces after the respective sections: the reference documentation for the
Tamino API for Java follows next.

Tamino API for Java30

Tamino API for Java Component Profile and Set-up

IV
■ 5 Say Hello! ... 33
■ 6 Architectural Overview ... 43

31

32

5 Say Hello!

■ XMLGreeting: Inserting an XML Document ... 34
■ ProcessXMLGreeting: Operating in Local Transaction Mode .. 37
■ NonXMLGreeting: Inserting Non-XML Data .. 58
■ ProcessNonXMLGreeting: Operating in Local Transaction Mode with Non-XML Data 42

33

Before discussing the details of the API let us take a look at a very simple example that does
nothing else than insert a friendly greeting into an existing database. The section describing the
Tamino API package explains where you will find the example files used below; please refer also
to the section "How To Create a Tamino Database" in the Tamino documentation. The following
examples show you how to perform the most common operations on a database:

■ establish a connection to a Tamino database
■ obtain an access method to handle either XML or non-XML data
■ perform common operations such as insert, update, delete, as well as querying a database
■ use a local transaction mode
■ close a database connection

Four examples are provided that demonstrate these tasks:

XMLGreeting: Inserting an XML Document

The class XMLGreeting shown below accomplishes the following tasks that are typical for an ap-
plication accessing data stored in a Tamino database:

1. establish a connection to the existing Tamino database mydb

2. obtain an access method to handle XML data using the Document Object Model (DOM)

3. insert an XML document into the database

4. query the database to retrieve the document inserted previously

5. close a database connection

It is assumed that a database called mydb has already been created and is running. We use two
string constants that hold the URI of the database and the XML instance to be inserted:

 // URI of the Tamino database, please edit accordingly
 public final static String DATABASE_URI = "http://localhost/tamino/mydb";

 // XML document to be written to the connected database
 public final static String XML = "<Greeting by='XMLGreetingApplication'>Hello ↩
World</Greeting>";

Please note that Tamino considers this as a valid XML document. Strictly speaking, this document
satisfies all conditions of an XML document except that the XML declaration (<?xml
version="1.0"?>) is missing.

We define xmlObject as an instance of TXMLObject. For representing the document structure, we
choose DOM as one of several available object models. So xmlObject holds a DOM representation
of that greeting document:

Tamino API for Java34

Say Hello!

 // Put the XML content into a StringReader
 StringReader stringReader = new StringReader(XML);

 // Instantiate an empty TXMLObject instance using the DOM object model
 TXMLObject xmlObject = TXMLObject.newInstance(TDOMObjectModel.getInstance());

 // Establish the DOM representation by reading the contents from the character ↩
input stream
 xmlObject.readFrom(stringReader);

Now we can go through the typical processing steps of a Tamino application:

1. Establish a Connection
Use a factory method of TConnectionFactory to instantiate a TConnection. A TConnection
object effectively represents a Tamino database session. You can use the newConnectionmethod
to establish a connection with a database that is specified by DATABASE_URI:

 // Establish the Tamino connection
 TConnection connection = TConnectionFactory.getInstance().newConnection(↩
DATABASE_URI);

2. Obtain an Accessor
With the help of an Accessor object you can access the data that is to be read from or written
to a database.Herewe instantiate a new TXMLObjectAccessor object that is bound to the database
connection established in the previous step. There are two parameters specifying the type of
access: the first is the collection into which data is to be stored (TAccessLocation); here it is the
default collection ino:etc that is always present in a Tamino database. The second is the object
model, which is DOM in this example:

// Obtain a TXMLObjectAccessor with a DOM object model
TXMLObjectAccessor xmlObjectAccessor = connection.newXMLObjectAccessor(

TAccessLocation.newInstance("ino:etc"),
TDOMObjectModel.getInstance());

3. Insert the XML Document
The xmlObjectAccessor providesmethods for performing queries andmanipulating XMLdata
such as inserting our TXMLObject instance into the default collection ino:etc. On insertion the
XML object is assigned a unique ID (ino:id) that you can get by applying the object's method
getId.

35Tamino API for Java

Say Hello!

// Invoke the insert operation
xmlObjectAccessor.insert(xmlObject);

// Show the ino:id of the document just inserted
System.out.println("Insert succeeded, ino:id=" + xmlObject.getId());

4. Query the Database
The querymethod of an xmlObjectAccessor expects as arguments a non-empty X-Query ex-
pression. We construct a query expression that retrieves the XML object stored with the previ-
ously assigned ino:id (which is 1 for the first item stored in a database):
/Greeting[@ino:id="1"]. Here Greeting is the name of the document's doctype that is returned
by themethod getDoctype(). You can access the result set returned by Taminowith an instance
of TResponse. The getFirstXMLObjectmethod retrieves the first element of the result set

 // Prepare to read the instance
 TQuery query = TQuery.newInstance(xmlObject.getDoctype() + "[@ino:id=" + ↩
xmlObject.getId() + "]");

 // Invoke the query operation
 TResponse response = xmlObjectAccessor.query(query);
 if (response.hasFirstXMLObject()) {
 StringWriter stringWriter = new StringWriter();
 response.getFirstXMLObject().writeTo(stringWriter);
 System.out.println("Retrieved following instance:" + stringWriter);
 }
 else
 System.out.println("No instance found!");

5. Close the Connection
The TConnection instance is also responsible for closing an open database connection. You can
close the connection to the database mydb by using:

connection.close();

The example file contains additional code for error handlingwhich is not relevant for the discussion
of the API basics.

Running the Example

You need to include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, xercesImpl.jar, xml-
ParserAPIs.jar, jdom.jar and log4j.jar in your system's class path, all of which are included in the
distribution of the TaminoAPI (see the component profile). Then you can run the Java interpreter:

Tamino API for Java36

Say Hello!

java com.softwareag.tamino.db.api.examples.greeting.XMLGreeting
Insert succeeded, ino:id=1
Retrieved following instance:<Greeting by="XMLGreetingApplication" ino:id="1">Hello ↩
World</Greeting>

Note: Using JavaTaminoAPIExamples.jar only works if you have created a database called
"mydb" on your local host. Otherwise you have to change the constant DATABASE_URI and
recompile the code.

ProcessXMLGreeting: Operating in Local Transaction Mode

We extend and modify the example above and demonstrate how to operate in a local transaction
mode. In addition to inserting data and querying the database, updating and deleting data are
also demonstrated. We also use a different object model:

1. establish a connection to the existing Tamino database mydb

2. obtain an Accessor instance

3. insert a new document: <Greeting></Greeting>

4. The following tasks are performed in a local transaction mode:
■ retrieve first stored object
■ update objects in the database
■ commit the transaction if successful otherwise rollback

5. leave the local transaction mode

6. query the updated document

7. delete document

8. close the connection

We use the same constants as before.

1. Establish a Connection
This is done the same way as in the previous example.

2. Obtain a JDOM Accessor
The Accessor used here is instantiated in the same way as before, but in contrast to the first
example it uses the JDOM object model.

37Tamino API for Java

Say Hello!

 // Obtain the concrete TXMLObjectAccessor with an underyling JDOM object model
 accessor = connection.newXMLObjectAccessor(TAccessLocation.newInstance(↩
collection) ,
 TJDOMObjectModel.getInstance());

3. Insert the XML Document
Here we make use of TResponse. An object of that class is instantiated and stores the response
from Tamino. The data will be inserted by calling the accessor's insertmethod.

 // TResponse represents an access response from Tamino.
 TResponse response = null;

 // Invoke the insert operation and obtain the response.
 response = accessor.insert(xmlObject);

 // Show the collection, doctype and id
 System.out.println("Insert succeeded, ino:collection:" + ↩
xmlObject.getCollection() +
 ", ino:doctype:" + xmlObject.getDoctype() + ", ino:id:" + ↩
xmlObject.getId());

4. Operate in a Transaction Block
We use a transaction block to query and update the database. Normally, every operation is
running inside its own transaction block, and with the end of the operation the implicit trans-
action ends (auto-commit). Herewe enter a local transactionmode, performa query and anupdate
operation in one transaction, which is finished by either a commit or rollback.

a. Open the Transaction Block
For entering the local transaction mode, we instantiate TLocalTransaction and call the
useLocalTransactionModemethod to bind it to the currently open connection.

TLocalTransaction localTransaction = null;
// Switch to the local transaction mode
localTransaction = connection.useLocalTransactionMode();

b. Query the Database and Retrieve First Object
Again we use a TResponse object. You can retrieve the first stored object by calling
getFirstXMLObject.

// Invoke the query to obtain the document and to lock it
TResponse response = accessor.query(xpath);

// Obtain the TXMLObject from the response
TXMLObject xmlObject = response.getFirstXMLObject();
if (xmlObject == null)

return;

Tamino API for Java38

Say Hello!

c. Update the Database
Update the current document after changing some text.

// Invoke the update
response = accessor.update(xmlObject);
System.out.println("Update succeeded!");

d. Finish Transaction
If every part of the transaction is successful, then commit the transaction:

localTransaction.commit();

If a TAcessorException is thrown, then a rollback is performed in the catch branch:

catch (TAccessorException accessorException) {
showAccessFailure(accessorException);
localTransaction.rollback();
throw accessorException;

}

5. Leave the Local Transaction Mode
You must leave the local transaction mode by explicitly switching to the auto commit mode:

connection.useAutoCommitMode();

6. Delete the Document
As final operation we delete the second document:

TResponse response = accessor.delete(query);
System.out.println("Deleted the document!");

7. Close the Connection
This is done the same way as before.

Running the Example

You need to include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, xercesImpl.jar, xml-
ParserAPIs.jar, jdom.jar and log4j.jar in your system's class path, all of which are included in the
distribution of the TaminoAPI (see the component profile). Then you can run the Java interpreter:

39Tamino API for Java

Say Hello!

java com.softwareag.tamino.db.api.examples.greeting.ProcessXMLGreeting
Insert succeeded, ino:collection:ino:etc, ino:doctype:Greeting, ino:id:2
Update succeeded!
Queried document:<Greeting ino:id="2" by="ProcessGreetingApplication">Hello World, ↩
updated :-)</Greeting>
Deleted the document!

Note: As in the previous example, using JavaTaminoAPIExamples.jar only works if you have
created a database called "mydb" on your local host. Otherwise you have to change the
source code and recompile it.

NonXMLGreeting: Inserting Non-XML Data

This example is nearly the same as the first example, but this time we want to insert a non-XML
document. In the Tamino API a clear distinction is made between handling of XML documents
and non-XML documents. Since the application logic is the same as before, we concentrate on the
differences with respect to non-XML documents.

Again, a string constant will hold the document to be inserted into the database:

 // Non-XML document to be written to the connected database
 public final static String NON_XML = "Greeting by='XMLGreetingApplication':Hello ↩
World";

Please note that this document is a non-XML document, although it pretty much looks like the
document used in the previous examples. It lacks any XML elements and thus it neither has a ne-
cessary root element nor can it be well-formed. It is a non-XML document used for an image or
video file, or a text file that does not comply with the XML standard.

We define nonXMLObject as an instance of TNonXMLObject. In non-XML data there is no structural
representation for which an object model could be used. The second argument is the name of the
collection. Since it is null, the default collection ino:etcwill be used. The next argument is the
doctype name ino:nonXML, followed by the document name NonXMLGreeting. The last argument
is the content type text/plain.

// Put the XML content into a StringReader
StringReader stringReader = new StringReader(NON_XML);

// Instantiate an empty TNonXMLObject instance
TNonXMLObject nonXMLObject = TNonXMLObject.newInstance(stringReader ,

null ,
"ino:nonXML" ,
"NonXMLGreeting" ,
"text/plain");

Tamino API for Java40

Say Hello!

1. Establish a Connection
This is already described in the previous examples.

2. Obtain an Accessor
Wehave to instantiate an object from TNonXMLObjectAccessor. As the data is non-XML an object
model is not needed:

 // Obtain a TNonXMLObjectAccessor
 TNonXMLObjectAccessor nonXMLObjectAccessor = connection.newNonXMLObjectAccessor(
 TAccessLocation.newInstance(↩
"ino:etc"));

3. Insert the Non-XML Document
There is a corresponding set of methods available for TNonXMLObjectAccessor instances so that
inserting the non-XMLdocument is analogous to inserting an XMLdocument: it is also assigned
a unique ID (ino:id) that you can retrieve after insertion:

// Insert document and display its ino:id afterwards
nonXMLObjectAccessor.insert(nonXMLObject);
System.out.println("Insert succeeded, ino:id=" + nonXMLObject.getId());

4. Query the Database
Analogous to the XMLGreeting example.However,wenowuse a ByteArrayOutputStream instead
of a StringWriter:

// Instantiate TQuery
TQuery query = TQuery.newInstance(nonXMLObject.getDoctype() +

"[@ino:id=" + nonXMLObject.getId() + "]");
// Invoke the query operation
TResponse response = nonXMLObjectAccessor.query(query);
if (response.hasFirstNonXMLObject()) {

ByteArrayOutputStream outputStream = new ByteArrayOutputStream();
response.getFirstNonXMLObject().writeTo(outputStream);
System.out.println("Retrieved following instance:" + outputStream);

}
else

System.out.println("No instance found!");

5. Close the Connection
This is done the same way as in the previous examples.

Running the Example

You need to include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, xercesImpl.jar, xml-
ParserAPIs.jar, jdom.jar and log4j.jar in your system's class path, all of which are included in the
distribution of the TaminoAPI (see the component profile). Then you can run the Java interpreter:

41Tamino API for Java

Say Hello!

java com.softwareag.tamino.db.api.examples.greeting.NonXMLGreeting
Insert succeeded, ino:id=1
Retrieved following instance:Greeting by='XMLGreetingApplication':Hello World

ProcessNonXMLGreeting: Operating in Local Transaction Mode with Non-
XML Data

In this example the same tasks are performed as in ProcessXMLGreeting, except that non-XML
data is used.

Running the Example

You need to include the same .jar files as before. Then you can run the Java interpreter:

java com.softwareag.tamino.db.api.examples.greeting.ProcessNonXMLGreeting
Insert succeeded, ino:collection:ino:etc, ino:doctype:ino:nonXML, ino:id:2
Update succeeded!
Queried document, Content:Greeting by='XMLGreetingApplication':Hello World
Deleted the document!

Tamino API for Java42

Say Hello!

6 Architectural Overview

■ API Overview ... 44
■ Tamino API Components .. 45
■ Exception Handling .. 46
■ Interfaces .. 65
■ Access Methods and Response Processing .. 52

43

This chapter explains the general architecture of the Tamino API. The following sections are
provided:

API Overview

This section introduces key concepts that are required for an understanding of the Tamino API
architecture. The general concept follows a component and object-oriented development approach
and is described here without referring to the features of a specific object-oriented programming
language.

The following graphic shows the Tamino API architecture:

Tamino API for Java44

Architectural Overview

Tamino API Components

For the client application only the Connection, Accessor, Object Model and Response components
are of interest. The Command Invocation component is only for internal use and is invisible to the
client application.

■ Connection
■ Accessor
■ XML Object Model
■ Response Builder

Connection

The entry point to the API is the Connection component. It is needed to establish a connection to
a Tamino database. Within the context of a Connection, Tamino specific services are executed and
results are returned. An integral part of this component is to provide transaction support, i.e., the
starting and finishing, by commit or rollback, of Tamino transactions.

Accessor

The Accessor provides high-level services to invoke specific operations on the Tamino database.
This comprises insert, update, delete and query operations on Tamino XML documents as well
as operations to access non-XML documents or meta data (e.g. what doctypes are stored under a
specific collection).

In general, a distinction is made between access to XML or non-XML documents. The client uses
an Accessor instance that is capable of accessing either XML or non-XML documents, but not
both.

XML Object Model

This component describes how concrete documents that are storable in Tamino are represented.
In general, XML and non-XML are treated differently. This is reflected by different classes within
the object model. TXMLObject is the abstraction of XML documents whereas TNonXMLObject is
used for the abstraction of non-XML documents.

Furthermore TXMLObject represents a facade to the underlying object model (DOM, JDOM, and
others). This ensures a loose coupling between theAPI and the concrete XMLobject representation.
Since each objectmodel is represented by its own class, the client simply chooses the desired object
model by instantiating the corresponding class such as TDOMObjectModel.

45Tamino API for Java

Architectural Overview

Response Builder

The role of this component is to build from low level results (XML or Non-XML documents
within input streams) as they are returned by Tamino, high level response objects. Once the client
has invoked a certain operation on an accessor, a high level Tamino response object is returned.
The information that can be found in such a response object can be categorized as follows:

■ Response Information
Each Tamino response document contains general context information that is related to the
previous request. This includes information such as return values, message codes, session ids,
session keys etc. Generally, response information is always containedwithin a Tamino response
document.

■ Query-related XML documents
XMLdocuments that are returned in response to XML related queries are nestedwithin Tamino's
response documents. In this case the corresponding response object provides a
TXMLObjectIterator that can be used to navigate in a type-safe manner over the resulting
TXMLObject instances.

■ Query-related Non-XML documents
Non-XML documents are returned in response to non-XML related queries. In this case the
corresponding response object provides a TNonXMLObjectIterator that can be used to navigate
in a type-safe manner over the resulting TNonXMLObject instances.

Exception Handling

Each component that is part of the architecture is responsible for its own exception handling. Ex-
ceptions that can be thrown to the outside are always component specific. Therefore, the client
only receives component specific exceptions during the interaction with the component.

Each component defines a base class exception that contains more detailed component specific
exceptions. The base class exception's name consists of the component name with the suffix
Exception. For example, the Connections component base class exception is named
TConnectionException. Furthermore each of these base class exceptions is derived from the most
common API exception TException.

However, the situation is different when pre- or postconditions are violated for operations that
are invoked by the client. In the case of contract violation, an ViolatedPrecondition or
ViolatedPostcondition exception is thrown by the affected component. These exceptions are
applied for any type of pre- and postcondition violations.

Each component can only throw either component specific exceptions or the API wide defined
pre- and postcondition violation exceptions. It is not possible that a component directly throws
an exception that originates from another internal client component. In these situations it is more

Tamino API for Java46

Architectural Overview

likely that an exception that might be thrown is carried piggyback so that the client can retrieve
it.

Interfaces

This section introduces component-specific interfaces that the application developer has to be
aware of for an in depth understanding of the API. The term interface here means any type of
class that is part of a component's facade. According to UML this can be a concrete class, abstract
class or an interface classwhich only defines a set of abstract operations. The interfaces a component
offers can be distinguished in service oriented interfaces and exception specific interfaces. The
first generally defines the services a component offers while the second defines the component’s
manner in exceptional conditions.

TheUML component diagram shown belowdepicts themost relevant service interfaces that serve
as facades to their owning components.

Please note that you use different classes when you process non-XML data instead of XML data:

47Tamino API for Java

Architectural Overview

Non-XML DataXML Data

TNonXMLObjectAccessorTXMLObjectAccessor

TNonXMLObjectTXMLObject

TNonXMLObjectIteratorTXMLObjectIterator

Connection

A client always gets access to the API by acquiring a concrete TConnection instance from a
TConnectionFactory. TConnection introduces all operations that are needed to access the concrete
accessor objects, so that this is the entry point to the Accessor component. Furthermore it provides
access to the TLocalTransaction instance that is bound to the client's connection.
TLocalTransaction contains all the operations to work with Tamino in a transaction context,
which means that transactions can be started, committed or rolled back.

Accessor

The high level access to Tamino is accomplished by using a concrete TAccessor instance. A concrete
accessor class implements the common TAccessor interface and provides a set of logically grouped
access operations. Currently, there are the following concrete accessor classes:
TNonXMLObjectAccessor for access of non-XML objects, TXMLObjectAccessor for access of XML
objects, TStreamAccessor for the stream-based access of XML objects, TSystemAccessor for access
to system information, TSchemaDefinition2Accessor for accessing database schema information
in TSD2, TSchemaDefinition3Accessor for accessing database schema information in the current
schema language, based onXMLSchema, and TAdministrationAccessor for issuing TaminoXML
Server _admin commands.

A TNonXMLObjectAccessor uses a given TNonXMLObject instance as the non-XML document rep-
resentation for an insert or delete operation. TQuery is used for the retrieval of non-XMLdocuments
stored in Tamino. In the same way a TXMLObjectAccessor uses a given TXMLObject instance for
an insert, update or delete operation. TQuery is the representation of a Tamino X-Query expression
and is used for the XML document retrieval.

To obtain a concrete accessor, the client always has to use a TConnection instance that defines the
database session with Tamino. Each accessor instance is logically bound to a specific database
session. Once the client starts a transaction on the connection’s TTransaction instance, the trans-
action context also affects all accessors that are currently running within the connection context.
As a consequence a commit or rollback takes place on all accessor specific operations that have
been invoked during the transaction context.

Tamino API for Java48

Architectural Overview

Object Model

Documents that are storable for Tamino are either represented by the class TXMLObject for XML
or by the class TNonXMLObject for non-XML. The client uses a non-XML accessor to pass
TNonXMLObject instances back and forth to Tamino and proceeds in the same way concerning
XML accessors and TXMLObject instances.

The common abstraction to all Tamino documents is TDataObjectwhich also serves as a base class
to TNonXMLObject and TXMLObject. TNonXMLObject basically contains the non-XMLdata as an input
stream. This can be provided by the client as input data for insert operations to Tamino or as an
input stream which Tamino returned as the result of a query operation.

The abstract base class TXMLObject represents a facade to the concrete underlying XML object
model. A factory method can be used to instantiate a concrete TXMLObject class that serves as an
adapter to the object model. In Java, TXMLObject supports the instantiation of instances that use
DOM or JDOM as object model. Other object models can be dynamically plugged in when the
client provides implementations for TXMLObjectModel. The purpose behind TXMLObjectModel is
to provide meta-information that defines the concrete object model so that the API is able to work
with it on demand.

Response

Tamino responds to a command invocation such as _xquery, _xql, _process, _delete, etc. with
an XML response document. It contains general response information as well as the result set,
which consists of the documents returned from Tamino. You can access this response information
by an instance of TResponse. It always contains information on the execution result such as the
response code.

49Tamino API for Java

Architectural Overview

When the client invokes a query operation for XML documents, the TResponse instance provides
a TXMLObjectIterator that can be used to navigate in a type-safe manner over the result set of
TXMLObject instances. However, if the client only wants to obtain the first document,
getFirstXMLObject on the TResponse instance is invoked to avoid the additional indirectionwith
the iterator.

The situation changes when the client wants to access non-XML documents. In this case Tamino
does not always respond with XML result documents. When non-XML documents are retrieved,
Tamino directly returns the non-XML documents rather than responding with XML response
documents. The API however hides this mechanism and behaves for non-XML in much the same
way as with XML access. As a consequence, the client works with non-XML documents in the

Tamino API for Java50

Architectural Overview

same way as when accessing XML documents. The non-XML classes are used to access Taminos
non-XML documents. When the client invokes a query operation for non-XML documents with
the TNonXMLObjectAccessor, the TResponse instance provides a TNonXMLObjectIterator that can
be used to navigate in a type-safe manner over the result set of TNonXMLObject instances. If the
client only wants to obtain a single non-XML document, the getFirstNonXMLObject operation on
the TResponse instance can be used.

The API hides the fact that Tamino handles non-XML objects in a different way than XML objects.

51Tamino API for Java

Architectural Overview

Query

As already mentioned, a clear distinction is made between the handling and access of XML and
non-XML documents.

An abstraction of Tamino query expressions formulated in X-Query is the class TQuerywhich is
a single class needed to retrieve both XML documents and non-XML documents when using the
SoftwareAG proprietary query language X-Query based on XPath.

For X-Query's successor XQuery there is the class TXQuery available to retrieve XML documents
when using the query language XQuery propagated by theW3C. Retrieval of non-XMLdocuments
using XQuery is currently not implemented.

Access Methods and Response Processing

Access Methods

The Tamino API for Java provides several different ways to access and store documents in Tamino
and different ways to process the response returned by Tamino. Different accessors offer access
to Tamino on different abstraction levels.

The lowest level of access to Tamino is available through the TStreamAccessor. It treats all docu-
ments as streams of bytes or characters. It delivers the entire response document returned by
Tamino as a single stream. The TStreamAccessordoes not process or interpret the Tamino response
document. The interpretation of the response document is up to the client program.

On a higher abstraction level, the Tamino API offers the interfaces TXMLObjectAccessor and
TNonXMLObjectAccessor. These interfaces treat each document as a separate object represented
by the TXMLObject and TNonXMLObject interfaces.These accessors process and interpret the response
documents returned by Tamino and separate the result information (return value,message, cursor
information etc.) from the result content. These accessors are capable of supporting different object
models.Anobjectmodel defines, howXMLdocuments contained in Tamino responses are delivered
to the client program and how the client program delivers documents to Tamino (DOM, JDOM,
SAX, stream).

Note the differences between a TStreamAccessor and the stream object model. The stream object
model offers stream access to XML documents contained in the result content, while the
TStreamAccessor offers streamaccess to thewhole Tamino response,without further interpretation
of the response document. The stream object model works with TXMLObject instances, whereas
TStreamAccessorworks with TInputStream instances.

Note: The TStreamAccessor delivers the Tamino XML Server response as a stream without
any XMLparsing, thus being considerably faster than all other objectmodel based accessors.
Notably, the largest part of processing time when using the Tamino API for Java is spent

Tamino API for Java52

Architectural Overview

for parsing of XML documents. This should be taken into consideration when optimizing
performance.

Apart from the previously mentioned accessors there are specialized accessors available which
provide access to specific types of information. The TSchemaDefinition2Accessor and the
TSchemaDefinition3Accessor provide methods to access and store schema information. The
TSystemAccessor and the TAdministrationAccessor provide access to system information.

Response Processing

The result of a Tamino response is contained within the xql:result node of the Tamino response
document. It can be a list of XML documents or a list of literals (strings, numbers etc.). The API
offers access to a list of XML documents via the document iterators (TXMLObjectIterator and
TNonXMLObjectIterator), which can be obtained from the TResponse class. However, there are
convenience methods in the TResponse object to directly access the first document of such a list.

You can directly access literals in the result content with the TResponsemethod
getQueryContentAsString(). Currently, the Tamino response does not contain any type inform-
ation for literals, so they are always returned as strings and the client program has to convert them.

53Tamino API for Java

Architectural Overview

54

V Doing More with the API

We now provide further examples that show you how to use the Tamino API. In these examples
we demonstrate:

■ how to work with XML objects that are validated against a schema definition
■ how to work with XML objects that contain non-ASCII characters
■ how to add an XML object model
■ how to perform “joins” (how to retrieve information from different doctypes into a single result
set)

■ how to test integrity constraints between document types
■ how to test for unique keys

In the first example called “Get Personal”, we demonstrate XML document processing using the
schema "Person".

In the second example called “SAX Package: Using SAX Object Model”, we demonstrate a simple
application using the SAX object model.

In the third example called “Adding an Object Model”, we demonstrate how to add another XML
object model to the API using the DOM4J object model.

In the fourth example called “All That Jazz”, more advanced concepts such as conceptual model
representation, schema definition, joining documents are discussed.

55

56

7 Get Personal

■ Inserting and Querying Documents ... 58
■ Inserting and Querying Documents Using Schemas ... 60

57

In this example, we will demonstrate some basic XML document processing.

As data, we provide five XML documents intended to be used with the very simple "person"
schema. The document instances contain basic personal information such as last name, first name,
and sex. You will find these XML documents along with a Tamino schema definition file in the
examples/persons directory of the Tamino documentation.

In order to try out these examples, you will need a running database with the "person" schema
defined. Please refer to the Tamino documentation for how to create a Tamino database.

The following use cases are covered in these examples:

■ establish a connection to a Tamino database
■ use a system accessor for retrieving different information
■ read some XML documents from files and insert them into the database
■ perform different queries on these documents and list the results
■ delete documents
■ insert a schema definition into the database, creating a new collection
■ insert some XML documents into the created collection
■ show how a document fails the validation against the schema
■ close a database connection

Two examples are provided that demonstrate these tasks

■ ProcessPersons: Insert and query person documents
■ ProcessPersonsWithSchema: Insert and query person documents using a schema

Inserting and Querying Documents

The class ProcessPersons performs the following tasks that are typical for an application accessing
data stored in a Tamino database:

1. establish a connection to the existing Tamino database mydb

2. check the availability of the database connection

3. obtain a system access method and retrieve some system information

4. obtain an access method to handle XML data using the Document Object Model (DOM)

5. read some XML documents from files and insert them into the database

6. perform queries for all, some, the count of all and the availability of some documents

7. delete some documents by query and show the remaining documents

Tamino API for Java58

Get Personal

8. delete all documents

9. close a database connection

It is assumed that a database called mydb has already been created and is running. The necessary
data files are storedwithin the classpath at the same location as the class ProcessPersons andwill
be read from there. So the examples are ready to run provided that Tamino is installed on the
local host.

Running the Example

You need to include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, log4j.jar, xercesIm-
pl.jarand xmlParserAPIs.jar in your class path, all of which are distributed with the Tamino API.
Then you can run the Java interpreter:

java com.softwareag.tamino.db.api.examples.person.ProcessPersons
ProcessPersons sample programm
==============================
Connecting to Tamino database http://localhost/tamino/mydb, ... server is alive

Here is some systeminformation

The Tamino server hosting http://localhost/tamino/mydb is version 4.2.1.1
(Server API version: 1.1, Tamino API for Java version: 4.2.1.1)

Insert and query and delete in default collection "ino:etc"

Reading documents from file and insert into database

Inserted: Atkins, Paul (ino:id="1" collection="ino:etc" doctype="person")
Inserted: Bloggs, Fred (ino:id="2" collection="ino:etc" doctype="person")
Inserted: Müller, Andreas (ino:id="3" collection="ino:etc" doctype="person")
Inserted: Müller, Karla (ino:id="4" collection="ino:etc" doctype="person")
Inserted: Atkins, Andreas (ino:id="5" collection="ino:etc" doctype="person")

The query "person" returns 5 documents, which are:
Atkins, Paul (ino:id="1" collection="ino:etc" doctype="person")
Bloggs, Fred (ino:id="2" collection="ino:etc" doctype="person")
Müller, Andreas (ino:id="3" collection="ino:etc" doctype="person")
Müller, Karla (ino:id="4" collection="ino:etc" doctype="person")
Atkins, Andreas (ino:id="5" collection="ino:etc" doctype="person")

The query "//surname='Atkins'" returns "TRUE"
So list and then delete all "Atkins" documents

The query "person[//surname='Atkins']" returns 2 documents, which are:
Atkins, Paul (ino:id="1" collection="ino:etc" doctype="person")
Atkins, Andreas (ino:id="5" collection="ino:etc" doctype="person")

59Tamino API for Java

Get Personal

Deleted all documents for query "person[//surname='Atkins']"

The query "person" returns 3 documents, which are:
Bloggs, Fred (ino:id="2" collection="ino:etc" doctype="person")
Müller, Andreas (ino:id="3" collection="ino:etc" doctype="person")
Müller, Karla (ino:id="4" collection="ino:etc" doctype="person")

Deleted all documents for query "person"

Note: Using JavaTaminoAPIExamples.jar only works if you have created a database called
"mydb" on your local host. Otherwise you have to change the constant DATABASE_URI and
recompile the code.

Inserting and Querying Documents Using Schemas

The class ProcessPersonsWithSchema performs the following tasks that are typical for an applic-
ation accessing data stored in a Tamino database:

1. establish a connection to the existing Tamino database mydb

2. check the availability of the database connection

3. obtain a system access method and retrieve some system information

4. read a schema definition from file and insert it into the database, creating a new collection

5. read some XML documents from files and insert them into the database

6. show how a document fails the validation against the schema

7. query and list all successfully inserted documents

8. delete all documents

9. close a database connection

It is assumed that a database called mydb has already been created and is running. The necessary
schema and data files are stored within the classpath at the same location as the class
ProcessPersonsWithSchema andwill be read from there. So the examples are ready to run provided
that Tamino is installed on the local host. Note that the class ProcessPersonsWithSchema uses
some methods from the class ProcessPersons and thus cannot run without it.

Running the Example

You need to include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, log4j.jar, xercesImpl.jar,
and xmlParserAPIs.jar in your classpath, all of which are distributed with the Tamino API. Then
you can run the Java interpreter:

Tamino API for Java60

Get Personal

java com.softwareag.tamino.db.api.examples.person.ProcessPersonsWithSchema
ProcessPersonsWithSchema sample programm
==
Connecting to Tamino database http://localhost/tamino/mydb, ... server is alive

Here is some systeminformation

The Tamino server hosting http://localhost/tamino/mydb is version 4.2.1.1
(Server API version: 1.1, Tamino API for Java version: 4.2.1.1)

Create collection "people" insert and delete some documents

Reading TSD3 schema from file and insert into database

Inserted the schema for collection "people" and doctype "person"

Reading documents from files and insert into database

Inserted: Atkins, Paul (ino:id="1" collection="people" doctype="person")
Inserted: Bloggs, Fred (ino:id="2" collection="people" doctype="person")
Inserted: Müller, Andreas (ino:id="3" collection="people" doctype="person")

Can't insert: Müller, Karla (ino:id="" collection="people" doctype="person")
Reason: Line 8, Column 15: [element 'occupation' in element 'person']

Inserted: Atkins, Andreas (ino:id="4" collection="people" doctype="person")

The query "person" returns 4 documents, which are:
Atkins, Paul (ino:id="1" collection="people" doctype="person")
Bloggs, Fred (ino:id="2" collection="people" doctype="person")
Müller, Andreas (ino:id="3" collection="people" doctype="person")
Atkins, Andreas (ino:id="4" collection="people" doctype="person")

Deleted all documents for query "person"

Deleted collection "people" with all content

Note: Using JavaTaminoAPIExamples.jar only works if you have created a database called
"mydb" on your local host. Otherwise you have to change the constant DATABASE_URI and
recompile the code.

61Tamino API for Java

Get Personal

62

8 SAX Package: Using SAX Object Model

■ Overview ... 64
■ Construct a TSAXObjectModel ... 65
■ Obtain a SAX Accessor .. 66
■ Running the Example ... 66

63

The SAXpackage contains an example similar to the ProcessXMLGreeting example. It demonstrates
the usage of the Tamino TSAXObjectModel , which represents the SAX object model. You should
be familiar with the SAX object model to understand the TSAXObjectModel and this example.

Overview

Using the classes TDOMObjectModel, TJDOMObjectModel or TStreamObjectModel has advantages
over using SAX for reasons of simplicity. This is because SAX requires the user to develop one or
more event handlers. For example, when using the TDOMObjectModel the complete XMLdocument
is read into memory and represented as a tree. This allows you to manipulate any part of the
document instantly, and does not require any programming on your part. This convenience comes,
of course, at the expense of system resources and speed, as the complete XML document needs to
be parsed and Java objects need to be instantiated to represent the complete DOM tree. This
mechanismmay result in considerable overhead, especially in those cases where your application
only requires a small part of the XML document. In that case an approach based on SAX may
provide a much more efficient alternative. Using SAX you must provide one or more event
handlers for the parser. An event handler is a component that registers itself for callbacks from
the parser when SAX events are fired.

The TDOMObjectModel, TJDOMObjectModel and TStreamObjectModel are factory classes providing
a singleton instance by means of the factory method getInstance(). These object models are
generic and canworkwith every type of XML document. In contrast, the TSAXObjectModel differs
here, as it is not generic. For each type of XMLdocument, a specific instance of the TSAXObjectModel
must be created, specifying one or two sets of helper classes. Each set consists of an event handler
(extention of the SAX DefaultHandler) and a class representing the XMLnode either as a document
or an element. The event handler provides the processing logic specific to the XML node. The
event handlers available with the SAX package are named elementDefaultHandler and
documentDefaultHandler. The class (use saxElementClass or saxDocumentClass) must be an
implementation of the TSAXDocument or TSAXElement. When deciding to use the TSAXObjectModel
it is important to know whether it is to be used for processing query results or single XML docu-
ments (either programmatically instantiated or retrieved fromTamino) or both. For the processing
of query results a saxElementClass and an elementDefaultHandler are required. If only single
XML documents are retrieved from Tamino (via the accessor retrievemethod) or if single XML
documents are created (via a TXMLObject newInstance factory method), a saxDocumentClass and
a documentDefaultHandler are required. The documented example demonstrates both.

The SAX package consists of following classes:

Tamino API for Java64

SAX Package: Using SAX Object Model

DescriptionClass

The class with the main method. It actually does the same as the
ProcessXMLGreeting example:

ProcessGreeting

It establishes a connection, gets an Accessor (SAX accessor), inserts,
retrieves, updates anddeletes anXMLdocument<Message>...</Message>
in local transaction mode.

Represents an XML document.Greeting

It implements the TSAXElement and TSAXDocument interfaces

Extends the SAX DefaultHandler.GreetingDefaultHandler

Its purpose is to handle all events for the Message XML documents

Extends the TDocumentDefaultHandler class.DocumentDefaultHandler

It does its work by delegating the events to a GreetingDefaultHandler.

Extends the TSAXElementDefaultHandler class.ElementDefaultHandler

It does its work by delegating the events to a GreetingDefaultHandler.

Note: Because the ProcessGreeting class has the same functionality as the
ProcessXMLGreetingwe only describe the SAX aspects in the following sections.

Note: When interpreting an InputStream using the SAX object model, user-specific imple-
mentations of the abstract TSAXElementDefaultHandler class are used. To clear the contents
that might currently be available from TSAXElementDefaultHandler's methods
getFirstElement() and getElementIterator(), the interface nowoffers a reset()method
which is called at the appropriate time before input stream interpretation starts. The default
implementation of the reset()method is empty. If, for example, the user-specific imple-
mentation of TSAXElementDefaultHandlermaintains a list of elements, thís list must be
cleared in the reset()method.

Construct a TSAXObjectModel

// Instantiate the default handler that processes the sax events
greetingDefaultHandler = new GreetingDefaultHandler();

// Instantiate the document and element event handlers each of which
// delegates its events to the greetingDefaultHandler
docDefHandler = new DocumentDefaultHandler(greetingDefaultHandler);
elDefHandler = new ElementDefaultHandler(greetingDefaultHandler);

// Instantiate the specific TSAXObjectModel
saxObjectModel = new TSAXObjectModel("GreetingSAXObjectModel", Greeting.class, ↩

65Tamino API for Java

SAX Package: Using SAX Object Model

Greeting.class, docDefHandler, elDefHandler);

// Do the object model registration.
TXMLObjectModel.register(saxObjectModel);

Obtain a SAX Accessor

accessor = connection.newXMLObjectAccessor(TAccessLocation.newInstance(collection ↩
) , saxObjectModel);
 }

Running the Example

You need to include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, xercesImpl.jar, xml-
ParserAPIs.jar and log4j.jar in your CLASSPATH. These files are included in the distribution of the
Tamino API (see section Component Profile). You can then run the Java interpreter:

java com.softwareag.tamino.db.api.examples.greeting.SAX.ProcessGreeting

Going to insert <Greeting>Hello World</Greeting>
Insert succeeded, ino:collection:ino:etc, ino:doctype:Greeting, ino:id:1
Update succeeded!
Queried document:<Greeting ino:id="1">Hello World, updated :-)</Greeting>
Deleted the document!

Note: As in other examples delivered with the Tamino XML Server, using JavaTaminoAP-
IExamples.jar only works if you have created a database called “mydb” on your local host.
Otherwise you will have to change the source code and recompile it.

Tamino API for Java66

SAX Package: Using SAX Object Model

9 DOM4J: Adding an Object Model

■ Object Models .. 68
■ Assembling a New Object Model .. 70
■ Using the DOM4J Object Model: A Sample ... 75

67

A client application handles XML documents by using an accessor to pass TXMLObject instances
to Tamino. TXMLObject supports DOM and JDOM as object models, but you can add other object
models as well. This chapter explains the steps involved using DOM4J as an example.

Object Models

The underlying XML object model is represented by the abstract base class TXMLObject. Using a
factory method you can instantiate a TXMLObject that serves as an adapter to the object model.
DOM and JDOM are directly supported as object models, but you can dynamically plug in other
object models provided that the client offers an implementation for TXMLObjectModel.
TXMLObjectModel provides meta-information that defines the object model so that it can be used
within the API.

Using an Object Model

In the context of the Tamino API, you use an XML object model as follows (xxx here stands for an
arbitrary object model):

1. Use a TConnectionFactory to create a TConnection instance for establishing a connection to a
Tamino database

Tamino API for Java68

DOM4J: Adding an Object Model

2. Create an instance of the TxxxObjectModel.

3. Let the TConnection create an Accessor for the TxxxObjectModel.

4. Now you can use the Accessor to send a query to Tamino.

5. The resulting TResponse instance is able to create the Document instance specific to that object
model.

Writing an Object Model

An object model is defined by the following classes:

■ the generic class or interface of the underlying object model that represents the root node type
for an XML document; for DOM4J this is the Element interface.

■ TXMLObject adapter implementation which adapts some interfaces of the underlying object
model

■ an implementation for interpreting the input stream

As a consequence, the abstract base class TXMLObjectModel defines operations to access the meta
class for the node type, the TXMLObject adapter and the TResponseBuilder. To use a new object
model you need to provide the appropriate TXMLObjectModel implementation along with the
TXMLObject adapter and the TxxxInputStreamInterpreter implementation.

1. The TxxxObjectModel describes which xxx specific Document, Element, TxxxAdapter and
TxxxInputStreamInterpreter is used by the xxx object model.

2. To use this object model it must be registered in the TXMLObjectModelwith the method:
TXMLObjectModel.register(TXMLObjectModel xmlObjectModel).

69Tamino API for Java

DOM4J: Adding an Object Model

3. A TxxxElementIterator is needed to navigate unidirectional and type safe over the xxx specific
Elements.

4. TxxxInputStreamInterpreter interprets the TAMINO Stream and creates the xxx specific
Document instance

5. The TxxxAdapter adapts to the xxx specific object model to the generic TXMLObject interface.

Assembling a New Object Model

In this section we use DOM4J as an example to showwhich classes are needed for the implement-
ation of a new object model. You can use the example code available with this documentation (
<Tamino installaion directory>/SDK/TaminoAPI4J/Documentation/inoapi/listings/dom4j/)
as a template for supporting another object model in the Tamino API.

In the following sectionswe discuss the implementation of the classes needed based on theDOM4J
object model implementation.

First, you must determine a short name for the object model, by which all classes are recognized
as belonging to the adapter implementation of the same object model. Here, we use "xxx" as name
to refer to the new object model adapter.

You need to create two packages, one containing the complete implementation of the object
model adapter and another package with the implementation of the input stream interpreter.
Using "xxx" the package names are as follows:

■ com.softwareag.tamino.db.api.objectModel.xxx

■ com.softwareag.tamino.db.api.response.xxx

TxxxAdapter

TXMLObject is the abstract super class to represent an XML object. To create the specific adapter
class, this class must be extended. Example:

com.softwareag.tamino.db.api.objectModel.dom4j.TDOM4JAdapter

How to implement the TxxxAdapter

1 Copy the class

Tamino API for Java70

DOM4J: Adding an Object Model

com.softwareag.tamino.db.api.objectModel.dom4j.TDOM4JAdapter

to the new package:

com.softwareag.tamino.db.api.objectModel.xxx

2 Rename the adapter class to:

com.softwareag.tamino.db.api.objectModel.TxxxAdapter

3 Replace the references to org.dom4j.Element and org.dom4j.Documentwith references to
appropriate classes of the object model "xxx".

4 In the implementation of the object model, identify and use the methods that perform the
following tasks:

■ get the related Document
■ remove an Attribute
■ get an Attribute
■ add an Attribute
■ set a value
■ get the qualified name
■ get the root element

You also need away to read an InputStream and create your specificDocument instance. InDOM4J
this is SAXReader, which is used in the readFrom()methods.

The best way to make these changes is to replace the import instructions in your new Adapter
class (e.g. replace dom4j specific imports by imports for your newmodel), and to check any compiler
messages about missing methods.

TxxxInputStreamInterpreter

How to implement the TxxxInputStreamInterpreter

1 Copy the class

71Tamino API for Java

DOM4J: Adding an Object Model

com.softwareag.tamino.db.api.response.dom4j.TDOM4JInputStreamInterpreter

to the new package:

com.softwareag.tamino.db.api.response.xxx

2 Rename the class to:

com.softwareag.tamino.db.api.response.TxxxInputStreamInterpreter

3 In the import instructions replace the following classes

org.dom4j.Document;
org.dom4j.Element;
org.dom4j.Namespace;
org.dom4j.QName;
org.dom4j.DocumentException;
org.dom4j.io.SAXReader;

with the corresponding classes of the new object model.

4 In the implementation of the new object model, identify these classes andmethods of DOM4J
and change it appropriately for TxxxInputStreamInterpreter:

MethodClass

getRootElement()org.dom4j.Document

element()org.dom4j.Element

elements()

attributeValue()

getText()

get()org.dom4j.Namespace

org.dom4j.QName

org.dom4j.DocumentException

read()org.dom4j.io.SAXReader

Tamino API for Java72

DOM4J: Adding an Object Model

ObjectModel

TXMLObjectModel contains operations needed to define and control an XML object model. Each
XML object model is defined by four class instances:

Element
An Element class represents either an element or a fragment of the document tree.

Document
A Document class represents the complete document.

Adapter
An Adapter class adapts the physical object model to TXMLObject.

InputStreamAdapter
An InputStreamInterpreter class determines for a physical object model the way to handle
response documents returned by Tamino.

How to implement the TxxxObjectModel

1 Copy the class

com.softwareag.tamino.db.api.objectModel.dom4j.TDOM4JObjectModel

to the new package:

com.softwareag.tamino.db.api.objectModel.xxx.TxxxObjectModel

2 Change the constructor

protected TxxxObjectModel() {
super("xxx" ,

xxx.Document.class ,
xxx.Element.class ,
com.softwareag.tamino.db.api.objectModel.xxx.TxxxAdapter.class ,

 ↩
com.softwareag.tamino.db.api.response.xxx.TxxxInputStreamInterpreter.class);

}

Youmust use your specific Document, Element, Adapter and InputStreamInterpreter classes.

3 Change occurrences of TDOM4JObjectModel to TxxxObjectModel.

73Tamino API for Java

DOM4J: Adding an Object Model

Outputter

If your object model does not provide a class to serialize XML into a string, you have to write your
own class.

How to implement an outputter class:

1 Copy the classes

com.softwareag.tamino.db.api.objectModel.dom4j.TDOM4JXMLOutputter
com.softwareag.tamino.db.api.objectModel.dom4j.TDOM4JNamespaceStack

into the package

com.softwareag.tamino.db.api.objectModel.xxx

2 Rename these classes as:

com.softwareag.tamino.db.api.objectModel.xxx.TxxxXMLOutputter
com.softwareag.tamino.db.api.objectModel.xxx.TxxxNamespaceStack

3 You must replace the following classes and methods:

Method / ConstantClass

getNamespace()org.dom4j.Attribute

getQualifiedName()

getValue()

asXML()org.dom4j.CDATA

asXML()org.dom4j.Comment

getPublicID()org.dom4j.DocumentType

getSystemID()

getElementName()

getRootElement()org.dom4j.Document

getDocument()org.dom4j.Element

getNamespacePrefix()

getParent()

elements()

getQualifiedName()

getNamespace()

additionalNamespace()

attributes()

Tamino API for Java74

DOM4J: Adding an Object Model

Method / ConstantClass

getTextTrim()

getText()

asXML()org.dom4j.Entity

get()org.dom4j.Namespace

XML_NAMESPACE()

NO_NAMESPACE()

getUri()

getPrefix()

org.dom4j.ProcessingInstruction

4 In the implementation of TxxxXMLOutputter replace occurrences of TDOM4JNamespaceStack
with TxxxNamespaceStack.

Putting Together

At this point, you have a complete implementation of all necessary classes. Compile these classes,
include them and those of the original object model in the class path. You can then use the new
object model in your client applications.

Using the DOM4J Object Model: A Sample

To use the implementation for the DOM4J object model you need the DOM4J implementation
which you can download at http://www.dom4j.org/. You need to include the DOM4J classes and
the adapter classes in your classpath. You will find the adapter classes in the file JavaTaminoAP-
IExamples.jar in the directory <TaminoAPIDir>/examples.

In the sample below you can see how to register the new object model so that the Tamino API
knows about it. In the last line, an accessor is instantiated that uses the new object model.

// Constant for the database URI. Please edit to use your URI of interest.
private final static String DATABASE_URI = "http://localhost/tamino/mydb";

// Obtain the connection factory
TConnectionFactory connectionFactory = TConnectionFactory.getInstance();

// Obtain the connection to the database
TConnection connection = connectionFactory.newConnection(databaseURI);

// Instantiate the specific TxxxObjectModel
TxxxObjectModel xxxObjectModel = TxxxObjectModel.getInstance();

75Tamino API for Java

DOM4J: Adding an Object Model

http://www.dom4j.org/

// Register the object model
TXMLObjectModel.register(xxxObjectModel);

// Obtain the concrete TxxxObjectAccessor with an underlying xxx object model
 TXMLAccessor accessor = connection.newXMLObjectAccessor(↩
TAccessLocation.newInstance("ino:etc" , xxxObjectModel);

Tamino API for Java76

DOM4J: Adding an Object Model

10 All that Jazz

■ Conceptual model ... 78
■ Schema Definition ... 79
■ Populating the Database ... 87
■ Joining Documents .. 88
■ Testing Integrity Constraints .. 95
■ Testing for Unique Keys .. 100

77

Wenowpresent a fewmore use cases for the TaminoAPI. These examples cover amulti-document
join, the validation of integrity constraints, and the validation of unique keys.

All three examples introduce not only into programing with the Tamino API but also into the
programming with DOM and JDOM. The Tamino API has a pluggable object model interface and
allows to use various object models.

JDOM is a popular (albeit non-standard) API that provides a simpler interface than the standard
DOM implementations. Because it allows to merge different documents easily we use it for our
first example where we join multiple documents.

The preferred object model, however, is DOMwhich we will use for the following two examples.
DOM is a W3C recommendation and has bindings into many programming languages, which is
not the case for JDOM.

The DOMLevel 2 specification is available at http://www.w3.org/TR/DOM-Level-2-HTML/. You
will find a tutorial http://www.w3schools.com/xml/dom_intro.asp.

We have chosen to implement a small knowledge base about jazz musicians and jazz music. In
this scenario, jazzmusicians play together in different types of collaborations (jam session, project,
band) and produce results in form of albums.

For the following examples readers should have general knowledge about XML and DOM and
should have practical experience with Tamino, especially with the Tamino Schema Editor, the
Tamino Interactive Interface, and the Tamino Manager.

The examples are presented under the following topics:

Preparation

The section describing the Tamino API package explains where you will find the example files
used below.

To set up the stage start the Tamino Manager and create a new database with the name jazz. A
small database with the default settings will do.

Conceptual model

Our conceptual model of the jazz knowledge base consists of three document types:

■ a document type jazzMusician. The property type determines the type of jazzMusician: an
instrumentalist, a composer, or a singer. The property ID establishes a key for each musician
which we construct from the last name and the first name: "GillespieDizzy", "ColtraneJohn",
etc.

Tamino API for Java78

All that Jazz

http://www.w3.org/TR/DOM-Level-2-HTML/
http://www.w3schools.com/xml/dom_intro.asp

■ a document type collaboration. The property type determines the type of collaboration: a
band, a project, or a jam session. A collaboration is either a single event (jam session) performed
at a specific time and place, or it exists over a period of time. Each collaboration relates to at
least two jazz musicians that take part in that collaboration. A collaboration can also relate to
one or several albums which result from that collaboration.

■ a document type album. Here we have properties such as product number (which acts also as
key), publisher, and information about each track.

Schema Definition

Based on this simple conceptual model we can now define our schemata with the help of the
Tamino Schema Editor. All three schemata will be in a new Tamino collection which wewill name
encyclopedia.

Schema jazzMusician

We begin with jazzMusician. We set the schema name to "jazzMusician" and the collection name
to "encyclopedia":

79Tamino API for Java

All that Jazz

Then we define the document structure:

Here, we can see the complete schema as it appears in the Tamino Schema Editor. We have chosen
to implement the properties ID and type as attributes, andwe have declared ID as a standard index.

Both attributes have the type xs:NMTOKEN. The type of attribute type has been restricted by an
enumeration to the values "instrumentalist", "jazzSinger", and "jazzComposer". The element
birthDate has the type xs:date, and the other elements have the type xs:string or
xs:normalizedString.

The resulting schema definition should look like this:

Tamino API for Java80

All that Jazz

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "jazzMusician">
 <tsd:collection name = "encyclopedia">
 </tsd:collection>
 <tsd:doctype name = "jazzMusician">
 <tsd:logical>
 <tsd:content>open</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "jazzMusician">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "name">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "first"
 type = "xs:normalizedString"/>
 <xs:element name = "middle"
 type = "xs:normalizedString"
 minOccurs = "0"/>
 <xs:element name = "last"
 type = "xs:normalizedString"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "birthDate" type = "xs:date">
 </xs:element>
 <xs:element name = "instrument"
 type = "xs:string"
 minOccurs = "0"
 maxOccurs = "unbounded"/>
 </xs:sequence>
 <xs:attribute name = "type">
 <xs:simpleType>
 <xs:restriction base = "xs:NMTOKEN">
 <xs:enumeration value = "instrumentalist"/>
 <xs:enumeration value = "jazzSinger"/>
 <xs:enumeration value = "jazzComposer"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name = "ID"
 type = "xs:NMTOKEN" use = "required">

81Tamino API for Java

All that Jazz

 <xs:annotation>
 <xs:appinfo>
 <tsd:attributeInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard/>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:attributeInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

We can now define this schema in the database. We can do this directly from the Tamino Schema
Editor. In theDatabasemenu, selectDefine Schema. If you are not already connected to the jazz
database, choose theConnect to Server/Database button and enter your user name and password
to connect. Then select the jazz database from the list and choose the Define button.

Schema Collaboration

Again, the property type is defined as an attribute of type xs:NMTOKEN restricted by the enumeration
[jamSession, project, band]. The elements jazzMusician and result (which relates to album)
are of type xs:NMTOKEN, too, and are declared as standard indexes. The element time is declared
as type xs:dateTimewhile the elements from and to are declared as type xs:date. The other ele-
ments are declared as strings or normalized strings.

Tamino API for Java82

All that Jazz

The resulting schema should look like this:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "collaboration">
 <tsd:collection name = "encyclopedia">
 </tsd:collection>
 <tsd:doctype name = "collaboration">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation> <xs:element name = "collaboration">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "name" type = "xs:NMTOKEN">
 </xs:element>
 <xs:choice>
 <xs:element name = "performedAt">
 <xs:complexType>
 <xs:all>

83Tamino API for Java

All that Jazz

 <xs:element name = "location"
 type = "xs:normalizedString"/>
 <xs:element name = "time" type = "xs:dateTime"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name = "period">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "from" type = "xs:date"/>
 <xs:element name = "to" type = "xs:date"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:element name = "jazzMusician"
 type = "xs:NMTOKEN"
 minOccurs = "2"
 maxOccurs = "unbounded">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard/>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name = "result"
 type = "xs:NMTOKEN"
 minOccurs = "0"
 maxOccurs = "unbounded">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard/>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>

Tamino API for Java84

All that Jazz

 <xs:attribute name = "type" use = "required">
 <xs:simpleType>
 <xs:restriction base = "xs:NMTOKEN">
 <xs:enumeration value = "jamSession"/>
 <xs:enumeration value = "project"/>
 <xs:enumeration value = "band"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

Schema Album

For document type albumwe have defined element productNo as a standard index of type
xs:NMTOKEN. The element duration is declared as xs:shortwhile all other elements are declared
as strings or normalized strings.

The resulting schema should look like this:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "album">
 <tsd:collection name = "encyclopedia">
 </tsd:collection>
 <tsd:doctype name = "album">
 <tsd:logical>
 <tsd:content>open</tsd:content>

85Tamino API for Java

All that Jazz

 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "album">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "title" type = "xs:normalizedString">
 </xs:element>
 <xs:element name = "productNo" type = "xs:normalizedString">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard/>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name = "publisher"
 type = "xs:string" minOccurs = "0"/>
 <xs:element name = "track" maxOccurs = "unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "title" type = "xs:string"/>
 <xs:element name = "duration" type = "xs:short"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

We define both schemata collaboration and album to the jazz database.

Tamino API for Java86

All that Jazz

Populating the Database

Next, we add some test data to our database. We start with two famous jazz musicians. We create
parker.xml:

<?xml version="1.0"?>

<jazzMusician type="instrumentalist" ID="ParkerCharlie">
<name>

<first>Charlie</first>
<last>Parker</last>

</name>
<birthDate>1920-08-19</birthDate>
<instrument>saxophone</instrument>

</jazzMusician>

and dizzy.xml:

<?xml version="1.0"?>

<jazzMusician type="instrumentalist" ID="GillespieDizzy">
<name>

<first>Dizzy</first>
<last>Gillespie</last>

</name>
<birthDate>1917-10-21</birthDate>
<instrument>trumpet</instrument>

</jazzMusician>

Then, we create a (fictional) jam session post-election-jam.xml:

<?xml version="1.0"?>

<collaboration type="jamSession">
<name>post-election-jam</name>
<performedAt>

<location>Blues House</location>
<time>1945-10-21T20:00:00</time>

</performedAt>
<jazzMusician>GillespieDizzy</jazzMusician>
<jazzMusician>ParkerCharlie</jazzMusician>
<result>BGJ-47</result>

</collaboration>

and an album document blueshouse.xml as the result of that session:

87Tamino API for Java

All that Jazz

<?xml version="1.0" encoding = "UTF-8"?>

<album>
<title>Blues House Jam</title>
<productNo>BGJ-47</productNo>
<track>

<title>Post Election Jam I</title>
<duration>1175</duration>

</track>
<track>

<title>Post Election Jam II</title>
<duration>1235</duration>

</track>
</album>

We add these four documents to our encyclopedia collection in database jazz. We can use the
Tamino Interactive Interface to do so.

Joining Documents

Nowwe are ready towrite our first Java program to retrieve information from our database.What
we want to do is to find a particular jazz musician and retrieve all the information about this mu-
sician.Wewant to include information about the collaborations inwhich themusician participated
and about the albums that resulted from these collaborations. We don't want to list the albums
with all details. The title, product number, and publisher will be sufficient.

This task requires us to join information from three document types. We have to retrieve the ap-
propriate documents, and we must construct a new result document from the information com-
bined.

Constructing Queries

To retrieve the right jazzMusician document is easy. We just query for the ID attribute with the
query jazzMusician[@ID='?']where we replace '?'with the actual ID, for example with
"ParkerCharlie".

To find the corresponding collaborations is just as easy. We simply query for the jazzMusician
element in document type collaboration:

Tamino API for Java88

All that Jazz

collaboration[jazzMusician='?']

Finding the resulting albums requires a bit more work. We first have to extract the content of ele-
ment result from each collaboration instance. Then we have to use this value in the following
query:

album[productNo='?']

Tip: It is a good idea to test these queries with the Tamino Interactive Interface before im-
plementing them in Java.

The "main" method

We implement our example program as a Java class MusicianCollaborationResult that can be
executed from the command line.

The key value (ID attribute) of the jazzMusician document that we want to retrieve is passed as
a command line parameter to the main method. The mainmethod is implemented as a class
method. Therefore, it must first create a new instance of the class MusicianCollaborationResult.
Then it calls the instance method show and passes the key value as a parameter to this method:

public static void main(String[] args) throws Exception {
MusicianCollaborationResult musicianCollaborationResult =

new MusicianCollaborationResult(DATABASE_URI , COLLECTION);
musicianCollaborationResult.show(args[0]);
}

Global constants

We have used here a few constants that we still have to declare:

// Constant for the database URI.
private final static String DATABASE_URI =

"http://localhost/tamino/jazz";
// Constant for the collection.
private final static String COLLECTION = "encyclopedia";

We also introduce a namespace constant for the namespace prefix ino:. This constant will later
be used to identify Tamino-specific attributes such as ino:id. Namespaces are identified by URIs,
and the INO_NAMESPACE constant establishes the connection between namespace prefix and
namespace URI.

89Tamino API for Java

All that Jazz

// Constant for ino namespace.
private final static Namespace INO_NAMESPACE =

Namespace.getNamespace("ino",
"http://namespaces.softwareag.com/tamino/response2");

Instance variables

Then we set up two instance variables. The variable connectionwill hold a Tamino connection
object while the variable accessorwill hold a TXMLObjectAccessor instance. Accessor objects
provide the necessarymethods to query, insert, update, or delete documents in a specific collection
and via a specific connection.

// The database connection.
private TConnection connection = null;
// The accessor instance, here a high level TXMLObjectAccessor.
private TXMLObjectAccessor accessor = null;

Initialization

Both variables are initialized in the class constructor which is executed when the class method
show creates a new MusicianCollaborationResult instance. The connection is not created directly.
Instead, we first create an instance of a connection factory.

public MusicianCollaborationResult(String databaseURI,
String collection)

throws TConnectionException {
// Obtain the connection factory
TConnectionFactory connectionFactory =

TConnectionFactory.getInstance();

Note: Instances of TConnectionFactory, TXMLObjectAccessor, TDOMObjectModel, and
TJDOMObjectModel are not created with a new instruction but with the class method
getInstance().

Then we let the connection factory create the actual connection:

// Obtain the connection to the database
connection = connectionFactory.newConnection(databaseURI);

Finally we create the accessor object:

Tamino API for Java90

All that Jazz

// Obtain the concrete TXMLObjectAccessor
// with an underlying JDOM object model
accessor = connection.newXMLObjectAccessor(

TAccessLocation.newInstance(collection),
TJDOMObjectModel.getInstance());

}

Querying Tamino

Now, that we have established a connection and obtained an accessor object we are ready to query
the database:

// show result
private void show(String keyValue) throws Exception {

try {
// Build a query and process it
TResponse response =

processQuery("jazzMusician[@ID"+"='" + keyValue + "']");

From the key value passed as a parameter we construct a query string as shown above and hand
it over to the privatemethod processQuery(). Thismethod constructs a query object from a string
parameter and passes it to the querymethod of the accessor object. It also handles the case of a
TQueryException.

// process query
private TResponse processQuery(String s) throws Exception {

TQuery query = TQuery.newInstance(s);
try {

// Invoke the query operation.
return accessor.query(query);

}
catch (TQueryException queryException) {

// Tell about the reason for the failure.
showAccessFailure(queryException);
return null;

}
}

Evaluating the Query Response

This method returns a Tamino response object which can contain one or several result documents.
Sincewe assume that the ID of a jazzmusician is unique,we expect atmost a single result document.
We retrieve this document from the response object and get its top level JDOM element
(jazzMusician).

91Tamino API for Java

All that Jazz

// Get first (and single) object
if (!response.hasFirstXMLObject())

throw new Exception("Nothing found");
TXMLObject xmlObject = response.getFirstXMLObject();
// Get top level JDOM element
Element jazzMusician = (Element) xmlObject.getElement();

Next, we retrieve collaboration documents that match the key value (jazz musician ID):

response = processQuery(
"collaboration[jazzMusician"+"='" + keyValue + '"]");

Because this query may result in several documents we use an iterator object to loop through all
result documents:

// Iterate over result documents
TXMLObjectIterator collabIt = response.getXMLObjectIterator();
while (collabIt.hasNext()) {

xmlObject = collabIt.next();
// Get top level JDOM element
Element collab = (Element) xmlObject.getElement();

Merging Documents

Because we later want to paste these collaboration elements into the jazzMusician document,
we have to clone them. This operation removes the context (such as the parent information) from
the current node and allows us to insert it into another context (i.e. to merge documents):

// clone to remove context
collab = (Element) collab.clone();

Note: This technique is specific to JDOM.While DOMLevel 1 does not support themerging
of documents at all, DOM Level 2 introduces an importmethod. This methodmust be used
to import a foreign node into a target document before the foreign node can be added to a
node of the target document.

Nowwe retrieve the content of all result elements in each collaborationdocument. Using JDOM
methods, we first construct a list of all result child elements:

Tamino API for Java92

All that Jazz

// Get a list of all direct children with name "result"
List resultChildren = collab.getChildren("result");

Then we iterate over this list and extract the text from each element:

// get iterator over children
ListIterator resultIt = resultChildren.listIterator();
// now loop over the "result" children
while (resultIt.hasNext()) {
// get a single "result" child
Element resultElement = (Element) resultIt.next();
// get the content
String resultID = resultElement.getText();
// now read album records with resultID as key

By nowwe have obtained the values of all result elements in all collaborations of a jazzmusician.
We can use these values to retrieve the albums that are results of these collaborations. We do so
by querying for album documents with a productNo equal to resultID:

// now read album records with resultID as key
response = processQuery("album[productNo"+"='"

+ resultID + "']");

Again we expect only a single result document per key:

// Process the album if we have one
if (response.hasFirstXMLObject()) {

// get first (and only) result document
xmlObject = response.getFirstXMLObject();
// Get top level JDOM element
Element album = (Element) xmlObject.getElement();

Once again,we clone this element and remove all track child elements becausewe are not interested
in that information.

// clone to remove context
album = (Element) album.clone();
// remove "track" elements
album.removeChildren("track");

We also want to remove the Tamino specific ino:id attribute. To identify this attribute we use the
constant INO_NAMESPACE that connects the prefix ino:with the Tamino namespace URI.

93Tamino API for Java

All that Jazz

// remove ino:id
album.removeAttribute("id",INO_NAMESPACE);

Then, we simply add the remaining structure to our collaboration element stored in collab and
close the loop:

// add album to collaboration clone
collab.addContent(album);

}

By nowwe have joined document album to document collaboration. In the next step we join the
resulting collaboration document to document jazzMusician.

Similarly, we remove the result elements from the collaboration element (because this inform-
ation is already contained in the productNo attributes of the added album elements), and the ino:id.

// remove "result" elements from collaboration
collab.removeChildren("result");
// remove ino:id
collab.removeAttribute("id",INO_NAMESPACE);

Then we add the collaboration element to our jazz musician element and close the loop:

// and add collab to jazzMusician
jazzMusician.addContent(collab);

}

Done. What remains to do is to print the result:

// Output with JDOM output tool
XMLOutputter outputter = new XMLOutputter();
outputter.output(jazzMusician, System.out);

and to finally close the connection:

// Close the connection.
connection.close();

Running the Program

The complete listing is shown in MusicianCollaborationResult.java. This file contains also the ne-
cessary code for exception handling consisting of the privatemethod showAccessFailure and try,
catch, and finally clauses in the method show:

Tamino API for Java94

All that Jazz

We can execute this program from the command line or from our favorite IDE. If we invoke the
program with parameter "ParkerCharlie" we should get the following result:

<jazzMusician
xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
ino:id="2"
type="instrumentalist"
ID="ParkerCharlie">
<name>

<first>Charlie</first>
<last>Parker</last>

</name>
<birthDate>1920-08-19</birthDate>
<instrument>saxophone</instrument>
<collaboration type="jamSession">

<name>post-election-jam</name>
<performedAt>
<location>Blues House</location>
<time>1945-10-21T20:00:00</time>

</performedAt>
<jazzMusician>GillespieDizzy</jazzMusician>
<jazzMusician>ParkerCharlie</jazzMusician>
<album>
<title>Blues House Jam</title>
<productNo>BGJ-47</productNo>

</album>
</collaboration>

</jazzMusician>

Testing Integrity Constraints

Our next example is a program that tests for integrity constraints between two document types
before inserting a new document. When inserting a new collaboration document we want to
make sure that the alternative elements collaboration/performedAt/time and
collaboration/period/from do not contain events that take place before the birth date of each
participating musician. To make such a test "waterproof" against competing transactions wemust
perform it in the same transaction as the insert operation. Therefore, prior to the test we establish
a local transaction. If the test succeeds we perform the insert operation and explicitly commit the
transaction. Otherwise, we simply rollback the transaction.

Again, we write a Java program that can be executed from the command line. The file name of
the document which we wish to insert is specified as a parameter.

95Tamino API for Java

All that Jazz

Preparing for Transactions

The basic setup (constants, instance variables, constructor) is similar to the previous example in
section Joining documents. However, this time we use the DOM object model instead of JDOM.
In addition to establishing a connectionwemake sure thatwe run in a transaction safe environment
and therefore set the lock mode of the connection to "shared":

// Set lock mode to "shared"
connection.setLockMode(TLockMode.SHARED) ;

Also, the main()method looks similar to the one shown in the previous example:

public static void main(String[] args) throws Exception {
InsertConstraintCheck insertConstraintCheck =

new InsertConstraintCheck(DATABASE_URI , COLLECTION);
// perform the transaction
insertConstraintCheck.processTransaction(args[0]);

}

Processing Transactions

The actual work is done in method processTransaction(). Here, we first setup a few variables,
read the specified file into a DOM Tamino XML Object, and extract the DOM document object
(collaborationDoc):

TLocalTransaction myTransaction = null;
boolean abortTransaction = false;
try {

// Read file into a DOM Tamino XML object.
// Instantiate an empty TXMLObject instance
// related to the DOM object model.
TXMLObject collaborationObject =

TXMLObject.newInstance(TDOMObjectModel.getInstance());
// Establish the DOM representation by reading the content
// from a file input stream.
collaborationObject.readFrom(new FileInputStream(filename));
// get DOM document
Document collaborationDoc =

(Document) collaborationObject.getDocument();

Now we can start a new local transaction.

Tamino API for Java96

All that Jazz

// Set local transaction mode and get a transaction object
myTransaction = connection.useLocalTransactionMode();

Validating Constraints

Then we begin with the tests for constraint violation. We first extract the start date of the collabor-
ation – which is defined either by collaboration/performedAt/time or alternatively by
collaboration/period/from – and convert the string value of these elements into a Java Date
value. Because there are no other time and from elements in the document, we can access these
elements on document level via the DOMmethod getElementsByTagName:

// initialize start date
Element startDateElement = null;
// get a "from" elements if defined
NodeList fromList =

collaborationDoc.getElementsByTagName("from");
if (fromList.getLength() > 0) {
// get the only child
startDateElement = (Element) fromList.item(0);

} else {
// alternatively, get the "time" element
startDateElement =

(Element) collaborationDoc.getElementsByTagName("time").item(0);
}
// get start date value
String startDateValue = getText(startDateElement);
// convert to Date
Date startDate = toDate(startDateValue);

The conversion to the Java Date format is done with the private method toDatewhich is shown
in the full listing. The text content of element startDateElementwas extracted with the private
method getText. Text content is treated in DOM as a separate child element, and consequently
we first use the DOMmethod getFirstChild() followed by method getData():

// get text content from element
private String getText(Element element) {

return ((CharacterData) element.getFirstChild()).getData();
}

Now, we loop over all jazzMusician elements of the new collaboration document

// Get jazzMusician elements
NodeList collaborateurs =

collaborationDoc.getElementsByTagName("jazzMusician");
// now loop over the "jazzMusician" children
for (int i=0; i < collaborateurs.getLength(); i++) {

We extract their content and use it to query the database for jazzMusician documents:

97Tamino API for Java

All that Jazz

// get a single "jazzMusician" child
Element collaborateurElement =

(Element) collaborateurs.item(i);
// check if this item has content
if (collaborateurElement.hasChildNodes()) {

// get the string content
String collaborateurID = getText(collaborateurElement);
// Perform query for jazzMusicians
// identified by collaborateurID
TResponse response =

processQuery("jazzMusician[@ID"+"='" + collaborateurID + "']");

For each query we check if we have found a document. If so, we extract the birth date, convert it
to the Java Date format and compare it with the collaboration start date. If the birth date is larger
than the collaboration start date, or if the referenced jazzMusician document did not exist, we
report an appropriate error message and indicate that the transaction needs to be aborted.

// Process the musician document if we have one
if (!response.hasFirstXMLObject()) {

abortTransaction = true;
System.out.println("Error: Referenced jazzMusician "

+collaborateurID+" does not exist");
} else {

// get first (and only) result document
TXMLObject jazzMusicianObject =

response.getFirstXMLObject();
// Get top level DOM element
Document jazzMusicianDoc =

(Document) jazzMusicianObject.getDocument();
// get birthDate
Element birthDateElement = (Element)

jazzMusicianDoc.getElementsByTagName("birthDate").item(0);
// get string value
String birthDateValue = getText(birthDateElement);
// convert to date
Date birthDate = toDate(birthDateValue);
// compare with startDate
if (startDate.compareTo(birthDate) <= 0) {

abortTransaction = true;
// Report violation of integrity constraint
System.out.println(

"Error: Collaboration start date before birth date of jazz musician "
+collaborateurID);

}
}

Completing the Transaction

After we have looped through all collaborators we are ready to insert the new collaboration
document into the database. If the indicator abortTransactionwas set, we rollback the transaction.
Otherwise we perform the insert operation and commit the transaction.

Tamino API for Java98

All that Jazz

if (abortTransaction) {
myTransaction.rollback();
// Report abort of operation
System.out.println("Error: Insert not performed");

} else {
performInsert(collaborationObject);
myTransaction.commit();
// Show the collection, doctype and id

System.out.println(
"Message: Insert succeeded, ino:collection="
+ collaborationObject.getCollection() + ", ino:doctype="
+ collaborationObject.getDoctype() +", ino:id="
+ collaborationObject.getId());

}

The actual insert operation is performed in the private method performInsert()which is quite
similar to the previous processQuery()method, and which is shown in the full listing in Insert-
ConstraintCheck.java.

Running the Example

When we execute this program with parameter C:/projects/jazz/post-election-jam.xml (or wherever
else this file may be stored) we get a protocol similar to the following:

Message: Insert succeeded, ino:collection=encyclopedia, ino:doctype=collaboration, ↩
ino:id=3

However, if we change the time entry in this document from

<time>1945-10-21T20:00:00</time>

into

<time>1915-10-21T20:00:00</time>

and try to insert it again, we obtain:

Error: Collaboration start date before birth date of jazz musician GillespieDizzy

Error: Collaboration start date before birth date of jazz musician ParkerCharlie

99Tamino API for Java

All that Jazz

Error: Insert not performed

Note: As a matter of fact, we would need similar checks when we update a collaboration
document and, of course, when we update jazzMusician documents.

Testing for Unique Keys

The third example deals with the problem of inserting a document that has a primary (unique)
key. Both our jazzMusician and album document are equippedwith a primary key: jazzMusician
with the attribute ID, and albumwith the element productNo. When we want to add one of these
documents, we must make sure that a document with the same key value does not already exist
in the database.

Strategy

This must be done in a transactionally safe way, and there are several ways to achieve that. For
the purpose of this example, we have chosen an optimisticmethodwhich consists of the following
steps:

1. Start a transaction.

2. IInsert the document with the lock mode set to "shared".

3. Retrieve all documents with the same key value and with lock mode set to "unprotected".

4. If there are more than one document returned, rollback the transaction. Otherwise commit the
transaction.

However, this leaves us with a problem. Tamino does not allow us to change the lock mode of a
connection within a transaction. The solution is to open two connections. Connection A is set to
"shared" and performs the steps 1, 2, and 4. Connection B is set to "unprotected" and performs
step 3.

Initialization

Consequently, we have to initiate two database connections and two accessor instances. Here are
the definition for the instances variables:

// Database connection A
private TConnection connectionA = null;
// Accessor A
private TXMLObjectAccessor accessorA = null;
// Database connection B
private TConnection connectionB = null;
// Accessor B
private TXMLObjectAccessor accessorB = null;

The initialization, which is performed in the constructor of the class, looks like this:

Tamino API for Java100

All that Jazz

public InsertUnique (String databaseURI,String collection)
throws TConnectionException {

// Obtain the connection factory
TConnectionFactory connectionFactory =

TConnectionFactory.getInstance();
// Obtain the first connection to the database
connectionA = connectionFactory.newConnection(databaseURI);
// Obtain the concrete TXMLObjectAccessor with
// an underyling DOM object model
accessorA = connectionA.newXMLObjectAccessor(

TAccessLocation.newInstance(collection) ,
TDOMObjectModel.getInstance());

// Set local transaction mode to "shared"
connectionA.setLockMode(TLockMode.SHARED) ;
// Obtain the second connection to the database
connectionB = connectionFactory.newConnection(databaseURI);
// Obtain the second accessor
accessorB = connectionB.newXMLObjectAccessor(

TAccessLocation.newInstance(collection) ,
TDOMObjectModel.getInstance());

// Set lock mode of connection 2 to "unprotected"
connectionB.setLockMode(TLockMode.UNPROTECTED) ;

}

Processing the transaction

Our example program InsertUnique is written in a genericway. It accepts as parameters the name
of the XML file to be inserted and the name of the key to test (if the key is an attribute it is prefixed
with an @). These parameters are passed to the private method processTransaction().

Similar as in the previous example in section Testing integrity constraintswe first read the docu-
ment to be inserted from an XML file:

private void processTransaction(String filename, String key)
throws Exception {

TLocalTransaction myTransaction = null;
try {

// Read file into a DOM Tamino XML object.
// Instantiate an empty TXMLObject instance
// related to the DOM object model.
TXMLObject xmlObject =

TXMLObject.newInstance(TDOMObjectModel.getInstance());
// Establish the DOM representation
// by reading the content from a file input stream.
xmlObject.readFrom(new FileInputStream(filename));
// get DOM document
Document doc = (Document) xmlObject.getDocument();
// get top level element
Element root = (Element) xmlObject.getElement();

101Tamino API for Java

All that Jazz

Then we try to get the value of the key element or key attribute. In case of an attribute we first
must remove the @ from the key name which is done with method substring(1).

// get key value
String keyValue = null;
// check if key is an attribute or an element
if (key.startsWith("@")) {

// get attribute value
keyValue = root.getAttribute(key.substring(1));

} else {
// get element node list
NodeList nl = doc.getElementsByTagName(key);
if (nl.getLength() == 0)

throw new Exception("Key not found");
// get only element
Element elem = (Element) nl.item(0);
// get element content
keyValue = getText(elem);

}
// Check for proper content
if (keyValue == "") throw new Exception("Key not found");

The private method getText retrieves the text content of an element and is defined as in the pre-
vious example in section Testing integrity constraints.

Now we can start a transaction on connection A and insert the document:

// Start the transaction
myTransaction = connectionA.useLocalTransactionMode();
// Insert the document
performInsert(xmlObject);

Checking the unique constraint

Thenwe ask for the number of documentsmatching the key value.We do this through connection
B which was set to lock mode "unprotected". If the number of matching documents is unequal 1
we rollback the transaction, otherwise we perform a commit.

// Get number of matching documents
int c = getCount(xmlObject.getDoctype()

+ "["+key+"='" + keyValue + "']");
if (c == 1) {
// Unique - commit the transaction
myTransaction.commit();
System.out.println("Transaction committed");

} else {
// Bad - rollback the transaction
myTransaction.rollback();
throw new Exception("Key not unique: "

Tamino API for Java102

All that Jazz

+c+" occurrences. Transaction aborted.");
}

Counting documents

The number of matching documents is determined by private method getCount(). This method
simply wraps an XQuery count() function around the query string, performs the query, and
converts the result into an integer format.

private int getCount(String path) throws Exception {
try {

// Construct TQuery object
TQuery query = TQuery.newInstance("count("+path+")");
// perform the query
TResponse response = accessorB.query(query);
// get the number of documents found
String s = response.getQueryContentAsString();
// convert to integer
return Integer.valueOf(s).intValue();

}
catch (TQueryException queryException) {

showAccessFailure(queryException);
return 0;

}
}

The complete code of class InsertUnique is contained in InsertUnique.java.

Running the Example

We can test this program by invoking it with the parameters

"C:\projects\jazz\dizzy.xml" and "@ID".

We should get the following result (because we previously have already added dizzy.xml to the
database):

 java.lang.Exception: Key not unique: 2 occurrences. Transaction aborted.
 at ↩
com.softwareag.tamino.db.api.examples.jazz.InsertUnique.processTransaction(InsertUnique.java:123)
 at ↩
com.softwareag.tamino.db.api.examples.jazz.InsertUnique.main(InsertUnique.java:145)
 Exception in thread "main"

103Tamino API for Java

All that Jazz

104

11 Reference Documentation

The reference documentation for the Tamino API for Java is provided in Javadoc format. In the
HTML version, this link leads to the index page for the documentation in Javadoc.

In the PDF version of this document, you will find the documentation for the Tamino API for Java
right after this section.

105

106

VI Webserverless Access Via the Tamino API for Java

107

108

12 Webserverless Access Via the Tamino API for Java

■ Usage ... 110
■ Installation .. 110
■ Security Considerations .. 111
■ Limitations .. 111

109

The Tamino API for Java, in commonwith the other Tamino APIs, communicates with the Tamino
XML Server via an HTTP API through a web server. With this release of Tamino XML Server 4.1,
a Tamino database can now also be accessed without a web server through the Tamino API for
Java. This is achieved by the plug-in architecture of the API providing access the webserverless
base C API.

Usage

The distinction, whether the Tamino API for Java should access the Tamino XML Server via the
web server or without the web server, is done using the protocol tag in the URL. For example, if
a database can be accessed via http://localhost/tamino/mydb/, a URL such aswsl:///tamino/mydb/would
access the same database without going through the web server. When opening a connection to
a Tamino database using the webserverless mode via the call
TConnectionFactory.getInstance().newConnection(DB_URI), the variable DB_URImust specify
the protocol wsl instead of http, e.g.wsl:///tamino/mydb. Since all connections viaWSL have to use
the eXtended Transport Services (XTS) from Software AG, the hostname and the portnumber are
left blank in the URL and the database is accessed through its unique database name, as in the
above example mydb. This is the only change required when the webserverless mode is to be used,
i.e. to replace the protocol in all DB_URIs by wsl and leave out the hostname and the portnumber.

In order to use the correct XTS server, which knows about the desired database, either set the en-
vironment variable XTSDSURL locally or adjust the entry in the file /etc/hosts. The latter is normally
done automatically when the XTS package is installed.

Installation

In order to use the webserverless mode of the Tamino API for Java, the following points must be
considered:

1. Windows:

The directory containing the library modwsl.dllmust be in the path. This is usually done at in-
stallation time by adding the variable %SAG_COMMON% to the path variable.

UNIX:

The directory containing the library libmodwsl.somust be added to the environment variable
LD_LIBRARY_PATH. This is usually done by calling the setup script /opt/sag/sagenv.new.

2. The option -Djava.protocol.handler.pkgs=com.softwareag.tamino.db.protocolsmust be
supplied at startup to the Java application, i.e. to the JVM.

Tamino API for Java110

Webserverless Access Via the Tamino API for Java

Security Considerations

The webserverless mode requires that the Software AG product XTS is installed. It can e.g. be
found on the Tamino XML Server distribution media.

Limitations

Since the webserverless mode does not require a web server to access Tamino, the application
should not use direct HTTP calls to communicate with Tamino databases; it should only use
methods provided by the Tamino API for Java.

Only databases of a Tamino XML Server with a version number of 4.1 or higher can be accessed
via the webserverless mode.

111Tamino API for Java

Webserverless Access Via the Tamino API for Java

112

VII Performance Tips and Tricks

113

114

13 Performance Tips and Tricks

■ Using Cursoring .. 116
■ Using XML Parsers .. 116
■ Using Large XML Documents with Many Nodes ... 116

115

Experience and tests using the Tamino API for Java in conjunction with Software AG's Tamino
XML Server have brought to light some aspects that we would like to share with our customers.
Awareness of the following tips and tricks can considerably improve the performance of an applic-
ation based on the Tamino API for Java.

Using Cursoring

When using cursoring, find a good compromise for the cursor size (pagesize). A small cursor size
requires a lot of requests to be sent to Tamino and therefore slows down the processing. A large
cursor size locks a lot of memory on the client. Typically there is a certain size that you can find
in practical tests, where an increase in cursor size does not speed up the whole process any more.
Make practical tests, since changing the cursor size can make a big difference if you walk through
a long result set.

Using XML Parsers

■ While competing andnewXMLparsers like Piccolo (fromSourceforge) or XPPpromise improved
performance times, we were not able to measure a significant difference. XPP also requires you
to switch to another object model for representing your documents (XmlNodes), which makes
it not recommendable for most cases. Xerces, as a parser, is used for DOM and JDOM. DOM
and JDOM perform on the same level. Sometimes one is better, sometimes the other, if we look
at the performance of the creation process for new nodes in the object model.

■ Xerces and DOM use the not very well known feature of deferred node creation. That means
that sub nodes are only created when they are accessed. This feature is ON by default and it is
not possible to see from the API which nodes actually have already been created. However,
while this is a big advantagewhen reading large documents (with a lot of nodes)without actually
accessing every node, it turns into a disadvantage once you touch the nodes because then they
are created and consequently more time is needed.

Using Large XML Documents with Many Nodes

■ When reading documents with a large number of individual nodes, even if you do not need to
read all the nodes, it is helpful when the document can only be partially parsed and the complete
document object model is only built when needed.

■ Xerces uses a feature called deferred node creation, which means that while using the regular
DOM interface, node levels below the current level are only createdwhen the client tries to access
them.

Tamino API for Java116

Performance Tips and Tricks

■ Pull parsers require somemore work from the client programmer, but they also support modes
where the nodes are either transparently built as the client accesses the data (similar to deferred
nodes creation in Xerces) or where events are read (similar to the SAX interface).

117Tamino API for Java

Performance Tips and Tricks

118

VIII Measuring Operation Duration

119

120

14 Measuring Operation Duration

■ Operation and Measured Values ... 122
■ Architecture and Technical Concepts ... 123
■ Controlling Duration Measurement .. 124
■ Running the Get Personal Example with Duration Measurement ... 125

121

Tamino is a fast, flexible, and highly scalable DBMS system.However, whenwriting high-perform-
ance, large-scale Tamino applications, the first step in finding potential bottlenecks is to discover
where the application spends most of its time.

TaminoAPI for Java provides basicmechanisms for gathering detailed information about execution
times. Tamino API for Java does not include statistical tools to summarize or process themeasure-
ment results. Instead, publicly available handler classes can be used to measure values.

An overview of the operations for which measuring is
supported and the different values that can be measured

Operation and Measured Values•

The architecture and technical concepts used formeasuring
and monitoring

Architecture and Technical Concepts•

The properties to control the measuringControlling Duration Measurement•

An examplewhich demonstrates how to use the “Measuring
Operation Duration” feature

Running the Get Personal Example with
Duration Measurement

•

Operation and Measured Values

Measuring support is provided for the following operations in the Tamino API for Java:

Creating new connections in the TConnectionFactory class.
All operations of the various accessor interfaces with the exception of the operations inherited
from superinterfaces TAccessor and TInvalidatableAccessor.
All operations in the interfaces TXMLObjectIterator and TNonXMLObjectIterator.
Creating new TXMLObject instances or initializes them by reading data from an InputStream or a
Reader.

■ Measured Values
■ Accuracy of Measured Values

Measured Values

For the operations listed above, the following values can be measured:

The time taken from the start of the operation until the end of the
operation. This is the total processing time within the Tamino API for

TotalOperationDuration

Java, including the values measured by XmlParseDuration and
TotalCommunicationDuration.

The time taken to parse the XML response document.XmlParseDuration

The time taken from submitting the request to Tamino until the response
document is completely received. Note that this includes the value for
TaminoServerDuration.

TotalCommunicationDuration

Tamino API for Java122

Measuring Operation Duration

The time taken to process the request in the Tamino XML Server.TaminoServerDuration

Even if the expected result should produce values greater than zero, this will not necessarily be
the case for all valuesmeasured.Moreover, this depends on the operation performed. For example,
when deleting a document no relevant parsing of response documents needs to be done.

Accuracy of Measured Values

All values are measured in milliseconds. Note that while the unit of time of the return value is a
millisecond, the granularity of the value depends on the operating system and may in some cases
be larger. For example, many operating systems measure time in units of tens of milliseconds.
Hence fast operations may deliver a value of zero because their duration was below theminimum
granularity. Also note that the sum of individual durations may not be exactly equal to the total
operation duration. This is because measurements are made in different processes and possibly
even on different computers.

The “Measuring Operation Time” feature of the Tamino API for Java cannot answer the question:
Exactly how long does operation x with data y take?. Rather, it helps you to answers questions such
as:Where does the application spend most of its time? or: Does the program run faster after making a
change?

Architecture and Technical Concepts

The Tamino API for Java uses the popular log4j API to trace the measured values. log4j is an open
source project to develop a logging package for Java. It allows the developer to control the output
of log statements with arbitrary granularity. It is fully configurable at runtime using external
configuration files. This documentation does not describe the log4j API. The latest log4j version
and documentation can be found at http://logging.apache.org/.

Configuration of the log4j environment is typically done at the initialization of the application,
preferably by reading a configuration file. Please see the log4j documentation for further informa-
tion.

The log4j logger used by the Tamino API for Java for measuring operation duration is named
com.softwareag.tamino.db.api.logging.

123Tamino API for Java

Measuring Operation Duration

http://logging.apache.org/

Controlling Duration Measurement

The following Java properties can be set to control the measuring:

com.softwareag.tamino.db.api.logging.DurationLogging

Specifies whether duration measurement in the Tamino API for Java is
enabled.

Description

Perform duration measurement.True

Do not perform duration measurement.False

FalseDefault

com.softwareag.tamino.db.api.logging.DurationLoggingLevel

Choose the level used by the duration logging for the messages sent
to the underlying log4j logger.

Description

DEBUGDefault

com.softwareag.tamino.db.api.logging.DurationLoggingPattern

A simple pattern to configure the output string used by the duration
logging for the messages. The name of the operation and the measured
duration values are symbolized by the following wildcards:

Description

%OPERATION%
%TOTAL_OPERATION_DURATION%
%TOTAL_COMMUNICATION_DURATION%
%TAMINO_SERVER_DURATION%
%XML_PARSE_DURATION%

Timekeeper[operation=%OPERATION%,
totalOperationDuration=%TOTAL_OPERATION_DURATION%,

Default

totalCommunicationDuration=%TOTAL_COMMUNICATION_DURATION%,
taminoServerDuration=%TAMINO_SERVER_DURATION%,
xmlParseDuration=%XML_PARSE_DURATION%]

com.softwareag.tamino.db.api.common.TOptimizationHints.isOn

The Tamino API for Java tries to optimize the interpretation of the
Tamino response. A side effect is that sometimes the value for the

Description

TaminoServerDuration cannot be provided. This property does
not really influence the duration measurement itself, so you may
consider setting it to False to get as muchmeasurement information
as possible.

Tamino API for Java124

Measuring Operation Duration

com.softwareag.tamino.db.api.common.TOptimizationHints.isOn

TrueDefault

Running the Get Personal Example with Duration Measurement

The following section shows an example of how to measure operation duration.

■ Prerequisites for Running the Samples
■ Configure the log4j Environment
■ Run Example with Measuring Activated

Prerequisites for Running the Samples

Include the .jar files TaminoAPI4J.jar, JavaTaminoAPIExamples.jar, log4j.jar, xercesImpl.jar and xml-
ParserAPIs.jar in your class path. All files are distributed along with the Tamino API for Java.

Configure the log4j Environment

This sample log4j configuration file results in writing the output of the duration measurement in
a file Durations.txt.

Print only messages of the Tamino API for Java duration measurement.
Set logger level to DEBUG and its only appender to
log4j.logger.com.softwareag.tamino.db.api.logging=DEBUG, A
A is set to be a FileAppender.
log4j.appender.A=org.apache.log4j.FileAppender
log4j.appender.A.File=Durations.txt.
A uses PatternLayout to configure the output string
log4j.appender.A.layout=org.apache.log4j.PatternLayout
log4j.appender.A.layout.ConversionPattern=%m%n

Run Example with Measuring Activated

The following command executes the Java interpreter:

java -Dcom.softwareag.tamino.db.api.logging.DurationLogging=true ↩
com.softwareag.tamino.db.api.examples.person.ProcessPersonsWithSchema

The output in the Durations.txt file will look like the following:

125Tamino API for Java

Measuring Operation Duration

Timekeeper[operation=newConnection, totalOperationDuration=109, ↩
totalCommunicationDuration=31, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=isServerAlive, totalOperationDuration=312, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=281]
Timekeeper[operation=getServerVersion, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=getServerAPIVersion, totalOperationDuration=16, ↩
totalCommunicationDuration=16, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=getAPIVersion, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=newXMLObject, totalOperationDuration=15, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=readFrom, totalOperationDuration=16, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=16]
Timekeeper[operation=define, totalOperationDuration=390, ↩
totalCommunicationDuration=390, taminoServerDuration=370, xmlParseDuration=0]
Timekeeper[operation=newXMLObject, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=newXMLObject, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=readFrom, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=insert, totalOperationDuration=94, ↩
totalCommunicationDuration=78, taminoServerDuration=80, xmlParseDuration=16]
Timekeeper[operation=newXMLObject, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=readFrom, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=insert, totalOperationDuration=78, ↩
totalCommunicationDuration=62, taminoServerDuration=50, xmlParseDuration=16]
Timekeeper[operation=newXMLObject, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=readFrom, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=insert, totalOperationDuration=78, ↩
totalCommunicationDuration=62, taminoServerDuration=20, xmlParseDuration=16]
Timekeeper[operation=newXMLObject, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=readFrom, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=insert, totalOperationDuration=47, ↩
totalCommunicationDuration=31, taminoServerDuration=10, xmlParseDuration=16]
Timekeeper[operation=newXMLObject, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=readFrom, totalOperationDuration=0, ↩
totalCommunicationDuration=0, taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=insert, totalOperationDuration=47, ↩
totalCommunicationDuration=31, taminoServerDuration=10, xmlParseDuration=16]
Timekeeper[operation=query, totalOperationDuration=31, totalCommunicationDuration=15, ↩
taminoServerDuration=10, xmlParseDuration=16]
Timekeeper[operation=hasNext, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]

Tamino API for Java126

Measuring Operation Duration

Timekeeper[operation=query, totalOperationDuration=47, totalCommunicationDuration=47, ↩
taminoServerDuration=10, xmlParseDuration=0]
Timekeeper[operation=hasNext, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=next, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=hasNext, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=next, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=hasNext, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=next, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=hasNext, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=next, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=hasNext, totalOperationDuration=0, totalCommunicationDuration=0, ↩
taminoServerDuration=0, xmlParseDuration=0]
Timekeeper[operation=delete, totalOperationDuration=32, ↩
totalCommunicationDuration=32, taminoServerDuration=30, xmlParseDuration=0]
Timekeeper[operation=undefine, totalOperationDuration=578, ↩
totalCommunicationDuration=578, taminoServerDuration=551, xmlParseDuration=0]

127Tamino API for Java

Measuring Operation Duration

128

IX Appendix: Examples in Code

129

130

15 Appendix: Examples in Code

■ Say Hello! .. 132
■ Persons ... 132
■ All that Jazz .. 133
■ DOM4J .. 133

131

This appendix contains instructions onwhere to find the Java files deliveredwith the documentation
of the Tamino API for Java. The root directory of the specified file locations is the directory con-
taining the TaminoAPI documentation,which is <TaminoDocRootDir>SDK/TaminoAPI4J/Document-
ation/inoapi/

Say Hello!

The .java files are located in the subdirectory /listings/examples/greeting.

listings
 |
 > examples
 |
 > greeting
 |
 XMLGreeting.java
 XMLGreetingDOM4J.java
 ProcessXMLGreeting.java
 ProcessXMLGreetingDOM4J.java
 NonXMLGreeting.java
 ProcessNonXMLGreeting.java
 |
 > SAX
 |
 ProcessGreeting.java
 GreetingDefaultHandler.java
 Greeting.java
 ElementDefaultHandler.java
 DocumentDefaultHandler.java
 ↩

Persons

The .java files are located in the subdirectory /listings/examples/person.

listings
|
> examples

|
> person

|
ProcessPersons.java
ProcessPersonsDOM4j.java
ProcessPersonsWithSchema.java
ProcessPersonsWithSchemaDOM4J.java

Tamino API for Java132

Appendix: Examples in Code

All that Jazz

The .java files are located in the subdirectory /listings/examples/jazz.

listings
|
> examples

|
> jazz

|
InsertConstraintCheck.java
InsertConstraintCheckDOM4J.java
InsertUnique.java
InsertUniqueDOM4J.java
MusicianCollaborationResult.java
MusicianCollaborationResultDOM4J.java

DOM4J

The .javafiles are located in the subdirectories /listings/objectModel/dom4j and /listings/response/dom4j.

listings
|
> objectModel

|
> dom4j

|
TDOM4JAdapter.java
TDOM4JElementIterator.java
TDOM4JNamespaceStack.java
TDOM4JObjectModel.java
TDOM4JXMLOutputter.java

listings
|
> response

|
> dom4j

|
TDOM4JInputStreamInterpreter.java

133Tamino API for Java

Appendix: Examples in Code

134

Index

A
architecture

Tamino API for Java, 43

C
character encoding

Tamino API for Java, 28

D
deploy

Tamino API for Java, 27

E
example

simple
Tamino API for Java, 33

I
install

Tamino API for Java, 25

O
overview

architectural
Tamino API for Java, 43

Tamino API for Java, 21

P
performance

measure
Tamino API for Java, 121

tips and tricks
Tamino API for Java, 115

R
reference

overview
Tamino API for Java, 105

S
structure

Tamino API for Java, 25

U
use

Tamino API for Java, 27

W
webserverless access

Tamino API for Java, 109

135

136

	Tamino API for Java
	Table of Contents
	Tamino API for Java
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Release Notes
	2 Release Notes
	Binary Compatibility
	Global Transactions
	Secured Database Connections
	Prepared XQuery
	Support for Internationalization and Localization
	Exceptions
	Use of New Serialization Pragma
	Code Sample

	Use of Cursor Parameter _scroll
	Code Sample

	Use of _maximumrequestduration Parameter
	Code Sample

	Cancel Requests
	Code Sample

	Xquery Prepare and Execute
	Code Sample

	User Schema with Cyclic Imports
	Code Sample

	Weaker Locking on Long-Lasting Index Access
	Code Sample

	Domain Authentication
	Isolation Levels
	Schema definition
	Explain Query
	Query Count
	Tamino XQuery
	Retry Handler
	Pre- and Postconditions
	Xerces V2.5.0
	JDOM 1.0
	General Entities
	XML Documents: Encoding Information
	Connection Pooling
	List Databases

	II Introduction
	3 Introduction

	III Tamino API for Java Component Profile and Set-up
	4 Tamino API for Java Component Profile and Set-up
	Component Profile
	Deployment
	Supported Character Encodings
	Reference Documentation

	IV
	5 Say Hello!
	XMLGreeting: Inserting an XML Document
	ProcessXMLGreeting: Operating in Local Transaction Mode
	NonXMLGreeting: Inserting Non-XML Data
	ProcessNonXMLGreeting: Operating in Local Transaction Mode with Non-XML Data

	6 Architectural Overview
	API Overview
	Tamino API Components
	Connection
	Accessor
	XML Object Model
	Response Builder

	Exception Handling
	Interfaces
	Connection
	Accessor
	Object Model
	Response
	Query

	Access Methods and Response Processing
	Access Methods
	Response Processing

	V Doing More with the API
	7 Get Personal
	Inserting and Querying Documents
	Inserting and Querying Documents Using Schemas

	8 SAX Package: Using SAX Object Model
	Overview
	Construct a TSAXObjectModel
	Obtain a SAX Accessor
	Running the Example

	9 DOM4J: Adding an Object Model
	Object Models
	Using an Object Model
	Writing an Object Model

	Assembling a New Object Model
	TxxxAdapter
	TxxxInputStreamInterpreter
	ObjectModel
	Outputter
	Putting Together

	Using the DOM4J Object Model: A Sample

	10 All that Jazz
	Conceptual model
	Schema Definition
	Schema jazzMusician
	Schema Collaboration
	Schema Album

	Populating the Database
	Joining Documents
	Testing Integrity Constraints
	Testing for Unique Keys

	11 Reference Documentation

	VI Webserverless Access Via the Tamino API for Java
	12 Webserverless Access Via the Tamino API for Java
	Usage
	Installation
	Security Considerations
	Limitations

	VII Performance Tips and Tricks
	13 Performance Tips and Tricks
	Using Cursoring
	Using XML Parsers
	Using Large XML Documents with Many Nodes

	VIII Measuring Operation Duration
	14 Measuring Operation Duration
	Operation and Measured Values
	Measured Values
	Accuracy of Measured Values

	Architecture and Technical Concepts
	Controlling Duration Measurement
	Running the Get Personal Example with Duration Measurement
	Prerequisites for Running the Samples
	Configure the log4j Environment
	Run Example with Measuring Activated

	IX Appendix: Examples in Code
	15 Appendix: Examples in Code
	Say Hello!
	Persons
	All that Jazz
	DOM4J

	Index

