
Tamino

X-Query User Guide

Version 10.1

April 2018



This document applies to Tamino Version 10.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-XQL-101-20180413



Table of Contents

Preface ................................................................................................................................ v
1 What is X-Query? ............................................................................................................ 1
2 XPath 1.0 and X-Query .................................................................................................... 3

XPath 1.0 in a Nutshell ............................................................................................... 4
From XPath to X-Query ............................................................................................. 6
XPath/X-Query and XML Schema ............................................................................. 8

3 Querying XML Sample Documents ................................................................................ 9
4 Related Information ....................................................................................................... 13

Internal Resources .................................................................................................... 14
External Resources ................................................................................................... 14

iii



iv



Preface

Caution: X-Query is deprecated. This is, it might still be used, but without warranty. Errros
will not be corrected anymore.

This document describes X-Query, one of the XML query languages available with Tamino. It
focuses on the description of the language, how you use it for performing queries on XML objects,
and how it differs from XPath.

This document, which has introductory character, explains the fundamentals of X-Query and
includes some examples and pointers to related information.

Introduction

XPath 1.0 and X-Query

■ XPath 1.0 in a Nutshell
■ From XPath to X-Query
■ XPath/X-Query and XML Schema

Querying XML Sample Documents

Related Information

■ Internal Resources
■ External Resources

v



vi



1 What is X-Query?

X-Query is based on theW3C'sXPath 1.0 specification. XPath provides a datamodel and expression
syntax for addressing parts of XML documents. X-Query adheres to the principles of XPath for
efficient usage in the database context, whilst at the same time following the Tamino design
principle of adhering to public standards.

XPath is not a query language in itself, but rather a language for addressing parts of an XML
document. Since Tamino generally stores data as XML documents, XPath provides a standard
mechanism for addressing the contents of XML objects returned from the database.With X-Query
you can retrieve XML objects using:

■ query expressions based on the XPath specification.

These expressions are described in the section Expressions. In order to use these expressions
effectively, you should be familiar with the current XPath specification.

■ Tamino text retrieval and sorting expressions.

Tamino also provides text retrieval and sorting expressions. You can retrieve text by using the
“contains” operator ~=. You can sort XML objects by using the expressions sortby and sortall.
These expressions are described in the X-Query Reference Guide.

■ Tamino server extensions.

You can extend X-Query by using Tamino server extensions. The documentation of X-Tension:
Tamino Server Extensions describes how you can implement your own X-Query extension
functions.

1

http://www.w3.org/
http://www.w3.org/TR/xpath/


2



2 XPath 1.0 and X-Query

■ XPath 1.0 in a Nutshell ....................................................................................................................... 4
■ From XPath to X-Query ...................................................................................................................... 6
■ XPath/X-Query and XML Schema ........................................................................................................ 8

3



This chapter briefly explains the concepts of XPath, which is the basis of the X-Query language.
It then outlines the relationship between XPath 1.0 and X-Query.

XPath 1.0 in a Nutshell

You can use XPath to address parts of an XML document. XPath is also the basis for XML-related
languages such as XSLT. In XPath, an XML document is regarded as a tree in document order (i.e.
depth-first) containing seven different types of nodes. These node types are:

root node;
element node;
text node;
attribute node;
namespace node;
processing instruction node;
comment node.

You can address nodes of any type and number with the help of XPath expressions. The details
of this data model are described in the sectionData Model of the XPath specification.

The expression syntax of XPath includes location paths for addressing tree nodes, and function
calls of a core library used for working with strings, numbers and booleans. A location path starts
from either the document root node (absolute path) or the context node (relative path) and has
one or more location steps. A location step consists of three parts:

■ an axis, which specifies the relationship between the set of selected nodes and the context node;
■ a node test, which specifies the type and name of the set of selected nodes; and
■ optional predicates, which further restrict the set of selected nodes.

There are thirteen axis directions, originating from the context node. The axis determines the initial
node set, which is further refined by node tests and predicates. In XPath, you can specify a location
path in either unabbreviated or abbreviated syntax. The following table lists the axes along with
their direction (normal document order or reverse document order) and a short description. In
the unabbreviated syntax a double colon '::' follows the name of the axis.

MeaningDirectionAxis

The parent node and its ancestors up to the root nodereverseancestor::

The current node and its ancestors up to the root nodereverseancestor-or-self::

All attached attribute nodesimplementation-definedattribute::

The immediate child nodes (default axis)normalchild::

All descendant child nodesnormaldescendant::

The current node and all its descendant child nodesnormaldescendant-or-self::

X-Query User Guide4

XPath 1.0 and X-Query

http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath/#data-model


MeaningDirectionAxis

All nodes after the context node, excluding descendant
nodes, attribute nodes and namespace nodes

normalfollowing::

All following nodes that are siblings of the current
node

normalfollowing-sibling::

All attached namespace nodesimplementation-definednamespace::

The parent node (or attaching node for attribute and
namespace nodes)

normalparent::

All nodes before the context node, excluding
descendant nodes, attribute nodes and namespace
nodes

reversepreceding::

All preceding nodes that are siblings of the current
node

reversepreceding-sibling::

The current nodenormalself::

The node test determines the type and optionally the name of each node along the axis direction
that is selected. For each axis, there is a principal node type: for the attribute axis, it is attribute;
for the namespace axis, it is namespace; for other axes, it is element. You can select a node by ap-
plying one of the following node tests. The node is selected if the test evaluates to "true".

DescriptionNodeTest

A processing instruction node (regardless of name)processing-instruction()

A comment nodecomment()

A text nodetext()

A node of any type (regardless of name)node()

A processing instruction node with name Literal; if name is
omitted, then the test is "true" for any processing instruction
node

processing-instruction('Literal')

A node of the principal node type'Name'

According to the axis used: an element node in the specified
namespace, an attribute node in the specified namespace, or
an empty node-set when using the namespace axis

'prefix:name'

According to the axis used: all element nodes, all attribute
nodes or all namespace nodes

'*'

According to the axis used: all element nodes in the specified
namespace, all attribute nodes in the specified namespace, or
an empty node-set when using the namespace axis

'prefix:*'

The abbreviated syntax is as follows:

5X-Query User Guide

XPath 1.0 and X-Query



DescriptionAbbreviation

Nodes along the child:: axis satisfying node tests and optional predicatesno axis

Nodes along the attribute:: axis satisfying node tests and optional predicates@

The self::node(), which is the current node of any type.

The parent::node(), which is the empty node-set if the current node is the root node; the
attaching node if the current node is an attached node (of type attribute or namespace);
otherwise the parent node

..

/descendant-or-self::node()/ At the start of an expression, this denotes the absolute
location path; elsewhere, it denotes the relative location path

//

The last, optional part of a location step is a predicate to further restrict the set of selected nodes
according to a qualifying expression. This expression is enclosed in square brackets [ and ]. The
resulting nodes are ordered according to the direction of the selected axis. If instead you use a
node-set expression, then the nodes are ordered in document order. You can use three different
types of values in a predicate expression:

■ A numeric value such as patient[2] or patient[last()]. The value is the proximity position
of the node in the set, beginning with 1 for the originating context node.

■ A node-set expression such as medication[type] or type[@brand]. This predicate is true if the
node set returned is not empty.

■ An expression such as medication[count(type)>2]. This predicate is true only if the expression
is true.

See the XPath specification for more details. You can find examples based on the patient data set
in the sectionQuerying XML Sample Documents and in the reference section for the respective
language elements.

From XPath to X-Query

This section documents the differences between expressions in X-Query and expressions in XPath.
Since X-Query is based on the XPath specification, there aremanymore similarities than differences.
However, X-Query differs from XPath in the following aspects:

■ The following XPath functions are supported:

boolean
ceiling
count
false
floor
last
name

X-Query User Guide6

XPath 1.0 and X-Query

http://www.w3.org/TR/xpath/


not
number
position
round
starts-with
string
sum
true

■ The following XPath functions are currently not supported, but can be implemented using
Tamino server extensions, as long as they do not have a variable number of arguments:

concat
contains
id
lang
local-name
namespace-uri
normalize-space
string-length
substring
substring-after
substring-before
translate

■ X-Query supports the following additional operators that are not present in XPath:

adj
after
before
between
intersect
near
sortby

■ X-Query has a binary “contains” operator ~= for text retrieval. There is no equivalent in XPath.
■ X-Query does not support the unabbreviated syntax of location paths using named axes.
■ X-Query does not support the use of variables.

7X-Query User Guide

XPath 1.0 and X-Query



XPath/X-Query and XML Schema

Historically, the development of XPath preceded the development of XML Schema; therefore,
with a few exceptions, X-Query (which is closely related to XPath) is not related to XML Schema.
In particular, an X-Query expression operates on string values or numeric values but not on typed
values; in other words, an X-Query expression does not make use of the type information that is
stored in the schema. For a strongly-typed view of the data, please consider using Tamino XQuery.

X-Query User Guide8

XPath 1.0 and X-Query



3 Querying XML Sample Documents

This chapter provides some examples of common queries using a small example Patient database.
In the section Getting Started, you can find a step-by-step description of how to create and load
this database in Tamino. To compare your query results with those presented here, load the data
for the second patient as described in the section Loading Objects into the Database.

To execute a Tamino query, you can use the Tamino Interactive Interface, or you can enter an
HTTP request directly in your browser's address line. If, for example, you have defined a database
"mydb-test" on your local computer, and that database contains the collection "Hospital", which
in turn contains the schema "patient", you could type the followingURL in your browser's address
line:

http://localhost/tamino/mydb-test/Hospital/patient?_XQL=/patient/name[surname~='At*']

to return all documents that belong to the schema 'patient' and satisfy the node-selection condition
expressed by the query /patient/name[surname~='At*'].

Tamino queries can also be executed using any application environment that can handle HTTP
requests, for example scripting languages. For more information, see the list of programming in-
terfaces (APIs) in the Tamino documentation overview page.

The query response is returned by Tamino as an XML object. See the section Syntax of XML Re-
sponses in the X-Machine Programming documentation for a complete description.

The following table contains some typical query expressions for the Patient schema. The first
column contains the query expression, the second column contains a description of the syntax
used in the query, the third column describes the result of the query in general terms, and the
fourth column is the query result based on the existing instances of the Patient schema.

9



Specific Retrieval
Result

General Retrieval ResultDescriptionQuery Expression

2 patient
nodes ("Atkins"
and "Bloggs")

All patient children of
the root node.

The path operator / at the
beginning of a query
indicates that selection
starts at the root node.

/patient

2 therapy
nodes (for

Alltherapydescendants
of the root node.

The path operator // at
the beginning of a query

//therapy

"Atkins" and
"Bloggs")

indicates selection of a
node regardless of its
location within the XML
object.

2 firstname
nodes ("Paul"
and "Fred")

All firstname nodes
that are children of name
nodes that in turn are

The path operator /
indicates the next level in
the hierarchy.

/patient/name/firstname

children of a patient
node.

1 type node
(for "Bloggs")

All type nodes that are
descendants of therapy

The path operator //
indicates any number of

/patient/therapy//type

nodes that in turn areintervening hierarchy
levels. children of a patient

node.

1 patient
node ("Atkins")

All patient nodes that
have a descendant

Equality and relational
operators (=, !=, <, >, <=,

/patient[//surname='Atkins']

surname node with the
content "Atkins".

>=) can be used for
comparison operations.

1 type node
(for "Bloggs")

All type nodes below a
medicationnodewhose

The predicate expression
inside [] filters the set of

//therapy/medication/type
[@form = 'tablet']

attached attribute nodenodes to its left based on
form has the string value
"tablet".

the conditions inside the
brackets. @ selects the
attribute node attached to
an element node.

1 patient
node ("Bloggs")

All patient nodes that
have a value less than

Boolean operators (and,
or) can be used to express
multiple conditions.

/patient[born < 1960 and
//city='Bradford']

1960 for the born element
and a value of "Bradford"
for any city element
below the root node.

The following table contains some typical query expressions using X-Query's text retrieval and
sorting expressions:

X-Query User Guide10

Querying XML Sample Documents



Specific Retrieval
Result

General Retrieval ResultDescriptionQuery Expression

1 occupation node
(for "Atkins")

All occupation nodes that
contain the word value
"Professional".

The contains operator ~=
performs a selection based on
word content. The specified

//occupation
[.~='Professional']

word (case insensitive) is
found irrespective of its
locationwithin the text node.

1 name node (for
"Atkins")

All name nodes that have a
surname child node whose

The contains operator ~= can
be used to perform selection

/patient/name
[surname~='At*']

value contains a word
beginning with "At".

using the wildcard character
*.

1 remarks node (for
"Bloggs")

All descendant remarks
nodes that follow a therapy
node.

The operators before and
after can be used to
perform selection based on
sibling positioning.

//remarks after
therapy

1 patient node (for
"Bloggs")

All patient nodes that have
a born child node whose

The between operator can be
used to perform selection
based on a value range.

/patient[born
between 1950,1953]

value is between 1950 and
1953.

1 patient node
("Atkins")

All patient nodes that have
a child occupation node

The adj operator can be used
to perform selection based on
adjacent value location.

/patient[occupation
~= 'professional'
adj 'diver'] that contains a word

"Professional" immediately
followed by the value "diver".

1 patient node
("Atkins")

All patient nodes that have
an occupation element that

The near operator can be
used to perform selection

/patient[occupation
~= 'professional'
near 'diver'] contains a wordbased on proximity value

location. "professional" immediately
followed by the value "diver"
(or vice versa).

The firstname
elements of the first

All firstname elements
sorted by firstnamewithin
each document.

sortby can be used to sort
the query results to be sorted
in a certain order.

//firstname sortby
(.)

document ("Atkins")
are returned in
sorted order,
followed by the
sorted firstname
elements of the
second document
("Bloggs").

11X-Query User Guide

Querying XML Sample Documents



12



4 Related Information

■ Internal Resources .......................................................................................................................... 14
■ External Resources ......................................................................................................................... 14

13



The X-Query documentation focuses on X-Query as a language. However, since database queries
are the principal means of communicating with the database server, you might have a problem
that arose because of a certain query. If you cannot find the information you require in the X-Query
documentation, please have a look at the following sources of information, all of which also deal
with aspects of querying a Tamino database:

Internal Resources

■ X-Query Reference Guide: This is the complete reference manual, describing all expressions
and functions available in X-Query.

■ How to Query a Database with Tamino X-Query using the Tamino Interactive Interface: This
section describes how to query a database object using the Tamino Interactive Interface.

■ Efficient Queries: X-Query: Here you can find some advice for speeding up your queries.
■ How to write user-defined Query Functions as Tamino Server Extensions: You can use server
extensions to extend the capabilities of X-Query. This section explains how to implement a
server extension in Tamino.

■ Querying Using X-Machine Commands: This section explains how to query a database directly
using HTTP and X-Machine command verbs.

■ Storing Non-XML Objects in Tamino: This section explains how to represent and query objects
that are in some other format, for example Microsoft Word or Excel documents or PDF files.

■ Unicode and Text Retrieval: This section discusses character handling and word recognition. If
you use text retrieval in your queries, this section gives you detailed background information
about how Tamino performs word-wise full-text operations.

■ Character Encoding of XMLobjects: This section discusses the character encoding of XMLobjects
when querying them directly using HTTP and X-Machine command verbs.

External Resources

■ The Namespaces in XML 1.0 specification: This W3C recommendation defines basic language
elements that are used in XPath.

■ The XPath Language Version 1.0 specification: The official XPath specification of the W3C,
which forms the basis of X-Query.

■ XSLT: Programmer's Reference: This book by Michael Kay (published byWrox Press) offers very
detailed information about XPath and XSLT. The second edition covers aspects of XSLT 1.1. For
a solid understanding of XPath, the first edition serves equally well.

X-Query User Guide14

Related Information

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/xpath/
http://www.wrox.com/

	X-Query User Guide
	Table of Contents
	Preface
	1 What is X-Query?
	2 XPath 1.0 and X-Query
	XPath 1.0 in a Nutshell
	From XPath to X-Query
	XPath/X-Query and XML Schema

	3 Querying XML Sample Documents
	4 Related Information
	Internal Resources
	External Resources


