
Tamino

XQuery User Guide

Version 10.1

April 2018

This document applies to Tamino Version 10.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-XQUERY-101-20180413

Table of Contents

Preface .. v
I First Steps ... 1

1 Sample bib ... 3
2 Sample reviews ... 5
3 Query Examples .. 7

Using Constructors .. 8
Basic FLWOR Expressions ... 9
Using Filters ... 10
Sorting .. 12
Joining .. 14
Text Retrieval .. 15
Updating Documents ... 16

II The Concepts of XQuery ... 21
4 The Nuts and Bolts of XQuery .. 23

Expressions and Sequences .. 24
Retrieving Data .. 25
Constructors ... 26
Path Expressions .. 27
Data Types .. 29
Functions .. 30

5 FLWOR Expressions .. 33
6 Performing Update Operations ... 37

Inserting Nodes .. 38
Deleting Nodes ... 39
Renaming Nodes .. 40
Replacing Nodes .. 40
Using FLWU Expressions ... 41
Schema Conformance ... 42
Conflicts .. 43
Security ... 47

7 Calling XQuery through a Web Service .. 49
Setting Preferences ... 50
Using the Wizard ... 53
Using the Generated Web Service .. 59

8 CRUD Usage of a Tamino Doctype as a Web Service ... 61
Setting Preferences ... 62
Using the Wizard ... 65
Using the Generated Web Service .. 72

9 Advanced Usage .. 75
Namespaces .. 76
User-Defined Functions ... 77
Defining and Using Modules ... 78
Serializing Query Results ... 80

iii

Collations ... 82
10 Text Retrieval ... 85

Simple Text Search ... 86
Context Operations .. 87
Highlighting Retrieval Results ... 88
Phonetic Searches ... 91
Stemming ... 92
Rules for Searches Using Phonetic Values and Stemming 94
Thesaurus ... 96
Pattern Matching .. 98

III Related Information ... 105
11 Related Information ... 107

Internal Resources .. 108
W3C Resources ... 108

Index ... 111

XQuery User Guideiv

XQuery User Guide

Preface

This document describes how to use Tamino XQuery, Software AG's implementation of the W3C
XQuery language.

This documentation is directed to anyone who wants to use Tamino XQuery as a means to submit
queries to a Tamino database. This includes users who wish to communicate directly with Tamino
via the Tamino Interactive Interface as well as application programmers who want to deploy
XQuery in their database client applications.

It introduces you to Tamino XQuery by presenting typical query use cases. It discusses the core
concepts and illustrates them with several examples. You will also find pointers to information
that is related to XQuery, but not part of the language.

The documentation covers the following topics:

First Steps ■ Query Examples

The Concepts of XQuery ■ The Nuts and Bolts of XQuery
■ FLWOR Expressions
■ Performing Update Operations
■ Calling XQuery through a Web Service
■ CRUDUsage of a TaminoDoctype as aWebService
■ Text Retrieval

Advanced Usage ■ Namespaces
■ User-Defined Functions
■ Defining and Using Modules
■ Serializing Query Results
■ Collations

Related Information ■ Internal Resources
■ W3C Resources

v

vi

I First Steps

XQuery is the standard query language in Tamino for performing queries on XML objects. It allows
you not only to retrieve database contents, but also to compose your query result using constructors.
With Tamino XQuery you can:

■ Query XML objects from Tamino databases;
■ Use simple datatypes as defined in XML Schema;
■ Perform “join” operations across doctypes and collections;
■ Construct new elements in your query results.

In this chapter you will see some typical queries which illustrate the capabilities of Tamino XQuery.
We use two XML documents of two different doctypes, namely reviews and bib, describing reviews
of computer science books and bibliographical entries. They have been published as the W3C
Working Group Note XMLQuery Use Cases and are listed in the appendix for your convenience.

For each use case you will find the query, the output of Tamino, and an explanation. If you want
to check these examples yourself, create a new database in the Tamino Manager, and in the Tamino
Interactive Interface you can define the schema and load the data into Tamino.

1

http://www.w3.org/TR/xquery-use-cases/

2

1 Sample bib

This doctype describes a simple bibliography.

This is the sample data:

<bib>
<book year="1994">

<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="1992">

<title>Advanced Programming in the Unix environment</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>
<book year="2000">

<title>Data on the Web</title>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<publisher>Morgan Kaufmann Publishers</publisher>
<price>39.95</price>

</book>
<book year="1999">

<title>The Economics of Technology and Content for Digital TV</title>
<editor>
<last>Gerbarg</last><first>Darcy</first>
<affiliation>CITI</affiliation>

</editor>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>
</bib>

3

Below you see the Schema Editor representation of this doctype on the left and the document type
definition on the right.

<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ | editor+), ↩
publisher, price)>
<!ATTLIST book
 year CDATA #REQUIRED >
<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first, affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

XQuery User Guide4

Sample bib

2 Sample reviews

This doctype describes reviews.

This is the sample data:

<reviews>
 <entry>
 <title>Data on the Web</title>
 <price>34.95</price>
 <review>A very good discussion of semi-structured database systems and ↩
XML.</review>
 </entry>
 <entry>
 <title>Advanced Programming in the Unix environment</title>
 <price>65.95</price>
 <review>A clear and detailed discussion of UNIX programming.</review>
 </entry>
 <entry>
 <title>TCP/IP Illustrated</title>
 <price>65.95</price>
 <review>One of the best books on TCP/IP.</review>
 </entry>
</reviews>

Below you see the Schema Editor representation of this doctype on the left and the document type
definition on the right.

5

<!ELEMENT reviews (entry*)>
<!ELEMENT entry (title, price, review)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT review (#PCDATA)>

XQuery User Guide6

Sample reviews

3 Query Examples

■ Using Constructors .. 8
■ Basic FLWOR Expressions ... 9
■ Using Filters ... 10
■ Sorting .. 12
■ Joining .. 14
■ Text Retrieval ... 15
■ Updating Documents .. 16

7

In the following sections, XQuery keywords are rendered bold . If you have already set up a
database, you can directly copy the text and paste it into the XQuery text field of the Tamino In-
teractive Interface. In theCollection text field, enter "XMP" for the doctypes bib and reviews, and
"Hospital" for the doctype patient.

Using Constructors

A central concept of XQuery is compositionality: You can use constructors to compose new XML
elements.

Query

<fact>This section contains {3 + 6} examples.</fact>

Result

This first query returns the following result from Tamino as presented by Microsoft's Internet
Explorer:

Tamino returns a well-formed XML document with the document element ino:response. It contains
information about the query and its processing: the query expression itself (xq:query), messages
about any actions before and after processing (ino:message) and in between the actual query
result embedded into the xq:result element that reads:

XQuery User Guide8

Query Examples

<fact>This section contains 9 examples.</fact>

You can also reduce the output of Tamino to the bare query result. See the section Suppressing
the Response Wrapper for details.

Explanation

Here, an element constructor creates the element fact. It contains the expression 3 + 6 that is enclosed
by braces. The arithmetic expression is evaluated and the constructed element is embedded into
the output document element returned by Tamino.

There are other constructors that you can use to create other types of nodes such as attribute nodes.

See AdditiveExpr and ElementConstructor in the Tamino XQuery Reference Guide for details.

Basic FLWOR Expressions

In this query we use the technique of constructing elements in a FLWOR expression:

Query

for $b in input()/bib/book
return $b/title

Result

It returns a list of all book titles:

<title>TCP/IP Illustrated</title>
<title>Advanced Programming in the Unix environment</title>
<title>Data on the Web</title>
<title>The Economics of Technology and Content for Digital TV</title>

Explanation

The basic form of a FLWOR expression (pronounced: "flower") is used here. You could very roughly
compare a FLWOR expression with the SQL expression SELECT - FROM - WHERE. The letters in FLWOR
stand for the XQuery keywords for, let, where, order by and return, two of which are used here.
Let us examine them more closely:

9XQuery User Guide

Query Examples

for $b in input()/bib/book

The for clause binds all values that are evaluated from the expression following the keyword in
as an ordered sequence of items to the variable $b. The expression input()/bib/book evaluates
to all instances of bib/book elements in the default collection (input()). So the variable $b loops
over a sequence with four complete book elements.

return $b/title

The return clause uses the expression following the keyword return to construct the result of the
FLWOR expression. Here, for each book element its child element title is returned.

See FLWORExpr in the language reference for details.

Note: According to the XQuery specification, all keywords in XQuery must be written in
lower case. It is an error to use upper case or mixed case.

Using Filters

You can use filters to restrict the result sequence of a query. You can specify a filter by using a
where clause in a FLWOR expression:

Query

for $b in input()/bib/book
where $b/@year > 1994
return

<book>
{ $b/@year }
{ $b/title }

</book>

Result

This query returns all book/title elements of the current collection together with the year of
publication provided that the year of publication is 1995 or later:

<book year="2000">
<title>Data on the Web</title>

</book>
<book year="1999">

<title>The Economics of Technology and Content for Digital TV</title>
</book>

XQuery User Guide10

Query Examples

Explanation

Again, a FLWOR expression is used in the query, but this time there is an additional where clause:

where $b/@year > 1994

It restricts the bindings to the variable $b to those that meet the condition in the expression following
the keyword where: Only those book elements are retained that have an attribute year whose nu-
merical value is greater than 1994. So it has the same effect as the WHERE clause in SQL.

return
<book>

{ $b/@year }
{ $b/title }

</book>

An element constructor is used that creates a new element bookwhich is then filled by two enclosed
expressions: the first one evaluates to an attribute that is attached to the element book, the second
expression is used as before.

You could also introduce an additional variable that is bound to the attribute year by using the
let clause. The query then reads:

for $b in input()/bib/book
let $y := $b/@year
where $y > 1994
return

<book>
{ $y }
{ $b/title }

</book>

The let clause adds an additional binding so that you can refer to $y instead of referring to
$b/@year.

See FLWORExpr in the language reference for details.

Note: Although a sequence of book elements is not a well-formed XML element by itself,
the resulting node sequence is serialized by Tamino into an xq:result node, which is in
itself a new well-formed XML document.

11XQuery User Guide

Query Examples

Sorting

The facility of sorting is available with the expression sort by. You can use it for sorting query
results as in the following example:

Query

for $b in (input()/bib/book) sort by (title)
let $y := $b/@year
where $y > 1991
return

<book>
<year> { string($y) } </year>
{ $b/title }

</book>

Result

This query returns all book elements sorted by their title:

<book>
<year>1992</year>
<title>Advanced Programming in the Unix environment</title>

</book>
<book>

<year>2000</year>
<title>Data on the Web</title>

</book>
<book>

<year>1994</year>
<title>TCP/IP Illustrated</title>

</book>
<book>

<year>1999</year>
<title>The Economics of Technology and Content for Digital TV</title>

</book>

XQuery User Guide12

Query Examples

Explanation

Building upon the FLWOR expression from the last example, we modified the return clause:

return
<book>

<year> { string($y) } </year>
{ $b/title }

</book>

The year of publication is now the contents of the new element year. As the expression $b/@year
represents an attribute node, we need to turn its value into a string by applying the function
string().

sort by (title)

All book elements are sorted by their child element title in ascending order. The FLWOR expres-
sion evaluates to a sequence of items and determines the context node for sort by (XQuery calls
this evaluation context inner focus). These input items are then reordered according to the sort
criterion and returned as a sequence of output items. As book is the context node for each input
item, the result is a sequence of book elements sorted alphabetically by title in the default order,
which is ascending.

An alternative version of this query is:

for $b in input()/bib/book
let $y := $b/@year
where $y > 1991
return

<book>
<year> { string($y) } </year>
{ $b/title }

</book>
sort by (title)

Putting the sort at the end of the for clause has the advantage that the data type of title is retained
and the query can be optimized, while newly constructed nodes have no type information.

See SortExpr and fn:string in the language reference for details.

13XQuery User Guide

Query Examples

Joining

You can perform join operations on documents of different doctypes and collections:

Query

for $b in input()/bib/book,
$a in input()/reviews/entry

where $b/title = $a/title
return

<book>
{ $b/author }
{ $b/title }
{ $a/review }

</book>

Result

This join query returns all books for which a review exists, with all authors, title and the review
text.

<book>
<author><last>Stevens</last><first>W.</first></author>
<title>TCP/IP Illustrated</title>
<review>One of the best books on TCP/IP.</review>

</book>
<book>

<author><last>Stevens</last><first>W.</first></author>
<title>Advanced Programming in the Unix environment</title>
<review>A clear and detailed discussion of UNIX programming.</review>

</book>
<book>
<author><last>Abiteboul</last><first>Serge</first></author>
<author><last>Buneman</last><first>Peter</first></author>
<author><last>Suciu</last><first>Dan</first></author>
<title>Data on the Web</title>
<review>A very good discussion of semi-structured database systems and XML.</review>
</book>

XQuery User Guide14

Query Examples

Explanation

A join is constructed in a similar way as in SQL: you identify the items that must match, determine
the join criterion and define the output:

for $b in input()/bib/book,
$a in input()/reviews/entry

Two variables $a and $b are bound: $b is bound to all instances of bib/book, while $a is bound to
all instances of reviews/entry. Both doctypes, bib and reviews, are available in the same collection
(XMP).

where $b/title = $a/title

The FLWOR expression is processed by repeated construction: tuples consisting of an item bound
to $a and an item bound to $b. Only those tuples are retained that satisfy the condition that $b/title
of doctype bib is equal to $a/title of doctype reviews. Equality is based on the value of the
nodes. This is what you could call an equijoin in XML Query.

return
<book>

{ $b/author }
{ $b/title }
{ $a/review }

</book>

As before, we use constructors with embedded expressions to define the output. Note that {
$b/author } applies to all instances of author so that the third book appears with all three authors.
Also, as the author element contains children elements, these are included as well.

Text Retrieval

You can perform text search operations by using one of the functions tf:containsText,
tf:containsAdjacentText or tf:containsNearText. Other retrieval operations include “highlight-
ing” of text, navigating in user-defined thesauri and searching based on phonetic similarities,
word stemming or semantic relationships.

15XQuery User Guide

Query Examples

Query

for $a in input()/bib/book
where tf:containsText ($a/title, "UNIX")
return $a

Result

This query returns all book elements that contain the word "UNIX" regardless of the case:

<book year="1992">
<title>Advanced Programming in the Unix environment</title>
<author>

<last>Stevens</last>
<first>W.</first>

</author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

</book>

Explanation

All book elements are checked whether they contain the word "UNIX" in their title element in-
dependent from case. Those that contain this word will be returned as result.

As the function tf:containsText() is from a different namespace than the standard namespace,
you need to declare this namespace first. In this namespace you will find all functions that are
specific to Tamino. See tf:containsText in the language reference for details. The section Unicode
and Text Retrieval contains more information about the fundamentals of word-wise search in
Tamino.

Updating Documents

You can perform update operations on documents to insert, replace, rename or delete nodes or
node sequences (node-level update). It is easy to identify any update operation, since the keyword
update always appears at the start of the expression right after the prolog.

Note: Any update operation requires that you have permission to perform this operation.
In short, Tamino checks to see if the resulting document is such that you may write it back
into the database.

XQuery User Guide16

Query Examples

Deleting Nodes

The first simple query deletes all books from the current bib collection that have been edited by
Darcy Gerbarg:

Query

update delete input()/bib/book[editor/last="Gerbarg"]

Result

As the result is a modification of the current collection, you receive a confirmation that the operation
has been performed successfully:

Explanation

From the document returned by Tamino you can see the original query expression in the marked
CDATA section, and the xq:result element that provides information about where the update
operation took place: The first document instance (ino:id="1") of the document type bib
(ino:doctype="bib") in the collection XMP (ino:collection="XMP").

You can use queries like count(input()/bib/book) to check the number of books before and after
the delete operation.

See UpdateExpr and DeleteClause in the language reference for details.

17XQuery User Guide

Query Examples

Inserting Nodes

This query reinserts the book with the title "The Economics of Technology and Content for Digital
TV" into the bib element of the current collection.

Query

update insert
<book year="1999">

<title>The Economics of Technology and Content for Digital TV</title>
<author>
<last>Gerbarg</last>
<first>Darcy</first>

</author>
<publisher>Kluwer Academic Publishers</publisher>
<price>129.95</price>

</book>
into input()/bib

Explanation

The current bib element is updated by inserting the book element as child element. The new book
element is now the last child element of bib.

See UpdateExpr and InsertClause in the language reference for details.

Renaming Nodes

Having a closer look at the book just inserted, we see that we added Darcy Gerbarg as an author.
However, she really is the editor and not the author of the book so we need to rename the element
and insert the necessary affiliation element:

Query

update for $a in input()/bib/book
where $a/title = "The Economics of Technology and Content for Digital TV"
do (

insert <affiliation>CITI</affiliation> following $a/author/first
rename $a/author as editor

)

XQuery User Guide18

Query Examples

Explanation

For the operation to succeed, an editor element must be allowed at the same hierarchical position
as the author element. This means, they must be siblings as defined in the schema, which is the
case.

See UpdateExpr and RenameClause in the language reference for details.

19XQuery User Guide

Query Examples

20

II The Concepts of XQuery

Tamino XQuery is an implementation of the W3C standard XML Query (XQuery). It defines a
genuine XML query language that is firmly based on existing XML standards. XQuery is a func-
tional, strongly typed language that satisfies the requirements of a database query language in
the context of native XML databases much better than a path language such as XPath 1.0. In this
chapter we introduce the core concepts of XQuery as they are realized in Tamino XQuery.

You should have a general understanding of how to locate and address nodes and fragments in
XML documents, which means XML objects in collections of Tamino databases. There is a short
refresher on XPath 1.0 in the documentation of Tamino X-Query, the previous XPath-based query
language, see the pointers to related information at the end of this documentation.

In general, Tamino adheres as closely as possible to published standards. The current W3C recom-
mendation, dated 23 January 2007, specifies version 1.0 of the language. In Tamino, the function-
ality which is most important and which can also be regarded as settled in terms of specification
is available, together with functionality that has been present for the last years in the previous X-
Query implementation. The current state of the XQuery language gives you many compelling ar-
guments to use this implementation.

Note: In this documentation, if the term XQuery is used without further qualification, it
denotes Tamino XQuery. The W3C XQuery recommendation is referred to as “W3C XQuery”.

The Nuts and Bolts of XQuery

FLWOR Expressions

Performing Update Operations

Calling XQuery through a Web Service

CRUD Usage of a Tamino Doctype as a Web Service

Text Retrieval

21

22

4 The Nuts and Bolts of XQuery

■ Expressions and Sequences ... 24
■ Retrieving Data ... 25
■ Constructors ... 26
■ Path Expressions .. 27
■ Data Types .. 29
■ Functions ... 30

23

In this chapter you will learn about the nuts and bolts of Tamino XQuery. It will pave the way for
a solid understanding of the whole language.

Expressions and Sequences

In XQuery, you use expressions. Expressions can be of different kinds, some of which can be nested
in a general way. Each XQuery operator and function expects its operands to be of a certain type.
This makes XQuery a functional, strongly-typed language.

Every expression evaluates to a sequence, which is an ordered collection of items. An item is either
an atomic value or a node. An atomic value does not contain any other value and is either a primitive
data type or a derived data type as defined in XML Schema. A node is one of the seven kinds ele-
ment, attribute, namespace, text, comment, processing instruction or document node. It has an
identity, because its creation is independent of its value.

A sequence can be empty, consist of only a single item (singleton sequence) or more items. Sequences
have the following properties:

■ Sequences are ordered.

(input()/bib/book/author/first, input()/bib/book/author/last)

Even if last elements appear before first elements in the document, in this sequence the order
is as follows: first first elements, then last elements. The comma serves as concatenation op-
erator on sequences.

Note: In XPath 1.0, sets and node sets were always kept in forward or reverse document
order, depending on the axis.

■ Sequences are always flat.

(1, 2, ("a", "b", "c"), 3, 4)
((1, (2)), (("a", "b", "c")), (3, 4))

Although you can use nested sequence constructors, the result is always a “flattened” sequence.
Any nested sequence items will be arranged in the same order, as if there were no nestings at
all. So, both example sequences are equivalent to:

XQuery User Guide24

The Nuts and Bolts of XQuery

(1, 2, "a", "b", "c", 3, 4)

■ Sequences may contain duplicates.

(input()/bib/book/author/first, input()/bib/book/author/last, ↩
input()/bib/book/author/first)
(1, 2, 3, 4, 3, 2, 1)

Now that there is an order on a sequence, sequence items may occur more than once in a se-
quence. These duplicates can have the same value or the same node identity.

Note: In XPath 1.0, a node could only appear once in a node set.

Remember that every expression in XQuery evaluates to a sequence. Even if we have an XQuery
expression such as

let $x := 5
return $x * 30

that defines a local variable $x and returns its value multiplied by 30, the XQuery expression,
strictly speaking, returns a sequence with the single integer value 150.

In contrast to the let variable the type of the sequence for other expressions is constrained to be
a special sequence. For example, a for variable is always an item (identical to a singleton sequence):

for $bib in input()/bib
return $bib

Note: In XQuery, all keywords are written in lower case. It results in a parsing error if you
use mixed or upper case.

Retrieving Data

In Tamino XQuery, there are two functions that provide access to data stored in a Tamino database.
The function input() takes no parameters and is an implementation-defined method to assign
nodes from a source to the input sequence which is evaluated in a query expression. In Tamino, it
is always the current collection of a Tamino database that input() provides access to. The input
sequence then consists of all document nodes of the current collection. Similarly, you can use the
function collection() to access nodes from a collection that may be different from the default
collection. The collection is specified as parameter.

25XQuery User Guide

The Nuts and Bolts of XQuery

collection("XMP")input()

collection("XMP")/bib/book/titleinput()/bib/book/title

The first input() expression returns the document instances of all doctypes in the current collection.
The second input() expression returns a sequence of all title elements that are child nodes of
book elements that are child nodes of the bib document element. The collection() expressions
on the right side correspond to the input() expressions on the left side, provided that the current
collection for the input() expressions is XMP.

In XPath 1.0, any expression locates nodes in a single document. However, in XQuery as well as in
the previous X-Query language, expressions are evaluated with regard to a collection of documents.
More precisely, the input for an expression is a sequence of document nodes in a collection.

Constructors

In XQuery, you can conveniently compose your query result using constructors for new elements
and attributes. With constructors, you can construct new element and attribute nodes within a
query expression:

let $a := input()/bib/book/author
return
<index type="author">

{ $a/last }
{ $a/first }

</index>

This XQuery expression compiles a name index from all authors of the book doctype in the current
collection. It constructs an element index with an attribute type indicating the type of index. The
index contains two expressions enclosed in braces. They evaluate to element nodes last and first
from all author elements.

It is sufficient to literally write the start and end tags of an element to construct it. Whenever you
need to evaluate some expression, you have to enclose it in braces.

XQuery User Guide26

The Nuts and Bolts of XQuery

Path Expressions

XQuery uses path expressions to locate nodes in a document tree in much the same way as XPath
1.0 defined it originally:

let $b := input()/bib/book/author
return $b/last

input()/patient//type

The first expression returns the last child element nodes of all author elements. The second ex-
pressions returns all type elements that are descendant nodes of the patient element. Here, // is
the abbreviated syntax for /descendant-or-self::node()/.

The structure of a path expression has only slightly changed with regard to XPath 1.0: A path ex-
pression consists of a sequence of steps which can be distinguished into general steps and location
steps. A general step is an expression that evaluates to a node sequence, e.g. the input() function
that delivers the document nodes of the current collection. It can only be the first step in a path
expression. A location step consists of three parts:

■ An axis, which specifies the relationship between the set of selected nodes and the context node,
■ A node test, which specifies type and/or name of the set of selected nodes, and
■ Zero or more predicates, which further restrict the set of selected nodes.

Axes

XQuery supports a number of axes. An axis originates in the context node and determines the
initial node sequence that is further refined by node tests and predicates. In XQuery and XPath
2.0, you can specify a path in either unabbreviated or abbreviated syntax. The following table lists
each axis along with its direction (normal document order or reverse document order) and a short
description. In the unabbreviated syntax, a double colon '::' follows the name of the axis.

MeaningDirectionAxis

all ancestor nodes (parent, grandparent,
great-grandparent, etc.)

reverseancestor::

attached attribute nodesimplementation-definedattribute::

immediate child nodes (default axis)normalchild::

all descendant child nodesnormaldescendant::

current node and all its descendant child nodesnormaldescendant-or-self::

parent node (or attaching node for attribute and
namespace nodes)

reverseparent::

the current nodenormalself::

27XQuery User Guide

The Nuts and Bolts of XQuery

Tamino also supports the abbreviated notation of path expressions with axes. The following table
shows how they correspond to the unabbreviated axes (as defined in the W3C XQuery specification):

DescriptionAbbreviation

nodes along the child:: axis satisfying node tests and optional predicatesno axis

nodes along the attribute:: axis satisfying node tests and optional predicates@

self::node(), which is the current node of any type.

parent::node(), which is the empty sequence if the current node is the document node; the
attaching node if the current node is an attached node (of type attribute or namespace);
otherwise the parent node

..

/descendant-or-self::node()/, which is the absolute path at the start of an expression,
or the relative path elsewhere

//

The following query expressions are thus equivalent:

1. for $a in input()/bib/book
return $a/child::title

for $a in input()/bib/book
return $a/title

2. for $a in input()/bib/book
return $a/attribute::*

for $a in input()/bib/book
return $a/@*

Node Tests

The node test determines the type and optionally the name of the nodes along the axis direction.
For each axis, there is a principal node type: for the attribute axis, it is attribute; for other axes, it
is element. You can select a node by applying one of the following node tests. The node is selected
if the test evaluates to "true".

DescriptionNodeTest

a processing instruction node (regardless of name)processing-instruction()

a processing instruction node with name Literal; if name is
omitted, then the test is "true" for any processing instruction
node

processing-instruction('Literal')

a comment nodecomment()

a text nodetext()

a node of any type (regardless of name)node()

a node of the principal node type with the specified name'Name'

according to the axis used: an element or attribute node in the
specified namespace with the specified local name

'prefix:name'

according to the axis used: all element or attribute nodes in the
specified namespace

'prefix:*'

XQuery User Guide28

The Nuts and Bolts of XQuery

DescriptionNodeTest

according to the axis used: all element or attribute nodes in the
specified namespace with the specified local name (regardless
of namespace)

'*:name'

according to the axis used: all element or attribute nodes'*'

Predicates

The last, optional part of a step is one or more predicates to filter the sequence of selected nodes
according to the predicate expression. This expression is always enclosed in square brackets [and
]. A selected node is retained if the predicate truth value of the predicate expression evaluates to
"true".

The predicate truth value is derived by applying the following rules, in order:

1. If the value of the predicate expression is an atomic value of a numeric type, the predicate truth
value is true if the value of the predicate expression is equal to the context position, and is false
otherwise.

2. Otherwise, the predicate truth value is the effective boolean value of the predicate expression.

The effective boolean value of an expression is false if its operand is any of the following:

■ An empty sequence
■ The boolean value false
■ A zero-length value of type xs:string or xdt:untypedAtomic
■ numeric value that is equal to zero

Otherwise, fn:boolean returns "true".

The filtered node sequence is ordered according to the direction of the selected axis.

Data Types

The XQuery type system is much richer than that of XPath 1.0. It uses the built-in data types as
defined in XML Schema 1.0. The set of built-in data types consist of primitive types and derived
types. They fall roughly into these categories:

■ Boolean values (true and false)
■ Numbers: decimals, floating-point numbers with single and double precision
■ Character Strings
■ Data types for dates, times, and durations (two of which are not yet defined in XML Schema)

29XQuery User Guide

The Nuts and Bolts of XQuery

■ XML-specific data types such as QName and NOTATION

In addition, there are derived types that are derived from the primitive types. In the XML schema
documentation you will find a diagram that summarizes the primitive and derived types, which
are all supported by Tamino XQuery.

Expressions and functions expect operands and parameters to be of a certain type. If the required
type cannot be provided, type conversion is attempted. The following general methods can be
applied:

Atomization

Atomization takes place when an atomic value or a sequence of atomic values are expected. When
atomizing a given value, the following cases can be distinguished: If the value is an atomic value
or the empty sequence, then that value is returned. If the value is a single node, then the typed
value of that node is returned. Otherwise an error is raised.

Atomization is used when processing arithmetic expressions, comparison expressions, function
calls and sort expressions.

Type Promotion

During processing of arithmetic expressions and value comparisons, an atomic value can be promoted
from one type to another. As a general rule the value of a derived type can be promoted to its base
type. The value of the base type is the same as that of the original type. For example, a value of
type xs:long can be promoted to its base type xs:decimal retaining its original value. Two further
promotions between base types are possible: a value of type xs:decimal can be promoted to
xs:float, the value being as close as possible to the original value. And a value of type xs:float
can be promoted to xs:double also retaining its original value.

Functions

A number of functions that operate on different types of data and perform various tasks are
defined. Most of them are defined in the W3C specification XQuery 1.0 and XPath 2.0 Functions
and Operators.

let $a := input()/bib/book
return
<p>Currently, there are { count($a) } books stored.</p>

In addition, Tamino XQuery provides further functions that perform full-text operations or deal
with special aspects of documents stored in Tamino. These functions use the namespace ht-
tp://namespaces.softwareag.com/tamino/TaminoFunction, usually prefixed by tf. They do not belong
to the standard namespace http://www/w3.org/2002/08/xquery-functions, which is prefixed by fn.

XQuery User Guide30

The Nuts and Bolts of XQuery

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath-functions/

Since tf is a predefined namespace prefix, you do not have to qualify them with their namespace
nor declare the namespace.

for $t in input()/bib/book
where tf:containsText($t/title, "UNIX")
return $t

for $a in input()/bib/book
where $a/title = "TCP/IP Illustrated"
return tf:getCollection($a)

The first query uses a text retrieval function to look for all books that contain the word "UNIX" in
their title. The second query uses a comparison expression to look for all books whose title is equal
to the string "TCP/IP Illustrated".

31XQuery User Guide

The Nuts and Bolts of XQuery

32

5 FLWOR Expressions

FLWOR expressions (speak: flower) are at the heart of XQuery. In some way, they correspond to
the SQL statement SELECT FROM WHERE.

A FLWOR expression contains clauses that are introduced by the keywords for, let, where, order
by and return. It begins with at least one of the clauses for and let, may be followed by a where
and order by clauses and ends with the return clause. The clauses for and let generate tuples
of variable bindings according to the evaluations of the expressions that follow. The where clause
restricts and filters the sequence of tuples, the order by clause sorts the results, and the mandatory
return clause constructs the result of the FLWOR expression with the help of the expression that
follows.

The Clauses for and let

Both for and let clauses use variables that are bound in some way to the evaluations of the ex-
pression to follow. The scope of the variable is always its enclosing FLWOR expression. If the
same variable has already been bound, the variable name refers to the newly bound variable. If
the variable goes out of scope, the variable name refers to the previous binding.

Both clauses bind variables, but they do so quite differently. Consider the following query expres-
sion:

let $a := input()/bib/book
return
<p>Currently, there are { count($a) } books stored.</p>

This yields the following result:

33

<p>Currently, there are 4 books stored.</p>

In a let clause each variable is bound directly to the result of an expression. A single tuple is then
generated that contains all variable bindings. The return clause is evaluated once for this single
tuple. As $a is bound to all instances of book elements, count($a) evaluates to the total number
of books present in the collection. Since the return clause is invoked only once, we get the expected
result. Now consider the same expression using the for clause:

for $a in input()/bib/book
return
<p>Currently, there are { count($a) } books stored.</p>

The result is:

<p>Currently, there are 1 books stored.</p>
<p>Currently, there are 1 books stored.</p>
<p>Currently, there are 1 books stored.</p>
<p>Currently, there are 1 books stored.</p>

Instead of creating a single tuple, the for clause creates tuples of variable bindings from the
Cartesian product of the sequence of items to which the expressions evaluate. In this example this
means that the variable is bound to the evaluation of the expression input()/bib/book resulting
in a sequence of four document instances. So $a is bound four times. For each of these bindings a
tuple is generated and the return clause is called for each tuple. The count function only sees one
document instance at a time.

To further illustrate the processing of for clauses consider this example that is published in a
similar form in the W3C XQuery specification:

for $i in (1, 2),
$j in (3, 4)

return
<tuple>
<i>{ $i }</i>
<j>{ $j }</j>

</tuple>

In the example before there is only one expression in the for clause so that the Cartesian product
is equivalent to the sequence of items that the expression evaluates to. In this query you can see
that the tuples of variable bindings are created from the Cartesian product of the sequences (1,
2) and (3, 4):

XQuery User Guide34

FLWOR Expressions

<tuple><i>1</i><j>3</j></tuple>
<tuple><i>1</i><j>4</j></tuple>
<tuple><i>2</i><j>3</j></tuple>
<tuple><i>2</i><j>4</j></tuple>

If there are for and let clauses in the FLWOR expression then the variable bindings created by
the let clause are added to the tuples created by the for clause.

The where Clause

By using the where clause you can define conditions that previously generated tuples must satisfy.
If the condition is met, the tuple is retained, if not, the tuple is discarded. It depends on the effective
boolean value of the expression in the where clause, whether tuples will be retained or not. For
the remaining tuples all variable bindings are still valid so that they can be used in the return
clause.

A where clause can simply act as a filter and then represents a more verbose form of a path expres-
sion using a predicate. The query expressions

input()/bib/book[@year < 2000]/title

and

for $a in input()/bib/book
where $a/@year < 2000
return $a/title

are equivalent: Both return the titles of books that have been published before 2000. They differ
in that the path expression additionally performs sorting in document order and elimination of
duplicates according to node identity. Therefore it is not necessary to use the FLWOR expression
here.

But you can use where clauses for more than defining predicates in path expressions. For example,
they are necessary in defining a join criterion:

for $b in input()/bib/book,
$a in input()/reviews/entry

where $b/title = $a/title
return

<book>
{ $b/author }
{ $b/title }
{ $a/review }

</book>

See also the section Joining for a short explanation of this example.

35XQuery User Guide

FLWOR Expressions

The order by and return Clauses

The mandatory return clause determines the result of the whole FLWOR expression. It is invoked
for every tuple that is retained after evaluating the where clause. In the expression contained in
the where clause you can use any variable bindings of the current FLWOR expression. As you can
see from the join example above, this is also the place to use element constructors for tailoring
your result.

If there is no order by clause, the order of the tuple stream is determined by the for and let
clauses. Otherwise the tuples in the tuple stream are reordered in a new, value-based order. In
either case, the resulting order determines the order in which the return clause is evaluated, once
for each tuple, using the variable bindings in the respective tuples.

If the values to be compared are strings, you can specify the collation to be used (if no collation is
specified, the default collation is used.)

XQuery User Guide36

FLWOR Expressions

6 Performing Update Operations

■ Inserting Nodes ... 38
■ Deleting Nodes ... 39
■ Renaming Nodes .. 40
■ Replacing Nodes ... 40
■ Using FLWU Expressions .. 41
■ Schema Conformance .. 42
■ Conflicts .. 43
■ Security ... 47

37

In Tamino XQuery you can perform the following elementary update operations on the node level:
inserting, deleting, replacing and renaming. All update operations follow the syntactic pattern
that they begin with the keyword update. You can either specify directly one of the update oper-
ations using insert, delete, replace, rename or you can construct more complex expressions by
using a special form of the FLWOR expression that is only used for update operations. In general,
all update operations have to result in well-formed documents.

Inserting Nodes

For inserting nodes you have to specify two expressions. The first expression represents the node(s)
to be inserted and the second expression determines the update node, namely the position in all
matching documents at which the insert operation should take place. As a result, the documents
will contain the additional element or attribute nodes inserted at the update node. This is done
differently for element and attribute nodes.

Inserting Element Nodes

Consider the following query expression that extends our current bibliography:

update insert
<book year="2001">

<title>XML Schema Part 0: Primer</title>
<editor>

<last>Fallside</last>
<first>David C.</first>
<affiliation>IBM</affiliation>

</editor>
<publisher>World Wide Web Consortium</publisher>
<price>0.00</price>

</book>
into input()/bib

This query inserts the book element as last child element of each bib element. Using the keyword
into always tries to insert an element as the last child element of the update node. If the update
node has not yet any child elements, the elements to insert will then be its first child elements.

Apart from into there are two other keywords that you can use when inserting element nodes.
Using preceding the element nodes will be inserted as preceding siblings to the update node.
Using following the element nodes will be inserted as siblings following the update node.

XQuery User Guide38

Performing Update Operations

Inserting Attribute Nodes

Attributes are always associated with an element and there is no order on an element's attributes
defined. This is why you can only use into to insert attribute nodes into a specified element:

update insert attribute edition {"1"}
into input()/bib/book[title = "TCP/IP Illustrated"]

This query uses a computed attribute constructor to insert an attribute node edition into each
book element whose title is "TCP/IP Illustrated", marking it as the first edition (see ElementCon-
structor for information about computed constructors). If there is not yet such an attribute in that
book element, then it is inserted as a new attribute provided that the resulting document is still
valid according to the schema (see the sectionSchemaConformance for details). If there is already
an attribute edition, then the operation is rejected and its content will not be overwritten. In this
case, you can replace the contents of the node by using the replace expression.

Deleting Nodes

You can remove nodes by using the update delete expression. This is not limited to element
nodes:

update delete input()/reviews/entry/review/text()

update delete input()/bib/book/author[2]

The first query effectively blanks all review texts: from all review elements the content, which is
retrieved by the node test text(), is deleted. However, the review elements themselves are retained.
The second query expression deletes all author element nodes that are the second author child
nodes of book elements.

The above queries have no impact on the validity of documents according to the schema. However,
if you want to delete necessary element nodes, this will usually fail due to the required validity,
see the section Schema Conformance. But you can delete nodes such as comment nodes that are
siblings of the root element.

Furthermore, you can delete whole documents as in the following query:

update for $a in input()/reviews
do (delete root($a))

This query deletes all reviews documents, since the root function returns the document nodes of
all reviews documents in the current collection.

39XQuery User Guide

Performing Update Operations

Renaming Nodes

For element and attribute nodes as well as for processing instruction nodes you can change the
name of the node by using the rename operation.

update rename input()/bib/book/@year as jahr

This query translates the year attribute name of book elements into German. All rename operations
on elements and attributes have direct impact on the schema validity of documents. See the section
Schema Conformance for details.

Replacing Nodes

The syntax for replacing nodes is similar to the insert expression: The first expression determines
the update node while the second expression specifies the replacing node(s). You can replace an
element node as in the following query:

update replace input()/bib/book/title[. = "TCP/IP Illustrated"]
with <title>TCP/IP Illustrated I. The Protocols</title>

This replaces the title element with the content "TCP/IP Illustrated" with a title element that
has the contents "TCP/IP Illustrated I. The Protocols". You can also replace the text node of the
element directly:

update replace input()/bib/book/title[. = "TCP/IP Illustrated"]/text()
with text{"TCP/IP Illustrated I. The Protocols"}

As the replacement can be any valid XQuery expression, you can also perform replacements with
nodes containing other nodes such as:

update replace input()/bib/book[title = "TCP/IP Illustrated"] with
<book year="1995">

<title>TCP/IP Illustrated II. The Implementation</title>
<author><last>Stevens</last><first>W.</first></author>
<author><last>Wright</last><first>G.</first></author>
<publisher>Addison-Wesley</publisher>
<price>67.99</price>

</book>

This query completely replaces the book with the title "TCP/IP Illustrated". You can also replace
attributes:

XQuery User Guide40

Performing Update Operations

update replace input()/bib/book[title = "TCP/IP Illustrated"]/@year
with attribute year {"2003"}

Anticipating a new edition of this book, the year attribute is replaced with an attribute of the same
name and the contents "2003", using a computed attribute constructor.

Using FLWU Expressions

There is a variant of the FLWOR expression that allows you to use the flexibility of FLWOR expres-
sions with update operations. Principally you could rewrite all of the update queries shown above
as FLWU expressions. The query

update delete input()/bib/book/author[2]

is equivalent to the following query using a FLWU expression:

update for $a in input()/bib/book
do delete $a/author[2]

There are two differences to a regular FLWOR expression: The keyword update always appears
in front of the for clause. The return clause is replaced with a do clause that is followed by one
or more update expressions. Using a FLWU expression always binds at least one variable, which
allows query expressions that are not possible without. Consider the following query using the
patient database:

update for $a in input()//doctor
let $b := $a/@pager
where starts-with($b, "3")

do replace $b
with attribute pager { string-join(("11", $b), "-") }

The numbers of all doctor's pagers that start with "3" are prepended with "11-". The for clause
creates tuples with doctor elements somewhere and binds them to variable $a. For each of the
tuples a variable binding for $b is added containing the value of the attribute pager. The tuples
are then restricted to those that meet the condition that the value of $b (the pager number) starts
with the value "3". For these tuples the contents of the pager attribute is replaced by using a com-
puted attribute constructor that constructs the attribute pagerwith the concatenation of the strings
"11-" and the previous pager number. With the sample documents atkins.xml and bloggs.xml stored,
one pager number is affected ("342") and will thus be changed to "11-342" in two tuples found.

41XQuery User Guide

Performing Update Operations

Schema Conformance

In contrast to other query operations it is the distinguishing property of update operations that
they modify XML documents. This can lead to problems. Consider the following query:

update delete input()/bib//affiliation

Submitting this query proves not to be successful:

To understand why this operation has failed, the first step is to look up the explanation to message
INOXDE7730 which says: “A sequence does not contain all required elements. In particular, the
sequence ends without containing all required elements.” The information which elements are
required at which place is in the schema definition and that states that inside an editor element
an affiliation element is required as last child element and may not be omitted. The query
would thus result in a document instance that is not valid according to the schema and this is why
it is rejected by Tamino.

In general, documents must be valid according to the schema definition. This also includes docu-
ments on which an update operation has been performed. Let us reconsider a query from the
section First Steps:

update for $a in input()/bib/book
where $a/title = "The Economics of Technology and Content for Digital TV"
do (

insert <affiliation>CITI</affiliation> following $a/author/first
rename $a/author as editor

)

In this FLWU expression there are two update operations: an insert operation and a rename oper-
ation. Taken for themselves, both update operations would fail because the document gets invalid:
an author element may not have an affiliation element as a child, and an author element cannot

XQuery User Guide42

Performing Update Operations

be simply renamed to editor because that element requires an affiliation element as last child
element. However, in this query both update operations are enclosed in the do clause and the op-
eration succeeds. Why?

If you have more than one update operation in a single query expression, the order in which the
update operations are performed is not relevant. For all tuples that remain after applying the where
clause, both update operations are performed resulting in temporary documents. If all these tem-
porary documents conform to the schema definition, the operation as a whole succeeds. If at least
one of the documents is no longer valid, the operation fails.

There are situations in which you want to perform update operations in such a way that they vi-
olate the schema. As a resort, you can modify the validation mode in the schema description. The
Tamino Schema Editor normally enforces validation so that you will find the following information
for the document element:

<tsd:logical>
<tsd:content>closed</tsd:content>

</tsd:logical>

Closed content means that validation is strict. To make it lax, you need to change the schema de-
scription and update it into the database. See the section Open Content vs. Closed Content Valid-
ation for details.

Conflicts

FLWU expressions allow several elementary update operations. If you specify more than one
update operation, the order in which these operations are performed does not play a role. However,
there are some situations that can lead to the following conflicts:

1. The result of the elementary update operations is ambiguous. This can have one of the following
reasons:

The result of the elementary operations depends on the order in which they are performed (they are
not commutative).

a)

Inserting more than one attribute with the same name into an element node or inserting an attribute
that already exists.

b)

Inserting into the position preceding or following the update node if more than one insert operation
acts on the same node (not commutative).

c)

2. An elementary update operation is performed that has no effect on the result because of other
elementary update operations. This can happen if an elementary update operation affects a
node that may no longer exist by the time the operation is performed.

43XQuery User Guide

Performing Update Operations

Note: In any of these conflict cases, the update operation is rejected by Tamino.

The following tables summarize the possible conflicts. The first table shows the conflicts for oper-
ations on one element node, the other two are subsets of the first table, since not all operations can
be performed on any kind of node. As an example, if you use a replace operation and an insert
preceding operation on the same element node, conflict 2 arises. If you try to delete and replace
the same comment node in a single update operation, conflicts 1a and 2 arise.

insert

following

insert

preceding

insert

into

insert

attribute

renamereplacedelete
Operations on one element
node

222221a and 22delete

222221a and 2replace

————1arename

———1binsert attribute

——1ainsert into

—1cinsert preceding

1cinsert following

renamereplacedelete
Operations on one attribute or PI node

21a and 22delete

21a and 2replace

1arename

replacedelete
Operations on one node of some other kind

1a and 22delete

1a and 2replace

XQuery User Guide44

Performing Update Operations

Examples

Two insert into operations on the same node:1a

update for $a in input()/patient
where $a/name/surname = "Atkins"
do (insert <middlename>J.</middlename> into $a/name

insert <title>Prof.</title> into $a/name
)

Although the schema allows the elements middlename and title to be inserted as child elements of
name, the result of the operation depends on the order of the elementary update operations. In this case
you can use two successive elementary update operations as a workaround:

update for $a in input()/patient
where $a/name/surname = "Atkins"
do insert <middlename>J.</middlename> into $a/name

This inserts the middlename as new child element of name, in the order that is prescribed by the schema.

update for $a in input()/patient
where $a/name/surname = "Atkins"
do insert <title>Prof.</title> into $a/name

And this second FLWU expression then inserts the title element.

Note that this could also be performed in a single operation, when the content is declared as a sequence:

update for $a in input()/patient
let $i:= (<middlename>J.</middlename>,<title>Prof.</title>)
where $a/name/surname = "Atkins"
do (insert $i into $a/name)

Provided that the patient nodes that are retained after processing the where clause do not contain
a type element with the attribute brand:

1b

update for $a in input()/patient
where $a/name/surname = "Bloggs"
do (insert attribute brand {"Somnex"} into $a//type

insert attribute brand {"Cardiovelocimil"} into $a//type)

This conflict cannot be resolved: the operation fails with the message INOXQE 6450. This query also
fails, if there already existed an element $a//type with an attribute brand.

This query tries to replace the book with the title "TCP/IP Illustrated" and to add the other entries for
the complete three-volume set:

1c

45XQuery User Guide

Performing Update Operations

update for $a in input()/bib/book
 let $title := $a/title
 where $title = "TCP/IP Illustrated"
 do (
 replace $title/text() with string-join(($title/text(), "I. The ↩
Protocols"), " ")
 insert
 <book year="1995">
 <title>TCP/IP Illustrated II. The Implementation</title>
 <author><last>Stevens</last><first>W.</first></author>
 <author><last>Wright</last><first>G.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>67.99</price>
 </book>
 following $a
 insert
 <book year="1996">
 <title>TCP/IP Illustrated III.</title>
 <author><last>Stevens</last><first>W.</first></author>
 <publisher>Addison-Wesley</publisher>
 <price>49.95</price>
 </book>
 following $a
)

The update nodes consist of book elements that have a child element title with the content "TCP/IP
Illustrated". Then three update operations are performed:

1. replace
For all books found, the contents of the title element is replaced with the previous contents
concatenated with the string "I. The Protocols" using a blank as separator.

2. Two insert Operations
For all books found, the two specified XML fragments are inserted as sibling elements following the
book element.

In this query two insert following operations act on the same update node. The result is ambiguous
regarding the order of the inserted elements (not commutative). Volume 2 would be inserted as next
sibling to volume 1, and then volume 3 could either be inserted as next sibling to volume 1 (thus shifting
volume 2 to the next position), or it could be inserted after the just inserted volume 2.

As a solution, you can define a sequence to be inserted:

update for $a in input()/bib/book
let $title := $a/title
let $i := (<book year="1995">

<title>TCP/IP Illustrated II. The Implementation</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>67.99</price>
</book>,
<book year="1996">

XQuery User Guide46

Performing Update Operations

<title>TCP/IP Illustrated III.</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>49.95</price>
</book>)

where $title = "TCP/IP Illustrated"
do (

replace $title/text()
with string-join(($title/text(), "I. The Protocols"), " ")

insert $i following $a)

Two delete operations on the same node:2

update for $a in input()//doctor
do (delete $a

delete $a)

Two rename operations on the same node:

update for $a in input()//doctor
do (rename $a as surgeon

rename $a as dentist)

These conflicts cannot be resolved: both operations fail with the message INOXQE 6451.

Security

Apart from any conflicts, Tamino checks for each update operation whether the resulting documents
may be written in that form by the user. If permission is not granted by Tamino, the operation is
rejected.

47XQuery User Guide

Performing Update Operations

48

7 Calling XQuery through a Web Service

■ Setting Preferences ... 50
■ Using the Wizard ... 53
■ Using the Generated Web Service .. 59

49

Tamino provides a plugin wizard that enables you to expose XQuery functions that are defined
in an XQuery module as a web service. The wizard generates a web service archive that can sub-
sequently be processed either manually or by means of the Software AG Web Services Stack (WSS).

The following topics are discussed in this chapter:

Setting Preferences

Before using the wizard to generate a web service archive, you can set preferences that specify its
behavior. There are two sets of preferences:

■ Database selection;
■ XQuery Web Service preferences.

Database Selection

In a later step, the XQuery web service wizard prompts you to select a Tamino database from a
selection list. In order to populate the selection list, proceed as follows.

In Eclipse, chooseWindow >Preferences. Then, in the navigator tree, selectSoftwareAG >Tamino
>TaminoDatabase List. The list of Tamino databases available for selection is displayed, as shown
in the following screenshot:

XQuery User Guide50

Calling XQuery through a Web Service

You can now use the Add..., Edit... and Remove functions to modify the selection list as required.

Note: In order to generate a web service successfully, the database selection list must contain
at least one entry.

XQuery Web Service Preferences

In Eclipse, chooseWindow >Preferences. Then, in the navigator tree, selectSoftwareAG >Tamino
> XQuery Web Service. The list of preferences for the Tamino XQuery web service wizard is dis-
played, as shown in the following screenshot:

51XQuery User Guide

Calling XQuery through a Web Service

The following paragraphs describe the available preferences.

Select Tamino database via URL

This switch specifies whether the database selection list that appears in subsequent wizard screens
should display the names of the databases or their URLs.

Default: The database selection list displays the databases by name.

Display generated WSDL

This switch specifies whether the WSDL file that is generated by the wizard should be shown to
the user; at the same time, the user is given the opportunity of saving the WSDL file in the file
system.

Default: Do not display the WSDL file.

Select the destination of the generated service archive

This specifies whether the generated service archive should be stored to a user-specified file system
location, or in an Eclipse project (where it can be further processed by means of the Software AG
Web Services Stack). You can also specify the name of the desired Eclipse project here.

XQuery User Guide52

Calling XQuery through a Web Service

Default: Store the generated service archive in an Eclipse project namedXQueryWebService-Archives.

Using the Wizard

The XQuery Web Service wizard plugin runs in your Tamino Eclipse environment. To start the
wizard, choose File >New >Other; then, in the tree view, select Software AG > Tamino > XQuery
Web Service, as shown in the following screenshot:

53XQuery User Guide

Calling XQuery through a Web Service

Choose Next. The XQuery Web Service wizard starts, and displays a page from which you can
select a Tamino database from the pulldown database list, which was constructed using the pref-
erences as described above:

Choose Next to display the next page of the wizard:

XQuery User Guide54

Calling XQuery through a Web Service

Here you can select an XQuery module from the chosen Tamino database. A default name is
suggested for the web service.

In the following screenshot, you see that a module has been selected; the wizard now shows all
the functions that are included in the selected module, and displays a checkbox for each function.
Check (tick) each function that should be included in the XQuery web service.

55XQuery User Guide

Calling XQuery through a Web Service

The following screenshot shows that several functions have been selected. Also, the user has
overwritten the default name for the web service by the name MyFirstService.

XQuery User Guide56

Calling XQuery through a Web Service

The next step depends on the setting on the preference Display generated WSDL, which was
specified above. If this option was selected (i.e. checked/ticked), the next screen displays the
generated WSDL and you can use the Save As button to save it to the file system, as shown in the
example below. If this option was not selected, this step is skipped.

57XQuery User Guide

Calling XQuery through a Web Service

Finally, pressing the Finish button generates the web service archive, either at a selected file system
location or in the Eclipse project as shown below, according to the preferences described above.

XQuery User Guide58

Calling XQuery through a Web Service

Using the Generated Web Service

After the web service archive has been generated and written to the Eclipse archive, you can use
the Software AG Web Services Stack (WSS) to process it further. In the Eclipse package explorer,
double-click on the archive; this opens the Web Services Stack editor, where you can set some
service properties, as shown below:

59XQuery User Guide

Calling XQuery through a Web Service

For further details, please refer to the documentation of the Software AG Web Services Stack.

You can also use the Web Services Stack to deploy the generated web service, and to register it in
CentraSite. These functions can be accessed from the archive context menu (right mouse button).

XQuery User Guide60

Calling XQuery through a Web Service

8 CRUD Usage of a Tamino Doctype as a Web Service

■ Setting Preferences ... 62
■ Using the Wizard ... 65
■ Using the Generated Web Service .. 72

61

Tamino provides a plugin wizard that supports the creation, reading, updating and deleting (often
referred to as “CRUD”) of XML documents via a web service. The wizard generates a doctype
web service archive that can subsequently be processed either manually or by means of the Software
AG Web Services Stack (WSS).

The following topics are discussed in this chapter:

Setting Preferences

Before using the wizard to generate a web service archive, you can set preferences that specify its
behavior. There are two sets of preferences:

■ Database selection;
■ DocType Web Service preferences.

Database Selection

In a later step, the doctype web service wizard prompts you to select a Tamino database from a
selection list. In order to populate the selection list, proceed as follows.

In Eclipse, chooseWindow >Preferences. Then, in the navigator tree, selectSoftwareAG >Tamino
>TaminoDatabase List. The list of Tamino databases available for selection is displayed, as shown
in the following screenshot:

XQuery User Guide62

CRUD Usage of a Tamino Doctype as a Web Service

You can now use the Add..., Edit... and Remove functions to modify the selection list as required.

Note: In order to generate a web service successfully, the database selection list must contain
at least one entry.

DocType Web Service Preferences

In Eclipse, chooseWindow >Preferences. Then, in the navigator tree, selectSoftwareAG >Tamino
> DocType Web Service. The list of preferences for the Tamino doctype web service wizard is
displayed, as shown in the following screenshot:

63XQuery User Guide

CRUD Usage of a Tamino Doctype as a Web Service

The following paragraphs describe the available preferences.

Select Tamino database via URL

This switch specifies whether the database selection list that appears in subsequent wizard screens
should display the names of the databases or their URLs.

Default: The database selection list displays the databases by name.

Show system collections

This switch specifies whether Tamino system collections are included in the list of collections from
which you can select.

Default: Do not include the Tamino system collections.

XQuery User Guide64

CRUD Usage of a Tamino Doctype as a Web Service

Display generated XQuery module

This switch specifies whether the XQuery module that is generated by the wizard should be shown
to the user; if this switch is selected, the user is also given the opportunity of saving the XQuery
module in the file system.

Default: Do not display the XQuery module.

Display generated WSDL

This switch specifies whether the WSDL file that is generated by the wizard should be shown to
the user; if this switch is selected, the user is also given the opportunity of saving the WSDL file
in the file system.

Default: Do not display the WSDL file.

Select the destination of the generated service archive

This specifies whether the generated service archive should be stored to a user-specified file system
location, or in an Eclipse project (where it can be further processed by means of the Software AG
Web Services Stack). You can also specify the name of the desired Eclipse project here.

Default: Store the generated service archive in an Eclipse project namedDocTypeWebService-Archives.

Using the Wizard

The DocType Web Service wizard plugin runs in your Tamino Eclipse environment. To start the
wizard, choose File >New >Other; then, in the tree view, select SoftwareAG >Tamino >DocType
Web Service, as shown in the following screenshot:

65XQuery User Guide

CRUD Usage of a Tamino Doctype as a Web Service

Choose Next. The DocType Web Service wizard starts, and displays a page from which you can
select a Tamino database from the pulldown database list, which was constructed using the pref-
erences as described above:

XQuery User Guide66

CRUD Usage of a Tamino Doctype as a Web Service

The next screen lists the collections contained in the selected Tamino database that have a schema,
as shown in the example below:

67XQuery User Guide

CRUD Usage of a Tamino Doctype as a Web Service

Select the desired collection. The wizard now lists all the doctypes that are contained in the selected
collection:

XQuery User Guide68

CRUD Usage of a Tamino Doctype as a Web Service

Select the desired doctype. The wizard suggests a default name for the web service that will be
generated, but you can overwrite it:

69XQuery User Guide

CRUD Usage of a Tamino Doctype as a Web Service

The next steps depend on the settings on the preferences Display generated XQuerymodule and
Display generated WSDL, which were specified above. If one or both of these options were se-
lected (i.e. checked/ticked), the next screens display the generated XQuery module and/or the
generated WSDL. You can use the Save As button to save the generated XQuery module and/or
the generated WSDL to the file system, as shown in the example below.

XQuery User Guide70

CRUD Usage of a Tamino Doctype as a Web Service

71XQuery User Guide

CRUD Usage of a Tamino Doctype as a Web Service

Finally, pressing the Finish button adds the generated XQuery module to the Tamino database,
and generates the web service archive, either at a selected file system location or in the Eclipse
project as shown below, according to the preferences described above.

Using the Generated Web Service

After the web service archive has been generated and written to the Eclipse archive, you can use
the Software AG Web Services Stack (WSS) to process it further. In the Eclipse package explorer,
double-click on the archive; this opens the Web Services Stack editor, where you can set some
service properties, as shown below:

XQuery User Guide72

CRUD Usage of a Tamino Doctype as a Web Service

For further details, please refer to the documentation of the Software AG Web Services Stack.

You can also use the Web Services Stack to deploy the generated web service, and to register it in
CentraSite. These functions can be accessed from the archive context menu (right mouse button).

73XQuery User Guide

CRUD Usage of a Tamino Doctype as a Web Service

74

9 Advanced Usage

■ Namespaces .. 76
■ User-Defined Functions .. 77
■ Defining and Using Modules .. 78
■ Serializing Query Results .. 80
■ Collations .. 82

75

This chapter covers some advanced XQuery usage. This functionality is partly tied to using Tamino
query pragmas that affect the processing of the query. With Tamino query pragmas you can import
modules and add declarations for namespaces and collations as well as functions and external
variables. They have the syntactic form {?piname?}, which is why they were previously called
XQuery processing instructions. This chapter discusses some of these concepts:

Another important area of advanced XQuery usage is related to performance questions and op-
timizing your Tamino XQuery programs. You can find more information about this topic in the
Performance Guide.

Namespaces

A namespace declaration defines a namespace prefix and associates it with a valid namespace
URI. This namespace declaration is valid throughout the query expression. For example, you can
define your own namespace:

declare namespace dotcom="http://company.dot.com/namespaces/corporate"
for $a in input()/bib/book
return
<dotcom:bookshelf>
{ $a }

</dotcom:bookshelf>

It is an error (INOXQE 6356) to redefine a namespace:

declare namespace dotcom="http://company.dot.com/namespaces/corporate"
declare namespace dotcom="http://company.dot.com/new-namespaces/corporate"
for $a in input()/bib/book
return
<dotcom:bookshelf>
{ $a }

</dotcom:bookshelf>

But you can use two different namespaces at the same time:

declare namespace dotcom="http://company.dot.com/namespaces/corporate"
declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $a in input()/bib/book
where tf:containsText($a/title, "UNIX")
return
<dotcom:bookshelf>
{ $a }

</dotcom:bookshelf>

You can also declare default namespaces that can be applied to elements or attributes alike.

XQuery User Guide76

Advanced Usage

declare default element namespace "http://company.dot.com/namespaces/corporate"
for $a in input()/bib/book
return
<bookshelf>
{ $a }
</bookshelf>

The default element namespace applies to all unqualified element names, in both expressions and
constructors, unless a different default namespace is defined in an inner scope, as shown in the
following example:

declare default element namespace "X"
declare namespace y="Y"
let $x := <x1>{element x2{<x3 xmlns="Y">{element x4{}}</x3>}}</x1>
return $x/x2/y:x3/y:x4

In this example, the default element namespace applies to all occurrences of x1 and x2; however,
it does not apply to x3 and x4, because their default namespace is defined by the inner specification
xmlns="Y".

The default element namespace does not apply to attribute names.

There is no default attribute namespace.

There is a default function namespace. It applies to function names in function definitions and
function calls.

Tip: You need not declare a namespace in the prolog if you use one of the predeclared
namespaces. You can find the list of predeclared namespaces in the description of
NamespaceDecl in the XQuery Reference Guide

User-Defined Functions

In addition to the large set of XQuery functions as defined by the W3C and those that are specific
to Tamino, you can write your own functions. User-defined functions consist of a function header
representing its signature and the function body containing an XQuery expression. The header
consists of an identifier, a list of parameters and corresponding type information, and the type of
the return value. Type information is optional: if you omit it, item* will be assumed. Note that
the set of allowed types is restricted to all simple types and some common XQuery types (the
reference description of FunctionDecl contains a complete list).

The function identifier must be a QName together with a non-empty namespace prefix. To avoid
introducing a new namespace for locally used functions, that is functions used in the current
module, XQuery provides an implicit namespace to which the prefix local is bound. This is an
example for a function that uses this local namespace:

77XQuery User Guide

Advanced Usage

declare function local:siblings($a as element()) as element()*
{
for $x in $a/../*
where not($x is $a)
return $x

}

let $a := <a> <a1>foo</a1> <a2>bar</a2>
return local:siblings($a/a1)

It takes an element node as argument and returns all its sibling element nodes. Following the
function declaration it is directly used in a query body resulting in the node <a2>bar</a2>.

User-defined functions may be recursive, that is a function can contain a call to itself:

declare function local:depth($e as node()) as xs:integer
{
if (not($e/*))
then
1

else
max(for $c in $e/* return local:depth($c)) + 1

}

This function computes the depth of a node by calling itself for its children nodes.

To avoid running out of memory during the execution of a user-defined function, the XQuery
processor restricts the amount of memory that can be used by a single query processing thread
during query execution. The amount of memory can be modified by an XQuery pragma. Similarly,
you can avoid a stack overflow by restricting the call stack of the function. The following pragma
sets the available memory to 100 MB and the maximum call stack depth to 1000 (default value is
256):

{?execution memory="100" call-stack-depth="1000"?}

Note: See also the Performance Guide for information about optimizing user-defined func-
tions using inlining techniques.

Defining and Using Modules

In XQuery, code can be organized into modules. There are two principal kinds of modules: a main
module that contains the query body, and library modules that you can import into other library
modules or into the main module. For example, you can put the functions defined in the last section
into a module of its own:

XQuery User Guide78

Advanced Usage

module namespace tree="http://www.examples.com/tree"

declare function tree:depth($e as node()) as xs:integer
{
if (not($e/*))
then
1

else
max(for $c in $e/* return tree:depth($c)) + 1

}

declare function tree:siblings($a as element()) as element()*
{
for $x in $a/../*
where not($x is $a)
return $x
}

Before you can use the functions defined in a library module, you must store the module at a
special place to make it directly accessible to the XQuery processor. In Tamino, modules are stored
in the system collection ino:source. From a module definition, some meta data is derived to
provide access to module properties that are relevant for efficient lookup of modules and user-
defined functions. The meta data also simplifies querying module properties in order to generate
interface descriptions such as WSDL definitions.

Modules are stored as non-XML data in the ino:module doctype of the ino:source collection.
This way you can define modules using the _process command and remove them with _delete.
Alternatively, you can use the Tamino Interactive Interface.

Note that a library module must not contain variable declarations. Also, Tamino query pragmas
which are directives to the query processor are not allowed.

To use a module, you must import it with an import statement. Consider using the library of tree
functions:

import module namespace tree="http://www.examples.com/tree"

let $a := <a> <a1>foo</a1> <a2>bar</a2>
return tree:siblings($a/a1)

This import statement imports the module with the target namespace http://www.examples.com/tree.
Note that you cannot import the same module more than once.

To check for existing modules, you can query the ino:source collection in the following way to
retrieve the non-XML data of all modules of a given namespace:

79XQuery User Guide

Advanced Usage

declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
root(
for $a in collection("ino:source")/ino:module
where $a/@ino:targetNamespace="http://www.examples.com/tree"
return $a

)

The query functions defined in an XQuery module may also be used for defining a computed index.
For details on computed indexes please refer to Performance Guide > Advanced Indexes.

The XQuery Tool delivered with Tamino provides convenient support for maintaining XQuery
modules.

Serializing Query Results

When Tamino executes a query, it handles the query in terms of its data model: an XML document
is treated as a tree with a document root and different types of nodes. The query result is then
serialized and wrapped into a Tamino response document. You can determine the serialization by
using a Tamino query pragma, or XQuery processing instruction, which always has the form
{?piname?}. Like a regular XML processing instruction, it can have additional information. This
section discusses the available serializations:

■ Suppressing the Response Wrapper
■ Setting the MIME Media Type
■ Defining a Custom Output Handler

Suppressing the Response Wrapper

Normally, when Tamino executes a query, it returns the result using a response wrapper. This is
the result of the very first query in this manual:

XQuery User Guide80

Advanced Usage

You can, however, suppress the response wrapper so that you get the bare result by using the
serialization pragma and choosing the method "xml":

{?serialization method="xml"?}
<fact> This section contains { 3 + 6 } examples.</fact>

The output is then much shorter and is restricted to the query result as such:

<fact>This section contains 9 examples.</fact>

Setting the MIME Media Type

Using {?serialization method="xml"?} always implies that "text/xml" is used as media type for
the response document. You can change this by adding media-type. The following query returns
a literal SVG document which has the media type "image/svg+xml":

{?serialization method="xml" media-type="image/svg+xml"?}
<svg width="200" height="200">

<circle cx="100" cy="50" r="40" stroke="black" stroke-width="3" fill="red"/>
</svg>

This delivers the SVG document with the appropriate MIME media type which is then set in the
HTTP response header contentType. It also means that the normal response wrapper is not used.

81XQuery User Guide

Advanced Usage

Defining a Custom Output Handler

You can define your own method of delivering the response document by using a server extension
(SXS) as output handler. This output handler will then act in place of the internal Tamino XQuery
processor. In general you use:

{?serialization method="<outputHandler>"
parameter="<outputHandlerParameter>"?}

For example, this allows using the XSLT server extension to transform query results on-the-fly:

{?serialization method="XSLT.transform"
parameter="stylesheets" parameter="stylesheets/patientRecords.xsl"?}

<report>
{ for $a in collection('Hospital')/patient

return <patient>{ $a/name, $a/sex, $a/born, $a/address }</patient>
}

</report>

The method attribute identifies the output handler. The two parameters specify the XSL stylesheet
to be used and the query. Tamino then passes the query result, the list of patients, to this output
handler which transforms it using the stylesheet patientRecords.xsl.

Please note that you can also use media-type in the serialization pragma for an output handler.

Collations

For certain operations on strings such as comparison or sort operations collations are used. They
inherently determine the result of a comparison to accommodate for special regional purposes or
linguistic needs. If a collation is not defined, Tamino uses Unicode codepoints for performing
these operations. There are two ways to use collations: In the schema you can add collation inform-
ation per element by using tsd:collation. In addition, you can assign a default collation in the
query prolog such as:

declare default collation "collation?language=fr"

The string literal is the collation URI which is interpreted as relative URL with the base URI ht-
tp://www.softwareag.com/tamino. In this example, the collation defined for the French language is
used.

You can use the Tamino-specific XQuery function tf:getCollation to deploy collations as in the
following query:

XQuery User Guide82

Advanced Usage

for $i in input()/patient/name
where compare($i/surname, 'Müller', tf:getCollation($i/surname)) = 0
return $i

This query returns those name elements whose surname child element has a contents that is compared
equal to the string "Müller" using the collation information defined in the Tamino schema for
surname elements.

Please see also the sectionCollations in the Tamino XML SchemaUser Guide for details about collation
definitions in schemata.

83XQuery User Guide

Advanced Usage

84

10 Text Retrieval

■ Simple Text Search .. 86
■ Context Operations .. 87
■ Highlighting Retrieval Results .. 88
■ Phonetic Searches .. 91
■ Stemming .. 92
■ Rules for Searches Using Phonetic Values and Stemming ... 94
■ Thesaurus ... 96
■ Pattern Matching ... 98

85

Tamino text retrieval operations consider text as sequences of words. A word is a sequence of
characters that is delimited by characters such as whitespace or punctuation characters. The process
of analyzing text and determining words and delimiters is called tokenization. Depending on the
language, there are different tokenizers available in Tamino. The default, so-called "white space-
separated" tokenizer is suitable for most letter-based languages. However, ideographic languages
such as Chinese, Japanese or Korean (often referred together as CJK languages) have a totally
different concept of segmenting a sequence of ideographs into “word” tokens. Tamino offers a
special tokenizer for Japanese.

Tokens are categorized into character classes such as "character", "delimiter" or "number". You
can find detailed information about this topic in the section Implications Concerning Text Retrieval
in Unicode and Text Retrieval.

For the purpose of doing text retrieval in XQuery, it is sufficient to think of full text in terms of
words and delimiters. In this context, “words” are referred to as word tokens, regardless of
whether a tokenizer analyzed a series of letters or of ideographs.

This chapter covers the following topics:

Simple Text Search

There are two possibilities to search nodes in XML documents for some text: You can either use
an exact search or search for word tokens. Let us look for divers among the patients in our hospital
database. We know that there is someone who is a “professional diver”:

for $a in input()/patient
where $a/occupation = "Professional Diver"
return <divers level="professional">{ $a/name }</divers>

And Tamino will return Mr. Atkins as the only representative of the hospital's professional divers.
To find all divers, professional or not, you are inclined to ask:

for $a in input()/patient
where $a/occupation = "diver"
return <divers>{ $a/name }</divers>

The result is an empty sequence, so we lost even the professional diver. The where clause contains
an equality expression that is true if the text contents of the node read exactly "diver". Since the
occupation element in Mr. Atkin's reads "Professional Diver", the result is false and no divers are
returned. However, using the function tf:containsText you can search for the word "diver"
somewhere in the node occupation and without looking at the case:

XQuery User Guide86

Text Retrieval

for $a in input()/patient
where tf:containsText($a/occupation, "diver")
return <divers>{ $a/name }</divers>

Now Tamino returns Mr. Atkins in the diver list, since the tokenizer identifies "Diver" as a word,
delimited on the left by a space character. After applying lower case as standard tokenizer rule
the token "diver" is found and the function tf:containsText returns true. Please note that this
function looks for word tokens, so using tf:containsText($a/occupation, "dive")would yield
false, since "dive" is not a token that can be found in any of the occupation nodes. Similarly, a
query using tf:containsText($a/occupation, "professional diver") returns true, since the
two word tokens are found in that order in the occupation node. However,
tf:containsText($a/occupation, "diver professional") returns false: Although both tokens
are found, they are not in the specified order.

Context Operations

With context operations you can search for expressions that consist of one or more words which
do not necessarily follow after one another. For example, you can search for variants of the expres-
sion "text retrieval" such as "retrieval of text" or in "text storage and retrieval". In Tamino, there
are functions that let you specify the following context operations (here, "#" stands for one token):

■ Maximum word distance
"text # # retrieval" matches "text retrieval" and "text storage and retrieval"

■ Word order
If word order is not significant, "text retrieval" matches "text retrieval" and "retrieval of text"

The functions tf:containsAdjacentText and tf:containsNearText both expect a maximum
word distance as second argument. Consider the following query:

let $text := text{"One, Two, Three, Four, Can I have a little more?"}
return tf:containsAdjacentText($text, 9, "one", "more")

This graphics shows you the search string, its tokens and how the query matches the search string:

87XQuery User Guide

Text Retrieval

The function tf:containsAdjacentText returns true if the tokens "one" and "more" are found in
that order within a distance of less than nine tokens. Since there are eight unmatched tokens, the
function returns true for the above query. Let us slightly change the query expression:

let $text := text{"One, Two, Three, Four, Can I have a little more?"}
return tf:containsAdjacentText($text, 9, "one", "four", "more")

The function returns true if all the tokens "one", "four" and "more" are found in that order within
a distance of less than nine tokens, not including any matched tokens in between such as "four".
Since there are seven unmatched tokens, the function returns true for the above query.

Generally, if you use a distance value of "1", it means that the tokens follow immediately one after
another. It follows that tf:containsAdjacentText($mynode, 1, "search", "text") is equivalent
to tf:containsText($mynode, "search text").

While tf:containsAdjacentText respects the word order, the function tf:containsNearText
does not. The following query using tf:containsNearText returns true, using
tf:containsAdjacentText it would return false:

let $text := text{"One, Two, Three, Four, Can I have a little more?"}
return tf:containsNearText($text, 2, "four", "one", "two")

Highlighting Retrieval Results

When retrieving information from some text corpus, it is desirable to visualize the information
found. In Tamino XQuery, you can do so by “highlighting” retrieval results. Consider the following
query from the Tamino XQuery reference guide which searches in all review nodes for the word
"discussion":

XQuery User Guide88

Text Retrieval

for $a in input()/reviews/entry
let $ref := tf:createTextReference($a/review, "discussion")
where $ref
return tf:highlight($a, $ref, "REV_DISC")

A Tamino client application could highlight the results as follows:

<entry>
<title>Data on the Web</title>
<price>34.95</price>
<review>A very good discussion of semi-structured database systems and XML.</review>

</entry>
<entry>

<title>Advanced Programming in the Unix environment</title>
<price>65.95</price>
<review>A clear and detailed discussion of UNIX programming.</review>

</entry>

You can see from the query expression that there are two steps involved when highlighting retrieval
results:

1. Generate a reference description to the locations that should be highlighted.

2. Apply highlighting to the document according to the locations.

Generating Reference Descriptions

A reference description is necessary for highlighting later on. It consists of at least the following
global information:

■ collection
■ document type (“doctype”)
■ document number
■ node id

References to text within a node further need to describe the locations of start and end points, the
range. You can create reference descriptions by using the following functions:
tf:createAdjacentTextReference, tf:createNearTextReference, and tf:createTextReference.
These functions work exactly like their tf:containsXXXText counterparts, only that they return
reference descriptions of text ranges instead of a Boolean value. There is another function
tf:createNodeReference to create reference descriptions of nodes. Let us have a look at the refer-
ence descriptions that will be used in our example query:

89XQuery User Guide

Text Retrieval

for $a in input()/reviews/entry
return tf:createTextReference($a/review, "discussion")

Tamino will return these two object descriptions in its response:

The figure below shows you the text ranges for which reference descriptions have been created:

Highlighting Documents

Any location, for which a reference description exists, can be highlighted by using the function
tf:highlight. The query performing the highlighting is repeated here for your convenience:

for $a in input()/reviews/entry
let $ref := tf:createTextReference($a/review, "discussion")
where $ref
return tf:highlight($a, $ref, "REV_DISC")

As arguments, the function tf:highlight requires a node, a previously-generated reference de-
scription and a marker string. Tamino uses processing instructions (PIs) to indicate the start and
end of the range to be highlighted so that a client application receiving the Tamino response doc-
ument can parse and process them. The marker string is used as the so-called PI target. You can
easily identify the highlighted text ranges in the response document for the above query:

XQuery User Guide90

Text Retrieval

<entry>
 <title>Data on the Web</title>
 <price>34.95</price>
 <review>A very good <?REV_DISC + 1 ?>discussion<?REV_DISC - 1 ?> of semi-structured ↩
database systems and XML.</review>
</entry>
<entry>
 <title>Advanced Programming in the Unix environment</title>
 <price>65.95</price>
 <review>A clear and detailed <?REV_DISC + 2 ?>discussion<?REV_DISC - 2 ?> of UNIX ↩
programming.</review>
</entry>

The start and end of the highlighted text range are indicated by the plus and minus signs in the
PI. Furthermore, highlighted ranges are numbered. This is also true when highlighting complete
nodes:

for $a in input()/bib
let $ref:= tf:createNodeReference($a/book[1])
return tf:highlight($a, $ref, "FIRST")

The resulting document is:

<book year="1994"><?FIRST + 1?>
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last><first>W.</first></author>
<publisher>Addison-Wesley</publisher>
<price>65.95</price>

<?FIRST - 1?></book>

Phonetic Searches

A “phonetic search” allows you to search for words that are phonetically equivalent. Linguistically
speaking, you are looking for homophones. For example, in English the letters c and s as in "city"

and "song" are both pronounced [s], and the words "eight" and "ate" are both pronounced
(in square brackets you see the phonetic transcription using the IPA, the International Phonetic
Alphabet).

There are many areas where this facility proves valuable: Imagine a patient database having lots
of patients with German names. Now you want to retrieve all patients with the name "Maier". In
German, it is an everyday surname, just as "Kim", "Smith", and "Andersson" are for Korean, English
and Swedish respectively. You can use a query performing a simple text search such as:

91XQuery User Guide

Text Retrieval

for $a in input()/patient
where $a/name = "Maier"
return $a/name

or you can use tf:containsText:

for $a in input()/patient
where tf:containsText($a/name, "Maier")
return $a/name

Unfortunately, there are at least four variants of the name which are all pronounced :
"Maier", "Mayer", "Meier", and "Meyer". Instead of constructing long Boolean expressions that try
to cover all existing homophones, you can use tf:phonetic in the scope of one of the search
functions:

for $a in input()/patient
where tf:containsText($a/name, tf:phonetic("Maier"))
return $a/name

This query will return all patients whose names sound like .

Tamino uses a set of rules to determine phonetic equivalency. There are rules pre-defined, which
are explained in more detail in the reference documentation to tf:phonetic. These rules are suitable
for German and English, but you can create your own set of rules. See the sectionRules for Searches
Using Phonetic Values and Stemming below.

Note: You can not use tf:phonetic standalone, but only in the context of one of the following
functions: tf:containsText, tf:containsAdjacentText, tf:containsNearText,
tf:createAdjacentTextReference, tf:createNearTextReference,
tf:createTextReference. This means that the result of calling this function in another
context is unspecified and might change in a future Tamino version.

Stemming

A corpus with text in an inflecting language such as English or German often contains words in
inflected forms: nouns are declined and verbs are conjugated: "The nightingales were singing in
the trees." If you want to search for all occurrences of the verb "to sing" or of the nouns "nightingale"
and "tree", you need to know how these words are inflected and derived. One method is to reduce
any inflected form to its word stem. It is the stem to which morphemes are attached to construct
a certain grammatical form: So "were" + "sing" + "-ing" indicates the past continuous tense of the
verb "to sing".

XQuery User Guide92

Text Retrieval

In Tamino, you can use the function tf:stem to retrieve occurrences of all word forms belonging
to the same word stem. Similarly to tf:phonetic, it works only in the scope of one of the search
functions:

let $text :=
 <chapter>
 <para>Die Bank eröffnete drei neue Filialen im Verlauf der letzten fünf ↩
Jahre.</para>
 <para>Ermüdet von dem Spaziergang setzte sich die alte Dame erleichtert auf die
 gepflegt wirkende Bank mitten im Stadtpark.</para>
 <para>Die aktuelle Bilanz der Bank zeigt einen Anstieg der liquiden Mittel im
 Vergleich zum Vorjahresquartal.</para>
 </chapter>
for $a in $text//para
let $check :=
 for $value in ("Geld", "Bilanz", "Filiale", "monetär", "Aktie")
 return tf:containsNearText($a, 10, tf:stem($value), tf:stem("Bank"))
where count($check[. eq true()]) > 0
return $a

This returns all para elements whose text contains at least one word which is related to a specific
reading of the German word "Bank". The resulting document contains the first and the third para
element, but not the second, since it does not contain any of the words defined in the sequence
("Geld", "Bilanz", "Filiale", "monetär", "Aktie") in a distance of less than ten words from
"Bank".

Tamino uses a set of rules to determine whether a word token belongs to some stem. There is a
pre-defined rule set that works reasonably well for German. However, you can create your own
set of rules. See the section Rules for Searches Using Phonetic Values and Stemming below. You
can reach the pre-defined rules set using the following query:

declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
collection("ino:vocabulary")/ino:stemrules

Note: Do not use tf:stem standalone; use it only in the context of one of the following
functions: tf:containsText, tf:containsAdjacentText, tf:containsNearText,
tf:createAdjacentTextReference, tf:createNearTextReference,
tf:createTextReference. The result of calling this function in any other context is unspe-
cified and might change in a future Tamino version.

93XQuery User Guide

Text Retrieval

Rules for Searches Using Phonetic Values and Stemming

For queries that involve phonetics and stemming, Tamino internally uses the same mechanism,
implemented as a finite-state machine, that rewrites the function argument according to a set of
rules. These rules are described by XML schemas stored in the collection ino:vocabulary and
have the names PHONRULES and STEMRULES:

This is the schema for PHONRULES:

<xs:complexType>
<xs:sequence>

<xs:element name="phonrule" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="phonStage" type="xs:integer" use="required" />
<xs:attribute name="phonType" type="xs:string" use="required" />
<xs:attribute name="phonReqs" type="xs:integer" use="required" />
<xs:attribute name="phonMinChars" type="xs:integer" use="required" />
<xs:attribute name="phonChars" type="xs:string" use="required" />
<xs:attribute name="phonReplaceChars" type="xs:string" use="required" />
<xs:attribute name="phonNextStage" type="xs:integer" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

This is the schema for STEMRULES:

<xs:complexType>
<xs:sequence>

<xs:element name="stemrule" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<xs:attribute name="stemStage" type="xs:integer" use="required" />
<xs:attribute name="stemType" type="xs:string" use="required" />
<xs:attribute name="stemReqs" type="xs:integer" use="required" />
<xs:attribute name="stemMinChars" type="xs:integer" use="required" />
<xs:attribute name="stemChars" type="xs:string" use="required" />
<xs:attribute name="stemReplaceChars" type="xs:string" use="required" />
<xs:attribute name="stemNextStage" type="xs:integer" use="required" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

So a set of rules consists of a series of ino:phonrule or ino:stemrule elements. The semantics of
a rule are determined by its attributes, all of which are mandatory:

XQuery User Guide94

Text Retrieval

■ Location
The attributes ino:phonType and ino:stemType define the part of word affected by the rule:
This is one of the values "SUFFIX", "INFIX" or "PREFIX"

■ Character Substitution
These attributes define the characters to look for and their replacement:
■ The attributes ino:phonChars and ino:stemChars define the sequence of characters to look

for in a string
■ The attributes ino:phonReplaceChars and ino:stemReplaceChars define the substitution

string.
■ State Machine Control

These attributes control the way the state machine is treating this rule:
■ The attributes ino:phonStage and ino:stemStage define the state in which the rule will be

active. The attribute value is a number from 1 to n. In most of the rules there will be no state
change.

■ The attributes ino:phonNextStage and ino:stemNextStage define the next state when the
rule has fired. If the value is "0" the machine stops and the result is computed.

■ Restrictions
If a restriction is violated, the rule will not be executed.
■ The attributes ino:phonMinChars and ino:stemMinChars define the minimum length of the

word fragment for the rule to be applied.
■ The attributes ino:phonReqs and ino:stemReqs define the minimum number of syllables in

the word fragment for the rule to be applied. For ino:phonReqs this is practically always the
value "0".

The order of the rules is significant. The following stem rules protect the substitution of "EAR":

<ino:stemrule ino:stemType='SUFFIX' ino:stemStage='2' ino:stemNextStage='0'
 ino:stemChars='EAR' ino:stemReplaceChars='EAR' ino:stemReqs='0' ↩
ino:stemMinChars='6' />
<ino:stemrule ino:stemType='SUFFIX' ino:stemStage='2' ino:stemNextStage='0'
 ino:stemChars='AR' ino:stemReplaceChars='' ino:stemReqs='0' ↩
ino:stemMinChars='5' />

95XQuery User Guide

Text Retrieval

Thesaurus

A thesaurus is a special kind of dictionary that is ordered by topic or semantic relationships. A
regular dictionary uses a lexicographic order: for example, letter-based languages use the language's
alphabet; ideographic languages use the base signs and the number of strokes. In contrast, a
thesaurus is ordered by meaning: it helps you find words or phrases for general ideas. Semantic
relationships let you explore words along two directions: horizontally by looking up variants with
the same context of meaning (e.g., synonyms, antonyms) or vertically by finding broader, super-
ordinate terms (hypernyms), and narrower, subordinate terms (hyponyms). In Tamino, this adds
another dimension of text retrieval functionality: now you can retrieve contents not only by using
the graphemic representation or syntactic variants of the search term, but also by using its semantic
properties.

Tamino supports the most important aspects of a thesaurus: synonyms, hypernyms and hyponyms.
There is no pre-defined thesaurus, so you can specify one tailored to the special vocabulary of
your Tamino application scenario. You can define one or more thesauri in a single database. The
collection ino:vocabulary holds thesaurus entries as term elements, each of which is assigned to
a single thesaurus using the attribute ino:thesaurus. A term element can contain the following
elements:

termName
defines the name of the thesaurus entry (mandatory)

synonym
defines a term which is synonymous to termName

broaderTerm
defines a term which is superordinate to termName (hypernym)

narrowerTerm
defines a term which is subordinate to termName (hyponym)

Example

To create a sample thesaurus with words having to do with animals, load the following data into
the collection ino:vocabulary of an existing database. Please refer to the section Loading Data into
Tamino for more information about loading data into Tamino.

<?xml version="1.0"?>
<term ino:thesaurus="animals"

xmlns:ino="http://namespaces.softwareag.com/tamino/response2">
<ino:termName>dog</ino:termName>
<ino:synonym>canine</ino:synonym>
<ino:synonym>pooch</ino:synonym>
<ino:synonym>doggie</ino:synonym>
<ino:synonym>bow-wow</ino:synonym>
<ino:synonym>puppy-dog</ino:synonym>

XQuery User Guide96

Text Retrieval

<ino:synonym>perp</ino:synonym>
<ino:synonym>whelp</ino:synonym>
<ino:broaderTerm>carnivore</ino:broaderTerm>

</term>

The example file dog.xml

<?xml version="1.0"?>
<term ino:thesaurus="animals"

xmlns:ino="http://namespaces.softwareag.com/tamino/response2">
<ino:termName>carnivore</ino:termName>
<ino:broaderTerm>mammal</ino:broaderTerm>

</term>

The example file carnivore.xml

These two files establish the thesaurus "animals" for the given database. In the vertical direction
the following hierarchy can be derived: A dog is a carnivore; a carnivore is a mammal. This is be-
cause the ino:broaderTerm contents ("carnivore") in the thesaurus entry for "dog" matches the
ino:termName of another thesaurus entry, namely "carnivore".

Furthermore synonyms are defined for the entry "dog" that denote a dog using colloquial language,
biological terms, pet names, etc.

Examples

Return all paragraphs in the specified document that contain a synonym of "dog":

let $doc := <doc>
 <p>Have you seen the large dog around the corner?</p>
 <p>On the farm nearby, a checkered whelp was playing on the ground with some ↩
cats.</p>
 <p>Also, some horses could be seen in the stable.</p>
 </doc>
for $p in $doc/p
where tf:containsText($p,tf:synonym("dog"))
return $p

As a result, the first two paragraphs are returned. Strictly speaking, only "whelp" is defined as a
proper synonym, but Tamino follows the intuitive assumption that you also expect the term itself
to be part of the result set. This holds for other thesaurus functions as well.

The following query returns all superordinate terms of "dog", for which you use the Tamino
function tf:broaderTerms:

97XQuery User Guide

Text Retrieval

declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
for $p in collection("ino:vocabulary")/ino:term
where tf:containsText($p/ino:termName,tf:broaderTerms("dog"))
return $p/ino:termName

Here, the two ino:termName instances for dog and carnivore are returned.

Pattern Matching

You can conveniently perform text searches with the help of search patterns. Tamino's text retrieval
system allows for efficient queries using special characters that match one or more characters in
a word. In Tamino XQuery the following functions support text search using pattern matching:

tf:containsText
tf:containsAdjacentText
tf:containsNearText
tf:createTextReference
tf:createAdjacentTextReference
tf:createNearTextReference

The tokenizer that is being used determines the pattern matching facilities that are available. The
following table gives an overview of the characters that have a special meaning when used in one
of the above functions:

EffectTokenizer AvailabilityCharacter

match a single character in a wordwhite space-separated? (maskcard)

match zero or more characters in a word* (wildcard) CJK
white space-separated

cancel the special meaning of the following characterwhite space-separated\ (escapecard)

The default tokenizer ("white space-separated") supports all types of special characters, whereas
the Japanese tokenizer only supports wildcard characters. The section Wildcard Characters
provides details about the peculiarities when using the Japanese tokenizer.

The table above shows the default settings. However, with the white space-separated tokenizer
you can use a different character for each of these special characters. If, for example, your data
frequently uses the asterisk sign as a regular character, it is more convenient to redefine the
wildcard character instead of having to escape the asterisks using the escapecard character every
time they occur. See the section Customizing Special Character Settings for information on how
to change these settings. The discussion here assumes the default settings as defined in
ino:transliteration and, if not stated otherwise, the usage of the standard white space-separated
tokenizer.

XQuery User Guide98

Text Retrieval

In the context of pattern matching, a word consists of a non-empty sequence of characters: for
example, a wildcard character (default: asterisk) matches zero or more characters in a word, so that
a single "*" represents a single word. If the search string contains more than one word, such as in
the expression tf:containsText($node, "word1 word2") then it is treated as
tf:containsAdjacentText($node, 1, "word1", "word2").

The following sections contain more information about searching with any of these special char-
acters and how to change the default setting:

■ The Maskcard Character
■ Wildcard Characters
■ The Escapecard Character
■ Customizing Special Character Settings

The Maskcard Character

The maskcard character, which by default is a question mark "?", stands for a single character in
a word. A pattern theat?? thus matches theatre as well as theater, but not theatrical since ??
only match ri and the rest (cal) is not matched.

Consider the following query:

let $text := text{"one two three four five six seven eight nine ten"}
return
(tf:containsText($text, "??"), tf:containsText($text, "t??"), tf:containsText($text, ↩
"two?three"))

The query returns a sequence of three items, each being a Boolean value that indicates whether
the specified pattern matches the contents of the text node in $text. Attempting to match the first
pattern ?? yields "false", since there are no numerals with only two letters. The second pattern t??
matches all three-letter numerals beginning with t, namely two and ten, so "true" is returned. The
last pattern fails again, although the pattern two?three seems to match the value "two three".
However, since pattern matching is always performed on the basis of a word, the match does not
succeed: the string "two three" is treated as two words delimited by the space character in between.

Note: Introducing the question mark as a maskcard character also has the effect that it is no
longer classified as a delimiter character in the default transliteration.

99XQuery User Guide

Text Retrieval

Wildcard Characters

In contrast to the maskcard character, which matches exactly one character, the wildcard character
matches zero or more characters in a word. By default, the wildcard character is an asterisk "*".

Consider the following query:

let $text := text{"one, two"}
return tf:containsAdjacentText($text, 1, "one", "*", "*")

This query returns false, since tf:containsAdjacentText expects two word tokens adjacent to
"one".

If you use the default tokenizer, i.e. the white space-separated tokenizer, then the wildcard char-
acter is always the asterisk "*" (Unicode value U+002A).

Using the Japanese Tokenizer

If you use the Japanese tokenizer, all of the following characters are recognized as wildcard char-
acters:

Code ValueUnicode Name

U+002AASTERISK

U+066DARABIC FIVE POINTED STAR

U+2217ASTERISK OPERATOR

U+2731HEAVY ASTERISK

U+FE61SMALL ASTERISK

U+FF0AFULL WIDTH ASTERISK

Note: In contrast to the standard white space-separated tokenizer, this definition of wildcard
characters is fixed and cannot be changed.

The Japanese tokenizer does not support wildcard characters in the middle of a word, since there
are no explicit delimiter characters. So " * " will be treated as " *" adj " ".

The example queries below focus on the contents of the patient/submitted/diagnosis nodes to
show the effect of performing search operations with or without wildcard characters on segment-
ation of Japanese words.

XQuery User Guide100

Text Retrieval

1.

Contents

problems with the heartTranslation
Word Tokens

Segmentation
problemhasheart (physical)Translation

2.

Contents

heart attackTranslation
Word Tokens

Segmentation
paralysisheartTranslation

3.

Contents

heart diseaseTranslation
Word Tokens

Segmentation
diseaseheartTranslation

4.

Contents

cardiovascular diseaseTranslation
Word Tokens

Segmentation
diseaseheart angio (cardiovascular)Translation

The following example queries all use the same query skeleton:

for $a in input()/patient/submitted/diagnosis
where <function-call>
return $a

101XQuery User Guide

Text Retrieval

Matching SamplesXQuery Function Call

1, 2, 3tf:containsText($a, " ")

—tf:containsText($a, " ")

1, 2, 3, 4tf:containsText($a, ' *")

1, 2, 3tf:containsText($a, ' *")

3tf:containsText($a, " ")

tf:containsAdjacentText($a, 1, " ", " ")

—tf:containsNearText($a, 1, " ", " ")

3, 4tf:containsNearText($a, 1, " *", "* ")

The Escapecard Character

With the help of the escapecard character you can negate any special meaning of the following
single character. By default, the escapecard character is the backslash character "\". Use it if you
want to look for any of the maskcard, escapecard or wildcard characters as literal characters.

Example 1: Escaping an Asterisk

let $text:= text{"** End of code **"}
return tf:containsText($text, "**")

Here, the match succeeds if there is any two-letter word in $text that consists only of asterisks.
This is true for the first and last words in $text.

Example 2: Escaping a Backslash

The following checks the path separator character that is used in $path and returns the result as
plain text, ordered by platform:

{?serialization method="text" media-type="text/plain"?}
let $path := text{"C:\Program Files\Software AG\Tamino"}
return
("Path Separators Used
",

"DOS/Windows	: ", tf:containsText($path, "**"), "
",
"UNIX	: ", tf:containsText($path, "*/*"), "
",
"MacOS	: ", tf:containsText($path, "*:*")

)

In the pattern, the path separator character must be enclosed by the regular wildcard character,
since it would not form a word on its own. Provided that the path separator character is defined
as a regular character, the query reports for each platform whether its standard path separator
character is used, although this example is certainly not a bullet-proof method. However, if the

XQuery User Guide102

Text Retrieval

path separator is not defined as a regular character, it will be interpreted as a delimiter. Using the
default settings, the pattern in function call tf:containsText($path, "**") will thus be inter-
preted as if "* *" were used, since the escapecard character tries to mask an invalid character and
the text retrieval system uses a delimiter instead. This would yield "true", since there are two oc-
currences of two adjacent words separated by a space character ("Program Files" and "Software
AG"). In cases like these you should ensure that the transliteration is appropriately defined accord-
ing to what your application expects.

Note: In contrast to "*", the characters "\" and "?" are normally not classified as regular
characters in the collection ino:transliteration. See the section Customizing Translitera-
tions for instructions how to customize this special collection.

Customizing Special Character Settings

If you use the default tokenizer (white space-separated), you can customize the settings for the
special characters used in pattern matching. They are declared as attributes to ino:transliteration
in the special collection ino:vocabulary:

ino:escapecharescapecard character
ino:maskcharmaskcard character
ino:wildcharwildcard character

To change the value of any of these attributes, you can use a query similar to the following, which
sets the value of the maskcard character to the default value:

declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
update insert attribute ino:maskchar {"?"}
into input()/ino:transliteration

You can check your changes with the following query:

declare namespace ino="http://namespaces.softwareag.com/tamino/response2"
for $a in input()/ino:transliteration/@*
return $a

Note that only attributes that have been modified are returned.

103XQuery User Guide

Text Retrieval

104

III Related Information

105

106

11 Related Information

■ Internal Resources ... 108
■ W3C Resources .. 108

107

The XQuery documentation focuses on XQuery as a language. However, as database queries are
the principal means of communication with the database server, it might happen that you have a
problem which arose because of a certain query. If you do not find the information in the XQuery
documentation, you might have a look at the following sources of information, all of which also
deal with aspects of querying a Tamino database:

Internal Resources

■ Using the Tamino Interactive Interface to Query a Database with Tamino XQuery: This section
describes how to query a database object using the Tamino Interactive Interface.

■ Efficient Queries: XQuery: Here you will find some advice for speeding up your queries.
■ Querying Using X-Machine Commands: This section explains how to directly query a database

using HTTP and X-Machine command verbs.
■ XML Schema Datatypes: This section explains the data types defined in the XML Schema spe-

cification which are used by XQuery.
■ Storing Non-XML Objects in Tamino: This section explains how to represent and query objects

that are in some other format, such as binary data.
■ Character Encoding of XML Objects: This section discusses the character encoding of XML objects

when querying them directly using HTTP and X-Machine command verbs.
■ Migrating from X-Query to Tamino XQuery (in the sectionMigrating Applications of theMigration
Guide): This section gives some advice for application developers concerning changes from the
previous implementation called X-Query to Tamino XQuery.

W3C Resources

■ The XQuery language, as specified by the W3C, consists of the following documents:
■ XQuery: An XML Query Language

The official XQuery specifications of the W3C, which in its 1.0 version formed part of the basis
of Tamino XQuery.

■ XQuery and XPath Data Model (XDM)
The official XQuery specifications of the W3C that describe the underlying data model used
for XQuery and XPath.

■ XSLT and XQuery Serialization
The official XQuery specifications of the W3C that describe how to serialize an instance of
the data model into a sequence of octets.

XQuery User Guide108

Related Information

http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xslt-xquery-serialization/

■ XQuery and XPath Functions and Operators
The official XQuery specifications of the W3C, which form part of the basis of Tamino XQuery.

■ XML Path Language (XPath): The official specifications of the W3C, which form part of the
basis of XQuery.

■ XML Query Use Cases: Some use cases relevant for XQuery.
■ Working Drafts for doing text retrieval with XQuery:

■ XQuery and XPath Full Text 1.0 Requirements
■ XQuery and XPath Full Text 1.0 Use Cases

■ Namespaces in XML 1.0: This W3C recommendation defines basic language elements that are
used in XPath.

109XQuery User Guide

Related Information

http://www.w3.org/TR/xpath-functions/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery-use-cases/
http://www.w3.org/TR/xquery-full-text-requirements/
http://www.w3.org/TR/xmlquery-full-text-use-cases/
http://www.w3.org/TR/REC-xml-names/

110

Index

A
atomization, 30

C
character

special
escapecard, 102
maskcard, 99
wildcard, 100

collation
query, 82

D
delete

node
in Tamino XQuery, 17, 39

I
insert

node
in Tamino XQuery, 18, 38

P
path expression

in Tamino XQuery, 27
pattern matching, 98

R
rename

node
in Tamino XQuery, 18, 40

replace
node

in Tamino XQuery, 40

S
sequence

in Tamino XQuery, 24
singleton, 24

special character
escapecard, 102

maskcard, 99
wildcard, 100

T
text retrieval

in Tamino XQuery, 15
tokenization, 86

tokenizer, 98
type promotion, 30

W
wildcard

in pattern matching, 100

X
XQuery

concepts
atomization, 30
calling through a web service, 49
constructor, 8, 26
CRUD usage of a doctype as a web service, 61
expression, 24
FLWOR expression, 9, 33
path expression, 27
sequence, 24
sort, 12
type, 29
type promotion, 30
update operations, 37
valid documents on update, 42

filter, 10, 35
FLWU expression, 41
join, 14
namespace, 76
path expressions

axis, 27
node test, 28
predicate, 29

retrieve object from database, 25
serialize query result, 80
text retrieval, 15
update, 16

delete, 17, 39
insert, 18, 38
rename, 18, 40
replace, 40

111

112

	XQuery User Guide
	Table of Contents
	Preface
	I First Steps
	1 Sample bib
	2 Sample reviews
	3 Query Examples
	Using Constructors
	Query
	Result
	Explanation

	Basic FLWOR Expressions
	Query
	Result
	Explanation

	Using Filters
	Query
	Result
	Explanation

	Sorting
	Query
	Result
	Explanation

	Joining
	Query
	Result
	Explanation

	Text Retrieval
	Query
	Result
	Explanation

	Updating Documents
	Deleting Nodes
	Query
	Result
	Explanation

	Inserting Nodes
	Query
	Explanation

	Renaming Nodes
	Query
	Explanation

	II The Concepts of XQuery
	4 The Nuts and Bolts of XQuery
	Expressions and Sequences
	Retrieving Data
	Constructors
	Path Expressions
	Axes
	Node Tests
	Predicates

	Data Types
	Functions

	5 FLWOR Expressions
	6 Performing Update Operations
	Inserting Nodes
	Inserting Element Nodes
	Inserting Attribute Nodes

	Deleting Nodes
	Renaming Nodes
	Replacing Nodes
	Using FLWU Expressions
	Schema Conformance
	Conflicts
	Security

	7 Calling XQuery through a Web Service
	Setting Preferences
	Using the Wizard
	Using the Generated Web Service

	8 CRUD Usage of a Tamino Doctype as a Web Service
	Setting Preferences
	Using the Wizard
	Using the Generated Web Service

	9 Advanced Usage
	Namespaces
	User-Defined Functions
	Defining and Using Modules
	Serializing Query Results
	Suppressing the Response Wrapper
	Setting the MIME Media Type
	Defining a Custom Output Handler

	Collations

	10 Text Retrieval
	Simple Text Search
	Context Operations
	Highlighting Retrieval Results
	Generating Reference Descriptions
	Highlighting Documents

	Phonetic Searches
	Stemming
	Rules for Searches Using Phonetic Values and Stemming
	Thesaurus
	Pattern Matching
	The Maskcard Character
	Wildcard Characters
	The Escapecard Character
	Customizing Special Character Settings

	III Related Information
	11 Related Information
	Internal Resources
	W3C Resources

	Index

