5 software

Tamino

HTTP Client API for JScript

Version 10.1

April 2018

WEBMETHODS

This document applies to Tamino Version 10.1 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: HAS-DOC-101-20180413

Table of Contents

HTTP Client API£Or JSCIIPt ...ccviiiiiiiiiiiiiiiiiiiiiic e v
L s 1
1 INtrodUctioncueiiiiiiiic 3
General Functionality ..o 4

Session Managementccccooiiiiiiiiiiiiiiiii i 5

2 Component Profile and Installation ..o 7
Component Profileccccooiiiiiiiiiiiiiiic e 8
Auto-Detect of MSXML3/4coooiiiiiiiiiiiiiicicccccccee e 8

BUsING the API ..o 9
What is Providedc.cccooiiiiiiiiii 10
TaminoLib.js Librarycccccovioiiiiiiiiiiic 10
Instantiating TaminoCHentccociiviiiiiiiiiiiii 10
Performing a QUETYccooouiiiiiiiiiiiiicciccccec e 11

UPdatesoooviiiiiiiiiiii 12

Dynamic HTML ..o 12
Transaction Processing ..o 12

4 EXAIMPLE ..ot e 13
Running the Exampleccccooiiiiiiiiiiic 14
Implementationccoceiiiiiiiiiiiiii 15

IT JScript API Referencecccoviiiiiiiiiiiiiiiiiiiiiicciccci s 21
5 TaminOCHENtooviiiiiiiiiiii 23
Instantiatingccooiiiiiiiiiiiii 24
CONSLANES ..o 24
Properties ... 25

Methodsooiviiiiiiiiiii 28

6 TaminOResUltccooiiiiiii 39
Properties ..ot 40

Methodsooiiiiiiiii 42

Paging Backward and Forwardcccccooiiiiiiiiiiiiiiiiiic, 45

Getting Server INformationc.cocooiiiiiiiiiiiiii 46

Getting Document-Related Informationccccceeiiiiiiiiiiiiiniiiiiin, 47

7 URI oo e 49
Instantiatingcccooviiiiiiiiii 50

Methodsooviiiiiiiic 50

INA@X 1o 53

HTTP Client API for JScript

This document provides information about the HTTP Client API for JScript. On Microsoft Windows,
this API offers a variety of methods and properties which enable applications, written in JScript,
to access and manipulate documents in a Tamino database.

This document is intended for software developers who wish to create applications on the basis
of JScript that access XML databases stored in Tamino. It is assumed that you are familiar with
using the Tamino Manager to create databases, and with using the Tamino Interactive Interface
to load schemas and data and perform XML database queries.

This document contains the following sections:

Introduction

Component Profile and Installation
Using the API

Example

API Reference Documentation

vi

|

L I 1o (1o o] o RSP PUPPPPUR 3
= 2 Component Profile and INStallationcooiuiiiiiiii e 7
B 3 USING T8 AP .ottt e e 9

13

L o 1] o)L SRRSO USSR

1 Introduction

B General FUNCHONAIIEYuiiieii et
B SESSION MANAGEMENT ...ttt e et e e e et e e e et e e ettt e e e e e e e arae e e

Introduction

Client applications can communicate with Tamino using APIs that are available for JScript, Java
and ActiveX. This is more convenient than using the native HTTP protocol. The APIs then com-
municate with Tamino at the HTTP protocol level. The basic functionality of the three HTTP Client
APIs is the same, independent of the language environment. The names of classes and methods
may differ.

The three APIs are called client APIs because the application or program that communicates with
Tamino is a client with respect to the server Tamino. In this context, a servlet would also be a client.
Each of the APIs supports the W3C DOM (Document Object Model) Level 1 specification. The
APIs are also called Tamino DOM APIs. DOM support is implemented in such a way that the API's
methods supply a DOM object as a result, or require a DOM object as input. The programmer can
then use standardized DOM methods and interfaces to further manipulate the result or navigate
through a DOM tree.

The DOM is designed to be used with any programming language. It defines the logical structure
of documents and the way a document is accessed and manipulated. With the Document Object
Model, programmers can build documents, navigate their structure, and add, modify, or delete
elements and content.

For more information about the DOM specification, see http://www.w3.0rg/DOM/.

By supporting the DOM specification, the Tamino APIs not only allow their data to be manipulated
by other routines, but do so in a way that allows those manipulations to be reused with other
DOMs, or to take advantage of solutions already written for those DOMs.

The intention is that any DOM implementation can be plugged together with any DOM-based
application. You can use any DOM implementation that supports the W3C specification, and you
can change the implementation or parts of it later; your application is independent of the imple-
mentation.

General Functionality

The Tamino HTTP Client APIs are object-oriented programming interfaces to Tamino that offer
a variety of methods and properties for communicating with the Tamino X-Machine. The imple-
mented APIs provide the same functionality over all supported platforms unless stated otherwise.

The names of methods and properties may differ depending on the language environment.

The main methods that are provided are listed below. A complete list of all methods and properties
can be found in the API Reference Section of the respective API documentation. The supported
methods can be classified in the following way:

® Methods to manipulate data in Tamino via URLs, such as

" query

4 HTTP Client API for JScript

http://www.w3.org/DOM/

Introduction

" process
" insert
" inodelete
® Methods to manipulate data in Tamino via document names, such as
" putDocument
" getDocument
" deleteDocument
" Methods to control sessions and transactions
" startSession
" endSession
= commit
" rollback
® Methods to manipulate the Tamino query result, such as
" getResult
" getlnold
" getFirst

" getPrev

Session Management

If a program needs to open and close database transactions, then there must be a mechanism that
allows Tamino to keep user contexts. This can be achieved by invoking the StartSession and
EndSession methods of the APIs. The APIs send the commands connect and disconnect via
HTTP to Tamino. This enables Tamino to keep the user context and deliver a session key and
session ID back to the APL Session control is then handled by the API transparently to the user.

If a client program needs to handle session control by itself, there are methods available to get/set
these parameters. For example, it could be possible for a client and server program to share the
same session. The appropriate methods setSessionld, getSessionId, setSessionKey and
getSessionKey are not available in JScript.

The StartSession method also has the optional parameters Isolationlevel and LockWaitMode.
By providing these parameters instead of using the Tamino defaults a more specific security and/or
locking mechanism can be achieved.

For transaction control, the commit and rol1back methods are available. These methods can only
be called during an open session.

HTTP Client API for JScript 5

2 Component Profile and Installation

B COMPONENE PrOfIE L.
B AUIO-DEteCt OF MSXMLI/Ao e

Component Profile and Installation

This chapter provides information about the contents of this Tamino component and the installation.

Component Profile

Here you will find general information about the API and how to use it.

The Tamino HTTP Client API for JScript is installed with the Tamino XML Server installation.

Tamino Component Profile for the HTTP Client API for JScript

Supported Platforms All Windows platforms that support Microsoft Internet Explorer.
Location of Installed Component| < 7aminolnstal1Dir>\SDK\]ScriptAPI (henceforth called <JScriptAPIDir>)
Component Files API JScript file: <JScriptAPID7 r>\TaminoLib.js

Examples:

<JScriptAPIDT r>\examples\ SampleChangeCountry.htm

Sample Schema <TaminolInstallDir>\SDK\]ScriptAPI\ Documentation\examples\ phone\ TelephoneSchema.tsd

Sample Data <TaminolInstallDir>\SDK\]ScriptAPI\ Documentation\examples\phone\ Telephone.xml

> To work with the HTTP Client API for JScript
= Youneed arunning Tamino database server to deploy an API. If you want to access an existing

Tamino database, you must know its URI (such as http://Tocalhost/tamino/mydb). In the
client HTML page, make sure that it refers correctly to the file TaminoLib.js.

Auto-Detect of MSXML3/4

The controls attempt to auto-detect the latest MSXML parser - first MSXML4 and then MSXML3.
This behavior can be overridden. Use the method UseServerHTTP for the ActiveX controls. Use
the SYSTEM environment variable SAG_NODELEVELUPDATE_MSXML (MSXML3/MSXML4) for
NodelLevelUpdate. It is recommended to use MSXML3 with NodelLevelUpdate

8 HTTP Client API for JScript

3 Using the API

B WAt IS PrOVIAEA ...ttt e e e e et e e e e e e e et e e e e e e e n e
TaMINOLIDJS LIDFAIY ...ttt e ettt e e e e et e e e e e e e
Instantiating TamINOCHENT ..o
Performing @ QUETYooiiiiie et
00T 1 PSPPSR PPPPPP
DYNAMIC HTIML .ottt e e et e et e e e e e
L= ST 0 (0 A 0 01=Y 3 o Pt

Using the API

JScript is Microsoft's version of JavaScript. The API described here relies on features of JScript that
are not available in JavaScript.

What is Provided

The API provides a DOM (Document Object Model) oriented interface to Tamino for Windows
systems running Microsoft's Internet Explorer version 5.x or 6.x (IE). The script library can be used
in the IE browser, or in any server-side environment that supports active scripting such as Active
Server Pages (ASP) or Software AG's System Management Hub. This section gives an overview
of the main objects and their methods that are provided in the API, and it indicates the basic pro-
gramming techniques that you can use to access and modify a Tamino database. For a full definition
of the objects and methods provided by the AP, see the section API Reference Section.

TaminoLib.js Library

The functionality of this API, including HTTP communication with the Tamino X-Machine, is
provided in the TaminoLib.js library. This library contains objects and methods for retrieving and
modifying data in a Tamino database. The library is located in the directory <TaminoiIn-
stallDir>\SDK\]ScriptAPI.

Instantiating TaminoClient

One of the first steps in your JScript code is generally to create a TaminoC11ient object. The definition
of this object is provided in the TaminoLib.js library. One of the arguments that you specify when
you create the object defines the database and collection that is to be accessed whenever any of
the object's methods is invoked. The methods provided by this object perform all of the basic
communication operations with Tamino, such as submitting an XML database query or creating,
updating or deleting data.

To create a TaminoC11ient object that can be used to communication with a given Tamino database,
use statements of the form:

var dbname="http://localhost/tamino/mydb/mycollection";
var QueryObj;
Query0bj = new TaminoClient(dbname, ...);

where mydband mycollectionare the names of the database and collection that you wish to access.

10 HTTP Client API for JScript

Using the API

Performing a Query

You can use the query method of the newly-created object to submit a query to the database, using
statements of the form:

var QueryResult;
var QueryVal="xqglquery";
QueryResult = Query0bj.query(QueryVal);

where "xqlquery" is a database query such as Telephone[Address/City="Frankfurt"]. The result
of this operation is an object (named "QueryResult" in this example) that contains the data that
Tamino returns for the query. You can use the getResult method of the QueryResult object to
access the query result element:

var xglResult=QueryResult.getResult();
This creates an object that contains the xq1:result part of the data that Tamino returns.

To get a nodelist, you can now use the DOM method childNodes of the xq1Result object:

var nodelist=xqglResult.childNodes

If many documents in the Tamino database match the query, Tamino restricts the number of
matching documents to the page size that you specified when you created the TaminoClient object.
The default page size is 5. A value of 0 means no limitation'.

To access any given document in the result list, use statements of the form:

var itemSelected;
itemSelected = nodelist.item(n);

where n is the index of the document that you want to access (the indexing starts at 0, not 1).

You can apply various DOM methods to the document thus retrieved. For example, to access the
elements of the document, use the DOM method getETementsByTagName in statements of the form:

var zip;
zip = ¢
itemSelected.getElementsByTagName("elementname").item(0).childNodes.item(0).data;

where elementname is the name of the element.

Microsoft's Internet Explorer contains an implementation of the DOM for JScript, so any HTML
page that contains JScript code has access to the DOM interface when it is viewed in this browser.

HTTP Client API for JScript "

Using the API

Updates

To write a modified node back to the Tamino database, use the process method of the TaminoClient
object, specifying as a parameter the name of the object that contains the modified element, for
example:

var storeResponse = QueryObj.process(itemSelected);
where Query0bj is the TaminoClient object you created previously.

The process method issues a _process request to the X-Machine, thus causing the document to
be updated in the database. Since the root element of each document has a unique value for the
mandatory attribute ino:1id, the document to be modified is identified uniquely.

The process method builds a URL of the form
http://hostname/Databaselocation/DatabaseName/CollectionName?_process="UpdatedDocument"”,
where UpdatedDocument is the contents of the document, and sends this URL to Tamino. See the
section Requests using X-Machine Commands for more details.

Dynamic HTML

You can use Dynamic HTML to build an interactive application that accesses the database, retrieves
data, displays the data in the browser, allows you to change the data, and sends the changed data
back to be stored in the Tamino database.

Transaction Processing

The JScript library TaminoLib.js also includes functionality for transaction processing. You can use
the startSession, endSession, commit and rol1back methods of TaminoClient.

12 HTTP Client API for JScript

4 Example

B RUNNING the EXAMPIE ..o
L 10010l gL o] A PP PP PSSP P P PP PPPPPPPPPPPPPPP

13

Example

This section provides an example of how to use the JScript API to access and modify data in a
Tamino database.

The example accesses a database that contains an extract from a fictitious telephone directory. It
selects all people in the directory who live in Frankfurt, updates their country, then writes the
modified data back into the database. When the HTML page that contains the JScript code is
viewed in a browser, a button containing the text "Press here to start" is displayed. When you
choose this button, the JScript code runs through to completion, updating all country elements as
described. The JScript code does not display the updated database, so to view the changes, either
you can use the Tamino Interactive Interface, or you can view the results in the browser using a
combined URL and an appropriate database query in the browser's address line.

The following sections provide more detail:

Running the Example

To run the example, perform the following steps:

1. Use the Tamino Manager to create a test database. This example assumes that the database
name is mydb. The collection name is Telephone.

2. Use the Tamino Interactive Interface to define the “Telephone” schema that the example requires.
The source file that contains the schema is TelephoneSchema.tsd.

Then use the Tamino Interactive Interface to load the test data from the file Telephone.xml into
the Tamino database.

Data for each person in the telephone directory is stored in an element named Telephone. A
typical Telephone element is:

<Telephone>
<EntryID>127</EntryID>
<LoginName>Wehnerl2/7</LoginName>
<PassWord>Wehnerl27</PassWord>
{Lastname>Wehner</Lastname>
{Firstname>Anton</Firstname>
<Date_of_Birth>05.01.1945</Date_of_Birth>
<Company_Name>KdH AG</Company_Name>
<Salutation>Herr</Salutation>
<Email>Wehnerl27@web.de</Email>
<Address>
<Street>Schulplatz 189</Street>
<City>Darmstadt</City>
SLIP>64287</71P>
<Country>Germany</Country>
<Telephone>06150-113141387</Telephone>
<Fax>06150-1649896197</Fax>

14 HTTP Client API for JScript

Example

4.

</Address>
</Telephone>

At this point, you can check to see how many people in the test database live in Frankfurt by
using the Tamino Interactive Interface to submit the query
Telephone[Address/City="Frankfurt"] to the database.

Open the HTML file SampleChangeCountry.htm (see below) in your browser. This page contains
the embedded JScript code to access and modify the telephone directory. When you view the
HTML page, you will see a button with the text "Press here to start". Choose the button to activate
the JScript code. After a few seconds, the code completes and a result message is displayed in
the browser.

The effect of the JScript code is to change the country of all persons living in Frankfurt. If the
country is "Germany" it is changed to "Deutschland" and vice versa.

Use the query Telephone[Address/City="Frankfurt"] to display the new entries for all people
living in Frankfurt and check that the country elements have changed.

Implementation

The HTML page that contains the JScript source code is SampleChangeCountry.htm (the file is
provided with this software package). The contents are as follows (line numbers are prepended
to simplify the explanations):

SampleChangeCountry.htm

0l1: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
02: <HTML>

03: <HEAD>

04: <TITLE>Test Page for Tamino's JavaScript APIK/TITLE>

05: <SCRIPT LANGUAGE="JavaScript" SRC="..\TaminoLib.js"></SCRIPT>
06: <SCRIPT LANGUAGE="JavaScript">

07: function ChangeCountry ()

08: |

09: var dbname="http://localhost/tamino/mydb/Telephone";

10: var QueryObj;

11: var QueryResult;

12: var itemSelected;

13: var country;

14: var xqlResult;

153 var countdg = 0;

16: var countgd = 0;

17: var QueryVal='Telephone[Address/City="Frankfurt"]l';

18: var pageSize=12;

19:

20: document.write("<P>Processing query '" + QueryVal + "' in database/collection «

HTTP Client API for JScript 15

Example

"" + dbname + "'.");

21:

22 Query0bj = new TaminoClient(dbname,pageSize);
23: QueryResult = QueryObj.query(QueryVal);

24 : if (QueryResult.errorNo == "0") {

253 xglResult=QueryResult.getResult();

26: if (xqlResult)

27 ¢ {

28: var nodelist = xqglResult.childNodes;

29: Query0Obj.startSession();

30: while (nodelist)

31: {

322 for (i=0;i<nodelist.length;i++)

33: {

34 itemSelected = nodelist.item(i);

35: country = «
itemSelected.getElementsByTagName("Country").item(0).childNodes.item(0).data;
36: if (country == "Germany")

372 {

38: ©
itemSelected.getElementsByTagName("Country").item(0).childNodes.item(0).data = <«
"Deutschland";

39: countgd++;

40 b

41: else

42 {

43: ©
itemSelected.getElementsByTagName("Country").item(0).childNodes.item(0).data = «
"Germany";

44 countdg++;

45; b

46: Query0Obj.process(itemSelected);

47 : b

48:

49: QueryResult = QueryResult.getNext();
50: if (QueryResult)

51 ¢ {

52 ¢ xglResult= QueryResult.getResult();
532 nodelist = xqglResult.childNodes;

54 : }

55 3 else

56 {

57 3 nodelist = null;

58: b

59: '

60: QueryQ0bj.commit();

61: Query0bj.endSession();

62:

63: document.write("<P>Processing ended.");
64 : document.write("
Changed " + countdg + " times 'Germany' to <«
'Deutschland'.");

65: document.write("
Changed " + countgd + " times 'Deutschland' to <«

16 HTTP Client API for JScript

Example

"Germany"'.");

66:

67: return(l);

68: }

69: else

70: document.write("<P>No Data Returned");

71: }

72: else

73: document.write("<P>Error = "+QueryResult.errorText);
74:)

75: </SCRIPT>

76: </HEAD>

77: <BODY>

78: <P>Please press the button to start processing ...
79: <form>

80: <input type="button" name="Buttonl" value="Press here to start" <
onClick="ChangeCountry()">

8l: </form>
82: <P>... and wait for the result to be displayed.
83: </BODY>
84: </HTML>

Explanatory Comments

Line 5
{SCRIPT LANGUAGE="JavaScript" SRC="../TaminolLib.js"></SCRIPT> causes the browser
to read in the standard Tamino JScript library from the file TaminoLib.js. This library provides
the low-level HTTP communication between the JScript client (i.e. the current HTML page)
and the Tamino database. See the API Reference Section for a full description.

Lines 7-74
define the function ChangeCountry, which accesses the Tamino database and modifies the
country of anyone who lives in Frankfurt.

Line 80
creates the button that is displayed with the text "Press here to start" in the browser window.
The onC11ck event handler causes the function ChangeCountry to be activated when you choose
the button.

Line 9
var dbname="http://localhost/tamino/mydb/Telephone"; specifies the HTTP address of
the Tamino database mydb and the collection Sample. This example assumes that the database
is on your local machine, so "localhost" can be used in the URL of the database. Be aware that
if you specify the collection name in the URL you cannot specify this or another collection
name in the methods supporting this (optional) parameter. You can use the property XMLDB to
change the URL or collection name if necessary.

Line 17
defines the query that is used in line 23 to retrieve all Telephone elements whose city element
has the value "Frankfurt", i.e. to retrieve the data for all people living in Frankfurt.

HTTP Client API for JScript 17

Example

Line 18
specifies the page size, i.e. the maximum number of Telephone elements that should be returned
per call to the database. The first call will retrieve entries 1 to 12, the next call will retrieve
entries 13 to 24 and so on. The API places no upper limit on the page size you can specify, but
there may be system limitations, such as the amount of memory available on your computer,
which limit the page size.

Line 22
creates the Query0bj instance of the TaminoClient object.

Line 23

invokes the query method of the Query0bj object. This causes the query that is stored in the
QueryVal variable to be sent as an HTTP request to the URL of the Tamino database. The result
document is stored in the QueryResult object. The number of documents that match the query
is limited to the value specified in the pageSize variable. In this example, pageSize was set to
12, so if there are more than 12 documents that match the query, only the first 12 will be re-
turned. To return the remaining documents that match the query, the loop mechanism at line
30 is used.

Line 25
invokes the getResult method of the QueryObj object. This causes the xq1:result element of
the returned result structure to be delivered and stored in the variable xq1Result.

Line 28
extracts the child nodes of the xq1:result element from the result document and stores them
in the variable nodelList. The variable nodelL1ist now contains a set of documents that matched
the query. The childNodes () DOM method returns a DOM nodelList, so DOM methods can
be applied to nodelist.

Line 29
opens a session in Tamino. The session key and session ID that are returned by Tamino are
handled transparently by the API. Using this method enables Tamino to keep the user context
and make transaction control (methods commit and ro11back) possible. In line 60 the updates
are committed by the commit method of the Query0bj object, and in line 61 the session is closed.

Line 30
starts a processing loop which continues as long as there are elements to be processed. During
each pass of the loop, the number of documents specified by the variable pageSize is processed.

Line 32
starts the processing loop, in which each document in turn is retrieved, modified and written
back to the database.

Line 34
uses the DOM 1tem() method to retrieve the current document from the document set stored
in nodelist.

Line 35
uses the DOM getElementsByTagName () method to retrieve the Country element of the current
document.

18 HTTP Client API for JScript

Example

Lines 36-45
change "Germany" to "Deutschland" or vice versa.

Line 46
sends the modified document back to Tamino as an HTTP request that includes the data of
the current document and specifies the X-Machine _process request. This tells Tamino to write
the document to the database.

Line 49
retrieves the next set of documents that match the query by using the getNext () method. As
before, the number of documents that are retrieved cannot exceed the value specified in the
variable pageSize.

Line 50
tests whether any more documents were retrieved.

Line 57
sets nodelist to null if no more documents were returned. This subsequently terminates the
loop processing that starts at line 30.

Line 67
sets a return value of 1 for the function ChangeCountry. This is not strictly required, but it
would allow a JScript statement of the type if (ChangeCountry) {...) elsewhere in the
HTML page to test whether ChangeCountry completed successfully and to take appropriate
action.

Line 74

completes the function ChangeCountry.

Lines 77-83
cause a button with the text "Press here to start" to appear when the HTML page is displayed
in a browser. The onC11 ck attribute causes the function ChangeCountry to be started when the
user chooses the button in the browser window.

HTTP Client API for JScript 19

20

I I JScript APl Reference

This chapter describes the JScript APL

TaminoClient
TaminoResult
URI

Global Properties

You can set global properties either at runtime or by editing.

Property Default Description

XMLHTTP MSXML2 XMLHTTP |Selects ActiveX implementation of
IXMLHTTPRequest interface.

inoDOMSupportsXPath true Should be changed according to XMLDOM setting.

inodScriptDebug off Enable or disable debugging.

inoClientDefaultPageSizel|5 Maximum number of pages in the returned result
set.

inoRealCursoring true Use true cursoring or not.

inoCursorScrollableOn yes Enable or disable backward cursor scrolling.

21

22

5

TaminoClient
B INSEANTATING v eee e 24
B CONSTANES .ttt e e e e e e et e e e et e e e neeeas 24
B PTOPEITIES . eeeet ittt e e ettt e e et e e e e 25
BV IBENOAS .ottt e e e e e e e e e 28

23

TaminoClient

This chapter describes the class TaminoC1ient of the JScript APIL

Instantiating

This constructor has a variable number of parameters. If any parameter is omitted, the correspond-
ing default value is used. The parameters are:

= Database URL
" Page size (default is 5)
= HTTP user name

® HTTP password

Example

var tam = new

TaminoClient(); var tam = new
TaminoClient(http://mypc.mycompany.com/tamino/xml/collection); var tam = new
TaminoClient(http://mypc.mycompany.com/tamino/xml/collection,6, "myname", "mypassword");

Constants

= Transactionality Constants
= Microsoft XMLDOM Node Constants

Transactionality Constants

Name Value Usage

XINOSESSIONID |X-INO-Sessionid |SessionlD returned by Tamino
XINOSESSIONKEY | X-INO-Sessionkey |SessionKey returned by Tamino

YES yes Specifying "LockWaitMode"
NO no Specifying "LockWaitMode"
PROTECTED protected Specifying isolation level
UNPROTECTED unprotected Specifying isolation level
SHARED shared Specifying isolation level

24 HTTP Client API for JScript

TaminoClient

Microsoft XMLDOM Node Constants

Name

s
f=
(]

Usage

NODE_ELEMENT

NODE_ATTRIBUTE

NODE_TEXT

NODE_CDATA_SECTION

NODE_ENTITY_REFERENCE

NODE_ENTITY

NODE_PROCESSING_INSTRUCTION

NODE_COMMENT

NODE_DOCUMENT

O | X || G|]| Q| N -

NODE_DOCUMENT_TYPE

—_
o

NODE_DOCUMENT_FRAGMENT

—_
—_

NODE_NOTATION

[
N

when using Microsoft DOM methods

Properties

= XMLDB

= user

= password

= pageSize

= xmiHeader

= xmlbase

= yserAgent

= acceptlanguage
= yserDefined Headers
= realCursoring

= scrollable

XMLDB

Name XMLDB

Example |tam.XMLDB= "http://mypc.mycompany.com/tamino/xml/collection";

Description | This is the HTTP address of the database that you want to access. The default is null. You must
set up the database path this way if you did not set it up in the constructor. In a browser it may
be restricted to the host where the web server resides. A collection name must be included.

HTTP Client API for JScript

25

TaminoClient

user

Name user

Example |tam.user="myuserid";

Description| This is the user ID that the web server recognizes.

password

Name password

Example |tam.password="mypassword";

Description | This is the password that the web server recognizes.

pageSize

Name pageSize

Example |tam. pageSize=10;

Description | This sets the page size for Tamino queries. The default is 5. A value of "0" means there is no
limitation, all resulting documents are returned.

xmlHeader

Name xmlHeader

Example |tam.xmlHeader="'<?xml version="1.0"2>";

Description| This controls the header that is used when XML documents are sent to Tamino during the
Update, Insert and Process methods The defaultis '<?xml version="1.0"?>". You will
probably not have to change this.

xmlbase

Name xmlbase

Example

Description| This sets an xm1 : base for query responses to override the base URL of TaminoC1ient or the
document URI in case of getDocument.

This is propagated to each TaminoResult object instantiated by the TaminoClient.
26 HTTP Client AP for JScript

TaminoClient

userAgent
Name userAgent
Example |tam.userAgent="WAP1.0"

Description

This controls the value of the HTTP header User-Agent in all HTTP requests. The default value
is something similar to HAS/JscriptTaminoAPILegacy_4_1_4_1/Browser IE6.

acceptLanguage
Name acceptlanguage
Example |tam.acceptlanguage="fr"

Description

This controls the value of the HTTP header Accept-Language in all HTTP requests. The default
is "en".

userDefined Headers

Name userDefinedHeaders
Example
Description [set to an object, this instantiates the object's properties and values to additional HTTP headers.

realCursoring

Name realCursoring

Example |tam.realCursoring="off"

Description| This controls whether cursoring is used or not. It can take either of two values: "on" (default)
or "off". If set to "on", cursoring is selected within sessions.

scrollable

Name scrollable

Example |tam.scrollable="off"

Description | This controls whether backward scrolling within a cursor is used or not. It can take either of
two values: "on" (default) or "off".

HTTP Client API for JScript

27

TaminoClient

Methods

= Configuring the Tamino JScript Object

= Query Operations

= Update Operations

= Binary Operations

= Manipulating XML documents by URL

= Transactionality Support

= Metadata Support

= Diagnosis

= Special Methods requiring filter NodeLevelUpdate.dll

Configuring the Tamino JScript Object

setUserPassword
Name setUserPassword
Example |tam.setUserPassword("myID","mypassword"):
Description| This sets the user ID and password to the parameter values specified. These are only required
if the Tamino web server is using security. If you leave them blank and security is applied then
IE5 will prompt you to supply values. This method is a convenience which allows you to set
the user ID and the password in one call.
Query Operations
xquery
Name xquery
Result Type | TaminoResult
Example |yar tamResult=tamClient.xquery("for $sq in input()/Square return $sq");
Description | This causes an XQuery to be performed. Queries deliver Tamino Result instances. If the query

succeeds with one or more nodes, then they are included in the Tamino Result object in a page.
The maximum size of the page is determined by the client object pageSize attribute. Pages of

pageSize will ONLY be returned if a transactional session is in progress. The next and previous
pages can be read using methods exposed by the Tamino Result object. The setting of the offset

(10 in the example) is optional. It determines the starting offset of the returned nodes.

28

HTTP Client API for JScript

TaminoClient

query

Name query

Result Type | TaminoResult

Example |var tamResult=tam.query('Telephonel[Lastname="Schmidt"]',10);

Description | This causes a X-query to be performed. In addition to User-Agent and Accept-Language Headers,
the Cache Control Header is set to "no-cache". Queries deliver Tamino Result instances. If the
query succeeds with one or more nodes, then they are included in the Tamino Result object in
a page. The maximum size of the page is determined by the client object pageSize attribute. The
next, last, previous or first pages can be read using methods exposed by the Tamino Result
object. The setting of the offset (10 in the example) is optional. It determines the starting number
of the returned documents.

Update Operations
process

Name process

Result Type | TaminoResult

Example |tamResult=tam.process(myelementNode);

Description

The Tamino object attempts to store the element using HTTP/1.1 POST and the _process verb.
In addition to User-Agent and Accept-Language Headers, the Content-Type Header is set to
"application/x-www-form-urlencoded; charset=utf-8". If the attribute ino:id is set to a numeric
value in the domain of ino IDs, the element overwrites the element with this ID if it already
exists, otherwise an error occurs. If no ID is present, a unique ID is assigned. A TaminoResult

object is returned. The document type and the ino:id can be extracted from the Result object.

processNodeList

Name

processNodelist

Result Type

TaminoResult

Example

Description

This processes all element nodes in a DOM nodelist.

HTTP Client API for JScript

29

TaminoClient

processString

Name processString

Result Type | TaminoResult

Example

Description | This processes an XML document as a string. Tamino checks if it is well-formed.

insert

Name insert

Result Type | TaminoResult

Example | tamResult=tam.insert(myelementNode);

Description | This is a variation of the process method to be used when the user wishes to ensure that a
new instance will be created. Any ino:id attribute in the element is reset. As a consequence, a
new ID is assigned by Tamino. A TaminoResult object is returned.

update

Name update

Result Type | TaminoResult

Example |tamResult=tam. update(myelementNode,someINOId);

Description | This is a variation of the process method to be used when the user wishes to ensure that a
specific instance will be overwritten. Any ino:id attribute in the node supplied as a parameter
is ignored; the ID specified in the second parameter is used instead. A TaminoResult Object
is returned. This method call can be used to replace a document with a known ID with another
document. If the ino:id is not assigned, an error occurs.

xqueryUpdate

Name xqueryUpdate

Result Type | TaminoResult

Example |var tamResult = tamClient.xqueryUpdate("update replace
input()/TelephoneBook/entry/nr[.="12345"] with <nr>45678</nr>");

Description | This causes an XQuery update to be performed. Updates deliver Tamino Result instances. If
the update succeeds with one or more nodes then they are included in the Tamino Result object.

30 HTTP Client API for JScript

TaminoClient

inodelete

Name inodelete

Result Type | TaminoResult

Example | tamResult=inodelete(someNode);

Description | The Tamino object attempts to delete the document specified by the node parameter, using
HTTP/1.1 POST and the _delete verb. The node must correspond to a document type known
to the database, and an ino:id attribute must be set to an ID in the database. This is the case if
the node is returned by a query. In addition to User-Agent and Accept-Language Headers, the
Content-Type Header is set to "application/x-www-form-urlencoded;charset=ut{-8".

querydelete

Name querydelete

Result Type | TaminoResult

Example |tamResult=tam.querydelete[someQuery];

Description | The Tamino object attempts to delete all documents that are described by the query. In addition
to User-Agent and Accept-Language Headers, the Content-Type Header is set to
"application/x-www-form-urlencoded; charset=utf-8".

Binary Operations

| Note: Aninitial putBinary request should work without a problem. Subsequent putBinary

requests that are attempting to update an existing document will cause the API to hang,.
This appears to be a problem with the XMLHTTP interface not handling an HTTP 204 re-
sponse correctly. The suggested workaround is to delete the document before attempting

the insert.

getBinary

Name getBinary

Result Type | TaminoResult

Example |yar tamResult = tamClient.getBinary("BIN/BIN/Smiley"); var bytes =
tamResult.BIN;

Description | This causes a GET of the specific binary. The document to retrieve is specified by the first. The
byte array of raw data can be retrieved by inspecting the BIN property of Tamino Result.

HTTP Client API for JScript

31

TaminoClient

putBinary

Name putBinary
Result Type (TaminoResult
Example |yar tamResult = tamClient.putBinary("BIN/BIN/Smiley", "image/gif", bytes);

Description | This causes a binary PUT of the specific byte array. The document type (optional) and document
name is given by the first parameter. The Content-Type is specified by the second parameter.
The third parameter is the byte array of raw data.

Manipulating XML documents by URL

A URL may be relative to the URL value in the XMLDB property, that is to say it may specify the
document type name and identifier only; or it may be absolute, specifying the whole URL.

The identifier is either the ino ID with a prefix of "@", or a document name if it is assigned.

Examples:

dogs/@2536
dogs/black/labrador.xml

http://mypc.mycompany/tamino/xml/animals/dogs/@2536

http://mypc.mycompany/tamino/xml/animals/dogs/labrador.xml

getDocument
Name getDocument
Type TaminoResult

Example |tamResult=tam.getDocument("someDoctype/@9576");

Description| The Tamino object attempts to fetch the document specified by the relative URL, specifying the
document type and the ino:id. An absolute URL is also accepted, using HTTP/1.1 GET. In
addition to User-Agent and Accept-Language Headers, the Cache-Control Header is set to
"no-cache". A Tamino result is returned. The Document element is available in via the method
getResult.

32 HTTP Client API for JScript

TaminoClient

putDocument

Name putDocument

Type TaminoResult

Example |tamResult=tam.putDocument("style/nice.xs1",documentNode);

Description| The Tamino object attempts to store the document specified by the relative URL, using HTTP/1.1
PUT. The User-Agent and Accept-Language Headers are set. A TaminoResult Objectis returned.
GetResult yields null. The HTTP status code can be used to determine if a document is
overwritten or not. 200 implies overwritten; otherwise a new document has been created.

head

Name head

Type TaminoResult

Example (tamResult=tam.head("style/nice.xs1");

Description| The Tamino Client tests the status of a document with the relative URL or absolute URL, using

HTTP/1.1 HEAD. The User-Agent and Accept-Language Headers are set. A Tamino Result
object is returned. GetResult yields null. The HTTP status code can be used to determine if a
document exists or not. In addition, the HTTP headers yield the date last updated if it exists.

deleteDocument

Name deleteDocument

Type TaminoResult

Example |tamResult=tam.deleteDocument("style/nice.xs1");

Description| The Tamino object attempts to delete the document specified by the relative URL or absolute

URLs, using HTTP/1.1 DELETE. The User-Agent and Accept-Language Headers are set. A
TaminoResult object is returned. GetResult yields null. The HTTP status code can be used to
determine if a document was deleted or not.

Transactionality Support

startSession

Name

startSession

Result Type

TaminoResult

HTTP Client API for JScript

33

TaminoClient

Example |tam=new TaminoClient();
tam.XMLDB="http://mypc.mycompany.com/tamino/xml/collection";
tamResult=tam.startSession(); OR
tamResult=tam.startSession(PROTECTED,YES)

Description | The Tamino object attempts to start a transaction session using HTTP/1.1 POST and the _connect
verb. A TaminoResult object is returned. Parameters isolation and lockwait mode can be
specified optionally. Possible value are: IsolationTypes: "protected", "unprotected”,"shared". In
the example constants are used for LockWaitTypes: "yes" or "no" (constants YES or NO can be
used)

endSession

Name endSession

Type TaminoResult

Example |tamResult=tam.endSession();

Description| The Tamino object attempts to end a transaction session using HTTP/1.1 POST and the
_disconnect verb. A TaminoResult object is returned.

commit

Name commit

Type TaminoResult

Example (tamResult=tam.commit();

Description| The Tamino object attempts to commit a transaction using HTTP/1.1 POST and the _commit
verb. A TaminoResult object is returned.

rollback

Name rollback

Type TaminoResult

Example |tamResult=tam.rollback();

Description| The Tamino object attempts to roll back a transaction using HTTP/1.1 POST and the _commit
verb. A TaminoResult object is returned.

34 HTTP Client API for JScript

TaminoClient

inSession

Name inSession

Result Type

Example |if (tam.inSession()) { ... } else { ... }

Description | Returns null if no transaction is in progress, or a non-null value if a transaction is in progress.

Metadata Support

define

Name define

Result Type | TaminoResult

Example |tam=new
TaminoClient("http://mypc.mycompany.com/tamino/xml");
tamResult=tam.define(mySchemaDocumentNode) ;

Description | [mplements the Tamino _define operation. The Tamino URL need only point to a database. An
attempt is made to define a Tamino TSD3 schema corresponding to the node instance.

undefine

Name undefine

Result Type | TaminoResult

Example | tam=new
TaminoClient("http://mypc.mycompany.com/tamino/xml"); // undefine the
collection and all its doctypes tamResult=tam.undefine("myCollectionName");
or // undefine the doctype within the collection
tamResult=tam.undefine("myCollectionName/myDoctype");

Description | [mplements the Tamino _undefine operation. The Tamino URL need only point to a database.
An attempt is made to undefine a collection or doctype within the specified database. All
instances within the doctype(s) described are removed. This works for collections and doctypes
defined in TSD3 representation.

HTTP Client API for JScript

35

TaminoClient

Diagnosis
diagnose

Name diagnose

Result Type | TaminoResult

Example |tamResult=tam.diagnose("ping"); if
(tam.Result.errorNo) // error detected

Description | The TaminoC1ient object sends a diagnose command to Tamino. The various commands are
documented elsewhere.

explainQuery

Name explainQuery

Result Type | TaminoResult

Example tamResult=tam.explainQuery(someQuery); if (tam.Result.errorNo)

//error detected else { //show explanation panel.innerHTML=
tamResult.DOM.documentETement.transformNode(someStylesheet) ;

Description | The TaminoC11ent object sends an ino:explain request command to Tamino to retrieve the
execution plan of the given query. The parameters are the query expression to be explained
and the level of explanation. Please see section ino:explain (Tamino XML Server > X-Query
Language Reference > Functions > ino:explain) for a detailed description of ino:explain.

Special Methods requiring filter NodeLevelUpdate.dll

For Microsoft's Internet Information Server (IIS) there is a special filter available, which is a pre-
requisite for using the following methods of the Tamino APL

Note: The use of the NodeLevelUpdate ISAPI has been set to deprecated.

insertBefore

Name insertBefore

Type TaminoResult

Example |tamResult=tam.insertBefore("/dogs/@2536","dates",DOMnode):

Description | [nserts a child node (third parameter) to the left of the document specified in the relative URL
(first parameter) and the query path (second parameter).

36 HTTP Client API for JScript

TaminoClient

appendChild

Name appendChild

Type TaminoResult

Example | tamResult=tam.appendChild("dogs/@2536","dates",DOMnode);

Description| A ppends a child node (third parameter) as the last child of the document specified in the relative
URL (first parameter) and the query path (second parameter).

replaceChild

Name replaceChild

Type TaminoResult

Example |tamResult=tam. replaceChild("dogs/@2536","dates/date_of_birth",DOMnode);

Description| Replaces a child node specified by the relative URL (first parameter) and the query path
(second parameter) by a new one (third parameter).

removeChild

Name removeChild

Type TaminoResult

Example |tamResult=tam.removeChild("dogs/@2536","dates/date_of_birth");

Description| Removes a child node specified by the relative URL (first parameter) and the path
(second parameter) .

HTTP Client API for JScript

37

38

6

TaminoResult
L 0] 0T 1= PSSO UPPPPRRRR 40
B VIBHNOAS e e e e e e e e e e 42
= Paging Backward @nd FOMWANTooiiiiiiiii e 45
m Getting Server INFOMMETIONo.uiii s 46
= Getting Document-Related INfOrmationoooiiiiiiiiiiii e 47

39

TaminoResult

This chapter describes the class TaminoResult of the JScript APIL

Properties

= errorNo
= errorText
= DOM

= REQ

= |astQuery
= xmlbase
= BIN

errorNo

Name errorNo

Example |yar tamResult =

tamClient.query("Telephone[Firstname="Bil1"']"); if (!tamResult.errorNo) <
{7/ if

no error ...}

Description | This delivers the error number corresponding to the action that created the TaminoResult
object. A zero error value implies that there was no error.

errorText

Name errorText

Example |var tamResult =

tamClient.query("Telephone[Firstname='Bil1']"); if (tamResult.errorNo) ({

alert(tamResult.errorText); return(tamResult.errorNO) } // if no error {
.

Description| This delivers the error text corresponding to the action that created the TaminoResu1t object.
This only can be interpreted if the errorNo property is non-zero.

40 HTTP Client API for JScript

TaminoResult

DOM
Name DOM
Example |var dom = tamResult.DOM; var
newPar=dom.createElement("P"); newPar.appendChild(dom.createTextNode("Mary <
had
a little Lamb"));
Description | This delivers the complete Tamino response as a DOM object (provided it can successfully be
parsed). This has two uses:
= To provide a DOM object to facilitate method calls like createElement, which are only
implemented by the DOM Object.
® For diagnostic purposes. In particular, this object has a property parseError which is non-null
when a parse error has occurred. This object has in turn properties, two of which are
errorCode and reason which explain the parsing error. This is described in the Microsoft
documentation.
REQ
Name REQ
Example |var req = tamResult.REQ; var
status=req.status;
Description| This delivers the XML HTTP request object used to generate the TaminoResult.

The request object is described in the Microsoft Documentation and can be used to obtain further
information about the HTTP request. The following properties are particularly useful:

1. status
The numerical HTTP error status if any. This would be interrogated if an error 8400 was
reported by the Tamino Result. The status value is present in the error message, but it might
be more convenient to obtain it this way. Alternatively, it can be used to determine if a PUT
caused a document to be overwritten or not.

2. statusText
The text corresponding to the numerical status.

The object has the method getResponseHeader, which can be used to pick out specific HTTP
headers in the Tamino response. The most useful is the header which describes when the
document read was last modified. This is returned when getDocument or head methods are
called. It is invoked as follows: var
dateText=testResult.REQ.getResponseHeader("Last-Modified");

HTTP Client API for JScript 41

TaminoResult

lastQuery

Name

lastQuery

Example |yar tamResult = tam.getDocument(somerelativeurl); if
(tamResult.errorNo) alert(tamResult.lastQuery + " gave " +

tamResult.errorText);

Description | This property records the URL used to retrieve the TaminoResult.

xmlbase

Name xmlbase

Example

Description| [not null, it overrides TastQuer y as document base.
BIN

Name BIN

Example |yar tamResult = tamClient.getBinary("Smiley"):

var bytes = tamResult.BIN;

Descript

ion| Delivers the Tamino response as an array of bytes. Only set for a getBinary method call.

Methods

= closeCursor

= nodes

= getResult

= getBooleanResult
= getNumericResult
= getlnold

= getDocType

= getCollection

= getXMLBase

42

HTTP Client API for JScript

TaminoResult

= extractURI

closeCursor

Name closeCursor

Result Type | o1 d

Example |res . closeCursor()

Description | 1f a cursor is open, it will be closed. No error is returned if a cursor is not open or Tamino returns
an error.

nodes

Name nodes

Result Type | DOM Nodelist

Example |var nodelist = tam.nodes(..); if (nodelist) then ..
else ..

Description | [f the query delivers at least one result then the result is a node list of elements, otherwise the
result is null. It is an abbreviation for getResult().childNodes.

getResult

Name getResult

Result Type \ DOM Node

Example |var XQLResult = tamResult.getResult(); if (XQLResult)
then { var nodelist = XQLResult.childNodes; var nodeCount = nodelList.length;

} else ...
Description | [f the operation that created a Tamino result object delivers a query result, then this method

delivers the result wrapper element. Otherwise the method delivers null.

getBooleanResult

Name

getBooleanResult

Result Type

Boolean

Example

Description

Decodes getResult() as aboolean.

HTTP Client API for JScript

43

TaminoResult

getNumericResult

Name getNumericResult

Result Type | Number

Example

Description | Decodes getResult () as a number.

getinold

Name getInold

Example |yar inold = tamResult.getInold();

Description | This delivers the ino:id from the first ino:object element in the Tamino response document. It
is used to obtain the ino:id of the document when a successful store, insert or update is performed.
In the case of other operations the value returned is null.

getDocType

Name getDocType

Example |yar docType = tamResult.getDocType();

Description| This delivers the document type from the first ino:object element in the Tamino response

document. It is used to obtain the document type of the document when a successful store,

insert or update is performed. In the case of other operations the value returned is null.

getCollection

Name getCollection

Example |yar col = tamResult.getCollection():

Description| This delivers the collection name from the first ino:object element in the Tamino response
document. It is used to obtain the collection name of the document when a successful store,
insert or update is performed. In the case of other operations the value returned is null.

getXMLBase

Name getXMLBase(elementNode)

Result Type | St ring

Example

Description | Calculates the xm1 : base value for this node in the result document.

44 HTTP Client API for JScript

TaminoResult

extractURI

Name extractURI(elementNode, attribute)

Result Type | St ring

Example

Description | Extracts an absolute URI from the attribute within the element node taking the xm1:base

information into account. The document base is the value of the 1astQuery property, which
may be overriden by the property xmlbase. This is useful in the XLink context.

Paging Backward and Forward

= getNext
= getPrev
= getFirst
= getlast
= refresh
getNext
Name getNext
Result Type | TaminoResult
Example | tamResult=tamResult.getNext();
Description | This causes a query for the next page of results to be performed. The transaction context is that
of the original object where the query was performed. The resultisa TaminoResult object
getPrev
Name getPrev
Result Type | TaminoResult
Example |tamResult=tamResult.getPrev();
Description | This causes a query for the previous page of results to be performed. The transaction context
is that of the original object where the query was performed. The resultisa TaminoResult
object.

HTTP Client API for JScript

45

TaminoResult

getFirst

Name getFirst

Result Type | TaminoResult

Example | tamResult=tamResult.getFirst();

Description | This causes a query for the first page of results to be performed. The transaction context is that
of the original object where the query was performed. The resultis a TaminoResult object.

getLast

Name getlast

Type TaminoResult

Example |tamResult=tamResult.getlast();

Description| This causes a query for the last page of results to be performed. The transaction context is that
of the original object where the query was performed. The result is a Tamino result object. This
feature delivers null in Tamino versions 2.x.

refresh

Name refresh

Type TaminoResult

Example |tamResult=tamResult.refresh();

Description | This causes a page of query results to be regenerated. The transaction context is that of the

original object where the query was performed. The resultis a TaminoResult object. The user
might call this after invoking inodelete to remove an item from a page, to show the page
again.

Getting Server Information

= getTaminoVersion

46

HTTP Client API for JScript

TaminoResult

= getServer

getTaminoVersion

Name getTaminoVersion

Type String

Example (tamResult=tam.diagnose("ping"); if (tamResult.errorNo)
{ ... // error detected } else { var
taminoVersion=tamResult.getTaminoVersion(); }

Description| The TaminoResult object extracts the Tamino version from the Tamino response. This value
is available from every Tamino response.

getServer

Name getServer

Type Date

Example (tamResult=tam.diagnose("ping"); if (tamResult.errorNo)
{ ... // error detected } else { var taminoServer=tamResult.getServer();
}

Description| The TaminoResult object extracts the server name from the Tamino response. This value is

available from every Tamino response.

Getting Document-Related Information

= getLastModified
= getContentType

getLastModified

Name getlastModified

Type Date

Example |tamResult=tam.getDocument(someURL); if

(tamResult.errorNo) f{ . // error detected } else { var docDateTime new

Date(); docDateTime=tamResult.getlastModified(); }

Description

The TaminoResult object extracts the date and time of the last modification from the Tamino
response. For getDocument () and head() it corresponds to the date-time when the specified
document was most recently modified.

HTTP Client API for JScript

47

TaminoResult

getContentType

Name getContentType

Type String

Example |tamResult=tam.head(someURL); if (tamResult.errorNo) {

. // error detected } else { var contentType=tamResult.getContentType();
}

Description| The TaminoResult object extracts the content type from the Tamino response. This value is
available from every Tamino response. Normally this is "text/xml" for XML documents. However,
for non-XML documents it is the document's respective content type (for instance, "image/gif").

48 HTTP Client API for JScript

7

URI

B INSEANTATING v eee e

= Methods

49

URI

This chapter describes the class URI of the JScript API. It implements some auxiliary functions that
are useful for processing URIs.

Instantiating

This constructor has one parameter: the URI as a string.

Example

var myURI = new
URI("http://mypc.mycompany.com/tamino/myDB"); var myURI = new
URI("mydoctype/head.xml");

Methods

toString
isAbsolute

= rebase
extractURI
getXMLBase

= fruncateAtHash

toString

Name toString()
Result Type | St ing

Example

Description | Returns the URI argument as a string.

isAbsolute

Name isAbsolute()
Result Type |5t i ng

Example

Description (Returns true if the URI argument is an absolute UR], i.e., it contains the name of a protocol,
otherwise false.

50 HTTP Client API for JScript

URI

rebase

Name

rebase(URI)

Result Type

String

Example

Description

Takes the URI and a base parameter URI and returns a rebased URI. This method conforms to
the URI rebasing algorithm documented in IETF RFC 2396.

extractURI

Name

extractURI(elementNode, attribute)

Result Type

String

Example

Description

Extracts an absolute URI from the attribute within the element node, taking the xm1:base
information into account. The document xm1 : base is the URL

getXMLBase

Name

getXMLBase(elementNode)

Result Type

String

Example

Description

Calculates the xm1 : base value for this node in its document context. The document xm1 :base
is the URI.

truncateAtHash

Name

truncateAtHash()

Result Type

String

Example

Description

Returns the URI argument truncated before the first occurrence of "#", if any.

HTTP Client

API for JScript 51

52

Index

E

example
Tamino HTTP Client for JScript, 13

install
Tamino HTTP Client for JScript, 7

0]

overview
Tamino HTTP Client for JScript, 3

R

reference
client
Tamino HTTP Client for AJScript, 23
result
Tamino HTTP Client for AJScript, 39
uri
Tamino HTTP Client for AJScript, 49

S

structure
Tamino HTTP Client for JScript, 7

U

use
Tamino HTTP Client for JScript, 9

54

	HTTP Client API for JScript
	Table of Contents
	HTTP Client API for JScript
	I
	1 Introduction
	General Functionality
	Session Management

	2 Component Profile and Installation
	Component Profile
	Auto-Detect of MSXML3/4

	3 Using the API
	What is Provided
	TaminoLib.js Library
	Instantiating TaminoClient
	Performing a Query
	Updates
	Dynamic HTML
	Transaction Processing

	4 Example
	Running the Example
	Implementation
	SampleChangeCountry.htm
	Explanatory Comments

	II JScript API Reference
	Global Properties
	5 TaminoClient
	Instantiating
	Constants
	Transactionality Constants
	Microsoft XMLDOM Node Constants

	Properties
	XMLDB
	user
	password
	pageSize
	xmlHeader
	xmlbase
	userAgent
	acceptLanguage
	userDefined Headers
	realCursoring
	scrollable

	Methods
	Configuring the Tamino JScript Object
	setUserPassword

	Query Operations
	xquery
	query

	Update Operations
	process
	processNodeList
	processString
	insert
	update
	xqueryUpdate
	inodelete
	querydelete

	Binary Operations
	getBinary
	putBinary

	Manipulating XML documents by URL
	getDocument
	putDocument
	head
	deleteDocument

	Transactionality Support
	startSession
	endSession
	commit
	rollback
	inSession

	Metadata Support
	define
	undefine

	Diagnosis
	diagnose
	explainQuery

	Special Methods requiring filter NodeLevelUpdate.dll
	insertBefore
	appendChild
	replaceChild
	removeChild

	6 TaminoResult
	Properties
	errorNo
	errorText
	DOM
	REQ
	lastQuery
	xmlbase
	BIN

	Methods
	closeCursor
	nodes
	getResult
	getBooleanResult
	getNumericResult
	getInoId
	getDocType
	getCollection
	getXMLBase
	extractURI

	Paging Backward and Forward
	getNext
	getPrev
	getFirst
	getLast
	refresh

	Getting Server Information
	getTaminoVersion
	getServer

	Getting Document-Related Information
	getLastModified
	getContentType

	7 URI
	Instantiating
	Methods
	toString
	isAbsolute
	rebase
	extractURI
	getXMLBase
	truncateAtHash

	Index

