
Tamino

Tamino Schema Editor

Version 10.1

April 2018

This document applies to Tamino Version 10.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: XSC-DOC-101-20180413

Table of Contents

Tamino Schema Editor ... vii
1 Introducing the Tamino Schema Editor .. 1
2 First Steps with the Tamino Schema Editor .. 3

About this Tutorial ... 5
Starting the Tamino Schema Editor ... 6
Specifying a Schema Name and a Collection ... 7
Checking the Generated Code in the Code Editor .. 8
Inserting the Root Element and the Doctype ... 10
Inserting Simple Elements ... 14
Inserting a Complex Element ... 15
Inserting a Sequence ... 16
Adding Element References to the Sequence ... 17
Adding a Sequence with an Element Reference to the Root Element 19
Inserting an Attribute ... 20
Saving the Schema to the File System .. 22

3 Starting and Leaving the Tamino Schema Editor .. 23
Starting the Tamino Schema Editor .. 24
Using Help ... 24
Leaving the Tamino Schema Editor ... 25

4 Elements of the Application Window ... 27
Menu Bar .. 29
Toolbar .. 30
Schema Tree .. 33
Schema Status ... 35
Tooltips in the Schema Tree .. 36
Structure Info Text .. 36
Context Menus ... 37
Logical Properties ... 38
Physical Properties ... 39
Switching to Another View .. 40
Code View .. 42
Output Panel .. 43
Status Bar .. 43
Dialog Boxes ... 44
Navigating in the Schema Editor ... 44

5 Managing Schemas in Tamino and in the File System .. 45
Creating a Schema from Scratch .. 46
Missing Information ... 48
Connecting to Tamino .. 49
Validating a Schema ... 53
Validating the XML Schema Code ... 53
Defining and Saving Schemas .. 54
Getting and Opening Schemas ... 57

iii

Undefining a Schema ... 60
6 Importing DTDs and TSD2 Schemas .. 61

Importing a DTD .. 62
Importing a TSD2 Schema .. 63

7 Importing Adabas ... 65
8 Editing a Schema ... 67

Inserting an Element in the Schema Tree ... 68
Editing Properties .. 70
Using the Property Editor .. 70
Namespaces .. 71
Server Extensions ... 71
Documenting a Schema .. 72
Specifying the Occurrence Constraints .. 73
Declaring an Element as Optional, Required or Prohibited 74
Displaying the Declaration for a Reference ... 75
Displaying the Next Reference ... 75
Moving an Element Up and Down in the Schema Tree ... 77
Cutting, Copying and Pasting Information ... 78
Using Drag-and-Drop .. 81
Copying the Path to the Clipboard .. 83
Deleting Information .. 84
Renaming an Item in the Schema Tree ... 84
Finding and Replacing Information ... 86
Finding the Next or Previous Occurrence ... 90
Undoing and Redoing the Previous Action ... 91
Defining the Options .. 92
Browsing for a Schema Location .. 93
Opening a Referenced Schema in a New Window .. 94
Loading and Unloading the Elements from an External Schema 95

9 Transforming and Converting Schema Constructs ... 97
General Information ... 98
Using a Transformation Wizard ... 98
Making a Schema Construct Local or Global ... 100
Converting a Choice, Sequence or All .. 100
Converting an Element ... 101

10 Schema Tree Items Explained .. 103
All ... 105
Annotation .. 105
Any ... 106
AnyAttribute .. 106
Appinfo .. 106
Attribute ... 107
AttributeGroup ... 109
AttributeGroup reference ... 109
Attribute info .. 109

Tamino Schema Editoriv

Tamino Schema Editor

Attribute reference ... 109
Choice ... 111
ComplexType ... 111
Doctype ... 112
Documentation ... 112
Element complex .. 112
Element info ... 114
Element reference ... 114
Element simple ... 114
Element unknown .. 116
Element with attributes .. 117
Group .. 118
Group reference .. 118
Import ... 118
Include .. 119
Key .. 119
Keyref ... 119
Notation .. 120
Redefine .. 120
Schema .. 120
Sequence ... 121
SimpleType ... 122
SimpleType with attributes .. 124
Tsd unique .. 125
Unique .. 125

11 Properties Explained .. 127
Schema Properties .. 129
Tamino Doctype Properties .. 131
Logical Properties for XML Elements .. 137
Physical Properties for the Different Storage Types .. 143
Advanced Physical Properties .. 151

12 Menu Commands .. 153
File .. 155
Database ... 156
Edit ... 157
View .. 159
Insert ... 160
Tools .. 160
Help .. 161

13 Supported Character Encodings .. 163
14 Command Line Tools for Schema Conversions ... 167

Conversion Scripts .. 168
Tamino DTD Converter .. 169
Tamino TSD2 Converter ... 170

Index ... 173

vTamino Schema Editor

Tamino Schema Editor

vi

Tamino Schema Editor

The Tamino Schema Editor supports you in creating schemas that conform to both the Tamino
schema language (TSD) and the XML Schema standard (XSD).

This documentation covers the following topics:

Getting Started

Introducing the Tamino Schema Editor

First Steps with the Tamino Schema Editor

Using the Tamino Schema Editor

Starting and Leaving the Tamino Schema Editor

Elements of the Application Window

Managing Schemas in Tamino and in the File System

Importing DTDs and TSD2 Schemas

Importing Adabas

Editing a Schema

Transforming and Converting Schema Constructs

Reference

Schema Tree Items Explained

Properties Explained

Menu Commands

Supported Character Encodings

Schema Tools

Command Line Tools for Schema Conversions

vii

viii

1 Introducing the Tamino Schema Editor

A Tamino schema conforms to the XML Schema standard, with Tamino-specific information
written in annotations to XML Schema constructs.

Using the Tamino Schema Editor to create Tamino schemas has the following advantages:

■ The graphical user interface of the Tamino Schema Editor shields you from having to type in
schema language syntax, thus making schema creation much faster and less error-prone.

■ The Tamino Schema Editor shields you from the complexity of the XML Schema standard by
offering dialogs specifically for the creation of Tamino schemas. Schema constructs required by
the XML Schema standard are added automatically to ensure that valid schemas are generated.

■ The Code view helps you to see the generated schema in plain text. Text in this view can be
edited and the changes will reflect in the graphical view.

It is also possible to import existing DTDs and thus convert them to Tamino schemas. If you have
created schemas with a previous version of Tamino (TSD3, TSD4), you can also import and thus
convert them to the schema language supported by the current version of Tamino.

For detailed information on the Tamino schema language, see the Tamino XML Schema User Guide
and the Tamino XML Schema Reference Guide in the Tamino XML Server documentation.

As a source of valuable information, guidance and help, developers using the Software AG Tamino
platform can refer to the Tamino Developer Community web site at http://techcommunity.soft-
wareag.com/ecosystem/communities/public/webmethods/products/tamino/.

1

http://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/products/tamino/
http://techcommunity.softwareag.com/ecosystem/communities/public/webmethods/products/tamino/

2

2 First Steps with the Tamino Schema Editor

■ About this Tutorial ... 5
■ Starting the Tamino Schema Editor ... 6
■ Specifying a Schema Name and a Collection .. 7
■ Checking the Generated Code in the Code Editor .. 8
■ Inserting the Root Element and the Doctype ... 10
■ Inserting Simple Elements ... 14
■ Inserting a Complex Element ... 15
■ Inserting a Sequence ... 16
■ Adding Element References to the Sequence ... 17
■ Adding a Sequence with an Element Reference to the Root Element ... 19
■ Inserting an Attribute .. 20
■ Saving the Schema to the File System ... 22

3

This tutorial provides a very simple and brief introduction to the Tamino Schema Editor. It is in-
tended to get you, the schema developer, started with the basic steps that are required to create a
simple schema from scratch.

The steps are presented in the following order:

Estimated duration for this tutorial: 1 hour.

Tamino Schema Editor4

First Steps with the Tamino Schema Editor

About this Tutorial

First-time users are recommended to work through this tutorial to obtain an overview of how to
work with the Tamino Schema Editor. This tutorial is not intended to be a comprehensive descrip-
tion of the full range of possibilities provided by the Tamino Schema Editor. Therefore, explanations
are kept to a minimum. For a full description of each feature, refer to the remainder of this docu-
mentation.

This tutorial illustrates the creation of a schema which contains elements that are to appear in
various content models. You will declare global elements and insert references to them in the
content models in which they are to be included.

When you have completed all steps of this tutorial, your schema tree will look as follows:

Instances of the schemas that you will create in the course of this tutorial are to be stored in Tamino's
native XML data store.

Important background information can be found in the XML Schema Part 0: Primer on the W3C
site http://www.w3.org/TR/xmlschema-0/.

5Tamino Schema Editor

First Steps with the Tamino Schema Editor

http://www.w3.org/TR/xmlschema-0/

Starting the Tamino Schema Editor

The Tamino Schema Editor can be invoked from all supported Windows and UNIX platforms.

To start the Tamino Schema Editor on Windows

■ From the Windows Startmenu chooseTamino Schema Editor in the Tamino program group.

To start the Tamino Schema Editor on UNIX platforms

■ Start the following script from the command line:

inoschema.sh

When you have started the Tamino Schema Editor, its application window appears. An empty
schema with the name "New_Schema_1" is shown in the schema tree. Its logical properties are
shown on the right side of the application window. You can immediately start with the creation
of a new schema.

Tamino Schema Editor6

First Steps with the Tamino Schema Editor

Specifying a Schema Name and a Collection

You will now specify the name under which the schema is to be defined in Tamino, and the name
of the collection in which the schema is to be defined in Tamino.

To specify schema name and collection

1 Specify the name "patientschema" for the schema.

You can do this either directly in the schema tree, or in the Value column of the logical
properties.

Tip: Keyboard users can switch between schema tree and logical properties as follows:
Use CTRL+TAB to switch to the schema tree group tab, then select the schema, then use
TAB to get the schema node selected. The input field in the schema tree or in the Value
column can be activated using F2.

2 In the logical properties, specify "hospital" as the collection name.

For a description of all available properties, see Properties Explained later in this document-
ation.

7Tamino Schema Editor

First Steps with the Tamino Schema Editor

Checking the Generated Code in the Code Editor

You will now check the code that has so far been generated for the schema.

To invoke the code editor

1 From the View menu, choose Code.

Or:

Choose the following toolbar button:

The code editor is now shown in the application window. The following XML Schema code
has been generated:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "patientschema">
 <tsd:collection name = "hospital"></tsd:collection>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
</xs:schema>

Note that the XML Schema constructs refer to the namespace prefix "xs", and the Tamino-
specific constructs refer to the Tamino schema namespace "tsd".

Before continuing with the next exercise, you will return to tree view.

Caution: If you modify the schema in code view and define elements that are not sup-
ported in tree view, it is not possible to switch back to tree view. The output panel at
the bottom of the application window will then inform you why the switch is not
possible.

2 From the View menu, choose XSD.

Or:

Choose the corresponding toolbar button:

Tamino Schema Editor8

First Steps with the Tamino Schema Editor

The schema tree is shown again.

9Tamino Schema Editor

First Steps with the Tamino Schema Editor

Inserting the Root Element and the Doctype

You will now insert the complex element "patient" in your schema. This is the root element for all
instances of this schema. When the root element has been inserted, you will also insert the doctype.
The names of the root element and doctype must be identical.

Note: It is possible to create several root elements and doctypes.

To insert the root element

1 In the schema tree, select the schema node with the name "patientschema".

2 From the Insert menu, choose Element complex.

Or:

Choose the following toolbar button:

A declaration for a complex element with the name "NEW_element_complex" is added to the
schema tree. The logical and physical properties for the complex element are shown on the
right of the application window.

3 Specify "patient" as the value of the Name logical property for the complex element.

Leave the logical property Mixed content with its default value (false). This means that the
element must not contain arbitrary characters and elements (no mixed content).

In the physical properties, leave the storage type and the index with the default values (native
storage type and no index).

When the storage type is "Native", instances will be stored in Tamino's native XML store.

When an index has not been defined, instances of this node will not be indexed.

With the physical properties Collection reference, dereference, Node reference and Node
reference operator, which are visible when you choose the Reference tab of the physical
properties, a join with another document instance can be defined. These properties are set to
their defaults, that means, no join is defined.

The Tamino Schema Editor generates the following schema code for the "patient" node:

Tamino Schema Editor10

First Steps with the Tamino Schema Editor

<xs:element name = "patient">
<xs:complexType></xs:complexType>

</xs:element>

This is the root node for all element declarations that you will add later.

11Tamino Schema Editor

First Steps with the Tamino Schema Editor

To define the doctype

1 In the schema tree, select the schema node with the name "patientschema".

2 From the Insert menu, choose Doctype.

Or:

Choose the following toolbar button:

A doctype node with the name "NEW_doctype" is added to the schema tree.

3 In the logical properties, select the "NEW_doctype" entry in the "Value" column.

A drop-down arrow is shown. The drop-down list box provides for selection all elements that
have been inserted directly below the schema name.

Tip: Keyboard users can open the drop-down list box using ALT+DOWN-ARROW.

4 From the drop-down list box, select patient as the name for the doctype.

In the physical properties, leave the Content property and the different access properties with
their default values. This means that all instances of doctype "patient" in the Tamino XML
store can be read, inserted, updated and deleted.

Tamino Schema Editor12

First Steps with the Tamino Schema Editor

13Tamino Schema Editor

First Steps with the Tamino Schema Editor

Inserting Simple Elements

You will now insert simple elements that you will later reuse by referencing them.

To insert simple elements

1 In the schema tree, select the schema node with the name "patientschema".

2 From the Insert menu, choose Element simple.

Or:

Choose the following toolbar button:

A declaration for a simple element with the name "NEW_element_simple" is added to the
schema tree.

3 Specify the name "surname" for the simple element.

Leave the logical and physical properties with their default values.

4 Insert two more simple elements by repeating the above steps. Specify the names "firstname"
and "middlename", in that order. Make sure to select the schema node with the name "patients-
chema" before inserting/pasting a simple element.

Tip: You can also use the Copy and Paste commands from the Edit menu.

The Tamino Schema Editor generates the following schema code for the simple elements.
They are inserted in the schema as children of the root element xs:schema.

<xs:element name = "surname" type = "xs:string"></xs:element>
<xs:element name = "firstname" type = "xs:string"></xs:element>
<xs:element name = "middlename" type = "xs:string"></xs:element>

Tamino Schema Editor14

First Steps with the Tamino Schema Editor

Inserting a Complex Element

You will now insert the complex element "name" to which you will later add the references for
the simple elements that you have defined in the previous exercise.

To insert a complex element

1 In the schema tree, select the schema node with the name "patientschema".

2 From the Insert menu, choose Element complex.

Or:

Choose the following toolbar button:

A complex element with the name "NEW_element_complex" is added to the schema tree.

3 Specify the name "name" for the complex element.

4 Leave the logical properties with their default values.

5 In the physical properties, leave the storage type with its default value "Native" so that instances
will be stored in Tamino's native XML store.

6 Create a "text" index. This means that instances of the element will be indexed for full-text
searches. To do so, choose the following button on the Index tab:

A new entry with the name "standard" is shown on the Index tab.

7 Select the new entry.

A drop-down arrow is shown at the right. The drop-down list box provides for selection dif-
ferent types of indices.

8 From the drop-down list box, select text.

15Tamino Schema Editor

First Steps with the Tamino Schema Editor

Inserting a Sequence

You will now insert a sequence as a child node of "name". You will later add element references
to the sequence. In an instance, all elements within a sequence must appear in the same order that
has been defined in the schema.

To insert a sequence

■ In the schema tree, select the complex element "name".

From the Insert menu, choose Sequence.

Or:

Choose the following toolbar button:

A structural element named "Sequence" is added to the complex element. Leave the logical
properties with the default values.

Tamino Schema Editor16

First Steps with the Tamino Schema Editor

Adding Element References to the Sequence

You will now add three element references ("surname", "firstname" and "middlename") to the se-
quence you have just created.

To add element references to the sequence

1 In the schema tree, select the "Sequence" element.

2 From the Insert menu, choose Element reference.

Or:

Choose the following toolbar button:

An element reference is added to the sequence.

3 For the logical property Reference, select surname from the drop-down list box that is
available in the Value column.

Leave all other properties with the default values.

4 Insert two more element references by repeating the previous steps. Select the names "first-
name" and "middlename", in that order.

Tip: You can also use the Copy and Paste commands from the Edit menu.

Make sure to select the "Sequence" element before inserting/pasting an element reference.

5 Select the element reference "middlename".

6 Change the following logical properties: set Minimum occurrence to "0" and Maximum
occurrence to "unbounded".

Or:

From the Edit menu, choose minOccurs : maxOccurs > 0 : unbounded.

This means that "middlename" is optional and can occur as often as desired. This is indicated
by an asterisk (*) next to the icon in the schema tree.

For "surname" and "firstname", use the default values (1). They are required to occur once.
More occurrences are not allowed. This is indicated by the number 1 next to the icon in the
schema tree.

17Tamino Schema Editor

First Steps with the Tamino Schema Editor

The following example shows the properties for "middlename" for which different occurrence
constraints have been specified.

The Tamino Schema Editor generates the following schema code for the "name" element:

<xs:element name = "name">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text></tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "surname"></xs:element>
 <xs:element ref = "firstname"></xs:element>
 <xs:element ref = "middlename" minOccurs = "0" maxOccurs = ↩
"unbounded"></xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

The default values (1) for the properties Minimum occurrence and Maximum occurrence have
not been changed in the elements "surname" and "firstname". Therefore, no code for these
attributes has been generated.

Tamino Schema Editor18

First Steps with the Tamino Schema Editor

Adding a Sequence with an Element Reference to the Root Element

You will now add an element reference to your root element. This element references the complex
element "name" which in turn references the simple elements "surname", "firstname" and
"middlename".

To add a sequence with an element reference to the root element

1 In the schema tree, select the complex element "patient".

From the Insert menu, choose Sequence.

Or:

Choose the following toolbar button:

A structural element named "Sequence" is added to the schema tree.

2 Select this new "Sequence" element in the schema tree.

3 From the Insert menu, choose Element reference.

Or:

Choose the following toolbar button:

An element reference is added to the sequence.

4 For the logical property Reference, select name from the drop-down list box.

Leave all other properties with the default values.

The Tamino Schema Editor generates the following schema code for the "patient" element:

<xs:element name = "patient">
<xs:complexType>

<xs:sequence>
<xs:element ref = "name"></xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

19Tamino Schema Editor

First Steps with the Tamino Schema Editor

Inserting an Attribute

You will now add an attribute to complex element "patient".

To insert an attribute

1 In the schema tree, select the complex element "patient".

2 From the Insert menu, choose Attribute.

Or:

Choose the following toolbar button:

An attribute with the name "NEW_attribute" is added to the complex element.

3 Specify the name "regnum" (for registration number) for the attribute.

4 For the logical property Data type, select the value xs:integer from the drop-down list box
in the Value column.

This is a data type from a namespace that is by default defined for your schema.

5 For the logical property Use, select the value required from the drop-down list box.

When an attribute is required, this is indicated by the number 1 next to the attribute icon in
the schema tree.

6 In the physical properties, leave the storage type with the default value "Native" so that in-
stances will be stored in Tamino's native XML store.

7 Create a "standard" index. This means that instances of the attribute will be indexed to optimize
queries that use numerical comparisons in retrieval expressions. To do so, choose the following
button on the Index tab:

A new entry ("standard") is shown on the Index tab.

Tamino Schema Editor20

First Steps with the Tamino Schema Editor

The Tamino Schema Editor generates the following schema code for the attribute:

<xs:attribute name = "regnum" type = "xs:integer" use = "required">
<xs:annotation>

<xs:appinfo>
<tsd:attributeInfo>

<tsd:physical>
<tsd:native>
<tsd:index>

<tsd:standard></tsd:standard>
</tsd:index>

</tsd:native>
</tsd:physical>

</tsd:attributeInfo>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

Note the constructs for the physical schema within the attributeInfo element.

21Tamino Schema Editor

First Steps with the Tamino Schema Editor

Saving the Schema to the File System

You will now save your new schema to the file system.

You can also define your new schema in Tamino. However, this is not part of this tutorial. See
Defining and Updating a Schema in Tamino later in this documentation.

To save the schema to the file system

1 From the File menu, choose Save As.

The Save As dialog box appears.

2 Select the folder in which the schema is to be saved and specify a file name, for example, pa-
tientschema.

3 Select the file type with which the schema is to be saved. For a Tamino schema, the file type
is "tsd".

4 Select the encoding with which the schema is to be saved.

The encoding is written to the XML declaration of the schema file. The default encoding is
UTF-8.

Note: The Encoding drop-down list box is editable.

5 Choose the Save button.

You have successfully completed this tutorial.

Tamino Schema Editor22

First Steps with the Tamino Schema Editor

3 Starting and Leaving the Tamino Schema Editor

■ Starting the Tamino Schema Editor ... 24
■ Using Help ... 24
■ Leaving the Tamino Schema Editor ... 25

23

This chapter covers the following topics:

Starting the Tamino Schema Editor

The Tamino Schema Editor can be invoked from all supported Windows and UNIX platforms.

To start the Tamino Schema Editor on Windows

■ From the Windows Startmenu chooseTamino Schema Editor in the Tamino program group.

To start the Tamino Schema Editor on UNIX platforms

■ Start the following script from the command line:

inoschema.sh

Using Help

The complete Tamino Schema Editor documentation is available in HTML format.

To invoke the overview page for the documentation

■ From the Help menu, choose Contents.

Or:

Press F1.

Or:

Choose the following toolbar button:

Tamino Schema Editor24

Starting and Leaving the Tamino Schema Editor

To invoke context-sensitive help for an element of the application window

1 From the Help menu, choose Help on Item.

The mouse pointer changes:

2 Click the element of the application window (for example, the schema tree) to display help
for this element.

To invoke context-sensitive help for a dialog box

■ Choose the Help button in the dialog box.

Or:

Press F1.

Leaving the Tamino Schema Editor

When you leave the Tamino Schema Editor, all open connections to databases are disconnected
automatically. Visited databases are remembered. The four recently opened files are remembered
(see the commands at the bottom of the File menu).

To leave the Tamino Schema Editor

■ From the File menu, choose Exit.

Or:

From the Control menu, choose Close.

25Tamino Schema Editor

Starting and Leaving the Tamino Schema Editor

26

4 Elements of the Application Window

■ Menu Bar ... 29
■ Toolbar .. 30
■ Schema Tree .. 33
■ Schema Status ... 35
■ Tooltips in the Schema Tree .. 36
■ Structure Info Text ... 36
■ Context Menus ... 37
■ Logical Properties .. 38
■ Physical Properties .. 39
■ Switching to Another View ... 40
■ Code View ... 42
■ Output Panel .. 43
■ Status Bar .. 43
■ Dialog Boxes .. 44
■ Navigating in the Schema Editor ... 44

27

When you start the Tamino Schema Editor, its application window appears. When a schema has
been loaded into the application window, it may look as follows:

The application window contains several panes. To modify the size of a pane, move the mouse
pointer over the border separating the panes until the pointer changes, showing two arrows
pointing in opposite directions. Then drag the border using the mouse until the panes have the
desired size.

For details on keyboard access not mentioned in this documentation, consult the documentation
of the individual operating system or software product.

The following topics are covered below:

Tamino Schema Editor28

Elements of the Application Window

Menu Bar

The following menus are available:

Using the commands in this menu, you can ...Menu

Create a new schema, open and save a schema in your file system, import a DTD or a schema
and thus convert it to the Tamino schema syntax, or exit the Tamino Schema Editor.

File

Get a schema from Tamino, validate the schema, define a new schema/multiple schema in
Tamino, update existing schema/schemas in Tamino, or undefine a schema/group of schemas
in Tamino.

Database

Edit the current schema (for example, cut, copy and paste information, find and replace
information, move an element up and down in the schema tree, or go to the declaration for a
reference).

Edit

Switch on and off different elements of the application window, switch from tree view to code
view (and vice versa), or open the referenced schema in a new window.

View

Insert structures for the logical properties of a schema. The commands in this menu vary,
depending on the current selection in the schema tree.

Insert

Map an Adabas file to a Tamino schema (Adabas wizard), transform a schema construct, load
elements from the referenced schema into a selection list, validate the XML schema code, or
specify options for external schemas.

Tools

Invoke the online documentation.Help

For reference information on each menu command, see Menu Commands.

29Tamino Schema Editor

Elements of the Application Window

Toolbar

You can execute the most important functions using a toolbar button. The following toolbars are
available:

■ Standard Toolbar
■ Insert Toolbar

Standard Toolbar

The following toolbar buttons are available from the standard toolbar:

Create new schema

Open schema in file system

Save schema in file system

Get schema from Tamino

Validate Schema

Define/update schema in Tamino

Validate XML schema code

Cut information

Copy information

Paste previously cut or copied information

Delete information

Undo previous action

Redo previous undo action

Move element up in the tree

Move element down in the tree

Find information

Go to declaration for a reference

Go to next reference

Access online documentation

To switch the standard toolbar display on and off

■ From the View menu, choose Toolbars > Standard.

Tamino Schema Editor30

Elements of the Application Window

When the standard toolbar is displayed in the application window, a check mark is shown
next to this menu command.

31Tamino Schema Editor

Elements of the Application Window

Insert Toolbar

This toolbar provides buttons for the commands of the Insert menu. The available buttons vary,
depending on the current selection in the schema tree.

The items in the insert menu allow you to add new nodes to the schema, for example doctypes,
elements, attributes, simple and complex types, sequences and choices.

To add a new node to the schema

1 In the graphical view, select the node under which you wish to insert the new node.

2 From the Insert menu, choose the required new node.

To switch the insert toolbar display on and off

■ From the View menu, choose Toolbars > Insert.

When the insert toolbar is displayed in the application window, a check mark is shown next
to this menu command.

Tamino Schema Editor32

Elements of the Application Window

Schema Tree

The Tamino Schema Editor provides different views. See Switching to Another View for further
information.

When one of the tree views is active, the left side of the application window shows a tree of the
current Tamino schema, for example:

Note: When you start the Tamino Schema Editor, the tree shows a new, empty schema
named "New_Schema_1". You can now either create a new schema or load an existing
schema into the editor. See Creating a Schema from Scratch or Getting and Opening
Schemas.

You can expand or collapse the tree structure by clicking the plus or minus sign in front of an item.
When using the keyboard, select the node and press RIGHT-ARROW or LEFT-ARROW.

When you select an item, the logical and/or physical properties of this item are displayed on the
right side of the application window, but the item is not expanded.

The following icons may appear in the tree (see Schema Tree Items Explained for further informa-
tion):

All

Annotation

Any

AnyAttribute

Appinfo

Attribute

33Tamino Schema Editor

Elements of the Application Window

AttributeGroup

AttributeGroup reference

Attribute info

Attribute reference

Choice

ComplexType

Documentation

Doctype

Element complex

Element info

Element reference

Element simple

Element unknown

Element with attributes

Group

Group reference

Import

Include

Key

Keyref

Notation

Redefine

Schema

Sequence

SimpleType

SimpleType with attributes

Unique

Characters may appear to the right of an icon in the schema tree. See Specifying the Occurrence
Constraints andDeclaring anElement asOptional, Required or Prohibited for detailed information.

To expand all nodes in the tree

■ From the View menu, choose Expand All.

Tamino Schema Editor34

Elements of the Application Window

Schema Status

When you modify a schema, the tab containing the name of the schema is shown with an asterisk
"*". This is a reminder that your changes have not yet been saved. When you save the schema, for
example using File > Save, the asterisk is removed.

35Tamino Schema Editor

Elements of the Application Window

Tooltips in the Schema Tree

In the schema tree, tooltips indicating the type of schema construct can be shown. By default, this
feature is disabled. To enable this feature, you have to add the following line to the file paramet-
er.properties which is located in the root directory of your Tamino Schema Editor installation:

com.softwareag.xtools.schematools.schemaeditor.components.SchemaTree.SchemaTree.showTreeNodeToolTip=true

Structure Info Text

Structure info text is the gray information in the schema tree (for example, "Sequence", "Choice"
or "Annotation"). For better readability, you can disable the display of this information.

To display/hide the structure info text in the schema tree

■ From the View menu, choose Show Structure Info Text.

When the structure info text is displayed in the schema tree, a check mark is shown next to
this menu command.

Tamino Schema Editor36

Elements of the Application Window

Context Menus

Context menus are available for the elements in the schema tree. For example, the following context
menu is available when you select a simple element:

To invoke a context menu for an element or attribute

1 Select the element or attribute for which you want to invoke a context menu.

2 Click the right mouse button.

Or:

Press SHIFT+F10.

The context menu appears and you can now choose the required command.

A context menu with features that apply globally to a schema (such as several of the entries in the
File menu) is also available from the schema tab.

To invoke the context menu for a schema

1 Move the cursor to the tab where the name of the schema is displayed.

2 Click the right mouse button.

The context menu appears and you can now choose the required command.

37Tamino Schema Editor

Elements of the Application Window

Logical Properties

When one of the tree views is active, the logical properties of the element that is currently selected
in the schema tree are shown at the top right of the application window. Example:

TheProperty column displays the property name. TheValue column displays the current property
value, which you can modify.

You can expand or collapse the tree structure by clicking the plus or minus sign in front of an item.
When using the keyboard, select the node, press F2 to activate edit mode and then and press
CTRL+RIGHT-ARROW or CTRL+LEFT-ARROW.

See Properties Explained for detailed information.

Tamino Schema Editor38

Elements of the Application Window

Physical Properties

When one of the tree views is active, the physical properties of the element that is currently selected
in the schema tree are shown at the bottom right of the application window. The physical properties
are shown according to the selected storage type. Example:

TheProperty column displays the property name. TheValue column displays the current property
value, which you can modify. See Properties Explained for detailed information.

For some element types, anAdvanced button is provided. When you choose this button, additional
information is shown. You can then define the physical properties of a node that can be accessed
via multiple paths. See Advanced Physical Properties.

Note: If physical properties cannot be defined for an element (such as Sequence or Choice),
the Physical Properties frame is not displayed.

39Tamino Schema Editor

Elements of the Application Window

Switching to Another View

When you open a schema, it is always shown in a view which is able to display the whole schema.

A schema which does not match XSD is opened in code view. You can modify the code manually
in code view. However, it is only possible to switch back to one of the tree views if this tree view
is able to display the whole schema.

Caution: The undo/redo history is cleared when you switch to another view.

To switch to tree view

This description assumes that you want to switch to tree view or that code view is currently active.

■ From the View menu, choose XSD.

If the current schema contains information which is not supported in another view, switching
is not possible. The output panel will then inform you why the switch is not possible.

In the View menu, a check mark is always shown next to the menu command which corres-
ponds to the current view. The toolbar button for the current view is always shown in down
status.

Tamino Schema Editor40

Elements of the Application Window

To switch to code view

This description assumes that one of the tree views is currently active.

■ From the View menu, choose Code.

Or:

Select the toolbar button for code view.

In the View menu, a check mark is always shown next to the menu command which corres-
ponds to the current view. The toolbar button for the current view is always shown in down
status.

41Tamino Schema Editor

Elements of the Application Window

Code View

When you switch to code view, a code editor is shown instead of the schema tree, logical properties
and physical properties which are shown in tree view.

Using the commands from the Edit menu, you can, for example, cut and paste or find and replace
information.

Note: Not all commands are available in code view. Database access is not possible. Thus,
commands such as Define Schema or Validate Schema are not available. The Insert menu
is only available when one of the tree views is active.

Tamino Schema Editor42

Elements of the Application Window

Output Panel

The output panel at the bottom of the application window displays status messages about the last
action that has been performed. For example, it tells you that a replace operation has been com-
pleted, or it provides information about errors that appear when you try to switch from code view
to one of the tree views.

If a hyperlink is provided for an error, you can choose it. You are then positioned at the entry that
caused the error. If you are working in code view, the corresponding line and column numbers
are provided at the beginning of the hyperlink text.

To switch the output panel display on and off

■ From the View menu, choose Output.

When the output panel is displayed in the application window, a check mark is shown next
to this menu command.

Status Bar

The status bar is the horizontal information line at the bottom of the main application window.

In code view, the following information is shown: the numbers of the current line and column,
and the total amount of lines in the current schema.

To switch the status bar display on and off

■ From the View menu, choose Status Bar.

When the status bar is displayed in the application window, a check mark is shown next to
this menu command.

43Tamino Schema Editor

Elements of the Application Window

Dialog Boxes

Most Tamino Schema Editor dialog boxes can be resized. This is indicated by the following symbol
in the lower right corner of a dialog box:

To resize a dialog box

1 Move the cursor to the bottom-right corner of the dialog box. The cursor shape changes to a
two-headed arrow.

2 Using the left mouse button, drag the box to the required size.

Resizing a dialog box is helpful if a string is so long that it is not fully shown.

Navigating in the Schema Editor

You can navigate in the Tamino Schema Editor using the standard mouse and/or keyboard tech-
niques for navigating through the menus and selecting items. You can edit names of elements and
attributes both in tree view, as well as in the corresponding property pane.

Keyboard users should additionally note the use of the following keys:

FunctionKey

Activate the selected input field for editing (edit mode).F2

Open and close a drop-down list box in a dialog box.

In edit mode: open and close a drop-down list box in the Value column of
the logical or physical properties.

ALT+DOWN-ARROW and
ALT+UP-ARROW

In edit mode: open and close a group tree in the Property column of the logical
properties.

CTRL+RIGHT-ARROW and
CTRL+LEFT-ARROW

Select the next control, or select the next item in a table.TAB

If a control uses TAB for its own purposes (for example, a table), you have to
use CTRL+TAB to leave the context of current control.

CTRL+TAB

If a control uses ENTER for its own purposes (for example, the property editor
in which you enter documentation text), you have to use CTRL+ENTER to choose
the default button.

CTRL+ENTER

Tamino Schema Editor44

Elements of the Application Window

5 Managing Schemas in Tamino and in the File System

■ Creating a Schema from Scratch .. 46
■ Missing Information .. 48
■ Connecting to Tamino .. 49
■ Validating a Schema .. 53
■ Validating the XML Schema Code ... 53
■ Defining and Saving Schemas ... 54
■ Getting and Opening Schemas .. 57
■ Undefining a Schema ... 60

45

This chapter covers the following topics:

Creating a Schema from Scratch

When you create a new schema, your new schema is by default created according to the Tamino
schema language of the current Tamino version.

When you start the Tamino Schema Editor, the name "NEW_schema_1" is shown in the schema
tree and you can immediately create a new schema.

Note: See First Steps with the Tamino Schema Editor for a brief tutorial which explains the
creation of a simple Tamino schema from scratch.

To create a new schema

1 From the File menu, choose New.

Or:

Press CTRL+N.

Or:

Choose the following toolbar button:

If the currently displayed schema has been changed, a dialog box appears asking whether
you want to save the changes. You can choose either the Yes or No button.

An empty schema with the name "NEW_schema_1" is shown in the schema tree.

2 Specify a name for the schema.

You can do this either in the schema tree or in the pane displaying the logical properties. This
is the name under which the schema will later be defined in Tamino.

3 In the pane displaying the logical properties, specify the collection name.

This is the collection in which the schema will later be defined in Tamino.

4 From the Insert menu, choose Doctype.

A node with the name "NEW_doctype" is shown in the schema tree.

5 Specify a name for the doctype.

You can do this either in the schema tree or in the pane displaying the logical properties.

Tamino Schema Editor46

Managing Schemas in Tamino and in the File System

Important: Schema name, collection name and doctype name are mandatory. See
Missing Information for further information.

6 In the pane displaying the physical properties for the doctype, select the required storage
type and define all required properties. SeeProperties Explained for descriptions of all logical
and physical properties.

7 Use the commands from the Insert menu to add further schema constructs (for example,
complex elements and element references). See Inserting an Element in the Schema Tree for
further information.

8 Define the new schema in Tamino and/or save it in your file system. See Defining and Saving
Schemas for further information.

47Tamino Schema Editor

Managing Schemas in Tamino and in the File System

Missing Information

Certain information items must be specified in a schema before it can be defined to Tamino or
validated against a database. These items are:

■ schema name
■ collection name
■ doctype name

If any of these information items are missing, the Schema Editor prompts you to supply the
missing information.

See also: Defining and Updating a Schema in Tamino and Validating a Schema.

Tamino Schema Editor48

Managing Schemas in Tamino and in the File System

Connecting to Tamino

Any interaction with the Tamino Server requires that you are connected to it. If you are not, you
have to establish the connection.

Important: The web server as well as the target Tamino database must be up and running.

The connection can be established from the following dialog boxes:

■ Define Schema
■ Undefine Schema
■ Get Schema
■ Validate Schema

All servers and databases that you have previously accessed are automatically remembered. They
are shown in the above dialog boxes. When you do not need access to a specific server or database
any longer, you can remove its entry from the dialog box. The following buttons are provided in
the above dialog boxes:

Go up one level.

Connect to a Tamino database. See below.

Remove the selected server or database from the dialog box. The selection is removed immediately.
You are not asked to confirm the deletion.

Explore the selected database. See below.

49Tamino Schema Editor

Managing Schemas in Tamino and in the File System

To connect to a Tamino database

1 Access one of the dialog boxes listed above and choose the following button:

Note: TheConnectdialog box appears automatically when you initiate an action which
requires database access. Thus, it is not always necessary to use this button.

The Connect dialog box appears.

If this is the first time you are connecting to a server, the drop-down list boxes are empty and
you have to type in the required information. The next time you access this dialog box, this
information is available and can be selected from the drop-down list boxes.

2 Enter the path to the required server in the following format:

http://host/tamino

where host is the name of the computer on which the Tamino Server resides. You can specify
"localhost" for your local computer, or a path such as "yourpc.ourcompany.com" for a remote
computer.

Or:

Select the required server from the corresponding drop-down list box.

3 Enter the name of the database to which you want to connect.

Or:

Select the required database from the corresponding drop-down list box.

Or:

Choose the Select button to display all databases on the specified server in an additional
dialog box. You can then choose the desired database. This feature works only with databases
that have been created starting with version 4.2.1. In all other cases, a message appears saying
that a list of databases is not available.

Tamino Schema Editor50

Managing Schemas in Tamino and in the File System

4 Choose the Connect button.

When a password is required for the database, a database login dialog box appears.

5 Specify the user ID and password with which you are defined to Tamino security and/or the
authentication file of your web server (if authentication is active), and then choose the Login
button.

If you have to specify a domain name with your user ID, specify it in the following way:

domain-name/user-ID

If the authentication of your web server is not active (which is the default setting) and you
have no explicit user ID/password entry in the Tamino security file, you can enter any com-
bination here. You are then assigned default access rights in Tamino.

The last user ID you entered in this text box is automatically remembered.

51Tamino Schema Editor

Managing Schemas in Tamino and in the File System

To explore the selected database

1 Select a database in one of the dialog boxes from which a connection can be established (see
the list at the beginning of this topic).

2 Choose the Explore Database button, which is located next to the Look in drop-down list
box:

Note: The Connect dialog box appears automatically when the connection to this
database has not yet been established. In this case, you have to proceed as described
above.

The Explore dialog box appears, showing the structure of the database. Here is an example
for the Hospital database:

You can now explore the contents of the database.

3 Choose the Close button to close this dialog box.

Tamino Schema Editor52

Managing Schemas in Tamino and in the File System

Validating a Schema

Only valid schemas can be defined in Tamino. Even if the XML schema code is valid, the schema
can only be defined in Tamino if the Tamino-specific properties are valid.

It is recommended that you validate the schema before defining the schema to Tamino.

To validate a schema

■ From the Database menu, choose Validate Schema.

Or:

Choose the following toolbar button:

All errors are reported in the output panel.

Validating the XML Schema Code

To validate the XML schema code for the current schema

■ From the Tools menu, choose Validate XML Schema.

Or:

Choose the following toolbar button:

All errors are reported in the output panel.

53Tamino Schema Editor

Managing Schemas in Tamino and in the File System

Defining and Saving Schemas

There are different ways for storing and updating a schema, depending on the location in which
it is (to be) stored. Different commands are used for this purpose (see below).

■ Defining and Updating a Schema in Tamino
■ Saving a Schema in the File System

Defining and Updating a Schema in Tamino

The Define Schema command is used for two purposes:

■ To define one or more newly created schemas to Tamino.
■ To update one or more existing Tamino schemas which you have modified.

Important: An existing Tamino schema is only overwritten with the new schema, if its doctype
declaration has the physical property Update access set to "true".

If you attempt to update a schema in such a way that existing instances would become invalid,
Tamino rejects the update operation.

To define or update one or more schemas in Tamino

1 From the Database menu, choose Define Schema.

Or:

Choose the following toolbar button:

2 The Define Group of Schemas dialog opens. This dialog allows you to select which of the
currently open schemas you wish to define or update.

Mark the checkbox of each schema that you wish to define or update.

If you are updating a schema that is already defined in Tamino, you can check that the previ-
ously stored document instances that conform to this schema are valid against the updated
schema. Do this by checking the box With instance validation.

3 Choose the Define button.

The Define Schema dialog box appears.

Tamino Schema Editor54

Managing Schemas in Tamino and in the File System

If this is the first time you are connecting to a server, the list box is empty. In this case, you
have to proceed as described underConnecting to Tamino. This section also provides inform-
ation on the buttons that are located next to the Look in drop-down list box.

4 Choose the required server.

The databases on this server are now shown.

5 Select the database in which you want to define or update the schema or schemas.

6 Choose the Define button.

If the database is not yet connected, the Connect dialog box appears and you must proceed
as described under Connecting to Tamino.

If you are updating a schema or schemas, a dialog box appears, asking whether you want to
update the existing schema or schemas. To update, choose the Yes button.

Successful definition or update of the schema or schemas is reported with a message in the
output panel.

If a schema is invalid, any errors in the schema are listed in the output panel. In this case, the
schema is not defined/updated in Tamino.

While the schema is defined to Tamino, it is possible to cancel the define process and stop processing
of the schema. Choose the Cancel button to stop schema definition. A message is displayed, con-
firming the action.

55Tamino Schema Editor

Managing Schemas in Tamino and in the File System

Saving a Schema in the File System

You can save a schema from the Tamino Schema Editor to your file system.

To save the current schema in the file system (under a new name)

1 From the File menu, choose Save As.

The Save As dialog box appears.

2 Browse to the drive and folder in which the schema is to be saved and specify a file name.

3 Select the file type with which the schema is to be saved.

For a Tamino schema, the file type is "tsd".

4 Select the encoding with which the schema is to be saved.

The encoding is written to the XML declaration of the schema file. The default encoding is
UTF-8.

Note: The Encoding drop-down list box is editable.

5 Choose the Save button.

The schema is written to the file system.

To save the modifications to the current schema

This command is only available if the schema has previously been saved in the file system.

■ From the File menu, choose Save.

Or:

Press CTRL+S.

Or:

Choose the following toolbar button:

The modifications are written to the existing file in the file system.

Tamino Schema Editor56

Managing Schemas in Tamino and in the File System

Getting and Opening Schemas

There are different ways for loading a schema into the Tamino Schema Editor, depending on the
location in which it is stored. Different commands are used for this purpose (see below).

The following topics are covered below:

■ Getting a Schema that is Stored in Tamino
■ Opening a Schema that is Stored the File System

Getting a Schema that is Stored in Tamino

You can load an existing Tamino schema into the Tamino Schema Editor.

To get an existing schema from Tamino

1 From the Database menu, choose Get Schema.

Or:

Choose the following toolbar button:

The Get Schema dialog box appears.

If this is the first time you are connecting to a server, the list box is empty. In this case, you
have to proceed as described underConnecting to Tamino. This section also provides inform-
ation on the buttons that are located next to the Look in drop-down list box.

2 Choose the required server.

The databases on this server are now shown.

3 Choose the database from which you want to get the schema.

If the database is not yet connected, the Connect dialog box appears and you must proceed
as described under Connecting to Tamino.

When the connection to the database has been established, all collections of this database are
shown in theGet Schemadialog box. If the list of collections is not visible, expand the database
structure by, for example, double-clicking on the name of the database.

4 Choose the collection containing the required schema.

The schemas in this collection are now shown.

57Tamino Schema Editor

Managing Schemas in Tamino and in the File System

5 Select the required schema.

6 Choose the Get button.

Successful loading of the schema is reported with a message in the output panel.

Opening a Schema that is Stored the File System

You can open and modify a schema file that is stored in your file system. When you open a schema,
it is always shown in a view which is able to display the whole schema. See also: Switching to
Another View. In the dialog for opening a schema, you can choose to open several schemas at the
same time.

The most recently opened files are always listed at the bottom of the File menu. Instead of using
theOpen command, you can open one of these recent files directly by choosing the corresponding
item from the list.

To open one or more existing schemas from the file system

1 From the File menu, choose Open.

Or:

Press CTRL+O.

Or:

Choose the following toolbar button:

When the modifications to the current schema have not yet been modified, a dialog box ap-
pears, asking whether you want to save the currently displayed schema. To save the schema,
choose the Yes button.

The Open dialog box appears.

2 Browse to the drive and folder containing the required schema or schemas.

Select the schema you wish to open. You can also select multiple schemas.

3 Choose the Open button.

To open one of the most recently opened files

■ From the bottom of the File menu, choose the item which reflects the path to the desired file.

Tamino Schema Editor58

Managing Schemas in Tamino and in the File System

When the modifications to the current schema have not yet been modified, a dialog box ap-
pears, asking whether you want to save the currently displayed schema. To save the schema,
choose the Yes button.

59Tamino Schema Editor

Managing Schemas in Tamino and in the File System

Undefining a Schema

When you undefine a schema, it is deleted from the Tamino database in which is has been defined.
All instances related to the schema are also removed. A new schema with the same name can then
be defined in Tamino.

The Undefine Schema command does not automatically undefine the schema that is currently
shown in the schema editor. You first have to select the schema to be undefined from a dialog box.
This may be the schema that is currently displayed. But it can also be any other schema.

To undefine a schema in Tamino

1 From theDatabasemenu, chooseUndefineSchema. The submenu items ofUndefineSchema
allow you to choose between undefining a single schema and undefining multiple schemas.

The remainder of this description covers the case of undefining a single schema; the dialog
for undefining multiple schemas follows the same principle.

If this is the first time you are connecting to a server, the list box for the Undefine Schema
dialog is empty. In this case, you have to proceed as described under Connecting to Tamino.
This section also provides information on the buttons that are located next to the Look in
drop-down list box.

2 Choose the required server.

The databases on this server are now shown.

3 Choose the required database.

If the database is not yet connected, the Connect dialog box appears and you must proceed
as described under Connecting to Tamino.

When the connection to the database has been established, all collections of this database are
shown in the Undefine Schema dialog box.

4 Choose the required collection.

All schemas in this collection are now shown.

5 Select the schema that is to be undefined.

6 Choose the Undefine button.

You are now asked whether you really want to undefine the schema and thus remove all related
instances.

7 Choose the Yes button to undefine the schema.

Successful undefine of the schema is reported with a message in the output panel.

Tamino Schema Editor60

Managing Schemas in Tamino and in the File System

6 Importing DTDs and TSD2 Schemas

■ Importing a DTD .. 62
■ Importing a TSD2 Schema .. 63

61

This chapter covers the following topics:

Importing a DTD

You can import a DTD and thus convert it to a Tamino schema.

The imported DTD is written to the schema which is currently shown in the Tamino Schema Ed-
itor. This may be either an existing schema or an empty schema that you have just created using
the New command. In the latter case, the DTD name is automatically used as the schema name.

Since a Tamino schema can contain several doctypes, you can read multiple DTDs into the same
schema.

A DTD file, patient.dtd, is provided for testing purposes. See Examples, The Patient Database in the
Tamino XML Server documentation for further information.

Note: The DTD-to-TSD conversion can also be run using a command line tool. SeeCommand
Line Tools for Schema Conversions.

To import a DTD

1 Make sure that the required schema (either an empty schema or an existing schema) is shown
in the Tamino Schema Editor.

2 From the File menu, choose Import DTD.

The Import DTD dialog box appears.

3 Browse to the drive and folder containing the required DTD and select the DTD.

4 Choose the Import button.

The DTD is imported and shown in the schema tree. If the DTD is imported into an existing
schema, it is inserted at the end of the schema tree.

The converter scans the DTD, declares the DTD elements globally, and then builds the schema
structure, generating references to the global elements.

To inspect the new schema, you can switch to code view. You will see that the converter has
generated a skeleton schema that conforms to the XML Schema (logical properties) below the
doctype declaration, that is, without any physical properties.

If an element cannot be converted (for example, an entity), the converter writes a comment
into the code.

Tamino Schema Editor62

Importing DTDs and TSD2 Schemas

Caution: If you wish instances of the new Tamino schema to conform to the original
DTD, you should not change any of the logical properties name, Minimum occurrence,
Maximum occurrence or Mixed content.

5 Select the nodes that you want to map to the Tamino schema and define their physical prop-
erties.

For a description of all available properties, see Properties Explained.

Tip: When an element declaration or element reference is selected in the schema tree,
you can use the following commands from the Edit menu: Go to Declaration and Go
to Reference.

6 Declare the Tamino doctype. To do so, select the schema node and from the Insert menu,
choose doctype.

A new doctype with the name "NEW_doctype" is now shown in the tree.

7 Specify a name for the new doctype. It must be the same name as that of the top-level DTD
element.

8 Define/update the current schema in Tamino and/or save it in your file system.

See Defining and Saving Schemas.

Importing a TSD2 Schema

You can import a TSD2 schema and thus convert it to the schema definition language which is
supported by the current version of Tamino. See also Migration Guide in the Tamino XML Server
documentation.

The imported TSD2 schema is written to the schema which is currently shown in the Tamino
Schema Editor. This may be either an existing schema or an empty schema that you have just
created using the New command.

Note: The DTD-to-TSD conversion can also be run using a command line tool. SeeCommand
Line Tools for Schema Conversions.

To import a TSD2 schema

1 Make sure that the required schema (either an empty schema or an existing schema) is shown
in the Tamino Schema Editor.

2 From the File menu, choose Import TSD2 Schema.

63Tamino Schema Editor

Importing DTDs and TSD2 Schemas

The Import TSD2 Schema dialog box appears.

3 Browse to the drive and folder containing the required TSD2 schema and select the schema.

Note: TSD2 schema files have the extension "xml".

4 Select the encoding with which the imported schema is to be saved.

The encoding is written to the XML declaration of the schema file. The default encoding is
"platform".

Note: The Encoding drop-down list box is editable.

5 Select the conversion mode: loose or strict.

Use the default mode (loose) unless you know for sure that your instances will validate against
the Tamino schema generated in strict mode. In other words, if the TSD2 schema originates
from a DTD and the instances validate against that DTD, convert using strict mode. In all
other cases, use loose mode.

6 Choose the Import button.

The TSD2 schema is imported and shown in the schema tree. If the TSD2 schema is imported
into an existing schema, it is inserted at the end of the schema tree.

7 Define/update the current schema in Tamino and/or save it in your file system.

See Defining and Saving Schemas.

Tamino Schema Editor64

Importing DTDs and TSD2 Schemas

7 Importing Adabas

You can import Adabas files and thus convert them to a Tamino schema or schema sub-tree. The
Adabas Wizard helps you in mapping Adabas data to a Tamino schema.

The imported Adabas file meta-data is embedded in the schema which is currently shown in the
Tamino Schema Editor. This may be an existing schema or an empty schema that you have just
created using the New command.

Important: The Adabas database needs to be active, and the Entire Network server must be
started. For detailed information about Tamino configuration to access Adabas, see the
chapter X-Node Access to Adabas in X-Node: Mapping to External Databases of the Tamino
Server documentation.

To import Adabas meta-data using the Adabas Wizard

1 Make sure that the required schema (either an empty schema or an existing schema) is shown
in the Tamino Schema Editor.

2 If you want to import Adabas data into an existing schema, select the element below which
the Adabas data is to be inserted.

3 From the Tools menu, choose Import from Adabas.

This command is only available, if the current selection in the tree allows the insertion of
Adabas meta-data.

The dialog for the Adabas Wizard is displayed.

4 To import data directly from an Adabas database, enter the database identification and the
number of the file in the appropriate text box. If you want to import from a corresponding
Natural DDM File, additionally enter the file name in the Natural DDM File text box. The
Natural file must reside on your computer. You can also select the Natural DDM File from
the file chooser dialog box.

5 Choose the Next button.

65

The next dialog of the Adabas Wizard appears, providing the Adabas columns for generating
the tree in the Schema Editor. If you have not entered a Natural DDM file name, only the
short names of the Adabas fields are displayed as column names.

If you have entered a Natural DDM file name, the full column names appear.

6 Select the check box for each column that you want to use for generating the sub-tree.

You can also use the Select All or Deselect All button.

7 Choose the Finish button.

The schema is generated.

You can now view the properties of the schema and of each node. In the Physical Properties pane,
for example, you can see that the storage type is XML and that a pure X-Node mapping has been
performed. For a description of all available properties, see Properties Explained.

Tamino Schema Editor66

Importing Adabas

8 Editing a Schema

■ Inserting an Element in the Schema Tree ... 68
■ Editing Properties .. 70
■ Using the Property Editor .. 70
■ Namespaces .. 71
■ Server Extensions ... 71
■ Documenting a Schema ... 72
■ Specifying the Occurrence Constraints .. 73
■ Declaring an Element as Optional, Required or Prohibited ... 74
■ Displaying the Declaration for a Reference ... 75
■ Displaying the Next Reference ... 75
■ Moving an Element Up and Down in the Schema Tree .. 77
■ Cutting, Copying and Pasting Information ... 78
■ Using Drag-and-Drop ... 81
■ Copying the Path to the Clipboard .. 83
■ Deleting Information ... 84
■ Renaming an Item in the Schema Tree .. 84
■ Finding and Replacing Information .. 86
■ Finding the Next or Previous Occurrence ... 90
■ Undoing and Redoing the Previous Action .. 91
■ Defining the Options .. 92
■ Browsing for a Schema Location .. 93
■ Opening a Referenced Schema in a New Window ... 94
■ Loading and Unloading the Elements from an External Schema .. 95

67

When a schema has been loaded into the Tamino Schema Editor, you can modify it. For example,
you can select a node in the schema tree and then change the properties of the selected node. Or
you can invoke a context menu for the selected node and then choose the desired command.

This chapter covers the following topics:

Inserting an Element in the Schema Tree

You can use the commands from the Insert menu to insert structures for the logical properties of
a schema. The commands vary, depending on the current selection in the schema tree. For example,
for attribute declarations, only annotations can be inserted.

The Insert menu is not available in code view.

The Tamino Schema Editor displays the Tamino schema in such a way that the nodes of the tree
coincide with the elements or attributes of the instance as much as possible. For this reason, there
may be nodes which correspond to individual schema constructs as well as nodes that do not.
These nodes are either composed of several schema constructs, or are determined by an attribute
of a schema construct. Examples:

■ Types and elements are compound nodes where one property determines the construct that is
to be generated. Thus, a simple type can be defined using a restriction, list or union.

■ The definition of a group results either in a group or group reference, depending on the setting
of the Reference property.

When you load a schema into the Tamino Schema Editor or when you switch from code view to
tree view, the Tamino Schema Editor determines each type of node on the basis of the schema
constructs. It may happen that the type of an element cannot be determined and that the type
"element unknown" is therefore used. This occurs when a type is referenced using the Datatype
property and the Tamino Schema Editor does not recognize the declaration for this type. In this
case, the Tamino Schema Editor cannot determine whether a simple element, an element with at-
tributes or a complex element is referenced.

To insert an element in the schema tree

1 If code view is currently active, switch to one of the tree views.

2 In the schema tree, select the element below which you want to insert a new element.

3 From the Insert menu, choose the command which corresponds to the desired schema con-
struct.

For a description of all available commands and corresponding schema constructs, see Schema
Tree Items Explained.

4 Specify all required properties for the element you have just inserted.

Tamino Schema Editor68

Editing a Schema

For a description of all available properties, see Properties Explained.

69Tamino Schema Editor

Editing a Schema

Editing Properties

When you edit the logical and physical properties of a schema construct, different types of input
fields are available in the Value column:

■ Simple text box in which you enter text.
■ Drop-down list box from which you select one of the allowed values. The drop-down arrow is

only visible after the input field has been selected.
■ A button for invoking a property editor in which you specify the required information (see be-

low). The button is only visible after the input field has been selected.

Using the Property Editor

Some properties are specified using a property editor (for example, the logical property Enumeration
which can be found in the Facets group tree).

Note: Different types of property editor are available. See below.

To invoke the property editor

1 Select the input field in the Value column.

2 If provided, choose the following button:

The Property Editor dialog box appears. For the Enumeration property, it looks as follows:

The following buttons are provided:

Tamino Schema Editor70

Editing a Schema

Add a new item.

Delete the selected item.

3 Add/delete all required items.

4 Choose the OK button.

The dialog box is closed and the information you have specified is shown in theValue column.

Namespaces

A property editor is provided for the logical property namespaces. This property is available for
schemas and doctypes. For information on how to invoke a property editor and how to add items,
see Using the Property Editor.

When you add a namespace, you have to specify a prefix and an URI. If a namespace is to be used
as the target namespace, make sure that the corresponding option button in the Target column
for the namespace is selected. It is only possible to use one or no target namespace.

Server Extensions

A property editor is provided for:

■ the logical properties in the triggers (see Logical Properties for XML Elements), and
■ the physical properties of the storage type Map XTension (see Properties for SXS Mapping).

For information on how to invoke a property editor, see Using the Property Editor.

To select a server extension

1 If this is the first time you are connecting to a server, the list box which usually contains a list
of servers is empty. In this case, you have to proceed as described underConnecting to Tamino.
This section also provides information on the buttons that are located next to the Look in
drop-down list box.

2 Choose the required server.

The databases on this server are now shown.

3 Choose the database on which the required server extension has been installed.

The server extensions are now shown.

4 Select the server extension.

71Tamino Schema Editor

Editing a Schema

5 Choose the OK button.

The name of the server extension is now shown in the Value column.

Documenting a Schema

You can document a schema by inserting annotations at any level within the schema. Within an
annotation, the documentation element is used to provide the documentation text. The document-
ation text is added using a property editor.

To add annotation and documentation elements

1 In the schema tree, select the node to which you want to add documentation.

2 From the Insert menu, choose Annotation.

This inserts an annotation as a child of the selected node. You can optionally assign an id
value to it.

3 In the schema tree, select the annotation element.

4 From the Insert menu, choose Documentation.

This inserts a documentation element as a child of the annotation. The documentation element
is automatically selected and its logical properties are shown.

5 In the logical properties, select the Value column for the property Documentation text.

6 Choose the following button.

The Property Editor dialog box appears.

7 Enter your annotation text.

To start text on a new line, simply press ENTER.

Using the commands from the Edit menu, you can cut, copy, paste, find and replace text.
Further information on these features is provided later in this section.

8 Choose the OK button.

The dialog box is closed and the information you have specified is shown in theValue column.

Tamino Schema Editor72

Editing a Schema

Specifying the Occurrence Constraints

You can define occurrence constraints for an element.

Exception: occurrence constraints cannot be defined for top-level elements.

In the schema tree, one of the following characters may appear to the right of an icon. These
characters indicate the occurrence constraints.

ValuesDescriptionCharacter
Maximum occurrenceMinimum

occurrence

10Optional. Can only occur once.?

11Must occur exactly once.1

unbounded0Optional. Can be any number.*

unbounded1Must occur at least once. Can be any number.+

mnFixed values for Minimum occurrence and Maximum
occurrence.

n

See the XML Schema Part 0: Primer, section 2.2.1 at http://www.w3.org/TR/xmlschema-0/#Occur-
renceConstraints for more information on occurrence constraints.

To specify the occurrence constraints

1 In the schema tree, select the element for which you want to specify the occurrence constraints.

2 In the pane displaying the logical properties, select the value for the property Minimum
occurrence or Maximum occurrence and select the required value from the drop-down list
box.

In the schema tree, a character indicating the new constraints is now shown next to the corres-
ponding icon.

73Tamino Schema Editor

Editing a Schema

http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints

Declaring an Element as Optional, Required or Prohibited

Elements can be declared as optional, required or prohibited.

Exception: top-level elements cannot be declared as optional, required or prohibited.

In the schema tree, one of the following characters may appear to the right of an icon:

ValueCharacter

Optional?

Required1

Prohibited0

See the XML Schema Part 0: Primer, section 2.2.1 at http://www.w3.org/TR/xmlschema-0/#Occur-
renceConstraints for more information.

To declare an element as optional, required or prohibited

1 In the schema tree, select the desired element.

2 In the pane displaying the logical properties, select the value for the property use and select
the required value from the drop-down list box.

In the schema tree, one of the above characters is now shown next to the corresponding icon.

Tamino Schema Editor74

Editing a Schema

http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints

Displaying the Declaration for a Reference

You can immediately jump to the declaration for the selected reference.

Note: This feature is not available in code view.

To display the declaration for a reference

1 In the schema tree, select the desired reference.

2 From the Edit menu, choose Go to Declaration.

Or:

Press CTRL+ALT+PAGE-UP.

Or:

Choose the following toolbar button:

The declaration is now selected in the schema tree.

Displaying the Next Reference

You can immediately jump to the next reference for the selected declaration, or to the next reference
that matches the selected reference.

Note: This feature is not available in code view.

To display the next reference

1 In the schema tree, select either a declaration or reference.

2 From the Edit menu, choose Go to Next Reference.

Or:

Press CTRL+ALT+PAGE-DOWN.

Or:

Choose the following toolbar button:

75Tamino Schema Editor

Editing a Schema

The next reference is now selected in the schema tree.

Tamino Schema Editor76

Editing a Schema

Moving an Element Up and Down in the Schema Tree

You can change the sequence of elements in the schema tree. You can move an element up or
down, including all of its child nodes, within the allowed hierarchy in the schema.

Note: This feature is not available in code view.

To move up the selected element

■ From the Edit menu, choose Move Up.

Or:

Press CTRL+ALT+UP-ARROW.

Or:

Choose the following toolbar button:

To move down the selected element

■ From the Edit menu, choose Move Down.

Or:

Press CTRL+ALT+DOWN-ARROW.

Or:

Choose the following toolbar button:

77Tamino Schema Editor

Editing a Schema

Cutting, Copying and Pasting Information

You can cut, copy and paste the following:

■ A node in the schema tree, including all child nodes. A node is treated as a fragmental XML
document.

■ A logical or physical property value where direct text input is possible (for example, a name or
ID).

■ Text in code view or in a property editor.

Caution: This feature uses the Windows clipboard which may also contain information from
another application. Due to performance reasons, the information from the clipboard is not
parsed. Watch the output panel for messages concerning your last action. When you cut
information and paste it at a position in the tree where it is not allowed, this information
will be lost. A message will be shown in the output panel. The drag-and-drop feature, which
is described below, provides more intelligent support for copying and moving information.

It is also possible to copy an entire message line from the output panel, for example, to another
application.

Note: The cut-and-paste feature cannot be used to change the sequence of the nodes within
the schema tree. If you want to change the sequence, see Moving an Element Up and Down
in the Schema Tree.

To cut the selection and transfer it to the clipboard

■ From the Edit menu, choose Cut.

Or:

Press CTRL+X.

Or:

Choose the following toolbar button:

The selection is deleted at its original position and is copied to the clipboard.

Tamino Schema Editor78

Editing a Schema

To copy the selection to the clipboard

■ From the Edit menu, choose Copy.

Or:

Press CTRL+C.

Or:

Choose the following toolbar button:

The selection remains at its original position and is copied to the clipboard.

To paste the content of the clipboard

1 In tree view, select the node below which you want to paste the information from the clipboard.

In tree view, it is only possible to paste information at a position which syntactically fits into
the schema definition.

Or:

In the logical or physical properties, select the value field to which you want to paste the
previously cut or copied information. If required, move the insertion point to the required
position.

Or:

In code view, place the insertion point at the position at which you want to paste the previously
cut or copied information.

2 From the Edit menu, choose Paste.

Or:

Press CTRL+V.

Or:

Choose the following toolbar button:

79Tamino Schema Editor

Editing a Schema

In tree view, the Tamino Schema Editor tries to insert the previously cut or copied node below
the selected node. If single nodes cannot be inserted (because they are not allowed at this
point of the schema or because the Tamino Schema Editor cannot handle them), they will be
lost and a warning will be written to the output panel.

In the logical or physical properties, the previously cut or copied information is inserted in
the selected value field.

In code view, the previously cut or copied information is inserted at the insertion point. There
is no immediate validity check. However, any errors are reported in the output panel when
you try to switch to one of the code views.

Tamino Schema Editor80

Editing a Schema

Using Drag-and-Drop

You can copy or move information in the schema tree using drag-and-drop. Since drag-and-drop
can only be used within the schema tree, the origin of a node to be pasted is known and can be
parsed prior to insertion. Thus, it is only possible to drop a node at a position in the tree where it
is allowed. As long as you are dragging a node, the mouse pointer always indicates whether a
node can be dropped or not.

Caution: Only the child nodes on the first level are parsed. When the first level is allowed
at a position in the schema tree, the node can be dropped. However, if there are further
child nodes on the second level or lower which cannot be inserted at that position (because
they are not allowed at this point of the schema or because the Tamino Schema Editor cannot
handle them), they will be lost and a warning will be written to the output panel. You can
undo the drag-and-drop action immediately. SeeUndoing andRedoing the PreviousAction.

As long as you are dragging a node, you can use the following features:

■ Place the mouse pointer briefly over a node which is preceded by a plus sign. This expands the
node so that you can examine its contents.

■ Place the mouse pointer briefly over the upper or lower border of the pane containing the schema
tree. This scrolls the top or bottom of the schema tree into view.

Note: The drag-and-drop feature cannot be used to change the sequence of the nodes
within the schema tree. If you want to change the sequence, seeMoving an Element Up and
Down in the Schema Tree.

To copy a node to another position in the tree

1 In tree view, click the node to be copied and hold down the mouse button.

2 Hold down CTRL.

3 Drag the node to another position in the tree at which it can be dropped.

When the node can be dropped, the mouse pointer shows a rectangle containing a plus sign.

4 Release the mouse button and then CTRL.

The node is copied to the new position.

81Tamino Schema Editor

Editing a Schema

To move a node to another position in the tree

1 In tree view, click the node to be moved and hold down the mouse button. Do not press any
key.

2 Drag the node to another position in the tree at which it can be dropped.

When the node can be dropped, the mouse pointer shows an empty rectangle.

3 Release the mouse button.

The node is moved to the new position.

Tamino Schema Editor82

Editing a Schema

Copying the Path to the Clipboard

You can copy the path for the currently selected element or attribute to the clipboard. It is copied
as an XPath expression. This is helpful, for example, if you want to use the path in the physical
properties of a node that can be accessed via multiple paths (see Advanced Physical Properties),
or if you want to copy the path to another application.

The format of the path depends on the setting of the form property for the selected element or at-
tribute:

■ When the form property is set to "qualified", the prefix from the target namespace definition is
used.

Example for an element:

/myPrefix:Telephone/myPrefix:Lastname

Example for an attribute:

/myPrefix:Telephone/@myPrefix:EntryID

■ When the form property is set to "unqualified", a prefix is not used.

Example for an element:

/myPrefix:Telephone/Lastname

Example for an attribute:

/myPrefix:Telephone/@EntryID

■ When a value has not been defined for the form property, the value ("qualified" or "unqualified")
defined for one of the following schema properties is used:
■ elementFormDefault in the case of an element.
■ attributeFormDefault in the case of an attribute.

To copy the path to the clipboard

1 In tree view, select the desired element or attribute.

2 From the Edit menu, choose Copy Path.

The path is copied to the clipboard. You can now use the Paste command to insert the path
at the desired position.

83Tamino Schema Editor

Editing a Schema

Deleting Information

You can delete the following:

■ A node in the schema tree, including all child nodes.
■ Text in code view.

To delete the selection

■ From the Edit menu, choose Delete.

Or:

Press DEL.

Or:

Choose the following toolbar button:

The selection is deleted immediately. You are not asked to confirm the deletion.

However, when you delete a referenced element, group or attribute group in tree view, a
dialog box appears, asking whether you also want to delete the references to the deleted node.
When you choose the Yes button, you confirm the deletion.

When you delete a type, all schema elements using the deleted type are listed in the output
panel. Hyperlinks are provided. When you choose a hyperlink, the node which uses the deleted
type is selected in the schema tree. It is your responsibility to define an existing type.

Renaming an Item in the Schema Tree

You can rename elements, types, groups and attribute groups in the schema tree. When an item
cannot be renamed (for example, an element reference), the Rename command is not available.

To rename an element in the schema tree

1 Select the tree element that you want to rename.

2 From the Edit menu, choose Rename.

Or:

Tamino Schema Editor84

Editing a Schema

In the pane displaying the logical properties, select the value for the property name.

Or:

In the context menu of the selected tree element, choose Rename.

3 Specify the new name.

4 Press ENTER or click any other position in the application window.

When you rename an element, type, group or attribute group, a dialog box appears for each
node in the schema tree which uses the renamed item, and you are asked whether you want
to adapt the corresponding property for this node. When you choose the Yes button, the
property value is renamed.

85Tamino Schema Editor

Editing a Schema

Finding and Replacing Information

You can find and replace a node, property or string within the current schema.

To find information

1 In the schema tree, select the node that is to be the starting point for your search.

Or:

In code view, place the insertion point at the position that is to be the starting point for your
search.

2 From the Edit menu, choose Find.

Or:

Press CTRL+F.

Or:

Choose the following toolbar button:

The Find dialog box appears. The information that can be specified in the dialog box depends
on the view in which it has been invoked. The Find dialog box appears in tree view.

Tamino Schema Editor86

Editing a Schema

Note: When you invoke this dialog box in code view or from a property editor, the
drop-down list boxes Node and Property and the check box Match whole property
value are not shown.

3 Specify all required search criteria:

Node
Not available in code view.

This drop-down list box provides for selection all elements that may occur in a schema
(for example, a simple element or annotation).

Property
Not available in code view.

This drop-down list box provides for selection all properties that are valid for the selected
node (for example, a name or ID). For information concerning the possible entries, see
Properties Explained.

String
This drop-down list box provides for selection the search strings that you have previously
entered. You can also enter a new string.

Match case
When this check box is selected, the search is case-sensitive.

Match whole property value
Not available in code view.

When this check box is selected, the search is restricted to matching whole values only.
This is useful for searching for "a" or "A" without finding all words including "a".

Wrap around
When this check box is selected, the complete schema is searched, even if your starting
point for the search is in the middle of the schema.

Direction
Select the option button Up or Down to search the schema in the desired direction.

4 Choose the Find Next button.

If the specified information is found in tree view, the node containing this information is ex-
panded and the found element is selected.

If the specified information is found in code view, it is selected.

5 To find the next occurrence, choose the Find Next button once more.

Or:

87Tamino Schema Editor

Editing a Schema

Find the next or previous occurrence as described below; see Finding the Next or Previous
Occurrence.

6 To close the dialog box, choose the Close button.

To replace information

1 In the schema tree, select the node that is to be the starting point for your search.

Or:

In code view, place the insertion point at the position that is to be the starting point for your
search.

2 From the Edit menu, choose Replace.

Or:

Press CTRL+R.

The Replace dialog box appears. The information that can be specified in the dialog box de-
pends on the view in which it has been invoked. TheReplace dialog box appears in tree view.

This dialog box contains the same options as the Find dialog box. It contains an additional
drop-down list box in which you enter the replace string, and it contains additional command
buttons.

Tamino Schema Editor88

Editing a Schema

Note: When you invoke this dialog box in code view or from a property editor, the
drop-down list boxes Node and Property and the check box Match whole property
value are not shown.

3 Specify all required search criteria. See the above description of the Finddialog box for detailed
information.

4 Specify the string with which a found occurrence is to be replaced.

5 To replace all occurrences that match your search criteria at once, choose the Replace All
button.

If Wrap around has not been specified, only the occurrences between the current position
and the end or start of the schema (depending on the specified direction) are replaced.

Note: The Replace All button only replaces those occurrences that are allowed to be
replaced with the current replace string. Strings that have not been replaced are reported
in the output panel.

Or:

To replace one occurrence after the other, choose the Find Next button. This selects the next
occurrence and you can now choose the Replace button, or the Find Next button if you do
not want to replace the current occurrence.

Note: The FindNext button only finds those occurrences that are allowed to be replaced
with the current replace string.

6 To close the dialog box, choose the Close button.

89Tamino Schema Editor

Editing a Schema

Finding the Next or Previous Occurrence

The commands for finding the next or previous occurrence always use the information that has
previously been entered in the Find orReplacedialog box (see Finding andReplacing Information).
This is helpful, if these dialog boxes have been closed.

You can use these commands in both tree view and code view. If the occurrence is found in tree
view, the node containing this occurrence is expanded and the occurrence is selected. If the occur-
rence is found in code view, it is selected.

To find the next occurrence

■ From the Edit menu, choose Find Next.

Or:

Press F3.

To find the previous occurrence

■ From the Edit menu, choose Find Previous.

Or:

Press SHIFT+F3.

Tamino Schema Editor90

Editing a Schema

Undoing and Redoing the Previous Action

You can undo and redo your previous actions in the current view.

Caution: The undo/redo history is cleared when you switch to another view.

To undo the previous action

■ From the Edit menu, choose Undo.

Or:

Press CTRL+Z.

Or:

Choose the following toolbar button:

To redo the previous undo action

■ From the Edit menu, choose Redo.

Or:

Press CTRL+Y.

Or:

Choose the following toolbar button:

91Tamino Schema Editor

Editing a Schema

Defining the Options

You can define the options for external schemas.

To open the Options dialog, choose Tools > Options

HTTP Proxy Options
The address (host name and port number) for your proxy server has to be defined in the fol-
lowing cases:
■ When a referenced schema is to be opened in a new window via HTTP. See Opening a Ref-
erenced Schema in a NewWindow.

■ When elements from an external schema are to be loaded via HTTP. See Loading and Un-
loading the Elements from an External Schema.

File Extension
When you import an external schema, Tamino requires that the schema location is relative,
i.e. an extension must not be defined.

When a default file extension has been defined, an external schema for which a file extension
has not been defined is automatically opened or loaded from the file system using the default
file extension that has been defined in this dialog box.

Tamino Schema Editor92

Editing a Schema

Browsing for a Schema Location

When an Import, Include or Redefine node is available in the schema tree, you can define the disk
location where the appropriate schema component is located. A file system browser is available
for navigation to the required location. The location path is subsequently stored in the logical
property Schema location of the Import, Include or Redefine node.

To browse for a schema location

1 Select the Import, Include or Redefine node in the schema tree.

2 Select the logical property Schema location.

3 Position the cursor in the Value field next to Schema location.

To the right of the Value field, a browse button () appears.

4 Select the Browse button. The dialog box Browse for Base of Location is displayed.

5 Browse to the schema file and choose the Open button.

The value of the logical property Schema location is inserted into the Value field of the
Schema Editor.

93Tamino Schema Editor

Editing a Schema

Opening a Referenced Schema in a New Window

When an Import, Include or Redefine node is available in the schema tree and the logical property
Schema location has been specified, you can open the referenced schema in a new instance of
the Tamino Schema Editor.

Note: If you want to open the schema via HTTP, you have to define the address for your
proxy server. You can also define a default file extension to be used when opening a schema
from the file system. See Defining the Options.

When you modify one of the schemas, this has no effect on the other schema.

To open the referenced schema in a new instance of the Tamino Schema Editor

1 In the schema tree, select an Import, Include or Redefine node.

2 From the Tools menu, choose External Schema > Open.

Note: The command Open is only available, if a location has been specified with the
property Schema location.

A cascading menu with the following commands is available when a relative path has been
specified in the Schema location property:

■ From File System
■ From Database

When an absolute path to the file system or to a database has been specified, a cascading
menu with the above commands is not available. In this case, the referenced schema is opened
in the same way as the current schema: it is either loaded from the file system or from the
database.

Tamino Schema Editor94

Editing a Schema

Loading and Unloading the Elements from an External Schema

When an Import, Include or Redefine node is available in the schema tree and the logical property
Schema location has been specified, you can load the elements from the referenced external
schema into the internal model, in addition to the current schema. The global elements or types
of the external schema can then be selected from a drop-down list box in the logical properties
(properties Reference, Datatype, Base type, itemType and memberTypes).

The external schema itself is not visible in the Tamino Schema Editor.

The Tamino Schema Editor uses the global types information of the external schema to represent
the elements that use these types with the correct icon in the schema tree. In the case of <xs:element
type="userDefinedType"/> , the editor can thus decide whether to show the element as "Element
simple", "Element with attributes" or "Element complex". When an external schema has been
loaded, each "Element unknown" for which the type is defined in the external schema is shown
with the corresponding icon. When the external schema has been unloaded, these elements are
shown again as "Element unknown".

The Tamino Schema Editor does not automatically receive updates to the external schema. If you
want to work with the updated schema, you have to unload the schema and then load it once
more.

Note: If you want to load the elements from an external schema via HTTP, you have to
define the address for your proxy server. You can also define a default file extension to be
used when loading a schema from the file system. See Defining the Options.

To load the elements from an external schema

1 In the schema tree, select an Import, Include or Redefine node.

2 From the Tools menu, choose External Schema > Load.

Note: The command Load is only available, if a location has been specified with the
property Schema location.

A cascading menu with the following commands is available when a relative path has been
specified in the Schema location property:

■ From File System
■ From Database

When an absolute path to the file system or to a database has been specified, a cascading
menu with the above commands is not available. In this case, you can directly choose the
Load command.

95Tamino Schema Editor

Editing a Schema

An external schema can only be loaded when it does not contain any errors.

When the elements of the external schema have been loaded, a small triangle is shown to the
right of the icon for the Import, Include or Redefine node.

Tamino Schema Editor96

Editing a Schema

9 Transforming and Converting Schema Constructs

■ General Information ... 98
■ Using a Transformation Wizard .. 98
■ Making a Schema Construct Local or Global ... 100
■ Converting a Choice, Sequence or All .. 100
■ Converting an Element ... 101

97

This chapter covers the following topics:

General Information

The Tamino Schema Editor allows you to perform transformations that facilitate the schema design
process. See Making a Schema Construct Local or Global and Converting a Choice, Sequence or
All

Using a Transformation Wizard

You can transform a schema construct into another schema construct, using items from the menu
bar or using items from context menus.

The Transformation command in the Tools menu offers several transformation commands in a
cascading menu. The available transformation commands depend on the current selection in the
schema tree and on the current view.

When you select a transformation command, a wizard appears providing different dialogs. The
number of dialogs and the amount of information in these dialogs depends on the elements that
have been defined for the selected schema construct.

Tamino Schema Editor98

Transforming and Converting Schema Constructs

To use a transformation wizard

1 In the schema tree, select the schema construct that is to be transformed.

2 From the Tools menu, choose Transformation > transformation-command.

Descriptions of the transformation commands are provided later in this section.

A wizard appears, providing different dialogs.

Read the information in each dialog carefully. The wizard informs you about all items that
will be lost or that will not be adopted. Some dialogs require that you select one or more options
(for example, whether you want to copy the documentation/appinfo of a reference), or that
you enter additional information (for example, when an element with the same name exists
already or when you have to decide on a new parent for an annotation).

3 Use the Next button to proceed to the next dialog.

Or:

If no further dialogs are available, choose the Finish button to execute the transformation.

Note: You can undo each transformation immediately. SeeUndoing andRedoing the Previous
Action.

99Tamino Schema Editor

Transforming and Converting Schema Constructs

Making a Schema Construct Local or Global

The following transformation commands are provided in the Tools > Transformation menu:

Make Local
Replaces the selected reference with its declaration.

Extract Global Type
Moves the selected element or attribute to the top level of the schema. A reference is created
at the selected position.

If an element with the same name exists already at the top level of the schema, you have to
enter a new name for the element that is to be moved to the top level.

If the selected element has an annotation, you have to specify the new parent of the annotation.
This can either be a new global element (i.e. a declaration) or a new local element (i.e. a refer-
ence). It is also possible not to specify a new parent; in this case, the information will be lost.

Converting a Choice, Sequence or All

The following transformation commands are provided in the Tools > Transformation > Convert
To menu:

All
Converts the selected Choice or Sequence to All. Information may be lost. Therefore, a wizard
is used.

Choice
Converts the selected Sequence or All to a Choice. This is a simple conversion. Information is
not lost and therefore a wizard is not used.

Sequence
Converts the selected Choice or All to a Sequence. This is a simple conversion. Information is
not lost and therefore a wizard is not used.

Tamino Schema Editor100

Transforming and Converting Schema Constructs

Converting an Element

The following transformation commands are provided in the Tools > Transformation > Convert
To menu:

Attribute
Converts the selected element, that currently has no attributes, into an attribute.

Element with Attribute
Converts the selected element, that currently has no attributes, into an element with an attribute.

101Tamino Schema Editor

Transforming and Converting Schema Constructs

102

10 Schema Tree Items Explained

■ All ... 105
■ Annotation .. 105
■ Any ... 106
■ AnyAttribute .. 106
■ Appinfo .. 106
■ Attribute ... 107
■ AttributeGroup .. 109
■ AttributeGroup reference ... 109
■ Attribute info ... 109
■ Attribute reference ... 109
■ Choice ... 111
■ ComplexType .. 111
■ Doctype ... 112
■ Documentation .. 112
■ Element complex ... 112
■ Element info ... 114
■ Element reference ... 114
■ Element simple ... 114
■ Element unknown .. 116
■ Element with attributes ... 117
■ Group .. 118
■ Group reference .. 118
■ Import ... 118
■ Include .. 119
■ Key ... 119
■ Keyref ... 119
■ Notation ... 120
■ Redefine .. 120
■ Schema ... 120
■ Sequence .. 121
■ SimpleType .. 122
■ SimpleType with attributes ... 124

103

■ Tsd unique ... 125
■ Unique .. 125

Tamino Schema Editor104

Schema Tree Items Explained

This chapter describes all commands that can be chosen from the Insert menu:

Note: When not indicated otherwise, the commands are available in all views.

For the corresponding XML Schema constructs, references are made to the W3C site:

■ XML Schema Part 0: Primer at http://www.w3.org/TR/xmlschema-0/.
■ XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/.
■ XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/.

All

Groups elements within a complex element declaration.

Schema construct:

xs:all

The constraints are described in the XML Schema Part 0: Primer, section 2.7.

Annotation

Adds documentation or application-specific information to a declaration.

Schema construct:

xs:annotation

See XML Schema Part 0: Primer, section 2.6.

105Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/#groups
http://www.w3.org/TR/xmlschema-0/#CommVers

Any

Extends the current content model with well-formed XML, usually one or more elements belonging
to a different namespace.

Schema construct:

xs:any

See XML Schema Part 0: Primer, section 5.5.

AnyAttribute

Extends the current content model using an attribute belonging to a different namespace.

Schema construct:

xs:anyAttribute

See XML Schema Part 0: Primer, section 5.5.

Appinfo

Adds application-specific information to a declaration.

Schema construct:

xs:appinfo

See XML Schema Part 0: Primer, section 2.6.

Tamino Schema Editor106

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#any
http://www.w3.org/TR/xmlschema-0/#any
http://www.w3.org/TR/xmlschema-0/#CommVers

Attribute

Adds an attribute declaration to an element.

Different values can be defined for the property Variety:

Variety: type / restriction
■ When a facet has not been set:

Defines an attribute by referencing an existing simple type using the Datatype property.

Available if the simple type is a predefined type.

Only available if the simple type is a user-defined type.

Schema construct:

xs:attribute type="name"

See XML Schema Part 0: Primer, section 2.2.
■ When a facet has been set:

Defines an attribute by restricting an existing simple type which is referenced by the Datatype
property. This property is then mapped to the Base type attribute.

Available if the simple type is a predefined type.

Only available if the simple type is a user-defined type.

Schema construct:

xs:attribute xs:simpleType xs:restriction base ="name"

See XML Schema Part 0: Primer, section 2.2 and section 2.3.

Variety: restriction with local simpleType
Defines an attribute. The type is determined by the local simple type declaration.

Schema construct:

107Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#CreatDt

xs:attribute xs:simpleType xs:restriction

SeeXMLSchemaPart 0: Primer, section 2.2 andXMLSchemaPart 2: Datatypes, section 4.1.2.

Variety: list
Defines an attribute. The type of the attribute is a list type. The type of the list values is determ-
ined by the itemType property. The itemType property may reference other simple types.

Schema construct:

xs:attribute xs:simpleType xs:list itemType="name"

See XML Schema Part 0: Primer, section 2.2 and section 2.3.1.

Variety: list with local simpleType
Defines an attribute. The type of the attribute is a list type. The type of the list values is determ-
ined by the local simple type declaration.

Schema construct:

xs:attribute xs:simpleType xs:list

SeeXMLSchemaPart 0: Primer, section 2.2 andXMLSchemaPart 2: Datatypes, section 4.1.2.

Variety: union
Defines an attribute. Using a union, the type of the attribute is composed of other types. These
types are simple types which are referenced by the memberTypes property and/or are defined
using local simple type declarations.

Schema construct:

xs:attribute xs:simpleType xs:union memberTypes="name name1"

See XML Schema Part 0: Primer, section 2.2 and section 2.3.2.

Tamino Schema Editor108

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-2/#xr-defn
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#ListDt
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-2/#xr-defn
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#UnionDt

AttributeGroup

Groups all attribute declarations in a global attribute group.

Schema construct:

xs:attributeGroup

See XML Schema Part 0: Primer, section 2.8

AttributeGroup reference

Adds an attributeGroup declaration by referring to an existing attributeGroup.

Schema construct:

xs:attributeGroup ref="name"

Attribute info

Defines physical properties for an attribute. The attribute is addressed by the path in the Context
property.

Schema construct:

tsd:attributeInfo context = "path"

Attribute reference

Adds an attribute declaration by referring to an existing attribute.

Schema construct:

109Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#AttrGroups

xs:attribute ref="name"

See XML Schema Part 0: Primer, section 2.2.

Tamino Schema Editor110

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#DefnDeclars

Choice

Declares a choice of elements: only one element within the choice can appear in an instance.

Schema construct:

xs:choice

See XML Schema Part 0: Primer, section 2.7.

ComplexType

A complex type may contain other element and attribute declarations.

Different values can be defined for the property Derivation method:

Derivation: new
Declares a new global complex type.

Schema construct:

xs:complexType name="name"

See XML Schema Part 0: Primer, section 2.5 and section 2.7.

Derivation: extension
Defines a global complex type by extending an existing complex type which is referenced by
the Base type property.

Schema construct:

xs:complexType xs:complexContent xs:extension base="name"

See XML Schema Part 0: Primer, section 4.2.

Derivation: restriction
Defines a global complex type by restricting an existing complex type which is referenced by
the Base type property.

Schema construct:

111Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#groups
http://www.w3.org/TR/xmlschema-0/#typeContent
http://www.w3.org/TR/xmlschema-0/#groups
http://www.w3.org/TR/xmlschema-0/#DerivExt

xs:complexType xs:complexContent xs:restriction base="name"

See XML Schema Part 1: Structures, section 3.4.

Doctype

Specifies the doctype of the Tamino schema. One schema can contain multiple doctypes. The name
must be the same as a global element in the schema.

Schema construct:

tsd:doctype

Documentation

Adds documentation information to a declaration.

Schema construct:

xs:documentation

See XML Schema Part 0: Primer, section 2.6.

Element complex

A complex element may contain other element and attribute declarations.

Different values can be defined for the property Derivation method:

Derivation: new
Declares a new complex element.

Schema construct:

Tamino Schema Editor112

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions
http://www.w3.org/TR/xmlschema-0/#CommVers

xs:element xs:complexType

See XML Schema Part 0: Primer, section 2.5 and section 2.7.

Derivation: none
Declares a complex element by referencing an existing complex type.

Schema construct:

xs:element type="name"

See XML Schema Part 0: Primer, section 2.5.

Derivation: extension
Defines a complex element by extending an existing complex type which is referenced by the
Base type property.

Schema construct:

xs:element xs:complexType xs:complexContent xs:extension base ="name"

See XML Schema Part 0: Primer, section 4.2.

Derivation: restriction
Defines a complex element by restricting an existing complex type which is referenced by the
Base type property.

Schema construct:

xs:element xs:complexType xs:complexContent xs:restriction base ="name"

See XML Schema Part 1: Structures, section 3.4.

113Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#typeContent
http://www.w3.org/TR/xmlschema-0/#groups
http://www.w3.org/TR/xmlschema-0/#typeContent
http://www.w3.org/TR/xmlschema-0/#DerivExt
http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions

Element info

Defines physical properties for an element. The element is addressed by the path in the Context
property.

Schema construct:

tsd:elementInfo context = "path"

Element reference

Adds an element declaration by referring to an existing element.

Schema construct:

xs:element ref="name"

See XML Schema Part 0: Primer, section 2.2.

Element simple

Adds a simple element declaration.

Different values can be defined for the property Variety:

Variety: type / restriction
■ When a facet has not been set:

Defines an element by referencing an existing simple type using the Datatype property.

Available if the simple type is a predefined type.

Only available if the simple type is a user-defined type.

Schema construct:

Tamino Schema Editor114

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#DefnDeclars

xs:element type="name"

See XML Schema Part 0: Primer, section 2.2.
■ When a facet has been set:

Defines an element by restricting an existing simple type which is referenced by the Datatype
property. This property is then mapped to the Base type attribute.

Available if the simple type is a predefined type.

Only available if the simple type is a user-defined type.

Schema construct:

xs:element xs:simpleType xs:restriction base ="name"

See XML Schema Part 0: Primer, section 2.2 and section 2.3.

Variety: restriction with local simpleType
Defines an element. The type is determined by the local simple type declaration.

Schema construct:

xs:element xs:simpleType xs:restriction

SeeXMLSchemaPart 0: Primer, section 2.2 andXMLSchemaPart 2: Datatypes, section 4.1.2.

Variety: list
Defines an element. The type of the element is a list type. The type of the list values is determ-
ined by the itemType property. The itemType property may reference other simple types.

Schema construct:

xs:element xs:simpleType xs:list itemType="name"

See XML Schema Part 0: Primer, section 2.2 and section 2.3.1.

Variety: list with local simpleType
Defines an element. The type of the element is a list type. The type of the list values is determ-
ined by the local simple type declaration.

Schema construct:

115Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#CreatDt
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-2/#xr-defn
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#ListDt

xs:element xs:simpleType xs:list

SeeXMLSchemaPart 0: Primer, section 2.2 andXMLSchemaPart 2: Datatypes, section 4.1.2.

Variety: union
Defines an element. Using a union, the type of the element is composed of other types. These
types are simple types which are referenced by the memberTypes property and/or are defined
using local simple type declarations.

Schema construct:

xs:element xs:simpleType xs:union memberTypes="name name1"

See XML Schema Part 0: Primer, section 2.2 and section 2.3.2.

Element unknown

Adds an element declaration that references an existing type. This schema tree item is usually
chosen if a user-defined type is referenced and the type is not known to the Schema Editor. Thus,
the Schema Editor cannot determine whether the element is an element simple, element complex
or element with attributes. If the declaration of the type is loaded into the Schema Editor, the tree
item is updated.

Schema construct:

xs:element type = "name"

Tamino Schema Editor116

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-2/#xr-defn
http://www.w3.org/TR/xmlschema-0/#DefnDeclars
http://www.w3.org/TR/xmlschema-0/#UnionDt

Element with attributes

An element with attributes may not contain other elements, but may carry attributes and may
contain simple values.

Different values can be defined for the property Derivation method:

Derivation: none
Declares an element with attributes by referencing an existing element with attributes.

Schema construct:

xs:element type="name"

See XML Schema Part 0: Primer, section 2.5.

Derivation: extension
Defines an element with attributes by extending an existing simple type or simple type with
attributes which is referenced by the Base type property.

Schema construct:

xs:element xs:complexType xs:simpleContent xs:extension base="name"

See XML Schema Part 1: Structures, section 3.4.

Derivation: restriction
Defines an element with attributes by restricting an existing simple type with attributes or
complex type which is referenced by the Base typeproperty. When a complex type is restricted,
the type of the simple content must be determined by a local simple type declaration.

Schema construct:

xs:element xs:complexType xs:simpleContent xs:restriction base="name"

See XML Schema Part 1: Structures, section 3.4.

117Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#typeContent
http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions
http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions

Group

Groups element declarations in a global group.

Schema construct:

xs:group

See XML Schema Part 0: Primer, section 2.7.

Group reference

Adds a group declaration by referring to an existing group.

Schema construct:

xs:group ref="name"

See XML Schema Part 0: Primer, section 2.7.

Import

References another schema that has another target namespace. Enables the schema components
to be referenced by components of this schema.

Schema construct:

xs:import

See XML Schema Part 0: Primer, section 5.4.

Tamino Schema Editor118

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#groups
http://www.w3.org/TR/xmlschema-0/#groups
http://www.w3.org/TR/xmlschema-0/#import

Include

References another schema that has the same target namespace. Enables the schema components
to be used by components of this schema without modifications. Big schemas may be distributed
into several schema documents by this mechanism.

Schema construct:

xs:include

See XML Schema Part 0: Primer, section 4.1.

Key

Defines a key.

Schema construct:

xs:key xs:selector xs:field

See XML Schema Part 0: Primer, section 5.2.

Keyref

References a key.

Schema construct:

xs:keyref xs:selector xs:field

See XML Schema Part 0: Primer, section 5.2.

119Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#SchemaInMultDocs
http://www.w3.org/TR/xmlschema-0/#specifying%20Keys%26theirRefs
http://www.w3.org/TR/xmlschema-0/#specifying%20Keys%26theirRefs

Notation

Adds notation declarations to the schema.

Schema construct:

xs:notation

See XML Schema Part 1: Structures, section 3.12 on the W3C site.

Redefine

References another schema that has the same target namespace. Enables schema components to
be used by components of this schema with or without modifications. Groups and types of the
other schema may be modified by adding them with modifications below the Redefine node.

Schema construct:

xs:redefine

See XML Schema Part 0: Primer, section 4.5.

Schema

Schema root node. This node is always present and cannot be deleted. Therefore, a corresponding
command is not available in the Insert menu.

Schema construct:

xs:schema

See XML Schema Part1: Structures, section 3.15.

Tamino Schema Editor120

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-1/#cNotation_Declarations
http://www.w3.org/TR/xmlschema-0/#Redefine
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#Schemas

Sequence

Declares a sequence of elements: elements within a sequence group must appear in an instance
in that order.

Schema construct:

xs:sequence

See XML Schema Part 0: Primer, section 2.7.

121Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#groups

SimpleType

Adds a simple type declaration.

Different values can be defined for the property Variety:

Variety: restriction
Defines a simple type by restricting an existing simple type which is referenced by the Base
type attribute.

Available if the simple type is a predefined type.

Only available if the simple type is a user-defined type.

Schema construct:

xs:simpleType xs:restriction base ="name"

See XML Schema Part 0: Primer, section 2.3.

Variety: restriction with local simpleType
Defines a simple type. The type is determined by the local simple type declaration.

Schema construct:

xs:simpleType xs:restriction

See XML Schema Part 2: Datatypes, section 4.1.2.

Variety: list
Defines a simple type. The type is a list type. The type of the list values is determined by the
itemType property. The itemType property may reference other simple types.

Schema construct:

xs:simpleType xs:list itemType="name"

See XML Schema Part 0: Primer, section 2.3.1.

Variety: list with local simpleType
Defines a simple type. The type is a list type. The type of the list values is determined by the
local simple type declaration.

Schema construct:

Tamino Schema Editor122

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#CreatDt
http://www.w3.org/TR/xmlschema-2/#xr-defn
http://www.w3.org/TR/xmlschema-0/#ListDt

xs:simpleType xs:list

See XML Schema Part 2: Datatypes, section 4.1.2.

Variety: union
Defines a simple type. Using a union, the type is composed of other types. These types are
simple types which are referenced by the memberTypes property and/or are defined using
local simple type declarations.

Schema construct:

xs:simpleType xs:union memberTypes="name name1"

See XML Schema Part 0: Primer, section 2.3.2.

123Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-2/#xr-defn
http://www.w3.org/TR/xmlschema-0/#UnionDt

SimpleType with attributes

A simple type with attributes may contain other element and attribute declarations.

Different values can be defined for the property derivation:

Derivation: extension
Defines a simple type with attributes by extending an existing simple type or simple type with
attributes which is referenced by the Base type property.

Schema construct:

xs:complexType xs:simpleContent xs:extension base="name"

See XML Schema Part 1: Structures, section 3.4.

Derivation: restriction
Defines a simple type with attributes by restricting an existing simple type with attributes or
complex type which is referenced by the Base typeproperty. When a complex type is restricted,
the type of the simple content must be determined by a local simple type declaration.

Schema construct:

xs:complexType xs:simpleContent xs:restriction base="name"

See XML Schema Part 1: Structures, section 3.4.

Tamino Schema Editor124

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions
http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions

Tsd unique

Occurs below tsd:doctype. Defines a uniqueness constraint over all instances of the doctype
where the key is defined.

Schema construct:

tsd:unique

For more information on defining unique keys, see Physical Schema for Elements and Attributes in
the Tamino XML Schema User Guide (located in the Tamino XML Server documentation).

Unique

Defines a uniqueness constraint over different parts of the same instance.

Schema construct:

xs:unique xs:selector xs:field

See XML Schema Part 0: Primer, section 5.1.

125Tamino Schema Editor

Schema Tree Items Explained

http://www.w3.org/TR/xmlschema-0/#specifyingUniqueness

126

11 Properties Explained

■ Schema Properties .. 129
■ Tamino Doctype Properties .. 131
■ Logical Properties for XML Elements ... 137
■ Physical Properties for the Different Storage Types .. 143
■ Advanced Physical Properties .. 151

127

This chapter describes the properties that can be defined in a Tamino schema. It covers the following
topics:

Note: When not indicated otherwise, the properties are available in all views.

Tamino Schema Editor128

Properties Explained

Schema Properties

A schema has only logical properties.

Logical constructs are described in detail in the XML Schema Part 0: Primer on the W3C site ht-
tp://www.w3.org/TR/xmlschema-0/.

Short DescriptionSchema Language SyntaxSchema Editor
Property

Name of the schema.<tsd:schemaInfo name = "name">Schema name

Name of the Tamino collection to which the
schema is to belong. If the collection does not
exist, it is created.

<tsd:collection name = "name">Collection name

The Tamino Schema Editor provides a property
editor that allows you to specify namespace

<xs:schema xmlns:prefix1 =
"namespace1" xmlns:prefix2 =

Namespaces

declarations, including the target namespace
declaration. See Namespaces.

"namespace2" targetNamespace =
"namespace2">

The Tamino Schema Editor moves all namespace
declarations to the schema node and manages
them there.

For namespaces, see W3C's Namespaces in XML
recommendation at
http://www.w3.org/TR/REC-xml-names/.

For target namespace, see XML Schema Part 0:
Primer, section 3.1.

Displays the target namespace (read only). This
can be changed between the defined namespaces.

Target
namespace

Specifies whether attributes in instances of the
schema must be qualified with a namespace
prefix. Default is "unqualified".

<xs:schema attributeFormDefault =
"unqualified|qualified"...>

Attribute form
default

See XML Schema Part 0: Primer, section 3.1.

Specifies whether elements in instances of the
schema must be qualified with a namespace
prefix. Default is "unqualified".

<xs:schema elementFormDefault =
"unqualified|qualified"...>

Element form
default

See XML Schema Part 0: Primer, section 3.1.

Determines the default behavior in the case of
derivation.

<xs:schema finalDefault="#all | List
of (extension | restriction)">

Final default
attribute

See XML Schema Part 0: Primer, section 4.8.

129Tamino Schema Editor

Properties Explained

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xmlschema-0/#UnqualLocals
http://www.w3.org/TR/xmlschema-0/#UnqualLocals
http://www.w3.org/TR/xmlschema-0/#UnqualLocals
http://www.w3.org/TR/xmlschema-0/#UnqualLocals
http://www.w3.org/TR/xmlschema-0/#restrictingTypeDerivs

Short DescriptionSchema Language SyntaxSchema Editor
Property

Version of the schema.<xs:schema version = "version">XML Schema
version

Language identification.<xs:schema xml:lang = "en">Language
identification

See W3C's XML recommendation at
http://www.w3.org/TR/REC-xml/#sec-lang-tag.

Unique identifier for the schema element within
the schema XML document.

id="id"ID

See W3C's XML recommendation at
http://www.w3.org/TR/REC-xml/#id.

Open the group tree to display the following
properties.

Tamino schema
information

Version of the schema. Value provided by the
Tamino Server (read-only).

<tsd:version>version</tsd:version>Version

Creation date of the schema. Value provided by
the Tamino Server (read-only).

<tsd:created>created</tsd:created>Created

Date the schema was last saved. Value provided
by the Tamino Server (read-only).

<tsd:modified>modified</tsd:modified>Modified

Version of the Tamino Server. Value provided
by the Tamino Server (read-only).

<tsd:server>server</tsd:server>Server

The following example shows the generated code for a schema named "patientschema" in the
Tamino collection "hospital". Element and attribute form are unqualified.

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:xs = "http://www.w3.org/2001/XMLSchema"
 xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition">
 <xs:annotation>
 <xs:documentation>Schema modelling a hospital patient's record.</xs:documentation>
 <xs:appinfo>
 <tsd:schemaInfo name = "patientschema">

<tsd:collection name = "hospital">
....
....

Tamino Schema Editor130

Properties Explained

http://www.w3.org/TR/REC-xml/#sec-lang-tag
http://www.w3.org/TR/REC-xml/#id

Tamino Doctype Properties

A doctype has logical and physical properties.

Logical Properties

Short DescriptionSchema Language SyntaxSchema Editor
Property

Name of the Tamino doctype. This name must be the same
as the name of the root element declaration.

<tsd:doctype name =
"name">

Doctype name

This namespace declaration serves as hint for namespace
cleaning and Tamino X-Query processing. Tamino X-Query

<xs:doctype
xmlns:prefix1 =

Namespaces

processing requires namespace URIs. Since the X-Query"namespace1"
language allows only prefixes to be used, the mappingxmlns:prefix2 =

"namespace2"> between the prefix and the URI for a doctype is done by these
namespace declarations.

For namespaces, see W3C's Namespaces in XML
recommendation at http://www.w3.org/TR/REC-xml-names/.

For query processing, see Namespace Handling for Specific
XMachine Requests in the XML Namespaces in Tamino section
of the Tamino XML Server documentation.

Physical Properties

The physical properties for a Tamino doctype depend on the storage type that has been specified
for the doctype.

The following table lists all properties in alphabetical order that are available for the different
storage types (XML, Non-XML and shadow XML).

Short DescriptionStorage
Type

Schema Language SyntaxSchema
Editor
Property

Specifies data compression on data
storage.

XML<tsd:compress>always
</tsd:compress>

Compress

■ smart
Default. Tamino checks the data
to be stored and finds the best
compromise between speed and
storage space.

131Tamino Schema Editor

Properties Explained

http://www.w3.org/TR/REC-xml-names/

Short DescriptionStorage
Type

Schema Language SyntaxSchema
Editor
Property

■ always
Always compress as much as
possible. This setting makes sense
if the primary issue is storage
size. Especially for small
documents, this will increase
retrieval time, but will use as little
space on disk as possible.

■ none
Do not compress small data
records. This setting makes sense
if you expect most of your
documents to be reasonably small
(smaller than 8000 characters),
and you want to optimize
processing speed, sacrificing
storage space. Large documents
are not effected by this setting.

■ off
Do no compression at all.

■ utf8
Each character is replaced by its
UTF-8 representation. This can
result in a compression factor of
up to 4, depending on platform
and data.

Specifies the use of one or more
computed indexes, and allows you

XML and
Shadow
XML

<tsd:computedIndex></tsd:computedIndex>Computed
Indexes

to define the XQuery function to be
used for each computed index.

You can select the property editor
for this field by choosing the
button.

In the property editor, supply
values for the required collation
properties.

Also in the property editor, in the
Name column, select the line
containing
"New_Computed_Index", and
choose the button in the

Tamino Schema Editor132

Properties Explained

Short DescriptionStorage
Type

Schema Language SyntaxSchema
Editor
Property

corresponding Computed Index
Function column. The resulting
dialog allows you to select a stored
XQuery function from an XQuery
module in the Tamino database.

If you wish to define more than one
computed index, use the icon to
create a new entry in the list of
computed indexes.

The computed indexes are
displayed in the list of physical
properties in the form [comp1,
comp2, ...], wherecomp1,comp2
etc. are the names of the computed
indexes.

Default is "closed", meaning
instances containing instances not
defined in the schema are rejected.

XML<tsd:content>closed
</tsd:content>

Content

The value "open" means instances
are stored even if they contain
structures not defined in the
schema. You should coordinate this
value with Structure index.

Default is "true", meaning instances
may be deleted from the Tamino
XML data store.

All
storage
types

<tsd:delete> </tsd:delete>Delete
access

Specifies whether an ino:id is to be
reused if an instance is removed

XML<tsd:systemGeneratedIdentity reuse =
"booleanValue">
</tsd:systemGeneratedIdentity>

ino:id
re-usage

from the data store or not. Default
is "true".

See the description of the element
tsd:systemGeneratedIdentity
in the Tamino XML Schema Reference
Guide (located in the Tamino XML
Server documentation).

Default is "true", meaning instances
may be inserted into the Tamino
XML data store.

All
storage
types

<tsd:insert> </tsd:insert>Insert
access

Possible values are "true" and
"false". Default is "true", meaning

Non-XML<tsd:nonXML>
<tsd:noConversion></tsd:noConversion>
</tsd:nonXML>

No
conversion

133Tamino Schema Editor

Properties Explained

Short DescriptionStorage
Type

Schema Language SyntaxSchema
Editor
Property

that the doctype node is of type
non-XML.

Text indexing is not possible for
data stored into doctypes with the
noConversion flag set.

The default is "false", meaning that
this property is not active.

XML<tsd:map><tsd:pure>
</tsd:pure></tsd:map>

Pure
X-Node
mapping

This property is only applicable to
Tamino schemas that have no other
function than expressing a mapping
to one Adabas file.

If this property is set to "true",
Tamino stores all data except the
schema in the Adabas file.

If elements of your schema are
mapped to Adabas PE groups or
MU fields, it is recommended that
you set the property Minimum
occurrence to "0" and the property
Maximum occurrence to
"unbounded". Otherwise, schema
validation conflicts may occur
during update processing.

Default is "true", meaning instances
may be read from the Tamino XML
data store.

All
storage
types

<tsd:read> </tsd:read>Read
access

Specifies that all nodes not declared
by the schema will be registered in
the repository. Possible values:

XML<tsd:structureIndex>value
</tsd:structureIndex>

Structure
index

■ condensed
Default. The repository registers
the existence of an undeclared
node for the doctype.

■ full
The repository registers the
existence of undeclared nodes, as
well as the instances in which
they occur.

Tamino Schema Editor134

Properties Explained

Short DescriptionStorage
Type

Schema Language SyntaxSchema
Editor
Property

■ none
No structural indexing is
performed.

For details on structure indexing,
see Indexing in the Advanced
Concepts section of the Tamino XML
Server documentation.

Default is "true", meaning existing
instances may be updated in the
Tamino XML data store.

All
storage
types

<tsd:update> </tsd:update>Update
access

135Tamino Schema Editor

Properties Explained

The Tamino doctype properties in the examples below define a Tamino doctype "patient".

In the first example, the content of the doctype is defined as "closed", meaning only those instances
will be stored which contain structures defined in the schema. Instances may be read, but not in-
serted, updated or deleted from the Tamino store:

....
<tsd:doctype name = "patient">

<tsd:logical>
<tsd:accessOptions>
<tsd:read></tsd:read>

</tsd:accessOptions>
</tsd:logical>

</tsd:doctype>
....

In the second example, all instances will be stored, even if they contain structures not defined in
the schema. Instances may be read, inserted, updated or deleted from the Tamino store:

....
<tsd:doctype name = "patient">

<tsd:logical>
<tsd:content>open</tsd:content>
<tsd:accessOptions>
<tsd:read></tsd:read>
<tsd:insert></tsd:insert>
<tsd:delete></tsd:delete>
<tsd:update></tsd:update>

</tsd:accessOptions>
</tsd:logical>

</tsd:doctype>
....

Tamino Schema Editor136

Properties Explained

Logical Properties for XML Elements

The Tamino Schema Editor always shows the logical properties that are relevant to the element
that is currently selected in the schema tree.

The following table lists all logical properties in alphabetical order. Not all properties may be
available for the currently selected element.

For detailed information and examples, see the following W3C recommendation:

■ XML Schema Part 0: Primer at http://www.w3.org/TR/xmlschema-0/.
■ XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/.
■ XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/.

Short DescriptionSchema Property

For elements and types. When an element or type is declared to be abstract, it
cannot be used in an instance document. See XML Schema Part 0: Primer,
section 4.7.

Abstract

For complex types and elements. Controls which derivations and substitution
groups may be used in instance documents. See XML Schema Part 0: Primer,
section 4.8.

Block

To enter a collation, change the value of the logical property Collation from
"no" to "yes". The other properties of the collation are now editable.

Collation

If the value of Collation is "yes", a default collation or a collation with the
specified property values is generated.

If the value of Collation is "no", no collation is generated.

For information on the ICU Collation Service, see http://www.icu-project.org/.

Open the group tree to display the following properties.

Only available if Collation is set to "yes".Collation
language

Specifies locale by ISO-3166 language code and country for collating purposes.
For example, "DE" for German or "DE-AT" for Austrian German. There is no
default, meaning collating keys are language neutral. This should provide good
results for most languages.

Collation
strength

Only available if Collation is set to "yes".

Specifies the level of comparison. Possible values:

Level 1: base character comparison, e.g. "a" < "b".primary

Level 2: accents on characters are compared, e.g. "as" <
"Ãs" < "at".

secondary

137Tamino Schema Editor

Properties Explained

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-0/#abstract
http://www.w3.org/TR/xmlschema-0/#abstract
http://www.w3.org/TR/xmlschema-0/#restrictingTypeDerivs
http://www.w3.org/TR/xmlschema-0/#restrictingTypeDerivs
http://www.icu-project.org/

Short DescriptionSchema Property

Level 3 (default): uppercase and lowercase characters are
compared, e.g. "ao" < "Ao" < "aÃ²". This is ignored if a
difference is found on level 1 or level 2.

tertiary

Level 4: distinguish word with and without punctuation,
e.g. "ab" < "a-b" < "aB". This is ignored if a difference is

quaternary

found on levels 1 through 3. Should only be used, if a
distinction based on punctuation is required.

Level 5: Used if levels 1 through 4 yield identical results.
The Unicode point values are compared. Note that this
level of comparison can impact performance negatively.

identical

Only available if Collation is set to "yes".Collation case
first

With "upperfirst" (default), words starting with uppercase will be sorted before
words starting with lowercase. A value of "lowerFirst" will reverse this behavior.

Only available if Collation is set to "yes".Collation
alternate

The value "shifted" sorts words containing punctuation marks together (e.g.
"bi-weekly" and "biweekly"), that is, punctuation is ignored for levels 1 through
3.

The value "non-ignorable" (default) will distinguish these words and sort them
separately, that is, punctuation marks will be accounted for.

Only available if Collation is set to "yes".Collation case
level

The value "true" makes a separate collation level for case differences, positioned
between level 2 (secondary) and level 3 (tertiary). This is used primarily in
Japanese to make the difference between small and large Kana more important
than the other tertiary differences. The default is "false".

Only available if Collation is set to "yes".Collation french

The value "true" will produce French accent sorting. The default is "false", but
the function is switched on if Collation language is "FR".

Only available if Collation is set to "yes".Collation
normalization

The value "true" produces results as if text were normalized. The default is
"false" (no normalization) for most languages.

For element info and attribute info. Specifies the element or attribute for which
the physical properties are defined. The element or attribute is addressed by
a path. For information on the path syntax, see Advanced Physical Properties.

context

The base type of the declared type, element or attribute. See Schema Tree Items
Explained.

Data type

For attribute declarations, specifies the value used if the attribute is absent from
an instance (the use property must then be "optional").

Default value

Tamino Schema Editor138

Properties Explained

Short DescriptionSchema Property

For element declarations, specifies the element content if the element occurs
in the instance but is empty. Element instance content overrides the default
value.

The properties Default value and Fixed value are mutually exclusive. See
XML Schema Part 0: Primer, section 2.2.1.

For elements and attributes. The name of the server extension function that
calculates the default value. The required server extension can be selected from
a dialog box. See Server Extensions for further information.

Default function

For complex types and elements. Selects the derivation method to be used. See
Schema Tree Items Explained.

Derivation method

The text of the documentation node. The Tamino Schema Editor provides a
property editor for entering the text. See Documenting a Schema.

Documentation text

Open the group tree to display the following properties. When the Fixed check
box is marked for one of the facets, the value for this facet cannot be derived
any further.

Facets

Specifies the string length. See XML Schema Part 2: Datatypes, section 4.3.1.Length

Specifies the minimal string length. SeeXMLSchemaPart 2: Datatypes, section
4.3.2.

Minimum
length

Specifies the maximal string length. SeeXMLSchemaPart 2: Datatypes, section
4.3.3.

Maximum
length

Specifies the maximum number of digits allowed in an element marked as
datatype "decimal". See also the property Fraction digits below. See XML
Schema Part 2: Datatypes, section 4.3.11.

Total digits

Specifies the maximum number of digits in the fractional part of elements
marked as datatype "decimal". If Total digits is set to "8" and Fraction

Fraction digits

digits is set to "2", the element can contain numerical values with 6 digits
before and 2 digits after the decimal. See XML Schema Part 2: Datatypes,
section 4.3.12.

Constrains the value space to values with a specific inclusive lower bound. See
XML Schema Part 2: Datatypes, section 4.3.10.

Min inclusive

Constrains the value space to values with a specific inclusive upper bound.
See XML Schema Part 2: Datatypes, section 4.3.7.

Max inclusive

Constrains the value space to values with a specific exclusive lower bound.
See XML Schema Part 2: Datatypes, section 4.3.9.

Min exclusive

Constrains the value space to values with a specific exclusive upper bound.
See XML Schema Part 2: Datatypes, section 4.3.8.

Max exclusive

Contains a regular expression that constrains the value. See XML Schema Part
2: Datatypes, section 4.3.4.

Regular
expression
pattern

Specifies a particular value that the element may contain. Multiple enumeration
elements thus specify/restrict the possible values of an element. The Tamino

Enumeration

139Tamino Schema Editor

Properties Explained

http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://www.w3.org/TR/xmlschema-2/#rf-length
http://www.w3.org/TR/xmlschema-2/#rf-minLength
http://www.w3.org/TR/xmlschema-2/#rf-minLength
http://www.w3.org/TR/xmlschema-2/#rf-maxLength
http://www.w3.org/TR/xmlschema-2/#rf-maxLength
http://www.w3.org/TR/xmlschema-2/#rf-totalDigits
http://www.w3.org/TR/xmlschema-2/#rf-totalDigits
http://www.w3.org/TR/xmlschema-2/#rf-fractionDigits
http://www.w3.org/TR/xmlschema-2/#rf-fractionDigits
http://www.w3.org/TR/xmlschema-2/#rf-minInclusive
http://www.w3.org/TR/xmlschema-2/#rf-maxInclusive
http://www.w3.org/TR/xmlschema-2/#rf-minExclusive
http://www.w3.org/TR/xmlschema-2/#rf-maxExclusive
http://www.w3.org/TR/xmlschema-2/#rf-pattern
http://www.w3.org/TR/xmlschema-2/#rf-pattern

Short DescriptionSchema Property

Schema Editor provides a property editor that allows you to specify new values
and/or delete existing ones. See Using the Property Editor.

See XML Schema Part 2: Datatypes, section 4.3.5.

Specifies how whitespace is to be treated. See XML Schema Part 2: Datatypes,
section 4.3.6.

Whitespace

For identity constraints.Field xpaths

Tsd unique: specifies the xpath from the doctype root element to the field or
fields that are to be identical. For more information on defining unique keys,
see Physical Schema for Elements and Attributes in the Tamino XML Schema User
Guide (located in the Tamino XML Server documentation).

Unique: specifies the xpath from the element to the field or fields that are to
be identical. See XML Schema Part 0: Primer, section 5.1.

For types and elements. Controls whether further derivation is permitted. See
XML Schema Part 0: Primer, section 4.8.

Final

For attributes and elements.Fixed value

■ Attributes
Specifies the value that the attribute must have. If the attribute does not
appear in an instance, Tamino will insert it with the value given by the Fixed
value attribute. If the attribute is present in the instance, its value must
match the value of the Fixed value attribute in the schema.

■ Elements
Specifies the value that the element must have, if present. If the element is
present in the instance, it must either have the same value as the value given
by the Fixed value attribute, or it must be empty. In the latter case, Tamino
will insert the value given by the Fixed value attribute. If the element is
not present at all, no value will be inserted.

The properties Fixed value and Default value are mutually exclusive. See
XML Schema Part 0: Primer, section 2.2.1.

Contains all application information that is not from Tamino. This information
may be edited as mixed content text.

foreign appinfo

Specifies for the element or attribute declaration whether instance element
names must be qualified with the namespace prefix. See XML Schema Part 0:
Primer, section 3.1.

Form

Unique identifier for the schema element within the schema XML document.
See W3C's XML recommendation at http://www.w3.org/TR/REC-xml/#id.

ID

For simple types, elements and attributes. Defines the item type of a list. See
Schema Tree Items Explained.

Item type

Language identification. See W3C's XML recommendation at
http://www.w3.org/TR/REC-xml/#sec-lang-tag.

Language identification

Tamino Schema Editor140

Properties Explained

http://www.w3.org/TR/xmlschema-2/#rf-enumeration
http://www.w3.org/TR/xmlschema-2/#rf-whiteSpace
http://www.w3.org/TR/xmlschema-2/#rf-whiteSpace
http://www.w3.org/TR/xmlschema-0/#specifyingUniqueness
http://www.w3.org/TR/xmlschema-0/#restrictingTypeDerivs
http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://www.w3.org/TR/xmlschema-0/#UnqualLocals
http://www.w3.org/TR/xmlschema-0/#UnqualLocals
http://www.w3.org/TR/REC-xml/#id
http://www.w3.org/TR/REC-xml/#sec-lang-tag

Short DescriptionSchema Property

Indicates the maximum number of occurrences of the node allowed in an
instance. For possible values, see XML Schema Part 0: Primer, section 2.2.1.
See also Specifying the Occurrence Constraints.

Maximum occurrence

For simple types, elements and attributes. Defines types that are part of a union.
See Schema Tree Items Explained.

Member types

Indicates the minimum number of occurrences of the node allowed in an
instance. For possible values, see XML Schema Part 0: Primer, section 2.2.1.
See also Specifying the Occurrence Constraints.

Minimum occurrence

For complex elements only: mixed content is allowed. See XML Schema Part
0: Primer, section 2.5.2.

Mixed content

Name of the declared node.Name

For any and anyAttribute declarations. Specifies the namespace for this
declaration. For details on possible values, seeXMLSchemaPart 1: Structures,
section 3.10.2 (XML representation for a wildcard schema component).

Namespace

For types and elements. Defines whether an empty (instance) element may be
flagged by the nil attribute or not. SeeXMLSchemaPart 1: Structures, section
3.3.1.

Nillable

For any and anyAttribute declarations. Specifies how the contents should
be processed. For details on possible values seeXMLSchemaPart 1: Structures,
section 3.10.2 (XML representation for a wildcard schema component).

processContents

The public identifier of the notation declaration, a URI reference. See XML
Schema Part 1: Structures, section 3.12.

Public notation identifier

For element, attribute, group, attribute group references. Contains the name
of the referenced item.

Reference

For key references. References a key by its name. See XML Schema Part 0:
Primer, section 5.2.

Refer

For import, include and redefine declarations. The location of the referenced
schema. It can either be stored in a Tamino database or in the file system. You

Schema location

can open the referenced schema in a new instance of the Tamino Schema Editor.
See also:

Opening a Referenced Schema in a NewWindow
Loading and Unloading the Elements from an External Schema

For identity constraints. Selects the identical elements relative to the constraint
definition by xpath. See XML Schema Part 0: Primer, section 5.1.

selector-xpath

For documentation and appinfo. Describes the source of its content as an URI.
See XML Schema Part 1: Structures, section 3.13.2.

source

For elements. Defines which elements can be substituted for other elements.
See XML Schema Part 0: Primer, section 4.6.

Substitution group

The system identifier of the notation declaration. See XML Schema Part 1:
Structures, section 3.12.

System

An action trigger is a server extension that executes an action when an event
in the Tamino Server occurs. This action is executed in addition to the normal

Trigger

141Tamino Schema Editor

Properties Explained

http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints
http://www.w3.org/TR/xmlschema-0/#mixedContent
http://www.w3.org/TR/xmlschema-0/#mixedContent
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-any
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-any
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#Element_Declaration_details
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#Element_Declaration_details
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-any
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#element-any
http://www.w3.org/TR/xmlschema-1/#cNotation_Declarations
http://www.w3.org/TR/xmlschema-1/#cNotation_Declarations
http://www.w3.org/TR/xmlschema-0/#specifying%20Keys%26theirRefs
http://www.w3.org/TR/xmlschema-0/#specifying%20Keys%26theirRefs
http://www.w3.org/TR/xmlschema-0/#specifyingUniqueness
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/#declare-annotation
http://www.w3.org/TR/xmlschema-0/#SubsGroups
http://www.w3.org/TR/xmlschema-1/#cNotation_Declarations
http://www.w3.org/TR/xmlschema-1/#cNotation_Declarations

Short DescriptionSchema Property

processing on the server. See X-Tension: Tamino Server Extensions in the Tamino
XML Server documentation for further information.

There are three types of triggers available (On Delete, On Insert, and On
Update). There can be multiple triggers of same trigger type.

The required server extension can be selected from a dialog box. See Server
Extensions for further information.

The values for the additional parameters of the selected trigger function can
be specified the triggers dialog.

For attribute declarations. Specifies whether the attribute is required, optional
or prohibited. SeeXMLSchemaPart 0: Primer, section 2.2.1. See alsoDeclaring
an Element as Optional, Required or Prohibited.

Use

For simple types and elements. Selects the variety to be used. See Schema Tree
Items Explained.

Variety

Tamino Schema Editor142

Properties Explained

http://www.w3.org/TR/xmlschema-0/#OccurrenceConstraints

Physical Properties for the Different Storage Types

Different storage types are available:

■ Properties for Native Storage
■ Properties for Adabas Mapping
■ Properties for SXS Mapping

Note: A doctype uses other storage types. See Tamino Doctype Properties.

143Tamino Schema Editor

Properties Explained

Properties for Native Storage

Elements and attributes of XML documents can be stored in Tamino's native XML store by specify-
ing "Native" as the storage type.

See also Tamino-specific Extensions to Physical Schema in the Tamino XML Schema User Guide (located
in the Tamino XML Server documentation).

Note: The properties for the references are described below under Object References.

Node Indexing

The properties for the indices and for referencing are available from two different tabs: Index and
Reference.

Note: The properties for the references are described below under Object References.

Different types of indices can be defined: standard, text and reference index definitions. Different
index technologies can be used: simple index, reference index, multi-path index and compound
index. The index technology is defined by selecting a specific type of index and then specifying
the required properties: Refers, Multipath and/or Field xpaths. Each node can have several
standard and text indices. However, it can have only one reference index.

For more details, refer to Indexing XML Data for Native Storage in the Tamino XML Schema User
Guide (located in the Tamino XML Server documentation.

The following buttons are provided:

Tamino Schema Editor144

Properties Explained

Add a new index.

Delete the selected index.

145Tamino Schema Editor

Properties Explained

For each index, select one of the following values:

Short DescriptionType of Index

text A full-text search index is generated for the node contents. Recommended for text nodes. The
following properties are available:

Reference definition for sub-tree indexing. Contains an absolute
path to a parent node where a reference index is defined. This type

refers

of index enables you to find the parent by using the value for the
indexed node. Example:/B[/C = "value"]where C is the current
node.

Label of a multi-path index. All nodes that have the same multiPath
label are indexed to one index. Use case: recursive structures and
queries with wildcard expressions.

multiPath

standard A standard index is generated for the node contents. This makes some retrieval operations
faster (for example, those that use numerical comparisons). Recommended for nodes with
numeric values. The following properties are available:

See the above description for a text index.refers

See the above description for a text index.multiPath

Defines a compound index and contains two or more
relative XPath expressions to child nodes. If the node
itself is to be addressed, "." is to be used.

field-xpaths

reference Reference index definition for the construction of reference chains. The following property
is available:

Contains an absolute path to a parent node where another reference
index is defined. If the field is empty, the document root is referenced.

refers

This type of index enables you to find the node by using the values for
one or more referencing child nodes. These child nodes have to reference
the node using reference definitions (see above). If a parent is
referenced, the parent must also have a reference index definition.
Example: /A/B[/C = "value"] where A is the referenced parent, B
is the current node and C is the referencing child.

Tamino Schema Editor146

Properties Explained

Object References

Elements mapped to object references are used to join information retrieved from different Tamino
doctypes. Object references can also be stored in Tamino's native XML store by specifying "Native"
as the storage type.

Short DescriptionSchema Editor Property

Name of the Tamino collection containing the doctype to be referenced. The
default is the current collection.

Collection reference

Specifies whether the contents of the referenced node must always be included
in the current node ("true") or not ("false"). The default is "false".

Dereference

This option is not available on attributes, since they have no element content.

Path to the node that is referenced.Node reference

Specifies the operator used when referencing another object. Possible operators
are:

Node reference operator

=,
!=
<
>
<=
>=
~=

Example

The following illustrates the native storage of a node "firstname" with a full-text index:

<xs:element name = "firstname" type = "xs:string">
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:physical>
<tsd:native>
<tsd:index>

<tsd:text></tsd:text>
</tsd:index>

</tsd:native>
</tsd:physical>

</tsd:elementInfo>
</xs:appinfo>

</xs:annotation>
</xs:element>

147Tamino Schema Editor

Properties Explained

Properties for Adabas Mapping

Elements and attributes of XML documents can be mapped to an Adabas file in the following way:

MeaningPossible Storage TypeSchema Construct

Adabas file (subtree) or Adabas
periodic group.

Map SubTreeAdabas or Map
SubTreeAdabasPE

Complex element declaration

Adabas elementary or multiple value
field.

Map NodeAdabasFieldSimple element declaration

Adabas elementary or multiple value
field.

Map NodeAdabasFieldElement with attributes
declaration

Adabas elementary or multiple value
field.

Map NodeAdabasFieldAttribute declaration

Adabas Subtree (Map SubTreeAdabas)

Short DescriptionSchema Editor Property

The database ID of an external Adabas databasedbid

The file number of an external Adabas database.fnr

The encoding for the node and its children. Default is ISO-8859-1.encoding

The user password for the Adabas file to be accessed.

Important: When you get a schema for which a password has been defined from the
database, a single asterisk (*) is shown. This asterisk does not represent the password

password

that has previously been defined. You have to specify the correct password for each
subsequent update.

Value "true" means the contents of the node cannot be updated by loading instances
using Tamino. Default is "false".

ignoreUpdate

Adabas Periodic Group (Map SubTreeAdabasPE)

Short DescriptionSchema Editor Property

Adabas group short name.Short name

Value "true" means the contents of the node cannot be updated by loading instances
using Tamino. Default is "false".

Ignore update

Tamino Schema Editor148

Properties Explained

Adabas Field (Map NodeAdabasField)

Short DescriptionSchema Editor Property

Adabas field short name.Short name

The format of the field.Format

The length of the field.Length

The encoding for the node and its children. Default is ISO-8859-1. The encoding is
available when format is "A".

Encoding

Value "true" means the node is mapped to an Adabas multiple value field.Multiple

Value "true" means the contents of the node cannot be updated by loading instances
using Tamino. Default is "false".

Ignore update

The following illustrates the mapping of a node middlename to an Adabas multiple value field
(MU):

....
<xs:element name = "middlename" type = "xs:string" minOccurs = "0" maxOccurs = ↩
"unbounded">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>

<tsd:physical>
<tsd:map>
<tsd:nodeAdabasField shortname = "mn" format = "A">

<tsd:multiple></tsd:multiple>
</tsd:nodeAdabasField>
<tsd:ignoreUpdate></tsd:ignoreUpdate>

</tsd:map>
</tsd:physical>

</tsd:elementInfo>
</xs:appinfo>

</xs:annotation>
</xs:element>
....

149Tamino Schema Editor

Properties Explained

Properties for SXS Mapping

Elements and attributes of XML documents can be mapped to server extensions by specifying Map
XTension as the storage type.

Short DescriptionSchema Editor Property

The name of the server extension function that is to be executed when the node is
processed on delete.

On Delete

The name of the server extension function that is to be executed when the node is
processed on retrieval.

On Compose

The name of the server extension function that is to be executed when the node is
processed on storage.

On Process

The name of the server extension function that is to be executed when the node is
processed on update.

On Update

Value "true" means the node cannot be updated by loading instances using Tamino.
Default is "false".

Ignore Update

The required server extension can be selected from a dialog box. See Server Extensions for further
information.

The following illustrates the declaration for an element discharged that contains information
about a hospital patient. When an instance of this element is deleted from the database, an SXS
function called SXSnotify is triggered. An example of the function could be a message sent to the
hospital administration that triggers the building of an invoice and marking the patient’s bed as
vacant.

<xs:element name = "discharged" maxOccurs = "unbounded">
<xs:annotation>

<xs:appinfo>
<tsd:elementInfo>

<tsd:physical>
<tsd:map>

<tsd:xTension>
<tsd:onDelete>SXSnotify</tsd:onDelete>

</tsd:xTension>
</tsd:map>

</tsd:physical>
</tsd:elementInfo>

</xs:appinfo>
</xs:annotation>

....

....
</xs:element>
....
....

Tamino Schema Editor150

Properties Explained

Advanced Physical Properties

For some element types, anAdvanced button is provided. When you choose this button, additional
information is shown. You can then define the physical properties of a node that can be accessed
via multiple paths.

The following buttons are provided for defining the paths:

Add a new path.

Delete the selected path.

You can define paths to the node, and for each set of paths, the storage type and index. If multiple
paths are specified in one input field, the paths have to be separated by a semicolon.

You must specify absolute XPath expressions, starting with the doctype. The syntax for the path
is as follows:

/doctype-name/element-name/../{current-element-name | @current-attribute-name}

Example:

/patient/name/surname

The path must be valid, i.e. it must point to an existing element.

For all paths not specified here, you can define a default storage type and index. You can use the
default for elements without recursion. If recursion is used, the default only applies for the first
recursion level.

The Tamino schema construct generated is a tsd:which element.

151Tamino Schema Editor

Properties Explained

152

12 Menu Commands

■ File ... 155
■ Database ... 156
■ Edit ... 157
■ View ... 159
■ Insert .. 160
■ Tools ... 160
■ Help .. 161

153

This chapter provides reference information on each menu command that is available from the
application window of the Tamino Schema Editor.

Tamino Schema Editor154

Menu Commands

File

New
Creates a new schema. See Creating a Schema from Scratch.

Open
Opens an existing schema in your local file system. See Opening a Schema that is Stored in
the File System.

Close
Closes a schema that is currently open in the Schema Editor.

Close All
Closes all schemas that are opened in the schema editor

Save
Saves the modifications to the current schema in your local file system. See Saving a Schema
in the File System.

Save As
Saves the current schema under another name in your local file system. See Saving a Schema
in the File System.

Import DTD
Imports a DTD and converts it to Tamino schema syntax. See Importing a DTD.

Import TSD2 Schema
Imports a Tamino version 2.x schema file and converts it to Tamino schema syntax of the
current version. See Importing a TSD2 Schema.

Print preview
This displays a preview of the XML code of the schema. You can adjust the font size in the
display area and send the XML code to a printer using the selected font size.

Print
Opens up the print dialog for print the current document.

<List of recent files>
Lists the most recently opened files. See Opening a Schema that is Stored the File System.

Exit
Closes the application window of the Tamino Schema Editor. See Leaving the Tamino Schema
Editor.

155Tamino Schema Editor

Menu Commands

Database

Get Schema
Opens a schema that is stored in Tamino. See Getting a Schema that is Stored in Tamino.

Validate Schema
Validates the current schema against a selected database. See Validating a Schema.

Define Schema
Defines a new schema to Tamino, or updates the current schema in Tamino. See Defining and
Updating a Schema in Tamino.

Undefine Schema
Removes the current schema or schemas and all related instances from Tamino. SeeUndefining
a Schema.

There are two options:
■ Single : undefines single schema
■ Multiple: undefines multiple schemas

Tamino Schema Editor156

Menu Commands

Edit

Undo
Undoes the previous action. See Undoing and Redoing the Previous Action.

Redo
Redoes the previous undo action. See Undoing and Redoing the Previous Action.

Cut
Cuts the selection and copies it to the clipboard. SeeCutting, Copying andPasting Information.

Copy
Copies the selection to the clipboard. See Cutting, Copying and Pasting Information.

Paste
Pastes the contents of the clipboard, if it is allowed at this position in the schema. See Cutting,
Copying and Pasting Information.

Delete
Deletes the selection. See Deleting Information.

Select All
Selects all the text available in code view. This will be working only with Code view.

Copy Path
Copies the path for the selected element in the schema tree to the clipboard. See Copying the
Path to the Clipboard.

Rename
Renames the selected element in the schema tree. See Renaming an Item in the Schema Tree.

Move Up
Moves the selected element up in the schema tree. See Moving an Element Up and Down in
the Schema Tree.

Move Down
Moves the selected element down in the schema tree. See Moving an Element Up and Down
in the Schema Tree.

Find
Finds information within the current schema. See Finding and Replacing Information.

Find Next
Finds the next occurrence which matches the information that has previously been specified
in the Find or Replace dialog box. See Finding the Next or Previous Occurrence.

Find Previous
Finds the previous occurrence which matches the information that has previously been specified
in the Find or Replace dialog box. See Finding the Next or Previous Occurrence.

157Tamino Schema Editor

Menu Commands

Replace
Finds and replaces information within the current schema. See Finding and Replacing Inform-
ation.

Go to Declaration
Goes to the position in the schema tree where the selected reference is declared. SeeDisplaying
the Declaration for a Reference.

Go to Next Reference
Goes to the position in the schema tree where the selected declaration is referenced, or goes
to the next reference which matches the selected reference. See Displaying the Next Reference.

Tamino Schema Editor158

Menu Commands

View

XSD
Switches to a tree view which supports W3C's XML Schema language. See Switching to An-
other View.

Code
Switches to code view. See Switching to Another View.

Toolbars > Standard
Toggles the display of the standard toolbar in the application window. See Standard Toolbar.

Toolbars > Insert
Toggles the display of the insert toolbar in the application window. See Insert Toolbar.

Output
Toggles the display of the output panel in the application window. See Output Panel.

Status Bar
Toggles the display of the status bar in the application window. See Status Bar.

Expand All
Expands all nodes in the tree view of the schema. See Schema Tree.

Show Structure Info Text
Toggles the display of the structure info text in tree view. See Structure Info Text.

159Tamino Schema Editor

Menu Commands

Insert

This menu provides commands for all schema constructs that can be inserted into the currently
selected node in your schema. See Inserting an Element in the Schema Tree.

For a description of all available commands, see Schema Tree Items Explained.

Tools

Import from Adabas
Maps an Adabas schema to a Tamino schema. See Importing Adabas.

Transformation > transformation-command
Transforms a schema construct into another schema construct. SeeTransforming andConverting
Schema Constructs.

Transformation > Convert to > convert-command
Converts a Choice, Sequence or All. See Converting a Choice, Sequence or All.

External Schema > Open
Opens the schema that is referenced in an Import, Include or Redefine declaration in a new
instance of the Tamino Schema Editor. See Opening a Referenced Schema in a NewWindow.

External Schema > Load
Loads the elements from the referenced external schema into the internal model so that they
can be selected from a drop-down list box. See Loading and Unloading the Elements from an
External Schema.

Validate XML Schema
Validates the XML schema code. See Validating the XML Schema Code.

Options
Defines the TSD views to be shown in the application window and options for external
schemas. See Defining the Options.

Tamino Schema Editor160

Menu Commands

Help

Contents
Invokes the online documentation. See Using Help.

Help on Item
Invokes context-sensitive help for an element of the application window. See Using Help.

About Tamino Schema Editor
Displays information about the Tamino Schema Editor in a dialog box (for example, the version
number). When you choose the System Info button in this dialog box, system information (for
example, the Java Runtime Environment version which is used by the Tamino Schema Editor)
and Tamino Schema Editor information is shown.

161Tamino Schema Editor

Menu Commands

162

13 Supported Character Encodings

The Tamino Schema Editor supports the standard character encodings and their well known aliases,
as shown in the following list. Please observe that Tamino XML Server may support other encodings
than those listed here.

Well known aliasesEncoding Name

950, cp950, csBig5, ibm-1370_VSUB_VPUA, x-big5Big5

850, csPC850Multilingual, IBM850cp850

857, csIBM857cp857

860, csIBM860, IBM860cp860

861, cp-is, csIBM861, IBM861cp861

862, cp867, cspc862latinhebrewcp862

cp863, csIBM863, IBM863cp863

csIBM864cp864

865, csIBM865, IBM865cp865

866, csIBM866cp866

868, cp-ar, csIBM868, IBM868cp868

869, cp-gr, csIBM869cp869

csEUCPkdFmtJapanese, eucjis, Extended_UNIX_Code_Packed_Format_for_Japanese,
ibm-33722_VPUA, ibm-eucJP, X-EUC-JP

EUC-JP

csEUCKR, ibm-970_VPUA, ibm-eucKR, X-EUC-KREUC-KR

ibm-1392gb18030

1383, chinese, cp1383, csGB2312, csISO58GB231280, EUC-CN, gb, gb2312-1980,
GB_2312-80, ibm-1383, ibm-1383_VPUA, ibm-eucCN, iso-ir-58, X-EUC-CN

GB2312

CP936, ibm-1386_VSUB_VPUA, MS936, zh_cn, windows-936GBK

CCSID01140, CP01140, cpibm1140, ebcdic-us-37+euroIBM01140

CCSID01141, CP01141, cpibm1141, ebcdic-de-273+euroIBM01141

163

Well known aliasesEncoding Name

CCSID01142, CP01142, cpibm1142, ebcdic-dk-277+euro, ebcdic-no-277+euroIBM01142

CCSID01143, CP01143, cpibm1143, ebcdic-fi-278+euro, ebcdic-se-278+euroIBM01143

CCSID01144, CP01144, cpibm1144, ebcdic-it-280+euroIBM01144

CCSID01145, CP01145, cpibm1145, ebcdic-es-284+euroIBM01145

CCSID01146, CP01146, cpibm1146, ebcdic-gb-285+euroIBM01146

CCSID01147, CP01147, cpibm1147, ebcdic-fr-297+euroIBM01147

CCSID01148, CP01148, cpibm1148, ebcdic-international-500+euroIBM01148

CCSID01149, CP01149, cpibm1149, ebcdic-is-871+euroIBM01149

cpibm37, ebcdic-cp-us, ebcdic-cp-ca, ebcdic-cp-wt, ebcdic-cp-nl, cp37, cp037, 037IBM037

CP1026, csIBM1026, Ibm-1026_STDIBM1026

273, CP273, cpibm273, csIBM273, ebcdic-deIBM273

277, csIBM277, cpibm277, EBCDIC-CP-DK, EBCDIC-CP-NO, ebcdic-dkIBM277

278, cp278, cpibm278, csIBM278, ebcdic-cp-fi, ebcdic-cp-se, ebcdic-svIBM278

280, CP280, cpibm280, csIBM280, ebcdic-cp-itIBM280

284, CP284, cpibm284, csIBM284, ebcdic-cp-esIBM284

285, CP285, cpibm285, csIBM285, ebcdic-cp-gb, ebcdic-gbIBM285

cp290, csIBM290, EBCDIC-JP-kanaIBM290

297, cp297, cpibm297, csIBM297, ebcdic-cp-frIBM297

IBM367

420, cp420, csIBM420, ebcdic-cp-ar1IBM420

424, cp424, csIBM424, ebcdic-cp-heIBM424

500, CP500, cpibm500, csIBM500, ebcdic-cp-be, ebcdic-cp-chIBM500

IBM852

IBM855

IBM857

IBM862

IBM864

IBM869

CP870, csIBM870, ibm-870, ibm-870_STD, ebcdic-cp-roece, ebcdic-cp-yuIBM870

871, CP871, cpibm871, csIBM871, ebcdic-cp-is, ebcdic-isIBM871

CP918, csIBM918, , ebcdic-cp-ar2, ibm-918_STD, ibm-918_VPUAIBM918

ISO-2022-CN-EXT

ISO-2022-CN

csISO2022JPISO-2022-JP

csISO2022KRISO-2022-KR

iso-8859-15

Tamino Schema Editor164

Supported Character Encodings

Well known aliasesEncoding Name

8859-1, cp819, csISOLatin1, IBM819, ISO_8859-1:1987, iso-ir-100, l1, latin1ISO-8859-1

8859-2, 912, cp912, csISOLatin2, ISO_8859-2:1987, iso-ir-101, l2, latin2iso-8859-2

8859-3, 913, cp913, csISOLatin3, iso-ir-109, l3, latin3iso-8859-3

8859-4, 914, cp914, csISOLatin4, ISO_8859-4:1988, iso-ir-110, l4, latin4iso-8859-4

8859-5, 915, cp915, csISOLatinCyrillic, cyrillic, ISO_8859-5:1988, iso-ir-144iso-8859-5

1089, 8859-6, arabic, asmo-708, cp1089, csISOLatinArabic, ecma-114, ISO_8859-6:1987,
iso-ir-127

iso-8859-6

813, 8859-7, cp813, csISOLatinGreek, ecma-118, elot_928, greek, greek8, ISO_8859-7:1987,
iso-ir-126

iso-8859-7

916, cp916, csISOLatinHebrew, Hebrew, 8859-8, ISO_8859-8:1988, iso-ir-138iso-8859-8

8859-9, 920, cp920,latin5, csISOLatin5, ISO_8859-8:1989, iso-ir-148, l5iso-8859-9

cp878, cskoi8r, koi8KOI8-R

943, cp943, cp932, csShiftJIS, csWindows31J, MS_Kanji, pck, sjis, windows-31j, x-sjisShift_JIS

874, cp874, cp9066, ms874, windows-874TIS-620

ANSI_X3.4-1968, ASCII, ANSI_X3.4-1986, cp367, csASCII, ISO_646.irv:1983,
ISO_646.irv:1991, ISO646-US, iso-ir-6, us

US-ASCII

cp1201, UTF16_BigEndian, x-utf-16beUTF-16BE

cp1200, UTF16_LittleEndian, x-utf-16leUTF-16LE

cp1208, cp65001UTF-8

csUnicode, ISO-10646-UCS-2, ucs-2UTF-16

cp1250windows-1250

cp1251windows-1251

cp1252windows-1252

cp1253windows-1253

cp1254windows-1254

cp1255windows-1255

cp1256windows-1256

cp1257windows-1257

cp1258windows-1258

165Tamino Schema Editor

Supported Character Encodings

166

14 Command Line Tools for Schema Conversions

■ Conversion Scripts ... 168
■ Tamino DTD Converter ... 169
■ Tamino TSD2 Converter .. 170

167

This chapter describes the command line tools available for different types of schema conversion.

This information is provided under the following headings:

Conversion Scripts

The conversion scripts are provided in installation-directory\Tamino\Tamino
n.n\X_Tools\Tamino_Schema_Editor.

The conversion scripts are provided under Windows as .cmd files and under UNIX as .sh files.

The names of the scripts are:

DescriptionName

For the conversion from DTDs.inodtdconv

For the conversion from TSD2 schemas.inotsd2conv

Tamino Schema Editor168

Command Line Tools for Schema Conversions

Tamino DTD Converter

Converts a DTD to Tamino schema format.

Usage:

inodtdconv [options]

where options are:

-help
Print out this message and exit

-version
Display the version of the converter.

-dtd file
Mandatory. Input DTD file. Use the notation: "file://.." (under Windows: "file:///drive:\....".

-tsd file
Mandatory. Output TSD file. Use system-dependent notation (under Windows: "drive:\file-
name.tsd")

-outputEncoding encoding
Set the encoding for the output file. The default is UTF-8.

-collection collectionname
Collection name to be used in the TSD schema. If this is not specified, no TSD-specific inform-
ation will be generated. Neither the -schema nor the -doctype options will be permitted and
the schema cannot be defined to Tamino.

-schema schemaname
Schema name to be used in the TSD schema. If this option is not specified, the DTD file name
is used.

-doctype doctypename
Specifies the doctype to be created in the TSD schema. If you specify this option with no value,
the schema file name is used. If this option is not specified, no doctype is created.

-noValidation
The DTD is not validated.

169Tamino Schema Editor

Command Line Tools for Schema Conversions

Tamino TSD2 Converter

Converts a Tamino version 2.x schema (TSD2) to Tamino schema format.

Usage:

inotsd2conv [options]

where options are:

-help
Print out this message and exit.

-tsd2 file
Mandatory. Input TSD2 file.

-tsd file
Output TSD file. If this option is not set, the TSD2 file name is used with the extension .tsd.

-inputEncoding encoding
Set the encoding for the input file. If not set, UTF-8 is used.

-outputEncoding encoding
Set the encoding for the output file. The default is UTF-8.

-schema schemaname
Schema name to be used in the TSD schema. If this option is not specified, the collection name
specified in the TSD2 schema is used.

-collection collectionname
Collection name to be used in the TSD schema. If this option is not specified, the collection
name specified in the TSD2 schema is used.

-strict
Enable strict conversion mode. If not set, loose mode is used.
■ loose mode

This is the default conversion mode. It generates a Tamino schema against which all existing
instances are most likely to validate. Note, however, that it may loosen a logical schema
quite dramatically.

V2.x schema nodes defined with Object Type "SEQ" are declared as complex elements con-
taining xs:choice with maxOccurs="*" (declared child elements can occur in any number
in any order).

V2.x schema nodes defined with Object Type "ANY" are declared as complex elements with
mixed="true" and containing an xs:any element. Any well-formed XML content is allowed
(including elements from other namespaces), in mixed content.

Tamino Schema Editor170

Command Line Tools for Schema Conversions

The Doctype is always generated with "open" content, and all elements are declared with
mixed content:

<tsd:doctype name = "...">
<tsd:logical>

<tsd:content>open</tsd:content>
</tsd:logical>

.....
<xs:element name = "...">

<xs:complexType mixed = "true"></xs:complexType>
</xs:element>

■ strict mode
In strict mode, the conversion attempts to infer the real or imagined DTD from which the
V2.x schema was generated in order to maximize the chances that the logical schema will
reflect the original DTD. This approach works in cases where it is known that the instances
will parse against the original DTD.

V2.x schema nodes defined with Object Type "SEQ" are declared as complex elements con-
taining xs:sequence (the declared child elements must appear in the declared order).

V2.x schema nodes defined with Object Type "ANY" are declared as complex elements with
mixed="true" and containing xs:choice. The declared child elements can appear in any
number and order, in mixed content.

-content mode
Mode is "open" or "close".

If mode is set to "open", the content property of all doctypes is set to "open".

If mode is set to "close", the content property of all doctypes is set to "close".

This option overrides the content property value that is specified for strict (default: close) or
loose (default: open) mapping.

-version
Print version information.

171Tamino Schema Editor

Command Line Tools for Schema Conversions

172

Index

A
add

attribute to schema, 20
element reference to sequence, 17
sequence to root element, 19

annotation
add with property editor, 72
insert, 72

attribute
add to schema, 20
insert in schema, 20

B
browse

schema location, 93

C
character encoding

Tamino Schema Editor, 163
clipboard

copy path, 83
code editor, 42
code view, 42
collapse

tree view, 33
collection

specify, 7
complex schema element

create, 15
connect

to Tamino Server, 49
context menu

invoke, 37
conversion script, 168
copy

path to clipboard, 83
schema element, 78

create
complex element in schema, 15
doctype, 10
root element, 10
schema, 46
sequence, 16
simple element in schema, 14

cut

schema element, 78

D
define

doctype, 12
options for external schema, 92
schema, 54

delete
schema element, 84

display
next reference, 75
reference declaration, 75
structure info text, 36

doctype
create, 10
define, 12
insert in schema, 10
properties, 131

document
schema, 72

drag-and-drop, 81
DTD

import, 62

E
edit

schema, 67
schema properties, 70

element
move in schema, 77
optional, 74
prohibited, 74
required, 74

element reference
add to sequence, 17

expand
tree view, 33

external schema
load element, 95
unload element, 95

F
find

schema element, 86
find next

schema element, 90

173

G
generate

schema, 8
generated schema code, 8
get

schema, 57

H
help

Tamino Schema Editor, 24
hide

structure info text, 36

I
import

DTD, 62
TSD2 schema, 63

insert
annotation, 72
attribute in schema, 20
element in schema, 68

invoke
context menu, 37

L
leave

Tamino Schema Editor, 25
load

element from external schema, 95

M
message window

Tamino Schema Editor, 43
modify

property value
logical property, 38
physical property, 39

schema, 67
schema properties, 70

move
schema element, 77, 81

N
namespace

add with property editor, 71
navigate

in Tamino Schema Editor, 44

O
occurrence constraint

specify, 73
open

referenced schema, 94
schema, 57-58

output panel, 43
overview

Tamino Schema Editor, 1

P
paste

schema element, 78
property

Adabas mapping, 148
logical, 129, 131

for XML element, 137
native storage, 144
physical, 131

advanced, 151
for different storage types, 143

server extensions, 150
property editor, 70

add annotation, 72
add namespace, 71
add server extension, 71

R
redo

previous action, 91
rename

schema element, 84
replace

schema element, 86
root element

create, 10
insert in schema, 10

S
save

schema, 22, 56
schema

create, 46
define, 54
document, 72
edit, 67
edit properties, 70
generate, 8
get, 57
global construct, 100
insert element, 68
local construct, 100
missing information, 48
modify, 67
open, 57-58
open in new window, 94
properties, 129
save, 22, 56
transform, 98

with transformation wizard, 98
undefine, 60
update, 54
validate, 53

schema conversion
with command line tool, 167

schema location
browse, 93

schema name
specify, 7

Tamino Schema Editor174

Index

schema transformation wizard, 98
sequence

add element reference, 17
add to root element, 19
create, 16

server extension
add with property editor, 71

simple schema element
create, 14

specify
collection, 7
missing information in schema, 48
occurrence constraint, 73
schema name, 7

start
Tamino Schema Editor, 6, 24

status bar
Tamino Schema Editor, 43

structure info text, 36
switch

status bar on/off, 43
view, 40

T
Tamino DTD Converter, 169
Tamino Schema Editor

leave, 25
navigate, 44
start, 24

Tamino Server
connect, 49

Tamino TSD2 Converter, 170
toolbar buttons

Tamino Schema Editor, 30
tooltips

in schema tree, 36
transform

schema, 98
conversion, 100
with transformation wizard, 98

tree view
Tamino Schema Editor, 33

TSD2 schema
import, 63

tutorial
Tamino Schema Editor, 3

U
undefine

schema, 60
undo

previous action, 91
unload

element from external schema, 95
update

schema, 54
user interface

Tamino Schema Editor, 27

V
validate

schema, 53
XML schema code, 53

view
switch, 40

175Tamino Schema Editor

Index

176

	Tamino Schema Editor
	Table of Contents
	Tamino Schema Editor
	1 Introducing the Tamino Schema Editor
	2 First Steps with the Tamino Schema Editor
	About this Tutorial
	Starting the Tamino Schema Editor
	Specifying a Schema Name and a Collection
	Checking the Generated Code in the Code Editor
	Inserting the Root Element and the Doctype
	Inserting Simple Elements
	Inserting a Complex Element
	Inserting a Sequence
	Adding Element References to the Sequence
	Adding a Sequence with an Element Reference to the Root Element
	Inserting an Attribute
	Saving the Schema to the File System

	3 Starting and Leaving the Tamino Schema Editor
	Starting the Tamino Schema Editor
	Using Help
	Leaving the Tamino Schema Editor

	4 Elements of the Application Window
	Menu Bar
	Toolbar
	Standard Toolbar
	Insert Toolbar

	Schema Tree
	Schema Status
	Tooltips in the Schema Tree
	Structure Info Text
	Context Menus
	Logical Properties
	Physical Properties
	Switching to Another View
	Code View
	Output Panel
	Status Bar
	Dialog Boxes
	Navigating in the Schema Editor

	5 Managing Schemas in Tamino and in the File System
	Creating a Schema from Scratch
	Missing Information
	Connecting to Tamino
	Validating a Schema
	Validating the XML Schema Code
	Defining and Saving Schemas
	Defining and Updating a Schema in Tamino
	Saving a Schema in the File System

	Getting and Opening Schemas
	Getting a Schema that is Stored in Tamino
	Opening a Schema that is Stored the File System

	Undefining a Schema

	6 Importing DTDs and TSD2 Schemas
	Importing a DTD
	Importing a TSD2 Schema

	7 Importing Adabas
	8 Editing a Schema
	Inserting an Element in the Schema Tree
	Editing Properties
	Using the Property Editor
	Namespaces
	Server Extensions
	Documenting a Schema
	Specifying the Occurrence Constraints
	Declaring an Element as Optional, Required or Prohibited
	Displaying the Declaration for a Reference
	Displaying the Next Reference
	Moving an Element Up and Down in the Schema Tree
	Cutting, Copying and Pasting Information
	Using Drag-and-Drop
	Copying the Path to the Clipboard
	Deleting Information
	Renaming an Item in the Schema Tree
	Finding and Replacing Information
	Finding the Next or Previous Occurrence
	Undoing and Redoing the Previous Action
	Defining the Options
	Browsing for a Schema Location
	Opening a Referenced Schema in a New Window
	Loading and Unloading the Elements from an External Schema

	9 Transforming and Converting Schema Constructs
	General Information
	Using a Transformation Wizard
	Making a Schema Construct Local or Global
	Converting a Choice, Sequence or All
	Converting an Element

	10 Schema Tree Items Explained
	All
	Annotation
	Any
	AnyAttribute
	Appinfo
	Attribute
	AttributeGroup
	AttributeGroup reference
	Attribute info
	Attribute reference
	Choice
	ComplexType
	Doctype
	Documentation
	Element complex
	Element info
	Element reference
	Element simple
	Element unknown
	Element with attributes
	Group
	Group reference
	Import
	Include
	Key
	Keyref
	Notation
	Redefine
	Schema
	Sequence
	SimpleType
	SimpleType with attributes
	Tsd unique
	Unique

	11 Properties Explained
	Schema Properties
	Tamino Doctype Properties
	Logical Properties for XML Elements
	Physical Properties for the Different Storage Types
	Properties for Native Storage
	Properties for Adabas Mapping
	Properties for SXS Mapping

	Advanced Physical Properties

	12 Menu Commands
	File
	Database
	Edit
	View
	Insert
	Tools
	Help

	13 Supported Character Encodings
	14 Command Line Tools for Schema Conversions
	Conversion Scripts
	Tamino DTD Converter
	Tamino TSD2 Converter

	Index

