
Tamino

X-Machine Programming

Version 10.11

November 2021

This document applies to Tamino Version 10.11 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-XPROG-1011-20211101

Table of Contents

X-Machine Programming .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction ... 5
Accessing Documents in the X-Machine ... 6
Storage and Retrieval Format of XML and non-XML Documents 7
Security ... 7
The Special Collection ino:etc .. 8

3 Session Handling ... 9
Session Context .. 10
Session ID and Session Key .. 10
Queueing a Follow-Up Request ... 11

4 Requests using Plain URL Addressing ... 13
URL format for Plain URL addressing ... 14
Addressing Existing Documents via Document ID ... 15
Criteria for Inserting or Replacing a Document .. 16
HTTP Header and Body Content ... 16
HTTP Status Codes .. 17
Authentication Aspects .. 17
Transaction Aspects .. 20

5 Requests using X-Machine Commands .. 21
X-Machine Command Format ... 23
Description of X-Machine Commands ... 26
X-Machine Command Options .. 79
Syntax of XML Responses .. 63
Elements and Attributes in Tamino Response Documents 71
Suppressing the Tamino Response Wrapper ... 72
Transaction-Related Commands .. 74
Prepared Queries .. 83
Order of Execution of Commands ... 86
Interactive Environment for sending X-Machine Commands 87

6 General Requests ... 89
Listing Databases served by the Web Server ... 90

7 Using Plain HTML Forms ... 91
8 Media Type Requirements .. 93
9 Character Encoding ... 95

Character Encoding of Input Documents .. 96
Character Encoding of Output Documents ... 97
Supported Character Encodings .. 97

10 Maintaining Tamino Indexes ... 101
General ... 102

iii

Special Considerations for Indexes .. 104
Dependence on Session Context .. 106
Performance and Locking Aspects ... 106
Optimization .. 106

Index ... 107

X-Machine Programmingiv

X-Machine Programming

X-Machine Programming

This document gives a summary of the mechanisms available for performing low-level, HTTP-based
client communication with the X-Machine. The X-Machine is a central component of the Tamino
XML Server architecture. It provides many Tamino core services such as highly efficient storage
and retrieval of XML and non-XML documents as well as standard query language support.

You should be familiar with the concepts of Tamino collections and schemas. For information on
these subjects, refer to the document Tamino XML Schema User Guide.

This document is intended for use by application programmers who wish to develop client
applications that communicate with the X-Machine using HTTP requests. Note that client
applications can also use the Tamino APIs (see the appropriate product documentation) instead
of HTTP requests for accessing Tamino via application programs.

This information is structured into the following sections:

Introduction

Session Handling

Requests using Plain URL Addressing

Requests using X-Machine Commands

General Requests

Using Plain HTML Forms

Media Type Requirements

Character Encoding

Maintaining Tamino Indexes

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://documenta-
tion.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.com with
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

X-Machine Programming2

About this Documentation

https://documentation.softwareag.com
https://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give
us a call.

Software AG Tech Community

You can find documentation and other technical information on the Software AG Tech Community
website at https://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,

discuss best practices, and learn how other customers are using Software AG technology.
■ Link to external websites that discuss open standards and web technology.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3X-Machine Programming

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

4

2 Introduction

■ Accessing Documents in the X-Machine .. 6
■ Storage and Retrieval Format of XML and non-XML Documents ... 7
■ Security .. 7
■ The Special Collection ino:etc .. 8

5

This introduction summarizes the methods available for programming against the X-Machine
using HTTP requests.

The information in this introduction is organized under the following headings:

Accessing Documents in the X-Machine

Tamino's X-Machine can store and retrieve XML documents as well as non-XML documents. In
X-Machine terms, XML documents are well-formed XML documents.

X-Machine provides two methods of accessing documents:

■ Using plain URL addressing: Individual documents can be addressed using a URL in an HTTP
GET, PUT, DELETE or HEAD request. The URL reflects a certain directory path structure that
addresses the document uniquely. If you want to access a non-XML document in Tamino, you
must use this method. With plain URL addressing, X-Machine behaves like an HTTP server,
meaning that the response is returned only via HTTP mechanisms and HTTP-related return
codes. If a document is requested using the GET method, it is returned in the HTTP response
body.

This access method is described in the section Requests using Plain URL Addressing.
■ Using X-Machine commands: This access method allows special commands to be sent to the X-

Machine either in URLs that are sent using the HTTP GET method or as HTML form data that
is sent using the HTTP POST method.

If the GET method is used, the commands are provided in the URL as keyword/value pairs in
the search part of the URL (as defined in section 3.3, HTTP of the IETF document RFC1738,
http://www.ietf.org/rfc/rfc1738.txt). The URL path is separated from the commands by a question
mark ("?"). If there are two or more commands in a single URL, they are separated by an am-
persand character ("&").

This access method is described in the section Requests using X-Machine Commands.

X-Machine commands support all of the X-Machine functionality provided by plain URL ad-
dressing and support a wide range of additional operations. The X-Machine responds to each
request with an appropriate X-Machine response document inside the HTTP response body
rather than returning a plain HTTP response. If, for example, an application requests a set of
documents to be returned from the X-Machine, the returned documents are enclosed by default
in the HTTP response body inside an XML wrapper. This wrapper consists of elements and at-
tributes defined in the Tamino namespace http://namespaces.softwareag.com/tamino/response2 using
the prefix "ino", such as Tamino return codes and cursor information. The wrapper can be sup-
pressed; see the section Suppressing the Tamino Response Wrapper for further information.

X-Machine Programming6

Introduction

http://www.ietf.org/rfc/rfc1738.txt

Storage and Retrieval Format of XML and non-XML Documents

When storing and retrieving documents, the following rules apply:

■ The X-Machine converts XML documents to Unicode before storing them in Tamino.
■ By default, the X-Machine converts non-XML text documents to Unicode before storing them

in Tamino. However, there is an option to suppress this conversion, i.e. to store and retrieve the
documents unconverted. This option is activated by specifying the element tsd:noConversion
as a child of the element tsd:nonXML in the schema for the non-XML doctype. See the description
of the element tsd:nonXML in the Schema Reference Guide for more information.

When tsd:noConversion is specified, documents are processed as follows:
■ When a document is stored the character encoding which was given in the HTTP request in

the Content-Type field is stored.
■ Indexing can be performed on a non-XML document only if the character coding is given in

the HTTP header.
■ When a document is retrieved, the data is returned without any conversion being performed.

This applies even if the Accept-Charset HTTP header field is set. If a character encoding was
specified in the HTTP header when the data was stored, this character encoding is returned
in the header of the HTTP response.

■ Binary documents are stored and retrieved unchanged byte for byte in Tamino.

See the section Media Type Requirements for a description of how Tamino distinguishes between
XML and non-XML documents.

Security

Security for Tamino databases can be implemented using Tamino's built-in security mechanism
that is based on entries in a special collection called ino:security. This is described in detail in the
Security section of the documentation for Tamino Manager.

In addition, some limited security mechanisms are offered by the web server if a web server is
used as the interface to Tamino. By configuring the web server, protection is possible at the database
level. This controls access to databases, using the same mechanism as for ordinary directory
structures under the control of the web server.

Note however that security mechanisms based on the web server are limited in use. It is for example
not possible to set security at the collection level because XQuery can be used to access data across
collection boundaries.

7X-Machine Programming

Introduction

The Special Collection ino:etc

If a request is made to store an XML or non-XML document, but the request contains no collection
name, the document will be stored in the collection ino:etc. In such cases, XML documents and
non-XML documents consisting of text are stored with text retrieval indexing applied to the whole
document, and non-XML documents (regardless of whether they consist of text or not) are stored
in the special doctype ino:nonXML within ino:etc.

The collection ino:etc is always present in every defined database.

X-Machine Programming8

Introduction

3 Session Handling

■ Session Context .. 10
■ Session ID and Session Key .. 10
■ Queueing a Follow-Up Request .. 11

9

This section introduces the following aspects of Tamino's session handling mechanism.

Session Context

Requests sent to Tamino can be executed either inside or outside a session context. A session
context is established via the _connect command and the usage of the session is restricted to the
user who established it. A session allows you to group several commands issued in multiple re-
quests as a transaction which is then either committed or rolled back using the command _commit
or _rollback. A session can contain multiple transactions. A session context is also required if
you use a query cursor that spans several requests.

If a request is executed outside a session context it is executed in a separate transaction. If execution
ends successfully, the transaction is committed. Otherwise, the transaction is rolled back.

Session ID and Session Key

The way in which requests are associated with sessions depends on the request. Tamino supports
the following types of request (these are described in more detail in subsequent sections):

■ Requests using Plain URL Addressing
■ Requests using X-Machine Commands

Each request belonging to a session causes Tamino to return two values, namely the session ID
and the session key. A unique session ID is returned in the response to the _connect command
and remains unchanged for all requests belonging to that session. Tamino generates a new session
key in response to each request sent to Tamino.

There are two ways in which these values are returned to the client:

■ Using the HTTP extension headers X-INO-Sessionid and X-INO-Sessionkey, which are always
returned.

■ Using the attributes ino:sessionid and ino:sessionkey. These attributes are returned only
for requests that use X-Machine commands for which the response is embedded in an
<ino:response> wrapper element. See also the section Example of a response to the _connect com-
mand later in this document.

The values for the session ID and session key attributes returned in a request's response must be
sent to Tamino in the follow-up request for the same session. Again, there are two ways of passing
the session ID and session key to Tamino:

■ Using the HTTP extension headers X-INO-Sessionid and X-INO-Sessionkey in requests that
use either plain URL addressing or X-Machine commands.

X-Machine Programming10

Session Handling

■ Using the _sessionid and _sessionkey parameters in requests that use X-Machine commands.

For more information, see the section The HTTP header fields X-INO-Sessionid and X-INO-Ses-
sionkey later in this document.

Queueing a Follow-Up Request

When using a multi-threaded streaming application, it is possible to issue a follow-up request
before the response from the previous request has been fully received (once the new session key
is known). The follow-up request should be issued in a separate thread so that the previous request's
reply can reach completion. Tamino will queue the follow-up request until the previous one is
completed in the following cases:

■ The server XML parameter queue next request is set to "yes" (the default value) and the session
connection parameter does not override it.

■ The parameter _QueueNextRequest on the session's _connect command is set to "yes".

In addition to a normal completion of a previous request, a previous request is considered complete
when any of the following conditions is met:

■ The stream is closed before reading all of the previous request's reply.
■ The stream is read to completion (i.e. end of file is reached).
■ A timeout for sending the complete reply occurs.

11X-Machine Programming

Session Handling

12

4 Requests using Plain URL Addressing

■ URL format for Plain URL addressing .. 14
■ Addressing Existing Documents via Document ID .. 15
■ Criteria for Inserting or Replacing a Document .. 16
■ HTTP Header and Body Content .. 16
■ HTTP Status Codes ... 17
■ Authentication Aspects ... 17
■ Transaction Aspects .. 20

13

This section describes the format of the URL used for plain URL addressing, and the corresponding
HTTP request and response structure.

Plain URL addressing access is done using the HTTP methods PUT, GET, DELETE, and HEAD.

The methods PUT, DELETE and HEAD do not return an HTTP body. For GET, the HTTP body
contains only the required document, i.e. there is no additional XML wrapping.

Plain URL addressing is described further under the following headings:

URL format for Plain URL addressing

An X-Machine document can be addressed directly via HTTP using the following URL structure:

http://HostName:PortNumber/tamino/DatabaseName/CollectionName/DoctypeName/DocumentName

with the following meaning:

Host address for the web werver.HostName

Port number for the web server.PortNumber

Name of the Tamino database.DatabaseName

The name of the X-Machine collection that contains the existing document or will contain
the new document.

CollectionName

The name of the X-Machine doctype that contains the existing document or will contain
the new document.

DoctypeName

When storing a document, Tamino assigns this name to the document. The name could
be a string such as a file name, e.g. mypicture01.jpg. Use the same name to retrieve the

DocumentName

document in subsequent operations. The document name is returned in the
pseudo-attribute ino:docname when the document is retrieved via X-Query.

Note: The document name is unique within a given doctype.

When retrieving a document, it is possible to specify either the name of the required
document or the document's ID. The document ID is assigned automatically by Tamino
when the document is originally stored, and the ID value is returned in the
pseudo-attribute ino:id when the document is retrieved via X-Query. If the document
ID is used instead of the document name, it must be prefixed by "@".

Since the names HostName, PortNumber, DatabaseName, CollectionName, DoctypeName and Docu-
mentName are used in a URL as shown above, any characters in their names that are not allowed
in a URL must be URL-encoded. For example, the characters “#”, “?”, “&” and “=” have a special
meaning in URLs, so if a document name contains any of these characters (specified by the
ino:docname attribute), it is necessary to use the escaped versions of these characters when ad-
dressing the document in a URL (namely “%23” for “#”, “%3F” for “?”, “%26” for “&” and “%3D”
for “=”).

X-Machine Programming14

Requests using Plain URL Addressing

This form of addressing may be used for XML and non-XML documents.

Even though individual documents are accessible via plain URL addressing, the collections and
doctypes used to store the documents must be created not by plain HTTP requests but by the X-
Machine command _define.

The explicit creation of a doctype by passing a schema document in a _define command is not
required (or in some cases prohibited) if the corresponding collection has been configured for
schemaless storage (for example, the collection ino:etc).

Addressing Existing Documents via Document ID

When addressing an existing X-Machine document, the related URL may contain the document's
ID instead of the document's name (as specified by ino:docname). This reference is indicated using
an "at" ("@") character.

For example, the following URL specifies the Tamino document with document ID 4711635 in the
collection "FDSdemo_e" and doctype "Construction", in the database "MyTestDb01", where the
web server is at port "80" of the machine "myhost":

http://myhost:80/tamino/MyTestDb01/FDSdemo_e/Construction/@4711635

When a new document is stored, the X-Machine assigns an document ID automatically to the
document. The document ID is returned as the value of the ino:id attribute in the ino:object
element in the Tamino response document.

It is not possible for a client to assign an explicit ID when a new document is being stored. A 31-
bit integer is used to represent the document ID, so the total number of document IDs per doctype
is approximately 2,000,000,000. A document ID is unique within a given doctype, but does not
need to be unique across doctypes, i.e. a document ID in one doctype can be the same as a document
ID in another doctype. In the Tamino namespace, the name ino:id is reserved for the document
ID.

Note: When a document is deleted, the document ID can be reused when a new document
is created. This behaviour is controlled by the schema element tsd:systemGeneratedIden-
tity.

15X-Machine Programming

Requests using Plain URL Addressing

Criteria for Inserting or Replacing a Document

When a document is sent to Tamino, Tamino uses the values of the document ID and/or document
name that can optionally be supplied in the input request to decide whether to insert a new docu-
ment or replace an existing document.

The document ID of an existing document can either be supplied in the URL (as described above)
or as the value of the ino:id attribute of the document's root element (if the document is an XML
document), or both. If both are supplied, the values must be identical, otherwise an error will be
returned.

The document name of an existing document can only be supplied in the URL.

If a document name and a document ID are both supplied, a document with this name and ID
must already exist, otherwise an error will be returned.

The rules determining whether a new document will be inserted or an existing document will be
replaced are the same as for the X-Machine _process command. See the sectionCriteria for inserting
or replacing a document within the description of the _process command for details.

If you supply neither a document name nor a document ID when using plain URL addressing as
described here, an error will be returned. Note however that the _process command allows you
to omit both the document name and the document ID when inserting a new document. See the
_process command for details.

HTTP Header and Body Content

When issuing HTTP GET, DELETE and HEAD requests to Tamino, no HTTP body is supplied.
For an HTTP PUT request, the body must contain the document (XML or non-XML). For XML
documents, wrapping is neither required nor allowed.

The URL describes the location for the document inside Tamino.

After a successful response from Tamino, the HTTP body will contain data if a GET was issued.
This data is the requested document without any XML wrapping. The HTTP header will contain
standard HTTP status codes.

If a PUT was issued, the HTTP response header field X-INO-id will contain the document ID of
the document that was processed.

If a PUT, GET or DELETE was issued, the HTTP response header field X-INO-Docname will contain
the name of the document that was processed.

X-Machine Programming16

Requests using Plain URL Addressing

The version number of the Tamino server being used is returned in the HTTP response header
for every HTTP request. The value is returned in the field X-INO-Version.

HTTP Status Codes

The following table lists a selection of the standard HTTP status codes that can result from a plain
URL addressing request to the X-Machine. For the full list of HTTP status codes, see the HTTP
specification at http://www.ietf.org/rfc/rfc2616.txt.

MeaningHTTP MethodHTTP status code

OK, document retrievedGET200

OK, document foundHEAD200

OK, document created (did not already exist)PUT201

OK, document deletedDELETE204

OK, existing document replacedPUT204

Request cannot be processed (e.g. unknown ino:id value
or document not well formed)

GET, DELETE, HEAD, PUT400

Access denied (the specified user ID and/or password are
not valid)

GET, DELETE, HEAD, PUT401

Document not foundGET, DELETE, HEAD404

Internal error in the Tamino server, document not processed
(i.e. not retrieved, not deleted, not stored)

GET, DELETE, HEAD, PUT500

Error in a communications component such as a web server
interface

GET, DELETE, HEAD, PUT502

Service unavailable temporarily (e.g. due to a locking conflict)GET, DELETE, HEAD, PUT503

When accessing WebDAV resources, various other response codes are possible. Please refer to
RFC2518, RFC3253, RFC3744 and the WebDAV SEARCH specification at http://www.ietf.org/
for a complete list.

Authentication Aspects

This section covers the following topics:

■ Passing a user ID and password to Tamino

17X-Machine Programming

Requests using Plain URL Addressing

http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2518.txt
http://www.ietf.org/rfc/rfc3253.txt
http://www.ietf.org/rfc/rfc3744.txt
http://www.ietf.org/

■ Authentication for client requests

Passing a user ID and password to Tamino

In order to pass a user ID and password to Tamino, the following methods are available:

■ Basic authentication field in HTTP header
■ Special Tamino authentication field in HTTP header

Basic authentication field in HTTP header

Using the standard mechanism for the basic authentication scheme of the HTTP protocol, a user
ID and password can be passed to Tamino. The field Authorization of the HTTP header can be
used for this purpose.

Note: The field X-INO-Authorization, if present in the HTTP header, takes precedence over
the field Authorization. See the section Special Tamino authentication field in HTTP
header for details.

The format of the field Authorization is as follows:

Authorization: Basic ID:Password

where ID:Password is the user ID and password in UTF-8 encoding separated by a colon, then
converted to base64 representation. For a description of base64 encoding, which defines a mapping
of any binary data to printable characters in 7-Bit US-ASCII, see http://www.ietf.org/rfc/rfc2045.txt.

When using a user domain, the user ID should be preceded by the domain name and a backslash,
for example, "MyDomain\MyUserID". Note that Tamino domains and user IDs are case-sensitive,
also when they are mapped to a Windows domain.

Special Tamino authentication field in HTTP header

The Tamino-specific field X-INO-Authorization can be used in the HTTP header to pass a user
ID and password.

Note: When the fields Authorization and X-INO-Authorization are both present in the
HTTP header, the field X-INO-Authorization takes precedence over the field Authorization.

The format of the field X-INO-Authorization is as follows:

X-INO-Authorization: Basic ID:Password

where ID:Password is the user ID and password in UTF-8 encoding separated by a colon, then
converted to base64 representation. For a description of base64 encoding, which defines a mapping
of any binary data to printable characters in 7-Bit US-ASCII, see http://www.ietf.org/rfc/rfc2045.txt.

X-Machine Programming18

Requests using Plain URL Addressing

http://www.ietf.org/rfc/rfc2045.txt
http://www.ietf.org/rfc/rfc2045.txt

When using a user domain, the user ID should be preceded by the domain name and a backslash,
for example, "MyDomain\MyUserID". Note that Tamino domains and user IDs are case-sensitive,
also when they are mapped to a Windows domain.

Authentication for client requests

Tamino supports the following types of authentication for client requests:

■ Non-authenticated access
■ Authentication using web server authentication
■ Tamino authentication

Non-authenticated access

This method can be used when the Tamino XML property Authentication is set to "none". In this
case, the user ID found in the header fields will be used and the password will be ignored. This
is not recommended if access restrictions are defined using Tamino Security (see the section Tamino
Security in the documentation of the Tamino Manager for information).

Authentication using web server authentication

This method can be used when the Tamino XML property Authentication is set to "web server".
The user ID and password, which must be known to the authenticating web server, must be
provided in the HTTP basic authentication header field.

If the property is set to "web server" and a non-authenticating web server is used, no user ID will
be passed to Tamino, so all requests will be treated as if they originate from the default user group;
here, only the basic authentication scheme is supported.

For this type of authentication to work, the web server must be configured to use basic authentic-
ation and must be able to authenticate the users who will communicate with Tamino using this
method. Please refer to the documentation of your web server for information on how to do this
configuration.

Tamino authentication

This method can be used when the Tamino XML property Authentication is set to "tamino". The
user ID and password can be passed in either the HTTP basic authentication header field or the
special Tamino authentication header field. Tamino authenticates the user against the users known
to Tamino (users stored directly in Tamino or users known to Tamino via an LDAP server or the
local operating system). If the authentication fails, an HTTP response 401 is returned.

19X-Machine Programming

Requests using Plain URL Addressing

Transaction Aspects

In the same way as for X-Machine commands, requests using plain URL addressing can be executed
in the context of a transaction that is part of an X-Machine session established via the _connect
command. As there is no way to pass request parameters using plain URL addressing, the values
of various session parameters can be passed in HTTP request header fields.

Setting session ID and session key

The values of _sessionid and _sessionkey can be passed in the HTTP request header fields
X-INO-Sessionid and X-INO-Sessionkey. For details of session ID and session key see the topic
Transaction-Related Commands.

Overriding session parameters

It is possible to override certain session parameter defaults (typically set on the X-Machine _connect
command) in an HTTP request by supplying values for the following HTTP request header fields:

Corresponding X-Machine parameterHTTP request header field

_ISOLATIONX-INO-isolation

_ISOLATIONLEVELX-INO-isolationLevel

_LOCKMODEX-INO-lockMode

_LOCKWAITX-INO-lockWait

When the request completes, the values of the session parameters revert to the default values.

For more information on these parameters, refer to the section Session Parameters.

X-Machine Programming20

Requests using Plain URL Addressing

5 Requests using X-Machine Commands

■ X-Machine Command Format .. 23
■ Description of X-Machine Commands .. 26
■ X-Machine Command Options ... 79
■ Syntax of XML Responses .. 63
■ Elements and Attributes in Tamino Response Documents .. 71
■ Suppressing the Tamino Response Wrapper ... 72
■ Transaction-Related Commands .. 74
■ Prepared Queries .. 83
■ Order of Execution of Commands ... 86
■ Interactive Environment for sending X-Machine Commands ... 87

21

This section describes how to communicate with the X-Machine using the X-Machine's own pro-
cessing commands. It also describes the corresponding HTTP request and response structure.

The X-Machine offers a set of commands for storing, retrieving and deleting X-Machine documents,
creating or erasing collections or schemas, performing transaction processing and diagnostic
testing. These commands are sent to the X-Machine either as parameters that are appended to a
URL in an HTTP GET request (parameterized URL addressing), or as HTML form data in an HTTP
POST request.

The commands are:

MeaningCommand

Perform an administration function_admin

Commit a transaction_commit

Start a database session_connect

Perform a cursor-related command_cursor

Create a collection, schema or doctype; modify an existing schema or doctype_define

Delete one or more documents_delete

Remove a prepared query_destroy

Perform a diagnostic test_diagnose

Terminate a database session_disconnect

Execute a prepared query_execute

Create and query Tamino documents (used only in the context of HTML forms)_htmlreq

Prepare (precompile) a query for later execution_prepare

Store one or more documents into a collection; or modify an existing XML document_process

Roll back a transaction_rollback

Delete a collection, schema or doctype_undefine

Retrieve one or more documents using the Software AG's XPath-based X-Query query
language

_xql

Specify a query based on the W3C XQuery query language_xquery

X-Machine commands are described under the following headings:

X-Machine Programming22

Requests using X-Machine Commands

X-Machine Command Format

Each X-Machine command described in this section can be sent either via an HTTP GET request
or via a multipart form HTTP POST request.

X-Machine commands that are sent via HTTP GET requests are contained as keyword/value pairs
in URLs according to the syntax given below (parameterized URL addressing). For some commands,
additional information can be supplied in the form of keyword/value pairs.

For HTTP POST requests with HTML form data, only the URL prefix (the part specifying the path
of the database to be accessed) is supplied as the HTTP address, and the keyword/value pairs are
supplied in the body of the HTML form data.

In general, the examples in the following sections for the individual commands use parameterized
URL addressing.

Parameterized URL addressing via HTTP GET

The syntax of parameterized URL addressing is as follows:

URLprefix/CollectionName{?Command[/Stylesheet]=Data[&Keyword=Value]}...

The syntax has the following meaning:

The URL of the database to be accessed, for example:URLprefix

http://myhost:80/tamino/mydatabase

The host name and port number must point to the computer and port where your web
server is running.

The name of the collection to be accessed. This is optional for some commands.CollectionName

The X-Machine command, which is one of the following verbs: _define, _undefine,
_process, _delete, _xql, _xquery, _connect, _commit, _rollback, _disconnect,

Command

_admin, _cursor, _htmlreq or the special verb _diagnose, _destroy, _prepare,
_execute.

Command names are case-insensitive.

A URL pointing to an XSL stylesheet. When this is specified, the response to the request
will contain an XSL processing instruction of the form:

Stylesheet

<?xsl:stylesheet href='Stylesheet'?>

Browsers capable of interpreting such processing instructions (such as Internet Explorer)
will format the response document according to the formatting specified in the stylesheet.
Refer also to the section Syntax of XML Responses for information about the content
of the response document.

23X-Machine Programming

Requests using X-Machine Commands

The stylesheet may be specified either as an absolute URL starting with http:// or as
a relative URL which is evaluated by the client application (web browser) according to
the standard rules.

Example: If "_xql/http://aaa/bbb.xslt=patient" is specified, a processing instruction
<? xsl:stylesheet href='http://aaa/bbb.xslt' ?>

will be added to the response document.

This specifies the data to be processed by the command. This can be XML documents
or query expressions depending on the preceding verb, or parameters for commands
such as _diagnose and _admin.

Data

The transaction and session-related command verbs _connect, _commit, _rollback
and _disconnect require an asterisk ("*") here, for example _commit=*, and the
remaining data must be supplied in the form of keyword/value pairs (see the description
of Keyword and Value below).

The name of a keyword that further qualifies the processing to be done by the command.Keyword

There can be multiple keyword/value pairs. Each keyword/value pair must be preceded
by an ampersand ("&").

Keywords are case-insensitive. Unknown keywords are ignored.

Value of the keyword. See the description of the commands below for information on
the values allowed.

Value

If the web server-based security mechanism is implemented at your site, the collection must be
entered to the left of the question mark.

Restrictions when using parameterized URL addressing

If you use parameterized URL addressing rather than HTML form data, please be aware of the
following restrictions:

■ Some web servers restrict the length of the URLs that they can process. In some cases, a URL
that you want to send might be longer than the maximum length allowed by the web server on
the client or server side, so it might be necessary to use HTTP POST with HTML form data in-
stead.

■ The X-Machine accepts IRIs (Internationalized Resource Identifiers). In an IRI, all Unicode
characters can be used, provided that they are properly encoded. Each byte of the hexadecimal
representation of the UTF-8 code point of such a character must be prefixed by "%".

Example: the German character "ä" (the character "a" with an umlaut) has the Unicode code
point U+E4. The equivalent UTF-8 code point represented as a hexadecimal value is "C3A4", so
this must be represented as "%C3%A4" in the IRI.

X-Machine Programming24

Requests using X-Machine Commands

HTML multipart form data via HTTP POST

For X-Machine commands sent in HTTP POST requests with HTML form data, the information
sent is equivalent to that sent by parameterized URL addressing (see the section Parameterized
URL addressing via HTTP GET above), but the keyword/value pairs are supplied in the body of
the HTML form data.

Here is an example of the HTTP request body using the _define command to define a schema
cluster consisting of 2 schemas S1 and S2:

POST /tamino/myDB HTTP/1.1
User-Agent: ….
Content-Type: multipart/form-data; boundary=xYzZY
Content-Length: 1250
Host: localhost:80
Accept: text/html, image/gif, image/jpeg, *; q=.2, */*; q=.2
Connection: keep-alive

--xYzZY
Content-Disposition: form-data; name="_define"
Content-Type: text/plain
Content-Length: 7

$S1,$S2
--xYzZY
Content-Disposition: form-data; name="$S1"

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
<xs:annotation>

<xs:appinfo>
<tsd:schemaInfo name="S1">

<tsd:collection name="cluster"/>
<tsd:doctype name="root"/>

</tsd:schemaInfo>
</xs:appinfo>

</xs:annotation>

<xs:element name="root">
<xs:complexType>
<xs:sequence>

<xs:element ref="child"/>
</xs:sequence>

</xs:complexType>
</xs:element>

<xs:element name="child"/>

</xs:schema>

25X-Machine Programming

Requests using X-Machine Commands

--xYzZY
Content-Disposition: form-data; name="$S2"

<?xml version="1.0" encoding="utf-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
<xs:annotation>

<xs:appinfo>
<tsd:schemaInfo name="S2">

<tsd:collection name="cluster"/>
</tsd:schemaInfo>

</xs:appinfo>
</xs:annotation>

</xs:schema>

--xYzZY--

Description of X-Machine Commands

This section describes the individual X-Machine commands. The list of available commands is as
follows:

■ The _admin command
■ The _commit command
■ The _connect command
■ The _cursor command
■ The _define command
■ The _delete command
■ The _destroy command
■ The _diagnose command
■ The _disconnect command
■ The _execute command
■ The _htmlreq command
■ The _prepare command
■ The _process command
■ The _rollback command
■ The _undefine command
■ The _xql command
■ The _xquery command

Caution: Web servers that log requests log the URL but not the body of the request. So if a
user issues a request using a GET, the data can be obtained by reading the web server log,
which could lead to potential security or privacy problems. If PUT or POST are used, the
data cannot be seen in the web server log.

X-Machine Programming26

Requests using X-Machine Commands

The _admin command

The _admin command offers several administration functions for Tamino. The format of this
command is:

_admin=Function(Parameter, ...)

After execution of the _admin command, the response document indicates either a successful exe-
cution or an error. In the case of success, a response such as the following will be delivered:

<ino:message ino:returnvalue="0">
<ino:messageline>

starting admin command AdminCommand
</ino:messageline>
</ino:message>
<ino:message ino:returnvalue="0">
<ino:messageline>

admin command AdminCommand completed
</ino:messageline>
</ino:message>

Otherwise, in the case of an error, the response will contain entries like this:

<ino:message ino:returnvalue="Value">
<ino:messagetext ino:code="ErrorCode">

MessageText
</ino:messagetext>
</ino:message>

The following administration functions are available.

■ The ino:Accessor function
■ The ino:CancelMassLoad function
■ The ino:ChangeUserPassword function
■ The ino:DisplayIndex function
■ The ino:Index function
■ The ino:RecreateIndex function
■ The ino:RecreateTextIndex function
■ The ino:RepairIndex function

27X-Machine Programming

Requests using X-Machine Commands

■ The ino:Request function

The ino:Accessor function

This administration function allows a client to cancel a request that it submitted previously. This
could be used, for example, to cancel a request that is taking a long time to execute.

In order to label a request so that it can be uniquely identified for cancellation at a later stage, the
client assigns a unique request ID to the request when the request is sent to the X-Machine. This
ID can be used in a later call of ino:Accessor("cancelRequest", "requestID") to cancel the
execution of the request. The request ID consists of a unique part generated by the X-Machine,
obtained by a call of ino:Accessor("getId"), plus a client-generated part.

The function can be called with the following parameters:

When this command is sent to the X-Machine, the X-Machine returns
a server-generated unique ID in the HTTP response header field

ino:Accessor("getId")

X-INO-clientRequestId. In any subsequent request from the
client to the X-Machine, the client can pass a request ID, constructed
from the server-generated unique ID, in the HTTP request header
field X-INO-clientRequestId to label the request uniquely, so
that the request can be cancelled by a subsequent call of
ino:Accessor("cancelRequest", "requestID").

The request ID is composed of the server-generated unique ID plus
a client-generated part. The client generated part can be freely
chosen, as long as the resulting request ID for a given request is
unique.

The request ID must be UTF-8 encoded.

This command cancels the request identified by the requestID. The
meaning of requestID is described above.

ino:Accessor("cancelRequest",
"requestID")

A typical flow of events is shown in the following diagram. In this example, the initial call of
_admin=ino:Accessor("getId") returns the server-generated unique ID "SGUID" in the HTTP
header field X-INO-clientRequestId in the response. The request ID generated by the client for
each subsequent request has the format "SGUID-nn", where nn is a numeric counter starting from
"01". The example shows two requests, with the request IDs "SGUID-01" and "SGUID-02", with
each request sending an _XQUERY command. To cancel the request that has the request ID "SGUID-
02", the client issues the command ino:Accessor("cancelRequest", "SGUID-02").

X-Machine Programming28

Requests using X-Machine Commands

Related information

The ino:Accessor function is used by a client to cancel a request that it previously submitted itself.
A user with administration rights can also cancel any active Tamino request, regardless of which
client originally submitted it, by using the ino:Request function of the _admin command.

The ino:CancelMassLoad function

This administration function allows you to cancel a halted session of the Tamino data loader utility
on the Tamino server machine. This situation can arise if the client machine from which the mass
load was started has become unavailable. The call has one parameter, namely a string specifying
either (a) the desired doctype and the respective collection or (b) the session ID:

_admin=ino:CancelMassLoad("CollectionName/DoctypeName" | SessionID)

Note: This function can only cancel a session that is inactive, i.e., you cannot stop a running
session.

If the function completes successfully, the reply of this function will contain entries like these:

29X-Machine Programming

Requests using X-Machine Commands

<ino:message ino:returnvalue="0">
<ino:messageline>session 12345 ended</ino:messageline>

</ino:message>

If no active session was found you will receive a result document containing entries like these:

<ino:message ino:returnvalue="8555">
<ino:messageline>Invalid session ID</ino:messageline>

</ino:message>

In the case of an active session but unsuccessful execution, the result document will contain entries
like these:

<ino:message ino:returnvalue="8285">
<ino:messageline>Invalid session ID</ino:messageline>

</ino:message>

If the function is issued against a doctype for which no data loader session is halted, an error re-
sponse 8310, "Invalid parameter detected" will be returned.

The ino:ChangeUserPassword function

This function allows a user to change his or her password.

The function has one parameter, which is the new password in plain text:

_admin=ino:ChangeUserPassword("NewPassword")

For further information about this command, refer to the section Tamino Security in the document-
ation of the Tamino Manager.

The ino:DisplayIndex function

The function ino:DisplayIndex displays the contents of standard indices or text indices. The de-
scription of this function consists of the following sections:

■ Syntax
■ Standard Index and Collation
■ Standard Index With Truncated Values
■ Index options
■ Compound Index
■ Unique Keys
■ Multipath Index
■ Computed Index

X-Machine Programming30

Requests using X-Machine Commands

■ Reference Index

Syntax

The function call has the following syntax:

_admin=ino:DisplayIndex("CollectionName", "ElementPath", "StartValue", "Size", ↩
"IndexType")

where CollectionName is the name of the collection, ElementPath is the absolute path of the indexed
element, StartValue is the first index value that you want to display, Size is the number of values
to display for the index (must be a positive integer), and IndexType specifies the index type, which
can be one of "standard", "text", "multipath-standard", "multipath-text" or "computed-standard".

Example

_admin=ino:DisplayIndex("Customers","Customer/Name","B","10","standard")

This will display the first 10 values that exist for the standard-indexed element Name in the doctype
Customer in the collection Customers. The start value "B" indicates that the first value returned for
the index should be equal to or greater than "B". The result document could, for example, contain
the following lines:

<ino:index ino:indexcoll="Customers" ino:indexpath="Customer/Name" ↩
ino:indextype="standard">
 <ino:indexvalue ino:indexcount="28">Baker</ino:indexvalue>
 <ino:indexvalue ino:indexcount="33">Barclay</ino:indexvalue>
 <ino:indexvalue ino:indexcount="14">Bayliss</ino:indexvalue>
 <ino:indexvalue ino:indexcount="1">Bean</ino:indexvalue>
 <ino:indexvalue ino:indexcount="28">Bedford</ino:indexvalue>
 <ino:indexvalue ino:indexcount="23">Bingham</ino:indexvalue>
 <ino:indexvalue ino:indexcount="676">Black</ino:indexvalue>
 <ino:indexvalue ino:indexcount="22">Bolton</ino:indexvalue>
 <ino:indexvalue ino:indexcount="563">Brown</ino:indexvalue>
 <ino:indexvalue ino:indexcount="47">Butler</ino:indexvalue>
</ino:index>

The collating sequence used for the ino:DisplayIndex function is the standard sequence of Unicode
scalar values (“codepoints”).

If there are several indexes of the specified index type at the given path, then all indexes will be
displayed, and each index will have its own ino:index element, as described below. If there are
several indexes, the given size (number of values to display) will apply to each index. If there are
several indexes, the given start value will apply to each index (see also below the special case for
a compound index). The index type specifies whether standard or text indexes are to be displayed.
There is no further possibility to select an index of a specific kind (e.g., display only multipath
indexes), or to select a particular index (e.g., the third out of five compound indexes).

31X-Machine Programming

Requests using X-Machine Commands

Indexes are not available while they are built/rebuilt during a _define command or a
ino:RecreateIndex/ino:RecreateTextIndex administration command. In this case the corres-
ponding ino:index element will have its attribute ino:status set to "not-available". As the index
values are being built at that point in time, no ino:indexvalue elements will be displayed. For
example:

<ino:index ino:indexcoll="myColl"
ino:indexpath="myDoc/field"
ino:indextype="standard"
ino:status="not-available">

</ino:index>

Standard Index and Collation

If a non-composite standard index has a collation, then the index value will be displayed in
hexadecimal format, as there is currently no possibility of converting it back to a readable value.
The attribute ino:value of the ino:indexvalue elements will have the value "collation-encoded".
For example:

<ino:index ino:indexcoll="myColl"
ino:indexpath="myDoc/field"
ino:indextype="standard">

<ino:indexvalue ino:indexcount="1" ino:value="collation-encoded">value1
</ino:indexvalue>
<ino:indexvalue ino:indexcount="1" ino:value="collation-encoded">value2
</ino:indexvalue>

</ino:index>

Standard Index With Truncated Values

Tamino sets an upper limit on the length of an index, and indexes that exceed this limit are trun-
cated. Information about the size of this limit in the current Tamino release is provided in the
section Definition of Unique Keys in the Tamino XML Schema User Guide.

If a standard index contains a truncated value, the corresponding ino:index element will have
the attribute ino:status set to the value "has-truncated-values". The corresponding index values
that are truncated will be marked similarly. For compound indexes this was already described
above. For simple standard indexes the ino:indexvalue element will have the attribute ino:value
set to "truncated". As far as possible the truncated value will appear as the contents of ino:index-
value. For example:

X-Machine Programming32

Requests using X-Machine Commands

<ino:index ino:indexcoll="myColl"
ino:indexpath="myDoc/field"
ino:indextype="standard"
ino:status="has-truncated-values">

<ino:indexvalue ino:indexcount="1" ino:value="truncated">value1
</ino:indexvalue>
<ino:indexvalue ino:indexcount="1">value2</ino:indexvalue>

</ino:index>

For more information on truncated values, refer to the section

Index options

Depending on the index type (standard or text), the options compound and multipath can be
available. These options may be combined: a compound index (or more precisely, a standard index
with the compound option) may be part of a multipath index. Moreover, several indexes of the
same kind may occur at a particular path. For example, an element may have several compound
indexes.

The compound and multipath options are represented as an attribute of the ino:index element.
If an index has several options, then all the corresponding attributes will appear with the
ino:index element.

Compound Index

A compound index is represented by an ino:fields attribute, the value of which is the concaten-
ation of the index components as given in the schema (separated by blanks). The following example
shows a schema with a compound index and the corresponding ino:index element in the index
display:

<xs:element ...>
...
<tsd:elementInfo>

<tsd:physical>
<tsd:native>

<tsd:index>
<tsd:standard>
<tsd:field xpath="C"/>
<tsd:field xpath="B/@b" />

</tsd:standard >
...

</tsd:index>
</tsd:native>

</tsd:physical>
</tsd:elementInfo>

<xs:element>

Schema with a compound index

33X-Machine Programming

Requests using X-Machine Commands

<ino:index ino:indexcoll="myCollection"
ino:indexpath="myDocument/myElement"
ino:indextype="standard"
ino:fields="C B/@b">

ino:index element in the index display

The following general rules apply for the display of compound indexes:

■ The start value specified in the ino:DisplayIndex call will apply to the first component of the
compound index.

■ If there are several compound indexes defined for the requested path then the respective first
components may have different datatypes. Then ino:DisplayIndex will try to convert the start
value to the required datatype. If that fails, the execution will abort with an error message.

■ The index values of a compound index will be split into their component parts. Each part will
be displayed in an own ino:field element within the ino:indexvalue element. For example,
if there is a compound index with three components, the ino:indexvalue element will look like
this:

<ino:indexvalue ino:indexcount="1">
<ino:field>value of 1st component</ino:field>
<ino:field>value of 2nd component</ino:field>
<ino:field>value of 3rd component</ino:field>

</ino:indexvalue>

■ If a component does not have a value (the content of the component does not exist), the contents
of ino:field will be empty, for example:

<ino:indexvalue ino:indexcount="1">
<ino:field>value of 1st component</ino:field>
<ino:field/> <!-- empty component value -->
<ino:field>value of 3rd component</ino:field>

</ino:indexvalue>

■ If a component does not exist, the contents of ino:field will be empty, and the attribute
"ino:value="non-existing"" will indicate the missing component, for example:

<ino:indexvalue ino:indexcount="1">
<ino:field>value of 1st component</ino:field>
<ino:field ino:value="non-existing"/> <!-- non-existing component -->
<ino:field>value of 3rd component</ino:field>

</ino:indexvalue>

■ If a component value was truncated (because the whole compound value was longer than 1004
bytes), the attribute ino:valuewill indicate this. If the component's datatype allows the truncated
prefix to be converted to a meaningful value, this value will appear as contents of the ino:field
element, otherwise (e.g. for float components), ino:field will be empty. For example:

X-Machine Programming34

Requests using X-Machine Commands

<ino:indexvalue ino:indexcount="1">
<ino:field>value of 1st component</ino:field>
<ino:field ino:value="truncated">value of 2nd c</ino:field>
<ino:field ino:value="truncated"/>

</ino:indexvalue>

■ If a component has a collation, the attribute ino:value will have the value "collation-encoded".
The value itself will be displayed in hexadecimal format, as there is currently no possibility of
converting the index value back to a readable value. Note that a collation-encoded value may
as well be truncated. For example:

<ino:indexvalue ino:indexcount="1">
<ino:field ino:value="collation-encoded">0x112233aabb</ino:field>
<ino:field ino:value="collation-encoded truncated">0x1122</ino:field>
<ino:field ino:value="truncated"/>

</ino:indexvalue>

Unique Keys

There is no explicit way to display unique keys. As they are implemented as standard/compound
indexes, they are displayed implicitly when ino:DisplayIndex() is called with a path at which such
an index exists. Consider for example the following schema:

<tsd:doctype name="A">
...
<tsd:unique name="CB-key">

<tsd:field xpath="C"/>
<tsd:field xpath="B/@b" />
</tsd:unique>

<tsd:unique name="D-key">
<tsd:field xpath="D"/>

</tsd:unique>
...

</tsd:doctype>

Schema with unique key

This example means that if ino:DisplayIndex() is called with "path="A/D"", then the unique key
"D-key" will be displayed, and if ino:DisplayIndex() is called with "path="A"", then the unique
key "CB-key" will be displayed. In both cases, the attribute ino:unique="true" in the ino:index
element will identify the indexes as unique keys:

35X-Machine Programming

Requests using X-Machine Commands

<ino:index ino:indexcoll="myCollection"
ino:indexpath="A/D"
ino:indextype="standard"
ino:unique="true">

<ino:index ino:indexcoll="myCollection"
ino:indexpath="A "
ino:indextype="standard"
ino:fields="C B/@b"
ino:unique="true">

Multipath Index

For a multipath index, the label as given in tsd:multiPathwill be displayed in the ino:multiPath
attribute. Consider the following sample schema:

<xs:element name = "Title" type = "xs:string">
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:physical>
<tsd:native

<tsd:index>
<tsd:text>
<tsd:multiPath>MultiPathIndex</tsd:multiPath>

</tsd:text>
</tsd:index>

</tsd:native>
</tsd:physical>

</tsd:elementInfo>
</xs:appinfo>

</xs:annotation>
</xs:element>

The ino:index element shown for this schema is:

<ino:index ino:indexcoll="myCollection"
ino:indexpath="myDocument/Title"
ino:indextype="text"
ino:multiPath="MultiPathIndex">

As a multipath index in general is not based on a specific path in the doctype, it is also possible
to display the entries of a specific multipath index by using the following extended syntax:

X-Machine Programming36

Requests using X-Machine Commands

_admin=ino:DisplayIndex("Collection", "Doctype/IndexName", "StartValue", "Size", ↩
"IndexType")

where IndexName is the name specified in the tsd:multipath element, and IndexType is either
"multiPath-standard" or "multiPath-text".

Computed Index

For an example schema defining a computed index see e.g. Appendix 5: Example Schemas for
Indexing in the XML Schema User Guide. It is possible to display the entries of a computed index
by using the following extended syntax:

_admin=ino:DisplayIndex("Collection", "Doctype/IndexName", "StartValue", "Size", ↩
"IndexType")

where IndexName is the value of the name attribute of the tsd:computed element, and IndexType
must be "computed-standard".

Reference Index

For a reference index, the label as given in tsd:referswill be displayed in the ino:refers attribute.
Consider the following sample schema:

<xs:element name = "D" minOccurs = "0" type="xs:string">
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:physical>
<tsd:native>
<tsd:index>

<tsd:standard>
<tsd:refers>/A/B</tsd:refers>

</tsd:standard>
</tsd:index>

</tsd:native>
</tsd:physical>

</tsd:elementInfo>
</xs:appinfo>

</xs:annotation>
</xs:element>

The ino:index element shown for this schema is:

37X-Machine Programming

Requests using X-Machine Commands

<ino:index ino:indexcoll="myCollection"
ino:indexpath="A/B/D"
ino:indextype="standard"
ino:refer="/A/B">

The ino:Index function

This function is intended for performing maintenance tasks on indexes. The syntax is

_admin=ino:Index("Action"[,"CollectionName"[,"DoctypeName"]])

The parameter Action determines the action to be performed for the given doctype within the
given collection. If the doctype name is omitted, all doctypes will be processed. If the collection
name is omitted, all doctypes in all collections will be processed.

Currently, the only value supported for Action is "optimize". It causes the following steps to be
executed for each doctype being processed:

1. Optimize the internal storage used for the maintenance of long index values. This refers to index
entries whose length exceeds 1000 bytes. Note that the length of an index entry depends strongly
on the underlying datatype. For strings, the length of the UTF-8 representation is relevant.

The ino:DisplayIndex function can be used to check whether such long index values have
occurred. The result may look as follows:

<ino:index ino:indexcoll="myCollection"
ino:indexpath="myDocument/myElement"
ino:indextype="standard"
ino:status="has-truncated-values">

The function ino:Index("optimize",...) should be used when a considerable amount of data
has been deleted. This may speed up query execution considerably.

2. Shrink the size of the structure index if possible. The structure index may contain paths which
have been added when storing documents which have been deleted in the meantime. Again,
using the function ino:Index("optimize",...)may improve the performance of query execu-
tion.

The ino:RecreateIndex function

The function ino:RecreateIndex causes the regeneration of all index information related to a
given doctype. This includes all types of indexes:

■ standard indexes (simple and compound)
■ text indexes
■ structure index
■ index for ino:docname

X-Machine Programming38

Requests using X-Machine Commands

The intended use of this function is to rebuild the indexes of a doctype in cases where indexes
have been corrupted. If you wish to recreate the text indexes only, use the command
ino:RecreateTextIndex instead.

Caution: During normal operation, indexes are kept consistent by Tamino, and there is no
reason to use this function. If, however, you think that a certain index should be recreated,
the recommended method is to use the Tamino Schema Editor as described in the section
Maintaining Tamino Indexes.

Function call

The function call has two parameters, namely the desired doctype and the collection it resides in.
The syntax is:

_admin=ino:RecreateIndex("CollectionName", "DoctypeName")

The ino:RecreateTextIndex function

The function ino:RecreateTextIndex causes the regeneration of all text indexes for a given doctype
within the database. A example of the usage of this function is to recreate text indices after the
language tokenizer has been changed. Its call has two parameters, namely the desired doctype
and the collection it resides in. The syntax is:

_admin=ino:RecreateTextIndex("CollectionName", "DoctypeName")

Caution: Do not change the setting of the language tokenizer while this function is in progress.

If you change the language tokenizer (for example, from "white space-separated" to "japanese",
on platforms where this is supported), you must run the function ino:RecreateTextIndex to re-
create the text indices, unless the doctype was empty.

The ino:RepairIndex function

The function ino:RepairIndex is used to fix indexes that are incomplete. It is called with 3 para-
meters:

_admin=ino:RepairIndex("CollectionName", "DoctypeName", "action")

The use of this function is necessary under various conditions such as:

■ An ino:RecreateIndex or ino:RecreateTextIndex function that ran in a non-session context
was terminated prematurely due to an error or server shutdown.

■ An implicit construction of indices that was triggered by a schema update was terminated pre-
maturely due to an error or server shutdown.

In all cases, none of the affected indexes can be used for query optimization, which may result in
decreased performance of query execution and a higher server load.

39X-Machine Programming

Requests using X-Machine Commands

There are two conceptually different ways to fix the problem, as indicated by the parameter action,
which can take one of the following values:

■ "continue": The index regeneration is started or resumed, starting at that point where the error
occurred. In most cases, this is the recommended way of invocation.

■ "drop": The index regeneration is not performed. Instead, the situation is resolved by removing
all affected indices from the database and from the schema. Thus, ensure you have backed up
your schema before using this feature. Also be aware that further queries may slow down if
they rely on the indexes for optimization. This way of invocation is a kind of emergency exit to
quickly recover from an interrupted index-creating operation. For example, this could be neces-
sary if you issued a schema update that added new indices, but there is not enough disk space
available to hold the additional index information. In this scenario, the invocation with "continue"
would repeatedly fail, whereas "drop" would return the collection into a consistent state.

During server startup, Tamino checks whether one or more incomplete indices exist, and writes
appropriate messages to the job log. Therefore, after an unexpected interruption of operation such
as a power failure, check the job log for such messages. If necessary, issue ino:RepairIndex for
the reported doctypes to prevent performance degradation.

The job log could, in such a case, contain messages such as the following:

Info: (INOAAI0574) Starting database 'mydb'
Info: (INODSA1002) Tamino server 4.2.1 on Windows ...
Info: (INOXHI8265) Default tokenizer 'white space-separated'
Info: (INOXRI8801) Request to create indexes for doctype Play

in collection Shakespeare is pending
Info: (INODSI1452) Server session 3 started
Info: (INODSI1636) Tamino server successfully started

The ino:Request function

The function ino:Request allows the administrator to cancel any currently active Tamino client
request, regardless of which client originally issued the request. It is called with 2 parameters:

_admin=ino:Request("cancel", "requestID")

The request ID is a unique identifier by which the X-Machine identifies currently active requests.

To determine the IDs of all active requests, issue the following XQuery command:

X-Machine Programming40

Requests using X-Machine Commands

declare namespace tf='http://namespaces.softwareag.com/tamino/TaminoFunction'
tf:current-requests()

In the xq:result section of the response document of this XQuery command, details for each
active Tamino request are provided in an ino:request element. The required request ID is given
by the value of the attribute id. Here is a sample ino:request element, in which the request ID
has the value "00000002":

<ino:request bytes_returned="0" collection="ino:collection" duration="0"
 http_method="POST" id="00000002" memory_usage="1535992"
 started="2008-08-06T07:03:16+02:00" status="active">
 <ino:from
 remote_address="nnn.nnn.nnn.nnn" server_host="MyHost"
 server_software="Apache/2.2.9 (Win32)"
 user_agent="Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.8.1.16) ↩
Gecko/20080702 Firefox/2.0.0.16"/>
 <ino:command value="declare namespace tf='http://namespaces.softwareag" ↩
verb="_XQUERY"/>
</ino:request>

If the client that originally issued the request assigned a request ID (see the description of the
ino:Accessor administration function for details), the value of the id attribute will be the value
of the client-assigned request ID, otherwise the value of the id attribute will be a system-generated
value.

You can prevent unauthorized usage of the administration function ino:Request and the XQuery
command tf:current-requests() by defining appropriate access control elements (ACEs) using
the Tamino Security Manager, as well as the required access control lists (ACLs) and user groups.
See the description of ACEs, ACLs and user groups in the Security Manager section of the Tamino
Manager documentation for details. Note that when you add an ACE, the Security Manager dialog
asks you to specify a node name for which the ACE applies. Instead of entering a node name in
the ACE dialog, enter the function name ino:Request() or tf:current-requests(). If you specify
tf:current-requests(), a further dialog will ask you to define the namespace tf; in this case, use
the namespace declaration shown above.

Related information

The ino:Request function is used by the administrator to cancel any active Tamino request, regard-
less of which client originally submitted it. Clients without administrator rights can cancel their
own requests using the ino:Accessor function of the _admin command.

41X-Machine Programming

Requests using X-Machine Commands

The _commit command

The _commit command is used to commit the database changes made so far during the current
transaction. A new transaction is started automatically when the next command in a session is
received that causes an update or acquires a lock.

Note: For a summary of restrictions, see the section Transaction-Related Commands.

Example:

URLprefix?_commit=*&_sessionid=479356&_sessionkey=220815

The _connect command

The _connect command is used to establish a session. A session ID and a session key are returned
in the X-Machine response. The first subsequent command to the X-Machine must specify this
session ID and session key using the _sessionid and _sessionkey parameters. The session ID
must be supplied unchanged in all subsequent commands for the current session. The session key
is a unique identifier for the current command. Each time the X-Machine receives a command that
contains the session ID and session key from the previous response, it processes the current com-
mand and returns a new session key to be used in the next command. The X-Machine uses an al-
gorithm to generate each new session key; it does not simply increment the old session key.

The first transaction in the session is started implicitly as soon as the X-Machine receives a command
that changes the database, such as the _process command, or as soon as a command is issued that
acquires a lock.

The command can take the parameter _QueueNextRequest with the value of "yes" or "no". This
parameter specifies whether or not it is possible to send a new request in the session before the
response of the previous request in the session has been fully received. The value you specify for
this parameter overrides the value of the server XML parameter queue next request for the
duration of the session. See the section Queuing a Follow-Up Request for further information.

Example:

To establish a session, specify the following.

URLprefix?_connect=*

When you start a session, you can specify the access rights that other users or applications can
have to the data that is processed during the session. See the section Session Parameters for details.

X-Machine Programming42

Requests using X-Machine Commands

The _cursor command

The cursor command is used for processing the result of a query that uses XQuery (via the _xquery
command) or X-Query (via the _xql command). The result is a sequence of items for XQuery or
a node set for X-Query. The cursor allows you to position within that sequence. The items of the
sequence are arbitrary nodes and values.

Any number of cursors may be defined and used within the same session. To identify any given
cursor, a handle is used. This is an identifier that is returned by Tamino in the response document
of the initial "_cursor=open" request that defines the cursor. Subsequent requests that involve the
cursor must specify the option "_handle=Handle".

A cursor is opened using the option "_cursor=open". In subsequent requests using the option
"_cursor=fetch", a number of entries starting at a given position in the result set can be retrieved
by specifying "_position=Position" and "_quantity=Quantity". The subset of the result set fetched
when "_position" and "_quantity" are specified is termed the fetch set.

If the option "_scroll=yes" is specified when the cursor is opened, the value specified for Position
in subsequent fetches for the same cursor can be anywhere in the range from 1 to the maximum
number of entries in the result set.

If the option "_scroll=no" is specified when the cursor is opened, the value specified for Position
in subsequent fetches for the same cursor must be higher than the last entry returned from the
previous fetch. Thus, if a fetch returns the entries 101-110, the lowest entry that can be returned
from the next fetch is 111. In this example, a subsequent fetch could return entries 111-115 or 125-
140, but not 105-115.

The default value for scroll is "_scroll=no".

The parameter _sensitive is required when opening a cursor with _xquery. Legal values are "no"
and "vague". If you specify "_sensitive=no", an insensitive cursor is opened. This means that the
query is calculated on a fixed input when the cursor is opened, and thus the result sequence remains
unchanged as long as the cursor is active. If you specify "_sensitive=vague", a vague cursor is
opened. The query is calculated on an input that takes modification operations of parallel transac-
tions into account. Thus, the result sequence can vary during the lifetime of the cursor if documents
that match the original query criteria are inserted, updated or deleted in the meantime.

Note: A transaction that has an open vague cursor cannot perform document modifications
(update, insert, delete). A transaction that has an open insensitive cursor can do XQuery
updates.

With cursors in the context of an _xql command, the behaviour always implicitly corresponds to
"_sensitive=vague". You can specify the _sensitive parameter explicitly, but the only valid value
is "vague".

The parameter _count allows you to specify whether the response document should contain a
count of the number of documents that satisfy the query. If you specify "_count=no", no count is

43X-Machine Programming

Requests using X-Machine Commands

returned. If you specify "_count=cheap", the count is returned if Tamino can calculate this without
major additional effort. The default value is "_count=no". If you specify any other value for the
_count parameter, the default value is assumed. If a count is returned, it is delivered as the value
of the attribute ino:count of the element ino:cursor. Tamino delivers no ino:count attribute if
"_count=no" was specified or if Tamino cannot deliver the count without major additional effort.

Opening a cursor

To open a cursor, use a command of the following form. The commands are shown split across
several lines for typographical reasons.

_cursor=open&_xquery=Query
[&_scroll={yes|no}]
&_sensitive={no|vague}
[&_count={no|cheap}]

or

_cursor=open&_xql=Query
[&_scroll={yes|no}]
[&_count={no|cheap}]

This identifies a set of entries that match the given query. All subsequent operations using this
cursor will operate on this result set.

Get result documents

To retrieve entries from the result set, use a command of the following form:

_cursor=fetch&_handle=Handle&_position=Position[&_quantity=Quantity]

Here, Handle is the handle returned from the "_cursor=open" request, Position is the required
starting position within the result set and Quantity is the number of entries to be returned. If you
do not specify a quantity, the default value is 10.

Specifying "_quantity=0" is supported. It can be used for checking if a particular position, as given
by the _position keyword, exists within the cursor. If a response document contains no error, the
position exists in the cursor, otherwise the position does not exist in the cursor.

The position of the first cursor result is 1.

The result document contains

X-Machine Programming44

Requests using X-Machine Commands

<ino:cursor ino:handle="Handle">
<ino:current ino:position="p" ino:quantity="q"/>
<ino:next ino:position="p+q"/>
<ino:prev ino:position="p-q"/>

</ino:cursor>

where:

Handle is the handle of the cursor (generated by Tamino and returned in the result of the open
cursor call).

p is the position as specified in the original request,

q is the quantity delivered (which usually is the quantity requested except at the end of the cursor),

The attribute ino:position in the elements ino:next and ino:prev gives the cursor position that
would be required for a subsequent fetch request that uses the same cursor.

The element ino:prev is not returned in the case of a non-scrollable cursor, or if p is 1. If p-q is
less than 1, ino:position will be set to 1. The element ino:next is not returned if there are no
further results for the cursor.

Combining open and fetch

The open and fetch operations can be combined by using a request of the following form:

_cursor=open&_xquery=Query[&_scroll={yes|no}]&_sensitive={no|vague}
&_position=Position[&_quantity=Quantity]

or

_cursor=open&_xql=Query[&_scroll={yes|no}]
&_position=Position[&_quantity=Quantity]

Note: If you are not working within the context of a Tamino session, this combination of
open and fetch is the only cursor command that makes sense. You can fetch a subset of the
query result set with this kind of command outside a Tamino session, but subsequent calls
to fetch data from the cursor are not possible. Note that in XQuery this functionality should
not be used as it is offered in a more efficient way as part of the query language by applying
a position filter as the outermost expression ((queryexpression)[position() ge start and po-
sition() le start + quantity])

45X-Machine Programming

Requests using X-Machine Commands

Close a cursor

To close a cursor, specify a command of the following form:

_cursor=close&_handle=Handle

Further aspects

In a session context, a cursor is implicitly closed at the end of a transaction.

If a cursor is opened outside the context of a session, it is closed immediately after the completion
of the command in which it was opened.

Associated error messages

The error numbers are 8305 for an invalid handle, 8306 for an invalid position value, 8307 when
trying to position backwards on a non-scrollable cursor.

If the query result when opening a cursor is empty, the cursor will still be created. Any attempt
to fetch result documents from such a cursor will result in response 8306.

When trying to close a non-existing cursor, response 8305 will be returned.

Example

The following example illustrates how the cursor command is used.

1. Open a session.

URLprefix?_connect=* ↩

Following this command, session SessionID with session key SessionKey is established.

2. To open the cursor, use a command of the following form:

URLprefix/Collection?_cursor=open&_sessionid=SessionID
&_sessionkey=SessionKey&_xquery=Query

Note that SessionID and SessionKey have to be specified without quotes. The Query represents
your query statement. A handle is returned for the cursor (in this example the handle is assumed
to have the value "1", as used in the following step). A new session key NewSessionKey is re-
turned.

3. Use the cursor to retrieve items from the result sequence. The new session key is required also.

URLprefix/Collection?_cursor=fetch&_handle=1&_position=2
&_quantity=2&_sessionid=SessionID&_sessionkey=NewSessionKey

X-Machine Programming46

Requests using X-Machine Commands

This statement will return two items matching your query, starting from the second item. Here
again, the values for handle, position, quantity, sessionid and sessionkey have to be given
without quotes.

4. Close the cursor, using a command of the form:

URLprefix/Collection?_cursor=close&_handle=1&_sessionid=SessionID&_sessionkey=...

The _define command

The _define command is used to create a new schema or a collection, or to modify an existing
schema or collection. The collection and schema can be specified together in a schema definition
file. In this case, the collection and / or schema(s) to be defined or updated have to be expressed
in terms of the Tamino schema language. For more information on the Tamino schema language
see the Tamino XML Schema User Guide.

In addition, the collection can be defined separately by using a collection definition document.

The _define command can also be used to define schema clusters, i.e. several schemas in a single
command.

■ Defining a schema
■ Defining a schema cluster
■ Defining a collection
■ Restriction for non-XML doctypes

Defining a schema

The syntax for using a schema definition file is as follows:

URLprefix?_define=SchemaDefinition[&_mode=validate]

The input schema definition document defines both the schema and the collection to which it be-
longs. If the collection does not already exist, it is created automatically.

The option _mode=validate can be used for cases of schema evolution, i.e. where an existing
schema is modified. For more information, refer to the section Schema Modifications in the Tamino
XML Schema User Guide.

47X-Machine Programming

Requests using X-Machine Commands

Defining a schema cluster

It is possible to define a schema cluster, i.e. two or more schemas with a single _define command.
This can be useful if, for example, you wish to define several schemas that reference each other
(cyclic schema definition). Tamino checks the schemas for completeness only after all of the
schemas in the _define command have been processed. This means also that a schema that imports
or includes other schemas can be defined together with the required import or include files with
a single _define command; in this case, the order in which the schema definition and its import
or include files are specified in the _define command is irrelevant. In addition, defining multiple
related schemas in a single command is often more efficient, since many schema checks will only
be performed once.

The syntax of this variant of the _define command is:

URLprefix?_define=$S1,$S2,...&$S1=SchemaDef1&$S2=SchemaDef2...

where $S1, $S2 etc. are placeholders for schema documents that follow later in the command, and
SchemaDef1, SchemaDef2 etc. represent the actual schema definitions. The placeholders $S1, $S2
etc. can be any names consisting of 7-bit printable ASCII characters and must begin with a dollar
character. Note that the placeholder names are not the names assigned to the schemas that will
be created; the schema names and the names of any doctypes defined for the schemas are defined
in the schema definitions SchemaDef1, SchemaDef2 etc.

There is no restriction to the number of schemas you can define in this way with a single _define
command.

Defining a collection

The syntax for using a collection definition file is as follows:

URLprefix?_define=CollectionDefinition[&_mode=validate]

The structure of CollectionDefinition is as follows:

<tsd:collection name="CollectionName"
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
<tsd:schema use ="Option"/>

</tsd:collection>

where CollectionName is the name of the collection and Option can have one of the following
values:

X-Machine Programming48

Requests using X-Machine Commands

MeaningOption

Before a document can be stored in the collection, a schema describing the
corresponding doctype must be defined explicitly.

required (this is the default
value)

A schema is not necessary. If a schema describing a matching doctype is already
defined, the document will be stored there. If no such schema exists, Tamino
will store documents without a user-defined doctype.

optional

The explicit creation of a schema is not permitted. Tamino will store the
documents without schema information.

prohibited

For more information on how Tamino stores documents according to the option specified, see the
description of the _process command below.

The value of the option can only be modified from "required" or "prohibited" to "optional".

The collection ino:etc uses the setting "optional".

Restriction for non-XML doctypes

If an existing schema for a non-XML doctype is being updated, the tsd:noConversion child element
of the tsd:nonXML element of the doctype may only be added or removed if the doctype currently
contains no documents.

The _delete command

The _delete command is used to delete database documents. You can use X-Query language ex-
pressions to select the document(s) to be deleted.

Example:

To delete the XML document of doctype patient and with document ID "4711" in the collection
Hospital:

URLprefix/Hospital?_delete=patient[@ino:id="4711"]

Note: You can also delete documents by using the update delete statement in an _xquery

command.

49X-Machine Programming

Requests using X-Machine Commands

The _destroy command

The _destroy command removes a query that was prepared using the _prepare command. The
prepared query is specified by its handle. The following request shows an example that destroys
the prepared query that has the handle 42:

URLprefix?_destroy=42&_sessionid=479356&_sessionkey=729661

See also the section Prepared Queries for more information about using prepared queries.

The _diagnose command

The _diagnose command is used to test the functionality of the outer X-Machine layers concerned
with the HTTP handling (the HTTP connection layers).

The X-Machine command _diagnose works with HTTP GET and POST requests.

echo

URLprefix?_diagnose=echo

delivers the HTTP headers seen in the Tamino Server if X-Machine is reachable by the web server,
otherwise an error message is generated by the web server.

ping

URLprefix?_diagnose=ping

tries to establish an HTTP connection and returns a positive answer in the case of success.

time

URLprefix?_diagnose=time

returns the total amount of CPU time that the server has been active in user mode (i.e. executing
user requests) since the database server was started, and the total amount of CPU time that the
server has been active in system (kernel) mode (i.e. executing system calls that result from user
requests) since the database server was started. The values returned are the total times for all users
together, not the individual times for each user.

version

URLprefix?_diagnose=version

returns the version of the Tamino Server.

X-Machine Programming50

Requests using X-Machine Commands

The _disconnect command

The _disconnect command is used to finish the current session that was opened using a _connect
command. If a transaction is still open, it is committed (i.e. the changes made during this transaction
are stored in the database) before the session is closed.

Note: For a summary of restrictions, see the section Transaction-Related Commands.

Example:

URLprefix?_disconnect=*&_sessionid=479356&_sessionkey=934482

The _execute command

The _execute command executes a prepared query, i.e. an XQuery query that has been precompiled
using the _prepare command. A prepared query can be executed multiple times in the same session.

The syntax of the command is as follows.

URLprefix?_execute=Type&_handle=Handle

where Type is a text string that describes the type of operation to be executed, and Handle represents
the handle that was returned when the query was prepared using the _prepare command.

Currently, Type can only take the value "prepared-xquery".

Example

URLprefix?_execute=prepared-xquery&_handle=42&_sessionid=479356&_sessionkey=358290

See also the section Prepared Queries for more information on prepared queries.

The _htmlreq command

The _htmlreq command is a special command for processing HTML forms. Refer to the document
Tamino Forms Handler.

The _prepare command

The _prepare command precompiles an XQuery query. Such prepared queries can be executed
multiple times at a later stage in the same session by using the _execute command. You can define
any number of prepared queries in a session. Each prepared query is identified by a handle that
is returned by Tamino when the _prepare command is issued. The prepared query exists for the
duration of the current session; when a session terminates, all prepared queries of that session are
deleted.

The _prepare command gets the XQuery string as argument. It returns a handle that identifies
the prepared query within a session.

51X-Machine Programming

Requests using X-Machine Commands

The syntax of the command is as follows.

URLprefix?_prepare=QueryStatement&_sessionid=SessionID&_sessionkey=SessionKey

where QueryStatement is the XQuery statement, SessionID is the current session ID and SessionKey
is the session key returned by the previous command in the session.

An example request looks like:

URLprefix?_prepare=for $a in collection("bib") return ↩
$a&_sessionid=479356&_sessionkey=220815

Tamino returns a response that specifies the handle of the prepared query (in this example, the
value of the handle returned is "42"):

<ino:query ino:handle="42"/>

See also the section Prepared Queries for more information on prepared queries.

The _process command

The _process command is used to insert one or more new documents into a Tamino database or
to replace one or more existing documents. If more than one document is being inserted or replaced,
the documents must be wrapped in ino:request and ino:object elements, using the format de-
scribed in the section Input and Output File Formats of the Data Loader documentation. If a single
document is being inserted or replaced, the use of the wrappers is optional.

The X-Machine converts XML documents to Unicode before storing them in Tamino.

Tamino does not always preserve the literal representation of XML documents. Also, entities are
resolved.

When an XML document is retrieved from Tamino, the returned document is equivalent to the
canonical form of the original document. For example, an empty element such as
 in a docu-
ment stored into Tamino is returned in the canonically equivalent form
</br>. Also, the order
of multiple attributes given in an element's start tag may be altered.

Criteria for inserting or replacing a document

Tamino uses the values of the document ID and/or document name that can optionally be supplied
in the input request to decide whether to insert a new document or replace an existing document.
The rules governing this decision are as follows:

■ If a document ID but no document name is supplied, a document with this ID must already
exist and will be replaced. If such a document does not already exist, an error will be returned.

X-Machine Programming52

Requests using X-Machine Commands

■ If a document name but no document ID is supplied, and a document with this name already
exists, it will be replaced. If such a document does not already exist, the new document will be
inserted with the given document name.

■ If a document ID and document name are both supplied, a document with this ID and name
must already exist and will be replaced. If such a document does not already exist, an error will
be returned.

■ If neither the document name nor the document ID is supplied, the new document will be inserted
without a document name. Tamino will assign a document ID automatically to the new document.

Note that this behaviour is different from the processing of requests that use plain URL address-
ing, as shown in the table below.

This can be summarized as follows:

Resulting actionDocument with
this ID and/or
name already

exists?

Document
ID

supplied?

Document
name

supplied?

The document is inserted with no name. Tamino assigns an ID
automatically.

-nono

This behaviour is different from the behaviour when using plain
URL addressing, for which either the document name or the ID or
both are required. See the sectionCriteria for inserting or replacing
a document in the chapter Requests using Plain URL Addressing
for details.

The document with the given name is replaced.yesnoyes

The document is inserted with the given name.no

The document with the given ID is replaced.yesyesno

Not permitted: if an ID is supplied, a document with this ID must
already exist. An error is returned.

no

The document with the given name and ID is replaced.yesyesyes

Not permitted: if a name and an ID are supplied in the same
request, a document with this name and ID must already exist. An
error is returned.

no

53X-Machine Programming

Requests using X-Machine Commands

Specifying the document name

The document name can be specified in several ways:

■ As the value of the ino:docname attribute of an ino:object element that wraps the document,
for example:

URLprefix/CollectionName?_process=
<ino:request xmlns:ino="http://namespaces.softwareag.com/tamino/response2">

<ino:object ino:docname="DocumentName">
DocumentContent

</ino:object>
</ino:request>

■ In the URL, in the same way as described for plain URL addressing in the section URL format
for Plain URL addressing. The syntax is:

URLprefix/CollectionName/DoctypeName/DocumentName?_process=DocumentContent

If more than one way of supplying the name is used in the same request, the values given for the
name must be identical, otherwise an error response will be returned.

Specifying the document ID

The document ID can be specified in several ways:

■ As the value of the attribute ino:id of an ino:object element that wraps the document, for
example:

URLprefix/CollectionName?_process=
<ino:request xmlns:ino="http://namespaces.softwareag.com/tamino/response2">

<ino:object ino:id="IDvalue">
DocumentContent

</ino:object>
</ino:request>

■ As the value of the attribute ino:id in the root element of the document. For example:

URLprefix/CollectionName?_process=
<DocumentRootElement ino:id="IDvalue">

...
</DocumentRootElement>

■ In the URL, in the same way as described for plain URL addressing in the section URL format
for Plain URL addressing. The syntax is:

URLprefix/CollectionName/DoctypeName/@IDvalue?_process=DocumentContent

X-Machine Programming54

Requests using X-Machine Commands

If more than one way of supplying the ID is used in the same request, the values given for the ID
must be identical, otherwise an error response will be returned.

Storing new documents

You can store XML documents and non-XML documents into a Tamino database. Tamino decides
whether a document is an XML document or a non-XML document depending on the MIME
media type specified in the HTTP header. See the section Media Type Requirements for details.

If you do not specify a collection name, regardless of whether the document is an XML document
or not, the document will be stored in the collection ino:etc.

For any XML document that will be stored in a collection, the root element must have the same
expanded QName as the QName of an existing doctype. If there is no such doctype, an error will
be returned in the X-Machine response document, unless the schema allows for schemaless storage.
See the section The _define command for information on how to create such a collection. For in-
formation about QNames, see the section General Information on Namespaces in the document XML
Namespaces in Tamino.

For a document that will be stored in a schemaless collection other than ino:etc, the behaviour is
as follows:

■ If the document is an XML document, it will be stored in a doctype that is created implicitly by
Tamino via an internal hidden schema, and the doctype will have a text index on the root node.

■ If the document is a non-XML document, it will be stored in the doctype ino:nonXML.

Example

URLprefix/Collection?_process=XMLdocument

causes the specified XML document to be stored in the specified collection. The doctype is identified
by the expanded QName of the XML document's root node.

Replacing existing documents

In general, Tamino offers two ways in which the contents of an existing document can be modified:

■ The document can be replaced, meaning that the existing document is deleted and a new document
is stored. When the document is deleted, all indexing information for the document is also deleted,
and when the new document is stored, all appropriate indexing information for the new content
is created.

■ The document can be updated, meaning that the document is not deleted but is modified at its
current location. Since any required updates in the index information are limited to the updated
parts of the document, and since only the modified data has to be specified, it is in general
quicker for Tamino to update a document than it is to replace it.

55X-Machine Programming

Requests using X-Machine Commands

The _process command can be used to replace documents but not to update them. Updating a
document is possible using the XQuery update command, as indicated in the section The _xquery
command below and also in the section Performing Update Operations of the XQuery User Guide.

To replace an existing document, you need to address it by the document ID or document name
that was assigned to it when the document was created, as described above in the section Criteria
for inserting or replacing a document.

Example: replace by specifying the document ID on the root element

Assume that the patient Charles Dickens had been originally stored with the following data in the
patient doctype of the Hospital collection:

<?xml version="1.0"?>
<patient>

<name>
<surname>Dickens</surname>
<firstname>Charles</firstname>

</name>
</patient>

and the response document contained the following data, specifying that the document ID "15"
had been assigned to the new document:

<ino:object ino:collection="Hospital" ino:doctype="patient" ino:id="15" />

Then, to change the contents of this document, for example to change the contents of the element
firstname from "Charles" to "Charlie", send a _process request with the new data, specifying
ino:id="15" on the root element, for example:

<?xml version="1.0"?>
<patient ino:id="15">

<name>
<surname>Dickens</surname>
<firstname>Charlie</firstname>

</name>
</patient>

X-Machine Programming56

Requests using X-Machine Commands

The _rollback command

The _rollback command is used to discard all of the database changes that were made during
the current transaction. Supply the session ID that was returned at the start of the session, and the
session key that was returned from the previous command.

If an active transaction has modified an external database via X-Node and receives a rollback re-
quest, a rollback is also issued on the external database.

Note: For a summary of restrictions, see the section Transaction-Related Commands.

Example:

URLprefix?_rollback=*&_sessionid=479356&_sessionkey=340711

The _undefine command

The _undefine command is used to delete one or more existing collections, schemas or doctypes.

Caution: When you delete a collection, schema or doctype, all documents and other data
belonging to that collection, schema or doctype are also deleted.

■ Undefining collections, schemas and doctypes
■ Examples

Undefining collections, schemas and doctypes

The syntax of the command is as follows. Note that to delete a doctype it is also necessary to
supply the name of the schema.

URLprefix?_undefine=Collection[/schema[/doctype]], ...

The name of the collection must be supplied as a parameter to the _undefine command. The name
of a collection in the URLprefix, if present, is ignored.

In the same way as it is possible to use the _define command to define schema clusters, you can
use the _undefine command to delete schema clusters. Thus, for example, you can use a single
_undefine command to delete several schemas that reference each other, without leaving the re-
maining Tamino schema definitions in an inconsistent state (see the following examples).

Collections whose names start with the characters "ino:" cannot be deleted via _undefine; these
are reserved for internal use in Tamino.

57X-Machine Programming

Requests using X-Machine Commands

Examples

To delete the collection Hospital, specify :

URLprefix?_undefine=Hospital

To delete the schema HospitalSchema and all its defined doctypes from the collection Hospital,
specify:

URLprefix?_undefine=Hospital/HospitalSchema

To delete the doctype patient in the schema HospitalSchema in the collection Hospital, specify:

URLprefix?_undefine=Hospital/HospitalSchema/patient

To delete the collection Schools, the schema HospitalSchema in collection Hospital and the doctype
Cars in schema ResourceSchema in collection Transport, specify:

URLprefix?_undefine=Schools,Hospital/HospitalSchema,Transport/ResourceSchema/Cars

The _xql command

The _xql command performs a database query to retrieve XML documents, using the X-Query
query language. X-Query is described in detail in the document X-Query User Guide.

Note: Certain characteristics of the documents or nodes returned in the query response
document can vary from those returned by requests that use plain URL addressing. In
particular, the following points apply to the query response that do not apply to plain URL
addressing: (a) a response wrapper is returned (b) the pseudo-attributes ino:id and
ino:docname (if defined) are returned (c) the XML prolog is not delivered.

Example

To retrieve the list of surnames of all patients in the doctype patient of the collection Hospital, use
the following:

URLprefix/Hospital/patient?_xql=patient/name/surname

X-Query search modes

By default, locks are set on all required indexes while an X-Query request is processing them. This
ensures that if a query needs to scan several indexes, the query runs in an atomic way, i.e. no
concurrent X-Machine command can alter any of the indexes while the query is processing them.
This behaviour can sometimes lead to a situation that the indexes are locked for a relatively long
time, for example:

■ If a query uses a word fragment index, the X-Machine first scans the word fragment index,
possibly returning many hits, then scans a text index for all words returned from the word
fragment index.

X-Machine Programming58

Requests using X-Machine Commands

■ If a query predicate holds for almost all documents.

While the indexes are locked, no new update/insert/delete requests can be processed, because of
course they must wait until the index locks are removed. However, if new read requests arrive
while update/insert/delete requests are queued, Tamino queues them behind the update/insert/de-
lete requests. This ensures that the update/insert/delete requests are not kept permanently waiting
by newly-arriving read requests that might again require index locks. So a situation can arise
whereby one or more relatively simple read requests have to wait a long time in a queue due to
the index locks.

For performance reasons, an application might not require the index locks to be set in the way
described. By removing this restriction, query results can become slightly inaccurate in some cases
if concurrent requests are performing update/insert/delete operations, but this might not be critical
for the application.

The optional parameter _querysearchmode specifies whether an X-Query request will run in an
atomic way, i.e. setting index locks until the request completes, or whether it is acceptable for
concurrent requests to access and possibly modify the indexes while the X-Query request is running.

The parameter _querysearchmode extends the _xql command syntax as follows.

_xql=QueryString&_querysearchmode=ModeValue

where QueryString is the X-Query query definition and ModeValue takes one of the values shown
in the following table:

MeaningParameter value

All indexes required by the X-Query request are locked. This is the
default behaviour.

_querysearchmode=accurate

Indexes required by the X-Query request are not locked._querysearchmode=approximate

Same as approximate, but additional postprocessing is omitted_querysearchmode=nonserialized

The use of either _querysearchmode=approximate or _querysearchmode=nonserialized has ad-
vantages and disadvantages:

■ Advantages: Since locks are not used, concurrent update/insert/delete requests do not need to
wait, which in turn means that queued queries can be processed sooner. This leads to increased
throughput of requests.

■ Disadvantages: Queries that could otherwise be processed by using only the indexes might now
require a postprocessing phase, in order to ensure that the query result, which might have become
inaccurate due to concurrent update/insert/delete requests, complies with the original query
predicate. Such a postprocessing phase can lead to much increased query processing times. The
postprocessing phase is required if whole documents or parts of them are returned by the query;
the postprocessing phase is not required if only aggregated values (for example, values returned
by functions such as "count()") are returned. Using _querysearchmode=nonserialized avoids
the postprocessing phase.

59X-Machine Programming

Requests using X-Machine Commands

The Tamino-specific HTTP header field X-INO-querySearchMode can be used in the HTTP header
to pass a value for the query search mode. This can only be done for requests that contain an X-
Query command (i.e. requests in which the _xql command is used). The effect of
X-INO-querySearchMode is restricted to the single HTTP request that contains it. It cannot be used
on a _connect command to set a default for the entire user session.

Note: If the parameter _querysearchmode and the HTTP header field X-INO-querySearchMode

are both supplied, X-INO-querySearchMode takes precedence over _querysearchmode.

The format of the field X-INO-querySearchMode is as follows:

X-INO-querySearchMode: QueryMode

where QueryMode can be any one of the allowed ModeValue values of the _querysearchmode
parameter, for example:

X-INO-querySearchMode: approximate

The _xquery command

The _xquery command performs a database query using the language XQuery, to retrieve XML
documents and optionally update or delete them. XQuery is described in detail in the document
XQuery User Guide

Note: Certain characteristics of the documents or nodes returned in the query response
document can vary from those returned by requests that use plain URL addressing. In
particular, the following points apply to the query response that do not apply to plain URL
addressing: (a) a response wrapper is returned (b) the XML prolog is not delivered.

Examples

Example 1

To find all documents in which the patient's name is "Atkins" in the doctype patient in the collection
Hospital, and for each occurrence return a new document containing the surname and firstname
in a "result" element, use the following URL:

URLprefix/Hospital?_xquery=
for $p in input()/patient
where $p/name/surname="Atkins"
return <result>{$p/name/surname},{$p/name/firstname}</result>

Here, "input()/patient" delivers a list of patient root elements. The return statement delivers an
element such as the following for each document that matches the query:

X-Machine Programming60

Requests using X-Machine Commands

<result>Atkins,Paul</result>

Example 2

To delete all documents in which the patient's name is "Atkins" in the doctype patient in the collec-
tion Hospital, use the following URL (shown here split across several lines for better readability):

URLprefix/Hospital?_xquery=
update
for $p in input()/patient
where $p/name/surname="Atkins"
delete $p/..

Here, "input()/patient" delivers a list of patient root elements. However, documents can only be
deleted by deleting the document node rather than the root element, therefore "$p/.." must be
specified in the delete statement to address the document node which is the parent node of the
root element.

For _xquery, cursor locks are held until the cursor's transaction is committed or aborted.

Serialization of Response Document

The result of every query performed with _xquery is a sequence of elements. By default, the returned
documents are enclosed in a wrapper xq:result element.

If a direct serialization of a returned node type is not possible, an element wrapper will be used,
as follows:

■ Attributes directly contained in a sequence are wrapped by the special element xq:attribute,
for example:

<xq:attribute anAttribute="anAttributeValue"/>

Only one attribute is allowed per xq:attribute element.
■ Text nodes directly contained in a sequence are wrapped by the special element xq:textNode,

for example:

<xq:textNode>theTextNode</xq:textNode>

■ Values directly contained in a sequence are wrapped by the special element xq:value, for ex-
ample:

61X-Machine Programming

Requests using X-Machine Commands

<xq:value xsi:type="xs:decimal">theValue</xq:value> ↩

■ Document nodes directly contained in a sequence are wrapped by the special element
<xq:object>, for example:

<xq:object>
<xq:documentprolog>
<![CDATA[
<!DOCTYPE anDoctype [
<!ENTITY anEnt "an Entity Value">
]>
]]>
</xq: documentprolog>
<aRootElement> …. </aRootElement>
</xq:object> ↩

Search Modes

Similar to query search modes available for _xql, you can change the search modalities for an
XQuery request in order to improve speed. This only affects dirty read transactions, i.e.
_isolationLevel is set to "uncomittedDocument" or _lockMode is set to "unprotected". In all other
cases the server returns an error. It is also an error to use it for _xquery update commands.

If no _querysearchmode parameter is used, _querysearchmode=accurate is assumed.

You can use _querysearchmode=approximate for XQuery requests executed in streaming mode,
i.e. every document access involves at most one and only one index scan. Using
_querysearchmode=approximate has the same effect as described above for X-Query requests in-
cluding a possible postprocessing phase. Prepared queries are implicitly recompiled before execu-
tion in case the _querysearchmode parameter value has changed. If you add the explain directive
to the query prolog in order to analyze query processing it is indicated whether this query can be
processed in streaming mode. A warning is returned when _querysearchmode=approximate is
specified but not applicable.

Queries that cannot be processed in streaming mode, e.g. because they need to access multiple
indexes and documents, require locks during the entire query execution in order to guarantee a
consistent result. An example illustrates what could happen when locks are not in place the whole
time:

Assume there is a doctype Person with an ID attribute, together with an element spouse whose
ID attribute stores the value of the married person and elements children with an ID attribute as
well. Let us further assume that persons have only children with their spouses. Then a query could
ask for a (female) person, her children, her husband and the number of her husband's children.
While executing this query the woman's first child is returned, but has not yet been added to the
father. As a result, the query returns the woman, its child, the father, and the information that he
has no children.

X-Machine Programming62

Requests using X-Machine Commands

Using _querysearchmode=nonserialized it is possible to force query processing without locks,
thus improving performance and request throughput, but at the cost of inaccurate query results:
Having no locks could lead to a situation that a query accesses a document multiple times, but
discovers that the document has changed or even been deleted since the last access. In this case
there is no meaningful result for this query and the error INOXQE6312 will be returned instead.

As with _querysearchmode=approximate prepared queries are implicitly recompiled before exe-
cution in case the _querysearchmode parameter value has changed. Furthermore,
_querysearchmode=nonserialized can also be used for queries in streaming mode.

X-Machine Command Options

Duration Measurement

The _duration command can be used in conjunction with one or more other X-Machine commands
and causes timing information about the other commands to be returned in the response document.
Currently it takes one value which must be set to "on", otherwise it will be ignored.

The syntax of the command is as follows.

URLprefix?OtherCommands?_duration="on"

where OtherCommands represents one or more X-Machine commands for which the timing inform-
ation is to be returned.

When _duration="on" is specified, the response document contains an ino:time element that
contains the following attributes:

■ ino:time: This specifies the time of day when the request started.
■ ino:date: This specifies the date when the request started.
■ ino:duration: This specifies the duration in milliseconds of the request.

Syntax of XML Responses

Responses to X-Machine commands are delivered as XML documents that combine context inform-
ation (optional), result information (optional), and message information (optional) in a Tamino-
defined wrapper. Normally, this wrapper has to be parsed by the client that issued an XML com-
mand to the X-Machine. The attributes and elements that may occur in a response document are
preceded with the namespace prefix string "ino:" to indicate XML constructs from the Tamino
namespace http://namespaces.softwareag.com/tamino/response2.

63X-Machine Programming

Requests using X-Machine Commands

Note: The response wrapper cannot be suppressed by using X-Machine command options.
However, certain commands have options to suppress the response wrapper. See the section
Suppressing the Tamino Response Wrapper for further information.

In general, the success or failure of the client request is indicated in the ino:returnvalue attribute
of the ino:message element of the response document. A value of 0 indicates a successful response,
whereas a non-zero value indicates either an error or a non-standard response.

If you use the Tamino Interactive Interface with an XML-capable browser, the response document
from the X-Machine is displayed in a separate frame of the browser. This is a very useful way of
becoming acquainted with the typical response documents that the X-Machine returns for the
various X-Machine commands.

Tip: The schema for the response document is available for reference in XML Schema format
in the file TaminoResponse.xsd in the directory Files/schemas under the Tamino installation
directory.

Below are examples of the X-Machine responses for various commands.

Example of a response to the _connect command

When a session is started using the _connect command, the response document has the following
structure:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/" ino:sessionid="2" ino:sessionkey="30381">
<ino:message ino:returnvalue="0">

<ino:messageline>_CONNECT: session 2 established</ino:messageline>
</ino:message>

</ino:response>

Example of a response to the _define command

When a doctype is defined using the _define command, the response document has the following
structure (the example assumes the doctype to be in the schema HospitalSchema in the collection
Hospital):

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
 xmlns:xql="http://metalab.unc.edu/xql/">
 <ino:message ino:returnvalue="0">
 <ino:messageline>_DEFINE: schema HospitalSchema in collection Hospital ↩
defined</ino:messageline>
 </ino:message>
</ino:response>

X-Machine Programming64

Requests using X-Machine Commands

If the collection to which the schema belongs did not already exist, it is created automatically when
the schema is defined. There is no additional X-Machine response to confirm this.

Example of a response to an updating _define command

When a schema is updated using the _define command, the response document has the following
structure (the example assumes that the schema HospitalSchema in the collection Hospital is being
updated):

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
 xmlns:xql="http://metalab.unc.edu/xql/">
 <ino:message ino:returnvalue="0">
 <ino:messageline>_DEFINE: schema HospitalSchema in collection Hospital updated ↩
successfully
 </ino:messageline>
 </ino:message>
</ino:response>

Example of a response to the _delete command

When an XML document is deleted using the _delete command, the response document has the
following structure:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">
<ino:message ino:returnvalue="0">

<ino:messageline>_DELETE: document(s) deleted</ino:messageline>
</ino:message>

</ino:response>

If no documents were found that matched the delete request, the following structure is returned:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
 xmlns:xql="http://metalab.unc.edu/xql/">
 <ino:message ino:returnvalue="8300">
 <ino:messagetext ino:code="INOXIE8300">No matching document ↩
found</ino:messagetext>
 </ino:message>
</ino:response>

65X-Machine Programming

Requests using X-Machine Commands

Examples of responses to the _diagnose command

The command ?_diagnose=ping returns a response document with the following structure:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">
<ino:request>

<ino:diagnose ino:request-type="ping" />
</ino:request>
<ino:message>

<ino:messageline ino:subject="Server">is alive</ino:messageline>
</ino:message>

</ino:response>

The command ?_diagnose=echo returns a response document with the following structure:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
 xmlns:xql="http://metalab.unc.edu/xql/">
 <ino:request>
 <ino:diagnose ino:request-type="echo"/>
 </ino:request>
 <ino:message>
 <ino:messageline ino:subject="Authenticated User ID"></ino:messageline>
 <ino:messageline ino:subject="Authentication Type"></ino:messageline>
 <ino:messageline ino:subject="Request Method">GET</ino:messageline>
 <ino:messageline ino:subject="Client's IP address">127.0.0.1</ino:messageline>
 <ino:messageline ino:subject="Client's DNS name"></ino:messageline>
 <ino:messageline ino:subject="Webserver's ↩
hostname">mypc.mycompany.com</ino:messageline>
 <ino:messageline ino:subject="Server Software">Apache/2.0.54 ↩
(Win32)</ino:messageline>
 <ino:messageline ino:subject="User-Agent">Mozilla/5.0 (Windows; U; Windows NT ↩
5.1; en-US; rv:1.8.1.16)
 Gecko/20080702 ↩
Firefox/2.0.0.16</ino:messageline>
 <ino:messageline ↩
ino:subject="Accept-Charset">ISO-8859-1,utf-8;q=0.7,*;q=0.7</ino:messageline>
 <ino:messageline ino:subject="Accept-Language">en-us,en;q=0.5</ino:messageline>
 <ino:messageline ino:subject="TransportService">XTS</ino:messageline>
 </ino:message>
</ino:response>

The command ?_diagnose=version returns a response document with the following structure:

X-Machine Programming66

Requests using X-Machine Commands

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">
<ino:request>

<ino:diagnose ino:request-type="version" />
</ino:request>
<ino:message>

<ino:messageline ino:subject="Version">n.n.n.n</ino:messageline>
</ino:message>

</ino:response>

where "n.n.n.n" is the Tamino version number.

The command ?_diagnose=time returns a response document with the following structure:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
 xmlns:xql="http://metalab.unc.edu/xql/">
 <ino:request>
 <ino:diagnose ino:request-type="time" />
 </ino:request>
 <ino:message>
 <ino:messageline ino:subject="User Time" ↩
ino:unit="100ns">18626784</ino:messageline>
 <ino:messageline ino:subject="Kernel Time" ↩
ino:unit="100ns">14520880</ino:messageline>
 </ino:message>
</ino:response>

Example of a response to the _duration command

The following structure is an example of the X-Machine response when timing information is re-
quested for the query "count(*)" on a set of test data:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"

xmlns:xql="http://metalab.unc.edu/xql/">
<xql:query>count(*)</xql:query>
<ino:message ino:returnvalue="0">

<ino:messageline>XQL Request processing</ino:messageline>
</ino:message>
<xql:result>11</xql:result>
<ino:message ino:returnvalue="0">

<ino:messageline>XQL Request processed</ino:messageline>
</ino:message>
<ino:time ino:date="2004-01-23" ino:time="13:48:09.218" ino:duration="2" />

</ino:response>

67X-Machine Programming

Requests using X-Machine Commands

Example of a response to the _process command

The following structure is an example of the X-Machine response when an document is stored in
the user-defined doctype patient in the collection Hospital:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">
<ino:message ino:returnvalue="0">

<ino:messageline>document processing started</ino:messageline>
</ino:message>
<ino:object ino:collection="Hospital" ino:doctype="patient" ino:id="3" />
<ino:message ino:returnvalue="0">

<ino:messageline>document processing ended</ino:messageline>
</ino:message>

</ino:response>

Example of a response to the _undefine command

When a schema is deleted using the _undefine command, the response document has the following
structure:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">
<ino:message ino:returnvalue="0">

<ino:messageline>_UNDEFINE: schema deleted</ino:messageline>
</ino:message>

</ino:response>

When a collection is deleted using the _undefine command, the response document has the fol-
lowing structure:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">
<ino:message ino:returnvalue="0">

<ino:messageline>_UNDEFINE: collection deleted</ino:messageline>
</ino:message>

</ino:response>

X-Machine Programming68

Requests using X-Machine Commands

Example of a response to the _xql command

The following response is returned following the query

URLprefix/Hospital?_xql=patient/name/surname

which retrieves the surname children of the name elements of the patient doctype in the collection
Hospital. The full list of the surnames has been limited here to 2 surnames for display purposes.
Note that the actual result of the query is the content of the xql:result element.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"

xmlns:xql="http://metalab.unc.edu/xql/">
<xql:query>patient/name/surname</xql:query>
<ino:message ino:returnvalue="0">

<ino:messageline>XQL Request processing</ino:messageline>
</ino:message>
<xql:result>

<surname ino:id="1">Atkins</surname>
<surname ino:id="2">Bloggs</surname>

</xql:result>
<ino:message ino:returnvalue="0">

<ino:messageline>XQL Request processed</ino:messageline>
</ino:message>

</ino:response>

If no document matches the query, the following structure is returned (the example assumes that
a search was done for the surname "xxxx", and that this surname does not exist):

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">

<xql:query>patient[name/surname="xxxx"]</xql:query>
<ino:message ino:returnvalue="0">

<ino:messageline>XQL Request processed, no object returned</ino:messageline>
</ino:message>

</ino:response>

Example of a response to the _xquery command

The following response is returned following the query

URLprefix/Hospital?_xquery=for $p in input()/patient
return <result>{$p/name/surname}</result>

which retrieves the surname children of the name elements of the patient doctype in the collection
Hospital. The full list of the surnames has been limited here to 2 surnames for display purposes.
Note that the actual result of the query is the content of the xql:result element.

69X-Machine Programming

Requests using X-Machine Commands

<?xml version="1.0" encoding="windows-1252" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xql="http://metalab.unc.edu/xql/">

<xq:query xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">
<![CDATA[
for $p in input()/patient
return <result>{$p/name/surname}</result>
]]>

</xq:query>
<ino:message ino:returnvalue="0">

<ino:messageline>XQuery Request processing</ino:messageline>
</ino:message>
<xq:result xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">

<result>
<surname>Atkins</surname>

</result>
<result>
<surname>Bloggs</surname>

</result>
</xq:result>
<ino:message ino:returnvalue="0">

<ino:messageline>XQuery Request processed</ino:messageline>
</ino:message>

</ino:response>

If no document matches the query, the following structure is returned (the example assumes that
a search was done for the surname "xxxx", and that this surname does not exist):

<?xml version="1.0" encoding="ISO-8859-1" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2"

xmlns:xql="http://metalab.unc.edu/xql/">
<xq:query xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result">

<![CDATA[
for $p in input()/patient
where $p/name/surname="xxxx"
return <result>{$p/name/surname}</result>
]]>

</xq:query>
<ino:message ino:returnvalue="0">

<ino:messageline>XQuery Request processing</ino:messageline>
</ino:message>
<xq:result xmlns:xq="http://namespaces.softwareag.com/tamino/XQuery/result" />
<ino:message ino:returnvalue="0">

<ino:messageline>XQuery Request processed</ino:messageline>
</ino:message>

</ino:response>

X-Machine Programming70

Requests using X-Machine Commands

Elements and Attributes in Tamino Response Documents

The following table shows commonly occurring elements and attributes in Tamino response doc-
uments.

PurposeElement (E) or
Attribute (A)

Name

Name of a collectionAino:collection

Indicates the current cursor position in a result fetch set and the number of
documents returned

Eino:current

Cursor segment in a response block, describing parameters for the hit lists
from query responses.

Eino:cursor

Name of a databaseEino:database

Contains the date on which the _duration command was executed.Aino:date

Contains the value of the _diagnose keyword that was originally submitted
to Tamino

Eino:diagnose

Name of a doctypeAino:doctype

Contains the duration of the command(s) for which the _duration
command was specified.

Aino:duration

Document IDAino:id

The handle number of an open cursorAino:handle

Message blockEino:message

Message line in plain textEino:messageline

Diagnostic text or error message textEino:messagetext

Indicates the next cursor position in a result fetch setEino:next

Summarizes a document that was successfully stored. Attributes of this
element could describe, for example, the collection and doctype into which
a new document was stored.

Eino:object

Indicates the position in the result fetch setAino:position

Indicates the previous cursor position in a result fetch setEino:prev

Indicates the number of documents returned from the result fetch setAino:quantity

Summarizes the original client request to TaminoEino:request

Top-level wrapper element for the response documentEino:response

Return code from XML retrievalAino:returnvalue

Session ID of a Tamino XML session, will remain unchanged during a session
(which lasts from a _connect until a _disconnect command)

Aino:sessionid

Session key of a command sub-transaction inside a Tamino XML sessionAino:sessionkey

71X-Machine Programming

Requests using X-Machine Commands

PurposeElement (E) or
Attribute (A)

Name

Element resulting from a _duration command, containing date, time and
duration information. Also the attribute within the ino:time element that
contains the time at which the _duration command was executed.

E, Aino:time

Contains the XQuery query that was submitted to TaminoExq:query

Wrapper element for the XQuery query resultExq:result

Contains the X-Query query that was submitted to TaminoExql:query

Wrapper element for the X-Query query resultExql:result

Suppressing the Tamino Response Wrapper

In general, the response wrapper cannot be suppressed by using X-Machine Programming com-
mands. However, various possibilities exist for suppressing the response wrapper for queries and
server extensions. These possibilities are discussed in this section.

For related information on the response wrapper, see the section Syntax of XML Responses.

■ Suppressing the response wrapper in XQuery commands
■ Suppressing the response wrapper in X-Query commands
■ Suppressing the response wrapper by setting the media type
■ Restrictions for suppressing the response wrapper
■ Error Handling
■ Further information

Suppressing the response wrapper in XQuery commands

There is an option available in the syntax of the _xquery command for suppressing the response
wrapper for XQuery commands. It is described in theXQuery User Guide in the section Suppressing
the Response Wrapper.

Suppressing the response wrapper in X-Query commands

There is no option available in the syntax of the _xql command for suppressing the response
wrapper for X-Query queries. However, if the _xql command is of the form:

_xql=queryFunction(expression)

where queryFunction is a server extension acting as an output handler, and the code of queryFunc-
tion includes a server extension callback that sets the media type of the response document, then
the response wrapper of the _xql command is suppressed implicitly. This is summarized in the
section Suppressing the response wrapper by setting the media type.

X-Machine Programming72

Requests using X-Machine Commands

The query function must be specified in the _xql request on the root level and must not contain
a union or any other top-level binary operator. Therefore, the following examples are NOT allowed:

_xql=doctype[queryFunction(expression)]

_xql=queryFunction(expression1)|queryFunction(expression2)

Suppressing the response wrapper by setting the media type

It is possible to use the system callback SxsSetProperty with the property
SX_PROPERTY_RSP_MEDIATYPE to set the media type of the response document. If a server extension
that is used as an output handler for a query (XQuery or X-Query) uses this callback, this implicitly
causes the response wrapper to be suppressed.

Restrictions for suppressing the response wrapper

The response wrapper can only be suppressed in the ways indicated above if the following criteria
are met:

■ A query request sent to the X-Machine must contain only one command, namely a single _xquery
or _xql command.

The query must not be nested within another query (for example, a query that is issued in an
XML callback that is contained in a server extension that is being used as an output handler).

■ No query cursor is being used.

Error Handling

If an error occurs during the execution of a request whose response wrapper has been suppressed,
an error text will be appended to the response written up to that point. The error will be wrapped
in the standard error markup (<ino:message>, <ino:messagetext> etc.).

Further information

If a response with a suppressed wrapper is being returned within a session, the session ID and
session key are passed in the HTTP response header. See the section The HTTP header fields X-
INO-Sessionid and X-INO-Sessionkey for details of the response header fields.

73X-Machine Programming

Requests using X-Machine Commands

Transaction-Related Commands

If Tamino accesses Adabas databases via X-Node, then transactions are started automatically on
the X-Node database. These are closed with a commit or rollback when the Tamino transaction
completes.

The following information is available for transaction-related commands:

■ Summary of Commands and Usage
■ Restrictions
■ The HTTP header fields X-INO-Sessionid and X-INO-Sessionkey
■ Session Parameters
■ Comparison of Locking Mechanisms
■ Default Parameters for Sessions, Transactions and Requests
■ Influence of Locking on Query Processing
■ Effect of implicitly terminating a transaction

For more information on transaction processing, see the document Transactions Guide.

Summary of Commands and Usage

The commands _connect, _commit, _rollback and _disconnect are needed to perform transaction
processing using X-Machine commands.

A typical transaction sequence is:

1. Start a new session by using the X-Machine _connect command. The response from the X-Ma-
chine for this command contains two attributes only delivered within a session, namely
ino:sessionid for a unique session ID for the new session and ino:sessionkey for a key de-
scribing the current command.

2. Issue some commands against X-Machine, e.g. _define, _process to define a schema and load
data. These “normal” commands must be accompanied by the _sessionid and _sessionkey
information in order to maintain the transaction continuity. This implies a request with at least
three keyword/value pairs. The order is not important, therefore we may assume the following
syntax for an X-Machine request during a transaction:

URLprefix?Command=Data&_sessionid=SessionID&_sessionkey=SessionKey

3. Finish the transaction by either:

Discarding the previous changes using the _rollback command:

URLprefix?_rollback=*&_sessionid=SessionID&_sessionkey=SessionKey

Or finishing the transaction by committing the previous changes:

X-Machine Programming74

Requests using X-Machine Commands

URLprefix?_commit=*&_sessionid=SessionID&_sessionkey=SessionKey

4. Perform other transactions as required by repeating steps 2 and 3.

5. Close the session with the _disconnect command:

URLprefix?_disconnect=*&_sessionid=SessionID&_sessionkey=SessionKey

Restrictions

On platforms where distributed transactions are supported using two-phase commit, the following
commands are not allowed within a distributed transaction:

■ _commit

■ _disconnect

■ _rollback

For the _disconnect command, the following additional restriction applies:

■ On platforms supporting COM+, this command cannot be used with declarative COM+ transac-
tions.

The HTTP header fields X-INO-Sessionid and X-INO-Sessionkey

Instead of the _sessionid and _sessionkey parameters, the X-Machine request may also specify
the HTTP header fields X-INO-Sessionid and X-INO-Sessionkey in the request header. This feature
is especially important in conjunction with plain URL addressing which does not allow specifying
the _sessionid and _sessionkey parameters.

If an X-Machine request contained a _connect command or successfully continued in a previously
established session context by passing a session ID and session key, it will return the session ID
and the new session key to be used in the subsequent request in the following ways:

■ the HTTP header fields X-INO-Sessionid and X-INO-Sessionkey will always be returned in
the HTTP response header

■ the ino:sessionid and ino:sessionkey attributes are embedded in the XML response body.

This method of returning this information will only be used if the response is embedded into an
<ino:response> wrapper element. See the example in the section Example of a response to the
_connect command. On the other hand, when using plain URL addressing, there is no response
wrapper and the new session context will only be returned in the HTTP response header.

If a request containing an invalid session context is received by the X-Machine, one of the following
will happen:

■ if plain URL addressing is being used, HTTP status 400 will be returned;

75X-Machine Programming

Requests using X-Machine Commands

■ otherwise an XML document describing the error will be returned.

If both the HTTP header field X-INO-Sessionid and the parameter _sessionid are specified in
the request, an error will be reported if they are inconsistent. If both the HTTP header field X-INO-
Sessionkey and the parameter _sessionkey are specified in the request, only X-INO-Sessionkey
will be processed. If X-INO-Sessionkey is valid, the _sessionkey parameter is ignored.

Session Parameters

There are additional session parameters that can be specified when a session is started with the
_connect command. They are specified in the _connect command as additional keyword/value
pairs. The available session parameters are:

■ The _isolationLevel Parameter
■ The _lockMode Parameter
■ The _lockWait Parameter
■ The _maximumTransactionDuration parameter (previously named _transactionTimeout)
■ The _nonActivityTimeout parameter
■ The _isolation Parameter (deprecated)

The _isolationLevel Parameter

This parameter, together with the _lockMode parameter, specifies in what way two or more
transactions in a session context can access the same data simultaneously. The _isolationLevel
parameter can also be specified on requests in a non-session context, since such requests represent
self-contained transactions.

For a detailed description of the isolation level and lock mode settings with examples, refer to the
Transactions Guide document.

The interaction between the _isolationLevel and _lockModeparameters is described in the section
The _lockMode Parameter below.

The parameter can have the following values:

■ uncommittedDocument
■ committedCommand
■ stableCursor
■ stableDocument
■ serializable

In a session context, the default is _isolationLevel=stableDocument. In a non-session context,
the default is _isolationLevel=uncommittedDocument, except for XQuery update commands, for
which the default is _isolationLevel=committedCommand.

X-Machine Programming76

Requests using X-Machine Commands

The value of _isolationLevel cannot be changed within a transaction.

The available isolation levels are described in the following sections.

_isolationLevel=uncommittedDocument

A command within a transaction with this isolation level can read a so-called dirty document at
any time, which means that a concurrent transaction has changed or stored the document but
might abort later on. The document content might be outdated in the sense that a concurrent
transaction has changed the content after the current transaction has read it.

A command can also modify a document if no concurrent transaction is modifying the document,
or no other transaction need the document in a stable state (isolation level stableCursor and
stronger).

In this isolation level, the commands _delete and _process are executed as if they were in isolation
level "committedCommand" (see below).

XQuery update commands with this isolation level are not possible. In such a case, the command
is rejected with a response code 8552.

_isolationLevel=committedCommand

A command within a transaction in this isolation level can read documents that have been modified,
inserted or updated by committed transactions but not documents that have been modified, inserted
or updated by concurrent non-committed transactions.

_isolationLevel=stableCursor

A transaction with this isolation level guarantees that a document in the cursor result set will not
be changed by a concurrent transaction (i.e. will still match the query predicate) in the following
cases:

■ In the case of a non-scrollable cursor: until the document has been returned to the requesting
application and the document is no longer in the current fetch set of the cursor.

■ In the case of a scrollable cursor: as long as the cursor exists.

77X-Machine Programming

Requests using X-Machine Commands

_isolationLevel=stableDocument

This isolation level guarantees that a document that has been read within the current transaction
cannot be changed by a concurrent transaction until the end of the current transaction. This isolation
level does not guarantee repeatable query results, i.e. a concurrent transaction can create another
document that matches the search criteria of a query in the current transaction, so that if the query
is issued twice in the same transaction the results can be different.

_isolationLevel=serializable

This isolation level guarantees that the result set of a query and in consequence the database
changes made by the commands _process, _delete and update statement of _xquery cannot be
influenced by concurrent transactions.

Effect of isolation level on concurrent transaction

The following table shows how the setting of the isolation level affects two concurrent transactions
that try to access the same data. A transaction in session S1 is already accessing data that a trans-
action in session S2 now tries to access. S1 can be at any of three stages: (1) the data has been read
but not yet written or committed (2) the data has been written but not yet committed (3) the data
has been committed.

S2 permitted actionsS1 isolation levelS1 current status

S2 can read and write the datauncommittedDocumentdata read but not yet
written S2 can read and write the datacommittedCommand

S2 can read data but cannot write it as long as the data
is in the result set of an open cursor

stableCursor

S2 can read the datastableDocument

S2 can read the dataserializable

S2 can read the data with isolation level set to
uncommittedDocument only

(any isolation level)data written but not yet
committed

S2 can read the data regardless of the isolation level set
for S2

(any isolation level)data committed

X-Machine Programming78

Requests using X-Machine Commands

The _lockMode Parameter

This parameter, together with the _isolationLevel parameter, specifies in what way two or more
transactions in a session context can access the same data simultaneously. The _lockMode para-
meter can also be specified on requests in a non-session context, since such requests represent self-
contained transactions. If one transaction is currently accessing data from the database and a
second transaction attempts to access or modify the same data, the setting of the_lockMode and
_isolationLevel parameters for each of the transactions determines whether access is possible
for the second transaction.

For a detailed description of the isolation level and lock mode settings with examples, refer to the
Transactions Guide document.

The locking of documents, doctypes and collections is controlled mainly by the setting of the
_isolationLevel parameter. The _lockMode parameter gives advanced users additional possibil-
ities for controlling the locking behaviour. Using _lockMode, it is possible to override the locking
behaviour that has been defined by the _isolationLevel parameter. If you set the value of
_lockMode to one of the valid values as described below, you set or remove locks on documents
regardless of the setting of the _isolationLevel parameter.

The default behaviour for locking is defined by the _isolationLevel parameter. For this reason,
there is no default value for _lockMode.

The _lockMode parameter can also be specified in a non-session context on a single command.
This controls the behaviour of the command if it accesses data that is currently under the control
of a transaction from another session or another command using the parameter in a non-session
context.

The parameter can have the following values:

■ unprotected
■ shared
■ protected

Since each of the concurring transactions or non-session commands specifies its own value for the
parameter, there is a combined effect that is best described using an example.

The following example assumes that there are two sessions, namely S1 and S2, and a transaction
in S1 is already accessing data that a transaction in S2 now tries to access. S1 can be at any of three
stages in the transaction: (1) the data has been read but not yet written or committed (2) the data
has been written but not yet committed (3) the data has been committed.

79X-Machine Programming

Requests using X-Machine Commands

S2 permitted actionsS1 current lock modeS1 current status

S2 can access the data according to the value of the isolation level
(see the isolation level table above)

(no value specified)data read but not
yet written

S2 can access the data regardless of the S2 lock mode and isolation
level settings

unprotected

S2 can read the data regardless of the S2 lock mode and isolation
level settings, but cannot write the data with any S2 lock mode
setting and cannot read the data if the S2 lock mode is protected

shared

S2 can only do a dirty read, with the lock mode set to unprotected
or the isolation level set to uncommittedDocument

protected

S2 can only do a dirty read, with the lock mode set to unprotected
or the isolation level set to uncommittedDocument

(any lock mode)data written but not
yet committed

S2 can access the data regardless of the S2 lock mode and isolation
level

(any lock mode)data committed

The _lockMode parameter can be specified on every command.

The _lockWait Parameter

This parameter specifies which action to take if data is not accessible to the current transaction
because another transaction has used the _isolationLevel or _lockMode parameter to restrict
access to the data. The _lockWait parameter can also be specified on requests in a non-session
context, since such requests represent self-contained transactions.

The _lockWait parameter can have the following values:

MeaningParameter and value

If data is locked by a concurrent transaction, wait until the data is unlocked by the
concurrent transaction and then continue processing.

_lockWait=yes

If data is locked by a concurrent transaction, terminate the request immediately and
return error message INOXYE9155 in the <ino:message> section of the response body.

_lockWait=no

Within a session context, the default value for the _lockWait parameter is "yes". In a non-session
context, the default value is "no". The _lockWait parameter can be specified on every command.

X-Machine Programming80

Requests using X-Machine Commands

The _maximumTransactionDuration parameter (previously named _transactionTimeout)

This parameter specifies the maximum length of time for which a transaction can be active before
the Tamino server rolls back the currently active transaction. It overrides the Tamino server
property maximum transaction duration for the current session.

This parameter only takes effect when specified in the _connect command. It can be specified for
other commands but is ignored.

The parameter can have the following value:

MeaningParameter and value

This specifies the maximum time in seconds for which a
transaction can be active. The minimum value is 20 and the
maximum value is 2592000.

_maximumTransactionDuration=Value

The _nonActivityTimeout parameter

This parameter specifies the maximum elapsed time (in seconds) that a transaction may be inactive.
If this time is exceeded, the Tamino server rolls back the currently active transaction and also ter-
minates the session. The value you specify overrides the value of the Tamino server property
Non-Activity Timeout.

Note that the figure you specify for this parameter is only approximate. In any particular instance,
the actual amount of time can vary from this value by up to 10 seconds.

The minimum value is 20, the default value is 900 and the maximum value is 2592000 (=30 days).

The _isolation Parameter (deprecated)

This parameter is provided for compatibility with Tamino Version 3 and is deprecated in the
current version. In the current version it has been renamed to _lockMode. The permitted parameter
values and their effects are the same as for the parameter _lockMode. In all new applications please
use only _lockMode.

Comparison of Locking Mechanisms

The locking of documents, doctypes and collections is controlled mainly by the setting of the
_isolationLevel parameter.

The _lockMode parameter gives advanced users additional possibilities for controlling the locking
behaviour. Using this parameter, it is possible to override the locking behaviour that has been
defined by the _isolationLevel parameter. If you set the value of _lockMode to one of the valid
values as described above, you set or remove locks on documents regardless of the setting of the
_isolationLevel parameter.

81X-Machine Programming

Requests using X-Machine Commands

The default behaviour for locking is defined by the _isolationLevel parameter.

Default Parameters for Sessions, Transactions and Requests

The value given for the parameter _isolationLevel in the connect command at the beginning of
a session is used as the default value of this parameter at the start of every transaction in the session.
This value can be changed at the beginning of each transaction in the session by specifying a new
value for the parameter, but the value reverts to the original default value at the start of every
subsequent transaction. The parameter can be supplied on each request within a transaction, but
in this case it must have the same value for every request in the transaction.

The values given for the parameters _lockMode, _isolation and _lockWait on the connect com-
mand at the beginning of a session are used as the default values of these parameters at the start
of every request in every transaction in the session. New values for these parameters can be specified
on every request, but the values revert to the original default values at the start of every subsequent
request.

If a parameter is specified with no value, it is ignored.

Influence of Locking on Query Processing

During query processing, Tamino uses the defined indexes to select a set of documents that match
the query. If no index is defined that can be used to process the query, Tamino temporarily locks
all documents in the doctype until it has determined which documents match the query. When
the set of documents that match the query has been determined, Tamino releases the locks on the
documents that do not match the query.

This mechanism is necessary to ensure that no change can be made to any document in the doctype
by a concurrent transaction while the query is being evaluated, since such a change to a document
could affect whether or not the document matches the query, thereby causing Tamino to return
inconsistent query results.

During query processing, Tamino can only lock all documents in a doctype if none of the documents
is already locked by a concurrent transaction (that applies of course only for incompatible locks;
if a read-lock is applied to a document, then further read-locks on the same document are allowed).
This applies regardless of whether or not the documents locked by the concurrent transaction
match the query. In such a case, the transaction that issues the query has to wait (if it has specified
_lockWait=yes) until the concurrent transaction releases the lock, otherwise the request will be
terminated with an error response but the transaction will continue.

If an index has been defined on a numeric element or attribute, it must be specified in the query
predicate without quotes, otherwise Tamino will search for a string value instead of a numeric
value. For example, the query predicate [@A=1] will search for documents in which the attribute
A has the numeric value 1, whereas [@A="1"] will search for documents in which the attribute A
has the string value "1". Since in this example the index contains only numeric values, Tamino
cannot use the index to find documents that match the query, and will therefore proceed according

X-Machine Programming82

Requests using X-Machine Commands

to the method described above, locking all documents in the doctype while it searches for matching
documents.

There is one exception to this rule: the value of the ino:id attribute in query predicates can be
specified with or without quotes.

In query predicates that involve boolean operators, the presence of an index can also affect the
number of documents that are locked by Tamino during query processing. Suppose for example
that there is a schema with an element named A of type xs:integer with a standard index, and
there can only be one occurrence of the element A in any document based on the schema. Let p be
a predicate that cannot be evaluated using an index. For three queries with predicates "[A<5] and
p", "[A>5] and p", "[A=5] and p", the index processor produces disjunct result sets, thus the queries
do not create locking conflicts.

Effect of implicitly terminating a transaction

If a _disconnect command is issued while a transaction is pending or open, the transaction is
automatically committed.

If a timeout, deadlock or journal overflow occurs while a transaction is pending or active, the
transaction is rolled back.

Prepared Queries

Queries expressed in XQuery can be precompiled once and executed many times in the same
session. Such a query is called a prepared query. Each prepared query is identified by a handle
that is returned by Tamino when the _prepare command is issued.

To create a prepared query, use the _prepare command.

To execute a prepared query, use the _execute command.

To delete a prepared query, use the _destroy command.

A prepared query can be defined with one or more so-called external variables (see below), which
allows queries to be parameterized.

If a schema or security modification occurs while the session is active, prepared queries are recom-
piled automatically.

When a session terminates, the prepared query is no longer available.

83X-Machine Programming

Requests using X-Machine Commands

External variables

In order to pass parameters to a query, XQuery provides external variables. The value of the ex-
ternal variable is determined when the query is executed using a _execute command. Thus any
given prepared query can be used to execute different queries at different times in a session, de-
pending on the values assigned to the external variables.

To pass a value to an external variable, the _execute command gets a key-value pair. The variable
name is the key and the value holds the variable value. The variable value is specified by an XQuery
expression.

An example is given by the following prepared query, in which the external variable $y is used
as a placeholder for a value that will be provided in a subsequent _execute command:

declare variable $y as xs:integer external
input()/bib/book[@year = $y] ↩

The request to execute the prepared query looks like the following (assuming the handle of the
prepared query to have the value "42"):

_execute=prepared-xquery&_handle=42&$y=2000 ↩

which causes the following query to be executed:

input()/bib/book[@year = 2000]

This will for example return a list of all books published in the year 2000.

Currently there is no support for QName variables; this means that variables cannot be bound to
a namespace.

All possible instances of the XQuery data model can be bound to an external variable. This means
an external variable can be bound to simple type value, a node or a sequence of nodes and simple
type values. To pass a sequence with more than a single item, sequence expressions can be used.
The following request passes a sequence holding two xs:integers to the external variable $y of a
prepared query:

_execute=prepared-xquery&_handle=42&$y=(xs:integer("2000"),xs:integer("2001"))

The XQuery syntax also allows you to pass the integer values in the following way:

X-Machine Programming84

Requests using X-Machine Commands

_execute=prepared-xquery&_handle=42&$y=(2000,2001) ↩

The following example show how computed attribute constructors can be used to pass an attribute
node to an external variable:

_execute=prepared-xquery&_handle=42&$y=attribute year {"2000"}

To specify the value of external variables the following XQuery expressions can be used:

■ Literals
■ Constructor functions with literal and constructor function arguments
■ All types of supported node constructors with literal and constructor functions, content and

name expression
■ Sequences containing literals, constructor functions and node constructors

External variables in ordinary XQuery requests

External variables can be also passed to ordinary XQuery requests. For example:

_xquery=declare namespace xs=http://www.w3.org/2001/XMLSchema
declare variable $y as xs:integer external
input()/bib/book[@year = $y]
&$y=2000

Prepared queries and cursors

A cursor can use a prepared query by executing a command of the form:

_cursor=open&_execute=prepared-xquery&_handle=Handle[&$var1=Value1][&$var2=Value2]...

where Handle is the handle of the prepared query, as returned by the _prepare command, $var1,
$var2 etc. are external variables used by the prepared query and Value1, Value2 etc. are the values
to be assigned to the external variables.

Example

_cursor=open&_execute=prepared-xquery&_handle=42&y=2000

If a cursor is opened using the result set of a prepared query in this way, the same prepared query
cannot be used in another concurrent cursor or separate _execute command until the cursor has
been closed.

85X-Machine Programming

Requests using X-Machine Commands

Order of Execution of Commands

If several X-Machine commands, parameters or options are supplied in a single request, they are
processed in a defined internal order, regardless of the order in which they appear in the request.
The order is as follows:

1. _sessionkey

2. _sessionid

3. _encoding

4. _duration

5. _isolationLevel

6. _lockMode

7. _isolation

8. _lockWait

9. _maximumTransactionDuration (previously _transactionTimeout)

10. _nonActivityTimeout

11. _scroll

12. _count

13. _handle

14. _position

15. _quantity

16. _sensitive

17. _connect

18. _diagnose

19. _admin

20. _define

21. _process

22. _delete

23. _cursor

24. _xql

25. _xquery

26. _prepare

27. _execute

X-Machine Programming86

Requests using X-Machine Commands

28. _destroy

29. _htmlreq

30. _undefine

31. _commit

32. _rollback

33. _disconnect

Interactive Environment for sending X-Machine Commands

To send commands interactively to the X-Machine, you can use the Tamino Interactive Interface,
which is an HTML form.

Note: If you have an XML-capable browser, the Tamino Interactive Interface displays the
response document that the X-Machine sends in reply to each command.

For details, see the documentation for the Tamino Interactive Interface.

87X-Machine Programming

Requests using X-Machine Commands

88

6 General Requests

■ Listing Databases served by the Web Server .. 90

89

This section describes additional requests that can be used to return information about Tamino
databases.

Listing Databases served by the Web Server

To receive a list of the Tamino databases served by a web server on a given machine, issue a request
via HTTP using the following URL structure:

http://HostName:PortNumber/tamino/list=databases

where HostName is the name of the machine where the web server is running, and PortNumber is
the used port.

This will return a response document in which the names of the Tamino databases are listed in
ino:database elements, for example:

<?xml version="1.0" ?>
<ino:response xmlns:ino="http://namespaces.softwareag.com/tamino/response2">

<ino:message ino:returnvalue="0">
<ino:messageline>Processing list of databases</ino:messageline>

</ino:message>
<ino:database>HospitalDB</ino:database>
<ino:database>MyDB</ino:database>
<ino:message ino:returnvalue="0">

<ino:messageline>List of databases processed.</ino:messageline>
</ino:message>

</ino:response>

The list shows all databases that are known to the web server, namely:

■ all local databases (i.e. databases on the same machine as the web server), and
■ all active remote databases that use the same XTS directory server as the web server.

X-Machine Programming90

General Requests

7 Using Plain HTML Forms

The form submission methods specified in the HTML specification (see ht-
tp://www.w3.org/TR/html4/) are compatible with the requests described above. So you can use
plain HTML without any scripting or programming to access Tamino.

Please refer to the separate documentation for the Tamino Forms Handler for details.

An example of an application that uses plain HTML to communicate with X-Machine is the Tamino
Interactive Interface.

91

http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/

92

8 Media Type Requirements

The X-Machine evaluates the media type settings specified in the Content-Typefield of an incoming
HTTP request. It distinguishes between text and binary documents. A text document can be an
XML document or a non-XML document. A binary document can only be a non-XML document.

The distinction between XML document, non-XML text document and binary document is made
according to the media type as shown in the following table:

Type of Tamino DocumentMedia type

text, XML document*/xml or */*+xml, for example:

■ application/xml
■ text/xml
■ image/svg+xml

text, non-XML document■ text/* (other than text/xml)
■ application/rtf

text, XML documentnothing or blank

binary documentAll other media types

XML documents are handled according to their Tamino schema definition, if it exists (Tamino
also allows the storage of XML documents without a matching schema definition). This includes
validating against the information stored in Tamino's Data Map and indexing according to the
tsd:physical settings in the schema.

Notes:

1. The Tamino data loader uses special rules for determining the media type settings. See the
section Known Media Types in the data loader documentation for details.

2. Tamino schema definitions can be defined for non-XML documents.

93

94

9 Character Encoding

■ Character Encoding of Input Documents .. 96
■ Character Encoding of Output Documents .. 97
■ Supported Character Encodings ... 97

95

This section describes the character encoding mechanisms for HTTP requests to Tamino and re-
sponses from Tamino.

The term "encoding" in this section is used with the semantic defined in the W3C XML specification
at http://www.w3.org/TR/REC-xml/. The terms "charset" and "character set" are used with the
semantic defined in the HTTP/1.1 description at http://www.ietf.org/rfc/rfc2616.txt.

Character Encoding of Input Documents

Input documents can be supplied for X-Machine commands such as _process and _define. The
encoding of an input document can be specified explicitly in several ways:

■ in the encoding attribute of the document's XML declaration
■ in the _encoding parameter passed in the X-Machine command
■ in the charset value that is defined in conjunction with the document's Content-Type parameter

in the HTTP request

If the encoding is not specified in one of these ways, the document is assumed to be encoded ac-
cording to the value of the server XML parameter XML document default encoding (for details
see the list of server XML properties in the section Database Properties in the documentation for
the Tamino Manager).

All input documents with top-level media type "text" are converted to Unicode. Input data is
converted from the client's encoding to Unicode. The original encoding of the input is not re-
membered. X-Machine uses the internet standards for character set names as defined in the docu-
ment http://www.iana.org/assignments/character-sets.

Hint for users of Microsoft Windows: Please note that Microsoft code page 1252 is close to but not
identical with ISO-8859-1 (latin1).

Example

Database queries specifying character encoding can be sent to the X-Machine using the X-Machine
command _encoding followed for example by the X-Machine command _xql in a single HTTP
request, for example

http://myhost:80/tamino/mydb/mycollection?_encoding=utf-8&_xql=patient/name[surname="Bloggs"].

The value of the _encoding parameter will be applied to the values of all commands that are
subsequently executed. See also the section Order of Execution of Commands.

X-Machine Programming96

Character Encoding

http://www.w3.org/TR/REC-xml/
http://www.ietf.org/rfc/rfc2616.txt
http://www.iana.org/assignments/character-sets

Character Encoding of Output Documents

Output documents are converted by the X-Machine to the encoding desired by the client. Character
references are used to represent characters that do not exist in the desired encoding. The desired
encoding of the output can be specified in the HTTP header "Accept-Charset". If "Accept-Charset"
is omitted, X-Machine uses the encoding of the client request.

Supported Character Encodings

The Tamino server supports all standard character encodings and their well known aliases, as
shown in the following list.

Note: It is possible that some Tamino product components do not support some of these
encodings. Please see the documentation for the individual developer components for a list
of their supported encodings.

Well known aliasesEncoding Name

csAdobeStandardEncodingAdobe-Standard-Encoding

950, cp950, csBig5, ibm-1370_VSUB_VPUA, x-big5Big5

CESU-8

850, csPC850Multilingual, IBM850cp850

851, csPC851, IBM851cp851

856, ibm-856cp856

857, csIBM857cp857

IBM00858cp858

cp859

860, csIBM860, IBM860cp860

861, cp-is, csIBM861, IBM861cp861

862, cp867, cspc862latinhebrewcp862

cp863, csIBM863, IBM863cp863

csIBM864cp864

865, csIBM865, IBM865cp865

866, csIBM866cp866

868, cp-ar, csIBM868, IBM868cp868

869, cp-gr, csIBM869cp869

921cp921

922cp922

97X-Machine Programming

Character Encoding

Well known aliasesEncoding Name

csEUCPkdFmtJapanese, eucjis,
Extended_UNIX_Code_Packed_Format_for_Japanese, ibm-33722_VPUA,
ibm-eucJP, X-EUC-JP

EUC-JP

csEUCKR, ibm-970_VPUA, ibm-eucKR, X-EUC-KREUC-KR

ibm-1392gb18030

1383, chinese, cp1383, csGB2312, csISO58GB231280, EUC-CN, gb, gb2312-1980,
GB_2312-80, ibm-1383, ibm-1383_VPUA, ibm-eucCN, iso-ir-58, X-EUC-CN

GB2312

CP936, ibm-1386_VSUB_VPUA, MS936, zh_cn, windows-936GBK

csHPRoman8, r8, roman8hp-roman8

HZHZ-GB-2312

CCSID01140, CP01140, cpibm1140, ebcdic-us-37+euroIBM01140

CCSID01141, CP01141, cpibm1141, ebcdic-de-273+euroIBM01141

CCSID01142, CP01142, cpibm1142, ebcdic-dk-277+euro, ebcdic-no-277+euroIBM01142

CCSID01143, CP01143, cpibm1143, ebcdic-fi-278+euro, ebcdic-se-278+euroIBM01143

CCSID01144, CP01144, cpibm1144, ebcdic-it-280+euroIBM01144

CCSID01145, CP01145, cpibm1145, ebcdic-es-284+euroIBM01145

CCSID01146, CP01146, cpibm1146, ebcdic-gb-285+euroIBM01146

CCSID01147, CP01147, cpibm1147, ebcdic-fr-297+euroIBM01147

CCSID01148, CP01148, cpibm1148, ebcdic-international-500+euroIBM01148

CCSID01149, CP01149, cpibm1149, ebcdic-is-871+euroIBM01149

cpibm37, ebcdic-cp-us, ebcdic-cp-ca, ebcdic-cp-wt, ebcdic-cp-nl, cp37, cp037,
037

IBM037

CP1026, csIBM1026, Ibm-1026_STDIBM1026

273, CP273, cpibm273, csIBM273, ebcdic-deIBM273

277, csIBM277, cpibm277, EBCDIC-CP-DK, EBCDIC-CP-NO, ebcdic-dkIBM277

278, cp278, cpibm278, csIBM278, ebcdic-cp-fi, ebcdic-cp-se, ebcdic-svIBM278

280, CP280, cpibm280, csIBM280, ebcdic-cp-itIBM280

284, CP284, cpibm284, csIBM284, ebcdic-cp-esIBM284

285, CP285, cpibm285, csIBM285, ebcdic-cp-gb, ebcdic-gbIBM285

cp290, csIBM290, EBCDIC-JP-kanaIBM290

297, cp297, cpibm297, csIBM297, ebcdic-cp-frIBM297

IBM367

420, cp420, csIBM420, ebcdic-cp-ar1IBM420

424, cp424, csIBM424, ebcdic-cp-heIBM424

500, CP500, cpibm500, csIBM500, ebcdic-cp-be, ebcdic-cp-chIBM500

IBM852

IBM855

X-Machine Programming98

Character Encoding

Well known aliasesEncoding Name

IBM857

IBM862

IBM864

IBM869

CP870, csIBM870, ibm-870, ibm-870_STD, ebcdic-cp-roece, ebcdic-cp-yuIBM870

871, CP871, cpibm871, csIBM871, ebcdic-cp-is, ebcdic-isIBM871

CP918, csIBM918, , ebcdic-cp-ar2, ibm-918_STD, ibm-918_VPUAIBM918

ISO-2022-CN-EXT

ISO-2022-CN

csISO2022JP2ISO-2022-JP-2

csISO2022JPISO-2022-JP

csISO2022KRISO-2022-KR

2022, cp2022ISO-2022

iso-8859-15

8859-1, cp819, csISOLatin1, IBM819, ISO_8859-1:1987, iso-ir-100, l1, latin1ISO-8859-1

8859-2, 912, cp912, csISOLatin2, ISO_8859-2:1987, iso-ir-101, l2, latin2iso-8859-2

8859-3, 913, cp913, csISOLatin3, iso-ir-109, l3, latin3iso-8859-3

8859-4, 914, cp914, csISOLatin4, ISO_8859-4:1988, iso-ir-110, l4, latin4iso-8859-4

8859-5, 915, cp915, csISOLatinCyrillic, cyrillic, ISO_8859-5:1988, iso-ir-144iso-8859-5

1089, 8859-6, arabic, asmo-708, cp1089, csISOLatinArabic, ecma-114,
ISO_8859-6:1987, iso-ir-127

iso-8859-6

813, 8859-7, cp813, csISOLatinGreek, ecma-118, elot_928, greek, greek8,
ISO_8859-7:1987, iso-ir-126

iso-8859-7

916, cp916, csISOLatinHebrew, Hebrew, 8859-8, ISO_8859-8:1988, iso-ir-138iso-8859-8

8859-9, 920, cp920, latin5, csISOLatin5, ISO_8859-9:1989, iso-ir-148, l5iso-8859-9

ISO-2022-JP-1, JISJIS_Encoding

cp878, cskoi8r, koi8KOI8-R

949, csKSC56011987, ibm949, ibm949_VSUB_VPUA, iso-ir-149, johab, Korean,
ksc5601_1992, KS_C_5601-1987, KS_C_5601-1989, ks_x_1001:1992

KSC_5601

csMacintoshmac

SCSU

943, cp943, cp932, csShiftJIS, csWindows31J, MS_Kanji, pck, sjis, windows-31j,
x-sjis

Shift_JIS

874, cp874, cp9066, ms874, windows-874TIS-620

ANSI_X3.4-1968, ASCII, ANSI_X3.4-1986, cp367, csASCII, ISO_646.irv:1983,
ISO_646.irv:1991, ISO646-US, iso-ir-6, us

US-ASCII

cp1201, UTF16_BigEndian, x-utf-16beUTF-16BE

99X-Machine Programming

Character Encoding

Well known aliasesEncoding Name

cp1200, UTF16_LittleEndian, x-utf-16leUTF-16LE

UTF32_BigEndianUTF-32BE

UTF32_LittleEndianUTF-32LE

cp65000UTF-7

cp1208, cp65001UTF-8

csUnicode, ISO-10646-UCS-2, ucs-2UTF-16

csUCS4, ISO-10646-UCS-4, ucs-4UTF-32

cp1250windows-1250

cp1251windows-1251

cp1252windows-1252

cp1253windows-1253

cp1254windows-1254

cp1255windows-1255

cp1256windows-1256

cp1257windows-1257

cp1258windows-1258

X-Machine Programming100

Character Encoding

10 Maintaining Tamino Indexes

■ General ... 102
■ Special Considerations for Indexes ... 104
■ Dependence on Session Context .. 106
■ Performance and Locking Aspects .. 106
■ Optimization ... 106

101

The X-Machine command _admin offers various functions for maintaining Tamino indexes. This
section provides general guidelines for maintaining Tamino indexes and describes which functions
of _admin to use for the various possibilities.

General

Indexes are defined for a doctype by adding corresponding definitions to Tamino schema docu-
ments. In normal operation, these indexes are maintained when adding, removing or modifying
documents in the doctype. However, there are a few scenarios where special actions might be re-
quired:

■ an index is disabled during an upgrade from a previous version of Tamino
■ the Tamino server was aborted during a schema update which requested creation of new indexes
■ the Tamino server was aborted while executing a function used to recreate or repair an index

was interrupted
■ an index has been corrupted

All these scenarios lead to an index which is marked as unusable. An appropriate message will
show up in the job log of the Tamino server. Depending on the scenario, an additional message
may be returned in a response to the X-Machine request which caused or detected the problem.

The command _admin = ino:DisplayIndex (...) may be used to identify the indexes that are
disabled. The respective index will be marked as follows:

<ino:index ino:indexcoll="myCollection"
ino:indexpath="myDocument/myElement"
ino:indextype="standard"
ino:status="not-available">

The following diagram illustrates possible states of an index in a Tamino doctype and the transitions
which may occur:

X-Machine Programming102

Maintaining Tamino Indexes

The states are:

MeaningState

the index is fully operational: it can be used for query processingOK

the index does not existnon-existing

the index is being newly created or regenerated(re-)creating

the index is not usable and must be repairedto be repaired

Both the "(re-)creating" and the "to be repaired" state are reflected as "not-available" by the
ino:DisplayIndex function.

Here are the possible reasons for the state transitions (the numbers refer to the arrows in the above
diagram):

MeaningState
Transition

Update existing schema and add a new index or a new unique constraint1

(a) in session context

(b) without session context

An operation which led to "(re-)creating" state has been finished successfully2

Update an existing schema and remove an existing index or unique constraint3

Started _admin=ino:RepairIndex(...,"drop"). This affects all indexes of a doctype that
are in the "to be repaired" state .

4

Tamino server restarted after being aborted while in the "(re-)creating" state5

103X-Machine Programming

Maintaining Tamino Indexes

MeaningState
Transition

Started _admin=ino:RepairIndex(...,"continue") this affects all indexes of a doctype
that are in the "to be repaired" state

6

Different possible reasons, as listed at the beginning of this section.7

Started one of the following commands:8

■ _admin=ino:RecreateIndex(...): this affects all indexes of a doctype
■ _admin=ino:RecreateTextIndex(...): this affects all text indexes of the doctype

(a) in session context

(b) without session context

Most _admin functions mentioned above operate on sets of indexes. If you want to recreate a single
index, you can use the Tamino schema editor as follows:

To recreate an index using the Tamino Schema Editor

1 Start the Tamino Schema Editor

2 Get the schema defining the index(es) to be recreated, remove the index from the schema
definition, then useDatabase > Define Schema to define the schema again. You will be asked
whether you want to update the existing schema. Please answer "yes".

3 Use Edit > Undo Set physical property to reintroduce the index(es), then use Database >
Define Schema to define the schema again. You will be asked whether you want to update
the existing schema. Please answer "yes". This will cause the index(es) to be recreated.

Note that this operation can run for a considerable length of time.

Special Considerations for Indexes

Special Considerations for Multipath Indexes

Due to the nature of multipath indexes, _admin=ino:RepairIndex(…,"drop") will be rejected if
there are multipath indexes defined for a doctype.

X-Machine Programming104

Maintaining Tamino Indexes

Special Considerations for Computed Indexes

If a schema defining a computed index for a doctype is updated, all computed indexes will be re-
created.

The construction of a computed index relies on the XQuery module where the referenced XQuery
function is defined, and potentially also other modules that are imported directly or indirectly by
that primary module. If one of these modules has been modified, the index is in general corrupted
if the results returned by the indexing function have changed.

However, Tamino does not automatically recreate all computed indexes for potentially affected
doctypes. Instead, it is up to the database administrator to determine the set of potentially affected
doctypes and to invoke the _admin=ino:RecreateIndex(…) for all affected doctypes.

The following XQuery can be used to determine the set of potentially affected doctypes if a module
with targetNamespace URI has been modified:

import module namespace si="http://namespaces.softwareag.com/tamino/schemaInfo"

for $dt in si:getDoctypesUsingModule("URI")
return $dt/../*/@name

On the other hand, it may happen, that a computed index cannot be recreated at all due to mis-
configuration, if for example

■ the indexing function's signature has changed
■ the indexing function or the enclosing module as a whole have been deleted

In any of these cases it will also no longer be possible to store documents in the affected doctypes.

Note: Queries using the computed index with a modified or broken indexing function may
return invalid results.

After such a broken computed index, one of the following can be done depending on the status
of the computed indexes:

■ update or re-create the module
■ update the schema to remove the computed index
■ execute _admin=ino:RepairIndex(…,"drop")

105X-Machine Programming

Maintaining Tamino Indexes

Dependence on Session Context

All index manipulation commands, namely:

■ _define

■ _admin=ino:Index("optimize", ...)

■ _admin=ino:RecreateIndex(...)

■ _admin=ino:RecreateTextIndex(...)

■ _admin=ino:RepairIndex(..., "continue")

may require a long time for execution and perform a lot of changes.

If the command is executed inside a session context, there are potential problems regarding
transaction timeouts and journal overflow. In addition, the entire collection is locked exclusively
during operation. Hence, it is recommended to use the commands listed above outside a session
context (i.e. in autocommit mode).

Performance and Locking Aspects

If an index is being repaired, i.e. it is in the "(re-)creating" or "to be repaired" state, it is disabled.
This means that it cannot be used for queries, thus affecting the performance of queries which
otherwise could take advantage of that index. When running an index manipulation command,
in most cases, except for a short preparation and termination phase of the respective index manip-
ulation command, parallel inserts and updates operating on the respective doctype are possible.
If, however, an index used underneath a unique constraint is being disabled, the doctype is locked
and no parallel insert or update operations are permitted.

Optimization

In addition, there are scenarios where performance of query execution is also degraded even if
the index is not disabled. This may happen if an index is not as selective as it could be, for example:

■ a standard or compound index contained long index values which had been truncated to a
length of 1000 bytes

■ a condensed structure index contains paths with no corresponding documents being stored in
the doctype any more

The command _admin=ino:Index("optimize", ...) can be used if any of these scenarios might
have occurred.

X-Machine Programming106

Maintaining Tamino Indexes

Index

Symbols
_admin command

syntax and description, 27
_commit command

syntax and description, 42
_connect command

syntax and description, 42
_cursor command

syntax and description, 43
_define command

syntax and description, 47
_delete command

syntax and description, 49
_destroy command

syntax and description, 50
_diagnose command

syntax and description, 50
_disconnect command

syntax and description, 51
_duration command

syntax and description, 63
_execute command

syntax and description, 51
_htmlreq command

syntax and description, 51
_isolation parameter

syntax and description, 81
_isolationLevel parameter

syntax and description, 76
_lockMode parameter

syntax and description, 79
_lockWait parameter

syntax and description, 80
_maximumTransactionDuration parameter

syntax and description, 81
_nonActivityTimeout parameter

syntax and description, 81
_prepare command

syntax and description, 51
_process command

syntax and description, 52
_querysearchmode

syntax and description, 58, 62
_rollback command

syntax and description, 57
_sessionid parameter, 75
_sessionkey parameter, 75
_transactionTimeout parameter

syntax and description, 81
_undefine command

syntax and description, 57
_xql command

syntax and description, 58
_xquery command

syntax and description, 60

A
access

documents in X-Machine, 6
administration function

ino:Accessor, 28
ino:CancelMassLoad, 29
ino:ChangeUserPassword, 30
ino:DisplayIndex, 30
ino:Index, 38
ino:RecreateTextIndex, 39
ino:RepairIndex, 39
ino:Request, 40

administration functions
X-Machine command, 27

authorization
types for client requests, 19
using plain URL addressing, 17

C
character encoding

for HTTP requests and responses, 95
supported encodings, 97

close
cursor, 46

cluster
schema cluster, 48

collation
in standard index

display, 32
commit

command to commit transaction, 42
compound index, 33

display, 33
computed index

display, 37
criteria

for inserting or replacing a document, 16, 52
cursor

close, 46
command to use a cursor, 43

107

open, 44
retrieve data using, 44
using prepared queries, 85

cyclic schema definition, 48

D
database

list databases served by web server, 90
default values

transaction parameters, 82
define

command to create schema or collection, 47
delete

command to delete documents, 49
destroy

command to remove a prepared query, 50
diagnose

command to perform diagnosis, 50
disconnect

command to end a session, 51
display

index contents, 30
document ID

usage for addressing, 15
duration

command to show duration of a command, 63

E
execute

command to execute a prepared query, 51

F
fetch data

using cursor, 44

H
HTML form data

in X-Machine commands, 23
htmlreq

command to process HTML forms, 51
HTTP

header and body content, 16
status codes, 17

HTTP header field
X-INO-Authorization, 18
X-INO-clientRequestId, 28
X-INO-Docname, 16
X-INO-id, 16
X-INO-isolation, 20
X-INO-isolationLevel, 20
X-INO-lockMode, 20
X-INO-lockWait, 20
X-INO-Sessionid, 10, 75
X-INO-Sessionkey, 10, 75
X-INO-Version, 16

I
ID

access document using ID, 15
assign to new document, 14
passing to Tamino, 18

index
display contents, 30
general overview on maintaining, 101
optimization, 106
performance and locking aspects, 106
recreate, 38
repair, 39
state transitions, 102
transitions between states, 102

index options
display, 33

ino:Accessor
administration function, 28

ino:CancelMassLoad
administration function, 29

ino:ChangeUserPassword
administration function, 30

ino:DispayIndex
administration function, 30

ino:etc
documents with no collection specified, 8

ino:Index
administration function, 38

ino:RecreateTextIndex
administration function, 39

ino:RepairIndex
administration function, 39

ino:Request
administration function, 40

insert
document

criteria for, 52
inserting documents

criteria for, 16
isolation level parameter

syntax and description, 76
isolation parameter

syntax and description, 81

L
lock mode parameter

syntax and description, 79
lock wait parameter

syntax and description, 80
locking

influence on query processing, 82
locking mechanisms, 76

M
maximum transaction duration parameter

syntax and description, 81
media type

for binary documents, 93
for non-text documents, 93
for text documents, 93

multipath index, 33
display, 36

X-Machine Programming108

Index

N
non-activity timeout parameter

syntax and description, 81

O
open

cursor, 44
order

execution of X-Machine commands, 86

P
parameter

session parameter, 76
parameterized URL addressing

in X-Machine commands, 23
password

change a password, 30
passing to Tamino, 18

plain URL addressing, 6
overview, 13
transaction context, 20

precompiled query, 50-51
prepare

command to precompile a query, 51
prepared query, 50-51

overview, 83
using in cursor, 85

process
command to store or modify documents, 52

programming
low-level HTTP requests to X-Machine, 5

Q
query

prepared (precompiled), 50-51, 83

R
recreate

index, 38
text index, 39

reference index
display, 37

repair
index, 39

replacing documents
criteria for, 16, 52

request
cancel a running request, 28, 40
get ID of running request, 28

requests
using plain URL addressing, 6
using X-Machine commands, 6, 21

response document
examples, 63
schema, 64

rollback
command to abort transaction, 57

S
schema cluster, 48
security, 7
session

cancel a halted session, 29
command to start, 42

session context
establish, 9

session handling, 9
session ID

initialize, 42
overview, 9

session key
initialize, 42
overview, 9

session parameter
syntax and descriptions of parameters, 76
X-INO-Sessionid, 75
X-INO-Sessionkey, 75

store
command for storing documents, 52

syntax
of X-Machine response

examples, 63

T
text index

recreate, 39
transaction

default parameters, 82
effect when terminating open transaction, 83
maximum duration, 81
maximum non-activity duration, 81

transaction timeout parameter
syntax and description, 81

transaction-related commands, 74
truncated value

in standard index
display, 32

U
unique key

display, 35
URL format

for plain URL addressing, 14

W
web server

list databases served by, 90
wrapper

in response document, 63
suppressing response wrapper, 72

X
X-INO-Authorization, 18
X-INO-clientRequestId, 28
X-INO-Docname, 16
X-INO-id, 16
X-INO-isolation, 20

109X-Machine Programming

Index

X-INO-isolationLevel, 20
X-INO-lockMode, 20
X-INO-lockWait, 20
X-INO-Sessionid, 10, 75
X-INO-Sessionkey, 10, 75
X-INO-Version, 16
X-Machine

command format, 23
X-Machine command

_admin, 27
_commit, 42
_connect, 42
_cursor, 43
_define, 47
_delete, 49
_destroy, 50
_diagnose, 50
_disconnect, 51
_duration, 63
_execute, 51
_htmlreq, 51
_prepare, 51
_process, 52
_rollback, 57
_undefine, 57
_xql, 58
_xquery, 60

X-Machine commands
order of execution, 86
overview, 21
sending interactively, 87
syntax and description, 26
transaction-related commands summary, 74

X-Machine Programming
overview, v

X-Machine response
elements and attributes, 71
syntax, 63

X-Query
search modes, 58

XQL
command to submit query, 58

XQuery
command to submit query, 60
search modes, 62

X-Machine Programming110

Index

	X-Machine Programming
	Table of Contents
	X-Machine Programming
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction
	Accessing Documents in the X-Machine
	Storage and Retrieval Format of XML and non-XML Documents
	Security
	The Special Collection ino:etc

	3 Session Handling
	Session Context
	Session ID and Session Key
	Queueing a Follow-Up Request

	4 Requests using Plain URL Addressing
	URL format for Plain URL addressing
	Addressing Existing Documents via Document ID
	Criteria for Inserting or Replacing a Document
	HTTP Header and Body Content
	HTTP Status Codes
	Authentication Aspects
	Passing a user ID and password to Tamino
	Basic authentication field in HTTP header
	Special Tamino authentication field in HTTP header

	Authentication for client requests
	Non-authenticated access
	Authentication using web server authentication
	Tamino authentication

	Transaction Aspects
	Setting session ID and session key
	Overriding session parameters

	5 Requests using X-Machine Commands
	X-Machine Command Format
	Parameterized URL addressing via HTTP GET
	Restrictions when using parameterized URL addressing

	HTML multipart form data via HTTP POST

	Description of X-Machine Commands
	The _admin command
	The ino:Accessor function
	The ino:CancelMassLoad function
	The ino:ChangeUserPassword function
	The ino:DisplayIndex function
	Syntax
	Standard Index and Collation
	Standard Index With Truncated Values
	Index options
	Compound Index
	Unique Keys
	Multipath Index
	Computed Index
	Reference Index

	The ino:Index function
	The ino:RecreateIndex function
	The ino:RecreateTextIndex function
	The ino:RepairIndex function
	The ino:Request function

	The _commit command
	The _connect command
	The _cursor command
	Opening a cursor
	Get result documents
	Combining open and fetch
	Close a cursor
	Further aspects
	Associated error messages
	Example

	The _define command
	Defining a schema
	Defining a schema cluster
	Defining a collection
	Restriction for non-XML doctypes

	The _delete command
	The _destroy command
	The _diagnose command
	The _disconnect command
	The _execute command
	The _htmlreq command
	The _prepare command
	The _process command
	Criteria for inserting or replacing a document
	Specifying the document name
	Specifying the document ID
	Storing new documents
	Replacing existing documents

	The _rollback command
	The _undefine command
	Undefining collections, schemas and doctypes
	Examples

	The _xql command
	X-Query search modes

	The _xquery command
	Examples
	Serialization of Response Document
	Search Modes

	X-Machine Command Options
	Duration Measurement

	Syntax of XML Responses
	Example of a response to the _connect command
	Example of a response to the _define command
	Example of a response to an updating _define command
	Example of a response to the _delete command
	Examples of responses to the _diagnose command
	Example of a response to the _duration command
	Example of a response to the _process command
	Example of a response to the _undefine command
	Example of a response to the _xql command
	Example of a response to the _xquery command

	Elements and Attributes in Tamino Response Documents
	Suppressing the Tamino Response Wrapper
	Suppressing the response wrapper in XQuery commands
	Suppressing the response wrapper in X-Query commands
	Suppressing the response wrapper by setting the media type
	Restrictions for suppressing the response wrapper
	Error Handling
	Further information

	Transaction-Related Commands
	Summary of Commands and Usage
	Restrictions
	The HTTP header fields X-INO-Sessionid and X-INO-Sessionkey
	Session Parameters
	The _isolationLevel Parameter
	_isolationLevel=uncommittedDocument
	_isolationLevel=committedCommand
	_isolationLevel=stableCursor
	_isolationLevel=stableDocument
	_isolationLevel=serializable
	Effect of isolation level on concurrent transaction

	The _lockMode Parameter
	The _lockWait Parameter
	The _maximumTransactionDuration parameter (previously named _transactionTimeout)
	The _nonActivityTimeout parameter
	The _isolation Parameter (deprecated)

	Comparison of Locking Mechanisms
	Default Parameters for Sessions, Transactions and Requests
	Influence of Locking on Query Processing
	Effect of implicitly terminating a transaction

	Prepared Queries
	External variables
	External variables in ordinary XQuery requests
	Prepared queries and cursors

	Order of Execution of Commands
	Interactive Environment for sending X-Machine Commands

	6 General Requests
	Listing Databases served by the Web Server

	7 Using Plain HTML Forms
	8 Media Type Requirements
	9 Character Encoding
	Character Encoding of Input Documents
	Character Encoding of Output Documents
	Supported Character Encodings

	10 Maintaining Tamino Indexes
	General
	Special Considerations for Indexes
	Special Considerations for Multipath Indexes
	Special Considerations for Computed Indexes

	Dependence on Session Context
	Performance and Locking Aspects
	Optimization

	Index

