§ software

Tamino

Getting Started

Version 10.11

November 2021

WEBMETHODS

This document applies to Tamino Version 10.11 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-GETTING-STARTED-1011-20211101

Table of Contents

Getting Startedcccoooiiiiiiiiiii \%
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 INErOAUCHION ..o 5
3 Basic Concepts: Doctype, Collection, Schemaccoceeviiiiiiiiiiiiiiiiiiicccecec 7
4 Starting TamUiNOcocciiiiiiiiiiiii 9
Starting Tamino on Windows Systemsc..cccoeiiiiiiiiiiiiiiiii 10
Starting Tamino on UNIX Systemscccccviiiiiiiiiiiiiiiiiiiec 10
5 Creating a Databasecccoiiiiiiiiiiiiic 13
6 Starting and Stopping the Databaseccccoiiiiiiiiiiiiiiiii 15
7 Working with DTDs and Schemasccccooieiiiiiiiiiiiiiccccce 17
8 Defining a SChemacociiiiiiiiiiii e 23
9 Loading XML Objects into the Databaseccccccocuiiiiiiiiiiiiiiiiiiii 29
10 Loading non-XML Objects into the Databasec...ccocooiiiiii 33
11 Retrieving Objects from the Database Using XQUerycccccoeviiviiiiiiiniiininnnenn. 37
12 Backup and ReStOTEc.cocueiuiiiiiiiiiiiiiccieccc e 41
BaCKUD e 42
Restore and RECOVETcc.cooiiiiiiiiiiiiiiiiiiiccec e 43
13 Where to g0 from hereccocooiiiiiiiiii 45
INAEX et 47

Getting Started

This document is intended for users who want to get started with Tamino. It takes you step by
step through some typical basic operations of Tamino, so that you will feel comfortable with the
product as quickly as possible. Where relevant, it points you to further documents in the Tamino
documentation set where you can get more detailed information on a particular topic.

The following topics are covered:

Introduction

Basic Concepts
Starting Tamino
Creating a Database

Starting and Stopping the Database
Working with DTDs and Schemas

Defining a Schema

Loading XML Objects into the Database

Loading non-XML Objects into the
Database

Retrieving Objects from the Database
Using XQuery

Backup and Restore

Where to go from here

An overview of the main features of Tamino.
Definitions of the main concepts of Tamino.
How to start Tamino

Description of how to create a Tamino database.

Information about two basic tasks with databases: How to start
and how to stop them.

Information about creating a Tamino schema from an existing
DTD.

Description about how to define a schema to a database.

Information about loading example XML objects into a newly
created database.

Description of how to load example non-XML objects into a
newly created database.

Using XQuery to retrieve and manipulate information from an
example database.

Basic concepts of backup and restore operations for a database.

Where to find further, in-depth information about Tamino.

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON ..o e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Getting Started

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

About this Documentation

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

" Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation” as an area of interest.
" Access articles, code samples, demos, and tutorials.

= Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

® Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Getting Started 3

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

2 Introduction

Tamino is a complete database management system for exchanging data and integrating applica-
tions on an XML basis. As a native XML database server, it is a powerful technology for making
business data available as Internet objects. Tamino optimizes the usage of XML documents, facil-
itates communication via the Internet, stores XML and non-XML data, and accesses external systems
and applications. In this document, the following features of Tamino will be introduced:

The Tamino Manager

Tamino offers the command line inoadmin tool for the administration of Tamino databases.
With this tool you can create and delete databases, start and stop databases, define users, perform
backup and restore functions, and conduct many other administrative activities.

The Tamino Schema Editor

The Tamino Schema Editor helps you work with schemas and define them to Tamino. In order
to do so, you describe the schema using Tamino's schema definition language, which is based
on the XML Schema standard. The Schema Editor allows you to define the schema as a graph-
ical tree and automatically creates the schema definition in Tamino's schema language. Then
you load the schema description into the Tamino XML Server. Once a schema has been defined
in this way, you can load XML objects that are based on the schema into Tamino.

The Tamino X-Plorer

The Tamino X-Plorer is a very powerful tool for querying, browsing and manipulating the
contents of Tamino databases. It consists of a Content Viewer to display collections, schemas,
doctypes and XML or non-XML documents, and a navigation tree to allow easy access to data-
bases and their contents. Also, it provides access to the XQuery Tool for easy data querying
using the XQuery language.

This document will take you step by step through the process of creating a database, creating a
Tamino schema based on a DTD, defining a schema, loading data into Tamino, and finally
querying your data. It is based on a pre-defined example, so that you do not have to bother about
creating XML data yourself. We recommend you to read this guide from beginning to end, so that

Introduction

you will have a complete introduction to the basic functions of Tamino after you have finished
reading.

Other tools that are available from the Tamino program group are the Tamino Data Loader, the
Tamino Interactive Interface, the XQuery tool and the X-Tension Builder.

6 Getting Started

3 Basic Concepts: Doctype, Collection, Schema

Before going into the details of database creation and storage and retrieval of XML objects, it is
useful to take a look at the three basic concepts used in Tamino: doctype, collection and schema.

Doctype
Generally, a doctype is a root element of a DTD (Document Type Definition), i.e. the outermost
element in the document that the DTD applies to. It typically denotes the document's starting
and ending point. In Tamino, a doctype represents a container for XML instances with the
same root element within a collection.

Collection
The concept of collections is Tamino-specific. In Tamino, a collection is the largest unit of in-
formation within a database. Each collection can contain multiple doctypes. It is a container
for related information and needs to be defined when defining a Tamino schema.

Schema
A Tamino schema complies with a subset of the W3C XML schema standard, with Tamino-
specific information defined in annotations. Within a schema, we distinguish between a
physical schema and a logical schema.

The logical schema consists of rules describing the relationship between and properties of
elements and attributes in valid XML documents.

The physical schema describes how XML documents are physically stored and indexed; changes
to the physical schema will not influence the semantics and syntax of Tamino operations.

The following graphic gives an overview over the relationship between basic Tamino concepts:

Basic Concepts: Doctype, Collection, Schema

Basically, the steps that you perform when working with Tamino are:

1. Create a Tamino database and start it.

2. Load objects into the database. This step may require defining a collection and a schema. If you
already have a DTD (or XML Schema) for your XML objects to be loaded, it can be used for
schema definition.

3. Retrieve your loaded objects by querying the database.
4. Write applications.
In the following, the first three steps will be described in more detail. Information about step four

goes beyond the scope of this document. See the documentation about the Tamino APIs and the
Advanced Concepts for further information.

8 Getting Started

4 Starting Tamino

= Starting Tamino on WINAOWS SYSIEMSeeiiiiiiiie i

= Starting Tamino on UNIX Systems

Starting Tamino

This chapter discusses the following topics:

Starting Tamino on Windows Systems

The individual components of Tamino are available from the Tamino program group under the
Windows Start menu.

Starting Tamino on UNIX Systems

This section describes the command line procedures that are available for starting the various
Tamino components.

The commands (shell scripts) can be found in the directory $INODIR/$INOVERS/bin.

Command Procedure Name
Tamino Component Started

inoadmin.sh
Tamino Manager (the Tamino administration
application)

inoschema.sh
Tamino Schema Editor (an application for creating
and modifying Tamino schemas)

inosxbuilder.sh
Tamino X-Tension Builder (a Java-based application
for creating server extensions)

inoload (see note below)
Tamino Data Loader (an application for loading and
unloading Targe amounts of data)

inoxplorer.sh
Tamino X-Plorer (an application for browsing
Tamino XML Server data)

inoxquery.sh
Tamino XQuery Tool (an application for creating,
executing and storing Tamino XQuery queries)

Notes:

1. inoload is an executable file. All of its parameters must be specified directly on the command
line.

2. The scripts that start a browser-based client application use the script inobrowser.sh, which
defines the browser to be used. You might wish to edit the contents of inobrowser.sh to point to

10 Getting Started

Starting Tamino

your preferred browser. By default, the script assumes that you use Mozilla and that the PATH
environment variable includes the location of the Mozilla executable.

3. The scripts relating to the Tamino user documentation (inodoc*.sh) are only available when the
user documentation is installed.

Getting Started "

12

5 Creating a Database

The first thing you need to do when working with Tamino is to create a database. To do so, you
use the command line inoadmin tool. The command line inoadmin tool is a user interface with
which you can perform administration functions like starting, stopping, renaming, deleting, and
restoring databases. When you create a database, you define a database name, a database location,
and database specifics like size and properties. You can either accept the defaults or enter your
own preferences according to your specific database needs.

On Windows, the inoadmin tool runs in the folder "<INSTALL_ROOT>/Tamino/v1011/bin". To
set up the administration environment first run the command "ino_setenv".

On UNIX, use the shell script inoadmin.sh, which is located in the same directory.

Databases are created using create.

@ Command Prompi

inoadmin create <dbname> [{bhackup—filename>*] [{location>]

creates a database
'create <{dbname>"
is creating a new database
using the default location for the database spaces.
'create <dbname?> <{location>"
is creating a new database using the specified location.
Example: inoadmin create myDB C:wdbspacessarchive
‘create {dbname? <{bhackup—filename>"
iz creating a new database from the specified bhackup
Example: inoadmin create TestDB C: \temp\CFFBBBBiBBi4EBE29533 1B8
"create <{dbname?> <{bhackup—filename?> <{location>"
iz creating a new database from the specified backup
using the specified location.
Example: inoadmin create TestDB C:stemp*CFFAABRA1001460629583 _1BA TestLoc
A location name or a path can be specified as location.

When only providing the name of the database to-be with the call, database specifics are assigned
with default values. The database name can be up to a maximum of 32 characters in length. The
following characters may not be used: SPACE , ;! \ =#.[]"%"'/" " ?*

13

Creating a Database

BN Administrator: Command Prompt |ﬂ|ﬁj

C:~SoftwareAG-Tamino~Taminovl@ixhin>ino_setenv
Environment for Tamino 18.1 set up successfully

C:vSoftwareAG-Tamino~TaminovwiBi~hin*inoadmnin create my—databasze
INODET1751: Start of Tamino server creation version 18.1<8> on Windouws
INODEI2271: Create server ’'my—database’

INODSEI1634: Successful completion

C:“SoftwareAG-Tamino~Tamino wiBishin>_

That's all there is to creating a database. If you want to learn more about creating databases, refer
to the documentation for the Tamino Manager.

14 Getting Started

6 Starting and Stopping the Database

The first thing we can do with the database we have just created is to ask its state.

The state command shows the state of a dabase server identified by its name.

F |
BN Command Prompt |£|EI_E_hJ

inoadmin state <dbname>

shows the database server state
"state <{dbname>'
displays the state of the database server.
Posszibhle states are: “doun",., "“running”, “starting" or "stopping'.

Applying the state command upon the database 'my-database' yields 'down’, this means that the
database is currently stopped.

BN Administrator: Command Prompt |iﬂlﬁ

C:“SoftwareAG-Tamino~Tamnino“wiBishin*>inoadnin state my—database
server state (3>—<{down>

C:“SoftwareAG-Tamino~Tamino“wiBishin>_

If a database is stopped, you can start it using the inoadmin start command.

The start command starts a dabase server identified by its name.

15

Starting and Stopping the Database

X Command Prom | | B

inoadmin start <dbname>

starts a databhase server

"start <dbname>'"
starts the database server

Applying the start command upon the database 'my-database’ starts the database.

B Administrator: Command Prompt

C:“SoftwareAG-Tamino~TamninowiBishin*>inoadnin start my—database

INODET1751: Start of Tamino server startup processing version 18.1<{B> on Windows
INODSEI2271: Start server "my—database’

INODSEI1634: Successful completion

C:\BoftwareAG-Tamino“Tamino“w1B@15\bhin>

Applying the state command upon the database 'my-database’ now yields 'running’, this means
that the database is up and can be worked with.

BN Command Prompt |.i£|éj

C:~SoftwareAG-Tamino~Tamino*vwilBi~hin*inoadmin state my—database
server state (1>)—<{running>

C:~Sof twareAG-Tamino~Tamino“uw1@1x\hin>

If a database is running, you can stop it by using the inoadmin stop command.

X Command Prom | | B

inoadmin stop <dbname> < [normall ! rollbhack i abort >

stops a database server
"stop <dbname>" or ‘'stop <dbname’> normal"
is shutting down the database server
after waiting for all open transactions to be committed.
stop <dbname> rollback"

iz shutting down the database server
immediately with a rollback of all open transactions.

"stop <dbname> abort"
iz aborting the database server process.
A memory dump is written and an autorepair has to he executed with the
next server start. This option should only be used if a stop in normal
or rollback mode is not possible.

Note: To continue with the following examples, the database needs to be running.

16 Getting Started

7 Working with DTDs and Schemas

Once your database is up and running, the next step is to work with your XML objects. To do so,
you will first need to know how to work with schemas.

A Tamino schema is an XML document that conforms to the W3C's XML Schema standard, with
Tamino-specific information written in annotations to XML Schema constructs. Experienced
Tamino users may well write a schema from scratch, using an editor. Because of the relative
complexity of a schema, though, this method is quite error-prone. Another method to write a
schema is using Tamino's Schema Editor. The Schema Editor shields you from having to type in
schema language syntax, thus making schema creation much faster and less error-prone. A third
method, which we will use in the following, is to convert an existing DTD into a Tamino Schema,
with the help of Tamino's Schema Editor. This is the easiest method. Then, a schema is generated
automatically by Tamino's Schema Editor, based on the sample DTD. The Schema Editor provides
default indexing, which can be modified according to your retrieval needs.

The following example uses the example DTD patient.dtd that is supplied with the Tamino product
documentation. The examples are located in several subdirectories of <TaminoDocRootD1ir>/examples,
where <TaminoDocRootDir> is the starting directory of the product documentation. First, we will
import the sample DTD into the Tamino Schema Editor.

~ To import a DTD into the Tamino Schema Editor:

1 On Windows, choose the shortcut Tamino Schema Editor in the Tamino program group that
is available from the Start button.

On UNIX, start inoschema.sh.

A blank Tamino Schema Editor appears, showing a schema New_Schema_1 in the upper left-
hand part of the window:

17

http://www.w3.org/TR/xmlschema-1/

Working with DTDs and Schemas

Fi=New Schema_1 - Software AG Tamino Schema Editor - |EI|5|

File Database Edit Wiew Inserk Tools Help

EcCE | 2 | AR | 4B X B || 4+ [#™ 7@

5] S0 Code | (81 |[F=l =] MR Aa(QEI A -

Mew_Schema_1 I ~Logical Properties

- - | R

Property Yalue

Schema Mame Mew_Schema_1 A|
Collection name
Mamespaces [xmins:tsd="htkp://namespaces. softwa. ..
Target namespace
atktribute Form default ungualified
Element Form default ungualified
Final default attribute none
Block defaulk attribute none
%ML schema version LI

2 Specify a name for your schema to be generated, for example Patientschema. To do so, either
overwrite the selected text New_Schema_1, or select New_Schema_1 in the Value column of the
Logical Properties display and type in the new name Patientschema.

3 Specify a collection to which the schema is to belong, for example Hospital. To do so, place
the cursor in the empty field to the right of Collection name and type in the new collection
name Hospital.

4 From the Insert menu, choose Doctype.

In the tree view, the node NEW_doctype appears under Patientschema:

*hew _Schema_1 | ~Logical Properties

@ Patientschema

: Dock
L [HEI'-'I'."_Ijl:ll:t':,-'FIEe Ll Dockype

Property Walue
Dockype name MEW _doctype il
Mamespaces

[]

18 Getting Started

Working with DTDs and Schemas

5 Name the doctype patient.Todo so, select NEW_doctype in the right-hand part of the window
(below Value) and enter the new name.

The right-hand part of the editor is called the property sheet. It consists of two parts, the lo-
gical properties and the physical properties. The properties are explained in the documentation
about the Tamino Schema language.

6 Now we will import a DTD into the schema.

First, select the node Patientschema in the the view.

7 From the File menu, choose Import DTD...

The dialog box Import DTD opens.

8 Browse to the DTD file you want to load and define a schema for. The examples are located
in several subdirectories of <TaminoDocRootDir>/examples, where <TaminoDocRootDir>is the
starting directory of the product documentation. In this example, browse to <TaminoDocRoot -
Dir>lexamples/patient/patient.dtd. Choose the Import button to import the DTD.

The DTD is automatically converted to XML Schema format and loaded into the Schema Ed-
itor. On the left, the editor displays a tree view of the newly generated schema. The right part
shows the logical and physical properties. In the bottom frame, certain status messages are
displayed.

*Patientschema. xsd I ~Logical Propetties
[s] Patientschema -
: | — Dockype
_— o
"'ﬁ'r ":"""'_":'tati':"" Property Yalue
= patlerut Dockype name patient il
T= submitted MNamespaces
[+~ F=| examinakion _I
H -
B[l therapy
[resul = =
_____ remarks | |- Physical Propetties
- [F=| name Storage Type: XML -
----- surname
----- firstname Index Reference I
""" ?tl;:ldlename Propetky Yalue
e Content closed A|
..... s
Read access krue
""" born Insert access true
%=l address
ctrest |pdate access krue
Delete access krue ;I
----- housenumber .
=
_i Import of DTD <xSCEDIOONT =
""" i started September 4, 2005 11:56:48 &AM CEST <xSCEDIOOOG =
[B iriichied September 4, 2008 11:56:49 4M CEST <xSCEDIOO0G >

Getting Started 19

Working with DTDs and Schemas

¢ Tip: If you wish, you may save the schema file locally (use Save as... in the File menu)

and inspect it with your favorite text editor. It should contain a doctype declaration
and a “skeleton” schema with logical properties (XSD constructs), but without physical
properties (TSD constructs). A sample schema file can also be found in <TaminoDocRoot -

Di r>lexamples/patient/Hospital Schema.tsd.

The final step is to define physical properties for some of the elements. For this example, we will
define properties for the elements surname and born. Later in this chapter, they will be used for

queries.

~ To define physical properties:

1 Choose the node for which you want to define properties. In this example, choose surname
in the tree view on the left-hand side of the Schema Editor window.

On the right-hand side, the logical and physical properties for this node are displayed:

*Patientschema. xsd |

[s] Patientschema
patient:

Annokation

patient

submitted

exarninakion

therapy

resulk

remarks

name

.....

----- firstrame

----- middlenarne

..... kitle

..... SEN

..... born

address

..... strest

----- housenumber

ik

PHEEE b

i

[

~Logical Properties

Element simple

Property Yalue
1d B
Mame SUITame —l
W arigty type | restrickion ;I
~Physical Properties
Storage Type: INative LI advanced |
Index Reference I
Property Yalue
Collection reference :I
Dereference False
Mode reference
maode reference operatar
[

i+
Under Physical Properties, choose the Index tab. Choose the Add New Index icon (i), to
create a new index. By default, an index of type "standard" is displayed. Open the drop-down
list for this field and choose text:

20

Getting Started

Working with DTDs and Schemas

Index | Reference

standard

standard

reference

This will create a text index on the element surname.

3 Next, choose the element born. Again, the properties of this element are displayed in the right
hand window of the Schema Editor. For this element, choose the value standard for the index.
Also, change the logical property Data type to the value xs:integer by scrolling through
the list of values in the Logical Properties window.

You now have loaded a DTD into the Tamino Schema Editor, generated a schema based on the
DTD, and defined some properties for some of the elements. Later, this is important for a quick
retrieval of your data. In the next step, you will learn how to define the schema as such to Tamino.
But first, save the schema as an XML file:

> To save a schema as XML:

1 Choose File > Save As....

The dialog box Save As appears.

2 In the dialog box, browse to the directory you want the schema to be saved in, for example
C:\temp on Windows or /tmp on UNIX, and enter a name for the schema. Use the file extension
.tsd, for example Patientschema.tsd. Choose Save.

More details about the Schema Editor are available in the documentation for Tamino Schema
Definition and the Tamino Schema Editor.

Getting Started 21

22

8 Defining a Schema

You have learned how to generate a schema (based on a DTD), how to modify and save it. In this
section, you will learn how to define a schema to your current Tamino database so that it becomes
a part of Tamino's Data Map. The schema is then available to other Tamino components. Defining
a schema is a prerequisite for loading and retrieving XML objects.

Although there are several ways of defining schemas and loading objects, the most comfortable
one is to use the Tamino X-Plorer. The Tamino X-Plorer allows you to perform various database
operations such as defining collections and schemas, loading and retrieving data as well as many
other actions with the help of an easy-to-use graphical interface.

> To start the Tamino X-Plorer

= Windows: choose the shortcut Tamino X-Plorer in the Tamino program group that is available
from the Start button.

UNIX: Start the following script from the command line: inoxplorer.sh.

The Tamino X-Plorer is displayed:

23

Defining a Schema

748 Software AG Tamino X-Plorer -10| x|

File Edit Wiew Dakabase Schema Instance Tools Help
ol | =@X 8|50 B85 | 8P

Mavigation Tree Content

e
1?1
AL,

o« g B

® Tamino Server
F- 1) localhostAaming

Properties

The X-Plorer consists of three panes, the navigation tree on the left, the (currently empty) Content
pane and the Properties pane on the right. The navigation tree shows databases of Tamino servers
to which you have previously connected. The Content pane shows the content of the XML object
that is currently selected in the navigation tree. The Properties pane shows properties (metadata)
for the currently selected object. For the following examples, we will use the predefined Tamino
sample schema HospitalSchema.tsd, which can be found in the directory <TaminoDocRootDir>/ex-
amples/patient. The first step will be to define this schema to our database "my-database". If you
have followed the preceding steps in this Getting Started, you can also use your own schema Pa-
tientschema.tsd, which has already been created in the previous section. Both files (Patientschema.tsd
and HospitalSchema.tsd) should be identical.

J Note: Do not define both schemas, HospitalSchema.tsd AND Patientschema.tsd to the database,

as they define the same doctype in the same collection. This will lead to an error, since
doctypes need to be unique.

~ To define the schema HospitalSchema.tsd to the database "my-database"

1 Expand the navigation tree to see the list of known servers. To do so, click on the plus signs
in the navigation tree until the names of the known databases are displayed. If you do not
see the database my-database that we created previously, choose Database > Connect from
the main menu to start the Connect to dialog. In this dialog, choose the Select button next to

24 Getting Started

Defining a Schema

the Database field in order to display the names of the available databases. Choose my-database
from the list, then choose the Connect button.

For detailed information, see the section Connecting to a Tamino Database in the Tamino X-
Plorer documentation.

Now the database my-database should be visible in the navigation tree.

2 In the navigation tree, select the database "my-database". Information such as the following
appears in the X-Plorer panes:

Mavigation Tree

':3 Tamino Server

Elﬂ localbosttamino
Hospital
ER = my-databaze

Zontent @El

The zelected object has no data for the content pane. For
more information ahout the selected object, zee the propetties
pane. [fthe properties pane is not wisible, it can be displayed
by choosing Properties from the View mem,

Properties IE =

[-] lzdatabase name="my-database" =
+ «sErvEr®
<state =connected < fskate =
<databasze =

3 Next, you need to define a collection to which the schema will be defined. To do so, select the
entry "my-database" in the navigation tree, then choose File > New collection. The dialog box
Create New Collection is displayed:

Getting Started

25

Defining a Schema

Create Mew Collection |

Database: Ihttp:,l',l'In:n:aIhu:nst,l'taminn:n,l'm':.f-datahase

Collection name: ||

Schema Usage I Namespacesl Miscellanenusl

{+ Required
" Cptional
™ Prohibited

| Create I Zancel | Help |

4 Enter a collection name, in this case Hospital, leave everything else in the dialog box as is,
and choose the Create button. The new collection is displayed in the navigation tree under
"my-database".

5 Select the collection Hospital in the navigation tree and choose Schema > Define Schema.
The Define Schema dialog box is displayed:

Collection; IH:::spitaI

From File I From Database

File: [Select ... |

Define I Zancel | Help |

6 Inthe From File tab, use the Select button to browse to the predefined schema file HospitalS-
chema.tsd, located in the directory <IaminoDocRootDir>/examples/patient. Choose the Define
button to define the schema to the database "my-database".

26 Getting Started

Defining a Schema

In the navigation tree, "HospitalSchema" is now displayed under "Schemas" when node

"Hospital" is expanded. If you select it, the schema is displayed in the content pane, and in-
formation about it appears in the Properties pane.

Mawigation Tree

@ Tamino Server
El||:_| localhosttamino
Hospital
E}---, my-databaze
El[:l Hospital
EIEI Schemasz
E B HospitalScherma
i . Y patient
- xprirternalschemsa
patient
ima: clay
[:I ino:etc
|:| oS E-ADMIMNISTRATION
- innSXS-Trace
I:I ino:collection
- ino:security
- inogource
[:I inovirtual
I:I ina:vacabulary

Conkent 'Eg @ ﬁn
=¢xml version="1.0" encoding="utf8"7 =
=xs:schema xmins;ino="http:#namespaces. softwarez
<xs annatation=
<xs:documentation=Schema for doctype patient. T
Change 2001-05-09: renamed element type "dismiss:
Change 2001-03-12: changed element type middlenal

LI>

jhannn 7I'III'I?-1I'I-?I'I' added rollatinn tn elemeant "sum
4

4
Properties IE ﬁn
[-] kpropertiess{

<property name="schema type" =TS0 </property =
<property name="media type" =textxml < property =
<property name="modified" =20058-09-
04T14:08:29,815+02:00 < property =
<property name="created" =2003-09-
04T14:08:29,315+02:00 <= /property =

< properties =

Now you have successfully defined a schema to the collection Hospital in the Tamino database

"my-database". The next step is to load data into the database. In the following, you will learn how
to load XML objects and non-XML objects into the database.

Getting Started

27

28

9 Loading XML Objects into the Database

In this chapter, we will load some data into the database "my-database". We have prepared the
sample data files atkins.xml and bloggs.xml for you, so that you do not have to bother about creating
XML files yourself. Each of these files contains one instance of the doctype patient, which is defined
in the previously mentioned schema HospitalSchema. The sample data files are located in the dir-
ectory <TaminoDocRootDir>/examples/patient.

~ To load XML objects into the database

1 In the Tamino X-Plorer, navigate to the collection Hospital and select it.

2 From the Instance menu, choose Insert Instance.

The Insert Instance dialog box is displayed:

29

Loading XML Objects into the Database

Collection: IH::uspitaI

From =ML File | From non-=ML File

—wML Instances

il

%ML File Paths Drocument Mame: I Media Tyvpe:

Cancel | Help |

3 e
On the From XML File tab, choose the browse button (i) and browse to the sample data

file atkins.xml, which is located in the documentation examples directory <7aminoDocRoot -
D1 r>lexamples/patient. Choose the Insert button to load the file into the database "my-database".

In the navigation tree, the loaded data instance is displayed in the following way:

Mavigation Tree

@ Tamino Server
E}ﬂ localhosttaming
Hospital
E}---, my-tatabase
=
=1 5], Schemas
E E} Hozpital=chetma
e[patiert
P xpinternalSchema
= 4 _patiert
e

The data for patient Atkins is represented in the navigation tree by the number "1" underneath the
patient node. If you select it, you can see the corresponding XML data in the plain text view in the
Content pane:

30 Getting Started

Loading XML Objects into the Database

Content =1 k8| =
F

=7uml wersion="1.0" encoding="utf-3"?>
<patient xmins ino="http://namespaces. softwareag. comftaminofresponsed"” ino:docnan
Zharnes
<surnamezAtkins<fsurmames
=firstname=Faul=fAirsthnames
<fname:=
“gsex=Male</sex=
<hornz=1964</horn
<address=
<street=Harhour Close</street>
<hougenumhber=23</housenumber= _ILI
3

A ' |

(The icons in the Content pane allow you to choose between plain text view, HTML view and tree
view.)

In the properties pane, metadata is displayed:

Properties IE E"
=]

<property name="url"=http:/ flocalhosttamino/my-databaseHospikalfpatientf atkins. cml

< [properky x

<property name="last modified" >Thu, 04 Sep 2008 12:32:50 GMT </property =
<property name="media type" =textxml=/property =
«/properties =

For XQuery examples that will follow in the section Retrieving Objects from the Database Using
XQuery, now go back to step 1 and also load the XML data set for Mr. Bloggs with the filename
bloggs.xml.

The method described here is one of many ways of loading data into Tamino. Another way of
loading objects that are structured according to a schema is to use a client programming interface.
Tamino offers client APIs for Java and C. Tamino also offers a programming interface on the basis
of the X-Machine programming language. To access the documentation for these APIs, refer to
the documentation overview page. An additional method is to use the Tamino Data Loader. Refer
to the Tamino Data Loader documentation for details.

Getting Started 31

32

10 Loading non-XML Objects into the Database

You can also load documents that are not XML documents, such as plain text or graphic files. For
such documents, Tamino sets the default collection name to ino: etc and the default doctype name
to ino:nonXML, in other words, all non-XML documents that are loaded without a schema will be
stored in this collection and doctype, if nothing else is specified. However, non-XML documents
can reside in any collection and doctype you specity. It is also possible to load non-XML data using
a schema. For more information, see the section Storing Non-XML Objects in Tamino in the Tamino
Schema Definition documentation.

As an example, we will now load the sample non-XML file fevercurve.gif into the database.

> To load a non-XML file

1 Inthe navigation tree of the X-Plorer, select the collection ino:etc.

2 From the Instance menu, choose Insert Instance.

The Insert Instance dialog box is displayed.
3 Select the From non-XML Files tab:

33

Loading non-XML Objects into the Database

Colleckion; Iinu:u:etu:

From 2ML File From non-%ML File

Mon-2ML Dockype: I LI

—Mon-=ML Instances

Mar-%ML File Paths Document Mame: Media Type:

Zancel | Help |

In the Non-XML Doctype field, enter ino:nonXML, or choose it from the selection list.

Use the :...I button to browse to the non-XML file to be inserted. For this exercise, use the
sample graphics file fevercurve.gif that is located in the same directory as the sample XML data

for the patients Bloggs and Atkins: <TaminoDocRootDir>/examples/patient.
6 Choose the Insert button.

The file is now inserted into the navigation tree:

@ Tamino Server
Elﬂ lncalhost Aaminag
E},@ my-database
- Hospital
N clay
EII:I ino; et
E El\?-a iro: narhll

&

fevercurve gif
) ino SXS-ADMINISTRATION
F- N SKE-Trace

Select it to view it in the Content pane (ensure that the Image View button is selected in the

Content pane):

34

Getting Started

Loading non-XML Objects into the Database

[ES

Temperature Chart Patient Bloggs

42

IS[=] E3

Today

1

o |
« 23:55 >I
o

4

Getting Started

35

36

11 Retrieving Objects from the Database Using XQuery

Once you have loaded objects into the database, you can retrieve the objects using XQuery state-
ments. XQuery is the W3C standard query language for structured documents. Tamino allows
you to use XQuery for performing queries on XML (and also non-XML) objects. XQuery allows
you not only to retrieve database contents but also to compose your query result using constructors.

In addition to XQuery, Tamino still supports the query language X-Query (written with a hyphen)
used in former versions of Tamino. See the X-Query User Guide for detailed information.

In the following, some simple examples of query expressions with XQuery are provided to famil-
iarize you with the basic retrieval process. For the examples, use the data you loaded into the
database in the preceding sections (Atkins and Bloggs).

The easiest way to query data is to use the XQuery Tool. You can open it from the Tamino X-Plorer.

~ To open the XQuery Tool from the Tamino X-Plorer

1 Inthe navigation tree, select the doctype patient.

2 From the Tools menu, choose Query > XQuery.

The Tamino XQuery Tool is displayed, and the XQuery code required to return all instances
of the selected doctype patient is provided automatically:

37

Retrieving Objects from the Database Using XQuery

FE coftware AG Tamino XQuery - NewXQuery Y m] |

File Edit Wiew FResulk Toaols Help
EE =LY IEL | GEIE AR e

SErver: Database: Collection:

Ihttp:,l',l'lncalhnstftamina ||my-database ||Hnspita|

for $fq in input()/patient
return 5q

[V auto Indent | INSERT | Line: 3, Column: 10

Result I Response | History |

The XQuery window contains all information that is required to execute a query: server,
database, collection and the query code itself.

Before you try the examples, please delete the predefined query code, since we will use our
own examples.

3 Under Tools > Options > Module in the XQuery tool, ensure that the box Module management
mode is not checked.

~ To find all elements of the type "patient” in the current collection:

= Enter the following in the XQuery field:

input()/patient
Choose the Execute XML Query button in the toolbar.

The query response is returned by Tamino as an XML object in the result window of the
Tamino XQuery Tool. You should get a query result, listing all patients (in this case patients
Atkins and Bloggs; to display more information about the patients, expand the plus-sign):

38 Getting Started

Retrieving Objects from the Database Using XQuery

SEFVEL: Database: Caollection:

|http:,|',|'|u:|calhnst,|'taminu ||mv-database ||H|:|spital

inputi) fpacient

[¥ Auto Indent | INSERT | Line: 3, Column: 1

Result | Respnnsel Histnrvl

[ES =

Lm [=] [exgiresult xmins: zq="http: /[namespaces.softwareag. comftaminofXQueryfresult"
[+ <patient=
o # g2 + =patient=

Sluqiresults

The path operator (/) in the query indicates that the selection starts at the document node (the first
node in the tree). The expression "input()" denotes the current collection and returns documents
stored in the collection Hospital whose document node is patient.

~ To find all patients born after a certain date, using data type xs:integer:

= Enter the following in the XQuery field:

for $a in input()/patient
where $a/ born > 1960
return $a

Choose the Execute XML Query button.

In the output window, you should get the data from patients born after 1960 (in this case patient
Atkins).

Remember that in the first part of this Getting Started, we put a standard search index on the
born element and defined the data type xs:integer for it, so that a quick search and compar-
ison can be performed on integer values. (However, a search would also be performed without
the index).

You can construct new elements (in the following example, the element senior-patient is con-
structed) and combine your results with the following query:

Getting Started 39

Retrieving Objects from the Database Using XQuery

for $a in input()/patient
where $a/born < 1951
return

<senior-patient>

{ $a/name }

{ $a/surname }
</senior-patient>

You should get the following result:

SErYEr; Database; Collection:

Ihttp:,l',l'lnu:alhu:ust,l’taminu:u Iy | Imy-database

e | IH::uspitaI

for $a im input()/patient
where fasborn < 1951
return

<3eninor-patient>
Isa/nane}
Igassurnamne }
</senior-patient’-

[¥ Auto Indent | INSERT | Line: 9, Column: 18

Result IResmnsel Histl:urvl

e siE

Lm [-] Exq:result =mins:=q="http:[fnamespaces.softwareag. comftaminofX{Query/result"s
b - =senior-patient =
- <names

zsurname =Bloggs =fsurname =
<firstname =Fred</firstname =
</name=
«[senior-patient =
<fuqiresulk =

In the return clause, an element constructor is used simply by writing the appropriate tags. As
child elements, two expressions are enclosed in braces, which means they need to be evaluated.
This query returns a list of senior patients with name and surname (in this case patient Bloggs).

See the XQuery documentation for more information and examples about the XQuery language.

For detailed information about the XQuery tool, see the documentation about the Tamino X-Plorer,
section Using the Tamino X-Query Tool.

40 Getting Started

12

Backup and Restore

41

Backup and Restore

An important part of database administration is to make regular backups of your database.
Database Backup and Restore functions are available via the inoadmin commandline tool. The
backup command makes a copy of the database. The restore command restores the database to
the state it was in when you made the backup. Restore is generally executed together with a Re-
cover process, in which all changes that were made to the database after the backup are re-applied.
During the Recover process, log files (log spaces) that record all completed database transactions
that have occurred since the most recent backup are used as input files. In this way;, all data up to
the most recently completed transaction can be restored.

Backup

To create a backup use the inoadmin backup command.

@ Command Prompi

inoadmin backup <dbname> [{location>]

creates a database hackup

"backup <dbname>"

creates a databhase hackup

at the backup location of the database
"backup <dbname?> <{location>"

creates a database hackup

at the specified location

If no location is provided the backup is stored at the initial location. The database to be backed up
needs to be started.

B Command Prompt

C:vSoftwareAG-Taminos~Tamino*wilBixhin>inoadmin backup my—databasze

INODSET1?51:= Start of Tamino backup processing version 18.1 on Windows
INODEI2271: Backup server ’'my—database’

INODSEI2817: Updating bhackup generations

INODSI1393: Backup created with backup key "8B1521548933' (2018-83-28 13:28:53>
INODSEI1634: Successful completion

backup key *B@15215489233' (Tue Mar 28 13:28:53 2818>

M Command Prompi

inoadmin listhackups <dbname’>

Idisplays a list of database bhackups
"listhackups <{dbname>'
The existing database bhackups are listed
displaying the backup key and the creation date and time.

So, having backed up the database the new backup appears as a result of the inoadmin listbackups
command.

42 Getting Started

Backup and Restore

B Command Prompt

C:~SoftwareAG-Tamino~Tamino~vwiB@i~hin>inoadnin listhackups my-database
Backup key Time stamp

HEAAAARAERRA <(initial backup)
AA1521548933 2018-B3-20 13:28:53

Besides the new backup there is allways the initial backup that is created with the database itself.

Restore and Recover

The inoadmin restore command allows to restore the database to a previous state or to the actual
state in case of failure.

inoadmin restore <dbname> [<{backup-key>]1 [recover { [alll | no | <until-date-time> > 1

restores a database
"restore <dbname>" or “restore restore recover all"
restores a database using the latest hackup
and recovers all modifications since the creation date of this bhackup
"restore {dhname?> <{hackup-key>"
restores a database using the backup with the specified backup key
and recovers all modifications since the creation date of thisz bhackup
Example: inoadmin restore myDB 881468629583
"restore {dbname? recover no"
restores a databasze wsing the latest bhackup
and does not recover any modifications
Example: inoadmin restore myDB recover no
"restore Cdbname? recover <{until-date-time>'
restores a database wsing the backup with the specified backup
and does not recover any modifications
Example: inoadmin restore myDB recover Z28-JUN-2816:15:38:88
The database server must he down to execute the restore function

To restore and recover a database from a backup the database must be down. Just issuing the
command with <dbname> as the only parameter re-establishes the database by using the latest
backup and applies all modifications stored in the log files.

BN Administrator: Command Prompt |iﬂlﬁ

C:vSoftwareAG-Taminos~Tamino*vwiBi~hin*inoadmnin restore my—database
INODSET1?51: Start of Tamino restore processing version 18.1(@> on Windows
INODEI2271: Restore server ‘my—database’

INODSEI1634: Successful completion

Getting Started 43

44

13 Where to go from here

Congratulations! You have mastered your first steps with Tamino, and hence have gathered hands-
on experience with a complete data management system for exchanging data and integrating ap-
plications on an XML basis. You now know how to create, start and stop a database, to load and
retrieve XML as well as non-XML objects into the database, and to save your database with the
backup and restore functions. Next, we recommend you to get more detailed information about
the Tamino Manager and the Tamino Schema Editor, which you will find in the respective docu-
mentation.

We also recommend you to become a member of the Tamino Developer Community, a web site
which focuses on providing valuable information, guidance and help to developers who use the
Tamino Platform to build software applications, solutions or products.

45

http://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/products/tamino/

46

Index

backup, 41

C

collection
define, 7
convert
DTD to schema, 17
create
database, 13
schema, 17

D

database
backup, 41
create, 13
recover, 43
restore, 41

retrieve object with XQuery, 37

start, 15
stop, 15
define
schema, 23
doctype
define, 7

DTD (see see Document Type Definition)

G

generate
schema from DTD, 17

import
DTD, 17

L

load
non-XML object, 33
XML object, 29

N

non-XML object
load, 33

R

recover, 41
database, 43
restore, 41
database, 43
retrieve
object
with XQuery, 37

S

schema
create, 17
define, 7, 23
schema definition
general description, 17
Schema Editor
import DTD, 17
start
database, 15
stop
database, 15

T

Tamino
general description, 5
Tamino Manager
backup, 41
general description, 5
restore, 41
start, 13

X

XML object
load, 29
XQuery

retrieve object from database, 37

47

48

	Getting Started
	Table of Contents
	Getting Started
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction
	3 Basic Concepts: Doctype, Collection, Schema
	4 Starting Tamino
	Starting Tamino on Windows Systems
	Starting Tamino on UNIX Systems

	5 Creating a Database
	6 Starting and Stopping the Database
	7 Working with DTDs and Schemas
	8 Defining a Schema
	9 Loading XML Objects into the Database
	10 Loading non-XML Objects into the Database
	11 Retrieving Objects from the Database Using XQuery
	12 Backup and Restore
	Backup
	Restore and Recover

	13 Where to go from here
	Index

