5 software

Tamino

Unicode and Text Retrieval

Version 10.1

April 2018

WEBMETHODS

This document applies to Tamino Version 10.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-UNICODE-101-20180413

Table of Contents

1 Unicode and Text Retrievalccoceiiiiiiiiiiiiiiiiiiiiciiicceiiccecce e 1
The Unicode Character Databaseccccocoviiiiiiiiiiiiiiii 3
Representation and Handling of Characterscccoccooviiiiiiiiiiiiiiiiiiiicinen, 5
Implications Concerning Text Retrievalccocooiiiiiii 8
Customizing Transliterationscccoviiiiiiiiiiiiiiiiiiicc e 10
User-Defined Dictionariescccooiiiiiiiiiiiiiiiiiiiiiciicecccc 13

INAEX o s 15

1

Unicode and Text Retrieval

The Unicode Character DAtahasec.uuviiiiiiiiieiiii e 3
Representation and Handling of Characterscoouviioiiiiiiiiiie e 5
Implications Concerning Text REEVALcoiiiiiieiii e 8
Customizing TranSIEratioNSoooiiiiiiei e 10
User-Defined DICHONAIEScouiiiiiiieiii et 13

Unicode and Text Retrieval

This chapter describes various aspects of Tamino's text retrieval capabilities and how you, as an
administrator, can customize the word recognition process. This has implications for query expres-
sions that use full-text capabilities. In XQuery, this affects text retrieval functions such as
tf:containsText or tf:createNearTextReference; in X-Query, it affects the contains operator

Note: You can customize word recognition only when using the default (white space-separ-

ated) tokenizer. The tokenizer for Japanese cannot be customized.

The representation of characters stored in Tamino is based on the Unicode standard. Unicode is
more than a simple character code such as ASCII, ISO 646 or the ISO 8859 series, since it defines
for each character not only its code position, but also a number of other characteristics, such as
character class, bidirectionality, decomposability, etc. In Unicode, a character can also have a
mapping defined for lower case, upper case, and title case. For example, the character LATIN
CAPITAL U WITH DIAERESIS, which is "U", is treated as "ii" in lower case, and can be decomposed

into "u" and the diaeresis sign. This, among other criteria, is used for determining character equi-
valence, which is important for comparison operations.

A Tamino user might expect "U" in German data to be treated as "ue", so that the query expression
/patient[name ~= "mueller"] would return all name elements that contain a word "Miiller",
"Mueller" or "mueller”, but not "Muller". This behavior is not necessarily desired by all users.
Others might expect "U" to be treated as its base character "U", so the query above would yield a
different result set. In Tamino, for each character a replacement character is defined, which is used
when performing text retrieval using the contains operator. You can therefore model either of
the aforementioned behaviors by changing the default replacement character for each defined
character.

The character class is another important piece of information in the definition of a Unicode character.
In Unicode, this is the “general category” that determines whether a character is, for example, a
left-to-right character, a right-to-left character, a number, or punctuation mark, to name only a
few. In Tamino, the character class also controls word separation. The XQuery functions
tf:containsText and friends as well as the contains operator ~= in X-Query operate on words
and rely on the character class definition.

The following sections explain how the above is defined in Tamino, and how you can customize
the default behavior.

2 Unicode and Text Retrieval

Unicode and Text Retrieval

The Unicode Character Database

The Unicode Character Database (UCD), as defined by the Unicode Consortium, is the basis for
representing and handling characters in Tamino. The UCD is briefly introduced and its mapping
onto Tamino's default character table is explained.

Structure of the UCD Data

Since the default character base in Tamino uses the Unicode character database, it makes sense to
have a look at the properties that are stored with each character. A record in this database consists

of:
Field Name Example Description
Code Value U+00FC The code value that uniquely identifies a

character in Unicode

Character Name

LATIN SMALL LETTER U
WITH DIAERESIS

The reference name of the character

Mapping

General Category L1 The character class

Canonical Combining Classes Used for canonical ordering algorithm
BIDI Category L Determines role in bidirectional text
Character Decomposition 0075 0308 Maximal decomposition of combined

characters; first value is base character

Decimal Digit Value

3 for U+0033

Decimal value of a digit

Digit Value

4 for U+2074 (superscript
four)

Value of a digit, not necessarily decimal

Numeric Value

1/5 for the fraction U+2155

Character with numeric property

Mirrored

Y for "["

Boolean,; if true, the character will be
mirrored in text that is laid out from right to
left

Unicode 1.0 Name

Informative field for old 1.0 name

10646 Comment Field

Informative field for name in ISO 10646

Uppercase Mapping

U+00DC ("U") for U+00FC ("ii")

Upper case equivalent

Lowercase Mapping

U+00FC ("id") for U+00DC (")

Lower case equivalent

Titlecase Mapping

U+01F2 ('Dz") for U+01F3
("dZ")

Title case equivalent

For a detailed explanation, please refer to the Unicode documentation, which is available at ht-
tp://www.unicode.org/. You can also find the Unicode Character Database itself here.

Unicode and Text Retrieval

http://www.unicode.org/
http://www.unicode.org/

Unicode and Text Retrieval

Mapping of the UCD to Tamino

In Tamino, the following fields in the UCD are relevant:

Code Value

General Category

Character Decomposition Mapping
Uppercase Mapping

In addition to the identifying code value, the general category is important in Tamino. It defines
the character class, which also determine a character's behavior in comparison operations and text
retrieval. The following character classes are defined:

character
delimiter
embedded
ignore
number
single

This is sufficient for text retrieval purposes. However, the Unicode standard defines 30 general
categories. They are mapped to Tamino's internal schema as follows:

General Categories Description Character Class in Tamino

Lu, LT, Lt, Lm, Lo, Nd, NT, No, Sm, Sc, Sk, |Letters (Lx), Numbers (Nx) and Symbols|character
So (Sx)

Mn, Mc, Me, Pc, Pd, Ps, Pe, Pi, Pf, Po, Zs, |Mark (Mx), Punctuation (P x), Separator|delimiter
21, Zp, Cc, Cf, Cs, Co, Cn (Zx) and Others (Cx)

This also means that the Tamino character classes embedded, ignored, number and single are initially
not used, since they do not have an equivalent in the UCD. The information is stored as a non-
XML document in the doctype ino:unicode of the system collection ino:vocabulary. You can
access it using the following URI: http://<server>/<database>/ino:vocabulary/ino:unicode/@1. See

the section Implications Concerning Text Retrieval for information about these Tamino character
classes.

| Note: Tamino XML Server supports customization of properties only for the BMP (basic
multilingual plane), i.e. the characters U+0000 to U+FFFF.

4 Unicode and Text Retrieval

Unicode and Text Retrieval

Representation and Handling of Characters

As described in the previous section, Tamino uses the UCD as the basis for its built-in character
database. You cannot alter this database, but you can create a modified version on the level of a
Tamino database using the schema element ino:transliteration. Tamino itself has defined such
a transliteration, which is used to determine the default character handling. You can override the
default handling by defining your own transliteration.

The schema element ino:transliteration is introduced along with the default transliteration.
ino:transliteration
Tamino uses the Unicode database for its own character mapping system. This information forms

part of the schema element trans1iteration in the Tamino namespace http://namespaces.software-
ag.com/tamino/response2 that is prefixed by ino. It has the following structure:

15] RAMNSLITERATION

----- [# ino:kransliceration

- transliteration

[S-e==1 Sequence

[/ * character

e value
e rlass
—e? mapTa
L9 comment

----- 2 comment

----- <1 baseChar

----- <1 translation

----- 29 sepMumber

----- <9 wildchar

----- <P maskchar

----- 29 escapechar

The element ino:translation canhave several attributes and contains a sequence of ino:character
elements with the basic information for any Unicode character. The required attributes of
ino:character define for each contained character a replacement to be used in text retrieval oper-
ations.

Note the following attributes of ino:translation:

Unicode and Text Retrieval 5

Unicode and Text Retrieval

1. ino:baseChar (required)
It is of the XML Schema type boolean so "true" and "false" are the only allowed values.

"true”
Each character is replaced by its base character, which is the first character of the Unicode
property “Character Decomposition Mapping”.

n_n

Example: The Unicode character U+00E9 ("¢") is replaced by "e", since the character decom-
position mapping field is 0065 0301. These code values represent the LATIN SMALL LETTER
E and the COMBINING ACUTE ACCENT.

"false"
All characters are left unchanged.

2. ino:translation (required)
It is of the XML Schema type boolean, so "true" and "false" are the only allowed values.

"true”
Each character is replaced by its uppercase equivalent, which is the value of the Unicode
property “Uppercase Mapping”.

Example: The Unicode character U+00E9 ("é") is replaced by "E", since the uppercase mapping
field is 00C9. This code value represents the LATIN CAPITAL LETTER E WITH ACUTE.

"false"
All characters are left unchanged.

3. ino:comment (optional)
A comment describing the transliteration as a whole.

] Note: If both attributes ino:baseChar and ino:translation are set to "true”, then the re-

"nzn

placement defined by ino:baseChar is performed first. For example, the character "é" is
replaced by "E", because "é" is replaced by its base character "e", which in turn is replaced
by its uppercase equivalent "E".

The element ino:character defines the properties for a single character. It has no contents. The
information is contained in its attributes:

ino:value (required)
The code value; this corresponds to the code value in the Unicode database. You can use any
notation allowed in XML such as:

* the character itself: for example ino:value="0";

" anumerical character reference, either decimal (ino:value="8ü") or hexadecimal
(ino:value="ü");

" a predefined entity reference (one of &:, &1t;, >, &apos:, or ").

ino:class (required)
The character class as defined for Tamino; this is one of character, delimiter, embedded,
ignore, number, or single; it determines how this character behaves when performing text

6 Unicode and Text Retrieval

Unicode and Text Retrieval

retrieval. Initially, the Unicode character property “General Category” is mapped to the class
attribute.

ino:mapTo (optional)
The code values of a character or sequence of characters that replaces the value when perform-
ing text retrieval. Again, you can use any XML-conformant notation. Initially, the Unicode
character property “Uppercase Mapping” is used.

Please note that you override the global settings ino:baseChar and ino:translation if you
use ino:mapTo.

ino:comment (optional)
A comment to describe the definition of this single character. Initially, this attribute is empty.

The Default Transliteration
The following default transliteration is defined on top of the initial built-in character set:

<ino:transliteration ino:baseChar="true" ino:translation="true">
<ino:character ino:value="&" ino:class="character" />
<ino:character ino:value="/" ino:class="character" />
<ino:character ino:value="_" ino:class="character" />
<ino:character ino:value="@" ino:class="character" />
{ino:character ino:value="*" ino:class="character" />
<ino:character ino:value=":" ino:class="character" />
<ino:character ino:value="." ino:class="embedded" />
<ino:character ino:value="-" ino:class="ignore" />
<ino:character ino:value="=" ino:class="delimiter" />
<ino:character ino:value="&1t;" ino:class="delimiter" />
<ino:character ino:value=">" ino:class="delimiter" />
<ino:character ino:value="~" ino:class="delimiter" />
<ino:character ino:value="d" ino:class="character" ino:mapTo="AE" />
<ino:character ino:value="A" ino:class="character" ino:mapTo="AE" />
<ino:character ino:value="0" ino:class="character" ino:mapTo="0E" />
<ino:character ino:value="0" ino:class="character" ino:mapTo="0E" />
<ino:character ino:value="0" ino:class="character" ino:mapTo="UE" />
<ino:character ino:value="U" ino:class="character" ino:mapTo="UE" />
<ino:character ino:value="B" ino:class="character" ino:mapTo="SS" />
<{/ino:transliteration>

This transliteration is used when no other user-defined transliteration has been defined for the
current database. It is stored in the doctype ino:transliteration of the system collection
ino:vocabulary. You can retrieve this information from a running database by querying
ino:transliteration against the collection ino:vocabulary. The result document from Tamino
looks like the one shown above with one difference:

Unicode and Text Retrieval 7

Unicode and Text Retrieval

{ino:transliteration ino:id="1" ino:docname="default" ino:baseChar="true" <«
ino:translation="true">

For a given database, only one transliteration can be active at a time. The currently active translit-
eration carries the ino:1id 1.

Implications Concerning Text Retrieval

A transliteration has implications for the way text retrieval operations are performed. The class
definition of a character determines whether it is recognized as part of a word, as a single word,
as a delimiter, or is ignored. The following list contains information for each character class:

character
This character is always recognized as part of a word. It must be a non-numeric character.

delimiter
This character delimits a word; this also means that it is never part of a word. For example,
the character sequence "a b" is treated as two adjacent words "a" and "b", since the space
character is defined as a delimiter.

You cannot search for this character.

embedded
It depends on the position: This character is ignored at the beginning and end of a word, but
is otherwise recognized as part of a word if it is surrounded by two characters of the same
class. For example, the character sequence ".a.b." is replaced by "a.b".

ignore
This character is always ignored. For example, "a-b" is replaced by "ab".

You cannot search for this character.

number
This character is always recognized as a digit and is part of a number, but not part of a word.
It must be a numeric character.

single
This character is treated as a word by itself. It effectively also separates words. For example,
"a&b" is replaced by the three adjacent words "a", "&" and "b".

Word-Separating Characters

From the UCD and the defined transliteration, you can determine the characters that separate
words from each other. Since all punctuation characters, separators, marks and those classified in
the UCD as “Other” are mapped to the Tamino character class delimiter, there are 1,128 characters
that act as delimiters in a text retrieval operation. Instead of listing all of them, we show in the
following table the delimiting characters of the two character blocks “Basic Latin” (character range
U+0000 to U+007F) and “Latin-1 Supplement” (character range U+0080 to U+00FF):

8 Unicode and Text Retrieval

Unicode and Text Retrieval

Code Value(s) |Character

0000 - 001F |ASCII control codes

0020 SPACE

0021-002A(! " # $ % & " () *
002C-002F|, - . /

003A-003B|:

003F-0040(7 @
005B-005D|C \ 1]

005F _

0078 {

007D }

007F DELETE
0080 - 00AOQ |control codes
00A1 i

00AB «

00AD - (soft hyphen)
00B7

00BB »

00BF ¢

In a default environment, you have to take the default transliteration into account so that &, /, _,
@, *, and : are treated as characters, while <, >, = and ~ are additionally treated as delimiters. In
addition, . is treated as an embedded character and - belongs to the character class ignore.

¢ Tip: For a running database, you can query the collection ino:vocabulary to retrieve the

current list of delimiters:

" XQuery

decTare namespace ino="http://namespaces.softwareag.com/tamino/response2”
input()/ino:transliteration/ino:character[@ino:class="delimiter"]

" X-Query

/ino:transliteration/ino:character[@ino:class="delimiter"]

Furthermore, there is the server parameter "markup as delimiter" that specifies how markup is
treated. By default, markup is not treated as word delimiter.

Unicode and Text Retrieval 9

Unicode and Text Retrieval

Customizing Transliterations

You canuse ino:transliteration to define your own transliteration, which is then used instead
of the default transliteration described in the previous section. After definition, you can use the
Tamino Interactive Interface to process this transliteration. The default transliteration implements
the character handling used in German telephone books by mapping the umlaut characters. An
example demonstrates how to customize this translation and define it in Tamino.

Defining a Custom Transliteration in Tamino

There are two ways of activating a new transliteration in a Tamino database. You can either write
an external transliteration document that conforms to the ino:transliteration schema introduced
above and load it into Tamino, or you can directly use an XQuery expression.

> To Override the Default Transliteration Using External Documents

Make sure that the Tamino database server is running.

1 In the Tamino Interactive Interface, choose the tab Load.
2 Inthe input field Database URL, enter the name of the Tamino database.

3 Inthe Into collection input field, enter "ino:vocabulary/ino:transliteration/default” to overwrite
the default transliteration.

4 Use the Browse button right to the input field Load file button to locate the document with
the custom transliteration.

5 Choose the Load button. Tamino overwrites its default transliteration. You get a response
document similar to the following;:

<ino:response xmins:ino="http:f fnamespaces.softwareaqg.com/tamino/fresponse?2"
mlns: xgl="http:/ /metalab.unc.edu/xql/"=
- <ino:message ino:returnvalue="0">
<ino:messageline=document processing started</ino:messageline:
</ino:messagex»
<ino:object ino:collection="ino:vocabulary" ino:doctype="ino:transliteration" ino:id="2" /=
- <ino:message ino:returnvalue="0":
<ino:messageline>document processing ended</ino: messageline=
<finomessage
</ino:responses

6 In the Tamino Manager, restart the database server so that the changes take effect.

| Note: The attribute ino:docname specifies the transliteration that is active for the current

Tamino database. Only the transliteration that has the attribute element

10 Unicode and Text Retrieval

Unicode and Text Retrieval

ino:docname="default" is used by Tamino. Therefore you must store any custom translit-
eration into the doctype ino:transliteration/default.

You can check your changes by querying ino:transliteration against the collection
ino:vocabulary.

Examples

= Customizations for German
= Separating Numbers from Words

Customizations for German

et Mresnr mresnt

In contrast to the default transliteration, the German umlauts "d", "6", "ii" and their uppercase
equivalents should be mapped to their respective base characters. However, the sharp s ("8")
should still be mapped to the character sequence "SS". In addition, expressions such as
"Laurel&Hardy" should be treated as if they are three words ("Laurel and Hardy") instead of two
words separated by a punctuation character (which would result from the Unicode database set-
tings) or a single word "Laurel&Hardy" as specified by the default for Tamino's
ino:transliteration.

The following transliteration is therefore required:

<?xml version="1.0"7>
<ino:transliteration xmins:ino="http://namespaces.softwareag.com/tamino/response2"
ino:comment="Custom Character Handling"
ino:baseChar="true" ino:translation="true">
<ino:character ino:value="&" ino:class="single" ino:comment="read it as 'and'"/>
{ino:character ino:value="/" ino:class="character" />
<ino:character ino:value="_" ino:class="character" />
<ino:character ino:value="@" ino:class="character" />
<ino:character ino:value="*" ino:class="character" />
<ino:character ino:value=":" ino:class="character" />
<ino:character ino:value="." ino:class="embedded" />
<ino:character ino:value="-" ino:class="ignore" />
<ino:character ino:value="=" ino:class="delimiter" />
<ino:character ino:value="&1t;" ino:class="delimiter" />
<ino:character ino:value=">" ino:class="delimiter" />
<ino:character ino:value="~" ino:class="delimiter" />
<ino:character ino:value="B" ino:class="character" ino:mapTo="SS" />
</ino:transliteration>

Since the mapping to base characters is the Unicode default, there is no need to include extra
definitions for the six umlaut characters. The mapping definition for "fs" is not present in the UCD.
The ampersand, originally classified as a delimiter, now belongs to the class single so that it is
treated as a single word. You could also define it differently so that it really reads as the character
sequence "and", as the comment suggests using;:

Unicode and Text Retrieval 11

Unicode and Text Retrieval

<ino:character ino:value="&

ino:class="single" ino:mapTo="UND" />

Please note that upper case is used here for the value of ino:mapTo so that it is consistent with the
behavior specified by the global ino:transliteration. Also note that literal text is suitable only
for German data.

If you define this custom transliteration as the default for this Tamino database, you can check
this by querying ino:transliteration[@ino:docname="default"] against the collection
ino:vocabulary.

Separating Numbers from Words

Normally, a number is regarded as part of a word, i.e. it is part of a word token. Data such as a

street address or a serial number is therefore tokenized as follows:

Beutelsendstrafle 14b "Beutelsendstrafse" "14b"
XPR0746TU#2

"XPR0746TU" "2"

However, in cases like these you may want to separate numbers from words so that instead the
data is tokenized as follows:

Beutelsendstrafde 14b "Beutelsendstrafie" "14" "b"

XPR0746TU#2

”XPR” ”0746” vlTva ||2lv

You can achieve this by assigning all numbers to the character class "number". This has the effect
that any successive digit forms part of a number token that you can search for in the same way as
a word token: a number token is delimited by any character that belongs to one of the classes
"character", "delimiter", or "single". Conversely, a word token is delimited by any character that
belongs to one of the classes "number", "delimiter", or "single". The corresponding transliteration
is as follows:

<?7xml

version="1.0"7>

<ino:transliteration xmins:ino="http://namespaces.softwareag.com/tamino/response2"
ino:comment="Separating Numbers from Words"

ino:baseChar="true"
:character
<ino:
<ino:
<ino:
<ino:
<ino:
<ino:
<ino:
<ino:
<ino:

<ino

character
character
character
character
character
character
character
character
character

ino

ino:
ino:
ino:
ino:
ino:
ino:

ino

ino:
ino:

:value="0"
value="1"
value="2"
value="3"
value="4"
value="5"
value="6"

:value="7"
value="8"
value="9"

{/ino:transliteration>

ino:
ino:
ino:
ino:
ino:
ino:
ino:
ino:
ino:
ino:

ino:translation="true">

class="number"/>
class="number"/>
class="number"/>
class="number"/>
class="number"/>
class="number"/>
class="number"/>
class="number"/>
class="number"/>
class="number"/>

12

Unicode and Text Retrieval

Unicode and Text Retrieval

You can check your changes by querying ino:transliteration against the collection
ino:vocabulary:

" XQuery

decTare namespace ino="http://namespaces.softwareag.com/tamino/response2”

for $a in input()/ino:transliteration/ino:character
where $a/@ino:class eq "number"
return $a

" X-Query

/ino:transliteration/ino:character[@ino:class="number"]

User-Defined Dictionaries

The tokenizer for Japanese uses a built-in dictionary for word recognition. In addition, you can
supply an optional user-defined dictionary. Entries are added to this dictionary by storing a doc-
ument with all entries, the current and the new ones, in the collection
ino:vocabulary/ino:userDictionary.

This section explains the schema and shows you how to store a dictionary file in Tamino.
ino:userDictionary

The schema element userDictionary in the ino namespace is used to hold user-defined diction-
aries for Japanese in Tamino. It has the following structure:

I |SERDICTICMNARY
._t. ino:userDickionary
El‘i‘u userDictionary
E---=-=-=1 Sequence
: El&* enkry
b word

A userDictionary consists of a sequence of entries, along with an optional comment describing
the dictionary. The element ent ry defines a single dictionary entry. It has no contents. The inform-
ation about a single entry is contained in the following attributes:

Unicode and Text Retrieval 13

Unicode and Text Retrieval

ino:word (required)
One or more code values of Han characters for the respective language. This sequence consti-
tutes a “word” that is not segmented by the tokenizer.

ino:pos (optional)
This attribute is reserved for future use.

ino:comment (optional)
A comment to describe the definition of this single dictionary entry.

The attribute ino:docname determines the dictionary to be used. It has the value "udict-jp".

As an example, you store a user-defined dictionary for Japanese in
ino:vocabulary/ino:userDictionary/udict-jp.

Defining a User Dictionary in Tamino

There are two steps for storing a user-defined dictionary in a Tamino database. First, you have to
write a document that conforms to the ino:userDictionary schema described above. You can
find an example below. In a second step, you can load this user dictionary into Tamino.

> To Store a User Dictionary

Make sure that the Tamino database server is running.

1 Inthe Tamino Interactive Interface, enter the URL of the Tamino database in the field Database
URL.

2 In the Collection input field, enter ino:vocabulary/ino:userDictionary/<dictionary>.

3 Use the Browse button right to the input field of the Process button to locate the dictionary
file.

4 Choose the Process button. Tamino overwrites the current version of that user dictionary.

5 Inthe Tamino Manager, restart the database server so that the changes take effect.

You can check your changes by querying ino:userDictionary against the collection
ino:vocabulary.

14 Unicode and Text Retrieval

Index

D

define

user dictionary, 14
delimiters, 8
dictionary

user defined, 13

T

text retrieval, 1
tokenizer, 2
transliteration, 5

U

UCD (see see Unicode Character Database)
Unicode
general categories, 4
unicode, 1
Unicode Character Database, 3
user dictionary
define, 14

w

word recognition, 1

15

16

	Unicode and Text Retrieval
	Table of Contents
	1 Unicode and Text Retrieval
	The Unicode Character Database
	Structure of the UCD Data
	Mapping of the UCD to Tamino

	Representation and Handling of Characters
	ino:transliteration
	The Default Transliteration

	Implications Concerning Text Retrieval
	Customizing Transliterations
	Defining a Custom Transliteration in Tamino
	Examples
	Customizations for German
	Separating Numbers from Words

	User-Defined Dictionaries
	ino:userDictionary
	Defining a User Dictionary in Tamino

	Index

