
Tamino

Advanced Concepts

Version 10.1

April 2018

This document applies to Tamino Version 10.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-ADVCONC-101-20180413

Table of Contents

Preface .. v
I From Conceptual Model to Schema .. 1

1 Informal Description ... 3
2 Conceptual Modeling .. 5

Introducing Asset-Oriented Modeling .. 6
Asset or Property? .. 7
Normalization .. 13
Determining Business Objects .. 15
Resolving is_a Relations ... 17
Reverse Engineering of Relational Schemas .. 20
Models and Namespaces ... 23

3 Introduction to XML Schema .. 29
Datatypes .. 30
Namespaces and Wildcards ... 43
The Structure of a Schema Definition .. 45
Reuse Mechanisms ... 46
Elements vs. Attributes .. 48

4 From Model to Schema .. 51
Adding Type Information .. 52
Document-Centric Layout .. 53
Creating a Type Library ... 54
Implementing Business Objects ... 55
Segmentation and Optimization .. 57
Multi-Namespace Schema Composition .. 58
Schema Evolution ... 60
Open Content Model .. 61
Versioning .. 62

5 Integrity ... 63
Simple Constraints ... 64
Cross Field Constraints .. 65
Constraints Across Documents .. 65
Data Integrity ... 67
Unique Keys ... 68

6 Operations ... 69
7 From UML to XML .. 71

XML Support in UML .. 72
From Conceptual Model to UML ... 73

8 Schema-Related Web Sites ... 77
II From Schema to Tamino ... 79

9 Tamino Annotations in XML Schema ... 81
Annotation and Appinfo .. 82
Schema-Level Definitions ... 83
Node-Level Definitions .. 84

iii

10 Namespace Support .. 87
Qualified Queries ... 88

11 Indexing ... 89
Declaring an Index ... 90
Candidates for Indexes ... 92
Composite Keys ... 93
Object Identity .. 93
Text Retrieval .. 95

12 Document Composition .. 99
Dynamic Joins with Tamino XQuery 4 ... 100

13 Efficient Querying .. 103
Data Modeling for Efficiency ... 104
Efficient Indexing ... 105
Efficient Queries ... 106

14 Performance Issues .. 111
III Utilizing Server Extensions .. 113

15 What are they Good For? ... 115
16 Queries ... 117
17 Derived Elements ... 123
18 Maintaining Semantic Integrity ... 129
19 Building Up a Library .. 133
20 More Examples .. 135

concat .. 136
contains ... 138
substringBefore ... 139
substringAfter .. 140
substring ... 141
trim ... 142
normalizeSpace .. 144
stringLength ... 146
qdoc .. 147

IV Rapid Application Development with Tamino ... 149
21 Introduction to XSLT ... 151

Procedural Transformation .. 152
Rule-Based Transformation .. 158
Limitations of XSLT .. 162
Using Style Sheets with Tamino ... 162

22 Mapping a Schema to a Web Page ... 165
23 Navigation with XLink .. 175

Defining Navigational Objects ... 176
Defining Navigational Links .. 178

24 The Tamino JavaScript API .. 191
25 XSLT Summary .. 197
26 Rapid Prototyping with XQuery 4 ... 199

Index ... 201

Advanced Conceptsiv

Advanced Concepts

Preface

Developing complex XML-based information systems is a relatively young discipline. Most of
today's information systems are based on relational techniques, simply because relational database
management systems have been in use for a long time.

However, this is going to change: the closed Enterprise Information Model is giving way to a
service-oriented Open Network Information Model. With XML, it has now become possible to
implement highly complex content in an open, natural and straightforward way - content that is
quickly becoming too complex for relational technology. XMLhas become the standard technology
for a huge variety of applications, including all web service implementations and SOA (service
oriented architecture) systems.

In the following chapters, we discuss how an enterprise-class Internet-enabled XML server such
as Tamino can store and process such complex information. We assume that you are familiar with
the basics of XML and that you know how to store and retrieve single documents with Tamino.

This document is intended for systems analysts, database administrators, schema designers,
application developers and web designers.

The chapter From Conceptual Model to Schema discusses how to model complex contents into
a collection of interrelated document types.We introduce XML Schema and showhow to translate
a conceptual model into schemas.

The chapter From Schema to Tamino explains how these schemas can be implemented with
Tamino. We discuss strategies for namespaces, indexing, queries, transactions, and performance.

The chapter Utilizing Server Extensions shows how Tamino's Server Extensions can be used to
extend the built-in functionality of Tamino. Code for example programs (date comparison, derived
elements, fetching documents, triggers, and more) is provided.

The chapter Rapid Application Developmentwith Tamino introduces programming with XSLT.
We show how XSLT can be used to implement a presentation layer that derives HTMLweb pages
frompresentation neutral XML content, and compare it with the emerging query language XQuery.
We show, too, how navigation structures can be described in a separate navigation layer with the
help of XLink.

v

vi

I From Conceptual Model to Schema

In this chapter, we first give a short introduction to conceptual modeling and XML Schema. Then
we discuss how conceptual models can be transformed into XML schemas. A discussion of how
to use the UML in XML environments ends the chapter.

Motivation

Conceptual modeling techniques are well known in enterprise software construction. Before an
application is implemented, a requirements analysis is performed which results in an informal
description of the business domain. The conceptualmodel captures the results of the requirements
analysis with more formal (and mostly visual) means. The conceptual model thus describes the
business domain. Constructing a conceptual model ensures that the participating analysts and
engineers have understood the problem. The model can then be used as a basis for the technical
architecture. The conceptualmodel itself should be independent from a given technical infrastruc-
ture; it should not matter whether SQL or XML is used to store the data, nor which programming
language is used to implement the system. Themain purpose of conceptualmodeling is to improve
communication between the parties involved in the development process.

Conceptualmodeling is awell-establisheddiscipline in the relationalworld.Wouldn't it be sufficient
to adopt the techniques and strategies developed there and simply map the relational designs
onto XML structures? Butwhile this approachmay be necessary to reengineer existing applications
(see Reverse Engineering of Relational Schemas), under normal circumstances it leads to poor
XML representation of the conceptualmodel: toomuch structural information is lost in the process.

1

In the rest of this chapter, we therefore discuss how conceptual models can be mapped directly
onto XML.We also introduce amodelingmethod that is particularly suited for the new application
domains that are typical for XML. Not that XML by itself would require a newmodeling method.
But the good old Entity Relationship Diagram (ERD) is not really well suited for the new, open
environments in which XML dominates.

Our Example: ‘All that Jazz’, A Knowledge Base for Jazz Music

Our example is a knowledge base for jazz music and jazz musicians. As you probably know, the
relationships between jazz musicians are manifold and complex. New bands and projects are set
up all the time, and there are many ways of collaboration. In this aspect jazz music very much
resembles electronic business, where business relations are muchmore short-lived than in the old
economy. In some cases we have fully virtual productions, for example in Carla Bley's famous
album "Escalator over the Hill".

In the following section we detail this example. We start with an informal verbal description,
formalize this description into a conceptual model, and then discuss how this model can be
transformed into a document base and into XML Schema. Finally, we take a look at howUML can
be employed in this process.

This information is organized under the following headings:

Informal Description

Conceptual Modeling

Introduction to XML Schema

FromModel to Schema

Integrity

Operations

From UML to XML

Schema-Related Web Sites

Advanced Concepts2

From Conceptual Model to Schema

1 Informal Description

Apopularmethod tomodel an information domain is to start with an informal, verbal description
of the scenario:

A jazz musician is a person.

A person has a name and a birth date.

A jazz musician collaborates with other jazz musicians.

A jazz musician belongs to a style
(during a certain period of time).

Instrumentalists, jazz singers, jazz composers are jazz musicians.

An instrumentalist plays one or several instruments.

An instrument has parts, consisting of other parts.

An instrument has a color and a maker.

A saxophone is an instrument.

A saxophone has a mouthpiece.

3

A saxophone mouthpiece has a body and a reed.

A mouthpiece body has a maker.

Mouthpiece, mouthpiece body and reed are instrument parts.

A reed has a maker and a grade.

A jam session is a form of collaboration.

A jam session is performed at a location and at a particular time.

A project is a form of collaboration
(during a certain period of time).

A band is a form of a collaboration
(during a certain period of time).

A collaboration can result in one or several albums.

An album has an album number and a title.

An album has one or several tracks.

Albums or jazz musicians are reviewed by critics.

A review has a publication date, a URL and some text.

A critic is a person.

The actual relationships are, as a matter of fact, much more complicated. For example we could
include a full taxonomy formusical instruments and styles. But for the purpose of this introduction
to conceptual modeling, the above description is adequate.

A simple grammatical analysis can identify nouns (Jazzmusician, Person, Name, BirthDate, Band,
Collaboration, Location, Album, etc.) and verbs (is, has, collaborate, plays, etc.) in each sentence.
This step helps us to identify relevant information items of the conceptual model.

Tip: Always use simple sentences.

Advanced Concepts4

Informal Description

2 Conceptual Modeling

■ Introducing Asset-Oriented Modeling .. 6
■ Asset or Property? .. 7
■ Normalization ... 13
■ Determining Business Objects ... 15
■ Resolving is_a Relations ... 17
■ Reverse Engineering of Relational Schemas ... 20
■ Models and Namespaces .. 23

5

We now transform this informal description into a more formal conceptual model.

In traditional conceptualmodeling (such as Entity RelationshipDiagrams orObject RoleModeling),
nouns would end up as entities (or attributes) and verbs would end up as relationships. However,
in the context of modern information systems this approach can create more problems than it
solves. For example:what shouldwedowith Collaboration-collaborateorwith reviews-Review?
Should we use the verb or the noun? Which represents this concept better: an entity or a relation-
ship?

Introducing Asset-Oriented Modeling

This ambiguity is one reason for taking a different approach and removing the artificial separation
between entity and relationship: in our model, both nouns and verbs become Assets. What is new
here is that the classic relationships are treated on the same level as entities: as things. This syn-
tactical reification (reify = to make into a thing) leads to a considerable simplification of the con-
ceptual model, and has some other advantages, too. In particular, it results in models that are easy
to transform into XML.

When modeling nouns and verbs as assets, there are two notable exceptions:

■ The verb "has" indicates either that an asset is attributed with a property, as in:

A person has a name and a birth date.

or that an asset aggregates other assets, as in:

A saxophone has a mouthpiece.

■ The expression "is a" indicates that an asset acquires properties from another asset, as in:

A jazz musician is a person.

The noun on the left hand side (jazz musician) is usually a more specific term; the noun on the
right hand side is usually a more general term (person).

Let us see how we can model a rather complex sentence like:

Advanced Concepts6

Conceptual Modeling

A jam session is performed at a location and at a particular time.

A possible resolution is to model jam_session, performance, and location as assets. The asset
performance has a qualifying property: time. Usually we use the noun form (performance) of a
verb (performed) to name the corresponding asset.

Asset or Property?

In the most general sense, an asset is anything we can talk about. But for the purpose of modeling
we want to categorize the things we can talk about into assets and properties.

■ In our informal description, properties are usually indicated by the verb "has": A saxophone has
a color.

■ Anything which plays a certain role in the context of our business is definitely an asset.

Tip: In many cases the distinction between a property and an asset can be made using a
simple rule: A property can belong to an asset, but an asset cannot belong to a property.
For example: a color cannot have a saxophone.

However, the distinction between both is not always so easy, and depends in some cases on the
context. Take for example:

An instrument has a maker.

A saxophone has a mouthpiece.

In the context of our small knowledge base, maker and mouthpiece do not play any particular role.
So it is acceptable tomodel them as properties of instrument or saxophone. However, in the context
of a supply chain for musical instruments, maker and mouthpiecewould certainly play a role (as
manufacturer and product), so we would have to model them as assets.

An item that is only connected to a single asset (like maker) is always a candidate for becoming a
property. In contrast, an item that also has other relationships must be modeled as an asset. Take
for example:

7Advanced Concepts

Conceptual Modeling

A project can result in an album.

Here, album could be modeled as a property of project, if we had not specified:

An album is reviewed by critics.

Composite Properties

In contrast to classic Entity Relationship Diagrams, we allow composite properties. Above, we
modeled performance and location (for example, CottonClub, Savoy Ballroom, or Centralstation)
as separate assets. But if these locations play no particular role in our business case, we can just
use a composite property to represent these items.

For

A jam session is performed at a location and at a particular time.

we might define a property performed_at that includes the sub-properties location and time.

Similarly, the property name of asset personmay include the sub-properties first, middle, and
last. A mouthpiecemay have sub-properties body and reed. This technique of composite (or
nested) properties allows us to arrive at very compact models and – not surprisingly – results in
very appropriate XML representations.

A Notation for Properties

We are now ready to introduce a more formal notation for assets.

The figure below shows the graphic representation of an asset. The first line contains the asset
name. This is followed by a key definition (we discuss this later), a list of properties, and a list of
constraints (also discussed later). The optional display label at the top of the asset is used when
the names of asset instances should differ from the asset name. In this case the display label shows
the possible names of asset instances. When an asset does not have instances (i.e. when the asset
is abstract) the display label is grayed out.

Advanced Concepts8

Conceptual Modeling

We introduce the following notation for properties:

ExampleDescriptionSyntax

An atomic componentwithout further
structure.

prop birthDate

See following rows.A property particle, i.e. a structure
consisting of several sub-properties.
The parentheses contain nested
expressions consisting of the following
structures:

(...)

Sequence (ordered list).(sub,...,sub) name(first, middle?,last)

Here, we require that the sub-properties of name are
always specified in the defined order. Queries can
later rely on this order.

Bag (unordered list).(sub&...&sub) reed(maker&grade) ↩

Here, we do not prescribe a particular sequence in
which maker and grademust be specified. Queries
cannot rely on an order relation between both.

9Advanced Concepts

Conceptual Modeling

ExampleDescriptionSyntax

Choice (alternative).(sub|...|sub) (period(from,to) | ↩
performedAt(location&time))

Aproperty is either a period or it is a performedAt
property.

Both properties and particles can be suffixed with one of the following modifiers:

ExampleDescriptionSyntax

mandatory [1..1](no modifier) last ↩

A last name is always required.

optional [0..1]prop? middle?

Not everybody has a middle name, so we make this
property optional.

repeated [1..n]prop+ track+

An album has one or several tracks.

optional and repeated [0..n]prop* album*

An arbitrary number of albums.

a minimum of n occurrences and a
maximum of m occurrences with 0 <=
n <= m

prop[n..m] track[1..25] ↩

The number of tracks is restricted to 25 at most.

The following notation allows recursively structured properties to be defined:

ExampleDescriptionSyntax

A label defines a reference point to the expression
within the curly braces. Later occurrences of the
label are substituted with this expression. In
particular, labels allow recursive structures to be
defined.

label{...label...} r{part(partNo,r*)} ↩

specifies a tree-like structure of parts.
Note that the *-modifier ensures that the
recursive structure is finite.

Given this notation, we now define our complete model. We have added a few more properties.

Advanced Concepts10

Conceptual Modeling

A Notation for Arcs

Assets are connected via directed arcs. You should notmisinterpret these arcs as classic relationships
in the sense of Entity Relationship Diagrams. (Remember that relationships are assets too.) For
this reason, arcs do not have names; however, the origin of an arc may be decorated with a role
name.

Similar to the notation used for properties, we use XML syntax to denote the cardinality of each
arc:

11Advanced Concepts

Conceptual Modeling

1..n+

0..n*

0..1?

n..m (0<= n <= m)[n..m]

Caution: Avoid situations in which the constraints of the model can never be satisfied, for
example:

Here, each instance of asset type C requires the existence of at least two instances of asset type A
and atmost one instance of asset type B. This is in contradictionwith the implicit constraint between
B and A which dictates a 1:1 relation between both.

Important: Therefore, we should always make sure that the intersection of all constraint
cardinalities used within a cyclic structure is not empty. This is always the case when we
only use the first three constraint types: their intersection contains always 1..1.

In addition to constraints, wemay attribute the origin of each arcwith a role name. Take for example
the asset influence. This asset has two arcs that connect it with jazzMusician – one in the role of
the influenced musician and one in the role of the musician who has influenced the first.

Inheritance

Youwill also have noticed thatwe have represented the is_a relationships not as assets butmerely
as arcs, the origin of the arc being decorated with the role name is_a. This makes it easier to
identify such inheritance and classification relationships. In contrast to normal arcs, inheritance
arcs may only be attributed with the “?” modifier indicating optional inheritance.

Special Cases

The has relationship (if it does not result in a property) results in a simple arc, too, pointing from
the asset that “has” to the asset which is “had”. This is, for example, the case for the relationship
between jazzMusician and collaboration. By using the noun form (collaboration) of "collaborates",
the sentence

Advanced Concepts12

Conceptual Modeling

A jazz musician collaborates with other jazz musicians.

is interpreted as

A collaboration has jazz musicians.

a relationship which is modeled with a simple arc.

A further design decision is to downgrade "plays" and "results_in" in

An instrumentalist plays one or several
instruments.

and

A project can result in an album.

We replace these relationships with the simple "has" relationship, too (i.e. "plays" and "can result"
do not become assets). In order to retain the semantic information, we use "plays" and "result" as
role names. This is not always easy to decide. If, for example, we had the relationship

An instrumentalist owns one or several instruments.

then we would probably model "owns" as a separate asset ownership because this asset could
become the subject of a new business relation:

After four weeks ownership is transferred to the pawn broker.

Clusters

The asset review shows another interesting construct: a cluster. A cluster is used to denote altern-
atives, and is represented by a circle containing the choice operator. In our case the cluster says
that a review relates either to an album or to a jazz musician. A cluster is a union of disjoint asset
types. Clusters are possible for normal arcs and inheritance arcs.

Normalization

After we have obtained a first draft of our model, we should normalize it. Unlike relational tech-
nology, XML allows a physical data format that very closely follows the structures of the actual
business data – there is no need to break complex information items into a multitude of “flat”
tables. We shall find that an XML document can represent a conceptual entity almost unmodified.

This does notmean that no normalization is required.We still mustmake sure that our information
model does not have redundancies, and that we end up with an implementation that is easy to

13Advanced Concepts

Conceptual Modeling

maintain and consistently matches the “real world” relationships between information items. We
make sure that:

■ Asset types are primitive, i.e. their properties do not contain assets that could be modeled as in-
dependent asset types. For example, the asset type albummust not embed data from
jazzMusician.

■ Asset types are minimal, i.e. they do not contain redundant properties, meaning none of their
properties can be derived from other properties. For example, the asset type personmust not
contain a property age as this can be derived from birthDate.

■ Asset typesmust be complete, i.e. other assets contained in the real world scenario can be derived
from the defined asset types. Our example is not complete, as we made no provision for solo
albums. Our model contains only albums that are the result of a collaboration. Also, albums
usually contain information aboutwhichmusician playedwhich instrument. This is not covered
by our model.

■ Asset types must not be redundant, i.e. it must not be possible to derive any of the defined asset
types from other asset types. In our example, we have a redundant asset. A band is a kind of
project - the main difference is that it exists over a longer period of time and probably produces
more albums. We could reflect this situation in our model by removing the properties name and
period(from,to) from asset band, and by routing the is_a arc from band to project instead of
collaboration.

■ All asset types must have a unique meaning.
■ Assets should have a key. Keys must be minimal, i.e. they must consist of the smallest set of
properties that can uniquely identify an instance. In our example, not every asset has a key (for
example, belongsTo, influence, collaboration and reviewdon't have a key).We should intro-
duce suitable keys for these assets. jazzMusician, instrumentalist, jazzSinger, jazzComposer,
and critic do not need their own key, because they inherit one from person. If an asset type
does not have suitable properties that can act as keys, we can easily equip themwith some kind
of a unique property (for example by generating a UUID for each instance).

Partitioned Normal Form

While the steps discussed above already result in a pretty robust model, there is one more thing
we can do. Assets finally result in XML elements or documents, and can thus be subject to trans-
formations (for example, via an XSLT stylesheet). Tomake the keys robust against such transform-
ations, we should make sure that each asset is in Partitioned Normal Form (PNF).

An asset type or property is in Partitioned Normal Form (PNF) if the atomic properties of an asset constitute
a key of the asset and all non-atomic properties and sub-properties are in PartitionedNormal Form themselves.

Or, in other words: All complex structures in the model (assets and complex properties) must
have atomic child nodes that can act as a key.

In our example, the following asset types are not in PNF:

Advanced Concepts14

Conceptual Modeling

■ person, because the key name(first,middle?,last) is a composite. A solution would be to in-
troduce a personal ID.Here,we opt to introduce an atomic ID composed from last name,middle
name and first name, such as MingusCharles.

■ jamSession, because the key performedAt(time, location) is a composite. Here we opt for a
different solution. We resolve the property performedAt into two independent properties: time
and location. These two properties are atomic and can thus constitute a multi-field primary
key that conforms to PNF.

■ saxophone, because the composite property mouthpiece is not in PNF (it has no atomic property
which could act as key). Here we should rather remove the property mouthpiece and use
mouthpiece_body and reed directly as parts of saxophone (because mouthpiece is in fact not a
single physical entity).

In particular, if we plan to store assets in relational databases, PNF is essential. Relational technology
requires fragmenting complex structures into flat relational tables. Keys that span complex struc-
tures would be lost during such a transformation to First Normal Form (1NF).

Determining Business Objects

Business objects are assets that play a prominent role in our scenario. In order to be able to
identify a business object, we must not only have an idea about the structure of the information,
but also what it will be used for.

In our example, all jazzMusician asset types, style, all collaboration asset types, album, review,
and critic could be business object classes. Jazz musicians are clearly the most important topic
in our knowledge base, but similarly important are style and the various collaborations. album
could play a separate role when we connect our knowledge base with a mail order system. And
review is probably an external resource to which we have to link via URL.

On the other hand, we made the decision not to model instrument as a separate business object.
We are only interested here in the instrument that a given musician plays; we do not plan to set
up a knowledge base aboutmusical instruments as such. Consequently,we incorporate instrument
and its subtypes into the jazzMusician business object.

We then group the remaining assets around the assets designated as business objects. Here, we
have shown this by demarcating each business object with a labeled box. We use a bold outline
for the identifying asset of each business object.

15Advanced Concepts

Conceptual Modeling

However, there is one constraint that we must enforce when constructing business objects from
assets:

Important: Starting from the identifying asset of a business object, we must be able to reach
any asset belonging to that business object by following the arcs in the indicated direction.

This constraint allows us to interpret each business object as an aggregation, and later allows us
to easily implement the business objects in hierarchical XML documents.

When we check this constraint for our model, we encounter two problems: From the assets
belongsTo and influence, both arrows lead to asset jazzMusician. This is bad, because when
starting at jazzMusicianwe cannot reach belongsTo and influence.

Advanced Concepts16

Conceptual Modeling

In order to solve these problems, we simply reverse one arc for each of the assets belongsTo and
influence. This results in a slightly different interpretation; we are now saying:

A jazzMusician has a "belonging" to a style.

and

A jazzMusician has influence.

By doing so, we have completed the former syntactic reification of relationships with a semantic
reification – "belonging" and "influence" have become true assets of jazzMusician.

Caution: When we reverse an arc, any cardinality constraint of that arc becomes invalid.
Therefore, we always decorate reversed arcs with an asterisk (*) to indicate that there are
no cardinality constraints for that arc. By doing so, however, we may lose some structural
information.

In addition, we have taken the opportunity to fix some problems with keys. collaboration and
review definitely need keys, because they are identifying assets of business objects. The identifying
asset of a business object must always have a key, because otherwise instances of business object
classes could become inaccessible.We have equipped collaborationwith a newproperty, namely
ID, which we use as a key. The reason is that the property namemay not be unique.

Resolving is_a Relations

To prepare the model for implementation with XML, we resolve all is_a relations. Because DTDs
and XML Schema do not really support inheritance, we have to find solutions for the various is_a
relations. (DTDs do not have an inheritancemechanism at all; XML Schema cannot handlemultiple
inheritance.) We have the following options:

■ Separate implementation of parent and child. For example, we could implement separate person
documents which would constitute a generic person data base. jazzMusician and critic in-
stances would have to refer to these person instances.

■ Inclusion of parent properties in the child class. For example, we could include the properties
of person into the asset types jazzMusician and critic.

■ Inclusion of child properties in the parent class. The child type would be stored in an extra
property in the parent instance. For example, we could represent instrumentalist, jazzSinger,
and jazzComposer in a generic document type jazzMusician and indicate the type ofmusician
in a special property. However, we would suffer some information loss: because jazz singers
and composers do not necessarily play an instrument, we would have to use the *-cardinality
for the connection to instrument, and not the +-cardinality. The constraint that a instrumentalist
must play at least one instrument would be lost. We would have to represent this through an

17Advanced Concepts

Conceptual Modeling

extra constraint that depends on the type of musician. We shall later see how to formulate this
sort of constraint.

■ As an further possibility, the is_a relations could be implemented similarly to an aggregation
that would, for example, allow a jazz musician to be a composer, a singer, an instrumentalist
or any combination of these. The problem of cardinality (* or +) would not appear if the instru-
ments are only allowed in the context of the instrumentalist. This would be possible using the
xs:all element of XML Schema, whereby jazzMusician could be an element whose schema
definition contains an xs:all element that in turn contains elements Instrumentalist, Composer
and Singer.

After applying these operations, our model could look like this:

Advanced Concepts18

Conceptual Modeling

Herewe have resolved the generic instrument asset into single instrument types such as saxophone,
guitar, trombone, etc. The different instruments are just too different to be represented in one
generic type. The consequence is that the asset type instrumentalist has a connection to all of
these types. This is done with a cluster, a construct already discussed above.

Structurally, our conceptual model is now complete. In later chapters we discuss how additional
constraints and operations can be defined. But before we do so, we discuss how to derive XML

19Advanced Concepts

Conceptual Modeling

schemas from the conceptual model. We give a short introduction to XML Schema in the next
section (Introduction to XML Schema).

Reverse Engineering of Relational Schemas

In some cases it is necessary to reengineer existing relational schemas. This is especially the case
if we plan to convert existing relational data into XML or to map relational structures onto XML
structures. If the original conceptual model is not available, we should try to reconstruct such a
model from the relational schemas. This usually results in XML data structures of higher quality
than the naive approach of mapping relational data directly onto XML.

Transforming relational schemas into an Asset Oriented Model is almost trivial:

■ Each table is mapped to an asset.
■ Each table column (except foreign keys) is mapped to an asset property.
■ Each corresponding foreign/primary key pair is represented as an arc pointing from the owner
of the foreign key to the owner of the primary key.

The following is a classical example for a relational schema:

By applying the above rules, we arrive at the following asset-oriented model:

Advanced Concepts20

Conceptual Modeling

Note that we cheated a bit here. We regrouped the three columns lastName, middleName, and
firstName into a complex property called name. Relational schemas flatten complex data structures
such as name (to achieve First Normal Form) and thereby lose structural information. Regrouping
of such columns, however, needs an understanding of the semantics of the model and cannot be
prescribed by simple rules.

In the next step, we determine our business objects and group the assets around them, as discussed
above in the section Determining business objects.

21Advanced Concepts

Conceptual Modeling

We have determined three business objects or business documents: Customer, Order and Product,
and have grouped Item together with Order. Because the asset Order is the identifying asset of
the business object Orderwe have reversed the arc between Order and Item to indicate that Item
belongs to Order. Because we reversed this arc, we decorated it with an asterisk (see the section
Determining business objects above). This makes sense: an order can have several items.

Using this technique, we finally arrive at well-structured XML documents representing not flat
tables but complex business objects. One interesting detail is that with an implementation in XML
the property position of asset Item becomes redundant. Sequences of XML elements are well
ordered; rows in a relational table, in contrast, are not, and therefore require an attribute such as
position in order to establish an ordered sequence. And, of course, orderNo in asset Item also
becomes redundant because it is already contained in asset Order.

Advanced Concepts22

Conceptual Modeling

Models and Namespaces

So far, we have not discussed how models are identified. A simple model name would be not a
good choice because it probably would not be unique within a global context. A better idea is to
use a URI as model identification, for example, a URI based on a domain name. In our case we
could choose http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia
for the jazz model, and
http://www.softwareag.com/tamino/doc/examples/models/order/reengineered for the order
model. This technique allows us to identify models uniquely. At the same time, such an identifier
defines a default namespace for the respective model. Because asset names are unique within a
model, the combination of namespace and local name identifies each asset uniquely within a
global context.

Let us assume that we want to separate our jazz encyclopedia model into two models: one for the
core jazz encyclopedia, and anothermodel inwhichwedefinemusical instruments. The idea behind
this is that we could reuse the model for musical instruments in other contexts, too, for example
in a knowledge base about classical music. We would establish a model for musical instruments
under a separate namespace, for example, under
http://www.softwareag.com/tamino/doc/examples/models/instruments. Our original jazz en-

23Advanced Concepts

Conceptual Modeling

cyclopedia model could be reconstructed by merging the now instrument-less jazz encyclopedia
model with the new instrument model.

And this is where the concept of namespaces really becomes important: when we start to merge
models. Let us assume that we want to create a new model for a record shop where we want to
sell jazz CDs on theWeb. Instead of defining everything from scratch, we import the jazz encyclo-
pedia model (which already imports the instrument model) and the order model. We then create
a new asset, namely CD, which inherits its properties from both the album asset in the jazz model
and the product asset in the order model.

Advanced Concepts24

Conceptual Modeling

25Advanced Concepts

Conceptual Modeling

Record ShopModel name:

http://www.softwareag.com/tamino/doc/examples/models/jazz/shopNamespaces:

e=http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia

i=http://www.softwareag.com/tamino/doc/examples/models/instruments

o=http://www.softwareag.com/tamino/doc/examples/models/order/reengineered

What happened here? The new model was defined with the default namespace
http://www.softwareag.com/tamino/doc/examples/models/jazz/shop, which also identifies it
uniquely. In addition, the model declares three namespace prefixes. The prefix "e" is assigned to
the namespace of the jazz model, the prefix "i" is assigned to the namespace of the instrument
model, and the prefix "o" is assigned to the namespace of the order model. All names of the assets
imported from the jazz model are prefixed with "e:", all names of the assets imported from the
instrument model are prefixed with "i:", and all names of the assets imported from the order
model are prefixed with "o:".

What remains to do is to resolve the is_a relationships for the asset CD. This results in the following
asset definition:

Advanced Concepts26

Conceptual Modeling

Here, we have inherited properties across namespaces. The properties from both e:album and
o:Product are incorporated into asset CD and belong now to the namespace of the record shop
model.

What if we have name clashes between the inherited properties? Well, this problem is not specific
to namespaces but can also occur during multiple inheritance in a single namespace. The conflict
is resolved by combining the conflicting properties by intersection. If there are incompatible
property definitions, the intersection is empty, and the property is discarded. Of course, it is always
possible to override inherited properties locally.

27Advanced Concepts

Conceptual Modeling

28

3 Introduction to XML Schema

■ Datatypes .. 30
■ Namespaces and Wildcards .. 43
■ The Structure of a Schema Definition .. 45
■ Reuse Mechanisms ... 46
■ Elements vs. Attributes ... 48

29

W3C released the Recommendation for XML Schema in May 2001 (http://www.w3.org/TR/xmls-
chema-0). The definition of the standard not only took into account existing schema languages
such as XSchema, DDML, XML-Data, XDR and SOX, but also relied on the active participation of
wide parts of the IT industry, especially databasemanufacturers.Most XML communities are now
moving towards XML Schema.

If you are new to XML Schema, it is best to think of it asDTD + Datatypes + Namespaces and worry
about the rest later. As you are probably already familiar with DTDs, we begin with datatypes.

Datatypes

The introduction of a full type system (http://www.w3.org/TR/xmlschema-2/) for elements and
attributes is probably the most important aspect of XML Schema. It includes the attribute types
already familiar from DTDs, but also introduces a wide range of datatypes taken from SQL and
programming languages.

XML Schema differentiates between simple datatypes and complex datatypes. Complex datatypes
are - as the name indicates - composed of other, simpler datatypes and are only applicable to XML
elements, because only elements can contain child nodes. Simple datatypes, at the other hand, are
applicable to both elements and attributes.

Simple Types

Simple datatypes are either built-in datatypes, or are derived from these datatypes. Each simple
datatype is characterized by a primitive (built-in) datatype on which it is based, and by a set of
constraining facets that are applied to the Value Space or the Lexical Space of the datatype.

Value Space and Lexical Space

XML Schema's type system makes a clear distinction between value space and lexical space.
Whereas the value space consists of an abstract collection of valid values for a datatype, the lexical
space contains the lexical representations of these values – i.e. the tokens that appear in the XML
document.

For example, canonical lexical representations for an item of datatype boolean are the
strings"true"and"false". But alternative string representations such as "1" and "0" are also valid
lexical representations. The value space for the datatype boolean, at the other hand, contains the
Boolean values true and false.

Primitive Datatypes

XML Schema defines a large number of built-in primitive datatypes, all of which are supported
by Tamino.

Advanced Concepts30

Introduction to XML Schema

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-2/

SQL equivalentLexical representationDescriptionDatatype

VARCHARA short stringCharacter string of unlimited
length.

string

BIT"true","false", "1", "0"Boolean value.boolean

DECIMAL"-1.23", "126.54", "0.0", "+100000.00", "210"Decimal number. A minimum
precision of 18 digits is supported
by conforming processors.

decimal

REAL"-1E4", "127.433E12", "12.78e-2", "12", "0",
"-0", "INF", "-INF", "NaN"

A single-precision 32-bit floating
point type according to IEEE

float

754-1985. Special values are
positive and negative zero, positive
and negative infinity, and
not-a-number.

DOUBLE"-1E4", "127.433E12", "12.78e-2", "12", "0",
"-0", "INF", "-INF", "NaN"

A double-precision 64-bit floating
point type according to IEEE
754-1985.

double

INTERVALThe lexical representation follows the
format PnYnMnDTnHnMnS. An optional

Specifies a period of time. The
value space is a six-dimensional

duration

fractional part for seconds is allowed.
Negative durations are allowed, too.

Examples:

space where the coordinates
designate the Gregorian year,
month, day, hour, minute, and
second.

"PT1H3M13.5S"

"P1Y5M"

"-PT3H"

TIMEThe lexical representation follows the
format hh:mm:ss

A specific time of day as defined in
section 5.3 of ISO 8601

time

An optional fractional part for seconds
is allowed. Additionally, a time zone
can be specified: "Z" for UTC, or a
signed time difference in the format
hh:mm.

Examples:

"05:20:23.2"

"13:20:00-05:00"

DATEThe lexical representation follows the
format CCYY-MM-DD. To accommodate

A Gregorian calendar date
according to section 5.2.1 of ISO
8601.

date

values outside the range 1-9999,
additional digits and a negative sign can
be added to the left. (The year 0000 is
prohibited.)

31Advanced Concepts

Introduction to XML Schema

SQL equivalentLexical representationDescriptionDatatype

Example:

"1999-05-31"

TIMESTAMP
(slightly

The lexical representation follows the
formatCCYY-MM-DDThh:mm:ssZ,where

A specific instant of time (a
combination of date and time) as
defined in section 5.4 of ISO 8601.

dateTime

different lexical
representation)

the character "T" separates date from
time and "Z" denotes an optional time
zone.

Examples:

"1999-05-31T13:20:00-05:00"
"2001-12-01T05:20:23.2"

DATEThe lexical representation follows the
format CCYY-MMZ. "Z" denotes an
optional time zone.

Examples:

Represents a specific Gregorian
month in a specific Gregorian year.

gYearMonth

"2001-05"

DATEThe lexical representation follows the
format CCYYZ. "Z" denotes an optional
time zone.

Examples:

Represents a Gregorian year.gYear

"1984"

DATEThe lexical representation follows the
format --MM-DDZ. "Z" denotes an
optional time zone.

Examples:

Specifies a recurring Gregorian
date.

gMonthDay

"--04-01"

DATEThe lexical representation follows the
format --MM--Z. "Z" denotes an optional
time zone.

Examples:

Denotes a Gregorian month that
recurs every year.

gMonth

"--07--"

DATEThe lexical representation follows the
format ---DDZ. "Z" denotes an optional
time zone.

Examples:

Denotes a Gregorian day that
recurs every month.

gDay

"---13"

Advanced Concepts32

Introduction to XML Schema

SQL equivalentLexical representationDescriptionDatatype

BINARY/BLOB"9a7f", "FFFF3", "0100"Arbitrary hex-encoded binary data.hexBinary

BINARY/BLOBBase64-encoded arbitrary binary
data. The entire binary stream is

base64Binary

encoded using the Base64
Content-Transfer-Encodingdefined
in Section 6.8 of RFC 2045.

VARCHARA Uniform Resource Identifier
reference (URI).

anyURI

VARCHARAnXMLqualified name consisting
of namespace name and local part.

QName

VARCHARThis datatype is abstract; users must
derive their own datatype from it.

Represents the NOTATION
attribute type fromXMLattributes.

NOTATION

In addition to these primitive datatypes, the Recommendation also defines built-in datatypes that
are derived from these primitive datatypes by applying constraining facets. For example, the
datatype nonNegativeInteger is derived from the datatype integer by constraining its value
space to non-negative values, i.e. by applying the constraining facet minInclusive value="0".

Another set of built-in datatypes is constructed from other built-in datatypes by list extension.
The datatypes NMTOKENS, IDREFS, and ENTITIES are derived in this way from NMTOKEN,
IDREF, and ENTITY. An attribute or element with such a datatype can contain several values
separated by blanks.

33Advanced Concepts

Introduction to XML Schema

In addition to these built-in datatypes, XML Schema allows the user to define simple datatypes
by applying constraining facets to existing simple datatypes, a process which is also supported
by Tamino. Each facet controls a different aspect of a datatype, for example the total number of
digits or the number of fractional digits for a decimal datatype.

The following constraining facets are available:

Advanced Concepts34

Introduction to XML Schema

DescriptionFacet

Defines the length of a datatype value (number of characters for strings, number of octets
for binary, etc.).

length

Lower bound for the length of a datatype value.minLength

Upper bound for the length of a datatype value.maxLength

Restricts the values of a datatype by constraining the lexical space to a specific pattern.
Patterns are defined via regular expressions. The syntax for the specification of patterns

pattern

uses almost the same tokens and escape symbols as other languages that support patterns
(such as Perl).

Constrains the value space of a datatype to the specified enumeration values.enumeration

This is not really a constraining facet but specifies a policy for handling whitespace in input
values: preserve keeps all whitespace characters, replace replaces each whitespace

whitespace

characterwith the blank character, collapse reduces all sequences ofwhitespace characters
to a single blank character.

Upper bound for the value space of a datatype, includes the specified value.maxInclusive

Upper bound for the value space of a datatype, excludes the specified value.maxExclusive

Lower bound for the value space of a datatype, includes the specified value.minInclusive

Lower bound for the value space of a datatype, excludes the specified value.minExclusive

Maximum total number of decimal digits in the values of datatypes derived from datatype
decimal.

totalDigits

Maximum number of decimal digits in the fractional part of values of datatypes derived
from decimal.

fractionDigits

Derived Built-In Datatypes

In addition to the primitive built-in datatypes shown above, the following derived datatypes are
also available in XML Schema:

SQL equivalentDescriptionDerived fromDatatype

VARCHAR
VARWCHAR

Cannot contain carriage return (#xD), line
feed (#xA) or tab (#x9) characters.

stringnormalizedString

VARCHAR
VARWCHAR

Cannot contain line feed (#xA) or tab
(#x9) characters, cannot have leading or

normalizedStringtoken

trailing spaces (#x20) and cannot have
internal sequences of two ormore spaces.

VARCHAR
VARWCHAR

Language identifiers as defined by ISO
639 and ISO 3166.

tokenlanguage

VARCHAR
VARWCHAR

Represent the corresponding attribute
type from XML 1.0 (DTD).

tokenNMTOKEN

NMTOKENS

Name

NCName

35Advanced Concepts

Introduction to XML Schema

SQL equivalentDescriptionDerived fromDatatype

ID

IDREF

IDREFS

ENTITY

ENTITIES

no equivalent (value
range too big)

The standard mathematical integer
datatype of arbitrary size. Derived from

decimalinteger

datatype decimal by setting the facet
fractionDigits to 0.

no equivalentInteger less than or equal to zero.integernonPositiveInteger

no equivalentInteger less than zero.nonPositiveIntegernegativeInteger

BIGINTInteger in the range from
-9223372036854775808 to
9223372036854775807.

integerlong

INTEGERInteger in the range from -2147483648 to
2147483647.

longint

SMALLINTInteger in the range from -32768 to 32767.intshort

TINYINTInteger in the range from -128 to 127.shortbyte

no equivalentInteger greater than or equal to zero.integernonNegativeInteger

no equivalentInteger in the range from 0 to
18446744073709551615.

nonNegativeIntegerunsignedLong

no equivalentInteger in the range from 0 to 4294967295.unsignedLongunsignedInt

no equivalentInteger in the range from 0 to 65535.unsignedIntunsignedShort

TINYINTInteger in the range from 0 to 255.unsignedShortunsignedByte

no equivalentInteger greater than zero.nonNegativeIntegerpositiveInteger

User-Defined Datatypes

As we have already mentioned above, it is possible for the user to restrict built-in datatypes even
further. Let us look at an example. We want to declare a schema for the business object
jazzMusician. We choose to represent the property type as an attribute. Since only three values
are allowed, wewant to declare the attribute accordingly, restricting its value range to "instrument-
alist", "jazzSinger", and "jazzComposer". We can achieve this with the following definition:

Advanced Concepts36

Introduction to XML Schema

<xs:attribute name = "type">
<xs:simpleType>

<xs:restriction base = "xs:NMTOKEN">
<xs:enumeration value = "instrumentalist"/>
<xs:enumeration value = "jazzSinger"/>
<xs:enumeration value = "jazzComposer"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>

Here we declare a simple datatype on the fly. This new anonymous datatype, which is only used
for the attributewith the name type, is derived from the built-in datatype xs:NMTOKEN by restriction.
We then use three occurrences of the xs:enumeration facet to define the three possible values.

Similarly, we could define an element grade (for the saxophone mouthpiece):

<xs:element name = "grade">
<xs:simpleType>

<xs:restriction base = "xs:decimal">
<xs:fractionDigits value = "1"/>
<xs:totalDigits value = "2"/>

</xs:restriction>
</xs:simpleType>

</xs:element>

Herewe use a restricted form of the built-in datatype xs:decimal; we only allow one decimal digit
before and one decimal digit after the decimal point.

Instead of using a derived simple type anonymously, we can also give it a name:

<xs:simpleType name="gradeType">
<xs:restriction base = "xs:decimal">

<xs:fractionDigits value = "1"/>
<xs:totalDigits value = "2"/>

</xs:restriction>
</xs:simpleType>

Such a type definitionmust bemade at the schema level, as a direct child node of the <xs:schema>
element. Later we can refer to that type definition by quoting the type name:

<xs:element name = "grade" type="gradeType"/>

Complex Datatypes

In contrast to the simpleTypedeclaration there is also a complexTypedeclaration. Complex datatypes
are used to combine several XML elements and attributes into one datatype. Thus they are a
central element in schema definition. In particular, complex datatypes are used to define elements
that contain child elements and/or have attributes. As with simple datatypes, we can use complex
types here as anonymous types, defined on the fly, or as explicitly named types for later reference.

37Advanced Concepts

Introduction to XML Schema

Here is an example:

<xs:complexType name="periodType">
<xs:sequence>

<xs:element name = "from" type = "xs:date"/>
<xs:element name = "to" type = "xs:date"/>

</xs:sequence>
</xs:complexType>

and

<xs:element name = "period" type="periodType"/>

Here we simply define a complex element that contains a period of time: the first child element
from contains the start date, the second child element to contains the end date. The elements are
bound togetherwith the xs:sequence connector. This constructor requires that instance documents
always use the prescribed sequence of elements. For example:

<period>
<from>1917-05-23</from>
<to>1918-11-05</to>

</period>

is valid, whereas

<period>
<to>1918-11-05</to>
<from>1917-05-23</from>

</period>

is invalid.

Here is another example:

<xs:element name = "performedAt">
<xs:complexType>

<xs:all>
<xs:element name = "location" type = "xs:normalizedString"/>
<xs:element name = "time" type = "xs:dateTime"/>

</xs:all>
</xs:complexType>

</xs:element>

Here we have used the connector xs:all. This connector creates a bag (i.e. an unordered list) of
elements, so both of the following instances are valid:

Advanced Concepts38

Introduction to XML Schema

<performedAt>
<location>Dixie Park</location>
<time>1910-03-27T17:15:00</time>

</performedAt>

<performedAt>
<time>1910-03-27T17:15:00</time>
<location>Dixie Park</location>

</performedAt>

As you can see, XML Schema makes it easy to specify unordered sequences. With the DTD one
had to resort to specifying alternatives of all possible permutations of the child elements; quite a
laborious process.

The third possibility to connect elements is the xs:choice connector, which specifies alternatives.

All of these connectors can be nested to create complex element structures. There is one exception:
the xs:all connector cannot directly contain other connectors (but it can contain other complex
elements). In the following example we define an element that is either a period or a performedAt
type element:

<xs:element name = "collaborationContext">
<xs:complexType>

<xs:choice>
<xs:sequence>

<xs:element name = "from" type = "xs:date"/>
<xs:element name = "to" type = "xs:date"/>

</xs:sequence>
<xs:all>

<xs:element name = "location" type = "xs:normalizedString"/>
<xs:element name = "time" type = "xs:dateTime"/>

</xs:all>
</xs:choice>

</xs:complexType>
</xs:element>

Caution: Schema designers should always design schemas that are deterministic. A schema
is deterministic if the parser can decide at each choice point which branch to take without
having to look ahead in the document. For example, the particle ((a,b)|(a,c)) is not de-
terministic, because the parser does not have enough information when it is parsing the
element a to decide which branch to take. As required by XML Schema, Tamino refuses to
accept such a schema (with an INOXDE7909 response code). The solution is to factor the
common a element out and redesign the particle into (a,(b|c)). Similarly, ((a,b)|(c&a))
is not deterministic because the all group (c&a) allows valid instances of (a&c). Here we
would need to redesign the particle as ((a,(b|c))|(c,a)).

By default, an element of complex type must only contain attributes and child elements, but no
other content. To allow for mixed content (i.e. text interspersed between child elements) we must

39Advanced Concepts

Introduction to XML Schema

specify mixed="true" for the complex type definition. Thus, XML Schema allows control over the
number and order of child elements within mixed content, which is not possible in a DTD.

<xs:element name = "track">
<xs:complexType mixed = "true">

<xs:sequence>
<xs:element name = "duration" type = "xs:duration"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Here we have equipped the property track from the business object albumwith an additional
element duration. This defines the duration of each track. In addition, the element track contains
the title of each track as text content. This is possible because xs:complexTypewas specified with
mixed="true". Thus we would allow instances such as

<track>Blue Monk<duration>PT7M37S</duration></track>

Defining Attributes

The connectors discussed above (sequence, choice, all) are always necessary when you want to
nest XML elements. Even if an element has only a single child element, the child element must be
placed into a sequence. If an element has no child elements but only attributes, then we do not
need these connectors. However, the type of the element is still complex.

In this case we can specify xs:attribute elements as children of the xs:complexType element.
The result would be an empty element equipped with attributes (XML Schema does not have
an"EMPTY" specifier as the DTD has).

Alternatively, we can specify the xs:attribute elementswithin an xs:simpleContent declaration,
as shown in the following example:

<xs:element maxOccurs = "unbounded" name = "track">
<xs:complexType>

<xs:simpleContent>
<xs:extension base = "xs:normalizedString">

<xs:attribute name = "duration" type = "xs:duration" use = "required"/>
</xs:extension>

</xs:simpleContent>
</xs:complexType>

</xs:element>

Here we have defined duration as an attribute of track.

Defining Constraints

We have also explicitly defined the cardinality constraint maxOccurs for the element track. XML
Schemahas two cardinality constraints: maxOccurs and minOccurs. minOccursdefines theminimum
number of element occurrences required, maxOccurs the maximum. The default value for both is

Advanced Concepts40

Introduction to XML Schema

1, so if nothing is specified, an element must appear once and only once. These constraints replace
and extend the element modifiers as we know them from DTDs.

DescriptionDTDmaxOccursminOccurs

single element requirednone11

one or more elements, at least one required+unbounded1

optional single element?10

zero or more elements, optional*unbounded0

at least n elements, at most m elements.no equivalentmn

at least n elements.no equivalentunboundedn

Caution: A maxOccurs value greater than 1 is not allowed for elements that contain an xs:all
connector, or for elements contained in an xs:all connector.

Complete Schema

Here is a complete schema definition for the business object collaboration. In the XML prologue
we first define a namespace prefix for XML Schema:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:element name = "collaboration">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "name" type = "xs:NMTOKEN"/>
 <xs:choice>
 <xs:element name = "performedAt">
 <xs:complexType>
 <xs:all>
 <xs:element name = "location" type = "xs:normalizedString"/>
 <xs:element name = "time" type = "xs:dateTime"/>
 </xs:all>
 </xs:complexType>
 </xs:element>
 <xs:element name = "period">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "from" type = "xs:date"/>
 <xs:element name = "to" type = "xs:date"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 <xs:element name = "jazzMusician" type = "xs:NMTOKEN" maxOccurs = "unbounded" ↩
minOccurs = "2"/>
 <xs:element name = "result" type = "xs:NMTOKEN" maxOccurs = "unbounded" ↩
minOccurs = "0"/>
 </xs:sequence>

41Advanced Concepts

Introduction to XML Schema

 <xs:attribute name = "type" use = "required">
 <xs:simpleType>
 <xs:restriction base = "xs:NMTOKEN">
 <xs:enumeration value = "jamSession"/>
 <xs:enumeration value = "project"/>
 <xs:enumeration value = "band"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
</xs:schema>

The root element is collaboration. This element has an attribute type, and a sequence of child
elements consisting of the element name and a choice of the elements performedAt and period,
followed by the elements jazzMusician and result.

XML Schema gets a bit lengthy at times. Tamino's schema editor can give you a much better
overviewof the structure of a document, sowe shall use this representation for structural overviews.

Advanced Concepts42

Introduction to XML Schema

Namespaces and Wildcards

Namespace

Namespaces were introduced into XML in order to avoid name clashes between different vocab-
ularies. The concept of namespaces allows us, for example, to mix language elements from SVG
with those of XHTML, or to process our own XML documents with XSLT. Last but not least, it
allows us to define schemas with XML Schema, because by using namespace prefixes we can dif-
ferentiate between XML Schema tags and our own element names.

Each namespace identifier must be globally unique - usually a URI is used for that purpose. The
definitionwithin XMLdocuments is simple: a document node is equippedwith an xmlns attribute
to define the default namespace. Similarly, additional namespaces can be introduced by defining
namespace prefixes using attributes of the form xmlns:<prefix>="<uri>". The scope of such a
definition is the node inwhich it is defined plus all child elements, unless a child element overrides
it with another namespace declaration. So, if we declare namespaces in the root element of a doc-
ument their scope usually is the whole document.

We say that the name of an element is qualified if that element is within the scope of a default
namespace declaration, or if its name is specified with a namespace prefix within the scope of the
namespace declaration for this prefix. An attribute is qualified if its name is equipped with a
namespace prefix.

Now, let's get back to XML Schema. Onemajor advantage of XML Schema over DTDs is that XML
Schema fully supports XML namespaces. In order to do so, XML Schema introduces the concept
of the target namespace. Each schema file may declare at most one target namespace. All elements
defined in this schema file must belong to this namespace. So, a schema file may define either
namespace-less elements, or elements belonging to the specified target namespace.

Does this mean that we cannot define multi-namespace schemas? No; the emphasis is here on
schema file. We can always compose multi-namespace schemas by importing (see below) other
schema files into a schema.

Importing Foreign Namespaces

The import statement is used in XML Schema to compose multi-namespace schemas. A typical
example is given below:

43Advanced Concepts

Introduction to XML Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema ↩
targetNamespace="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 ↩
xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.softwareag.com/tamino/doc/examples/models/instruments">
 <xs:import ↩
namespace="http://www.softwareag.com/tamino/doc/examples/models/instruments"
 schemaLocation="instrument.xsd"/>
 ...
</xs:schema>

import statements are always given at the beginning of a schema clause. An import statement al-
ways specifies a namespace to import, and may optionally specify an associated schema file with
the schemaLocation attribute. Note that this attribute only gives a hint to the XMLprocessor about
the location of the schema file associated with the imported namespace. XML processors are not
required to use this attribute, but may use their own logic to find the associated schema. The same
is, by the way, true for the xsi:schemaLocation attribute in document instances.

Advanced Concepts44

Introduction to XML Schema

Wildcards

Another mechanism to allow for foreign namespaces is the use of wildcards. A wildcard (i.e. an
element or attribute of arbitrary content) can be declaredwith the XML Schema elements <xs:any>
or <xs:anyAttribute>. This allows for the inclusion of elements and attributes from foreign
schemas. For example, sections of XHTML, SVG, RDF and other content could be included into a
document. A typical applicationwould be the description property in the style asset of our jazz
model, where we could use XHTML to mark up the content.

It is possible to constrain the namespace of the content of such a wildcard. This is done with the
attribute namespace. This attribute can contain:

■ either a list of namespace identifiers, each consisting of:
■ an explicit namespace URI;
■ the string "##targetNamespace", which denotes the target namespace of the current schema
file;

■ the string "##local", which specifies the namespace of the respective document instance;
■ or one of the following string values:

■ the string "##any", which allows any namespace. This is also the default value of the namespace
attribute. This value is often used together with processContents="skip";

■ the string "##other", which stands for any namespace other than the target namespace.

It is also possible to specify how the content of such an element should be processed by the parser:

■ processContents="strict" causes the parser to check the wildcard instance for valid content;
■ processContents="lax" causes the parser to check the content of the wildcard instance if there
is an appropriate declaration, otherwise the element or attribute can be skipped;

■ processContents="skip" stops the parser from checking thewildcard instance for valid content.

The Structure of a Schema Definition

Each schema file contains exactly one <xs:schema> element, which serves as the root element for
the schemadefinition. Any global elementmay be used as the root element of a valid XML instance.
The attribute elementFormDefault of the xs:schema element specifies whether locally defined
elements in instances of the schemamust be qualifiedwith a namespace, either by using an explicit
prefix or via the use of a default namespace in the instance. Similarly, the attribute attributeForm-
Default of the xs:schema element specifies whether locally defined attributes in instances of the
schema must be qualified with a namespace, either explicitly or implicitly as for elements. The
form attribute specified on an element or attribute definition in the schema overrides the effect of
the corresponding elementFormDefault or attributeFormDefault setting.

45Advanced Concepts

Introduction to XML Schema

A schema clause can have several attributes, such as in:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 ↩
xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 ↩
targetNamespace="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"> ...
</xs:schema>

The default namespace is set identical with the target namespace, and the prefix "xs:" is defined
for the XML Schema namespace. This means that we do not have to prefix our own definitions
within the schema, but we have to prefix all XML Schema tags with "xs:". We also specify that
document instancesmust use elements in a qualified form, either by setting the default namespace
of the document instance root element to "http://www.softwareag.com/tamino/doc/examples/mod-
els/jazz/encyclopedia" or by defining and using an appropriate namespace prefix.

Reuse Mechanisms

Global Elements and Attributes

In XML Schema it is possible to define elements and attributes both locally and globally. In contrast,
a DTD can define elements only globally, and attributes only locally. This has always been a
problem. For example, with aDTD it would not be possible to implement ourmusical instruments
(within jazzMusician) correctly: both saxophone and trombone have a mouthpiece, but in the
case of the saxophone the mouthpiece consists of a body and a reed, in the case of the trombone
it is just the body. Obviously, a single global definition for mouthpiece is not appropriate. With
XML Schema there is no problem: we simply define mouthpiece locally, once in the context of
trombone, and once in the context of saxophone.

Sometimes, however, we want to reuse an element definition. In this case we define the element
as a global element, as a direct child of the xs:schema clause. For example:

<xs:schema ...>
<xs:element name = "jazzMusician">

...
</xs:element>
<xs:element name = "maker" type = "xs:string"/>

</xs:schema>

When we want to reuse this definition we simply use an element reference like this:

Advanced Concepts46

Introduction to XML Schema

<xs:element ref = "maker">

The same technique is possible with attributes when we want to reuse attribute definitions.

Global Datatypes

By defining a simple or complex datatype as a child element of the xs:schema element, it can be
used as a global datatype. The name attribute of the appropriate xs:simpleType or xs:complexType
element must be assigned a value that can be referred to by other elements in the schema.

Element Groups and Attribute Groups

Other reuse constructs are named global element groups and named global attribute groups. Here
is an example of a named element group:

<xs:group name="nameGroup">
<xs:sequence>

<xs:element name="first" type="xs:token"/>
<xs:element name="middle" type="xs:token" minOccurs="0"/>
<xs:element name="last" type="xs:token"/>

</xs:sequence>
</xs:group>

We can then use this group definition within an element definition:

<xs:element name="name">
<xs:complexType>

<xs:group ref="nameGroup"/>
</xs:complexType>

</xs:element>

Named element groups are also the preferred way to express recursive structures:

<xs:group name="partGroup">
<xs:sequence>

<xs:element name="partNo" type="xs:token"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="part" minOccurs = "0">
<xs:complexType>

<xs:group ref="partGroup"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:group>

In this example, the part element must be optional (minOccurs="0") so that the recursion does
not specify an infinite loop.

47Advanced Concepts

Introduction to XML Schema

Elements vs. Attributes

In the XML community (and previously in the SGML community) there had always been a heated
debate: when to use an element tomodel an information or data item andwhen to use an attribute.
The question is one of themost frequently asked by developers that are new to XML. The question
has been asked since SGML existed; however, we shall see that now, with XML Schema available,
the answer has changed.

Let us look at an instance of the collaboration schema shown above:

<collaboration type="jamSession">
<name>Antibes1960</name>
<performedAt>

<location>Antibes</location>
<time>1960-07-13T20:00:00<time/>

</performedAt>
<jazzMusician>MingusCharles</jazzMusician>
<jazzMusician>DolphyEric</jazzMusician>
<jazzMusician>PowellBud</jazzMusician>
<result>CD53013</result>

</collaboration>

This layout is almost completely based on the use of elements. Only the property type has been
implemented as an attribute.

A completely attribute-based layout could look like the following:

<collaboration
type="jamSession"
name="Antibes1960"
performedAt-location="Antibes"
performedAt-time="1960-07-13T20:00:00"
jazzMusician="MingusCharles DolphyEric PowellBud"
result="CD53013" />

Note that we have lost some structural information. Only by adopting a (custom) naming pattern
were we able to maintain the structural relationship between performedAt, location and time.
An alternative would be to use only a single attribute such as:

Advanced Concepts48

Introduction to XML Schema

performedAt="Antibes 1960-07-13T20:00:00"

However, we would lose some of the descriptive power of XML and would require a custom
parser to process this attribute value.

Also, since an attribute for an element cannot appear more than once, the names of the jazz musi-
cians have been combined here into a single attribute. This is a custom solution andwould require
a custom parser to process the value. Other custom solutions are possible, for example, the use of
separate attributes jazzMusician-1, jazzMusician-2 etc.

Another attribute based approach makes extensive use of ID- and IDREF-attributes. The whole
document is “flattened” into elements that have only attributes but no child elements:

<collaboration root="1">
<root id="1"

type="jamSession"
name="Antibes1960"
performedAt="2"
jazzMusician="MingusCharles DolphyEric PowellBud"
result="CD53013" />

<performedAt id="2"
location="Antibes"
time="1960-07-13T20:00:00" />

</collaboration>

In this example the attribute performedAtwould have been defined as an IDREF attribute. It
identifies the element with id="2"which is performedAt.

This technique can be used to represent arbitrary structures as a list of empty elements. Basically,
each XML document mimics a small relational database. While this technique offers a consistent
approach to all kinds of information structures, it suffers from two drawbacks: such documents
are hard to read, and they are awkward to query.

Juxtaposed to this design is to throw out attributes altogether. In our case this would require us
to implement the attribute type as an element, which is easy:

<type>jamSession</type>

The truth lies somewhere between these two extremes and largely depends on context and personal
taste. Is it essential that the documents should be as short as possible, or is it important to keep
the processing logic simple? Is the document only to be used by machines, or is it also to be read
be humans? Are the documents machine generated or are they authored by humans, and when
yes, with which tools?

Especially when using DTDs for schema definition, there are some strong reasons for using attrib-
utes in some cases:

49Advanced Concepts

Introduction to XML Schema

1. In DTDs, only attributes support the construction of relationships with ID/IDREF keys.

2. DTDs allow the definition of default and fixed values only for attributes.

3. A DTD does not allow type definitions (ID, IDREF, NMTOKEN, etc.) for elements.

4. In DTDs, only attributes of an element form an unordered set. This can sometimes be useful
when no predetermined sequence order between information items is required.

5. Attributes are much easier to access in DOM and SAX.

6. When authoringdocument-centric XML in an appropriate XMLeditor, it is oftenmore convenient
to use attributes for annotating text. The attributes do not litter the running text, and spell
checking is only applied to elements.

However, with XML Schema the reasons 1-4 no longer apply:

■ Elements can now be defined as ID or IDREF.
■ A wide range of datatypes is available for elements and attributes.
■ Elements can now have default or fixed values.
■ The all connector allows unordered sequences of elements.

This gives elements a certain advantage:

1. Elements can repeat. This is not possible with attributes.

2. It is possible to define choices (alternatives) between elements. This is not possiblewith attributes.

3. Elements are easy to extend when necessary by adding child elements or attributes.

4. Attributes of an element always formanunordered set, so it is not possible to establish a sequence
order across attributes.

5. Elements can contain whitespace and delimiters; whitespace handling can be specified at the
element level.

6. Elements are easier to search for in search engines.

7. When editing data-centric XML in an XML editor, storing content in attributesmakes the editing
processmore difficult: often extra keystrokes ormouse actions are required to view the attributes.

These are strong reasons for using elements. We would suggest using attributes to describe an-
notation only (such as language identifier, element author, element version, element ID, etc.), and
using elements to represent content. However, what is content and what is metadata can depend
on the context. A good definition to distinguish content from annotation is based on a suggestion
by Elliot Kimber: If I removed this data, wouldmy understanding of or my ability to comprehend
the content change? If the answer is no, it's annotation, if the answer is yes, it's content.

Advanced Concepts50

Introduction to XML Schema

4 From Model to Schema

■ Adding Type Information ... 52
■ Document-Centric Layout ... 53
■ Creating a Type Library .. 54
■ Implementing Business Objects ... 55
■ Segmentation and Optimization .. 57
■ Multi-Namespace Schema Composition ... 58
■ Schema Evolution ... 60
■ Open Content Model .. 61
■ Versioning .. 62

51

As we have seen, with XML and XML Schema we have many options for designing XML docu-
ments. Let us return to our conceptual model.

Adding Type Information

We are now in a position to add some type information to our model:

In the diagram, we have defined the XML Schema type system as the default type system of our
model (Asset Oriented Modeling can handle multiple type systems within one model). Most of

Advanced Concepts52

From Model to Schema

the properties and sub-properties in this model are now prefixed with a type name (separated by
a blank). All properties used as primary keys are defined with datatype NMTOKEN. This will save
us a lot of trouble later, when we want to transport a key value in the query part of a URL. (White
space character handling in URLs is awkward.)

We see, too, that the type properties in the assets jazzMusician and collaboration are defined
with an enumeration as type. This would translate into the XML Schema type xs:stringwith
appropriate enumeration facets. The property grade in asset saxophonehas a type that is constrained
with the facets totalDigits and fractionsDigits.

In addition, we have factored out some complex properties (name and period) as explicit types.
This is done by defining the abstract assets (indicated by the grayed-out label area) tName and
tPeriod. We use the names of these assets as type names in various other assets such as
jazzMusician, critic, style, belongsTo and collaboration. Note that we have improved the
definition of tPeriod somewhat by making the property to optional. This allows for open-ended
periods.

Document-Centric Layout

Now we are ready to translate our conceptual model into XML Schema source code. However,
the question arises, how we should best divide our model into individual schemas.

One extreme would be to create one XML document type for each asset. However, this has a dis-
advantage: because the existence of some asset instances can depend on the presence of other asset
instances, we would require extra operations when deleting and updating assets. For example, if
we wanted to delete a certain instance of jazzMusician, we would also have to delete the instru-
ments he or she plays.

The other extreme would be to create a single document containing the whole model. This is even
worse because such an implementation would not scale well. Such a document can become very
big, and consequently various operations (loading, saving, parsing, etc.) would be very slow. Al-
though Tamino can insert, delete, and update document subtrees, each update operation would
lock the whole model and would not allow concurrent updates, even if the concurrent operation
wants to update another asset.

We therefore choose the best compromise between these extremes and implement each business
object as a single document. (In amore business-oriented scenariowewould treat business documents
such as Purchase Orders or Invoices in the same way.) This has the following advantages:

■ The existence of business objects does not depend on other objects. Business objects by definition
exist in their own right. Deleting a single business object, for example, does not require the de-
letion of other objects.

■ Modificationsmade to a single business object do not lock the wholemodel. Concurrent update
operations to other business objects are possible.

53Advanced Concepts

From Model to Schema

■ This implementation fits well with current standards in application design. For example, the
construction of a Java access layer for such a document would result in an implementation of
the corresponding Java business object class.

■ The resulting set of schemas is very intuitive. Each schema instance (i.e. each XML document)
represents a business object or a business document. This is why we call this design method
document-centric.

Note that if a model is divided into separate object types as described here, it is possible for an
application to reconstruct a view of the whole model by using appropriate XQuery join queries,
or by using several X-Query commands and postprocessing the results.

Creating a Type Library

Our model contains global type definitions (the assets tPeriod and tName) that are not specific to
a particular business object, and consequently in our designwill not be specific to a specific schema.
It makes sense to create a global type library that contains the XML Schema definition of these
assets. Such a type library is created as an independent XML Schema file with the same target
namespace:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:complexType name="tPeriod">
<xs:sequence>
<xs:element name="from" type="xs:date"/>
<xs:element name="to" type="xs:date" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
<xs:complexType name="tName">

<xs:sequence>
<xs:element name="first" type="xs:token"/>
<xs:element name="middle" type="xs:token" minOccurs="0"/>
<xs:element name="last" type="xs:token"/>

</xs:sequence>
</xs:complexType>

</xs:schema>

This file can then be imported into the schema files that implement business objects. The XML
Schema syntax to import a foreign schema file into the current schema is:

Advanced Concepts54

From Model to Schema

<xs:import namespace="..." schemaLocation = "typelib.xsd"/>

The xs:import clause is specified as a direct child of the xs:schema clause and must be specified
at the very beginning of this clause. The attribute schemaLocation specifies the location of the
imported file as a relative or absolute URL.

Implementing Business Objects

Our model now results - apart from the global type library - in the following schemas:

album, collaboration, critic, jazzMusician, review, style.

55Advanced Concepts

From Model to Schema

The following paragraphs discuss some implementation decisions:

■ Wehave implemented all assets as global elements, and all properties as local elements. Aggreg-
ations of assets, such as in jazzMusician, are implemented via references to global elements.
This allows us to identify assets and properties in schema source code easily.

■ In the schema jazzMusician, the instrument cluster is implemented as a choice connector
containing the different instruments (only saxophone is shown here).

■ We have implemented all primary keys and qualifying properties such as kind and type as at-
tributes. This is just for the sake of this example - you are of course free to use elements and at-
tributes at your own discretion.

■ Arcs to other business objects are implemented as a kind of foreign key. The concept of a foreign
key, familiar from relational systems, is not defined in XML Schema. However, we use the term
loosely here to indicate an implicit reference to an external asset. Each foreign key consists of a
local element definition. The element name reflects the arc's role name (or the name of the arc's
target asset when no role name is specified). This element has an attribute which matches the
primary key attribute of the target asset in name and type. Again, the choice to use attributes
as foreign key implementations is only for the sake of this example.

■ The properties description of asset style and text of asset review are implemented as wild-
cards. The anydeclaration allows the element to contain XHTMLmarkup, for example.We have

Advanced Concepts56

From Model to Schema

set processContents to "lax" for these elements and namespace to "ht-
tp://www.w3.org/1999/xhtml", so parserswill check for valid XHTML contentwhen an XHTML
schema is available. We have also set maxOccurs to "unbounded" for each any declaration, to
allow for multiple XHTML elements within a wildcard.

Segmentation and Optimization

Although this document-centric approach is the preferred way to implement a conceptual model,
it is sometimes necessary to make compromises, especially when documents become too large, or
when operations become inefficient.

Large documents have several drawbacks:

■ Parsing a large document takes a long time. This affects almost any processing of XMLdocuments
(for example, transformation with an XSLT style sheet), because most XML processing involves
parsing.

■ Processing a large documentwith theDOMAPI requires a large amount of resources. Thewhole
document is converted into object form (each document node becomes a separate object) and
this whole set of objects is kept resident in memory. Recent DOM parsers feature lazy instanti-
ation, which is less resource hungry. However, in the worst case, they require the same amount
of memory as conventional DOM parsers.

■ Collaborative authoring of large documents is awkward. Most database systems (and also
standards for distributed authoring like WebDAV) support locking only at the document level.
So when one client changes a document, the document is locked for others until the first client
commits. Also, the exchange of such documents between authors can take a long time.

It therefore seems sensible to split large documents into smaller ones. In particular, this is the case
when a document is subject to unrestricted growth. Take for example the document type album
from the example above. If we opted to include the text of all reviews in the respective album
document, we could get a nasty surprise. If a lot of people review an album, our album document
could become very large. That is one reason why we decided to model review as an explicit
business object.

However, segmentation can also create problems. During retrieval we need more join operations,
and some aggregating functions become slow. For example, if we want to find out the number of
albums inwhich a jazzmusician has participated,wewould first have to retrieve all collaborations
of that musician, and then count the albums referenced as a result of the collaboration.

This can be improved by adding redundancy to our document base. For example, we could include
an album count in each jazzMusician document. The downside of this is that update operations
become more complicated. When we add new albums, or when we delete albums, we have to
update the respective counters in the jazzMusician instances as well. So, tuning of schemas is al-
ways a compromise. The best way almost always depends on the frequency of updates and retriev-

57Advanced Concepts

From Model to Schema

als, and whether it is more important to offer fast response times for retrieval or for update, and
so on. Database tuning is not an exact science, but depends very much on heuristics, experience,
and skill.

Multi-Namespace Schema Composition

Let's return to the multi-namespace model defined in sectionModels and Namespaces. This
model featured four namespaces:

■ the default namespace http://www.softwareag.com/tamino/doc/examples/models/jazz/shop,
■ thenamespacehttp://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia
for the jazz knowledge base,

■ the namespace http://www.softwareag.com/tamino/doc/examples/models/instruments for
the musical instruments,

■ and the namespace
http://www.softwareag.com/tamino/doc/examples/models/order/reengineered for the order
model.

How does this affect our XML schemas? The asset CD is defined as a separate business object, and
thus results in a separate schema file with its own target namespace
(http://www.softwareag.com/tamino/doc/examples/models/jazz/shop). We now have to im-
plement the inherited arcs that lead to asset CD (from e:collaboration, e:review, and o:item).
These arcs are implemented in the usual way within the respective schema files, in addition (and
similar) to the arcs leading to e:album and o:product. Since these arcs are implemented via primary
and foreign key constructs and not via reference or inclusion, all schemas stay single-namespace
schemas.

Note, however, that the instruments are implemented differently. Instruments such as i:saxophone
and i:trombone are part of the jazzMusician business object, and are consequently referred to
(via an xs:element ref= clause)within the jazzMusician schemafile. But because these instruments
belong to a different model (and thus to a different namespace), they must be implemented in a
schema file with target namespace
http://www.softwareag.com/tamino/doc/examples/models/instruments. Let us assume that
all instruments are defined as global elements in a schema file called instrument.xsd.

What we have to do then, is to import the file instrument.xsd into the file jazzMusician.xsd. And
this is how it's done:

Advanced Concepts58

From Model to Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema ↩
targetNamespace="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 ↩
xmlns:e="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:i="http://www.softwareag.com/tamino/doc/examples/models/instruments"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">
 <xs:import schemaLocation="typelib.xsd"/>
 <xs:import ↩
namespace="http://www.softwareag.com/tamino/doc/examples/models/instruments"
 schemaLocation="instrument.xsd"/>
 <xs:element name="e:jazzMusician">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="e:name" type="e:tName"/>
 ...
 <xs:element name="e:plays"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:choice>
 <xs:element ref="i:saxophone"/>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 ...
 </xs:complexType>
 </xs:element>
 ...
</xs:schema>

The two xs:import clauses are specified at the very beginning of the xs:schema clause. The
namespace attribute specifies the namespace to be imported (thismustmatch the target namespace
definition in the imported schema file), and the schemaLocation attribute specifies the location of
the file to be imported. In addition,wemust specify a namespace prefix for the imported namespace.
This is done in the xmlns:i attribute of the xs:schema clause. This prefix is used when we refer
to a musical instrument, for example xs:element ref="i:saxophone". Note that there can be
several import clauses in one schema, and even several import clauses for a given namespace.

As you can see, we have opted to use the prefix "e:" for the schema's target namespace
http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia. This is just to
preserve the namespace prefix usage in the conceptual model - continuing using this namespace
as the default namespace for the schema would also be valid.

59Advanced Concepts

From Model to Schema

Schema Evolution

Once a schema has been defined, it is very unlikely that it will always stay in the same state.
Business requirements change and bugs are detected, so the schemamust be modified in order to
adapt to changing circumstances. In this section we discuss how a schema can be modified safely.
“Safe” in this context means that the modified schemamust still cover all existing valid document
instances of the original schema. The following guidelines ensure that the new schema is at least
as “wide” as the original schema:

■ Never make cardinality constraints narrower. You may increase maxOccurs and decrease
minOccurs. However, decreasing maxOccurs or increasing minOccursmight render existing in-
stances invalid. This logic also applies when adding or removing elements or attributes. Any
non-existing element can be seen as an element with minOccurs="0" and maxOccurs="0". If you
want to add a new element, just imagine that it already exists with minOccurs="0" and
maxOccurs="0". Consequently, leave minOccurs at "0" and increase only maxOccurs to comply
with the above rule. This means that all new elements must be optional. On the other hand, if
you no longer need a given element, simply set minOccurs="0". Thismakes the element optional,
so both new and old instances are covered. The same logic applies to attributes. New attributes
should only be added with use="optional", and for attributes that are no longer needed, use
should also be set to optional.

■ You can always introduce new choices into a schema: you canwrap existing element definitions,
element references, model group definitions (xs:sequence, xs:all) or references to global
groups in an xs:choice clause and add more alternatives. Existing instances remain valid but
the new alternatives allow for additional instances.

■ Never introduce new fixed or default values or modify existing fixed values. This might render
existing instances invalid.

■ Never restrict the definition of existing simple type definitions. For example, you can safely
change a type definition from xs:short to xs:integer, but not vice versa. The same applies for
extension by list: you can safely replace xs:NMTOKENwith xs:NMTOKENS, but not vice versa. Do
not introduce new facets into a type definition, and do not make the definition of existing facets
narrower (e.g. reduce the number of total digits from 7 to 5).

These are general guidelines. You can also modify a schema in a way that is inconsistent with ex-
isting documents, providing you subsequently validate all affected documents, but this of course
could be very time-consuming.

In Tamino XQuery 4, you can modify documents by using the xquery update statement to insert,
delete, replace or rename nodes, but the resulting documents must comply with the existing
schema; the schema itself cannot be modified by xquery update.

Advanced Concepts60

From Model to Schema

Open Content Model

Schemadevelopers cannot always predict the requirements thatmay arise in the field. XMLSchema
therefore provides extension mechanisms that allow document authors to include elements and
attributes into document instances that are not declared in the schema. These extensionmechanisms
are implemented in XML Schema as wildcards (xs:any and xs:anyAttribute).

Let us assume, for example, that we want to make the definition of tNamemore generic, allowing
document authors to include a title child element. We can allow document authors to insert any
number of extra child elements before, between, and after the existing child elements with the
following definition:

<xs:complexType name="tName">
<xs:sequence>

<xs:any namespace="##other" processContents="lax"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="first" type="xs:token"/>
<xs:element name="middle" type="xs:token" minOccurs="0"/>
<xs:any namespace="##other" processContents="lax"

minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="last" type="xs:token"/>
<xs:any processContents="lax" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>
<xs:anyAttribute processContents="lax"/>

</xs:complexType>

We have also added an xs:anyAttribute clause to allow for additional attributes.

Note the specification of namespace="##other" for the first two wildcards. This is to avoid non-
determinism. Without such a specification, the wildcard could contain elements from the same
namespace. When encountering a first or a last element in a document instance, the parser
would not be able to decide if such an element should be accepted by the wildcard or by the fol-
lowing element specification without looking ahead in the input stream. For the same reason we
did not introduce a wildcard in front of the element definition middle. middle is optional, so a
parser would not know where to place an instance element: into the wildcard before or after the
element middle.

Note that Tamino allows for an alternative (non-standard) open contentmodel that does not suffer
from this problem (see From Schema to Tamino::Schema level Definitions).

61Advanced Concepts

From Model to Schema

Versioning

There are two questions that arise when we create a new version of an existing schema:

The first question is: Should we change the target namespace of the new schema? The answer is
simple: If you want to invalidate the schema against existing document instances, and against
existing schemas that might include or import this schema, do so. In this case, you should retain
the old schema version in order to support existing applications. Usually, this option is takenwhen
the changes in the schema are severe. In all other cases, leave the target namespace unchanged
and indicate the new schema version by other means.

This leads us to the second question: How dowe indicate a version number within a schema? The
good news is that XMLSchema features a version attribute in the xs:schema clause. The bad news
is that parsers do not evaluate this attribute, so youwon't see the version numberwhen you access
a document instance through aDOMAPI; extra application logic is required to read out the version
number. This version number is meant for human consumption, it indicates the version of the
schema to the schema author. To convey version information to applications, the best method is
to specify a version attribute for the root element of a schema. We can give this attribute a fixed
value reflecting the current version. This attribute does not show up in document instances, but
applications can see it through the DOM API. Of course, nobody stops us from defining such
version attributes for other elements than the root element, too, so you could add different version
information to different subsections of the same schema.

Advanced Concepts62

From Model to Schema

5 Integrity

■ Simple Constraints .. 64
■ Cross Field Constraints .. 65
■ Constraints Across Documents .. 65
■ Data Integrity .. 67
■ Unique Keys ... 68

63

In classical relational databases, integrity rules and triggers are used to maintain the integrity of
the information stored in the database. Integrity means that the constraints defined in the concep-
tual model are not violated and that the data structures defined in the conceptual model are kept
intact. This is possible by applying integrity rules and triggerswithin the same transactional context
as the operations that modify the stored information.

Especially this last condition – the transactional context – becomes impossible to satisfy when we
extend our data model beyond the boundaries of traditional enterprise databases. When a model
includes data from sources somewhere on theWorldWideWeb, it becomes impossible for database
systems to guarantee the integrity of data structures that span beyond the boundaries of the
transactional environment. For example, a database cannot “lock” foreign web resources during
a transaction, and thus cannot stop other users from interfering with that transaction.

On the other hand,web resourcesmay be temporarily unavailable. And, increasingly, our hardware
is becoming mobile, either as traveling PDAs, or in the form of wireless LANs. In these cases, it
is not always possible to satisfy integrity constraints immediately, and instead of using transac-
tional integrity techniques we need to use synchronization techniques to keep the data model con-
sistent in the long term.

In general, the resource manager (i.e. the database) is the wrong instance for the enforcement of
data integrity. In many cases this task is better left to the application logic, or to appropriate mid-
dleware.

In the following sections we indicate how constraints can be defined for XML documents. The
method of choice in Tamino for implementing constraints is triggers. See the description of trigger
functions in the chapterTamino Server Extension Functions in the documentation for server extensions
for details.

Simple Constraints

Constraints are used to add more meaning to a model. During the definition of the XML schemas
we have already added a considerable set of constraints to our model: datatypes. Each datatype
such as string, float or integer constrains the value domain of an element or attribute. Additional
constraints are enumerations or type parameters (facets) such as totalDigits, maxLength,
minExclusive, etc.

Another type of constraint is the cardinality constraint, which can be defined in schemas using
minOccur and maxOccur. For example, by decorating the element

Advanced Concepts64

Integrity

<xs:element name = "jazzMusician" type = "xs:string"
minOccurs = "2" maxOccurs = "unbounded" >

in collaboration, we set up a constraint that a collaboration must consist of at least two jazz
musicians. Actually, an element with no minOccur/maxOccur decoration at all has the strictest
constraints: it requires a cardinality of 1..1. The weakest cardinality constraint is minOccurs =
"0" maxOccurs = "unbounded"which leaves all possibilities open.

All these constraints can be checked by a validating parser. This happens, for example, when a
document is inserted into or updated in Tamino.

Cross Field Constraints

What interests us in this context are constraints that affect more than one element or attribute. For
example, we want to make sure that a jazz musician of type instrumentalist plays at least one
instrument, whereas other types of jazz musicians (jazzComposer, jazzSinger) are not required
to play an instrument. Here, the standard trigger functions of Tamino can be used to perform the
constraint checking.

Constraints Across Documents

The document() function in XPath can be used to access multiple documents in a single query.
This allows us to formulate constraints that spanmultiple documents. Let us assume that we have
the following collaboration and jazzMusician documents stored in a Tamino database
http://localhost/tamino/jazz/ in collection encyclopedia:

<?xml version="1.0"?>
<collaboration type="jamSession">

<name>post-election jam</name>
<jazzMusician>
http://localhost/tamino/jazz/encyclopedia/dizzy.xml

</jazzMusician>
<jazzMusician>
http://localhost/tamino/jazz/encyclopedia/parker.xml

</jazzMusician>
<performedAt>
<location>Blues House</location>
<time>1965-10-21T20:00:00</time>

</performedAt>
</collaboration>

65Advanced Concepts

Integrity

<?xml version="1.0"?>
<jazzMusician ID="ParkerCharlie" type="instrumentalist">

<name>
<first>Charlie</first>
<last>Parker</last>

</name>
<birthDate>1920-08-19</birthDate>

</jazzMusician>

<?xml version="1.0"?>
<jazzMusician ID="GillespieDizzy" type="instrumentalist">

<name>
<first>Dizzy</first>
<last>Gillespie</last>

</name>
<birthDate>1917-10-21</birthDate>

</jazzMusician>

We want to check that the performance date of the jam session is not earlier than the birth dates
of its participants. We can achieve this with the following rule:

<rule context = "collaboration[@type='jamSession']/jazzMusician">
 <assert test = ↩
"number(translate(document(.)/*/birthDate,'1234567890-','1234567890')) <
 ↩
number(translate(substring(../performedAt/time,1,10),'1234567890-','1234567890'))">
 No jam for unborn child <value-of select="document(.)/*/name/last"/>!
 </assert>
</rule>

As we can see, the rule is executed in the context
collaboration[@type='jamSession']/jazzMusician. The filter expression restricts the application
of the rule to collaborations of type jamSession. The content of the element jazzMusician is used
as a URL to locate the appropriate document (document(.)). From this document we fetch the
element birthDate.

The translate() function removes the dashes from the ISOdate string before the string is translated
into a number. The same process is performed with the date part of element performedAt/time
of the current document. Then both dates are compared using the operator < (<). This rather
clumsy process of translation and conversion into a number is necessary because XPath 1.0 does
not support order relations between strings (strings can only be compared for equality) and, of
course, XPath 1.0 does not support XMLSchemadatatypes. XPath 2.0 should improve this situation
substantially.

To make the resulting report more informative, we include the name of the offending musician
into the error message, too. This is done with the value-of clause.

Let us now assume that the collaboration document does not contain pointers (URLs) to the
jazzMusician documents but instead identifies jazzmusicians by their ID. This is whatwe actually

Advanced Concepts66

Integrity

want because usually URLs do not make good keys: they specify a location but do not identify a
document.

<jazzMusician>GillespieDizzy</jazzMusician>
<jazzMusician>ParkerCharlie</jazzMusician>

We assume, too, that the documents are stored in Tamino. In this case we must replace all

document(.)/*

expressions with

document(concat('http://localhost/tamino/jazz/encyclopedia?_XQL=jazzMusician[@ID="',
.,'"]'))//jazzMusician

i.e., we construct an HTTP query to Tamino, such as:

http://localhost/tamino/jazz/encyclopedia?_XQL=jazzMusician[@ID="ParkerCharlie"]

and then extract the root node (jazzMusician) of the result document returned.

Data Integrity

Documents should only be written into the database after we have made sure that they do not
violate the constraints imposed on them, i.e. that they complywith the application's business rules.

When a document is stored, Tamino checks the structural constraints and the datatype constraints
defined in the document schema. This can be influenced by the content model definition for the
document type. If the content model is set to "closed", Tamino only allows nodes that are defined
in the document schema. Otherwise, Tamino allows additional nodeswithin a document instance.

Apart from that, as outlined above, other constraints may exist that cannot be appropriately de-
scribed with XML Schema. Examples are cross-field constraints and cross-document constraints.

It is the application's responsibility to check for such constraints. In particular, the validation of
cross-document constraints requires extra consideration for the transaction logic. To make the
validation bulletproof, the validation and the following update must be performed in a single
transactionwith the isolation level set to "_shared" or "_protected".When doing so, wemust apply
the same guidelines for accessing multiple documents in one transaction as we outlined above in
order to avoid deadlocks.

67Advanced Concepts

Integrity

Unique Keys

Tamino's unique document key mechanism prevents users from storing (in a specific doctype)
multiple documentswith the same key. A keymay be composed of one ormore values of elements
or attributes contained in the document. The unique document keymechanismmonitors incoming
documents according to specified constraints and prohibits the storage of these documents in a
single document container (doctype) if a duplicate document key is identified. This is especially
useful for the administration of user IDs and other IDs that have to be unique. Uniqueness can be
set in the XML Schema for the document type.

Advanced Concepts68

Integrity

6 Operations

Apart from integrity rules which check for the violation of constraints, a second concept exists to
ensure referential integrity: triggers. Referential triggers are used to invoke operations when a
data record is inserted, updated, or deleted. For example, when a record representing a purchase
order is deleted, it is also necessary to delete the records containing the individual order lines.
This can be achieved with triggers.

For XML documents, however, the concept of triggers to guarantee referential integrity is not as
essential as it is for SQL. The reason is that a complex business document such as a purchase order
is not – like in the relational world – fragmented into flat records but is instead stored as a single
structured document. When such a purchase order is deleted, the order lines vanish, too, because
they are contained in the same document.

However, there are scenarios where we might want to execute additional operations when docu-
ments are inserted, updated, or deleted:

■ As we have mentioned before, it is sometimes necessary to segment a large document into sev-
eral smaller documents. In this case we must make sure that all sub-parts are deleted when the
main document is deleted – the classical case of a relational trigger.

■ For performance reasons our model may contain redundant data. As discussed before,
jazzMusiciandocumentsmay contain an element numberOfAlbumswith the number of all albums
to which the respective musician has contributed. If we add a new album document to the
database,wemust update all correlated jazzMusiciandocuments (and similarlywhenwedelete
an album).

■ Usually we convert XML documents into HTML using an XSLT stylesheet when we want to
display them on the Web. However, this can be a bottleneck if we do this on the fly (i.e. every
timewhen a document is requested). A common technique is to pre-generateHTMLpages from
the XML documents and satisfy incoming requests directly from the HTML pages. When an
XML document changes, we have to re-generate the corresponding HTML page; otherwise,
users would get outdated content. This re-generation could be initiated via a trigger.

69

The operations that are possible in the context of insert, update, or delete operations by far exceed
the scope of traditional referential triggers. In particular, they canmodify data outside the database,
data that resides somewhere else.

Similar to integrity rules, the best place for the implementation of such general operations is the
application or some appropriate middleware.

Advanced Concepts70

Operations

7 From UML to XML

■ XML Support in UML .. 72
■ From Conceptual Model to UML ... 73

71

The UML (Unified Modeling Language) is a popular object-oriented modeling method. Since it
has been submitted as an ISO standard, we discuss it here also in the context ofmodeling for XML.

XML Support in UML

Most commercial CASE tools that support UML such as Rational Rose or TogetherSoft also support
the importing and exporting of XML DTDs and/or XML Schema. In the simplest case, an existing
DTDor XML Schema is simply imported into the CASE tool, resulting in a number of UML classes
that represent the different nodes of the XML document. Side effects of this functionality are the
possibility of converting fromDTD to XML Schema and vice versa, and of generating a Java-based
access layer for a given document type.

However, you should not misinterpret this technique as “conceptual” modeling: it results in a
model of an implementation object. GeneratingXMLschemas froma conceptualmodel is somewhat
more demanding. In this chapter, we discuss how this can be achieved with relatively simple
means.

What we should not expect in this context, however, is a complete solution that supports round-
trip engineering. UML was developed with object-oriented implementation and design methods
in mind. We should therefore experience (and tolerate) a slight impedance mismatch between
UML and XML.

One way to generate code with a CASE tool is to write production rules for the tool's code gener-
ator.However, this is a proprietary approach, andwewould have to demonstrate different solutions
for each CASE tool on the market.

We therefore choose a method that can be applied to most CASE tools. Practically all CASE tools
on the market support the exporting of metadata to XMI (XML Metadata Interchange). XMI is an
XML-based standard for the exchange ofmodeling data between different design anddevelopment
tools. It can capture virtually all information within a UML model.

In the context of this tutorial we use Poseidon for UML (the Community Edition is freeware,
available from http://www.gentleware.com/), a commercialized version ofArgoUML, as our CASE
tool. We define our jazz example in UML, then export it to XMI, and finally convert the resulting
XMI into XML Schema with the help of an XSLT stylesheet.

Advanced Concepts72

From UML to XML

http://www.gentleware.com/

From Conceptual Model to UML

Here are the mapping rules to cast an asset-oriented model onto UML:

1. We decorate all identifying assets of business objects with the stereotype entity. This allows
us to generate arcs leading to these assets differently (as these arcs lead to separate documents).

2. We use qualified names for all assets (i.e. names with namespace prefixes). Because the colon
is not a valid name character in most programming languages, we replace it by an underscore.

3. Since UML is an object-oriented technology, it does not have a native concept of primary keys.
It is conventional to decorate primary keys with the stereotype primaryKey.

4. We represent the arcs of our conceptual model as unnamed UML associations. If required, we
can decorate the source end of an associationwith a role name and the target endwith a cardin-
ality constraint.

The exception to the rule are the arcs that are decoratedwith an is_a label. These are represented
as a UML generalization/specialization. Multiple inheritance is allowed in UML. Thus, the
conversion process must resolve inheritance relations because XML Schema does not support
multiple inheritance.

5. UML attribute specifications can include a type and an initial value. Other XML Schema-specific
constraints, such as minOccurs, maxOccurs, form, maxLength, length, totalDigits,
fractionDigits and enumeration, have no specific equivalent in UML but can be specified as
tagged values (which we name appropriately xs_minOccurs, xs_maxOccurs, etc.). Similarly, a
tagged value xs_fixed=true can be used to determine if the initial value shall be regarded as
a fixed value or as a default value.

6. We can use Java-based datatypes for attributes. These are already built into the modeler and
can be mapped automatically onto XML Schema datatypes during the conversion process. We
can also explicitly use the built-in datatypes of XML Schema, but we have to declare them ex-
plicitly in UML. We do this by defining classes such as xs_NMTOKEN or xs_ID and decorating
themwith stereotype type. We also introduce a pseudo datatype xs_any to indicate wildcards.

7. UML does not support complex attribute definitions. Instead, we have to resolve complex
properties. We have two options: (1) represent a complex property as an explicit aggregation,
or (2) define a separate datatype for a complex property. In this example, we opt for the latter.
For example, we introduce the datatypes tPerformedAt for performedAt(location&time),
tPeriod for period(from,to) and tName for name(first,middle?,last).

8. Alternatives (choice groups) require extra care. In UML we model them as a datatype general-
ization. For example, the property (performedAt(location&time)|period(from,to)) in asset
collaboration is modeled as an element (which we call collaborationContext) with a type
that is a generalization of the datatypes tPerformedAt and tPeriod.

9. Clusters are represented as a generalizations also. To represent, for example, the cluster contain-
ing all the instruments, we introduce a generalized class instrument. Because we do not want

73Advanced Concepts

From UML to XML

this class to appear in the final schema, we define it as an abstract class. Similarly, we introduce
a generalized class representing all classes that are subject to reviews, such as jazz musicians
and albums.

10. By default, we assume an ordered sequence for the attributes of an UML class and would
therefore generate an xs:sequence connector. If we want an unordered sequence (resulting in
an xs:all connector), we indicate this by attaching the tagged value xs_ordered=false to the
respective UML class.

11. Similarly, we attach the tagged value xs_mixed=true if a class shall contain mixed content.

Applying these rules, we finally arrive at the following model:

Advanced Concepts74

From UML to XML

Most UML tools provide a function to serialize a model into XMI format. XMI is an XML-based
industry standard for the exchange of metadata between CASE tools. Because it is XML based,
XMI can be converted with the help of XSLT stylesheets into other formats such as XML Schema.
An example of such a stylesheet can be found at http://www.aomodeling.org/.

75Advanced Concepts

From UML to XML

http://www.aomodeling.org/

76

8 Schema-Related Web Sites

The following compilation lists a few web sites that are relevant to schema definition in XML.

■ http://www.w3.org/

The World Wide Web Consortium (W3C) is the reference point for the XML specification (i.e.
DTDs) and XML Schema.

■ http://www.xml.org/ (hosted by OASIS)

is a repository for XML schemas.
■ http://www.xfront.com/

discusses programming techniques for schema authors.
■ http://www.xmlpatterns.com/

contains a collection of design patterns for XML.
■ http://www.aomodeling.org/

is the home of Asset Oriented Modeling.

77

http://www.w3.org/
http://www.xml.org/
http://www.xfront.com/
http://www.xmlpatterns.com/
http://www.aomodeling.org/

78

II From Schema to Tamino

In this chapterwe concentrate on the physical aspects of XMLdata storage.We describe how these
aspects can be described in a schema, and discuss performance issues. We describe how virtual
documents can be created bymeans of document compositionwhen querying Tamino, andwhich
concepts for transactional processing are supported.

This information is organized under the following headings:

Tamino Annotations in XML Schema

Namespace Support

Indexing

Document Composition

Efficient Querying

Performance Issues

79

80

9 Tamino Annotations in XML Schema

■ Annotation and Appinfo .. 82
■ Schema-Level Definitions ... 83
■ Node-Level Definitions ... 84

81

While XML Schema covers the logical aspects of document type definitions, it does not prescribe
how to define the physical aspects. Many XML processors require extra information on how to
process the instances of a given document class. Tamino, for example, needs to know the collection
to which a document class belongs, the elements or attributes which are used for indexing, the
type of indexing that is used, how document elements may be mapped onto fields in external
databases, and so on.

Annotation and Appinfo

For these and other purposesXMLSchemaprovides an extensionmechanism.Any schema, element
or attribute definition in XML Schema can be equippedwith one ormore annotations. Each annota-
tion can consist of two child elements: documentation and appinfo. The documentation element
contains documentation for human readers, and the appinfo element contains information for
machines.

Tamino uses the appinfo element to store Tamino-related information within a schema file:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema
 xmlns = ↩
"http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:tsd = "http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 targetNamespace = ↩
"http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 elementFormDefault = "qualified"
>
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "albumSchema">
 <tsd:collection name = "encyclopedia"/>
 <tsd:doctype name = "album">
 <tsd:logical>
 <tsd:content>open</tsd:content>
 <tsd:accessOptions>
 <tsd:read/>
 <tsd:insert/>
 <tsd:delete/>
 <tsd:update/>
 </tsd:accessOptions>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 ...
</xs:schema>

Advanced Concepts82

Tamino Annotations in XML Schema

These annotations are generated by the Tamino Schema Editor.

Schema-Level Definitions

The example above shows an annotation on the schema level. This is indicated by the
<tsd:schemaInfo> element. The attribute name specifies the name of the schema (albumSchema).

Enclosed in the <tsd:schemaInfo> element is a definition for the Tamino collection to which the
schema belongs. Typically a collection contains document types that are somehow related, for
example the document types derived from a specific conceptual model or all schemas that belong
to a given application.

Here, we define a collection encyclopedia that will eventually contain all the document
types (jazzMusician, style, collaboration, album, review and critic) that we defined
earlier (From Conceptual Model to Schema::From Model to Schema).

In addition to the <tsd:collection> element, the element <tsd:schemaInfo> contains a
<tsd:doctype> element which defines the name of the document type as album. This name is not
necessarily the same as the schema name, butmustmatch the root element name of each document
instance belonging to that particular document type.

The <tsd:doctype> element may contain an element <tsd:logical>. This element specifies the
access options for the document instances and the content type:

83Advanced Concepts

Tamino Annotations in XML Schema

■ The access options specify the database operations (read, insert, update, delete) that are allowed
for this document type;

■ The content type "closed" specifies that a document instance may not contain deeper structures
than specified in the schema. In contrast, content type "open" allows document instances to be
extended with tags that are not defined in the schema.

This is a more flexible - albeit non-standard - approach to the open content model than using
xs:any and xs:anyAttribute. For a discussion of the pros and cons of the Tamino-specific open
content model, see also Tamino-specific Extensions to Logical Schema::Open Content vs. Closed Content
Validation.

We could, for example, define our style document type with content type "open" because
its description element may contain other markup. However, using an xs:any child node
for the description element definition is probably the better choice here: thus we stay with
the W3C XML Schema recommendation, and we are able to specify a namespace for the
XHTML content of the description element.

Node-Level Definitions

The physical properties of each document node can be specified with similar annotations. Again,
these annotations are generated by the Tamino Schema Editor. Here is an example for the attribute
ID of our schema jazzMusician:

Advanced Concepts84

Tamino Annotations in XML Schema

and the resulting code:

<xs:attribute name = "ID" type = "xs:NMTOKEN" use = "required" form = "unqualified">
<xs:annotation>

<xs:appinfo>
<tsd:attributeInfo>

<tsd:physical>
<tsd:native>
<tsd:index>

<tsd:standard></tsd:standard>
</tsd:index>

</tsd:native>
</tsd:physical>

</tsd:attributeInfo>
</xs:appinfo>

</xs:annotation>

Contained in the <xs:appinfo> element is the element <tsd:attributeInfo>, which describes
the properties of this attribute node. In the Tamino Schema Editor we have specified that the
storage type of the attribute is "Native". This means that the attribute is to be stored as native XML
in Tamino. There are also other options, for example, to map a document node to a Tamino Server
Extension (see Utilizing Server Extensions::Derived elements) or to fields in a foreign database such
as Adabas or a third-party RDBMS.

85Advanced Concepts

Tamino Annotations in XML Schema

86

10 Namespace Support

■ Qualified Queries .. 88

87

Tamino supports XML Namespaces as defined in the W3C Recommendation Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/). Tamino schemasmay define a target namespace, may
import sub-schemas fromother namespaces, andmay containwildcardswith content from foreign
namespaces. In section Introduction to XML Schema::Namespaces and wildcardswe discuss how
namespaces are used with XML Schema; the support in Tamino does not differ from this.

Qualified Queries

The question, however, is: How do we qualify element and attribute names within queries? How
do we set up namespace bindings in a query (or in an update or insert operation)? The answer
depends on the query language used:

■ X-Query (XQL) does not allow bindings to be defined between namespace prefixes and
namespace identifiers. If we need to qualify names within a query, we must use the bindings
thatwere set up in the schema of the document type.We just prefix nameswith the same prefixes
that were defined in the schema.

Specific aspects of namespace handlingwithX-Query are discussed in the section _XQL, _DELETE
of the Tamino document Namespace Handling for Specific X-Machine Requests, for example how
Tamino treats X-Query queries on schemas that have a default namespace but no prefix for it.

Given the schema in section FromModel to Schema::Multi-Namespace Schema Composition, a query
for jazz musicians who play the saxophone would look like this:

e:jazzMusician[e:plays/i:saxophone]

■ Tamino XQuery 4 allows (and requires) namespace bindings to be defined within the queries,
and thus allows prefixes to be used that differ from those defined in the schema. We define
these bindings in the query prologue using the expressions default element
namespace={namespace-identifier} or declare namespace
{namespace-prefix}={namespace-identifier}. In XQuery 4, the above query for jazzmusicians
who play the saxophone would look like this:

declare namespace ↩
ency="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
declare namespace ↩
instrument="http://www.softwareag.com/tamino/doc/examples/models/instruments"

let $j := input()/ency:jazzMusician
 where ($j/ency:plays/instrument:saxophone)
 return $j

Advanced Concepts88

Namespace Support

http://www.w3.org/TR/REC-xml-names/

11 Indexing

■ Declaring an Index ... 90
■ Candidates for Indexes ... 92
■ Composite Keys .. 93
■ Object Identity .. 93
■ Text Retrieval ... 95

89

Indexing is one of the principal features that distinguish a database from a simple file system. In
a file system, searching for a specific element value usually requires scanning through the whole
document set and parsing all the documents. A database system, in contrast, can organize much
more efficient access paths by means of indexes.

Tamino can index attributes and simple elements as well as complex elements, and it allows two
different categories of index: standard index and text index. Within these categories, various
mechanisms can be used,which give rise to simple indexes,multi-path indexes, compound indexes
and reference indexes.

Declaring an Index

Tamino's annotations (see Tamino Annotations in XMLSchema::Node Level Definitions) also indicate
whether or not document nodes should be indexed, and which type of indexing is to be used:

Standard Indexing
Standard indexes are the classical database indexes. The complete node content is used as the
index value. When a document is stored or updated, Tamino inserts standard indexes into a
specific index, enabling efficient queries. Tamino can index all XML Schema datatypes.

Text Indexing
Here, Tamino analyzes the content of an indexed nodeword byword and stores the individual
words in an index. We discuss this technique in more detail in Text Retrieval.

Standard and Text Indexing
This may be required in special cases but should, in general, be avoided because of the high
overhead.

Indexes can be declared for attributes and for leaf elements, but also for elements that contain
child elements. In the latter case the index is constructed from the concatenated text of the element
and its child elements, i.e. from the result of the text() function applied to that element. For ex-
ample, if we had:

<name><first>Louis</first><last>Armstrong</last></name>

and declared an index for <name>, the string "LouisArmstrong" would be used as index value.

The way in which the markup is treated in a given database can be controlled by setting the
database property markup as delimiter. This can be done using the Tamino Manager. If the
property is set to "yes", markup is treated as a delimiter for text (i.e. it is handled like white space).
If it is set to "mixed",markup is not treated as a delimiter inmixed-content elements. If the property
is set to the default value "no", markup is not treated as a delimiter.

Indexes are not necessarily required to perform queries. Tamino can interpret any valid query
expression, even if an index is not defined. However, this can be costly. For example, the query

Advanced Concepts90

Indexing

jazzMusician[@ID="ColtraneJohn"]

would require Tamino to read all jazzMusician instances, parse them to extract the attribute ID,
and compare the ID attribute value of each documentwith the search string. Thismay be practicable
if we have only a small document base with half a dozen documents, but is out of the question if
our database contains thousands of jazzMusician instances.

In contrast, if the attribute ID is declared as an index, Tamino would only read and parse those
jazzMusician documents that have "ColtraneJohn" as the value of the attribute ID.

So far, we have only discussed indexes for document nodes that are defined in the schema. But
what about markup that is not defined in the schema but only appears in individual document
instances, for example in a wildcard? Can Tamino apply indexing to these document extensions
as well?

The answer is yes. The optional element tsd:physical/tsd:structureIndex in the tsd:doctype
declaration allows Tamino to add nodes found in document instances to its internal repository,
and thus to execute queries using such nodes much faster.

For example, the document instance:

<?xml version="1.0"?>
<jazzMusician

xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
type="instrumentalist"
ID="GillespieDizzy">

<name>
<first>Dizzy</first>
<last>Gillespie</last>

</name>
<birthDate>1917-10-21</birthDate>

91Advanced Concepts

Indexing

<deathDate>1993-01-06</deathDate>
</jazzMusician>

contains an element that was not declared in the schema: deathDate. Without the structureIndex
property, a query on deathDatewould take a long time, but setting structureIndex to "FULL"
or "CONDENSED" speeds up the query considerably. The difference between "FULL" and
"CONDENSED" is that "CONDENSED" only remembers that an element deathDate is used in at
least one instance of this document type. In contrast, "FULL" remembers inwhich documents such
an element exists. This requires more memory but may make the query even faster when only a
few documents contain this element.

The query jazzMusician[deathDate="1959-07-17"], for example,would have the following effect:

structureIndex="NO"
A full scan of all jazzMusician instances is required.

structureIndex="CONDENSED"
If no jazzMusician instance has a node jazzMusician/deathDate then the query can be
answered quickly (no object returned). If at least one instance has a node
jazzMusician/deathDate then it is still necessary to scan all jazzMusician instances in order
to answer the query.

structureIndex="FULL"
Since many jazz musicians are still alive, the query can be answered faster because Tamino
knows which jazzMusician instances have a node jazzMusician/deathDate. Only those in-
stances are scanned.

structureIndex should be set to "NO" when we expect elements that contain random markup
(e.g. XHTML). This would be the case for the description element in our style document type.

Note that after an initial set of indexes has been defined, it is possible to add or remove indexes
subsequently by using update schema operations, based on the X-Machine command _define.

Candidates for Indexes

Generally, we should declare the primary keys of all business objects as standard indexes. In our
case, these are the attributes @ID for the business objects jazzMusician, critic, and collaboration,
@name for business object style, and @albumNo for business object album. The only business object
that does not require an explicit index is review, because we access review objects via URL.

In addition, foreign keys are also prime candidates for indexes. For example,
jazzMusician/influence/influences/@ID can be a useful index when we want to find out by
whom a given jazz musician was influenced. For example:

Advanced Concepts92

Indexing

jazzMusician[influence/influences/@ID="ParkerCharlie"]

would certainly result in an impressive list of jazzMusician documents, including, for example,
those of John Coltrane and Miles Davis. Similarly, we could index
jazzMusician/belongsTo/style/@name, too, in order to be able to quickly find all musicians be-
longing to a particular style.

The general rule is to index all those nodes which are frequently used as access paths for queries,
and not to index nodes that are only rarely used in queries. Indexing speeds up queries but it also
slows down insert, update and delete operations and consumes disk space. The conceptual model
gives us a first hint for the possible access paths. However, later fine tuning (see also Efficient
Querying) requires us to study the actual usage pattern of the database before making a final de-
cision about which nodes to index.

Composite Keys

Finally, we have to consider the case when a primary key is a composite, i.e. it consists of several
nodes. For example, this would be the case if we use the node name as a primary key for business
object jazzMusician. This node comprises the child elements first, middle, last. We can choose
to create indexes for all of them or only for one or two. We could also use a Tamino compound
index to integrate all three elements in a single index. In our case, it might be sufficient to create
an index only for the element last, because this element can narrow down a search sufficiently.
Querying for Pat Metheny with an XPath expression would then look like this:

jazzMusician[name/last="Metheny"
and name/first="Pat"
and not(name/middle)]

(Note that the expression name/middle=""wouldnotwork because itwould require that the element
middle exists.)

Object Identity

Keys derived from document elements or attributes are only one of several methods to locate a
document:

■ URLs can be used to access any resource on the Internet. However, we should note that a URL
does not establish an object's identity. A URL specifies a location and not an object. When a
document is moved to another location, its URL changes.

When storing documents and other data in Tamino, Tamino allows a document name to be as-
signed to such an object. This name is stored in the internal attribute ino:docname. This method
of object identification is mostly used for non-XML documents stored in Tamino, but it can, of

93Advanced Concepts

Indexing

course, also be used for XML documents. For example, if we store a JPEG image in database
jazz in collection encyclopedia under the name dizzy.jpg, we can retrieve it with the following
URL: "http://localhost/tamino/jazz/encyclopedia/dizzy.jpg".

We are going to use this addressing mechanism for review documents. Remember that we
specified the review business object with a key URL of type xs:anyURI. Instead of implementing
an explicit child element URL, we use the ino:docname feature. This allows us to access review
documents directly via URL instead of using an XPath or XQuery 4 expression.

■ Generated Identifiers like the attribute ino:id can be used to identify uniquely an object within
a certain context. ino:id, for example, is generated by Tamino when a new document is stored.
It is unique for the specific document type. It is, for example, used when an existing document
is replaced: in this case the ino:id of the existing document is specified in the new document
instance. This causes Tamino not to store the document under a new ino:id but instead to
overwrite the document with the specified ino:id.

In general, the ino:id should only be used for programmatic access to a document but not as
a “permanent” reference to other documents; that is, the ino:id of a document should not be
stored in other documents. Since the ino:id is an internally generated identifier, it may, for
example, change when a document subset is moved to another database. This could render the
references invalid. The same is true for internally generated identifiers of other database systems.

Tamino allows documents to be located via URLs consisting of database location, collection
name, document type name and @ino:id: "http://localhost/tamino/jazz/encyclopedia/jazzMusi-
cian/@33"

■ Primary Keys are derived from object properties, i.e. from the values of document elements and
attributes. In the simplest case they are derived from a single value, either a simple content type
element or an attribute, provided this value is unique.

Composite keys are unique values that are composed from several non-unique elements and
attributes.We recommend avoiding composite keys derived from complex elements: as pointed
out earlier (From Conceptual Model to Schema::Normalization), such keys are not robust against
transformations. As shown above, they are also awkward to query. As we show later (Efficient
Queries), composite keys are also detrimental to performance when they contain optional ele-
ments.

Keys are unique only in a given context, for example, in the context of a certain document type
in a given Tamino database (see section Schema-Level Definitions). Keys do not establish a
global object identity.

Tamino can locate documents by key via a URL consisting of database location, collection name,
and query string: "http://localhost/tamino/jazz/encyclopedia? _XQL=jazzMusician[@ID="Cole-
manOrnette"]"

■ Globally Unique Identifiers are not derived from the element and attribute values of a document
but are generated with a suitable algorithm. They can establish a unique object identity over

Advanced Concepts94

Indexing

the boundaries of a given database or server. Typical examples for such identifiers are the UUID
(Universal Unique Identifier) and URI based identifiers.

UUIDs are used by several XML-based standards as global identifiers.

Each UUID is 128 bits long and consists usually of a 60-bit time stamp and a 48-bit network
address (IEEE 802). Good generators can cater for cases when the hardware clock does not have
the required resolution (by counting UUIDs with the same clock value). If a network address
is not available, a random number is used instead. In this case it cannot be guaranteed that
UUIDs are unique, although a conflict is very unlikely.

The advantage of UUIDs is that they are easy to generate and are quite short. The disadvantage
is that they are not friendly to the human eye: <jazzMusician
ID="0076B468-EB27-42E5-AC09-9955CFF462A3">.

Other XML-based standards such as XML Namespaces or XTM (XML Topic Maps) use domain
name based identifiers. These identifiers consist of a registered domain name, an additional path
expression that identifies the document type within the domain, and the primary key of that
document type. Although they look syntactically verymuch like URLs, it is important to realize
that their path specification does not define the actual location of an object but a virtual position
in a semantic space. Therefore, these identifiers must also be stored as a key in the identified
object:

<jazzMusician ID="http://www.jazzServer.org/people/jazzMusician/EllingtonDuke">.

The advantage of these identifiers is that they usually give the human reader some context in-
formation about the object. The disadvantage is that they can be quite long, and that the gener-
ation of these identifiers can require some bookkeeping.

Text Retrieval

Text retrieval is one of the facilities where Tamino's query languages X-Query and XQuery extend
the functionality of the W3C standards XPath and XQuery. Text retrieval means that the content
of a node is broken up intowords or evenword fragments. Each of thesewords orword fragments
is treated as an individual key value and included in the index.

In an X-Query expression we can use the operator ~= (contains) to search for a word contained in
a specific node.

A typical example for the use of text retrieval is the description element in the document type
style. The query:

95Advanced Concepts

Indexing

style[description~="question"]

finds all jazz styles that contain the word "question" in the element description. This query is
always possible, regardless of whether or not we index description. However, if we specify
description as a text index, the query is processedmuchmore efficiently. Here is how a definition
of the description element in the schema might look:

<xs:element name = "description">
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:physical>
<tsd:native>

<tsd:index>
<tsd:text/>

</tsd:index>
</tsd:native>

</tsd:physical>
</tsd:elementInfo>

</xs:appinfo>
</xs:annotation>
<xs:complexType>

<xs:sequence>
<xs:any processContents="skip"/>

</xs:sequence>
</xs:complexType>

</xs:element>

A corresponding document instance may contain the following element:

<description>
<XHTML>

To be-bop or not to be-bop, there is no question
</XHTML>

</description>

The element was defined as an any element. The property processContents="skip" allows the
element to contain any markup which is not checked against the schema definition (provided the
document content model was defined as "open"). Here we have stored a simple XHTML text. The
index property was defined as "text". Consequently, any word contained in the description would
be added to the index and queries forwords contained in the description can be answered efficiently
with the help of the index.

The contains operator (~=) can be used in conjunctionwith the proximity operators adj and near.
These operators can be used to search for adjacent words: adj requires the words in the specified
sequence; near, in contrast, does not care about the specified sequence. For example, both:

Advanced Concepts96

Indexing

style[description~="not" adj "to"]

style[description~="not" near "to"]

are successful;

style[description~= "to" near "not"]

is successful, whereas:

style[description~= "to" adj "not"]

fails.

In XQuery 4 we have similar possibilities. The functions tf:containsText,
tf:containsAdjacentText and tf:containsNearText support text retrieval operations.

The contains operator is case insensitive, and it can also use wildcards to search for word frag-
ments. For example, the search strings "*-bop", "BE-*", "B*p", "*e-bo*" would find all descriptions
that contain "be-bop". However, the last search string "*e-bo*" only uses the index if the database
parameter Word Fragment Index is set to "yes" (Tamino Manager). This option is set to "no" by
default, because using the word fragment index causes substantial overhead (all possible word
fragments must be extracted from words and stored as index values!).

Even without using the word fragment index, text indexes require more overhead than standard
indexes. We should therefore use the text index facility only for those nodes that we really plan
to access with the X-Query contains (~=) operator or the XQuery text retrieval operators.

Words that are very likely to be used as indexes should be defined in load lists. This can be done
by adding a load list document to our database into collection ino:vocabulary. For example:

<?xml version="1.0" encoding="iso-8859-1" ?>
<ino:loadlist ino:loadlistname="myloadlist"

xmlns:ino="http://namespaces.softwareag.com/tamino/response2">
<ino:word>jazz</ino:word>
<ino:word>blues</ino:word>
<ino:word>swing</ino:word>
<ino:word>ragtime</ino:word>

</ino:loadlist>

The required schema is already defined in Tamino. It is possible to define several load lists (with
different names). When a database is started, Tamino concatenates all load lists stored in the
database and pre-loads the words contained in them for the indexing to speed up the loading of
documents.

97Advanced Concepts

Indexing

98

12 Document Composition

■ Dynamic Joins with Tamino XQuery 4 .. 100

99

The composition of complex data objects from simpler database objects has a long tradition in re-
lational technology. In particular, the join operation is heavily used there because relational tech-
nology decomposes complex information structures into “flat” two-dimensional tables consisting
of atomic values. To reconstruct the complex information structures from those tables, it is necessary
to “join” several tables during a query. In addition, by providing a join operation when querying
data, relational databases allow users to re-arrange and combine data freely in ways that were not
foreseen when the data model was designed.

With a native XML database, composition is used muchmore sparingly, because the database can
store complex information items in their native form, so it is not necessary to “re-compose” these
information items fromflat tables. However, there are still cases inwhichwemaywant to combine
several documents (or several document parts) into a single document, or in which we want to
rely on other documents to retrieve a certain document.

Take, for example, our jazz encyclopedia. Maybe we want to find all collaborations in which a
given jazz musician participates. Because we do not know the jazz musician's ID, we want to use
his or her first and last name as search criteria instead. This requires us to locate a matching
jazzMusician document first, extract the ID from that document, and then find a collaboration
document that matches the ID in the attribute jazzMusician/@ID – a typical situation for a join.

Mathematically, a join in its most general form is the Cartesian product (cross product) of two
document types, followed by some constraint to select only a part of the result set. However, this
is only the mathematical theory because it is very inefficient: the Cartesian product of 1,000 jazz
musicians with 3,000 collaborations would result in at least 3*109 combinations. (Remember that
each collaboration points to at least two jazz musicians, so we get 3000*1000*1000 combinations!)
Therefore, database implementations differ vastly from this approach.

Tamino supports document composition using the full dynamic join functionality provided with
the XQuery 4 query language.

Dynamic Joins with Tamino XQuery 4

XQuery 4 is a very powerful query language subsuming the functionality of both XSLT and XPath,
althoughwith a different, SQL-like syntax. XQuery 4 is based on theW3CXQuery recommendation.
Language features such as FLWR-expressions (for, let, where, return) and variables allow for the
simplest and the most complex join operations. In addition, XQuery supports namespaces and
the full XML Schema type system.

The following example demonstrates howwe can compose a joint document from collaboration
instances, jazzMusician instances, and album instances:

Advanced Concepts100

Document Composition

default element namespace = ↩
"http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"

for $c in input()/collaboration
 return
 <collaboration type={$c/@type} ID={$c/@ID}>
 { $c/name }
 { $c/performedAt }
 { $c/period }
 { for $id in $c/jazzMusician/@ID
 let $j := input()/jazzMusician[@ID = $id]
 return
 <jazzMusician ID={$j/@ID}>
 {$j/name}
 {$j/birthDate}
 {$j/plays}
 </jazzMusician>
 }
 { let $a := input()/album[@albumNo = $c/result/@albumNo]
 return
 <album albumNo={$a/@albumNo}>
 {$a/title}
 {$a/track}
 </album>
 }
 </collaboration>

Here, we use a for instruction to run through all occurrences of the node
collaboration/jazzMusician/@ID. We then use the value of this node to select jazzMusician
document instances from collection encyclopedia. The actual join expression is contained in the
filter expression [@ID = $id]. XQuery 4 allowsXPath-style expressionswithinXQuery expressions,
so you can leverage some of your skills writing XPath expressions. An alternative way to express
such a join would be to replace the expression let $j := input()/jazzMusician[@ID = $id]
with for $j := input()/jazzMusician where $j/@ID = $id. Since XQuery 4 allows nested
queries and nested loops, and any number of variables, join expressions can be very complex.

In the second part of the query we perform a join with album documents. Since the node
collaboration/result can only have single occurrences, we can use let instead of for.

101Advanced Concepts

Document Composition

102

13 Efficient Querying

■ Data Modeling for Efficiency ... 104
■ Efficient Indexing ... 105
■ Efficient Queries .. 106

103

Before we go into the details of database tuning, we should make clear that due to ongoing devel-
opment and tuning of the Tamino engine the performance hints given here are only based on a
snapshot of the current situation. Future versions of Tamino may perform differently.

Optimizing Tamino for efficient querying involves three steps: Data Modeling, Index Definition,
Query Definition.

Data Modeling for Efficiency

First we should get the data model right:

■ Your document types should implementwhole business objects anddocuments such as custom-
ers, suppliers, purchase orders, jazz musicians, albums, etc. You should avoid “relational”
designs such as First Normal Form. Business objects represented by an ensemble of flat tables
are suitable for relational databases, but not for native XML databases.

For our example, we created one document type for each of the business objects style,
jazzMusician, collaboration and album.

■ Avoid “all-in-one” documents. Large documents can slow down processing considerably. For
example, the current Tamino version compresses documents larger than 32 KB in order to save
disk space and speed up disk access, so documents above this size need more CPU time.

For example, with XML it would be easily possible to create a single document containing
our whole jazz encyclopedia (which, eventually, could grow into a size of several hundred
MB). But do not expect good performance from such a design.

■ If a document contains clearly identifiable hot spots and cold areas, i.e. a small area is accessed
frequently whereas another large area is accessed only rarely, consider separating these two
areas into two separate documents. This increases the processing speed for the frequently accessed
area.

In our example, we have stored the album reviews in separate documents. These reviews
are far less likely to be accessed than the album document itself.

■ Sometimes it can be appropriate to re-introduce redundant data elements in order to speed up
retrieval. The downside to this is that updating becomesmore complicated and takesmore time.

Advanced Concepts104

Efficient Querying

For example, if we frequently need to knowhowmany albums a jazzmusician has published,
retrieval performance could be improved by including this information in each jazzMusician
document; wewould no longer need to search all collaborations of amusician and then count
the albums. However, we would need to update all referenced jazzMusician documents
each time we insert, update or delete a collaboration document.

Efficient Indexing

The next step is to define indexes correctly:

■ Associate all primary and foreign keys used in the conceptual model with indexes of search
type "standard" in Tamino. Search type "standard" results in the classical database index.

In our example, primary keys are:

jazzMusician/@ID, style/@name, collaboration/@ID, album/@albumNo, critic/@ID, and
review/@URL. We might omit review/@URL from this list, as we address review documents via
URL. Internally, review/@ino:docname serves as a primary key.

The schema element tsd:unique can be used to ensure that keys are unique. This is particularly
relevant for primary keys.

Foreign keys are:

jazzMusician/belongsTo/style/@name
jazzMusician/influence/influences/@ID
collaboration/jazzMusician/@ID
collaboration/result/@albumNo
album/review/@URL
review/critic/@ID

■ Nodes that are used as sort criteria should also be defined as indexes of search type "standard".

In our example, a typical candidate is jazzMusician/name/last.
■ Other nodes that are expected to be used as search criteria should also be defined as indexes.
However, if a node is not very selective it does not make much sense as an index. For example,
a node describing the gender of a person can only take one of two values. Such a node would
make a bad index, because each index value would select half of the population; however, it
could make sense as part of a compound index.

In our example, we would definitely not declare jazzMusician/instrument/color as an index.
■ If you expect the contains operator (~=) to be used frequently for a specific node, define this
node as a key of search type "text". This creates a word index, which speeds up text retrieval

105Advanced Concepts

Efficient Querying

operations on the current node and child nodes. Do not use search type "text" too liberally, be-
cause it slows down write operations to the database.

In our example, we declare style/description and review/text as text indexes. This allows
us to search for words and word combinations in these elements.

■ If you expect wildcard characters to be used at the beginning and end of a search word, such
as *cit* to find "citation", "recite", "recitation", you should consider setting word fragment
index to "true" for the database. But note that this results in a huge index and slows downwrite
operations even more.

■ If you expect queries on document nodes that are not defined in the document schema, consider
setting structureIndex to "CONDENSED" (see Indexing::Declaring an index). If you expect
queries on optional document nodes that appear only sparingly in document instances, consider
setting structureIndex to "FULL".

Efficient Queries

Finally, we look at the queries. In this section, the majority of the examples are based on X-Query,
but equivalent processing is possible in XQuery. For examples of equivalent coding in X-Query
and XQuery, see the Performance Guide in the Tamino documentation set.

Internal query processing can involve a pre-selection step and a post-processing step, depending
on the nature of the query. If the query involves searching on one ormore indexes, the pre-selection
step finds the documents that satisfy the index search criteria; if the query involves search criteria
that do not use indexes, the post-processing step is required.

In the pre-selection step, the indexes are used to select an intermediate result set. In the post-pro-
cessing step, this set is narrowed by applying the remaining search criteria. This post-processing
step involves detailed analysis of each record contained in the intermediate result set.

For example, in the query:

jazzMusician[belongsTo/style/@name="Bebop" and name/first="Charlie"]

the expression belongsTo/style/@name="Bebop" is processed as a pre-selection because the foreign
key belongsTo/style/@name is defined as a standard index.

Advanced Concepts106

Efficient Querying

The rest of the filter expression name/first="Charlie" is processed during the post-processing
phase because name/first is not defined as an index.

The same is true for the equivalent XQuery 4 expression. In

for $j in input()
where $j/belongsTo/style/@name="Bebop" and $j/name/first="Charlie"
return {$j}

$j/belongsTo/style/@name="Bebop" is executed first to construct the pre-selection set, then
$j/name/first="Charlie" is executed.

Queries that do not have a pre-selection step (because there are no indexes among the search cri-
teria) cause a long response time when only a few records are extracted from a large collection.
You can easily determinewhether a pre-selection is usedwith your query: put your X-Query query
string in ino:explain(...) and Tamino will tell you whether your query involves a pre-selection
and whether it involves post-processing.

In XQuery 4 we can obtain the same information by including the expression {?explain?} in the
query prologue.

The query above, for example:

ino:explain(jazzMusician[belongsTo/style/@name="Bebop"
and name/first="Charlie"])

results in:

<xql:result>
<ino:explanation ino:preselection="TRUE"

ino:postprocessing="TRUE" />
</xql:result>

As already explained above, this query involves both a pre-selection and a post-processing phase.
Not surprisingly, both ino:preselection and ino:postprocessing have the value "TRUE".

Because Tamino automatically separates pre-selection and post-processing criteria and applies
further query optimization, the sequence of search criteria in a filter expression does not matter.
For example, the query

jazzMusician[belongsTo/style/@name="Bebop"
and name/first="Charlie"]

is executed at the same speed as

107Advanced Concepts

Efficient Querying

jazzMusician[name/first="Charlie"
and belongsTo/style/@name="Bebop"]

(Remember, belongTo/style/@name is indexed, name/first is not.)

Here are a few more guidelines for efficient querying:

■ There is one situation in which an indexed node cannot be processed during pre-selection: the
query for the non-existence of the node. If a node does not exist, its value is not contained in the
index, and consequently the test for non-existence cannot rely on the index. This test is therefore
processed during the post-processing phase. Depending on the size of the pre-selected document
set, this can be slow.

For example, let us assume thatwe haddeclared jazzMusician/name/middle as a standard index.
The query for jazz musicians without a middle name:

jazzMusician[not(name/middle)]

would still require a scan through all jazzMusician documents.
■ Avoid using the equality operator (=) when only a "text" index is defined, or the contains oper-
ator (~=) when only a "standard" index is defined. In both cases, Tamino correctly evaluates the
query, but via post-processing! If you frequently apply both operators on the same node, consider
defining it as both a standard and text index.

For example, the query style[@name~="Cool*"]would be handled in the post-processing stage,
after reading all style documents. This is because style/@namewas defined as a standard index,
not as a text index.

■ Make use of Tamino's X-QUERY extensions to XPath. These extensions perform better than the
equivalent standard XPath expressions.

For example, use [age between 40,65] instead of [age >= 40 and age <= 65]. (For the
definition of jazzMusician/age please see Utilizing Server Extensions::Derived elements).

■ Not only is it good style to make key and search expression type-compatible (e.g. to use a string
search value for an alphanumeric key or a numeric search value for a numeric key); this also
ensures that you always obtain correct results. Comparing an alphanumeric constant with a
numeric element, for example, causes the numeric element to be converted into a string and a
string comparison to be performed. This would probably not return the expected results. The
performance suffers from this conversion too.

For example, write [age = 55] and not [age = "55"] if you have defined age as an element of
type integer. Write [@ino:id=42] and not [@ino:id="42"].

XQuery 4, on the other hand, checks for type consistency in expressions and throws an error if
you try to compare an integer with a string. (Remember that XQuery 4 supports the full XML
Schema type system.) In XQuery 4 you always must specify a correctly typed literal, as in:

Advanced Concepts108

Efficient Querying

where $j.birthdate = xs:date("1923-07-27").

Queries that do not use post-processing are especially useful when it is not necessary to access
any documents, for example, when using the count() function.

109Advanced Concepts

Efficient Querying

110

14 Performance Issues

To achieve optimal transaction performance, again, proper modeling is essential:

■ Avoid “relational” designs that split a business object into a multitude of “flat” documents.
Updating a business object would require the updating of multiple documents, thus impairing
performance. In some cases, however, it may be necessary to split a large business object into
several documents. A Boeing 747, for example, can certainly be seen as a single business object,
but representing its parts list in a single documentwould certainly lead to performance problems
(see next paragraph).

■ Avoid “all-in-one” documents. Very large documents are slow to update because parsing and
writing them may take a long time. Also, when a single document contains several business
objects, you may run into performance problems due to locking conflicts. Because locks are set
at the document level, you would lock all business objects contained in the updated document,
even if a certain business object is not affected by the update. This prohibits other users from
concurrently accessing or updating these business objects (depending on the isolation level).

111

112

III Utilizing Server Extensions

In this chapter we introduce X-Tension, which is Tamino's mechanism for producing server exten-
sions. We implement a few example extensions for our jazz knowledge base, and also implement
some server extensions that are of general interest. Full information on server extensions is available
in the document X-Tension: Tamino Server Extensions.

What are they Good For?

Queries

Derived Elements

Maintaining Semantic Integrity

Building Up a Library

More Examples

113

114

15 What are they Good For?

Tamino server extensions extend – not surprisingly – the functionality of the Tamino server.
Server extensions are defined on the level of individual databases. They can be implemented in a
variety of languages, such as C++, Java, Natural and Visual Basic.

The areas of Tamino functionality that can be extended are:

Query functions
Server extension functions can be called in the context of a Tamino query and can thus extend
the query language. Note that server extension functions can only extendX-Query andXQuery
4 expressions that are interpreted by the Tamino server, not XPath expressions that are used,
for example, in an XSLT stylesheet processed in a pass-thru servlet.

Mapping functions
These functions are applied when documents are stored (onProcess), retrieved (onCompose)
or deleted (onDelete). Typically, these functions are used to implement nodes of an XML
document that are not stored natively in Tamino. These can be nodes that are derived from
the values of other nodes, or nodes that are stored outside of Tamino, for example in a file
system.

Triggers
Triggers are similar tomapping functions. The difference is that amapping function consumes
a subtree, whereas a trigger does not. Typically, triggers are used to execute actions when
document nodes are inserted (onInsert), modified (onUpdate) or deleted (onDelete). The
trigger action is executed in addition to the native Tamino operation.

Server event functions
These functions are executed at the end of a server request, commit or rollback and at the end
of a session (connection end). Typically, they are used for housekeeping operations.

Shadow functions
These functions are used to create index values for non-XML documents as a shadow of the
original.

115

Init functions
These functions allow initialization operations to be executed on the server extension object
prior to any query, trigger or mapping function execution.

Server extensions that are written in Java can be implemented using the Tamino X-Tension
Builder tool. Alternatively they can be implementedwith third-party tools and then imported into
Taminowith the help of the X-TensionObject Analyzer. Typically, several server extension functions
are combined into a single server extension module such as a Java package.

In the following sectionswe discuss the development of Java server extensionswith some examples.
We implement two query functions that are of interest in connectionwith XML Schema datatypes,
and we also implement a map-out function that is of interest in connection with the jazz example
shown in FromConceptualModel to Schema::FromModel to Schema. The sectionMore examples shows
how to extend X-Query with the help of query functions.

Advanced Concepts116

What are they Good For?

16 Queries

In this chapter we implement a server extension function that compares two date or dateTime
values. As we have seen in From Conceptual Model to Schema::Constraints across documents, the
comparison of values of these datatypes using XPath's native facilities is awkward; anything that
facilitates this is beneficial. Note that this is only a deficiency of XPath 1.0; in contrast, both XPath
2.0 and XQuery support XML Schema datatypes, including date and time formats. The module
concept of XQuery offers a powerful mechanism for managing user-defined functions.

In addition, we implement a function that returns a dateTime string of the current time of day.
(The complete source code including an Install.xml file and Javadoc HTML file is contained in the
directory sxsjxsd in the documentation set.)

We implement these functions in Java, and because we are lazy we implement them by using
Java's sophisticated calendar support. After all, object-oriented programming is about re-use.

We start the Tamino X-Tension Builder and create a new server extension which we call xsd. We
call the package tamino.SXS.xsd and the class simply xsd. The toolwill generate a code framework
for a Tamino server extension.

We can now add our new query functions as new methods into this framework. To do so, we use
the menu function Add Function:

■ The first function we add is called dtComp(). We define it as a query function. The tool asks us
for the type of the result, which we set to integer. Then we add two operands, op1 and op2, of
type charstr.

■ The second function is called current(). Again, we define it as a query function and set the
result type to charstr. There are no operands.

The X-Tension Builder generates the required method code frames into the class code. We can
now implement our custom logic (emphasized):

117

// xsd.java: Implementation of Server Extension xsd
//
// Tamino Server Extension xsd
//
// $javadoc:on

package tamino.SXS.xsd;
import com.softwareag.ino.sxs.*;
import java.text.SimpleDateFormat;
import java.util.Date;

// Javadoc comments.
// TODO: Add more detailed description if necessary
/**
* Tamino Server Extension xsd
* @author My name
* @version 1.0
*/

public class xsd extends ASXJBase {
// Version information for current Server Extension xsd.
// TODO: Change SXS Version here if necessary:
static final SXSVersion sxsVersion = new SXSVersion (1, 0);

// Description of current Server Extension:
// TODO: Change this string if necessary
static final String sxsAbout = "Tamino Server Extension xsd";

// TODO: Enter further class variables here.

/**
* The default constructor
* (No other constructor allowed.)
*/

public xsd () {
// TODO: enter SXS initialization here.

}

// Description of Server Extension Function dtcomp
// TODO: Change description if necessary
static final String dtcompAbout = "Query Function dtcomp";

/**
* comparison of XSD date/time
* @param op1 parameter (XML Schema date, dateTime, time)
* @param op2 parameter (XML Schema date, dateTime, time)
* @return comparison result:
* -1 (op1 < op2), 0 (op1 = op2), 1 (op1 > op2)
*/

public int dtcomp (String op1, String op2)
throws java.text.ParseException

{

Advanced Concepts118

Queries

// To delete dtcomp, remove it here and from Install.xml.
Date d1 = toDate(op1);
Date d2 = toDate(op2);
return d1.compareTo(d2);

}

// Description of Server Extension Function current
// TODO: Change description if necessary
static final String currentAbout = "Query Function current";

public String current ()
{

// To delete current, remove it here and from Install.xml.
SimpleDateFormat df2 =
new SimpleDateFormat ("yyyy-MM-dd'T'HH:mm:ss");
return df2.format(new Date());

}

/**
* Convert lexical XML Schema date/time representation
* to Java Date format
* @param s input string
* @return Date value
*/

private Date toDate(String s)
throws java.text.ParseException

{
// determine formatting string
String f = (s.indexOf("T",0) >= 0 ?

"yyyy-MM-dd'T'HH:mm:ss" :
(s.indexOf(":", 1) >= 0 ?

"HH:mm:ss" : "yyyy-MM-dd"));
// check for explicit time zone
int p = Math.max (s.indexOf("+", 8),s.indexOf("-", 8));
if (p >= 0) {
f += "z";

// indicate time zone in formatting string
s = s.substring(0,p-1)+"GMT"+s.substring(p);

// keep SimpleDateFormat happy
}
else if (s.charAt(s.length()-1) == 'Z') {

// check for UTC time zone
f += "z";
s = s.substring(0,s.length()-1) + "UTC";

}
// create SimpleDateFormat object
SimpleDateFormat df = new SimpleDateFormat (f);
// and use it as a parser
return df.parse(s);

}

119Advanced Concepts

Queries

}

Tip: A good way of developing such a server function is first to create and debug it in your
preferred Java development environment, and then copy the code into the X-Tension
Builder.

Along with the Java code, the X-Tension Builder has created a control file, called Install.xml. Re-
member that Tamino server extensions can be written in a variety of programming languages.
This file describes the specific extension module in a generic, language-neutral format. It also
specifies the datatypes of input and output parameters in terms of server extensions. The following
table shows how Java datatypes relate to server extension specific types:

Java output and in/out parametersJava input and result parametersserver extension type

StringBufferStringino:XML-OBJ (i.e. node list)

StringBufferStringxs:string

BooleanRefbooleanxs:boolean

IntRefintxs:int

DoubleRefdoublexs:double

floatxs:float

And this is how an Install.xml file looks:

<?xml version="1.0" encoding="ISO-8859-1"?>
<ino:Administration

xmlns:ino="http://namespaces.softwareag.com/tamino/response2"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<ino:Object

Name="xsd"
Id="tamino/SXS/xsd/xsd"
Infrastructure="Java">
<ino:About

Author="My name"
CreationDate="2008-08-14"

/>
<ino:Function

Name="dtcomp"
Usage="Query">
<ino:Parameter

Name="op1"
TSDType="xs:string"

/>
<ino:Parameter

Name="op2"
TSDType="xs:string"

/>

Advanced Concepts120

Queries

<ino:Parameter
Name="result"
TSDType="xs:int"

/>
<ino:About>Query Function dtcomp</ino:About>

</ino:Function>
<ino:Function

Name="current"
Usage="Query">
<ino:Parameter

Name="result"
TSDType="xs:string"

/>
<ino:About>Query Function current</ino:About>

</ino:Function>
</ino:Object>

</ino:Administration>

As you can see, this file describes all the functions implemented in that particular server extension
module, together with their respective parameters. This file must be modified manually if we
subsequently decide to change the name of any function, the name and number of parameters, or
their type.

After compiling, we pack this class into an .sxp file using the Pack function of the X-Tension
Builder. With the help of the Tamino Manager we can now install the new server extension into
our jazz database. Thereafter, we can use the new functions within queries, for example:

jazzMusician[xsd.dtComp(birthDate,"1920-01-01") >= 0]

which returns all jazz musicians born in 1920 or later;

jazzMusician[xsd.dtComp(birthDate,xsd.current()) > 0]

which should result in an empty set of documents.

In XQuery 4 we can similarly write:

for $j in input()/jazzMusician[xsd.dtComp(birthDate,"1920-01-01") >= 0]
return $j

and:

121Advanced Concepts

Queries

for $j in input()/jazzMusician[xsd.dtComp(birthDate,xsd.current()) > 0]
return $j

The first case can be expressed solely with the means of XQuery 4 because XQuery 4 supports
XML Schema datatypes. We could write:

declare namespace xs="http://www.w3.org/2001/XMLSchema"
for $j in input()/jazzMusician[birthDate >= xs:date("1920-01-01")]

return $j

The second case, however, still requires a server extension to fetch the current date.

Note that search criteria that involve server extension functions are always processed in the post-
processing phase of a query (see From Schema to Tamino::Efficient Queries). So, even if birthDate
is defined as an index, this search criterion still results in a scan through all documents.

Tip: An alternative way to develop Tamino Server Extensions is to use the X-Tension Object
Analyzer. This tool can be invoked from the TaminoManager. Using thismethod,wewould
first develop the necessary Java classes using an IDE of our choice. Then, we can load the
executable (.class or .jarfile) into the X-TensionObject Analyzer. Nowwe can edit the details
of the imported executable, such as the server extension name, description, author, and
help files. The Pack Object function creates a server extension package file that can be in-
stalled in a Tamino database. This is a map-out function with the onCompose property
defined.

Advanced Concepts122

Queries

17 Derived Elements

Server extensions are also useful in the area of derived fields. A derived field is an information
element that is not stored within a document, but is computed when the document is retrieved.
This is usually done to avoid redundant data within a document, and in cases when the value of
a document node depends on the environment.

In XQuery, derived values can be generated by using constructors in the return clause. The re-
mainder of this section describes how to deal with derived elements using X-Query.

A typical example is a person's age. We can store a person's date of birth in a document, but we
cannot store his or her age because it changes over time. However, with server extensions we can
define an age element in a document that describes a person, for example in jazzMusician. When
such a document is retrieved, we must compute the value of this element by subtracting the date
of birth from the current date.

Becausewe rely on values fromother document nodes – here birthDate – during the computation
of a derived field, we must make use of a callback function. There are three types of callback
functions: XML, ODBC and System. It is the XML callback functions that we need, because we
want to query Tamino for the birthDate element.

Here is the complete code for the server extension. The callback code is highlighted.

// encyclopedia_jazzMusician.java:
// Implementation of server extension encyclopedia_jazzMusician:

package tamino.SXS.jazz.encyclopedia.jazzMusician;
import com.softwareag.ino.sxs.*;
import java.util.Date;
import java.text.SimpleDateFormat;
// Javadoc comments.
/**
* All extensions for jazz database
* @author Berthold Daum
* @version 1.0

123

*/
public class encyclopedia_jazzMusician extends ASXJBase {

/**
* The default constructor
* (No other constructor allowed.)
*/

public encyclopedia_jazzMusician () {
}
/**
* compute age from birth date (map-out function)
* @param object_id parameter
* @param element_id parameter
* @param document parameter
*/

public void computeAge (int object_id,
int element_id,
StringBuffer document)

throws java.lang.Exception
{

// create query string for callback
String xmlQuery =

"jazzMusician[@ino:id='"+object_id+"']/birthDate";
// create new string buffer for call back results
StringBuffer response = new StringBuffer(1024);
// callback: XQL query
int ret = SxsXMLXql ("encyclopedia", xmlQuery, response);
// Here we dive deep into the rather complex error
// handling for server extensions callbacks.
if (ret != 0)
{

// identify the callback error
int msgNo = SxsGetMsgNo ();
switch (msgNo) {
case INO_ERROR:

StringBuffer msgBuf = new StringBuffer ();
// Get the Tamino Server message number
int inoMsgNo = SxsGetInoMsgNo ();
// Get the Tamino Server messageline
ret = SxsXMLGetMessage (msgBuf);
throw (new Exception("INO_ERROR: "

+inoMsgNo+" "+msgBuf));
default:
// Get the SXS message corresponding to callback error

String msg = SxsGetMsgText ();
throw (new Exception("SXS Error: "+msgNo+" "+msg));

}
} // error handling done, now the real logic
// Remember, we had obtained the birthDate in "response"
// Convert into string
String docstr = response.toString();
// We have to isolate the value of the birthDate
// element from the Tamino response string.

Advanced Concepts124

Derived Elements

// Could be properly done with SAX,
// but to be brief we do it by hand.
int t = docstr.indexOf("<birthDate", 0);
// we have to scan for tag begin and end separately
// because the tag includes attributes (ino:id).
int b = docstr.indexOf('>',t+10)+1;
// Find end of element
int e = docstr.indexOf("</birthDate>", b);
// Convert content into Date format
SimpleDateFormat df =

new SimpleDateFormat ("yyyy-MM-dd");
Date d1 = df.parse(docstr.substring(b,e-1));
// Now extract years and months
// These methods are deprecated, but we use them anyway.
int y1 = d1.getYear();
int m1 = d1.getMonth();
Date d2 = new Date();
int y2 = d2.getYear();
int m2 = d2.getMonth();
// Compute age
int age = y2-y1;
// Adjust age, if we are still
// before this year's birthday
if ((m1 > m2) ||

((m1 == m2) && (d1.getDate() > d2.getDate())))
age--;

// Now pack into appropriate tags
docstr = "<age>"+age+"</age>";
// Write element to result buffer
document.replace (0, docstr.length(), docstr);

// To delete computeAge, remove it here and from Install.xml.
}

}

After the usual process – compilation, packing, and installation – we can use this server extension.
First, we must define an element <age> in the corresponding jazzMusician schema:

125Advanced Concepts

Derived Elements

The resulting schema fragment looks like this:

<xs:element name = "age" type = "xs:short">
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:physXNode>
<tsd:mapXTension>

<tsd:onCompose>
encyclopedia_jazzMusician.computeAge

</tsd:onCompose>
</tsd:mapXTension>

</tsd:physXNode>
</tsd:elementInfo>

</xs:appinfo>
</xs:annotation>

</xs:element>

Aftermaking this schema known to the database, we can store jazzMusician document instances.
These instances must include dummy <age> elements:

<age>0</age>

If we did not supply such elements (if we had defined minOccurs="0" in the element declaration),
the computeAge server extension would not be called when the document is retrieved, and no age
would be computed and displayed.

Tip: If a server extension derives a value for an attribute rather than for an element, and a
default value for the attribute is specified in the schema, it is not necessary to provide a

Advanced Concepts126

Derived Elements

dummy value for the attribute. This is because Tamino stores document instances with
default attribute values if explicit attribute values are not provided.

Tip: You can allow a default value to be generated for an element or an attribute by using
a server extension Query function. Refer to the section tsd:default in the document Tamino
XML Schema Reference Guide for details.

Whenwe nowquery jazzMusician documents, the current age of each jazzmusician is displayed.
For example, the following query issued in October 2004:

jazzMusician[@ID="ColtraneJohn"]

results in:

<jazzMusician ino:id="1" type="instrumentalist"
ID="ColtraneJohn">

<name>
<first>John</first>
<last>Coltrane</last>

</name>
<birthDate>1926-09-23</birthDate>
<age>78</age>

</jazzMusician>

The same query issued in October 2002 results in an age of 76.

The derived field can also be used in queries:

jazzMusician[age > 70]

However, becausewe cannot index derivedfields, search criteria involving derivedfields are always
processed in the post-processing phase of a query (see From Schema to Tamino::Efficient Queries).

127Advanced Concepts

Derived Elements

128

18 Maintaining Semantic Integrity

Triggers are the mechanism that is best suited for maintaining semantic integrity in a database (if
we allow for a closed-world assumption). Triggers are well known from SQL. Most relational
database management systems implement trigger mechanisms.

Let us assume that we have stored several album documents within our encyclopedia collection.
In addition,we have stored several reviewdocuments that relate to someof those albumdocuments.
When we delete an album document, we want to make sure that the review elements relating to
the deleted album document are also removed from the database.

We can achieve this by defining an onDelete trigger to the album node of the album document
type.

This trigger is called immediately before the album node is deleted.

<xs:element name = "album" >
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:logical>
<tsd:trigger>
<tsd:onDelete type = action>

encyclopedia_album.deleteRelatedReviews
</tsd:onDelete>

</tsd:trigger>
</tsd:logical>

</tsd:elementInfo>
</xs:appinfo>

</xs:annotation>
...

</xs:element>

Sample trigger code is shown in the following example. The deleted album document node is
passed to the method deleteRelatedReviews, which implements the trigger. This allows us to

129

extract the album/@albumNo attribute value, and then to delete any review instances that specify
this value in their review/album/@albumNo node. These cascading delete operations are performed
via server extension callbacks.

package tamino.SXS.jazz.encyclopedia.album;
import com.softwareag.ino.sxs.ASXJBase;

public class encyclopedia_album extends ASXJBase {

/**
* The default constructor
* (No other constructor allowed.)
*/
public encyclopedia_album() {
}
/**
* Delete all reviews relating to this album instance (used as trigger function)
* @param object_id parameter
* @param element_id parameter
* @param document parameter
*/
public void deleteRelatedReviews(

StringBuffer collection,
StringBuffer doctype,
StringBuffer inoId,
String document)
throws java.lang.Exception {
// We rely on the fact that albumNo is an attribute of the root element
// (the official way would be to employ a parser)
int aPos = document.indexOf("albumNo");
if (aPos < 0)
throw new Exception("No albumNo attribute");

int qaPos = document.indexOf('"', aPos + 8);
int qePos = document.indexOf('"', qaPos + 1);
String albumNo = document.substring(qaPos, qePos + 1);

// create Delete query string for the callback
String xmlQuery = "review[album/@albumNo=" + albumNo + "]";
// create new string buffer for call back results
StringBuffer response = new StringBuffer();
// callback: delete all documents matching this query
int ret = SxsXMLDelete("encyclopedia", xmlQuery, response);
if (ret != 0)
processError();

}

// Here we dive deep into the rather complex error
// handling for server extensions callbacks.
private void processError() throws Exception {

// identify the callback error

Advanced Concepts130

Maintaining Semantic Integrity

int msgNo = SxsGetMsgNo();
switch (msgNo) {
case INO_ERROR :

StringBuffer msgBuf = new StringBuffer();
// Get the Tamino Server message number
int inoMsgNo = SxsGetInoMsgNo();
// Get the Tamino Server messageline
int ret = SxsXMLGetMessage(msgBuf);
throw (new Exception("INO_ERROR: " + inoMsgNo + " " + msgBuf));

default :
// Get the SXS message corresponding to callback error
String msg = SxsGetMsgText();
throw (new Exception("SXS Error: " + msgNo + " " + msg));

}
}

}

Note that triggers can be cascaded. We could, for example, equip review documents with an
onDelete trigger that removes any critic instances that are only referred to by the deleted review
instance. The deletion of an album document could thus cause the deletion of a critic document.
This is conceptually debatable: both reviews and critics are first class business objects, so their
existence should not depend on other business objects.

131Advanced Concepts

Maintaining Semantic Integrity

132

19 Building Up a Library

Building up a library of server extensions helps to avoid the duplicate development of server ex-
tension functions and facilitates software reuse. Themost systematic approach to the construction
of such a library is to use a multi-level strategy.

On the server level

On this level, we define the server extension functions that are common to all databases on the
server. These are functions that, for example, extend basic functionality or implement common
corporate functionality.

Typically, these functions are grouped into packages that contain functions with related function-
ality. For example, we create one package for the support of XML Schema datatypes; we create
another package to add more functionality to X-Query and XQuery 4; and we create another
package for triggers.

In Tamino, server extensions are always installed into particular databases. Therefore, we install
these common server level extensions into each database on the server.

We should use short names for these server extensions because on this levelmost server extensions
will extend the query functions and it is awkward to type long name prefixes in queries. (See below
for the possibility to rename server extension functions.) In the sectionQuerieswe called the
server extension for the XMLSchemadatatypes xsd and the corresponding package tamino.SXS.xsd.

A typical example are the functions dtComp() and current() in the package tamino.SXS.xsd.
These functions are of general interest because they extend the functionality of X-Query to
the new date and time datatypes introduced with XML Schema. Additional functions are
shown in the sectionMore examples.

On the database level

133

On the level of a single database, we define the server extension functions that are common
to all collections within the database. Again, we should give relatively short names to the
server extension and use the following naming pattern for the package names:
tamino.SXS.{database}.{extension}.

On the collection level

Herewe define the server extension functions that are common to all document types within
a particular collection. We should aim to implement these extensions in a single package.
We can then use the collection name as the name of the server extension. The package name
should follow the pattern: tamino.SXS.{database}.{collection}

On the document type level

Server extensions on the document type level contain the server extension functions that are
specific to that particular document type. Again,we should aim to implement these extensions
in a single package. We use the following naming pattern for the server extension:
{collection}_{doctype}

andname the package according to the followingpattern: tamino.SXS.{database}.{collection}.{doc-
type} .

Tip: Individual server extensions functions can be renamed with the help of the Tamino
Manager. If, for example, xsd.dtComp should be inconvenient for queries, we can assign a
different external name to this function, for example compare-date.

Advanced Concepts134

Building Up a Library

20 More Examples

■ concat ... 136
■ contains ... 138
■ substringBefore ... 139
■ substringAfter ... 140
■ substring .. 141
■ trim ... 142
■ normalizeSpace .. 144
■ stringLength ... 146
■ qdoc ... 147

In this section we provide a few more examples of server functions. We have implemented:

■ some of the XPath functions that did not find their way into X-Query;
■ particular string functions which might prove useful in both X-Query and XQuery 4;
■ a function similar to the XSLT document() function.

We call this server extensionmodule xqx and name the package accordingly tamino.sxs.xqx. The
complete source code, including the file Install.xml and the Javadoc HTML file, is contained in the
directory sxsjxqx in the documentation set.

135

concat

Concatenates strings.

Syntax

public String concat (String op1, String op2)

public String concat3 (String op1, String op2, String op3)

public String concat4 (String op1, String op2, String op3, String op4)

Description

The original XPath concat() string function allows any number of arguments (at least 2).We have
implemented the functions concat, concat3, and concat4 to cover cases with two, three, and four
arguments. The implementation could hardly be simpler:

public String concat (String op1, String op2) {
return op1+op2;

}

public String concat3 (String op1, String op2, String op3) {
StringBuffer sb = new StringBuffer(op1);
sb.append(op2);
sb.append(op3);
return sb.toString();

}

public String concat4 (String op1, String op2,
String op3, String op4) {

StringBuffer sb = new StringBuffer(op1);
sb.append(op2);
sb.append(op3);
sb.append(op4);
return sb.toString();

}

Advanced Concepts136

More Examples

Examples

xqx.concat(name/last, name/first)

constructs an ID from last name and first name.

xqx.concat3(birthDate,"T","04:30:00")

appends a time to a date.

137Advanced Concepts

More Examples

contains

True if op1 contains op2.

Syntax

public boolean contains (String op1, String op2)

Description

The string function contains() is a bit more demanding:

public boolean contains (String op1, String op2) {
return (op1.indexOf(op2) >= 0);

}

Examples

xqx.contains(title,"Moon in June")

is true for all titles containing "Moon in June". In contrast to the X-Query contains-operator (~=),
this function is case sensitive.

Advanced Concepts138

More Examples

substringBefore

Returns substring before op2.

Syntax

public String substringBefore (String op1, String op2)

Description

The original XPath name is substring-before().

public String substringBefore (String op1, String op2) {
int i = op1.indexOf(op2);
if (i > 0) return op1.substring(0,i);
return "";

}

Examples

xqx.substringBefore(performedAt/time,"T")

returns the date part of dateTime element performedAt/time.

139Advanced Concepts

More Examples

substringAfter

Returns substring after op2.

Syntax

public String substringAfter (String op1, String op2)

Description

The original XPath name is substring-after().

public String substringAfter (String op1, String op2) {
int i = op1.indexOf(op2);
if (i >= 0) {

int b = op2.length()+i;
if (b < op1.length()) return op1.substring(b);

}
return "";

}

Examples

xqx.substringAfter(performedAt/time,"T")

returns the time part of dateTime element performedAt/time.

Advanced Concepts140

More Examples

substring

Returns substring from position p with length l.

Syntax

public String substring (String s, int p, int l)

Description

Two substring functions are provided in XPath:

■ substring(s, p, l) returns a substring of s starting at position pwith length l.
■ substring(s, p) returns a substring of s starting at position p up to the end of the string.

Because Tamino server extensions do not support method overloading, we implement only the
three-argument form. The length -1 indicates the two-argument version (substring up to end of
string).

public String substring (String s, int p, int l) {
p--; // Java counts from 0, Xpath from 1
if (l < 0) return s.substring(p);
return s.substring(p,p+l);

}

Examples

xqx.substring(1999-05-01,6,2)

returns the month ("05").

xqx.substring(1999-05-01,6,-1)

returns the month and the day ("05-01").

141Advanced Concepts

More Examples

trim

Removes white space from beginning and end.

Syntax

public String trim (String s)

Description

Here we implement a function that is not available in XPath but works similarly to the XPath
string function normalize-space(). However, trim() only removes leading and trailing white
space from a string, leaving white space in the interior of the string intact. Again, the implement-
ation is trivial:

public String trim (String s) {
return s.trim();

}

Examples

If a document instance of document type style contains an element:

<name>
swing

</name>

then the simple path expression:

style/name

returns "swing" with leading and trailing carriage-return characters and blanks. In many cases
this is unwanted, for example if we want to use the string as a search string or concatenate it with
other strings.

Advanced Concepts142

More Examples

xqx.trim(style/name)

removes these unwanted white space characters.

143Advanced Concepts

More Examples

normalizeSpace

Normalizes white space.

Syntax

public String normalizeSpace (String s)

Description

The full implementation of normalize-space() requires a bit more coding:

public String normalizeSpace (String s) {
StringBuffer sb = new StringBuffer(s.length());
boolean whiteSpace = true;
for (int i=0; i < s.length(); i++) {

char c = s.charAt(i);
if ((c==' ')||(c==13)||(c==10)||(c==9)) {
if (!whiteSpace) {

whiteSpace = true;
sb.append(' ');

}
} else {
sb.append(c);
whiteSpace = false;

}
}
if (whiteSpace) {

sb.deleteCharAt(sb.length()-1);
}
return sb.toString();

}

Examples

If a document instance of document type album contains an element:

Advanced Concepts144

More Examples

<title>
Open Up
(Whatcha gonna do for the rest of your life?)

</title>

then the simple path expression:

album/title

returns the title with all carriage-return, linefeed, tab, and blank characters.

xqx.normalizeSpace(album/title)

normalizes this string to:

Open Up (Whatcha gonna do for the rest of your life?)

145Advanced Concepts

More Examples

stringLength

Returns length of string.

Syntax

public int stringLength (String s)

Description

The original XPath name is string-length(). The implementation is trivial:

public int stringLength (String s) {
return s.length();

}

Examples

xqx.stringLength(name/last)

returns the length of the element name/last including white space characters.

jazzMusician[xqx.stringLength(./name/last)=9]

returns all jazz musicians whose last name is 9 characters long.

Advanced Concepts146

More Examples

qdoc

Fetches document specified by path.

Syntax

public String qdoc (String qpath)

Description

Finally, here is a function that is similar to the document() function in XPath, but constrains itself
to documents stored in the samedatabase. This allows us to implement the retrieval of the document
via a Tamino callback function, instead of retrieving the document via an HTTP request.

The function takes one argument, namely an X-Query expression that identifies the document (or
document part). This expression must include the collection name. Before returning a result, it
strips off all of Tamino's packaging for query results and returns the data as a vanilla XML node
(or node list).

public String qdoc (String qpath)
throws java.lang.Exception {

// split operand into collection and relative path
int p = qpath.indexOf("/", 0);
if (p<0)
throw(new Exception("Proper syntax is collection/path"));
StringBuffer response = new StringBuffer(1024);
// do query to Tamino via SXS callback
int ret = SxsXMLXql (qpath.substring(0,p),

qpath.substring(p+1), response);
if (ret != 0)

// Error handling as shown in section Derived elements
//

}
// Create document string
String docstr = response.toString();
// We have to isolate the returned node(s)
int t = docstr.indexOf("<xql:result>", 0)+12;
if (t >= 12) {

int e = docstr.indexOf("</xql:result>", t);
return docstr.substring(t,e);

}
return "";

}

147Advanced Concepts

More Examples

Examples

Since qdoc() – in contrast to document() – does not require the full specification of a URL and
removes the Tamino response wrapping, queries using qdoc() are significantly simpler. The fol-
lowing query finds all collaborations inwhich jazzmusicianswhose last name is "Parker" particip-
ated:

collaboration[jazzMusician/@ID=xqx.qdoc(
"encyclopedia/jazzMusician[name/last='Parker']"
)/@ID]

The next query finds all jazz musician documents taking part in such collaborations. We see that
qdoc() can be nested. Note that we have to use the " notation for the innermost level of
string demarcations.

jazzMusician[@ID = xqx.qdoc(
"encyclopedia/collaboration[jazzMusician/@ID=xqx.qdoc(
'encyclopedia/jazzMusician[name/last="Parker"]'
)/@ID]")/jazzMusician/@ID]

Similarly, the following query returns all albumdocuments that are the result of such a collaboration:

album[@albumNo = xqx.qdoc(
"encyclopedia/collaboration[jazzMusician/@ID=xqx.qdoc(
'encyclopedia/jazzMusician[name/last="Parker"]'
)/@ID]")/result/@albumNo]

Advanced Concepts148

More Examples

IV Rapid Application Development with Tamino

In this chapter, we show how Tamino's pass-thru servlet can be used to generate customized
HTML pages from XML data stored in Tamino. We give a short introduction to XSLT and discuss
its advantages and disadvantages. Using XLink, we show how navigational structures can be
modeled and transformed into HTML hyperlinks. Finally, we show how XQuery 4 can be used
for prototyping purposes, and discuss the pros and cons of the various approaches to application
prototyping.

Introduction to XSLT

Mapping a schema to a web page

Navigation with XLink

The Tamino JavaScript API

XSLT summary

Rapid Prototyping with XQuery 4

149

150

21 Introduction to XSLT

■ Procedural Transformation .. 152
■ Rule-Based Transformation ... 158
■ Limitations of XSLT .. 162
■ Using Style Sheets with Tamino .. 162

151

The “official” method for transforming XML into other formats (often presentation formats) is
XSLT (eXtensible Stylesheet Language: Transformations). Historically, XSLT had been a part of
the XSL (eXtensible Stylesheet Language) specification, but XSL was split into three parts: XPath,
XSLT, and XSL Formatting Objects (XSL-FO). XSL-FO was designed as the presentation format
for XML. However, it plays currently only a minor role since most of its functionality is covered
by HTML+CSS. XSL-FO is usually an intermediate step when generating PDF from an XML doc-
ument.

XSLT is now a recommendation in its own right. It enables style-sheet controlled transformations
from one XML document format into another document format, which can be either XML or non-
XML. XSLT can, for example, be used to transformpresentation-neutral XMLdata into presentation
formats such as HTML, XHTML, XForms, WML, SMIL, SVG, etc. In the chapter From Conceptual
Model to Schema::Integritywe already discussed other applications for XSLT, such as constraint
checking and generating XML Schema from XMI.

Although XSLT is quite powerful, it has some deficiencies that have led to the development of
various extensions. Also, programmers who are familiar with imperative languages such as Java
or C++ sometimes find it hard to think in XSLT's rule-based structures. For the transformation into
HTML, however, most of the XSLT coding can be avoided by the use of XSLT generators, which
allow visual construction of the resultingweb page (or visualmapping of XML elements toHTML
elements of an existingweb page) and generate most of the required XSLT code. Examples of such
generators are Altova's XML Spy, eXcelon's Stylus and Whitehill's XSL Composer.

Such tools are useful to develop stylesheets that map XML documents onto individual HTML
pages. However, when we want to create generic transformations (for example, where the final
layout depends on the document type and/or on the content), or when we need stylesheets to
produce output other thanHTML,we have to dig into XSLTprogramming. In the following sections
we give a short introduction.

Procedural Transformation

The basic construct in XSLT are templates. Each XSLT stylesheet must consist of at least one tem-
plate. A template can be explicitly invoked by name, or it can be implicitly applied via pattern
matching according to the match expression defined in the head of the template. This allows two
programming styles in XSLT which can be mixed freely, namely rule-based programming and
procedural programming.

Rule-based programming

This is a more declarative approach. Rules (i.e. templates with a match expression) specify which
elements of the input document they apply to, and how they transform these elements. Rules are
applied recursively. The programmer describes the transformation in terms of logic and is not
concerned with the sequence of execution.

Advanced Concepts152

Introduction to XSLT

Procedural programming

This programming style is easier to understand for programmers with experience in imperative
languages such as Java or C. The programmer describes to the XSLT processor exactly what to do
and in which sequence. The XSLT style sheet looks very much like the target document, with in-
terspersed XSLT instructions to fill in the blanks.

To support procedural programming, XSLT provides the following operations:

Control structures.

XSLT instructions such as xsl:for-each, xsl:if, and xsl:choose provide procedural control
structures for loops, conditional execution and case structures. The result of an xsl:for-each in-
struction can be sortedwith an xsl:sort instruction andnumberedwith the xsl:number instruction.

The instruction xsl:call-template is used to invoke a template by name (recursive calls are
possible). Parameters can be passed to the invoked template but it is not possible to return results
to the caller.

The instruction xsl:apply-templates can be used to start rule-based processing (see Rule-Based
Transformation).

Accessing content.

The xsl:value-of instruction writes the content of a node or node list to the output stream as
text. The xsl:copy-of instruction writes the content of a node or node list to the output stream in
its original form.

Here is an XSLT example that transforms album instances into an HTML page. We have extended
the album schema from the chapter FromConceptualModel to Schema::FromModel to Schema to include
some more information:

InstanceSchema

<?xml version="1.0" encoding = "UTF-8"?>
<?xml-stylesheet type="text/xsl" href="album.xsl"?>
<album xmlns="http://www.softwareag.com/tamino/doc/

examples/models/jazz/encyclopedia"
albumNo="BGJ-47">

<title>Blues House Jam</title>
<track>
<title>Post Election Jam I</title>
<duration>PT19M35S</duration>

</track>
<track>
<title>Post Election Jam II</title>
<duration>PT20M35S</duration>

</track>
<coverImage>

153Advanced Concepts

Introduction to XSLT

InstanceSchema

post-election-jam.jpg
</coverImage>

</album>

The stylesheet programming is strictly procedural and deterministic. It is the stylesheet that defines
the layout of the resulting HTML file.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<!-- Make sure we generate HTML output -->
<xsl:output method="html" indent="yes"/>
<!-- Just a single rule for the root node -->
<xsl:template match="/">
<!-- Generate HTML document root -->
<html><head/><body>

<!-- Select album node -->
<xsl:for-each select="album">

<!-- The usual nested tables -->
<table><tr><td>
<table width="100%">

<tr bgcolor="silver">
<td>

<!-- Title element as headline -->
<h2><xsl:value-of select="title"/></h2>

<!-- Test if we have a publisher element -->
<xsl:if test="publisher">

<!-- if yes generate publisher entry -->
Publisher:
<xsl:value-of select="publisher"/>

</xsl:if>
<!-- Generate album number entry -->
AlbumNo:
<xsl:value-of select="@albumNo"/>

</td>
<!-- Test if we have a cover image -->
<xsl:if test="coverImage">

<!-- if yes generate image reference -->
<td>

</td>

</xsl:if>
</tr>

</table>
</td></tr>
<tr><td>
<!-- now do the tracks -->

<h4>Tracks</h4>

Advanced Concepts154

Introduction to XSLT

<table width="100%" >
<!-- We may have multiple tracks, therefore loop -->
<xsl:for-each select="track">
<tr bgcolor="silver">
<td>

<!-- Print track number -->
<xsl:number value="position()" format="1-"/>
<!-- Print title of track element -->
<xsl:value-of select="title"/>

</td>
<!-- Print duration -->
<td align="Right">

<!-- Convert duration to mm:ss format -->
<xsl:value-of select=

"substring-before(substring-after(duration,'T'),'M')"/>:
<xsl:value-of select=

"substring-before(substring-after(duration,'M'),'S')"/>
</td>

</tr>
</xsl:for-each>

</table>
</td></tr></table>

</xsl:for-each>

</body></html>
</xsl:template>
</xsl:stylesheet>

To implement the stylesheet logic we have used the XSLT instructions discussed above. Optional
elements are included in an <xsl:if> block to suppress the decoration (such as "Publisher:") if
there is no publisher element.

Applying this stylesheet to the above XML document instance results in the following HTML file:

<html>
<head>

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8">

</head>
<body>

<table>
<tr>

<td>
<table width="100%">

<tr bgcolor="silver">
<td>

<h2>Blues House Jam</h2>

ProductNo:
BGJ-47

</td>
<td><img src="post-election-jam.jpg"

alt="Blues House Jam">

155Advanced Concepts

Introduction to XSLT

</td>
</tr>

</table>
</td>

</tr>
<tr>

<td>
<h4>Tracks</h4>
<table width="100%">

<tr bgcolor="silver">
<td>1-Post Election Jam I</td>
<td align="Right">19:35</td>

</tr>
<tr bgcolor="silver">

<td>2-Post Election Jam II</td>
<td align="Right">20:35</td>

</tr>
</table>

</td>
</tr>

</table>
</body>
</html>

The final representation in a web browser looks like this:

Advanced Concepts156

Introduction to XSLT

157Advanced Concepts

Introduction to XSLT

Rule-Based Transformation

With rule-based transformation, themain XSLT control elements are templates (<xsl:template>).
A template consists of a head and a body. The head of each template specifies the context in which
the template should be activated. This is done by specifying an attribute matchwith an XPath ex-
pression to select the relevant context nodes.

The template body describes what to do. This can be procedural XSLT instructions (see above).
In addition, we may apply recursion with the instruction xsl:apply-templates, which applies
all templates defined in the stylesheet to all nodes in the selected context.

The select attribute of xsl:apply-templates defines the context in which the templates are to
be executed. select="." stands for the current context: the processor will try to match templates
with the child elements of the current node.

In addition, xsl:apply-templates has an optional mode attribute. This introduces an additional
selection mechanism for templates: only those templates that have a matching mode attribute in
their head are applied.

The result of an xsl:apply-templates instruction can be sorted with an xsl:sort instruction. In
addition, the results can be numbered with the xsl:number instruction.

If the heads of more than one template match a certain context, the template with the best match
is selected for execution:

■ Templates in the current style sheet are selected over templates from imported style sheets.
■ The more specific a matching expression in the template head is, the better is the match.
■ In addition, it is possible to specify an explicit priority for a template.

Here is an example rule-based stylesheet that produces the same output as the previous proced-
ural style sheet:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >

<!-- Make sure we generate HTML output -->
<xsl:output method="html" indent="yes"/>
<!-- The root node does the basic setup -->
<xsl:template match="/">
<!-- Generate HTML document root -->
<html><head/><body>

<!-- Process all children of the root node -->
<xsl:apply-templates select="album"/>
<!-- Second pass for tracks -->
<h4>Tracks</h4>

Advanced Concepts158

Introduction to XSLT

<!-- Mode parameter allows to select templates -->
<xsl:apply-templates select="album/track" mode="tracks"/>

</body></html>
</xsl:template>

<!-- Template for title -->
<xsl:template match="title">

<h2><xsl:value-of select="."/></h2>

</xsl:template>

<!-- Template for publisher -->
<xsl:template match="publisher">

Publisher:
<xsl:value-of select="."/>

</xsl:template>

<!-- Template for albumNo -->
<xsl:template match="@albumNo">

ProductNo:
<xsl:value-of select="."/>

</xsl:template>

<!-- Template for coverImage -->
<xsl:template match="coverImage">

</xsl:template>

<!-- Template for special tracks processing -->
<xsl:template match="track" mode="tracks">

<!-- Print character content of track element -->
<xsl:number format="1-"/>
<xsl:value-of select="title"/>
<!-- Convert duration to mm:ss format -->
(<xsl:value-of select=

"substring-before(substring-after(duration,'T'),'M')"/>:
<xsl:value-of select=

"substring-before(substring-after(duration,'M'),'S')"/>)

</xsl:template>

<!-- Dummy template to exclude tracks from first pass -->
<xsl:template match="track">
</xsl:template>

159Advanced Concepts

Introduction to XSLT

</xsl:stylesheet>

This stylesheet contains a separate rule for each element in the source document. The consequence
is that the layout of the resulting HTML page is not determined by the stylesheet but by the XML
source. The sequence of elements in the XML source triggers the execution of rules in the stylesheet.
Rule-based stylesheets are therefore best used when the output document must closely match the
structure of the source document.

In our example, there is one exception: To create an extra paragraph with tracks (and title it with
"Tracks") we used a two-pass approach. In the first pass we convert everything except track ele-
ments; in the second pass we convert only track elements. The appropriate templates are selected
via mode attributes.

Here is the resulting HTML:

<html>
<head>

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8">

</head>
<body>

ProductNo:
BGJ-47

<h2>Blues House Jam</h2>

<h4>Tracks</h4>
1-Post Election Jam I (19:35)

2-Post Election Jam II (20:35)

</body>
</html>

And the result as it appears in the browser:

Advanced Concepts160

Introduction to XSLT

161Advanced Concepts

Introduction to XSLT

Limitations of XSLT

XSLT supports variables and parameters. However, XSLT variables are “read-only” variables: the
value is assigned when the variable is defined and cannot be overwritten afterwards. Templates
can specify formal parameters, too, so that it is possible to pass parameter values to templates.
However, there is no way to return values to the caller. Basically, a template is stateless. XSLT is
a functional language.

For programmers with a background in procedural programming this can make certain tasks
difficult. Of course it is possible to mimic stateful behavior by making extensive use of recursive
calls, but the stylesheets become hard to understand and execution requires a lot of memory.

In addition, XSLT does not have a complete set of built-in mathematical operators. For example,
there are no trigonometric or logarithmic functions. This can be a disadvantage if, for example,
we want to generate business graphics in SVG format. It is not impossible (one programmer suc-
ceeded in solving differential equations with XSLT!), but it is difficult.

Last but not least, the result of an XSLT style sheet transformation is always written to a single
output stream. We cannot split output into several files (this issue is addressed in XSLT 1.1).

These limitations necessitate an extension mechanism, which XSLT fortunately provides. Several
XSLT processors provide extensions, most notably Michael Kay's Saxon and the Apache Group's
Xalan.

However, although the extension mechanism is standardized, the extensions themselves are not,
so you have to choose a specific processor and stay with it. The good news is that there are com-
munity efforts to create a standard set of extensions: have a look at http://exslt.org/.

Using Style Sheets with Tamino

There are several ways to apply stylesheets to an XML document. The common way is to supply
a pointer to a stylesheet within a processing instruction of an XML document, for example:

<?xml-stylesheet type="text/xsl" href="album.xsl"?>

This processing instruction causes the XML processor to apply the stylesheet album.xsl to the
content of the XML document.

In many cases, the XML client is a web browser. This is fine as long as we have control over which
web browsers are used (for example, in an intranet) and can guarantee that all clients understand
XSLT 1.0. But on the Internet we can be quite sure that not all clients (for example PDAs) can
handle XSLT, so the conversion from XML to HTML must be done on the server.

Advanced Concepts162

Introduction to XSLT

http://exslt.org/

Tamino's serialization method, in combination with the XSLT server extension, offers exactly this
functionality. Using serialization, a server extension call can be included in a query. The XSLT
server extension, as described in the chapterExample: XSLT Server Extension of the server extension
documentation, makes XSLT transformations of XML documents retrieved from Tamino, using
stylesheets that are stored in Tamino.

For storing stylesheets, we first define a small schema for the stylesheet document type:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema"

xmlns:tsd = "http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
xmlns:xsl = "http://www.w3.org/1999/XSL/Transform"
targetNamespace = "http://www.w3.org/1999/XSL/Transform" >
<xs:annotation>

<xs:appinfo>
<tsd:schemaInfo name = "stylesheet">

<tsd:collection name = "encyclopedia"/>
<tsd:doctype name = "xsl:stylesheet">
<tsd:logical>
<tsd:content>closed</tsd:content>

</tsd:logical>
</tsd:doctype>

</tsd:schemaInfo>
</xs:appinfo>

</xs:annotation>
<xs:element name = "stylesheet"/>

</xs:schema>

Note that we have defined a single untyped element with the name stylesheet. Accordingly, we
have used the same name for the document type.

After we have defined this schema to Tamino, we can add stylesheets to our encyclopedia collec-
tion. To be able to identify these stylesheets later, we use the option to store a document instance
under a particular document name (@ino:docname). This allows us to retrieve that document by
its name via URL (see From Schema to Tamino::Object Identity).

The documentation for the SerializationSpec expression in the XQuery Reference Guide provides
further information about the use of serialization.

163Advanced Concepts

Introduction to XSLT

164

22 Mapping a Schema to a Web Page

In many cases, prototypes of the planned web pages already exist and we want to “put the data
into them”. In these cases, the use of rule-based XSLT is hardly appropriate, and it is better to use
XSLT in a procedural style.

The first step is to map the nodes from the XML schemas to the web page elements. During this
step we can also make sure that all vital information is present in the web page.

Frequently, a web page does not exactly match an XML document type:

■ The web page may not contain all the data of an XML document type;
■ The web page may combine data from several XML document types, as shown in the following
example.

Let us assume that a prototype as shown on the right already exists, and that we want to map the
web page elements to XML nodes from the schemas shown on the left.

165

As far as the data from the album schema is concerned, the mapping from XML to HTML is
straightforward.We simply put thewholeHTML structure into an XSLT root template, and replace
the example data elements with xsl:value-of instructions specifying the corresponding node in
the album instance – a simple fill-in-the-blanks technique. In caseswhere an element has minOccurs
and maxOccurs settings other than "1", we enclose it (and its decoration) in an xsl:for-each block.

Advanced Concepts166

Mapping a Schema to a Web Page

Other HTML elements that depend on the existence of XML nodes are enclosed into an xsl:if
block.

Original HTML Source Code

Here is the HTML source code for our prototype as generated by the HTML editor:

<html>
<head>

<meta http-equiv="Content-Type"
content="text/html; charset=utf-8">

<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title></title>

</head>

<body bgcolor="#000000" link="#FFFFCC" vlink="#C0C0C0" >
<table>
<tr font color="#FFFFCC">

<td colspan="2" align="right">
Musicians
Bands

</td>
</tr>
<tr>

<td>
<table>

<tr bgcolor="silver">
<td bgcolor="#FFFFCC">
<h2>Blues House Jam</h2>

</td>
<td rowspan="4">
<img src="post-election-jam.jpg"

alt="Blues House Jam">
</td>

</tr>
<tr>
<td bgcolor="#FFFFCC" valign="top">
<p>recorded at the

Post-Election-Jam</p>
<p>October 21, 1947

Whitehouse</p>
<p>
Dizzy Gillespie

</td>
</tr>
<tr>
<td bgcolor="#FFFFCC">
Publisher:

167Advanced Concepts

Mapping a Schema to a Web Page

ProductNo: BGJ-47
</td>

</tr>
</table>

</td>
</tr>
<tr>

<td><h3>

Tracks</h3>
<table width="100%">

<tr>
<td bgcolor="#FFFFCC">1-Post Election Jam I</td>
<td align="Right" bgcolor="#FFFFCC">19:35</td>

</tr>
</table>

</td>
</tr>
<tr>

<td><h3>

Reviews</h3>
<table width="100%">
<tr>

<td bgcolor="#FFFFCC">

Glenn Astarita -

March 21, 2001</td>
</tr>

</table>
</td>

</tr>
</table>

</body>

</html>

Adapting to XHTML

However, most HTML editors produce HTML which, in contrast to XHTML, is not well-formed
XML. This requires a few fixes to the source code. Empty elements such as
 and
must be properly closed with a slash (
 and). Also, an entity reference such as
 must be replaced by a valid XML entity () or by <xsl:text> </xsl:text>.

Retrieving XML Data from Tamino

The stylesheet that we create from the HTML prototype must also contain logic to join the album
data with collaboration and jazzMusician data. We do this with the help of the XPath function
document(), as explained in the chapter From Conceptual Model to Schema::Constraints Across Docu-
ments. We read the corresponding collaboration and jazzMusician documents into XSLT vari-
ables. The following code extracts the information that we want to display on the web page, such
as the name of a collaboration, the date and location of a performance (when the collaboration is

Advanced Concepts168

Mapping a Schema to a Web Page

a jam session), etc. From jazzMusician documents we extract the first name, middle name, and
last name.

Generating Navigation

This data is also used to generate link URLs to the corresponding collaboration and album doc-
uments. When the user clicks on these links, the user leaves the albumweb page and moves to a
collaboration or jazzMusicianweb page. These web pages are also dynamically generated: the
link consists of a URL to Tamino with a query part identifying the respective document in the
database, plus an appropriate stylesheet to be processed by Tamino's pass-thru servlet.

The Resulting Stylesheet

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
<xsl:output method="html" indent="yes"/>
<!-- define a constant for the tamino query string -->
<xsl:variable name="query">
 ↩
http://localhost/servlets/com.softwareag.tamino.api.servlet.TaminoFilter/tamino/jazz/encyclopedia?_XQL=
</xsl:variable>
<!-- define constant for pass-thru string -->
<xsl:variable name="sheet">&_xslsrc=xsl:stylesheet/</xsl:variable>
<!-- define constant for encyclopedia collection -->
<xsl:variable
 name="ency">http://localhost/tamino/jazz/encyclopedia</xsl:variable>
<!-- Just a single rule for the root node -->
<xsl:template match="/">
<!-- Generate HTML document root -->
<html>
 <head/>
 <body bgcolor="#000000" link="#FFFFCC" vlink="#C0C0C0" >
 <!-- Top level loop. Remember that we get raw Tamino output. -->
 <xsl:for-each select="//album">
 <!-- Perform a join for the collaboration -->
 <xsl:variable name="c_query" select=
 "concat($query,'collaboration[result/@albumNo="',@albumNo,'"]')"/>
 <xsl:variable name="collab"
 select="document($c_query)//collaboration"/>
 <table>
 <tr>
 <td colspan="2" align="right">

 <a href=
 "{concat($query,'jazzMusician',$sheet,'jazzMusician-index.xsl')}"
 Musicians
 <a href=
"{concat($query,'collaboration[@type="band"]',$sheet,'band-index.xsl')}"
 Bands

169Advanced Concepts

Mapping a Schema to a Web Page

 </td>
 </tr>
 <tr>
 <td>
 <table>
 <tr bgcolor="silver">
 <td bgcolor="#FFFFCC">
 <h2><xsl:value-of select="title"/></h2>
 </td>
 <xsl:if test="coverImage">
 <td rowspan="4">
 <img src="{concat($ency,'/images/',coverImage)}"
 alt="{title}"/>
 </td>
 </xsl:if>
 </tr>
 <tr>
 <td bgcolor="#FFFFCC" valign="top">
 <xsl:choose>
 <!-- special treatment for jam sessions -->
 <xsl:when test="$collab/@type='jamSession'">
 <p>recorded at the
 <xsl:value-of select="$collab/name"/></p>
 <p>
 <!-- call the template for date formatting -->
 <xsl:call-template name="format-date">
 <xsl:with-param name="date"
 select="$collab/performedAt/time"/>
 </xsl:call-template>

 <xsl:value-of select=
 "$collab/performedAt/location"/>
 </p>
 </xsl:when>
 <!-- otherwise print the band/project name -->
 <xsl:otherwise>
 <h4>
 <!-- link includes specification of style sheet -->
 <a href=
 "{concat($c_query,$sheet,'collaboration.xsl')}">
 <img border="0"
 src="{concat($ency,'/images/arrow.gif')}"/>

 <xsl:value-of select="$collab/name"/>
 </h4>
 </xsl:otherwise>
 </xsl:choose>
 <p>
 <!-- Loop over all collaborateurs -->
 <xsl:for-each select="$collab/jazzMusician">
 <!-- Perform the join for the jazzMusicians -->

Advanced Concepts170

Mapping a Schema to a Web Page

 <xsl:variable name="m_query" select=
 "concat($query,'jazzMusician[@ID="',@ID,'"]')"/>
 <xsl:variable name="musician" select=
 "document($m_query)//jazzMusician"/>
 <!-- Create link to jazz musician web page -->
 <a href=
 "{concat($m_query,$sheet,'jazzMusician.xsl')}">
 <img border="0"
 src="{concat($ency,'/images/arrow.gif')}"/>

 <xsl:text> </xsl:text>
 <xsl:value-of select="$musician/name/first"/>
 <xsl:text> </xsl:text>
 <xsl:value-of select="$musician/name/middle"/>
 <xsl:value-of select="$musician/name/last"/>

 </xsl:for-each>
 </p>
 </td>
 </tr>
 <tr>
 <td bgcolor="#FFFFCC">
 <xsl:if test="publisher">
 Publisher: <xsl:value-of
 select="publisher"/>

 </xsl:if>
 ProductNo: <xsl:value-of select="@albumNo"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td><h3>

 Tracks</h3>
 <table width="100%">
 <xsl:for-each select="track">
 <tr>
 <td bgcolor="#FFFFCC">
 <!-- Print track number -->
 <xsl:number value="position()" format="1-"/>
 <!-- Print character content of track element -->
 <xsl:value-of select="title"/>
 </td>
 <td align="Right" bgcolor="#FFFFCC">
 <xsl:value-of select=
 "substring-before(substring-after(duration,'T'),'M')"/>:
 <xsl:value-of select=
 "substring-before(substring-after(duration,'M'),'S')"/>
 </td>
 </tr>
 </xsl:for-each>

171Advanced Concepts

Mapping a Schema to a Web Page

 </table>
 </td>
 </tr>
 <!-- Perform the join for the reviews -->
 <xsl:variable name="r_query" select=
 "concat($query,'review[album/@albumNo="',@albumNo,'"]')"/>
 <xsl:variable name="reviews" select="document($r_query)//review"/>
 <xsl:if test="$reviews">
 <tr>
 <td><h3>

 Reviews</h3>
 <table width="100%">
 <xsl:for-each select="$reviews">
 <tr>
 <td bgcolor="#FFFFCC">
 <!-- Create link to review web page -->

 <img border="0"
 src="{concat($ency,'/images/arrow.gif')}"/>

 <!-- Perform the join for the critic -->
 <xsl:variable name="cr_query" select=
 "concat($query,'critic[@ID="',critic/@ID,'"]')"/>
 <xsl:variable name="critic" select="document($cr_query)//critic"/>
 <xsl:value-of select="$critic/name/first"/>
 <xsl:value-of select="$critic/name/last"/> -
 <xsl:call-template name="format-date">
 <xsl:with-param name="date" select="pubDate"/>
 </xsl:call-template>
 </td>
 </tr>
 </xsl:for-each>
 </table>
 </td>
 </tr>
 </xsl:if>
 </table>

 </xsl:for-each>
 </body>
</html>
</xsl:template>
<!-- Date formatting -->
<xsl:template name="format-date">
 <xsl:param name="date"/>
 <!-- Get month and convert into name -->
 <xsl:variable name="month" select="substring($date,6,2)"/>
 <xsl:choose>
 <xsl:when test="$month=1">January</xsl:when>
 <xsl:when test="$month=2">February</xsl:when>
 <xsl:when test="$month=3">March</xsl:when>
 <xsl:when test="$month=4">April</xsl:when>
 <xsl:when test="$month=5">May</xsl:when>

Advanced Concepts172

Mapping a Schema to a Web Page

 <xsl:when test="$month=6">June</xsl:when>
 <xsl:when test="$month=7">July</xsl:when>
 <xsl:when test="$month=8">August</xsl:when>
 <xsl:when test="$month=9">September</xsl:when>
 <xsl:when test="$month=10">October</xsl:when>
 <xsl:when test="$month=11">November</xsl:when>
 <xsl:otherwise>December</xsl:otherwise>
 </xsl:choose>
 <xsl:text> </xsl:text>
 <!-- Get day -->
 <xsl:value-of select="substring($date,9,2)"/>,
 <!-- Get year -->
 <xsl:value-of select="substring($date,1,4)"/>
</xsl:template>
</xsl:stylesheet>

In this example we see also some advanced formatting. Because XSLT was designed before XML
Schema, it is not aware of XML Schema's built-in datatypes. Consequently, there are no easy-to-
use formatting routines for these datatypes. This means that if we want to display, for example,
a date in any format other than the standard ISO format, we have towrite the necessary formatting
routine ourselves. This is done in the template format-date.

173Advanced Concepts

Mapping a Schema to a Web Page

174

23 Navigation with XLink

■ Defining Navigational Objects .. 176
■ Defining Navigational Links .. 178

175

The approach shown above, i.e. starting with an existing HTML page and constructing a style
sheet from that, works fine for small applications. For a large application, however, we would
easily lose the overview over all the stylesheets, transformations, hyperlinks and other connections
between the various resources.

Defining Navigational Objects

In such cases, it is necessary to adopt amore systematic approach both for the presentation design
and for the navigation model. A good basis for such an approach is the conceptual data model.
In the chapter From Conceptual Model to Schema::From Model to Schemawe had already discussed
how XML schemas can be derived from a conceptual model. Here we see how the conceptual
model can guide us through web page and navigation design. We use the same multi-namespace
model that we developed in the section From Conceptual Model to Schema::Models and Namespaces

Advanced Concepts176

Navigation with XLink

The first step is to partition the conceptual model into navigational objects (such as web pages).
In many cases the relationship between business objects and navigational objects will not be a 1:1

177Advanced Concepts

Navigation with XLink

relationship. Therewill be caseswhere a single business object needs to be partitioned into several
related navigational objects, simply because of its size. In such a case we should identify one
navigational object as the main navigational object for this type of business object. It should be
possible to reach the other partitions from this main object via hyperlinks.

In our jazz example we have partitioned the business object jazzMusician into two navigational
objects: jazzMusician, which is the main navigational object for this business object type, and
instrument, which informs the end user about the instruments played by a particular musician.

In other cases, information from one business object must be augmented with information from
other business objects. For example, in the case of our album business object we might want to
display collaboration information such as participating artists, time and location of a live per-
formance, etc. along with the album data, as we have already shown in the sectionMapping a
schema to a web page, i.e. we aggregate data from several business objects into one navigation
object.

In addition to the navigational objects that relate to conceptual business objects, we might also
offer additional access structures:

■ Indices that collate information from the instances of a given business object type. For example,
wemight have aweb page that contains an alphabetical index of all jazzmusicians, and another
that contains an index of all styles. The individual index entries would lead to the main naviga-
tional objects of the respective business objects.

■ Tables of contents and site maps that provide structured overviews over the web or subsets of it.
■ A synopsis that provides an informal overview of the web.
■ Guided tours that lead the user through the most important areas.
■ Landmarks that act as entry points for sub-areas or for special functionality of a web. These
landmarks appear in a consistent form on each web page.

■ Portals that act as entry points for the whole web.

Each of these navigational objects can be represented by a combination of a Tamino query expression
and a stylesheet as shown above in the section Using Style Sheets with Tamino.

Defining Navigational Links

Navigational objects are connected via navigational links. Depending on its type, a navigational
link may be traversed by the end user either in one direction (unidirectional) or in both directions
(bidirectional). Navigational links are based on the links between conceptual objects but, again,
there is no 1:1 relationship between a conceptual link and a navigational link. In many cases we
want to complement the existing conceptual linkswith additional access paths that act as shortcuts.
A typical example is shown in the diagram above, where we have introduced a shortcut from
jazzMusician to album. Shortcuts can be derived from conceptual links by combination. In the

Advanced Concepts178

Navigation with XLink

diagram above, the shortcut is derived from a combination of two conceptual links:
collaboration->jazzMusician and collaboration->album.

In terms ofmodeling, a navigationalmodel is a view of a conceptualmodel. A viewmay only reveal
certain aspects of a conceptual model, but it may also introduce new, derived items. In fact, a
single conceptual model may have multiple views, for example, to cater for different groups of
users. Views are also subject to more frequent changes than conceptual models: the analysis of
user behavior often suggests changes to the navigational structures of a web.

In the discipline of implementing hypertext systems (andwebs are hypertext systems), this situation
has led to the practice of implementing navigational links as first class objects in a separate layer.
By removing navigational structures from the presentation layer, the maintenance of both the
presentation layer and the navigational layer becomes easier. Changing the design of a web, for
example, does not affect the navigation structures, while re-routing navigation paths does not re-
quire updating the presentation logic of all web pages.

How would we store such a first class link object in Tamino?

One possibility would be to store a separate document for each link. However, this would cause
a high frequency of read accesses to Tamino and would be detrimental to performance. Therefore
we combine several links into a linkbase. Linkbases are not our own invention but are a concept
that was formulated in the context of XLink. XLink provides also most of the syntactic means that
are required to describe independent navigational structures.

Introducing XLink

Conceptually, XLink builds on a network of nodes and arcs. Navigational objects act as nodes,
and the arcs specify the pairs of navigational objects between which transitions are possible and
the direction inwhich transitions are allowed. In our scenario, however, we are not really interested
in describing navigational transitions between individual navigational objects but rather between
sets of these objects. Therefore, we have to extend XLink. In the rest of this section we describe
how we do this. At the same time we introduce the basic concepts of XLink.

To define a linkbase we create a linkbase document.Within each linkbase we define one or several
extended links. Typically, we would define a separate extended link for each user type:

<linkbase xmlns:xlink="http://www.w3.org/1999/xlink">
<encyclopediaLinks xlink:type="extended" user="jazzfan">
...
</encyclopediaLinks>
...

</linkbase>

XLink can be used to define within each extended link an arbitrary number of nodes and arcs. To
describe the nodes (in our case, sets of navigational objects) we use XLink locators. Usually, an
XLink locator describes a foreignweb resource. In our case, however, wewant to describe a virtual

179Advanced Concepts

Navigation with XLink

navigational object that is generated at runtime from a Tamino query and an XSL stylesheet.
Therefore, we extend the definition of the locator element with an xsl:stylesheet attribute:

<musician xlink:type="locator"
xlink:href=
"http://localhost/tamino/jazz/encyclopedia?_XQL=e:jazzMusician"
xsl:stylesheet="xsl:stylesheet/jazzMusician.xsl"
xlink:label="mus"/>

In this example, the locator points to a set of jazzMusician instances stored in Tamino. The set of
virtual navigational objects results from the application of the specified stylesheet to the query
result. The final attribute (xlink:label) identifies this locator for the following arc definition:

<collaborationToJazzMusician xlink:type="arc"
xlink:from="col"
xlink:to="mus"
xqlFilter="[e:jazzMusician/@ID='$keyvalue']"/>

This defines a possible transition between two locators which are identified by their xlink:label
attributes, as specified in xlink:from and xlink:to. The attribute xlink:title can optionally be
used to decorate the resulting hyperlink.

Here, we have extended the standardXLinkmechanismwith an xqlFilter attribute. This attribute
describes how specific instances of the navigational target object are selected. In the filter expression
we use $keyvalue as a placeholder for a key value. We see later how this expression can be evalu-
ated within a stylesheet.

The Navigational Model

In the following example,wedefine a locator for each navigational object that represents a document
type such as jazzMusician, style, collaboration, or album. In addition, we define a navigational
object instruments that relies on jazzMusician but focuses on the instruments played by this
musician. Also, we define locators that represent indexes such as bandIndex and musicianIndex:

<?xml version="1.0"?>
<linkbase

xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/shop"
xmlns:e="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
xmlns:i="http://www.softwareag.com/tamino/doc/examples/models/instruments"

>
<encyclopediaLinks xlink:type="extended" user="jazzfan">

<!-- Locators -->
<CDs xlink:type="locator"

xlink:href="http://localhost/tamino/jazz/shop?_XQL=CD"
xsl:stylesheet="xsl:stylesheet/cd.xsl"
xlink:label="cd"/>

<collaborations xlink:type="locator"

Advanced Concepts180

Navigation with XLink

xlink:href=
"http://localhost/tamino/jazz/encyclopedia?_XQL=e:collaboration"

xsl:stylesheet="xsl:stylesheet/collaboration.xsl"
xlink:label="col"/>

<bandIndex xlink:type="locator"
xlink:href=
"http://localhost/tamino/jazz/encyclopedia?_XQL=e:collaboration

[@type='band']%20sortall%20(./name)"
xsl:stylesheet="xsl:stylesheet/band-index.xsl"
xlink:label="bnd-ix"/>

<musicians xlink:type="locator"
xlink:href=

"http://localhost/tamino/jazz/encyclopedia?_XQL=e:jazzMusician"
xsl:stylesheet="xsl:stylesheet/jazzMusician.xsl"
xlink:label="mus"/>

<musicianIndex xlink:type="locator"
xlink:href=

"http://localhost/tamino/jazz/encyclopedia?_XQL=e:jazzMusician%20sortall20(./@ID)"
xsl:stylesheet="xsl:stylesheet/jazzMusician-index.xsl"
xlink:label="mus-ix"/>

<instruments xlink:type="locator"
xlink:href=
"http://localhost/tamino/jazz/encyclopedia?_XQL=e:jazzMusician"

xsl:stylesheet="xsl:stylesheet/instrument.xsl"
xlink:label="instr"/>

<styles
xlink:type="locator"
xlink:href="http://localhost/tamino/jazz/encyclopedia?_XQL=e:style"
xsl:stylesheet="xsl:stylesheet/style.xsl"
xlink:label="sty"/>

<reviews
xlink:type="locator"
xlink:href="http://localhost/tamino/jazz/encyclopedia?_XQL=e:review"
xsl:stylesheet="xsl:stylesheet/review.xsl"
xlink:label="rev"/>

<!-- Arcs -->
<cdToCollaboration xlink:type="arc"

xlink:from="cd"
xlink:to="col"
xqlFilter="[@albumNo='$keyvalue']"/>

<collaborationToJazzMusician xlink:type="arc"
xlink:from="col"
xlink:to="mus"
xqlFilter="[e:jazzMusician/@ID='$keyvalue']"/>

<jazzMusicianToInstrument xlink:type="arc"
xlink:from="mus"
xlink:to="instr"
xqlFilter="[@ID='$keyvalue']"/>

<jazzMusicianToCDs xlink:type="arc"
xlink:from="mus"
xlink:to="cd"
xqlFilter=

181Advanced Concepts

Navigation with XLink

"[@albumNo=xqx.qdoc('encyclopedia/e:collaboration
[e:jazzMusician/@ID="$keyvalue"]')/e:result/@albumNo]"/>
<cdToReview xlink:type="arc"

xlink:from="cd"
xlink:to="rev"
xqlFilter="[@albumNo='$keyvalue']"/>

<jazzMusicianToReview xlink:type="arc"
xlink:from="mus"
xlink:to="rev"
xqlFilter="[@ID='$keyvalue']"/>

<ToBandIndex xlink:type="arc"
xlink:to="bnd-ix"
xlink:title="Bands"/>

<ToMusicianIndex xlink:type="arc"
xlink:to="mus-ix"
xlink:title="Musicians"/>

</encyclopediaLinks>
</linkbase>

Note that we have used the X-Query operator sortall for the index locators. Because these expres-
sions appear in the query part of a URL, we must express the blank character with the code %20.

Among the arcs, we have also defined two that lead to the index locators. We want to include
hyperlinks to these indices on every web page that we generate. Because there is no specific from
node, we just omit the xlink:from attribute for these arcs.

The arc jazzMusicianToAlbums describes a derived link. We use the function xqx.qdoc (which
we developed in Utilizing Server Extensions:: qdoc) to establish a link from jazzMusician via
collaboration to album.

Using the Link Base

To interpret such a link basewithin an XSL stylesheet, wemust first load the linkbase fromTamino.
Let us assume that the linkbase has been stored in Tamino under document type linkbase in our
collection encyclopedia. Then we can load the relevant extended link with:

<xsl:variable name="linkbase" select=
"document('http://localhost/tamino/jazz/encyclopedia?_XQL=linkbase//encyclopediaLinks

[@user="jazzfan"]')//encyclopediaLinks"/>

To generate individual hyperlinks we use the following template. Because the generation is a bit
lengthy, we pack it into a separate template that can be invoked with <call-template
name="gen-link"/>.

Advanced Concepts182

Navigation with XLink

<!-- Link generation -->
<xsl:template name="gen-link"

xmlns:xql="http://metalab.unc.edu/xql/"
xmlns:xlink="http://www.w3.org/1999/xlink">

<!-- selected arc -->
<xsl:param name="arc"/>

<!-- key value for xql filter expression
if omitted we do not generate a filter expression -->

<xsl:param name="keyvalue"/>
<!-- Title: if not defined use title of arc as default -->

<xsl:param name="title" select="$arc/@xlink:title"/>
<!-- generate link only if arc is present -->

<xsl:if test="$arc">
<!-- select target locator -->

<xsl:variable name="to" select=
"$arc/../*[@xlink:type='locator' and @xlink:label=$arc/@xlink:to]"/>
<a>

<!-- generate href -->
<xsl:attribute name="href" >

<!-- this is the target document -->
<xsl:value-of select="$to/@xlink:href"/>

<!-- this is the filter -->
<!-- generate only if $keyvalue is supplied and a filter expression is present -->

<xsl:if test="$keyvalue and $arc/@xqlFilter">
<xsl:value-of select=

"substring-before($arc/@xqlFilter,'$keyvalue')"/>
<!-- replace placeholder with actual value -->

<xsl:value-of select="$keyvalue"/>
<xsl:value-of select=

"substring-after($arc/@xqlFilter,'$keyvalue')"/>
</xsl:if>

<!-- this is the stylesheet -->
<xsl:if test="$to/@xsl:stylesheet">
<xsl:text>&_xslsrc=</xsl:text>
<xsl:value-of select="$to/@xsl:stylesheet"/>

</xsl:if>
</xsl:attribute>

<!-- decorate with title -->
<xsl:choose>

<xsl:when test="$title">
<xsl:value-of select="$title"/>

</xsl:when>
<xsl:otherwise>

<!-- default decoration -->

</xsl:otherwise>
</xsl:choose>

</xsl:if>

</xsl:template>

This template takes three parameters:

183Advanced Concepts

Navigation with XLink

■ arc identifies the arc to be generated. If this arc does not exist in the linkbase, no link is generated.
■ keyvalue is the key value that identifies the particular instance of the navigation object. If this
parameter is not specified, no filter expression is generated.

■ title is a locally defined decoration for the link. If this parameter is not specified, the title
defined in the arc is used instead. If no title is defined there either, some default decoration is
generated.

A typical invocation of this template looks like this:

<xsl:call-template name="gen-link">
<xsl:with-param name="arc"

select="$linkbase/jazzMusicianToAlbums"/>
<xsl:with-param name="keyvalue" select="@ID"/>
<xsl:with-param name="title">Albums</xsl:with-param>

</xsl:call-template>

Using this template call, the final stylesheet for our albumweb page looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"
 xmlns:e="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
 xmlns:i="http://www.softwareag.com/tamino/doc/examples/models/instruments"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
<xsl:output method="html" indent="yes"/>
<!-- define a constant for the tamino query string -->
<xsl:variable name="query">
 ↩
http://localhost/servlets/com.softwareag.tamino.api.servlet.TaminoFilter/tamino/jazz/encyclopedia?_XQL=
</xsl:variable>
<!-- define constant for pass-thru string -->
<xsl:variable name="sheet">&_xslsrc=xsl:stylesheet/</xsl:variable>
<!-- define constant for encyclopedia collection -->
<xsl:variable
 name="ency">http://localhost/tamino/jazz/encyclopedia</xsl:variable>
<!-- Just a single rule for the root node -->
<xsl:template match="/">
<!-- Generate HTML document root -->
<html>
 <head/>
 <body bgcolor="#000000" link="#FFFFCC" vlink="#C0C0C0" >
 <!-- Top level loop. Remember that we get raw Tamino output. -->
 <xsl:for-each select="//e:album">
 <!-- Perform a join for the collaboration -->
 <xsl:variable name="c_query" select=
 "concat($query,'e:collaboration[e:result/@albumNo="',@albumNo,'"]')"/>
 <xsl:variable name="collab"
 select="document($c_query)//e:collaboration"/>
 <table>
 <tr>

Advanced Concepts184

Navigation with XLink

 <td colspan="2" align="right">

<xsl:call-template name="gen-link">
<xsl:with-param name="arc"

select="$linkbase/ToMusicianIndex"/>
</xsl:call-template>

<xsl:text> </xsl:text>

<xsl:call-template name="gen-link">
<xsl:with-param name="arc"

select="$linkbase/ToBandIndex"/>
</xsl:call-template>

</td>

</tr>
<tr>

<td>
<table>

<tr bgcolor="silver">
<td bgcolor="#FFFFCC">
<h2><xsl:value-of select="e:title"/></h2>

</td>
<xsl:if test="coverImage">
<td rowspan="4">

<img src="{concat($ency,'/images/',coverImage)}"
alt="{title}"/>

</td>
</xsl:if>

</tr>
<tr>
<td bgcolor="#FFFFCC" valign="top">
<xsl:choose>

<!-- special treatment for jam sessions -->
<xsl:when test="$collab/@type='jamSession'">
<p>recorded at the

<xsl:value-of select="$collab/e:name"/></p>
<p>
<!-- call the template for date formatting -->
<xsl:call-template name="format-date">

<xsl:with-param name="date"
select="$collab/e:performedAt/e:time"/>

</xsl:call-template>

<xsl:value-of select=

"$collab/e:performedAt/e:location"/>
</p>

</xsl:when>
<!-- otherwise print the band/project name -->
<xsl:otherwise>

185Advanced Concepts

Navigation with XLink

<h4>

<xsl:call-template name="gen-link">
<xsl:with-param name="arc"

select="$linkbase/albumToCollaboration"/>
<xsl:with-param name="keyvalue"

select="@albumNo"/>
</xsl:call-template>

<xsl:value-of select="$collab/e:name"/>
</h4>
</xsl:otherwise>

</xsl:choose>
<p>
<!-- Loop over all collaborateurs -->
<xsl:for-each select="$collab/e:jazzMusician">

<!-- Create link to jazz musician web page -->

<xsl:call-template name="gen-link">
<xsl:with-param name="arc"
select="$linkbase/collaborationToJazzMusician"/>
<xsl:with-param name="keyvalue" select="@ID"/>

</xsl:call-template>

<!-- Perform the join for the jazzMusicians -->
<xsl:variable name="m_query" select=

"concat($query,'e:jazzMusician[@ID="',@ID,'"]')"/>
<xsl:variable name="musician" select=

"document($m_query)//e:jazzMusician"/>
<!-- Create link to jazz musician web page -->
<a href=

"{concat($m_query,$sheet,'jazzMusician.xsl')}">
<img border="0"

src="{concat($ency,'/images/arrow.gif')}"/>

<xsl:text> </xsl:text>
<xsl:value-of select="$musician/e:name/e:first"/>
<xsl:text> </xsl:text>
<xsl:value-of select="$musician/e:name/e:middle"/>
<xsl:value-of select="$musician/e:name/e:last"/>

</xsl:for-each>
</p>

</td>
</tr>
<tr>
<td bgcolor="#FFFFCC">
<xsl:if test="publisher">

Publisher: <xsl:value-of
select="e:publisher"/>

</xsl:if>
ProductNo: <xsl:value-of select="@albumNo"/>

Advanced Concepts186

Navigation with XLink

</td>
</tr>

</table>
</td>

</tr>
<tr>

<td><h3>

Tracks</h3>
<table width="100%">

<xsl:for-each select="e:track">
<tr>
<td bgcolor="#FFFFCC">

<!-- Print track number -->
<xsl:number value="position()" format="1-"/>
<!-- Print character content of track element -->
<xsl:value-of select="e:title"/>

</td>
<td align="Right" bgcolor="#FFFFCC">

<xsl:value-of select=
"substring-before(substring-after(duration,'T'),'M')"/>:

<xsl:value-of select=
"substring-before(substring-after(duration,'M'),'S')"/>

</td>
</tr>

</xsl:for-each>
</table>

</td>
</tr>
<!-- Perform the join for the reviews -->
<xsl:variable name="r_query" select=
"concat($query,'review[e:album/@albumNo="',@albumNo,'"]')"/>

<xsl:variable name="reviews" select="document($r_query)//e:review"/>
<xsl:if test="$reviews">
<tr>
<td><h3>

Reviews</h3>
<table width="100%">
<xsl:for-each select="$reviews">

<tr>
<td bgcolor="#FFFFCC">
<!-- Create link to review web page -->

<xsl:call-template name="gen-link">
<xsl:with-param name="arc"
select="$linkbase/albumToReview"/>
<xsl:with-param name="keyvalue" select="e:album/@albumNo"/>

</xsl:call-template>

<!-- Perform the join for the critic -->
<xsl:variable name="cr_query" select=

"concat($query,'e:critic[@ID="',e:critic/@ID,'"]')"/>
<xsl:variable name="critic" select="document($cr_query)//e:critic"/>

187Advanced Concepts

Navigation with XLink

<xsl:value-of select="$critic/e:name/e:first"/>
<xsl:value-of select="$critic/e:name/e:last"/> -
<xsl:call-template name="format-date">

<xsl:with-param name="date" select="e:pubDate"/>
</xsl:call-template>
</td>

</tr>
</xsl:for-each>

</table>
</td>

</tr>
</xsl:if>

</table>

</xsl:for-each>
</body>

</html>
</xsl:template>
<!-- Date formatting -->
<xsl:template name="format-date">

<xsl:param name="date"/>
<!-- Get month and convert into name -->
<xsl:variable name="month" select="substring($date,6,2)"/>
<xsl:choose>

<xsl:when test="$month=1">January</xsl:when>
<xsl:when test="$month=2">February</xsl:when>
<xsl:when test="$month=3">March</xsl:when>
<xsl:when test="$month=4">April</xsl:when>
<xsl:when test="$month=5">May</xsl:when>
<xsl:when test="$month=6">June</xsl:when>
<xsl:when test="$month=7">July</xsl:when>
<xsl:when test="$month=8">August</xsl:when>
<xsl:when test="$month=9">September</xsl:when>
<xsl:when test="$month=10">October</xsl:when>
<xsl:when test="$month=11">November</xsl:when>
<xsl:otherwise>December</xsl:otherwise>

</xsl:choose>
<xsl:text> </xsl:text>
<!-- Get day -->
<xsl:value-of select="substring($date,9,2)"/>,
<!-- Get year -->
<xsl:value-of select="substring($date,1,4)"/>

</xsl:template>
<!-- Link generation -->
<xsl:template name="gen-link"

xmlns:xql="http://metalab.unc.edu/xql/"
xmlns:xlink="http://www.w3.org/1999/xlink">

<!-- selected arc -->
<xsl:param name="arc"/>

<!-- key value for xql filter expression
if omitted we do not generate a filter expression -->

<xsl:param name="keyvalue"/>
<!-- Title: if not defined use title of arc as default -->

Advanced Concepts188

Navigation with XLink

<xsl:param name="title" select="$arc/@xlink:title"/>
<!-- generate link only if arc is present -->

<xsl:if test="$arc">
<!-- select target locator -->

<xsl:variable name="to" select=
"$arc/../*[@xlink:type='locator' and @xlink:label=$arc/@xlink:to]"/>
<a>

<!-- generate href -->
<xsl:attribute name="href" >

<!-- this is the target document -->
<xsl:value-of select="$to/@xlink:href"/>

<!-- this is the filter -->
<xsl:if test="$keyvalue and $arc/@xqlFilter">
<xsl:value-of

select="substring-before($arc/@xqlFilter,'$keyvalue')"/>
<xsl:value-of select="$keyvalue"/>
<xsl:value-of

select="substring-after($arc/@xqlFilter,'$keyvalue')"/>
</xsl:if>

<!-- this is the stylesheet -->
<xsl:if test="$to/@xsl:stylesheet">

<xsl:text>&_xslsrc=</xsl:text>
<xsl:value-of select="$to/@xsl:stylesheet"/>
</xsl:if>

</xsl:attribute>
<xsl:choose>

<xsl:when test="$title">
<xsl:value-of select="$title"/>

</xsl:when>
<xsl:otherwise>

</xsl:otherwise>
</xsl:choose>

</xsl:if>

</xsl:template>
</xsl:stylesheet>

189Advanced Concepts

Navigation with XLink

190

24 The Tamino JavaScript API

Although XSLT can generate all sorts of output from an original XML file, it does not provide a
binding of the displayed elements to the original XML elements. When an XML document is
converted into HTML, it is not possible to modify the HTML elements on the screen and automat-
ically reflect the changes back to the original XML document. In fact, XSLT does not provide any
facilities for processing end-user input. We have to employ other technology in order to do this.

One suitable technology is JavaScript. JScript, Microsoft's version of JavaScript, provides features
that make it possible to access Tamino directly from the client's web page. The Tamino JavaScript
API utilizes those features. Consequently, it can only be used for clients running on a Microsoft
Windows platform with the Microsoft Internet Explorer.

Apart from this restriction, the Tamino JavaScript API offers lightweight access to all relevant
Tamino functions. You can query, insert, update and delete objects and control transactional beha-
vior directly from the client.

In the following example, we use the Tamino JavaScript API to make an interactive index web
page. The stylesheet jazzMusician-index.xsl generates such a page that lists all the jazz musicians
stored in the encyclopedia collection. When the user moves the mouse over these entries, the
corresponding artist's albums are shown in a separate text area:

191

This is achieved by generating an event handler onmouseover="javascript:displayAlbums()"
for each entry and passing themusician's ID to the function. The function first connects to Tamino,
issues a query for a collaboration corresponding to themusician's ID, then uses the result element
of each collaboration document to query for album documents. Finally, the title of each album
iswritten into a special display area (implemented as <div id="albumArea">). Here is the complete
code:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" indent="yes"/>

<!-- define constant for tamino query string -->
<xsl:variable name="query">
http://localhost/servlets/com.softwareag.tamino.api.servlet.TaminoFilter/tamino/jazz/encyclopedia?_XQL=
</xsl:variable>
<xsl:variable

name="ency">http://localhost/tamino/jazz/encyclopedia</xsl:variable>

Advanced Concepts192

The Tamino JavaScript API

<!-- define constant for pass-thru string -->
<xsl:variable name="sheet">&_xslsrc=xsl:stylesheet/</xsl:variable>

<!-- Just a single rule for the root node -->
<xsl:template match="/">
<!-- Generate HTML document root -->
<html>

<head>
<SCRIPT LANGUAGE="JavaScript"

SRC="{concat($ency,'/scripts/TaminoLib.js'}}"></SCRIPT>
<script language="JavaScript"><![CDATA[

function displayAlbums(jmid,mname) {
// create title
var aText = "Albums of "+mname+":
";
// construct database and collection name
// (just to have a single point of maintenance)
var dbname=
]]>
<xsl:value-of select="concat('"',$ency,'";')"/>
<![CDATA[
// prepare query
var QueryVal="e:collaboration[e:jazzMusician='"+jmid+"']";
var pageSize=0;
// create Tamino client
var QueryObj = new TaminoClient(dbname, pageSize);
// issue query
var QueryResult = QueryObj.query(QueryVal);
// strip off Tamino packaging
var xqlResult=QueryResult.getResult();
if (xqlResult) {

// get collaboration nodes
var collaborations=xqlResult.childNodes;
// loop through each collaboration
for (var i=0; i<collaborations.length; i++) {

var collabSelected = collaborations.item(i);
// get result node

var title=albumSelected.getElementsByTagNameNS(
"http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia",

"title");
// get album node
var album=result.item(0).childNodes.item(0);
// get albumNo
var albumNo=album.getAttribute("albumNo");

// construct query
var QueryVal2="e:album[@albumNo='"+albumNo+"']";
// issue query
var QueryResult2 = QueryObj.query(QueryVal2);
// strip off Tamino packaging
var xqlResult2=QueryResult2.getResult();
if (xqlResult2) {
// get album nodes
var albums=xqlResult2.childNodes;

193Advanced Concepts

The Tamino JavaScript API

// loop through all album nodes
for (var j=0; j<albums.length; j++) {

var albumSelected = albums.item(j);
// get title node

 var title=albumSelected.getElementsByTagNameNS(
 ↩
"http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia",
 ↩
"title");

// add title node data to output string
aText = aText+"
"+title.item(0).childNodes.item(0).data;

}
}

}
}
// write output string into album area
document.all.albumArea.innerHTML = aText;

}
]]></script>

<title>The Jazz Index</title>
</head>
<body bgcolor="#000000" text="#FFFFCC" link="#FFFFCC" vlink="#C0C0C0">

<div id="albumArea" style="position:absolute; top:150px; left:430px;
width:200px; height:250px; background-color:#FFFFCC; color:#000000;
font-family:Arial; font-size:9pt; font-weight:bold; padding:10px;">
<layer id="lay1" bgcolor="#FFFFCC">
Albums:

</layer>
</div>
<h1>The Jazz Index</h1>
<hr/>
<xsl:for-each select="//e:jazzMusician">

<xsl:variable name="mname">
<xsl:value-of select="e:name/e:first"/>

<xsl:if test="e:name/e:middle">
<xsl:text> </xsl:text>
<xsl:value-of select="e:name/e:middle"/>

</xsl:if>
<xsl:text> </xsl:text>
<xsl:value-of select="e:name/e:last"/>

</xsl:variable>
<p>
<a href=

"{concat($query,'e:jazzMusician[@ID="',@ID,'"]',$sheet,'jazzMusician.xsl')}"
onmouseover="javascript:displayAlbums('{@ID}','{$mname}')">

<xsl:value-of select="$mname"/>

</p>
</xsl:for-each>

Advanced Concepts194

The Tamino JavaScript API

</body>
</html>

</xsl:template>
</xsl:stylesheet>

195Advanced Concepts

The Tamino JavaScript API

196

25 XSLT Summary

In the previous sections, we have shown how XSLT can be used to create sophisticated webs from
XML data stored in Tamino. However, we have also encountered some of the limitations of XSLT.
Let us summarize the advantages and disadvantages of this technology:

Advantages

■ XSLT processors are readily available on various platforms. Processors like XT, Saxon and
XALAN are implemented in Java and run on any server. On Windows platforms, the MSXML
DLL provides adequate support.

■ An XSLT stylesheet can convert XML into almost any output format, fromHTML over XHTML
to WML, SVG, SMIL, etc. This allows support not only for HTML clients but also for mobile
clients and multimedia applications.

■ With the help of serialization and the XSLT server extension, XSLT stylesheets allow Tamino to
deliver query results in customized formats.

Disadvantages

■ Processing XSLT stylesheets consumes considerable CPU resources. Scalable applications often
require a cache for transformation results in order to achieve the necessary throughput. Another
throughput-enhancing option is the use of an XSLT compiler, for example the XSLT compiler
contained in XALAN, which translates an XSLT stylesheet into a set of Java classes.

■ XSLT does not provide a binding between the original XML document and the result of the
transformation. Insert, update and delete operations require additional program logic.

■ TheXSLT standard has some limitations. Advanced transformations require the use of extensions
(see section Limitations of XSLT).

■ The XSLT syntax is hard to read, and rule-based programming is a concept alien to many pro-
grammers.

197

■ WYSIWYG design of XSLT-generated HTML pages is possible with tools such as eXcelon's
Stylus, Whitehill's XSL Composer and XML Spy Suite. However, such tools are not commonly
used by most web designers.

Advanced Concepts198

XSLT Summary

26 Rapid Prototyping with XQuery 4

XQuery 4 is another alternative when building prototype web applications. In contrast to the
XPath-like X-Query, XQuery allows complex output documents to be constructedwithin the query
expression. Basically, XQuery combines the facilities of XPath and XSLT, but uses different syntax.
Briefly, XQuery's advantages and disadvantages are as follows:

Advantages

■ XQuery combines the processing power of XPath and XSLT into one consistent language.
■ XQuery can convert XML into almost any output format, from HTML over XHTML to WML,
SVG, SMIL, etc. This allows support not only for HTML clients but also for mobile clients, and
for multimedia applications.

■ User-definable XQuery functions allow for modular query expressions.
■ The XML Schema type system and namespaces are fully supported.
■ XQuery 4 features easy-to-read SQL-like syntax. An alternative syntax (XQueryX) allows the
formulation of queries as XML documents.

■ Processing can be embedded into the query. Extra stylesheets are not required. In contrast to
W3C, XQuery 4 also supports insert, update and delete operations.

Disadvantages

■ Currently, no WYSIWYG editors exist that can produce XQuery from a web page design. The
same is true for QbE (Query by Example) front-ends.

In the following example we show howwe can produce a web page with XQuery 4. The example
is a simplified version of the first example shown in the section Procedural Transformation.

199

default element ↩
namespace="http://www.softwareag.com/tamino/doc/examples/models/jazz/encyclopedia"

<html><head/><body>
 {for $a in input()/album
 return
 <table><tr><td>
 <table width="100%">
 <tr bgcolor="silver">
 <td>
 <h2>{string($a/title)}</h2>

 { for $p in $a/publisher
 return
 string-join(("Publisher:",string($p))," ")
 }
 AlbumNo: {string($a/@albumNo)}
 </td>
 { for $c in $a/coverImage
 return
 <td>

 </td>
 }
 </tr>
 </table>
 </td></tr>
 <tr><td>

<h4>Tracks</h4>
 <table width="100%" >
 { for $track in $a/track
 return
 <tr bgcolor="silver">
 <td>
 { string($track/title) }
 </td>
 <td align="Right">
 { $track/duration }
 </td>
 </tr>
 }
 </table>
 </td></tr>
 </table>
 }
</body></html>

 ↩

Advanced Concepts200

Rapid Prototyping with XQuery 4

Index

A
API

JScript
example of use, 191

C
composite key, 93
composition

of documents, 99

D
data integrity, 67
document composition, 99
dynamic join, 100

E
efficiency

in data modeling, 104
in indexing, 105
in queries, 106

element
derived using server extension, 123

extensions
Tamino extensions in XML Schema, 81

I
index

definition, 89
integrity

maintaining semantic integrity, 129

J
join

dynamic, 100
JScript API

example of use, 191

K
key

composite, 93

N
namespace support, 87

P
performance issues, 111

Q
query

efficiency, 103
implemented as server extension, 117

S
schema

mapping to web page
example, 165

semantic integrity
maintaining, 129

server extension
sample derived element, 123
sample query, 117

stylesheet
using XSLT with Tamino, 162

U
UML

from UML to XML, 71
unique IDs

checking for, 68

X
XLink

navigation, 175
XML Schema

related web sites, 77
Tamino-specific extensions, 81

XSLT
introduction, 151
rule-based transformation, 158
using with Tamino, 162

201

202

	Advanced Concepts
	Table of Contents
	Preface
	I From Conceptual Model to Schema
	1 Informal Description
	2 Conceptual Modeling
	Introducing Asset-Oriented Modeling
	Asset or Property?
	Normalization
	Determining Business Objects
	Resolving is_a Relations
	Reverse Engineering of Relational Schemas
	Models and Namespaces

	3 Introduction to XML Schema
	Datatypes
	Namespaces and Wildcards
	The Structure of a Schema Definition
	Reuse Mechanisms
	Elements vs. Attributes

	4 From Model to Schema
	Adding Type Information
	Document-Centric Layout
	Creating a Type Library
	Implementing Business Objects
	Segmentation and Optimization
	Multi-Namespace Schema Composition
	Schema Evolution
	Open Content Model
	Versioning

	5 Integrity
	Simple Constraints
	Cross Field Constraints
	Constraints Across Documents
	Data Integrity
	Unique Keys

	6 Operations
	7 From UML to XML
	XML Support in UML
	From Conceptual Model to UML

	8 Schema-Related Web Sites

	II From Schema to Tamino
	9 Tamino Annotations in XML Schema
	Annotation and Appinfo
	Schema-Level Definitions
	Node-Level Definitions

	10 Namespace Support
	Qualified Queries

	11 Indexing
	Declaring an Index
	Candidates for Indexes
	Composite Keys
	Object Identity
	Text Retrieval

	12 Document Composition
	Dynamic Joins with Tamino XQuery 4

	13 Efficient Querying
	Data Modeling for Efficiency
	Efficient Indexing
	Efficient Queries

	14 Performance Issues

	III Utilizing Server Extensions
	15 What are they Good For?
	16 Queries
	17 Derived Elements
	18 Maintaining Semantic Integrity
	19 Building Up a Library
	20 More Examples
	concat
	Syntax
	Description
	Examples

	contains
	Syntax
	Description
	Examples

	substringBefore
	Syntax
	Description
	Examples

	substringAfter
	Syntax
	Description
	Examples

	substring
	Syntax
	Description
	Examples

	trim
	Syntax
	Description
	Examples

	normalizeSpace
	Syntax
	Description
	Examples

	stringLength
	Syntax
	Description
	Examples

	qdoc
	Syntax
	Description
	Examples

	IV Rapid Application Development with Tamino
	21 Introduction to XSLT
	Procedural Transformation
	Rule-Based Transformation
	Limitations of XSLT
	Using Style Sheets with Tamino

	22 Mapping a Schema to a Web Page
	23 Navigation with XLink
	Defining Navigational Objects
	Defining Navigational Links

	24 The Tamino JavaScript API
	25 XSLT Summary
	26 Rapid Prototyping with XQuery 4

	Index

