
Tamino

Performance Guide

Version 10.1

April 2018

This document applies to Tamino Version 10.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1999-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: INS-PERFORMANCE-101-20180413

Table of Contents

Performance Guide .. v
1 Use of Database Parameters .. 1
2 Data Modeling ... 3
3 Tuning Schemas and Queries .. 5

Using Structure Index .. 6
Basic Indexing .. 7
Result Size .. 8

4 Advanced Indexes ... 9
General Considerations .. 10
Unique Keys ... 10
Multipath Index ... 13
Computed Index .. 21
Compound Index ... 22
Reference Index .. 27
Selectivity of Compound and Reference Index ... 31

5 Efficient Queries: XQuery .. 33
Using Indexes ... 34
Constructors ... 34
Disjunctive Predicates .. 36
Negated Predicates ... 36
Value Range Predicates .. 37
Position Range Predicates .. 38
Join Ordering .. 39
Index-only Joining .. 40
Index-based Processing of Aggregation Function ... 42
Function Inlining .. 43

6 Efficient Queries: X-Query .. 45
Efficient X-Queries ... 46
Very Fast Queries ... 47

7 Query Processing Analysis .. 49
8 Suppressed Lookup of Index Entries .. 51
9 Hardware Configuration ... 53

Where to look? ... 54
CPU .. 54
Virtual Memory .. 55
Disk I/O .. 55
Tuning TCP/IP .. 56
Tamino in a Multi-User Environment .. 56

10 Performance Tuning - A Case Study ... 57
Index ... 59

iii

iv

Performance Guide

Performance as discussed in this document refers to the speed with which Tamino can index,
store, and retrieve data. It is influenced by many different factors, such as your overall working
environment, including hardware configuration and web access, the way your Tamino database
is set up and tuned, and how your data is mapped and indexed. Also, your schema definition
plays a decisive role. This guide provides information about how you can optimize Tamino
performance with regard to the factors mentioned above. The following aspects are covered:

Lists parameters and shows how to configure them to increase
overall performance.

Use of Database Parameters

Describes how to design an efficient data model.Data Modeling

Shows principles for efficient schemas and queries.Tuning Schemas and Queries

Describes additional possibilities for indexing data.Advanced Indexes

Describes how to design efficient queries with XQuery.Efficient Queries: XQuery

Describes how to design efficient queries and very fast queries with
X-Query

Efficient Queries: X-Query

Shows how to retrieve information about the execution plan of a
query.

Query Processing Analysis

Shows how to create load lists for quicker indexing.Suppressed Lookup of Index Entries

Gives advice about an efficient hard- and software configuration
for Tamino.

Hardware Configuration

Describes a practical example for performance tuning.Performance Tuning - A Case Study

v

vi

1 Use of Database Parameters

Tamino has about 30 database parameters, some of which influence overall performance. In the
following table, you will find a short description of the parameters that influence performance
and recommendations about how to set them. For a general description of database parameters,
see Tamino Manager, Creating a Database.

Description/PerformanceName

Server Properties

This is the size of the buffer pool of the Tamino Server. The higher this value is set, the
shorter the I/O waiting times. The maximum should not exceed the size of physical

Buffer pool size

memory in order to avoid swapping (keep other memory consuming resources in
mind!). If Tamino starts receiving regular page faults, the value is probably too high
compared to the size of the physical memory.

Tip: In general, enlarging the buffer pool will lead to less I/Os and thus to better
performance, as long as the system is not swapping and as long as the buffer pool is
fully used (this can be checked using the Database Activity display of System
Management Hub). A good practice is increasing the buffer pool by a constant value
(for example 200 MB) and to simultaneously check the buffer pool hit rate within the
DatabaseActivity display. As long as the hit rate increases, performance improvements
are to be expected. As soon as the buffer pool hit rate does not increase any longer
when increasing the buffer pool size the optimumsetting has been surpassed.Obviously
the buffer pool can't be exceeded beyond the memory available.

This is the size of the internal dynamic working pool of the Tamino server. It is used
to keep result sets and for sorting. If this parameter is set too low, information will be
written to temporary working space which leads to disk I/O.

Dynamic pool size

XML request loggingmay degrade performance to a small extent. Hence, performance
data gained from XML request logging should be handled with care.

Request log file
maximum size

XML Properties

This is the number of threads used to process XML commands,which can be processed
in parallel. If no XWT is available (too many parallel requests), the request will be kept

XML work threads
(XWT)

in a queue. The thread is busy until the result is sent or an error occurs. If the value is

1

Description/PerformanceName

too high, the threads may impede each other. On the other hand, if the value is too
low, applications doing updates may become too slow due to locking.

This specifies whether Tamino should create a word fragment index when the search
type is set for text indexing. This accelerates the resolution of queries involving text

Word fragment
index

strings such as name~="*string*", which would find name nodes whose values
contain "string". Specifying "yes" for the word fragment index thus enhances the
performance of queries, but negatively impacts performance and space consumption
when loading and indexing data.

The index can be switched on and offwith the TaminoManager. The change is effective
from the next start of the Tamino server. Note that switching on this parameter for a
database that already contains data will result in very long startup times for the first
server start after the enabling of the index. If you switch the word fragment index on
or off, we recommend that you shut down and start up the database and then take a
backup before you make any content changes to the database.

The maximum duration of each request is limited to the specified number of seconds.
If a request takes longer than the limit that is specifiedwith this parameter, the request
will be aborted, and an error message is returned.

XML maximum
request duration

This parameter defines the capacity of the document cache that is used for XQuery
processing for each request. Document caching improves the performance of certain

XQuery document
cache size

queries like join queries or sort-by queries where the sorting is not done via an index.
Also certain XQuery update statements can benefit from a big document cache. The
capacity of the XQuery document cache is specified in MB. The default capacity is 20
MB. For applications with a high parallel query load it may be necessary to reduce the
parameter.

Performance Guide2

Use of Database Parameters

2 Data Modeling

The first step to efficiently use Tamino is to get the data model right. The following aspects should
be considered:

■ The document types should implement whole business objects and documents. You should
avoid “relational” designs such as firstNormal Form. Business objects represented by an ensemble
of flat tables are not suitable for native XML databases. In some cases, however, it may be neces-
sary to split a large business object into several documents.

■ Avoid large documents. Large documents can slowdownprocessing considerably. For example
the current Tamino version compresses documents larger than 32 KB to save disk space and to
speed up disk access (see also chapter Result Size). However, it is possible to “reassemble”
many small documents back together into one large document by using joins and projections
in XQuery.

Also, when a single document contains several business objects, youmay run into performance
problems due to locking conflicts. Because locks are set on the document level, you would lock
all business objects contained in the updated document, even if a certain business object is not
affected by the update. This will prohibit other users from concurrently accessing or updating
these business objects, depending on the isolation level.

■ If a document contains clearly identifiable “hot spots” and “cold areas”, i.e. a small area is ac-
cessed frequently while another large area is accessed only rarely, consider separating these
two areas into two documents. Thiswill increase the processing speed for the frequently accessed
area.

■ Sometimes it can be appropriate to re-introduce redundant data elements in order to speed up
retrieval. The downside to this is that updating becomesmore complicated and takesmore time.

3

4

3 Tuning Schemas and Queries

■ Using Structure Index .. 6
■ Basic Indexing .. 7
■ Result Size .. 8

5

You can influence the performance of Tamino by adhering to the following general principles:

■ Before defining indexing information for your Tamino schema, you should as far as possible
anticipate what type of query is most likely to be run against which nodes. These nodes are the
candidates for index information.

■ In decidingwhether to index a nodewith a text or a standard index, remember that a text index
provides optimal performance only when text search operations will be used in queries.

■ Consider using a word fragment index only in those cases where it is absolutely necessary - by
default, this option is set to no because using the word fragment index causes substantial over-
head (all possible word fragments must be extracted from words and stored as index values).
A word fragment index is only useful in combination with a text index. For details, see the
chapter on Indexing in the Advanced Concepts documentation.

■ Using unreasonable queries can be detrimental to performance. The more specific or direct the
query, the faster the response.

■ Consider whether your intended usage scenario would benefit from multipath indexes, com-
pound indexes and reference indexes.

The success and speed of a query run against the Tamino database depends on the combination
of index type defined for an XML object and the type of query that will be run against it. Another
factor is the mapping type that determines where the object is stored. If typical requests of the
application are known, the index types can then be set to support the most typical queries.

This section examines these factors and indicates the settings that are most likely to bring you
optimal performance.

Using Structure Index

The default value "CONDENSED" on the structure-index attribute on the Doctype specifies that
instance nodes not explicitly mapped in the schema will be registered in the structure index. This
provides index support for wildcard and descendant operators in structural queries for nodes not
mapped in the schema and thus improves query performance in those cases, in which there are
no resulting documents. If you use for example the query "_XQL=a/b" with a condensed index,
the result shows that the path a/b does not exist in the respective doctype. Thus query performance
increases.With a condensed index, Tamino's optimizer knows if the index information is complete.
Queries with wildcards (*) or the path operator (//) are much faster.

A full description of general attributes is given in Tamino XML Schema Reference Guide.

An enhanced query performance can be achievedwith the use of the value "FULL" for the structure
index. In this case, the structure index shows which path occurs in which document. The value
"FULL" causes all instance nodes not defined in the schema to be registered by their structure and
therefore significantly improves the performance of queries for such nodes. Another situation,
where the "FULL" structure index is very useful is the case where optional elements in the schema

Performance Guide6

Tuning Schemas and Queries

are used in queries and there are only a few document with this optional element in the database.
The price for using this setting is a slower load operation and a larger index. Though the default
value is recommended for most applications, the value "FULL" has its value in situations in which
heterogeneous instances of a doctype are expected with a number of element names that may not
be known at schema definition time. As with other mapping aspects that impact performance, it
is a trade-off between loading time and index size on the one hand and expected nature of the
documents and queries on the other.

The value "No" is also recommended for documents with known elements in a random structure
(for example, XHTML).

Basic Indexing

Text Index
The text index creates an index for full text search capabilities. This index type is optimal for
retrieval of words, as it supports the contains operator (see tf:ContainsText) , as well as the
operators "adj" (see tf:ContainsAdjacentText) and "near" (see tf:ContainsNearText). Ex-
amples of using this operator are:

_xql=/patient[name/surname~='atkin*']

_xquery=declare namespace ↩
tf="http://namespaces.softwareag.com/tamino/TaminoFunction
for $p in input()/patient
where tf:containsText (/$p/name/surname, "atkin*")
return $p

One of the effects of the contains operator is that the request is normalized, basically meaning
that the request is not case-sensitive (however, this behavior depends on the settings of the
schema element ino:transliteration; for a detailed description see section Representation
and Handling of Characters in Unicode and Text Retrieval). The effect of the wildcard character
(*) is that all instances of "patient" are found whose surnames contain a word starting with
"atkin".

Note that a text index creates an index for the whole content of the node. Node content in this
sense means the concatenation of all descendant nodes (but not attribute nodes) that contain
text. Setting a text index on intermediate nodes should therefore be practiced with caution.

The impact of a text index on performance is that creating index data takes time, which is an
important consideration when loading data. The more data is loaded, the greater the impact
on load time. You must therefore use it with a degree of caution rather than liberally.

Text indexing is not possible for data stored into doctypes with the noConversion flag set.

7Performance Guide

Tuning Schemas and Queries

Standard Index
Define all primary and foreign keys used in the conceptual model as index of type standard.

Nodes that are used as sort criteria should be defined as indices of type standard also.

With a standard index, if an element has a string data type of xs:string, a string index is
created. For this element, only string comparisons can be handled via the index, making the
internal lookup much faster, and numeric comparisons are done without an index lookup. In
the case of the "=" operator, the index is used for a preselection. Similarly, if the element has a
numeric data type of xs:integer or xs:float, only numeric comparisons can be handled by
the index. String comparisonsmust be donewithout an index lookup. Thus, if an element born
has a numeric index, then born > 1950will generally be answered much faster than born >
"1950" because this element has a numeric index, but no string index.

Standard and Text Index
For performance reasons, it is recommended to use this type of indexing only if it is absolutely
necessary, because it means both a text and a standard index is created. Thismay lead to slower
indexing operations.

However, this index type has its uses. An example of this is if you wish to search for patients
whose surnames start with “At” (requires text index) but you also want to accelerate sorting
the output alphabetically by surname (requires standard index).

Result Size

The size of the query result set should be small, because the following rule applies: The larger the
size of the result data, the longer the query response time. Especially on large databases, it is easy
to construct queries which deliver large amounts of data. That is a very time-consuming process.
There are two reasons for the time consumption:

■ Tamino has to construct the result set in memory first.
■ Then all the data must be transferred from the server to the client.

If you are not sure if the size of the result datawill block the system, it is recommended to compute
the expected size of the query result set. Use the function count(), or a cursor, or formulate
queries which will request the ino:id of the XML instances instead of the whole data (e.g.:
/my_doctype[ac~="willi"]/@ino:id). In the following query, use the ino:id to retrieve the data.

Alternatively, you can use cursoring to restrict the result set to a subset of the documents that
match the query. For more information, see for example the section The cursor command in the
X-Machine Programming documentation.

Performance Guide8

Tuning Schemas and Queries

4 Advanced Indexes

■ General Considerations .. 10
■ Unique Keys ... 10
■ Multipath Index ... 13
■ Computed Index .. 21
■ Compound Index ... 22
■ Reference Index .. 27
■ Selectivity of Compound and Reference Index .. 31

9

In addition to the well-known standard and text indexes, Tamino offers the following advanced
indexes:

■ unique keys
■ multipath indexes
■ computed indexes
■ compound indexes
■ reference indexes

The impact on performance of these indexes is discussed in this chapter. You should be familiar
with the syntax and concepts of these indexes as described in the Tamino XML Schema Reference
Guide and the Tamino XML Schema User Guide. The information is organized under the following
topics:

General Considerations

The purpose of indexes is to improve query performance.However, this is done at the disadvantage
of a higher disk space consumption and a higher effort when documents are inserted, modified
or deleted. Thus it should be thoroughly considered if it is really necessary to create an index
(which means there are enough queries that can benefit from the index) and whether the disad-
vantages can be tolerated.

Unique Keys

From a logical point of view, a unique key is just an assertion: Tamino guarantees that each value
of a unique key appears only once within the doctype. Internally, Tamino uses an index for each
unique key in order to easily keep track of the already existing values. In addition to their main
task of duplicate detection, these indexes are also used during query evaluation. Hence, unique
keys can improve query performance.

If a unique key is definedwith one component field, a standard indexwill be created for that field.
If there are several fields, a compound indexwill be created at the root element. The example below
shows a schemawith unique key definitions, followed by a schema that shows the indexes created
by Tamino (note that the original schema is not modified by Tamino, the second schema is just
shown to illustrate the index creation). Hence, from a performance point of view, a unique key
behaves either like a standard index or like a compound index.

Performance Guide10

Advanced Indexes

Schema with unique key definitions:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "unique">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "A">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 <tsd:unique name = "simple-key">
 <tsd:field xpath = "D"></tsd:field>
 </tsd:unique>
 <tsd:unique name = "compound-key">
 <tsd:field xpath = "B/@b"></tsd:field>
 <tsd:field xpath = "C"></tsd:field>
 </tsd:unique>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "A">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "B">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension>
 <xs:attribute name = "b" type = "xs:string" use = "required">
 </xs:attribute>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name = "C" type = "xs:string"></xs:element>
 <xs:element name = "D" type = "xs:string"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

11Performance Guide

Advanced Indexes

Corresponding schema with indexes created by Tamino:

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "unique">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "A">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 <tsd:unique name = "simple-key">
 <tsd:field xpath = "D"></tsd:field>
 </tsd:unique>
 <tsd:unique name = "compound-key">
 <tsd:field xpath = "B/@b"></tsd:field>
 <tsd:field xpath = "C"></tsd:field>
 </tsd:unique>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "A">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard>
 <tsd:field xpath = "B/@b"></tsd:field>
 <tsd:field xpath = "C"></tsd:field>
 </tsd:standard>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "B">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base = "xs:string">
 <xs:attribute name = "b" type = "xs:string" use = "required">
 </xs:attribute>
 </xs:extension>

Performance Guide12

Advanced Indexes

 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element name = "C" type = "xs:string"></xs:element>
 <xs:element name = "D" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard></tsd:standard>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Note: Although Tamino automatically creates indexes in order to implement unique key
constraints, it is recommended to explicitly define the corresponding index in the schema
if you rely on the performance improvement. Tamino will detect when an index definition
matches a unique key constraint, and only one index will be created. The benefit is that
such an explicitly defined index will survive if the unique key constraint is modified or re-
moved.

Multipath Index

A multipath index is an index that covers several paths: if each of those paths had its own index,
the correspondingmultipath index can be seen as the union of those indexes. As a feature,multipath
is an add-on option for other indexes. It can be used with standard, compound, and text indexes.
See the respective section in theTaminoXMLSchemaReference Guide for detailed rules about creating
a multipath index.

The multipath feature supports queries in the following scenarios:

■ Highly-connected structures: Global elements or attributeswith index are referenced frommany
places in the schema (whichmight become a problemas the number of distinct indexes is limited).

■ Recursive structures: Each occurrence of an element or attribute in a recursive structure is to be
indexed.

13Performance Guide

Advanced Indexes

■ Arbitrary path sets: Arbitrary path sets can be combined into one multipath index, if the rules
apply (paths have to have the same type of index and the same data types).

The following examples illustrate these scenarios.

Highly-connected Structures

This example schema has several types of chapters, each of which has a title which is defined in
a global element. The title has a text index, and instead of defining a separate index for each possible
path, one common multipath index is defined which is used for any possible path to the Title
element.

Example: Highly-connected Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "highly-connected">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "Document">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Title" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text>
 <tsd:multiPath>allTitlesIndex</tsd:multiPath>
 </tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name = "Document">
 <xs:complexType>
 <xs:sequence>

Performance Guide14

Advanced Indexes

 <xs:element name = "Chapter1">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Title"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "Chapter2">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Title"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "Chapter3">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Title"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This multipath index is used in an optimal way by queries like the following (the first example
query uses XQuery syntax, followed by the same example in X-Query syntax respectively):

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d//Title, "some text")
return $d

_XQL = /Document[.//Title ~= "some text"]

It finds all documents where an arbitrary title, regardless of its path, fulfils the search criterion.
The result is found by performing one index lookup. Without the multipath index, there has to
be a separate index for each path, and the result of several index lookups had to be combined by
an OR operation.

The next example evaluates the criterion against one particular path:

15Performance Guide

Advanced Indexes

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d/Chapter1/Title, "some text")
return $d

_XQL = /Document[Chapter1/Title ~= "some text"]

This query also makes use of the multipath index. But as the index has no knowledge about the
path in which a particular value occurs, the index can only deliver a superset of the real result.
From the viewpoint of the index, the criterion could be fulfilled by Chapter1 or Chapter2 or
Chapter3. This superset has to be filtered by post-processing.

Recursive Structures

This example schema defines a chapter that has a title, and that contains a nested chapter. The
title has a text index.Without amultipath index, there is no chance to index every possible nesting
level. Using tsd:which, only a finite number of nesting levels can be explicitly indexed.

Recursive Schema

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "recursive">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "Document">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Document">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref = "Chapter"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "Chapter">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Title" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>

Performance Guide16

Advanced Indexes

 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text>
 <tsd:multiPath>nestedTitlesIndex</tsd:multiPath>
 </tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element ref = "Chapter" minOccurs = "0"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

The queries supported by this multipath index are very similar to the highly-connected scenario.

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d//Title, "some text")
return $d

_XQL = /Document[.//Title ~= "some text"]

This query finds all documents where an arbitrary title, regardless of its nesting level, fulfils the
search criterion. The result is found by performing one index lookup.Without themultipath feature,
this query can only be supported by indexes if every actually occurring nesting level of Title is
explicitly indexed by a tsd:which statement.

The next example evaluates the criterion against one particular nesting level:

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d/Chapter/Chapter/Title, "some text")
return $d

_XQL = /Document[Chapter/Chapter/Title ~= "some text"]

This query also makes use of the multipath index. But as the index has no knowledge about the
nesting level at which a particular value occurs, the index can only deliver a superset of the real
result: from the viewpoint of the index, the criterion could be fulfilled by Chapter/Title or
Chapter/Chapter/Title, and so on. This superset has to be filtered by post-processing.

17Performance Guide

Advanced Indexes

Arbitrary Path Sets

The previous examples are based on the use of global elements (which is of course mandatory for
recursion). The multipath feature, however, is not restricted to global elements. The following
example shows a document that has an introduction with a subtitle, and two chapters with a title
(where each title is modeled locally under its parent). Each of these three title definitions has its
ownmultipath definition.As these definitions specify the samemultipath label, the schema actually
defines one multipath index, with three participating paths.

Example: Arbitrary Path Set

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "path-set">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "Document">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Document">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Introduction">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Subtitle" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text>
 <tsd:multiPath>allTitles</tsd:multiPath>
 </tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>

Performance Guide18

Advanced Indexes

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "Chapter1">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Title" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text>
 <tsd:multiPath>allTitles
 </tsd:multiPath>
 </tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name = "Chapter2">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Title" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text>
 <tsd:multiPath>allTitles
 </tsd:multiPath>
 </tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>

19Performance Guide

Advanced Indexes

 </xs:complexType>
 </xs:element>
</xs:schema>

Queries similar to the following examples make use of the multipath index:

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d/Introduction/Subtitle, "some text")

or tf:containsText ($d//Title, "some other text")
return $d

_XQL = /Document[Introduction/Subtitle ~= "some text"
or .//Title ~= "some other text"]

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d/Introduction/Subtitle, "some text")
return $d

_XQL = /Document[Introduction/Subtitle ~= "some text"]

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d/Chapter1/Title, "some text")
return $d

_XQL = /Document[Chapter1/Title ~= "some text"]

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
where tf:containsText ($d/Chapter1/Title, "some text")

and tf:containsText ($d/Chapter2/Title, "some other text")
return $d

_XQL = /Document[Chapter1/Title ~= "some text"
and Chapter2/Title ~= "some other text"]

In all these cases, post-processing is required to filter the result of the index scan. The reason is
again that the index has no knowledge about the path in which a particular value occurs.

Performance Guide20

Advanced Indexes

Computed Index

A computed index is even more powerful than a multipath indexes, with the current restriction
that a computed index may be neither a text index nor a compound index. Instead of adding the
index definition to all nodes (or paths) to be included in a multipath index, the computed index
refers to an XQuery function which is defined in a module stored in Tamino via the QName of
the XQuery function. This XQuery function may compute one or more index entries based on ar-
bitrary nodes and their values in the XML document being stored in a doctype.

A computed index consists of:

■ an XQuery module defining the indexing function(s)
■ the schema defining the computed indexes referring to the indexing functions
■ an XQuery query taking advantage of the computed index by using the indexing function, for
which the root node of each document will passed as an argument. The indexing function must
be used either in a comparison or in an "order by" clause.

An indexing function must have the following signature:

■ Exactly one parameter of type "node()";
■ The return type is theQNameof a known simple type; at themoment itmust be a type predefined
by XML Schema. Hence, a QName such as "xs:integer" might be specified, with an additional
occurrence indicator such as "?" or "*". A return types such as "node()" or "item()"with an optional
occurrence indicator is not acceptable.

The type attribute of tsd:computed, which is typically the same as the declared return type of the
indexing function, must specify a simple type that is predefined in XML Schema.

For examples and additional aspects, please refer to the following documentation sections:

■ XML Schema User Guide > Appendix 5: Example Schemas for Indexing
■ XQuery User Guide > Advanced Usage > Defining and Using Modules
■ X-Machine Programming > Maintaining Tamino Indexes
■ Machine Programming > Requests using X-Machine Commands > _admin

21Performance Guide

Advanced Indexes

Compound Index

A compound index combines values from different component fields into one index value. The
following schema has a Name element with Firstname, Initial, and Lastname children. There is
a compound index located at the Name element, having Firstname, Initial, and Lastname as
components (in that sequence).

Example: Compound Index

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "compound">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "Document">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Document">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Name" maxOccurs = "unbounded">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard>
 <tsd:field xpath = "Firstname"></tsd:field>
 <tsd:field xpath = "Initial"></tsd:field>
 <tsd:field xpath = "Lastname"></tsd:field>
 </tsd:standard>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Firstname" type = "xs:string"></xs:element>

Performance Guide22

Advanced Indexes

 <xs:element name = "Initial" type = "xs:string"></xs:element>
 <xs:element name = "Lastname" type = "xs:string"></xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Here are some example documents for this schema:

<Document>
<Name>

<Firstname>Paul</Firstname>
<Initial>J</Initial>
<Lastname>Bloggs</Lastname>

</Name>
</Document>

<Document>
<Name>

<Firstname>Fred</Firstname>
<Initial>M</Initial>
<Lastname>Bloggs</Lastname>

</Name>
<Name>

<Firstname>Paul</Firstname>
<Initial>J</Initial>
<Lastname>Atkins</Lastname>

</Name>
</Document>

For the first document, the value (Paul,J,Bloggs) is added to the compound index; for the second
document, the values (Fred,M,Bloggs) and (Paul,J,Atkins) are added (the tuple notation is used
here only for readability purposes, internally Tamino uses a compact serialization format). The
following query will make use of the compound index:

for $d in input()/Document
for $n in $d/Name
where $n/Firstname = "Paul"

and $n/Initial = "J"
and $n/Lastname = "Bloggs"

return $d

23Performance Guide

Advanced Indexes

_XQL = /Document[Name[Firstname = "Paul"
and Initial = "J"
and Lastname = "Bloggs"]]

This query finds the first document, the second one does not match because the values Paul and
J appear under one Name element, and the value Bloggs under another. The query optimizer detects
the compound index and scans the index for the value (Paul,J,Bloggs) which is composed from
the parts given in the query. Thus, the query can be answered by one index lookup, although it
consists of several criteria. Without a compound index, each component had to have its own
standard index (in order to have an index-supported query), and several separate index lookups
would be necessary.

Moreover, this example shows a much greater performance improvement than only saving index
lookups. The criteria are:

■ The compound index is hosted by the Name element, which means that the compound values
are built relative to Name,

■ and the Name element has a multiplicity greater than 1.

In otherwords, the values of the example compound index are grouped by Name elements.Without
the compound index,when each component has its own standard index, there is no such grouping,
and the index does not know to which occurrence of the Name element a particular value belongs.
Thus, when executing the given query against three separate indexes, the index lookup will also
find the second document (because all requested values appear somewhere in that document),
and a subsequent postprocessing step is needed to find the correct result. This unnecessary reading
of the second document is avoided with the compound index.

This first query example contains predicates for each component of the compound index. But the
compound index can also be used if less predicates appear in the query. The rule is:

■ The set of predicates in the query has to refer to the components of the compound index from
left to right (in definition sequence).

■ The predicates have to be connected by and.
■ The and operation must be in the scope of the location of the compound index (for example,
with the compound index on the Name element, the andmust combine paths relative to Name).

■ The predicates have to be “=” comparisons, with the exception of the last predicate in definition
sequence which may be an arbitrary relational comparison operator.

The following query examples illustrate this rule. The first set of queriesmakes use of the compound
index, and postprocessing is not necessary:

Performance Guide24

Advanced Indexes

for $d in input()/Document
for $n in $d/Name
where $n/Firstname = "Paul"
return $d

_XQL = /Document[Name[Firstname = "Paul"]]

for $d in input()/Document
for $n in $d/Name
where $n/Firstname > "Paul"
return $d

_XQL = /Document[Name[Firstname > "Paul"]]

for $d in input()/Document
for $n in $d/Name
where $n/Firstname = "Paul"

and $n/Initial = "J"
return $d

_XQL = /Document[Name[Firstname = "Paul"
and Initial = "J"]]

for $d in input()/Document
for $n in $d/Name
where $n/Initial = "J"

and $n/Firstname = "Paul"
and $n/Lastname < "Bloggs"

return $d

_XQL = /Document[Name[Firstname = "Paul"
and Initial = "J"
and Lastname < "Bloggs"]]

The next set of queries makes use of the compound index, but an additional postprocessing step
is needed because the predicates do not fulfill the rule described above. The query optimizer selects
those predicates that fulfill the rule in order to find a minimal superset of the final result using
the compound index:

for $d in input()/Document
for $n in $d/Name
where $n/Firstname = "Paul"

and $n/Lastname = "Bloggs"
return $d

25Performance Guide

Advanced Indexes

_XQL = /Document[Name[Firstname = "Paul"
and Lastname = "Bloggs"]]

for $d in input()/Document
for $n in $d/Name
where $n/Firstname = "Paul"

and $n/Initial > "J"
and $n/Lastname > "Bloggs"

return $d

_XQL = /Document[Name[Firstname = "Paul"
and Initial > "J"
and Lastname > "Bloggs"]]

The following query cannot use the compound index because there is no predicate for the first
component (Firstname):

for $d in input()/Document
for $n in $d/Name
where $n/Initial = "J"

and $n/Lastname = "Bloggs"
return $d

_XQL = /Document[Name[Initial = "J"
and Lastname = "Bloggs"]]

The following query cannot use the compound index because the and operation is not in the scope
of the element hosting the compound index (the Name element):

for $d in input()/Document
where $d/Name/Firstname = "Paul"

and $d/Name/Initial = "J"
and $d/Name/Lastname = "Bloggs"

return $d

_XQL = /Document[Name/Firstname = "Paul"
and Name/Initial = "J"
and Name/Lastname = "Bloggs"]

Disk Space Considerations

Compound indexes should be used very carefully if one or even several of the components are
multiple (relative to the element hosting the compound index), whichmeans in the example above
if a Name could consist of several Firstnames. In this case, all possible value combinations (the
cross-product) are built and added to the index, so that the index can become very large.

Performance Guide26

Advanced Indexes

Reference Index

A reference index consists of two parts:

■ The actual reference index (denoted by tsd:reference) is specified at a particular path in the
schema. All document occurrences of that path are then assigned a node ID which is unique
across the doctype.

■ Other indexes (standard, text, compound) located below the reference index can refer to that
reference node by specifying tsd:refers.

Specifying a reference index makes sense only if

■ the reference node has a multiplicity greater than 1,
■ and there are at least two referencing indexes.

The schema used for compound indexes (simplified by leaving out the Initial element) is now
reformulated using a reference index. Firstname has a text index, and Lastname has a standard
index, both referring to the Name element:

Example: Reference Index

<?xml version = "1.0" encoding = "UTF-8"?>
<xs:schema xmlns:tsd = ↩
"http://namespaces.softwareag.com/tamino/TaminoSchemaDefinition"
 xmlns:xs = "http://www.w3.org/2001/XMLSchema">
 <xs:annotation>
 <xs:appinfo>
 <tsd:schemaInfo name = "reference">
 <tsd:collection name = "MyCollection"></tsd:collection>
 <tsd:doctype name = "Document">
 <tsd:logical>
 <tsd:content>closed</tsd:content>
 </tsd:logical>
 </tsd:doctype>
 </tsd:schemaInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:element name = "Document">
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Name" maxOccurs = "unbounded">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>

27Performance Guide

Advanced Indexes

 <tsd:reference></tsd:reference>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name = "Firstname" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:text>
 <tsd:refers>/Document/Name</tsd:refers>
 </tsd:text>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 <xs:element name = "Lastname" type = "xs:string">
 <xs:annotation>
 <xs:appinfo>
 <tsd:elementInfo>
 <tsd:physical>
 <tsd:native>
 <tsd:index>
 <tsd:standard>
 <tsd:refers>/Document/Name</tsd:refers>
 </tsd:standard>
 </tsd:index>
 </tsd:native>
 </tsd:physical>
 </tsd:elementInfo>
 </xs:appinfo>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

Here are two example documents.

Performance Guide28

Advanced Indexes

<Document>
<Name>

<Firstname>Paul</Firstname>
<Lastname>Bloggs</Lastname>

</Name>
</Document>

<Document>
<Name>

<Firstname>Fred</Firstname>
<Lastname>Bloggs</Lastname>

</Name>
<Name>

<Firstname>Paul</Firstname>
<Lastname>Atkins</Lastname>

</Name>
</Document>

When these documents are stored, each Name element is assigned a unique ID, and the values for
the other indexes are built as usual. The semantic of a referencing index, however, is different:
while a classic index contains the information “the value 'Bloggs' appears in the document with
ino:id 17”, a reference index says “the value 'Bloggs' appears in the Name node with ID 5”. Thus,
a reference index achieves a grouping effect similar to the one described for compound indexes:
the values Fred and Bloggs are grouped under the first Name node of the second document, and
the values Paul and Atkins are grouped under the second Name node.

Queries can make use of this scenario if

■ there are predicates on the referencing index that are combined by an and,
■ and the and operator is in the scope of the reference index.

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
for $n in $d/Name
where tf:containsText ($n/Firstname, "Paul")

and $n/Lastname = "Bloggs"
return $d

_XQL = /Document[Name[Firstname ~= "Paul"
and Lastname = "Bloggs"]]

The index lookups on Firstname and Lastname and the subsequent intersection find the only Name
node that fulfills the criteria, postprocessing is avoided. Without a reference index, the index
lookup would find both documents (because the values Paul and Bloggs appear somewhere in
both documents), and only postprocessing will find the correct result.

In such a scenario, the query performance is improved significantly because the and operation can
be performed on the level of the Name element instead of the document level. On the Name element

29Performance Guide

Advanced Indexes

level, the intersection delivers already the final result, no document is read from disk only to be
rejected by the postprocessor (which would happen without a reference index).

The following example queriesmake use of the reference index, but there is no performance benefit
compared to classic indexes.

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
for $d in input()/Document
for $n in $d/Name
where tf:containsText ($n/Firstname, "Paul")
return $d

_XQL = /Document[Name[Firstname ~= "Paul"]]

This query has only one predicate, thus there is no improvement because there is no intersection
on the Name element level. Similarly, there would be no improvement if the query had several
predicates combined with or.

The next query uses an andwhich is not in the scope of the Name element. The intersection is on
the document level, and the correct result could also be found by classic indexes without postpro-
cessing.

for $d in input()/Document
where $d/Name/Firstname = "Paul"

and $d/Name/Lastname = "Bloggs"
return $d

_XQL = /Document[Name/Firstname = "Paul"
and Name/Lastname = "Bloggs"]

Actually, the latter examples should be avoided with a reference index. The index lookup of a
referencing index (e.g. Firstname) delivers node IDs of the reference index (Name in this example).
These node IDs have to be transformed to document IDs. This is unnecessary overhead if the same
result can be achieved by classic indexes. In a “good” reference index scenario, this overhead also
exists, but it is by far compensated by saving unnecessary document reads.

Reference Index versus Compound Index

Both reference index and compound index achieve performance improvements in more or less
the same scenario where index values can be grouped relative to a particular node that has a
multiplicity greater than 1.

Hence the question comes up which one should be preferred if both can be applied. The general
recommendation is to use a compound index if it satisfies the query requirements. The reason is
that a reference index needs more overhead, as described above.

Performance Guide30

Advanced Indexes

But a compound index is not always feasible. A reference index is more flexible: It can work with
all index types (while a compound index is always a standard index), and it can be nested (there
may be several levels with tsd:reference).

Selectivity of Compound and Reference Index

As pointed out in the previous chapters, the performance improvement that can be achieved with
compound and reference indexes heavily depends on the grouping of values relative to particular
nodes (the tsd:referencenode or the node atwhich the compound index is defined). The selectivity
of a compound or reference index is much higher compared to classic standard indexes if these
value groups identify a much smaller result set than without grouping.

In order to determine the selectivity improvement, two different count queries can be issued. The
first one counts the number of documents that represents the query result:

{-- query based on the compound index example --}

count
(

for $d in input()/Document
for $n in $d/Name
where $n/Firstname = "Paul"

and $n/Initial = "J"
and $n/Lastname = "Bloggs"

return $d
)

_XQL = count (/Document[Name [Firstname = "Paul"
and Initial = "J"
and Lastname = "Bloggs"]])

{-- query based on the reference index example --}

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
count
(

for $d in input()/Document
for $n in $d/Name
where tf:containsText ($n/Firstname, "Paul")

and $n/Lastname = "Bloggs"
return $d

)

31Performance Guide

Advanced Indexes

_XQL = count(/Document[Name[Firstname ~= "Paul"
and Lastname = "Bloggs"]])

The second one counts the number of documents that had to be read if there was no reference or
compound index, and which had then to be presented to the postprocessor:

{-- query based on the compound index example --}

count
(

for $d in input()/Document
where $d/Name/Firstname = "Paul"

and $d/Name/Initial = "J"
and $d/Name/Lastname = "Bloggs"

return $d
)

_XQL = count (/Document[Name/Firstname = "Paul"
and Name/Initial = "J"
and Name/Lastname = "Bloggs"])

{-- query based on the reference index example --}

declare namespace tf="http://namespaces.softwareag.com/tamino/TaminoFunction"
count
(

for $d in input()/Document
where tf:containsText ($d/Name/Firstname, "Paul")

and $d/Name/Lastname = "Bloggs"
return $d

)

_XQL = count(/Document[Name/Firstname ~= "Paul"
and Name/Lastname = "Bloggs"])

If these numbers differ significantly for a representative set of values, this is a good indication to
define a compound or a reference index (depending on which one is feasible).

Performance Guide32

Advanced Indexes

5 Efficient Queries: XQuery

■ Using Indexes ... 34
■ Constructors ... 34
■ Disjunctive Predicates .. 36
■ Negated Predicates ... 36
■ Value Range Predicates ... 37
■ Position Range Predicates .. 38
■ Join Ordering .. 39
■ Index-only Joining ... 40
■ Index-based Processing of Aggregation Function ... 42
■ Function Inlining .. 43

33

This chapter describes how to increase the performance of Tamino XQuery 4. The following topics
are covered:

Using Indexes

XQueries perform much faster if indexes can be used. If an element or attribute is often referred
to in a query, it is recommended to define a standard index upon this item in the schema. If this
item ismoreover used for text retrieval, as, for example, with the contains() function, a text index
is even more appropriate.

An index - although defined in the schema - might not be used when executing the query. This
happens in cases where the connection between the database items to be retrieved and the schema
entry upon which the index is defined is not recognized. Reasons for this may be an open-content
schema or a path expression in the query that contains element steps, thus passing element
definitions for which an anyType content model is defined. So for using indexing from within
queries, try to keep the areas of uncertain structure very limited, i.e. use close-content schemas
and only allow anyTypewhere absolutely necessary.

Constructors

Constructors are very helpful to generate XML structures within a query. But used in the wrong
way, constructors can degrade the query performance considerably.

Avoid Unnecessary Constructors

First of all, you should avoid constructing XML structures that do not belong to the final query
result. The following query gives an example for unnecessary XML construction:

for $a in input()/bib/book
where for $b in $a/title

where tf:containsText($b,"XQuery")
return <true/>

return $a

The constructor in the return clause of the nested sub-query creates a true element that just indicates
the occurrence of a node that satisfies the given search predicates. It is far better to return the
matching node:

Performance Guide34

Efficient Queries: XQuery

for $a in input()/bib/book
where for $b in $a/title

where tf:containsText($b,"XQuery")
return $b

return $a

Avoid Sorting the Results of an XML Construction

According to the XQuery draft, the result of an XML construction loses all the type information
of the parts it has been constructed from. For example, the following query creates a book list
where each entry contains a book element with two attributes holding the title and the publishing
year:

for $a in input()/bib/book
return <book title="{$a/title}" year="{$a/@year}"/>

To sort the result by the publishing year, a sort by clause can be appended to the query. Since the
year attribute of the constructed year attribute has lost all of its type information, an xs:integer()
casting function has to be applied to get the correct ordering:

for $a in input()/bib/book
return <book title="{$a/title}" year="{$a/@year}"/>
sort by(xs:integer(./@year))

Amore severe consequence of the construction is that the optimizer is not able to perform an index-
based sorting. This makes the above query very slow if applied to a big document set. To get
around this problem, the sort by clause should be moved to the for clause:

for $a in input()/bib/book
sort by(./@year)

return <book title="{$a/title}" year="{$a/@year}"/>

Due to the order preserving property of an FLWOR expression in XQuery, the ordering created
by the sort by clause is maintained.With the newly introduced order by clause, the query can also
be stated like this:

for $a in input()/bib/book
sort by(./@year)
order by $a/@year

return <book title="{$a/title}" year="{$a/@year}"/>

35Performance Guide

Efficient Queries: XQuery

Disjunctive Predicates

Queries with complex search predicates involving “and” and “or” operations are difficult to
evaluate efficiently.Most problematic are “or” operations,whichmay cause index access operations
returning big result sets. The number of “or” operations can be reduced if they are applied on
comparison predicates that read the same elements or attributes. For example, assuming that we
want to get all the entries in a bibliography referencing a book written by Heinrich or Thomas
Mann. The query can be stated like this:

for $b in input()/bib/book
where $b/author[last = "Mann" and (first ="Heinrich" or first ="Thomas")]
return $b

The search predicate of the query can be simplified in the following way:

for $b in input()/bib/book
where $b/author[last = "Mann" and first =("Heinrich","Thomas")]
return $b

The query compares the content of the “first” element with the sequence (“Heinrich”,“Thomas”).
According to the definition of the general comparison in XQuery, this means that the comparison
is successful if the content of the “first” element is either equal to “Heinrich” or “Thomas”. The
big advantage of using this kind of predicate is that only index access is performed during evalu-
ation.

Negated Predicates

Tamino 4.4 introduces the index-based evaluation of negated predicates in XQuery expressions.
For negating expressions, XQuery provides the fn:not() function. For example, to find those
books that do not have any title with the value “Data on the Web” the not() function can be used
as shown in the following query:

for $a in input()/bib/book
where not($a/title = "Data on the Web")

return $a

The followingmore complex example query retrieves all books except those thatwere not published
in 2000 and written by Dan Suciu:

Performance Guide36

Efficient Queries: XQuery

for $a in input()/bib/book
where not($a/@year = 2000 and $a/author[first="Dan" and last="Suciu"])

return $a

Beside comparison predicates, the fn:not() function is also useful in combination with text-re-
trieval predicates. The following query that retrieves all books that do not have the word “Web”
in their title illustrates this:

for $a in input()/bib/book
where not(tf:containsText($a/title, "Web"))

return $a

Also, the absence of elements or attributes can be checked via the not function:

for $a in input()/bib/book
where not($a/author)

return $a

The query finds all books with an empty author list. In summary, index-based evaluation for
negated predicates is supported for the following predicate types:

■ Comparison predicates on elements and attributes
■ Text-retrieval predicates
■ Existence checks on elements and attributes

Value Range Predicates

A value range query queries a value range by a conjunctive of two predicates affecting the same
node. One predicate specifies a lower bound, and the other specifies an upper bound. For example,
the following query finds all books published between 1996 and 2001.

for $a in input()/bib/book
let $y := $a/@year
where $y >= 1996 and $y<= 2001

return $a

Queries with value range predicates can be optimized by accessing a standard index. Therefore,
the value range predicates have to be identified and propagated to a standard index access. For
identifying a given conjunction of two comparisons as value range predicate, it has to be verified
that both comparisons are acting on the same node. Therefore, the following restrictions hold:

■ Node expression must be a variable, variables must be equal for both comparisons.
■ If one comparison is a general one, the node delivered by the variable must not be multiple.

37Performance Guide

Efficient Queries: XQuery

As a consequence of the given restrictions, the value range predicate of the example query can be
optimized, if the year element is not multiple concerning the book element.

Position Range Predicates

A position range predicate is a predicate qualifier that selects a range of items from a given input
sequence. Therefore, it provides a lower and an upper bound for the position of the items that
should be part of the result. The following query provides an example for a position range predicate:

(input()/bib/book) [position() >= 10 and position() < 20]

The query selects those “book” elements with a position greater than or equal to 10 and less than
20. Special range predicates result from implicit lower or upper bounds. The following query selects
the first 10 books of the given doctype.

(input()/bib/book) [position() <= 10]

Here the lower bound is implicitly given. In the next query, the upper bound is implicitly given.

(input()/bib/book) [position() >= last() - 10]

The query selects the last ten books in the given doctype. The following list gives some examples
of range predicates that can be optimized.

■ [position() < last() –10]

■ [position() > last() – 10]

■ [position () > 10 and position() < 21]

■ [position () < 21 and position() > 10]

Position range predicates are optimized by reducing the number of documents that have to be
read during query execution. The prerequisite is that the cardinality of the document set that is
read by scanning an index or a doctype is not changed during post-processing. This means that
the query must not contain path expressions that deliver more or less than a single item for each
document. Another point is that all search predicatesmust be completely processed using an index
access. Assuming that the following assumptions are true:

■ Every document of the “bib” doctype holds exactly one title element.
■ A document of the “bib” doctype may hold more than a single author element.
■ There is a standard index on the title element.

Performance Guide38

Efficient Queries: XQuery

Examples of queries that can be optimized are given in the following list.

■ (input()/bib/book/title) [position() < last() –10]

■ (for $b in input()/bib/book where $b/title = "Data on the Web" return
$b) [position() < last() –10]

■ (for $b in input()/bib/book where $b/author = "Dan Suciu" return $b)
[position() < last() –10]

Examples for queries that cannot be optimized are:

■ (input()/bib/book/author) [position() < last() –10]

■ (let $b := input()/bib/book where $b/title = "Data on the Web" return
$b) [position() < last() –10]

Join Ordering

Due to XQuery’s ordered datamodel, the order of “for” clauses in a FLWORexpression is relevant.
This means Tamino does not change the order of “for” clauses in a FLWOR expression. Thus you
should reorder the “for” clauses manually, if the result order does not matter. A rule of thumb is
to start with “for” clauses that iterate expressions that produce small results and that can be eval-
uated via an index access. For example:

Instead of

for $a in input()/customer,
$b in input()/vendor
where $b/@vno = $a/vno and $b/vname = "Schmidt"

return
<customers_of_vendor>
{ $b/vname }
{ $b/@vno }
{ $a/custname }
</customers_of_vendor>

Use:

39Performance Guide

Efficient Queries: XQuery

for $b in input()/vendor
$a in input()/customer,
where $b/@vno = $a/vno and $b/vname = "Schmidt"

return
<customers_of_vendor>
{ $b/vname }
{ $b/@vno }
{ $a/custname }
</customers_of_vendor>

This is because the first variable $a in the first example has to be assigned to all customer documents,
whereas the variable $b in the second example has to be assigned only to the vendors with a spe-
cific “vname”. This is much more efficient assuming there is a standard index on “vname”.

Index-only Joining

Join queries are evaluated by the Tamino XQuery in an index-based nested-loop manner. This
workswell if the input cardinality is small. But if the cardinality grows, the performance decreases.
In order to provide an efficient way to join inputs with big cardinality, Tamino features the index-
only join processing. This approach tries to join index entries instead of joining XML documents.

The following query shows a typical use case of the index-only join processing:

for $b in input()/vendor,
$a in input()/customer
where $b/@vno = $a/vno

return
<customers_of_vendor>
{ $b/vname }
{ $b/@vno }
{ $a/custname }
</customers_of_vendor>

The query joins the two doctypes “vendor” and “customer”. The documents of the “vendor”
doctype are not filtered by any predicate that can be exploited for creating an index access predicate.
Moreover, the join predicate is an equal comparison on elements and attributes that occurs exactly
once per document. By just joining the index entries, the expensive reading of a big number of
documents can be avoided. This is particular true if you do not retrieve all results, but the first n
or last n results by applying a position range filter:

Performance Guide40

Efficient Queries: XQuery

(
for $b in input()/vendor,

$a in input()/customer
where $b/@vno = $a/vno

return
<customers_of_vendor>
{ $b/vname }
{ $b/@vno }
{ $a/custname }
</customers_of_vendor>

)
[position() > last() - 10]

The following list specifies the restrictions for join operations that can be processed index-only:

■ Join is applied on expressions that retrieve a single node per document.
■ Join predicates have to be specified in the where clause.
■ Join predicates must be equal comparisons.

If a query does not satisfy the restrictions, join processing falls back to index-based nested-loop
approach. Albeit the index-only join processing provides a tremendous performance improvement
for a lot of queries, it is not always better than doing index-based nested-loop join. For a certain
query it cannot be decided which approach is the better one by the Tamino XQuery processor.
Therefore, the user can specify whether or not index-only processing is the appropriate join
method. The user-switch to activate the index-only join processing is provided by the “optimization”
of the Tamino XQuery pragma via the “join” parameter. The parameter can be set to “index-only”
or “default” and activates or de-activates index-only join processing. Thismeans, to activate index-
only joining for our example query, it has to be stated like this:

{?optimization join="index-only"?}
(
for $b in input()/vendor,

$a in input()/customer
where $b/@vno = $a/vno

return
<customers_of_vendor>
{ $b/vname }
{ $b/@vno }
{ $a/custname }
</customers_of_vendor>

)
[position() > last() - 10]

41Performance Guide

Efficient Queries: XQuery

Index-based Processing of Aggregation Function

Tamino provides index-based processing of aggregate functions like min(), max(), count() and
distinct-values().

Min and Max

Theminimumand themaximumvalue of an element or attribute can be determined fromadefined
standard index. For example assuming the following query that retrieves the latest published
books from a bibliography:

let $m := max(input()/bib/book/@year)
for $a in input()/bib/book
where $a/@year = $m
return $a

The latest publication year can be retrieved by accessing a standard index defined on the year at-
tribute. The standard index on the year attribute is also used to retrieve all books that were pub-
lished in the latest publication year.

Please note that the retrieval of the minimum and the maximum is not supported by a text index.

Count

In certain cases, a fn:count() expression can be optimized accessing an index or by just counting
the documents in a doctype or collection. Assuming that in a bibliography each “bib” element
contains exactly one “book” element, the following expression can be evaluated by just counting
the number of documents in the “bib” doctype:

count(input()/bib/book)

If there is a standard index on the “title” element, the following query can be evaluated by just
counting the number of matching documents found by the search predicate:

count(for $b in input()/bib/book where $b/title = "Data on the Web" return $b)

Performance Guide42

Efficient Queries: XQuery

Distinct-values

A call of the distinct-values() function can be optimized by accessing an existing standard index.
For example, assuming that there is a standard index defined on the “title” element, the following
query can be evaluated by reading the values from the index:

distinct-values(input()/bib/book/title)

The index-based optimization is not possible for elements and attributes of type xs:string that have
a collation defined.

Function Inlining

In order to minimize the overhead of user-defined functions, inlining is needed. This means that
a function call is replaced by the code of the called function. The advantages are:

■ Saving the overhead of function calls,
■ Enabling optimizations across function boundaries.

Function inlining is not possible for recursive function calls. But due to the fact that inlining blows
up the code of the calling query or function, it alsomight be problematic for non recursive functions.
Since it is hard to find an optimal inlining strategy, the user is able to control the inlining behavior
via the “inline” parameter of the “optimization” XQuery pragma. The argument of the “inline”
parameter specifies the inlining strategy. The following strategies are available:

■ None
■ Default
■ Full

The “default” strategy is in charge if no inlining is specified. The following query shows an example
of how to apply “full” inlining to a query:

{?optimization inline="full"?}
import module namespace math = "http://example.org/math-functions";
math:power(2,2)

43Performance Guide

Efficient Queries: XQuery

The None Inlining Strategy

If the value of the inlining parameter is “none”, no inlining is performed at all.

The Default Inlining Strategy

If the value of the inlining parameter is “default”, only those functions are inlined that have an
“inline” hint. An “inline” hint is an XQuery processing instruction that is in front of a function
declaration. The following module declaration provides an example of how to apply the “inline”
hint.

module namespace math = "http://example.org/math-functions";
{?inline?}
declare function math:power($b as xs:integer, $e as xs:integer) as xs:integer
{

if($e <= 0) then 1
else math:power($b,$e - 1) * $b

}

If inlining is not possible, the “inline” hint is ignored.

The Full Inlining Strategy

When adhering to the full inlining strategy, all user-defined functions are inlined except for those
which directly or indirectly reference themselves.

Performance Guide44

Efficient Queries: XQuery

6 Efficient Queries: X-Query

■ Efficient X-Queries ... 46
■ Very Fast Queries .. 47

45

The following sections present guidelines for efficient querying with X-Query:

Efficient X-Queries

X-Query processing involves a pre-selection and a post-selection step. In the pre-selection step,
the indexes are used to select a subset of the final result set. In the post-processing step, this set is
further restricted by applying the filter predicates that cannot be evaluated by an index access.
This post-processing step involves the detailed analysis of each record contained in the intermediate
result set.

If the preselection state ismissing, it means that thewhole doctype has to be read. Even for queries
that have a small result this will cause a large response time. You can easily determine if a pre-
selection is used if you include your query string into ino:explain (see next section The X-Query
Function ino:explain). Tamino tells youwhether your query involved pre-selection or/and post-
processing.

Here are a few more guidelines for efficient querying:

■ There is one situationwhen an indexed node cannot be handled during pre-selection: The query
for the non-existence of the node. When a node does not exist, its value is also not contained in
the index, and consequently, the test for a value cannot rely on the index. This test will therefore
be processed during the post-processing phase. Depending on the size of the pre-selected doc-
ument set, this test can be slow.

■ A common problem is the use of the equality operator (=) when only a text index is defined, or
the use of the contains operator (~=)when only a standard index is defined. In both cases, Tamino
will correctly evaluate the query, but via post-processing. If you frequently apply both operators
on the same node, consider defining it as both a standard and text index.

■ Make use of Tamino's X-Query extensions to XPath. These expressions perform better than the
equivalent standard XPath expressions.

■ To always obtain correct results, make key and search expression type compatible, i.e. use a
string search value for an alphanumeric key and a numeric search value for a numeric key.
Comparing, for example, an alphanumeric constant with a numeric element causes the numeric
element being converted into a string and a string comparison being performed. This would
not return the expected results, and the performance suffers from this conversion, too.

■ Generally, it should be considered whether queries using the contains operator (~=) should be
reformulated, using the starts-with() operator. Here is an example:

Performance Guide46

Efficient Queries: X-Query

/MyDocument [key-field ~= "abc*"]

...can be re-formulated as:

/MyDocument [starts-with(key-field, "abc"]

Starts-withmakes use of a standard index, while the contains operator uses a text index. Usually,
standard indexes consume less space and can therefore be loaded and updated faster. If the
query needs post-processing, and if the key-field exists in many places in the document, the
evaluation of the filter [key-field ~= "abc*"] may become costly.

A disadvantage, on the other hand, is the fact that many semantic differences exist: contains is
more powerful, while starts-with requires the value of the key-field to start exactlywith the
given prefix: upper-/lower casemust be observed, aswell as the number ofwhitespace characters
in the prefix value; there is no umlaut transformation in starts-with; and finally the contains
operator looks for matching words within the value, while starts-with only checks the very be-
ginning of the value.

■ It is generally recommended to avoid wildcards (*) and descendant operators (//) if the path is
known.

For further examples and more information, see the Advanced Concepts Guide on efficient
querying.

Very Fast Queries

The following hints apply only for queries which need to be executed as fast as possible, meaning
that it is important if they run 100 or 200 milliseconds (e.g. if they should run in parallel against
a Tamino Server).

If you run queries via HTTP, it is possible with certain environments that the HTTP GETmethod
has a better performance than the HTTP POSTmethod. When constructing a high performance
application, it may be useful to check the runtimes of a query with GET and POST.

Here is a list of hints for X-Query syntax:

■ Queries must be indexed.
■ Make sure that the result set is as small as possible.
■ A list of logical terms in query expressions should be small. For example, a querywith 20 and/or
is slower than a query with one and.

■ The logical termswith the highest hit rate (highest selectivity) should be placed at the beginning
of the expression.

■ Use the betw operator instead of and operations.

47Performance Guide

Efficient Queries: X-Query

■ Functions like count() in a query may be expensive.
■ Avoid using the adj operator (see tf:ContainsNearText).

Performance Guide48

Efficient Queries: X-Query

7 Query Processing Analysis

X-Query

The X-Query function ino:explain retrieves information about the execution plan of a query. The
execution time of a query depends on the number and kind of processes that are needed to resolve
a query. A query is processed in Tamino in the following order:

1. Query Parser

2. Query Optimizer

3. Processor-specific Optimizer

4. Index Processor

5. Postprocessor

A call to ino:explain provides information about which processing components are involved, to
what degree the query can be optimized, and the work load of the index processor and postpro-
cessor. With the information returned, you can rewrite your queries or update your schema to
minimize processing costs. A detailed description of this X-Query function can be found in the X-
Query Reference Guide under the topic Functions.

XQuery

If you add the explain directive to the query prolog of XQuery, the query will not be executed.
Instead, an XML representation of the execution plan for the query expression is returned in the
result document. You can use this information to determine which access paths will be used for
Tamino data during query execution. Further details can be found in the XQuery 4 Reference
Guide, chapter Query Execution Plan.

49

50

8 Suppressed Lookup of Index Entries

Tamino is delivered with a collection ino:vocabulary.

It contains the Doctype ino:loadlistwhich can contain any number of ino:word instances. The
contents of an ino:word instance is any string (word) that may or may not be indexed. Typically,
these are common “fill” words such as “and”, “it”, “is”, etc. or terms that occur frequently in the
area in which Tamino is applied.

For entries in a load list, no check is made if index entries already exist from previous load opera-
tions, and the words are indexed anyway. This can speed up the indexing process when loading
documents.

You can addmultiple load lists and identify each onewith the optional attribute ino:loadlistname
on the ino:loadlist Node. When Tamino starts, the server loads and appends all the load lists,
so that all load lists are always active when storing and indexing documents in Tamino.

51

52

9 Hardware Configuration

■ Where to look? ... 54
■ CPU ... 54
■ Virtual Memory ... 55
■ Disk I/O ... 55
■ Tuning TCP/IP .. 56
■ Tamino in a Multi-User Environment .. 56

53

The overall Tamino performance is influenced by a number of components, such as CPU, virtual
memory, physical memory (RAM), physical disk space, and network communications. Each of
these may lead to performance bottlenecks. Increasing hardware performance with more CPU
power and better I/O throughput should of course also improve response time. But before
spending the money, you should find out where time consumption is highest: in the Tamino
server, in the web server, on the network, or in the application.

In general, upgrading your hardware to improve performance is a step that you should only
considerwhen youhave achieved all of the possible performance gains using themethods described
in the previous sections of this document.

Where to look?

OnWindows, use the Performance Monitor, which is part of the Administrative Tools. Access it
by choosing Administrative Tools > Performance from the Windows Control Panel. You can re-
trieve information on CPU usage, disk I/O, and memory usage.

Before you can use the Performance Monitor for I/O measurements, enable the IO counting by
issuing the command diskperf at the command prompt. Note that this enables I/O monitoring
after the next restart of yourmachine. DISKPERF [-Y[E] | -N] [\\computername] -Y[E] enables
the disk performance counters when the system is restarted. E enables the disk performance
counters used for measuring performance of the physical drives in a striped disk set when the
system is restarted. Specify -Ywithout the E to restore the normal disk performance counters. -N
disables the disk performance counters when the system is restarted. \\computername is the name
of the computer you want to see or set disk performance counter use.

CPU

It is quite simple: If the CPU's workload is 100 %, you cannot get more speed out of your system.
Additional CPUs can increase the throughput, unless the system is I/O bound. For small databases,
almost everything can be kept in memory, according to the value of the buffer pool parameter of
the database. In this case, an additional CPU is recommended if multiple users are working at the
same time.

On a Windows platform, you should watch for the following on your Performance Monitor:

■ When monitoring the CPU, check that the amount of CPU time spent in kernel mode is below
10 %. This is the counter% Privileged time of the Processor object. The instance to monitor is
either _Total for a multiprocessor system, or 0 for a single CPU system.

Performance Guide54

Hardware Configuration

If Tamino runs on multi-CPU machines (Symmetric Multi-Processing, SMP), automatic load bal-
ancing is carried out between CPUs. There is no load balancing between different machines,
though.

Virtual Memory

Increasing the swapfile makes sense if Tamino fails with memory exception. Keep in mind that
this may lead to swapping.

Disk I/O

Usually a disk controller can handle a specific amount of I/O operations or memory that can be
transferred to or from the disk. If your system is I/O bound, it may help to add additional physical
disks to the system in order to get a higher degree of parallelism. In order to do so, you have to
distribute the Tamino data spaces over multiple disks. If you use multiple physical disks for your
database and your system is I/O bound, it may be possible to increase the throughput by using
multiple disk controllers. Some disk controllers support multiple channels, too. For recovery
reasons, the data and index containersmust be on a different physical disk than the log and backup
data spaces. Additionally, it is recommended to put the index, the data container, and the journal
space on separate disks. Using RAID (Redundant Array of Inexpensive [or Independent] Disks)
can improve the overall I/O performance. A general recommendation in terms of high availability
and performance is to have the log container on a RAID 1 (mirrored) disk and the data and index
container on a RAID 5 disk.

On a Windows platform, the things to watch for on the Performance Monitor are:

■ When the disk time is significant (about 50 %), you might want to increase the size of the buffer
pool. If this does not help due to many update operations on the database, check which disks
are the most active. Consider the following to distribute I/O load to different physical disks:

1. Move database containers to locations stored on physically different disk drives.

2. If you are using a server version, you might want to create disk volumes spanning multiple
disks.

55Performance Guide

Hardware Configuration

Tuning TCP/IP

If you have to serve a high load on your machine, you may run out of sockets due to the
TCP_WAIT_TIMEOUT. This applies to the TCP_WAIT_TIMEOUT and the number of available
sockets.

On Solaris, the command to show the time wait parameter is:

$ /usr/sbin/ndd /dev/tcp tcp_time_wait_interval

The command to set the parameter is:

$sudo /usr/sbin/ndd -set /dev/tcp tcp_time_wait_interval 30000

Tamino in a Multi-User Environment

The requirements for a multi-user environment are:

1. The server hardware should be powerful as possible: large RAM, many fast CPUs, powerful
I/O system, etc. The more users you have, the more CPU power is necessary. Try to have fewer
but faster CPUs to reduce locking conflicts.

2. Each single command (query or insert) should run as fast as possible. For information, see the
sectionVery Fast Queries. Also, make use of cursors to keep the result set that is transferred
from the server to an application small. However, keep locks and cursor only as long as you
need them, so that they do not constrain the requests other users have.

3. The application process should not produce data of its own, e.g. protocol files, or at least as
little data as possible. If data is produced, each application process should write them into
separate data areas, for example directories or disks.

Performance Guide56

Hardware Configuration

10 Performance Tuning - A Case Study

A case study conducted with a Tamino installation produced the following hitlist of factors for
performance tuning:

1. Optimizing indexes for the most common queries

2. Optimizing query formulation

3. Optimizing efficiency of Java code calling Tamino APIs

4. Tuning operating system performance

5. Updating components of the system written by third parties or open source projects

The case exhibits several general principles for creating high-performance applications that have
been observed repeatedly by Tamino users in the field:

■ There is only one over-riding “design time” rule:Many small documents aremore efficient than
a small number of larger documents. This is due to fundamental design decisions by the de-
velopers of Tamino, based on analyses of how XML is used in the real world. It is sometimes
necessary to write some code that resides between a data-producing application and Tamino
that will decompose huge documents into more manageable chunks for efficient storage. For
example, imagine a book that consists of dozens of chapters: storing each chapter as a separate
document is more efficient both for Tamino itself and for most XML tools such as XSLT engines
that you will use to work with the data after it is retrieved.

■ Make it work, then make it fast. Trust Tamino to be fast, once properly tuned. If the application
uses XML in a way that fits Tamino's design philosophy, do not worry about performance too
much during the prototype phase.

■ Tamino (and the same applies for almost all DBMS systems) is fastest when most of the work
of satisfying the query request can be done by processing the indexes. Thus, the key to perform-
ance tuning is to ensure that indexes have been defined for themost frequently queried elements
and attributes. Also, you can and should place indexes on the elements/attributes that reference
join criteria. See Efficient Querying section in the Advanced Concepts - From Schema to Tamino

57

chapter of the Tamino documentation for more information, especially on using the “explain”
facility.

■ Remember thatmuch of time a program spends retrieving data fromTamino into an application
data structure may not be in the DBMS itself, but in the API. Be careful to use appropriate lib-
raries and actual calls, depending onwhether human time ormachine time is themore precious
resource in a given situation, since programmer convenience often comes at a performance price
and vice-versa. For example,most programmerswho are not XML expertswill findDOM/JDOM
APIs easier to use than lower-level event-driven interfaces such as SAX. The overhead of
building a DOM tree, allocatingmemory to hold the values of the XML elements and attributes,
and copying the data from Tamino to the API and then to the application, can be significant in
some cases. Consider re-writing performance critical sections of an application in a way that
uses the most efficient techniques to build application objects from the XML text retrieved from
Tamino.

■ Use system profiling tools to make sure that processing, disk, and memory resources are being
used effectively by the overall system, of which Tamino is usually only one component. For
example, a multiprocessor system will not be faster than a single processor system unless the
various parts of the system can work in parallel, and this may require some profiling and load
balancing. Similarly, make sure that the software is configured to use all the available memory
if it is abundant, and to share it efficiently if it is not. Eliminate bottlenecks with hardware up-
grades - additionalmemory, faster disk drives, faster networking - once they have been identified
and if the hardware is cheaper than the human time or business cost of extensive tuning.

■ Update to the latest version of available software. XML technologies are rapidly maturing and
as XML is being used to power larger and larger, more and more performance-critical applica-
tions, developers are learning how to make it work faster and more reliably all the time. Using
the latest version of software components allows one to benefit from the testing and tuning ex-
perience of other users.

Performance Guide58

Performance Tuning - A Case Study

Index

C
compound index, 22

I
index

compound, 22
multi-path, 13
reference, 27
selectivity, 31
unique key, 10

ino:explain, 49
ino:vocabulary, 51

M
multi-path index, 13

P
performance

data model, 3
database parameter, 1
hardware configuration, 53
ino:explain, 49
ino:vocabulary, 51
query efficiency, 45
result size, 8
standard index, 7
structure index, 6
text index, 7
tuning queries, 5
tuning schemas, 5

Q
query tuning, 5

R
reference index, 27

S
schema tuning, 5
selectivity, 31

U
unique key, 10

59

60

	Performance Guide
	Table of Contents
	Performance Guide
	1 Use of Database Parameters
	2 Data Modeling
	3 Tuning Schemas and Queries
	Using Structure Index
	Basic Indexing
	Result Size

	4 Advanced Indexes
	General Considerations
	Unique Keys
	Multipath Index
	Highly-connected Structures
	Recursive Structures
	Arbitrary Path Sets

	Computed Index
	Compound Index
	Reference Index
	Selectivity of Compound and Reference Index

	5 Efficient Queries: XQuery
	Using Indexes
	Constructors
	Avoid Unnecessary Constructors
	Avoid Sorting the Results of an XML Construction

	Disjunctive Predicates
	Negated Predicates
	Value Range Predicates
	Position Range Predicates
	Join Ordering
	Index-only Joining
	Index-based Processing of Aggregation Function
	Min and Max
	Count
	Distinct-values

	Function Inlining
	The None Inlining Strategy
	The Default Inlining Strategy
	The Full Inlining Strategy

	6 Efficient Queries: X-Query
	Efficient X-Queries
	Very Fast Queries

	7 Query Processing Analysis
	8 Suppressed Lookup of Index Entries
	9 Hardware Configuration
	Where to look?
	CPU
	Virtual Memory
	Disk I/O
	Tuning TCP/IP
	Tamino in a Multi-User Environment

	10 Performance Tuning - A Case Study
	Index

