§ software

Tamino

XML Namespaces in Tamino

Version 10.1

April 2018

WEBMETHODS

This document applies to Tamino Version 10.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-NAMESPACE-101-20180413

Table of Contents

PTOACE ..t v
1 General Information on Namespacescocvevveiiiiiiiiiiiiiiececcc 1
2 Namespace-Related Facilities in XML Schema and in TSD4cccoooiiiiiiiiiniinnns 3
The targetNamespace Attribute of the xs:schema Elementccccooiis 4
Schema Composition via XSImMPOTrtccceciiiiiiiiiiiiiiii i, 4
Namespace of Elements and Attributes ... 7
Global vs. Local Elements and Attributescccocoiiiiiiiiiiiiiiiiiiiiic 8
WILACAIAS ..o 8
Qualified Type Referencesccccocevieiiiiiiiiiiiiiiiicceeccc 8
3 Upgrade and Migrationccccuiiiiiiiiiiiiiiiiiiiiicicc e 11
xml:lang and XmMLSPaceccooviiiiiiiiii 12
4 Namespace Handling for Specific X-Machine Requestsc.ccccccevviiiiiiniiiiinnnnn. 13
Valid Collection and Doctype Names in TSD3/TSD4cccccociviiiiiiiiiiiiiininnn. 14
_XQL, _DELETEiciiiiiiiiiiiiiiiicicicse e 16
Plain URL Addressingcccooouiiiiiiiiiiiiiiiiiiiiiiccicciec e 17
XQUETY .ot 18
Special Handling of the Prefix ino:cccooiiiiiiiiiiiiiiiiiiiice 18
SECUTILY woeoiiiiiiei 18
INAEX o 21

Preface

This document explains the rules and concepts for the use of XML Namespaces in Tamino 4.2 in
various areas, mainly the XML Schema-based schema definition language TSD4 and the query
languages X-Query and XQuery. For reference, please see http://www.w3.0rg/TR/REC-xml-names/.

This document is intended to be read by administrators, application developers and other schema
creators.

This document contains the following sections:

General Information on Namespaces A general description of what namespaces are and what
they are good for

Namespace-Related Facilities in XML Schema The basic facilities related to namespaces in XML Schema

and in TSD4 and in TSD4.

Upgrade and Migration Migrating from earlier versions and updating

Namespace Handling for Specific XMachine The consequences of the introduction of namespaces on
Requests collection names and doctype names

This documentation uses a lot of namespace specific terminology that might be unfamiliar to some
readers. For detailed explanations of the terms used, please refer to the Tamino glossary.

http://www.w3.org/TR/REC-xml-names/

vi

1 General Information on Namespaces

What are Namespaces?

Namespaces were introduced into XML to avoid name clashes when multiple vocabularies are
used. The concept of namespaces allows us to mix language elements from multiple vocabularies,
such as SVG and XHTML, by adding namespace prefixes. It also allows us to define schemas with
XML Schema, because by using namespace prefixes we can separate XML Schema tags and our
own element names.

Namespace identifiers must be globally unique - usually a URI is used for that purpose. Defining
a namespace within an XML document is simple: a document node is given an xm1ns attribute to
define the default namespace. Similarly, additional namespaces can be introduced by defining
namespace prefixes using namespace declaration attributes of the form xmins:prefix=URI. The
scope of such a definition is the node where it is defined plus all child nodes (child elements and
attributes), unless a child element overrides it with another namespace declaration. So, if we declare
namespaces in a document's root element, their scope is usually the whole document.

The most important difference between TSD4 andTSD3 is that TSD4 supports XML Namespaces.
This section explains why and how you should use namespaces.

| Note: TSD3 and TSD4 make use of that separation feature to differentiate between XML

Schema parts that are marked with the xs: prefix, and the Tamino-specific extensions that
are marked with the tsd: prefix.

The name of an element or attribute is called “qualified” if it contains a prefix and is within the
scope of a corresponding namespace declaration. In addition, only elements without a prefix are
affected by the default namespace declaration. The lexical (or pseudo) QName - an abbreviation
of qualified name - is just the name string prefix: localname. The prefix including the colon is
optional. See XML Schema, Part 2. The expanded (or standard) QName is the associated “tuple”
(URI, local name) derived from the QName and the namespace declaration for the prefix. For an
unqualified name, the URI part of this “tuple” is empty.

http://www.w3.org/TR/xmlschema-2/

General Information on Namespaces

What are QNames?
Let us start with a definition of the terms for QNames (qualified names):

[expanded or standard] QName:
An expanded QName or standard QName is a tuple (URI, TocalName) which may also be derived
from a string prefix: TocalName in conjunction with a namespace declaration like
xmins:prefix=URI or a namespace context (see below).

For unqualified elements or attributes the URI may be empty.

[pseudo or lexical] QName:
A pseudo QName or lexical QName is a string prefix: localName without a namespace context
or declaration . The prefix may be empty.

2 XML Namespaces in Tamino

2 Namespace-Related Facilities in XML Schema and in TSD4

= The targetNamespace Attribute of the xs:schema Elementccccoiiiiii 4
= Schema CompoSItion Vid XSIMPOMooiiiiiiiiiii e e e e e e 4
= Namespace of Elements and AADUIEScvvviiiiii e 7
= Global vs. Local Elements and ARDUIESveeeeiiiiiee e 8
Lo o= o SO USRR 8
= Qualified TYPE REFEMENCES ... ittt 8

Namespace-Related Facilities in XML Schema and in TSD4

This chapter discusses the following topics about namespace usage in XML Schema and TSD4:

The targetNamespace Attribute of the xs:schema Element

One major advantage of XML Schema compared to DTDs is that XML Schema fully supports XML
Namespaces. In order to do so, XML Schema introduces the concept of the target namespace. Each
schema document can declare at most one target namespace, and all definitions made in this
schema document belong to this namespace. Thus, a schema may contain namespace-less defini-
tions, or definitions belonging to the specified target namespace.

Does this really mean that we cannot define multi-namespace schemas? No; the emphasis is here
on the schema document. We can always compose multi-namespace schemas by importing (see
below) other schema documents into a schema, see the description of the xs:import element.

Schema Composition via xs:import

The xs: import statement is used in XML Schema to compose multi-namespace schemas. A typical
example is given below:

<?xml version="1.0" encoding="UTF-8"7>

{xs:schema <

targetNamespace="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia”
xmlins="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmIins:i="http://www.softwareag.com/tamino/doc/examples/models/instruments">

{Xs:import <
namespace="http://www.softwareag.com/tamino/doc/examples/models/instruments"”
schemalocation="instruments.xsd"/>

{/Xs:schema>

xs:import statements are always given at the beginning of a schema definition. An xs:import
statement usually specifies a namespace to import, and may optionally specify a URL using the
schemalocation attribute. Note that this attribute only gives a hint to the XML processor, telling
it where to find the schema document associated with the imported namespace. XML processors
are not required to use this attribute, but may use their own logic to find the associated schema.
Tamino supports only relative URLs in the schemalLocation attribute in xs : import. The referenced
schemas must already be defined in the Tamino database when defining the referencing schema.

4 XML Namespaces in Tamino

Namespace-Related Facilities in XML Schema and in TSD4

import (with schemaLocation)

The structure of the schemalocation attribute may be any of the following alternatives:

= /collectionName/schemaName
® /schemaName

= schemaName

The last two alternatives are equivalent. Note: The xsi:schemalocation and
xsi:noNamespaceSchemalocation attributes in XML instances of a schema (or doctype) are ignored
by Tamino. Instead, a different logic based on collections and doctypes is applied to locate the
schema used for validating the XML instance.

Example

The following schema shows the simultaneous use of the namespace and schemalocat1ion attributes
of the <xs:import> element:

<?xml version="1.0" encoding="UTF-8"7>
<{xs:schema
«
targetNamespace="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia”
xmlns:e="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlins:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
xmlns:i="http://www.softwareag.com/tamino/doc/examples/models/instruments"
elementFormDefault="qualified"
attributeFormDefault="unqualified">
<Xs:import
namespace="http://www.softwareag.com/tamino/doc/examples/models/instruments"
schemalocation="instruments.xsd"/>

<{xs:annotation>
<xs:appinfo>
{tsd:schemalnfo name="jazzMusician">
{tsd:collection name="music"/>
<tsd:doctype name="e:jazzMusician"/>
</tsd:schemalnfo>
</xs:appinfo>
{/xs:annotation>
{xs:element name="jazzMusician">
<xs:complexType>
{Xs:sequence>
<xs:element name="name" type="e:tName"/>

<xs:element name="plays" minOccurs="0" maxOccurs="unbounded">
<xs:complexType>
{xs:choice>

XML Namespaces in Tamino 5

Namespace-Related Facilities in XML Schema and in TSD4

<xs:element ref="i:saxophone"/>
</xs:choice>
</xs:complexType>
{/xs:element>
</xs:sequence>

</xs:complexType>
{/xs:element>

{/Xs:schema>

This example schema defines a global element named jazzMusician, and local elements name and
plays. Thelocal elements are qualified because of the elementFormDefault="qualified" attribute
All the elements defined in the schema belong to the namespace given by the targetNamespace
attribute.

The xs:import element imports a schema with definitions for the http://www.software-
ag.com/tamino/doc/examples/models/instruments namespace. The content model of element plays
refers to an element named saxophone in the imported namespace.

The imported schema might look as follows:

<?xml version="1.0" encoding="UTF-8"7>
<{xs:schema

targetNamespace = <
"http://www.softwareag.com/tamino/doc/examples/models/instruments™

xmlins:i = "http://www.softwareag.com/tamino/doc/examples/models/instruments”
xmlns:xs = "http://www.w3.0rg/2001/XMLSchema"
xmlins:tsd = "http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">

{xs:annotation>
<xs:appinfo>
{tsd:schemalnfo name="instruments.xsd">
<tsd:collection name="music"/>
</tsd:schemalnfo>
</xs:appinfo>
</xs:annotation>

{xs:element name="saxophone">
</*é;e1ement>
</%é;schema>
Usage of the xs:import element is subject to various constraints with respect to:

" the targetNamespace of the involved schema documents;

" usage of the namespace attribute;

6 XML Namespaces in Tamino

Namespace-Related Facilities in XML Schema and in TSD4

" usage without the schemalocation attribute.
Constraints (of xs:import statement)

The following constraints must be taken into account when using the xs:import element:

= If there is no namespace attribute present, the enclosing xs:schema element must have a target
namespace declaration.

= If the xs: import element contains a namespace attribute, it may not match the value of the tar-
getNamespace attribute of its enclosing xs:schema element.

Namespace of Elements and Attributes

Elements and attributes defined as child nodes of the xs : schema root element of a schema document
are called global elements and attributes. If the xs: schema elementhas a targetNamespace attribute,
all the global elements and attributes defined in that schema document are qualified, i.e. they belong
to that namespace.

Once declared in this way, a global element or attribute can be used by referencing it in declarations
(using the ref attribute of xs:element or xs:attribute). References to global elements or attributes
are not restricted to a single schema; rather, they may refer to objects in a different namespace by
using the prefix mapped to the targetNamespace of the imported schema in which the global object
is defined.

By contrast, declarations of elements or attributes that are not immediate descendants of the

xs : schema root node and do not just reference a global element or attribute definition via ref="". ..
are called local elements or local attributes. They can be defined e.g. inside a local or global (i.e.
named) type. By default, these local nodes do not belong to the namespace given by the target-
Namespace unless the corresponding element or attribute definition hasa form="qualified" attrib-
ute. The default of form="unqualified" can be superseded by the
elementFormDefault="qualified" orattributeFormDefault="qualified" attributes of the
xs:schema element. These attributes specify whether the corresponding elements or attributes in
the XML instance documents are qualified or not, if the form attribute is not present.

XML Namespaces in Tamino 7

Namespace-Related Facilities in XML Schema and in TSD4

Global vs. Local Elements and Attributes

Namespace aspects of global and local elements and attributes in XML Schema are addressed in
detail in the section Advanced Concepts I: Namespaces, Schemas & Qualification of the W3C
XML Schema Part 0: Primer.

Wildcards

Another mechanism to allow for foreign namespaces is the usage of wildcards. A wildcard (i.e.
an element or attribute whose content is not defined further) can be declared with the XML Schema
elements xs:any or xs:anyAttribute. This allows for the inclusion of elements and attributes
from foreign namespaces. For example, sections of XHTML, SVG, RDF or other content could be
included into a document. A typical application is the description property in the style asset of
our “Jazz” model, where we could use XHTML to mark up the content.

It is possible to constrain the namespace of the content of such a wildcard. This is done with the
namespace attribute of the wildcard. This attribute can contain either:
" a whitespace-separated list of the following items:
" explicit namespace URIs;
* the string "fHftargetNamespace", which denotes the target namespace of the current schema
file;
*® the string "f#10cal", which denotes the absence of a namespace;
= or one of the following string values:

® the string "fHfany", which allows for any namespace. This is also the default value of the
namespace attribute. This value is often used together with processContents="skip";

*® the string "fHfother", which allows for any namespace other than the target namespace.

Qualified Type References

References to types must be qualified with the namespace prefix bound to the namespace in which
the referenced type is defined.

| Note: This applies to both XML Schema predefined types and user-defined global types.

For example, the importing schema above contains a reference to a type e : tName, which might be
defined as follows:

8 XML Namespaces in Tamino

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-0/#NS
http://www.w3.org/TR/xmlschema-0/

Namespace-Related Facilities in XML Schema and in TSD4

<{xs:complexType name="tName">
{XSs:sequence>
<{xs:element name="firstName" type="xs:string"/>
<{xs:element name="middleName" type="xs:string" minOccurs="0"/>
<xs:element name="TastName" type="xs:string"/>
<{/xs:sequence>
</xs:complexType>

In the same way, references to a model group or attribute group definition in the same or a different
schema document must use a prefix bound to a namespace that is identical to the respective
schema's targetNamespace.

XML Namespaces in Tamino 9

10

3 Upgrade and Migration

= xml:lang and xml:space

11

Upgrade and Migration

xml:lang and xml:space

In contrast to previous Tamino versions, both attributes, xm1:1ang and xm1: space, must be explicitly
declared in a schema. This can be done as follows:

<xs:import
namespace="http://www.w3.0rg/XML/1998/namespace"
schemalocation="../ino:collection/xml_Tlang_space" />

12 XML Namespaces in Tamino

4

Namespace Handling for Specific X-Machine Requests

= Valid Collection and Doctype Names in TSD3/TSD4coiiiiiiiiiiiiii s 14
B OXQL, _DELETE Lottt 16
B PN URL ADAIESSING .. eeei ittt ettt e ettt e e e e e e e e 17
B KQUETY ettt 18
= Special Handling of the Prefix iN0:oooiiiiiii e 18

18

= Security

13

Namespace Handling for Specific X-Machine Requests

This section contains information about the following:

Valid Collection and Doctype Names in TSD3/TSD4

Collection Names

As in TSD3, a collection name is a value of type xs: NMTOKEN. The name of a collection identifies it
uniquely within the entire database.

Doctype Names

In TSD4, a doctype name is a QName, with the restriction that both the lexical and the expanded
QName must be unique within the collection. The uniqueness of the lexical QName within the
collection, effectively being just a plain string, is important especially for plain URL addressing
(see X-Machine Programming).

Namespace Context of Doctypes

Each doctype in a Tamino database has a namespace context. From a logical point of view, the
namespace context is a table describing a unique mapping of prefixes to URIs. It is extracted from
the doctype's schema document(s) from the following locations:

" namespace declarations in the corresponding tsd: doctype element (used for that doctype only);

" namespace declarations in the xs: schema root element of the schema document containing the
tsd:doctype element (used for all doctypes defined in that schema document);

" namespace declarationsin the tsd:collection document, for the collection in which the doctype
is contained. This document allows you to assign properties to a collection, e.g. the namespace
context or whether the schemaless storage of documents is permitted in that collection. It can
be stored in Tamino using the _DEFINE command. Please see below for an example. The
namespace declarations in this document affect all doctypes in the collection.

Any prefix defined at one of these locations goes into the namespace context. The order in which
the places are listed reflects their priority; for example, a namespace declaration given in the
tsd:doctype element overrides a namespace declaration given in the xs : schema root element. For
collections allowing for schemaless storage of documents, there may not be a schema document.
Hence, only the third location applies.

Note: Asthe namespace context is crucial especially for the behavior of existing applications

developed with previous versions of Tamino, namespace declarations contributing to the
namespace context of any doctype may not be modified or removed when updating a
schema.

14 XML Namespaces in Tamino

http://www.w3.org/TR/REC-xml/#NT-Nmtoken

Namespace Handling for Specific X-Machine Requests

Example:

Consider the following schema:

<xs:schema
xmlins:xs="http://www.w3.0rg/2001/XMLSchema"
xmins:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
xmlns:pl="URI1"
xmlns:p2="URI2"
targetNamespace="URI1" >
<{xs:annotation>
<xs:appinfo>
<tsd:schemalnfo name="mySchema">
<tsd:collection name="myCollection"/>
{tsd:doctype name="pl:root"/>
<tsd:doctype name="pl:other" xmlns:p2="URIZa" xmIns:p3="URI3" <
xmlns:p5="URI5"/>
</tsd:schemalnfo>
</xs:appinfo>
<{/xs:annotation>

{/Xxs:schema

with the following collection object:

{tsd:collection name="myCollection"
xmlns:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition
xmlns:p2="URIZb"
xmins:p3="URI3a"
xmlns:p4="URI4"

/>

©

The namespace context for the doctype with the lexical QName p1:root is:

Prefix |URI

pl |URI1
p2 |URI2
p3 |URI3a
p4 |URI4

For doctype pl:other, the namespace context is:

XML Namespaces in Tamino 15

Namespace Handling for Specific X-Machine Requests

Prefix|URI

pl |URI1
p2 |URI2a
p3 |URI3
p4 |URI4
p> |URI5

The namespace context of a doctype is used for different purposes:

® Provide mapping of prefixes to URIs for X-Query requests (see the _XQL and _DELETE commands).

_XQL, DELETE

Lexical QNames within _XQL and _DELETE requests are translated to expanded QNames before
further processing. This translation is based on the namespace context of the corresponding doctype.
If a query, e.g.

_XQL=/*/p:name

does not uniquely identify the doctype, it is first transformed to a representation where each ex-
pression refers to a unique doctype within the current collection.

Assuming the collection contains doctypes dt1, dt2 and dt3, the query above can be transformed
to:

_XQL= /dtl/p:name | /dt2/p:name | /dt3/p:name

Then, the prefix p: can be mapped to a URI for each of the doctypes dt1, dt2, and dt3, based on
the corresponding namespace context. Note that the URI to which p: is mapped may differ between
the doctypes. If a prefix in the request cannot be mapped based on the namespace context, it is
assumed that there is no matching QName in the documents. If a lexical QName does not have a
prefix, it is assumed that it does not belong to any namespace at all.

16 XML Namespaces in Tamino

Namespace Handling for Specific X-Machine Requests

Default Namespace

A special case occurs when a doctype with the schema's targetNamespace attribute is associated
with the default namespace in the respective schema document. Consider the following schema:

<{xs:schema
xmlins:xs="http://www.w3.0rg/2001/XMLSchema"
xmlins:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
xmlns="URI"
targetNamespace="URI" >
{xs:annotation>
<xs:appinfo>
{tsd:schemalnfo name="mySchema">
<tsd:collection name="myCollection"/>
<tsd:doctype name="root"/>
<{/tsd:schemalnfo>
</xs:appinfo>
<{/xs:annotation>

{/Xs:schema

The lexical QName of the doctype defined in the schema is just root without any prefix. Its expan-
ded QName is (URI,root). In order to distinguish the doctype's lexical QName from lexical
QNames corresponding to expanded QNames not belonging to any namespace, a prefix mapped
to “URI” may be introduced via the tsd:collection document. For example:

{tsd:collection name="myCollection"
xmins:tsd="http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
xmins:p="URI" />

maps the prefix "p:" to "URI". After this document has been stored in Tamino via _DEFINE, a query
_XQL=p:root can be used to query all instances.

Plain URL Addressing

Plain URL addressing is based on a doctype's lexical QName, which is required to be unique
within the scope of a collection. Instances within the doctype are identified either by their ino:id
(a unique number) or by their document name. Neither method depends on namespaces.

XML Namespaces in Tamino 17

Namespace Handling for Specific X-Machine Requests

XQuery

XQuery requests sent to Tamino (using the _XQUERY command) are based on the W3C's XQuery
draft. They must specify a URI for each prefix used in the request. Hence, the namespace context
of a doctype is not needed.

Special Handling of the Prefix ino:

ino:id

The ino: namespace prefix can be used in various contexts. If no namespace declaration is in
scope, the following is assumed:

xmlins:ino="http://namespaces.softwareag.com/tamino/response2”
The ino: prefix may not be bound to any other URI.

| Note: This is not correct for XQuery.

When executing a _PROCESS command, Tamino checks for the presence of an ino:id attribute in
the root element. If present, the request is interpreted as an attempt to replace the original document
identified by that ino: id (if any; otherwise an error occurs). Any prefix other than ino: does not
lead to interpretation as a request for replacement of the document — even when mapped to the
same URI — and the document is rejected.

_XQL queries and _DELETE requests may use the ino: prefix for the pseudo-attributes ino:id and
ino:docname without the need for the ino: prefix to be mapped via the doctype's namespace
context.

Security

Instances of doctype ino:acl in collection ino:security are used to configure access to specific
collections, doctypes and nodes within doctypes based on simple path expressions given inside
the ino:ace element(s). A valid entry for the previous music schema might be:

18 XML Namespaces in Tamino

Namespace Handling for Specific X-Machine Requests

<ino:acl
xmins:ino="http://namespaces.softwareag.com/tamino/response2"
ino:ac ITname="myAcl">

<ino:ace
xmins:e = "http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia”
xmlins:i = "http://www.softwareag.com/tamino/doc/examples/models/instruments”

ino:access="change">/e:jazzMusician/e:plays/i:saxophone</ino:ace>
</ino:acl>

XML Namespaces in Tamino 19

20

Index

E

expanded QName, 2

import
usage for schema composition, 4

L

lexical QName, 2

N

Namespace, 1
namespace
collection names, 14
doctype names, 14
handling for specific XMachine requests, 13
handling of ino:security, 18
namespace clean doctypes
_delete, 16
_xql, 16
plain URL addressing, 17
XQuery, 18
namespace context of a doctype, 14
of elements and attributes, 7
of global elements and attributes, 8
of local elements and attributes, 8

P

prefix ino:, 18
pseudo QName, 2

Q

QNames, 2
expanded QName, 2
lexical QName, 2
pseudo QName, 2
standard QName, 2

qualified names, 2
expanded QName, 2
lexical QName, 2
pseudo QName, 2
standard QName, 2

qualified type references, 8

S

schema composition

import, 4

targetNamespace attribute, 4
standard QName, 2

T

targetNamespace attribute, 4

U

upgrade
for XML namespaces, 11

W

wildcards, 8

X

xml:lang, 11
xml:space, 11
xs:import element
usage for schema composition, 4

21

22

	XML Namespaces in Tamino
	Table of Contents
	Preface
	1 General Information on Namespaces
	2 Namespace-Related Facilities in XML Schema and in TSD4
	The targetNamespace Attribute of the xs:schema Element
	Schema Composition via xs:import
	import (with schemaLocation)
	Example
	Constraints (of xs:import statement)

	Namespace of Elements and Attributes
	Global vs. Local Elements and Attributes
	Wildcards
	Qualified Type References

	3 Upgrade and Migration
	xml:lang and xml:space

	4 Namespace Handling for Specific X-Machine Requests
	Valid Collection and Doctype Names in TSD3/TSD4
	Collection Names
	Doctype Names
	Namespace Context of Doctypes

	_XQL, _DELETE
	Default Namespace

	Plain URL Addressing
	XQuery
	Special Handling of the Prefix ino:
	Security

	Index

