
webMethods Mobile Designer Native User Interface
Reference

Version 10.3

October 2018

This document applies to webMethods Mobile Designer Version 10.3 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2011-2020 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: MD-NUI-103-20191112

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

webMethods Mobile Designer Native User Interface Reference Version 10.3 3

Table of Contents

About this Guide..5
Document Conventions.. 5
Online Information and Support... 6
Data Protection... 7

Mobile Designer Native User Interface..9
About the Native User Interface (NativeUI) Library..10
Look-and-Feel When Using the NativeUI Library...10
About Using the NativeUI Library...11
Mobile Application Design.. 12
Hierarchy of NativeUI Objects for a User Interface..13
Setting and Querying NativeUI Object Attributes... 14
Handling Events Generated by User Actions...15
Transitioning Between Windows and Views...16
Defining the Layout of Objects in the User Interface... 18

Controlling the Inner Padding of Parent Objects.. 18
Positioning Elements in a Parent Object.. 20
Sizing Child Elements... 22
Controlling the Vertical Spacing Between Child Elements.. 24
Controlling the Horizontal Alignment of Elements...25
Using Tables to Control the Layout of Elements...26

Managing Object Focus..31
Background Colors and Images...32
Adding Support for Right-to-Left Languages..33
Using Multiple Panes for Tablet User Interfaces..36

Managing the Layout of Panes... 37
Designing Applications to Run on Both Tablets and Smaller Devices.............................. 38
Determining the Device Size at Run Time..38
Adding Panes to a Window...39
When to Use Views or Panes...40

JavaScript Bridge..41
Maintaining Good Security.. 41
Sending a Message to JavaScript from Java... 42
Evaluating an Arbitrary Chunk of JavaScript Code...42
Sending a Message to Java from JavaScript... 42

Using Tabbed Views... 43
Integration in Mobile Designer.. 43

Using List Views and Elements..44
Swiping Behavior...46
Using Edit Mode in List Views.. 46

Using Element Identifiers..46

M
Table of Contents

webMethods Mobile Designer Native User Interface Reference Version 10.3 4

Native User Interface (NativeUI) Objects...49
About the NativeUI Objects..51
nUIAlertDialog... 51
nUIButtonElement... 52
nUICheckboxButton.. 53
nUIContainerElement..54
nUIDateEntry...55
nUIDialogWindow..56
nUIDisplayObject.. 57
nUIDropdownlistEntry... 58
nUIElementDisplay..58
nUIEntryElement... 59
nUIFloatingEntry... 60
nUIImageElement... 61
nUIListElement..61
nUIListView... 62
nUINavbuttonElement... 62
nUINavView...65
nUIObject.. 66
nUIPopupMenuBuilder.. 66
nUIProgressanimElement... 67
nUIRadioCheckbox... 68
nUISearchEntry...69
nUISearchNavButton.. 70
nUISeparatorElement..70
nUISpacerElement.. 71
nUISwitchButton..71
nUITableButton..72
nUITablecellElement... 73
nUITableElement...73
nUITablerowElement... 75
nUITabView... 75
nUITextfieldElement.. 76
nUITimerObject... 77
nUIViewDisplay... 77
nUIWebView..78
nUIWebviewCallBack..80
nUIWebviewElement...80
nUIWindowDisplay.. 82

M
Odd Header

webMethods Mobile Designer Native User Interface Reference Version 10.3 5

About this Guide

This guide describes the Mobile Designer native user interface that you can use to create
user interfaces for mobile applications. It contains information for both application
designers who want to design user interfaces for mobile applications and developers
who want to code user interfaces for mobile applications.

With respect to processing of personal data according to the EU General Data Protection
Regulation (GDPR), appropriate steps are documented in webMethods Mobile Development
Help, Managing Personal Data.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies service names and locations in the format
folder.subfolder.service , APIs, Java classes, methods, properties.

Italic Identifies:

Variables for which you must supply values specific to your own
situation or environment.
New terms the first time they occur in the text.
References to other documentation sources.

Monospace
font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

M
Even Header

webMethods Mobile Designer Native User Interface Reference Version 10.3 6

Convention Description

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information and Support
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “hp://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “hps://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “hps://empower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “hps://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “hp://techcommunity.softwareag.com”. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

M
Odd Header

webMethods Mobile Designer Native User Interface Reference Version 10.3 7

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection
Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

M
Even Header

webMethods Mobile Designer Native User Interface Reference Version 10.3 8

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 9

1 Mobile Designer Native User Interface

■ About the Native User Interface (NativeUI) Library ... 10

■ Look-and-Feel When Using the NativeUI Library .. 10

■ About Using the NativeUI Library .. 11

■ Mobile Application Design .. 12

■ Hierarchy of NativeUI Objects for a User Interface ... 13

■ Setting and Querying NativeUI Object Attributes .. 14

■ Handling Events Generated by User Actions .. 15

■ Transitioning Between Windows and Views .. 16

■ Defining the Layout of Objects in the User Interface ... 18

■ Managing Object Focus ... 31

■ Background Colors and Images .. 32

■ Adding Support for Right-to-Left Languages ... 33

■ Using Multiple Panes for Tablet User Interfaces ... 36

■ JavaScript Bridge ... 41

■ Using Tabbed Views .. 43

■ Using List Views and Elements ... 44

■ Using Element Identifiers ... 46

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 10

About the Native User Interface (NativeUI) Library
The webMethods Mobile Designer native user interface (NativeUI) library provides a
standard way to create user interfaces that match the expected behavior of a platform.
For example, you can use the NativeUI library to define a user interface that works
equally well on Android and iOS. The resulting user interface typically matches the
behavior and look-and-feel that is expected on each target device. For more information,
see “Look-and-Feel When Using the NativeUI Library” on page 10.

Mobile Designer is installed with several sample applications, many of which use the
NativeUI library. The NativeUI library is made up of several objects. The descriptions of
these objects in “Native User Interface (NativeUI) Objects” on page 49 include code
samples that illustrate how to use each of the NativeUI objects.

Some NativeUI objects are relatively simple, such as buons or text entry fields. Others
objects are more complex, such as navigation bars or scrollable containers. Each of the
NativeUI objects maps to an object on the target device, allowing the user interface
to adapt to all target platforms, including devices with touchscreen user interfaces,
physical keyboards, and other input methods.

Look-and-Feel When Using the NativeUI Library
You use the NativeUI library to create the user interface for your mobile application.
When you compile your application, the NativeUI Class implementation for each
platform is replaced by the native version of these classes that will execute when the
application is running on the target device.

This class controls how a NativeUI object behaves and looks on the target device. The
class to which Mobile Designer translates a NativeUI class depends on whether the
NativeUI library has platform-specific support for the platform.

When the NativeUI library includes platform-specific support for a platform, Mobile
Designer translates the NativeUI classes into platform-specific classes. As a result,
a user interface object renders as expected on the target device, using the platform
look-and-feel and behavior.

The NativeUI provides support for Android and iOS.

For example, if you use the NativeUI object nUICheckboxButton and compile
your application for an iOS device, Mobile Designer translates NativeUI object
nUICheckboxButton to the iOS UISwitch class. As a result, when the user interface
displays on the iOS device, it uses the iOS UISwitch class to render the check box.

When the NativeUI library does not include platform-specific support for a platform,
Mobile Designer uses a general, graphical skin. In this case, the user interface
renders on the target device using a general graphical skin rather than a platform-
specific look-and-feel.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 11

The general graphical skin renders all of the available NativeUI objects, including
features such as on-screen pop-up keyboards.

NativeUI and Phoney Skins

Phoney is a phone simulator that is not platform-specific. You can use Phoney to test
your mobile applications. For more information, see Using webMethods Mobile Designer.

When you use the NativeUI library for your mobile application user interface and run
the application in Phoney, the look-and-feel for the user interface depends on whether
Mobile Designer provides platform-specific skins for the platform you are simulating in
Phoney.

When Mobile Designer includes platform-specific skins for a simulated platform,
Phoney renders the user interface using the Phoney platform-specific skin.

The platform-specific Phoney skins do not provide an exact representation of how
the user interface will look on the platform. However, the platform-specific Phoney
skins do allow you to get a beer idea of how your application's user interface looks
in the target platform. The Phoney skins aempt to match a platform's look-and-feel.

When Mobile Designer does not include a platform-specific skin for a simulated
platform, Phoney renders the user interface using the general graphical skin.

While developing your mobile applications, using Phoney saves you time because you
can use Phoney to quickly visualize your application's user interface rather than having
to deploy your application to a target device.

About Using the NativeUI Library
Use the NativeUI library to develop the user interface for a mobile application. It is
recommended that you have your mobile application user interface design complete
before starting to develop it using the NativeUI library.

Design Considerations

When designing the user interface:

Review information about designing mobile applications. See “Mobile Application
Design” on page 12.

Understand the NativeUI object hierarchy. See “Hierarchy of NativeUI Objects for a
User Interface” on page 13.

If the application will run on a tablet device, you can design the user interface
to use multiple panes. See “Using Multiple Panes for Tablet User Interfaces” on
page 36.

If you want the application to run on both tablet devices and smaller devices, you
need to design for both. See “Designing Applications to Run on Both Tablets and
Smaller Devices” on page 38.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 12

Developing the User Interface Using the NativeUI Library

To create a user interface using the NativeUI library, use the Mobile Designer Java
API, specifically the classes in the com.softwareag.mobile.runtime.nui package. The classes
in this package control the NativeUI objects at the specific device level. Each NativeUI
object maps to a platform-specific object for a target device, such as Apple’s iPhone
and Google’s Android. Additionally, you can write your own extensions to the Mobile
Designer NativeUI by extending any of the supplied classes or by creating new classes
that add functionality.

See the following for information that is useful when coding the application:

“Seing and Querying NativeUI Object Aributes” on page 14

“Handling Events Generated by User Actions” on page 15

“Transitioning Between Windows and Views” on page 16

“Defining the Layout of Objects in the User Interface” on page 18

“Managing Object Focus” on page 31

“Background Colors and Images” on page 32

“Adding Support for Right-to-Left Languages” on page 33

“Using Multiple Panes for Tablet User Interfaces” on page 36

Mobile Application Design
Before coding a mobile application, you should design the application and determine its
user interface.

Designing a Mobile Application

The first stage in a development process is design. Designing a mobile application
involves defining the content, goals, and process flow of the application. During this
stage, you should not be concerned with how the user will physically interact with the
application. It is recommended that the outcome of the design phase is a thorough flow
diagram that will enable you to effectively develop the application.

Designing the Mobile Application User Interface

After you design the application, you know the underlying processes that the
application will need. You then design the user interface to determine how the user will
interact with the application to achieve the application’s intended functionality and
goals.

When designing the user interface, determine the best way to present the required
information to the user. A good approach is to start with a hub-and-spoke style
application map that defines screens and the interactions with those screens to achieve

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 13

all steps within the application process flow. You can then draft the various individual
screens using wireframe illustrations.

The Mobile Designer NativeUI library simplifies designing the user interface because it
allows you to be less concerned with platform-specific differences of the target devices.

When designing a user interface for a mobile device, keep in mind:

The size of a mobile device is much smaller than traditional, desktop applications.
As a result, you will need to divide the information that you present to the user into
multiple screens. Mobile applications tend to use a linear methodology, allowing the
user to move from one screen to the next working on a single task at a time.

Screen resolution can vary within platforms. As a result, deploying to a particular
platform might mean building the application at more than one resolution. For
example, Android devices running version 2.3 often had screen resolutions of
320x480 pixels. However, it is not uncommon for Android devices running version
4.0 to have resolutions of 720x1280 pixels. Using the NativeUI simplifies this because
the NativeUI adapts to the varying screens sizes and resolutions, allowing text,
buons, and other user interface objects to render correctly. However, you still need
to carefully consider the position and size of the objects you display in the user
interface, including graphic images.

High-resolution tablet devices require very large-size graphics for their high-density
screens, that is more pixels per inch (PPI).

Avoid designing a platform-specific user interface for an application that will run on
many platforms. The unique interface mechanics of a platform might be impossible
to render on other platforms. Additionally, users might find the unique interface
mechanics hard to use because they are unfamiliar with them.

Using the NativeUI library with lile to no custom objects reduces issues, such as
resolution dependency, localization, and accessibility.

Be aware that user interface elements might not render the same way within a
platform due to changes between versions of the platform. For example, the design
of the Apple iOS On/Off switch changed visually between version 4.x and 5.x of the
operating system. Also, the Apple iOS numeric keypad looks different on the iPad
from the iPhone.

Hierarchy of NativeUI Objects for a User Interface
The NativeUI follows a strict hierarchy of visible components.

Windows are at the top of the user interface hierarchy.

A window defines the visible bounds of the NativeUI display. The application first
displays a window. The application can then add views (that is, menus and screens)
and other items related to the application inside the window. A window can:

Use the device’s full display

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 14

Use the device’s full display excluding a status bar

Be a dialog that uses only a portion of the device’s display

An application might only require one window that the application uses to display
each of the application screens as the user navigates between them. However, if the
application requires window overlay, you can add multiple window support to the
application.

Depending on the requirements of the window and the target platform, different
additional features might be present. For example, on some platforms an overlay
dialog might include a title bar that allows a user to reposition the dialog on device’s
display. Another example is that a title bar might contain a Close buon.

If an application runs on a tablet device, you might want to use multiple panes
within a window. You can then add views into the panes. For more information, see
“Using Multiple Panes for Tablet User Interfaces” on page 36.

Views are second level in the user interface hierarchy.

The application displays a view within a window. Views are analogous to individual
menus or screens in a user interface flow. A view can have a header bar, soft key
labels, or encompass the entire window. Mobile Designer provides some custom
views that automate the creation of common displays. For example, the nUINavView
object is a view for navigation.

Elements are the last level of the user interface hierarchy.

Applications can add elements into views. Elements are singular display items
or control items. Elements can have focus, and they can be selected. Examples of
elements are images, buons, and text fields.

Elements can visually respond differently on different platforms and devices.
For example, an edit field might present an overlay keyboard on one device to
enter the data, while on another device, the edit field could provide text to speech
functionality, or a handwriting recognition panel.

Setting and Querying NativeUI Object Attributes
The NativeUI objects have aributes associated with them. For example, an object might
have a Width aribute or a Height aribute.

You can set aribute values in two ways:

You can initially set an aribute value for an object by passing the value as part of
the object’s constructor when creating the object.

After the object is created, you can change the value using a seer, for example
setWidth().

Note: You cannot change aribute values that are set in the constructor unless
there is a corresponding seer for the aribute.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 15

In addition to seing aribute values, once an aribute is created, you can query its
value using a geer, for example getWidth().

Note: You might have to wait until the element is drawn on the screen before
geing platform-level display metrics, such as the object’s width, height,
and X/Y coordinates. For example, some platform widgets might return
misleading values for their height, such as 0 (zero), when the widget has not
been rendered on the screen.

Handling Events Generated by User Actions
When a user interacts with the application, for example, pressing a buon in the user
interface, events can be generated.

About Listeners

You should set up the application so that it listens for events and takes appropriate
measures to handle events. To listen for events, set up the application to implement the
nUIEventListener class and register the classes as event listeners. As a result, the application
receives events related to the currently active NativeUI object.

You can define listeners for individual NativeUI objects so that an object can have its
own listener or an alternate listener. To do so, add the listener directly to the object using
nUIObject.addEventListener().

Types of Events

The types of events for which an application can listen are defined in the nUIConstants
class. For more information, see webMethods Mobile Designer Java API Reference.

An application can listen for:

Events that the NativeUI system generates

When a user interacts with a NativeUI object in an application’s user interface, the
NativeUI system generates an event. For example, an EVT_GAIN_FOCUS event is
generated when an object gains focus. The events that the NativeUI system can
generate are defined by com.softwareag.mobile.runtime.nui.nUIConstants.

HTTP events

The HTTP events are EVT_TRIGGER_HTTP_SUCCESS and EVT_TRIGGER_HTTP_FAIL.
These events are not related to any specific Mobile Designer classes. The HTTP
events are available if the application requires this functionality.

Custom-defined events

You can define custom events. CUSTOM_EVENT_CODE0 is the first constant value that is
not reserved for use within the NativeUI system. When defining custom events, you
can assign constant values that are equal to or greater than this value.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 16

Sample Code that Manages Event Handling

The following code sample shows how the Mobile Designer NativeUIHelloWorld
sample application manages event handling:
//see MyCanvas.java
public boolean nUIEventCallback(nUIObject object, int evt_type)
{
 switch (object.nuiid)
 {
 case NUIID_START_PROGRESS:
 if(evt_type == EVT_TRIGGER)
 transitionToView (main_view, onCreateEndView());
 break;
 case NUIID_END_BACK:
 if(evt_type == EVT_TRIGGER)
 transitionToView (main_view, onCreateStartView());
 break;
 }
 return true;
}

Setting a Unique Identifier for NativeUI Objects So that You Can Identify Them When Listening for
Events

When an event occurs, the NativeUI system passes the NativeUI object that generated
the event and the event type to the event listener. Each NativeUI object has a unique
identifier. This unique identifier is the nuiid value that the application passed
to the constructor when creating the NativeUI object. In this example that uses
NUIID_START_PROGRESS, the following code shows the NUIID_START_PROGRESS unique
identifier:
//Specify the ID for the start progress button.
//Use any number as long as it is unique.
public static final int NUIID_START_PROGRESS = 0x01020101;

//After specifying the ID, in onCreateStartView()
start_view.add(new nUIButtonElement(NUIID_START_PROGRESS, "Progress");

Tip: If you are not concerned about events for a NativeUI object, use an
appropriate constructor without a nuiid value.

Return Values from Event Processing

After an application handles an event, it should return true or false to indicate
whether the NativeUI system should perform the default behavior for the event. In most
cases, the application should return true to indicate that the NativeUI system should
perform its default behavior for the event.

Transitioning Between Windows and Views
An application initially displays a window. Once a window is displayed, to display a
view within a window or display another window, the application needs to perform a

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 17

transition to the new location. Mobile Development handles this automatically. But it
can also be coded using the following methods and classes.

To transition to a new view within a window, use the transitionTo and transitionFrom
methods in the nUIWindowDisplay class.

To transition to a new window, use the nUIController class.

For more information about the nUIWindowDisplay and nUIController classes, see webMethods
Mobile Designer Java API Reference.

The following code sample is a portion of the code from the Mobile Designer
NativeUIHelloWorld sample application. It shows how to use the transitionTo and
transitionFrom methods in an application:
private void transitionToView(nUIViewDisplay new_view, int pane)
{
 int transition = nUIController.TRANSITION_APPEAR;
 nUIViewDisplay old_view = main_view;
 if (old_view != null)
 {
 if(old_view.nuiid < new_view.nuiid)
 transition = nUIController.TRANSITION_LEFT;
 else if(old_view.nuiid > new_view.nuiid)
 transition = nUIController.TRANSITION_RIGHT;
 main_window.transitionFrom(old_view,transition, pane);
 }
 main_window.add(new_view);
 main_window.transitionTo(new_view, transition, pane);
 main_view = new_view;
}

The code sample illustrates how to replace a window’s current view with a new one by:

1. Using the transitionFrom method to transition away from the current view.

2. Using the add method to add the new view to the window.

3. Using the transitionTo method to transition to the newly added view.

The code sample uses a view’s unique identifier to determine the transition direction
(either TRANSITION_LEFT or TRANSITION_RIGHT). If the new view has a lower unique
identifier, the code transitions one way. If the new view has a higher unique identifier,
it transitions the other way. This transition logic represents only one approach. There
are other transition logic approaches that you can use to meet the requirements of your
mobile application.

The NativeUI systems supports the following transition properties that are defined in
the com.softwareag.mobile.runtime.nui.nUIController class:

TRANSITION_APPEAR
TRANSITION_FADE
TRANSITION_LEFT
TRANSITION_RIGHT
TRANSITION_UP
TRANSITION_DOWN

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 18

All platforms support the TRANSITION_APPEAR property. However, platforms might
substitute alternative solutions for the other nUIController class transition properties.

Defining the Layout of Objects in the User Interface
To create a user interface, code the application to first add a window object. Inside a
window, place a view. The application can then add additional NativeUI objects into the
view. For more information, see “Hierarchy of NativeUI Objects for a User Interface” on
page 13.

NativeUI objects can be thought of as parent objects and elements. Parent objects contain
other NativeUI objects, which are referred to as elements. Examples of parent objects are
views, scrollable containers, and table cells. Examples of elements are text entry fields,
buons, and images.

Controlling the Inner Padding of Parent Objects
Parent objects have inner padding. If an object is displayable, that is an object that inherits
from nUIDisplayObject, and is also an object in which you can insert child elements, you
can control a parent object’s inner padding using the following aributes of the parent
object:

Inner Padding
Attribute

Description

InnerX Defines the distance from the parent object’s left edge to where
child elements are drawn.

InnerY Defines the distance from the parent object’s top edge to where
child elements are drawn.

InnerWidth Defines the parent object’s usable width in which you can add
content.

InnerHeight Defines the parent object’s usable height in which you can add
content.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 19

The parent object’s inner padding causes the child elements to be indented from the
edges of the parent. This is a useful concept to take advantage of when you do not want
items to touch the edges of screens or borders.

The NativeUI objects have default inner padding values. At the nUIDisplayObject level,
all the aribute values are set to 0 (zero). However, the aribute values are overridden
for some displayable NativeUI objects to match the expectations for each platform.
Specifically, the objects for tables, views, and scrollable containers might override the
default values. When using NativeUI objects for an application, you can override the
default inner padding aribute values to meet the needs of your application.

If you set the aribute value for InnerX, but not InnerWidth, by default the InnerWidth
value is determined by mirroring the InnerX padding on the other side.
InnerWidth = overall_width_available - (2 * InnerX)

Similarly, if you set the aribute value for InnerY, but not InnerHeight, by default the
InnerHeight value is determined by mirroring the InnerY padding on the boom edge.
InnerHeight = overall_height_available - (2 * InnerY)

If you do not want to use this default behavior, you can explicitly set the InnerWidth
and InnerHeight aributes for an object.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 20

Note: If you explicitly set the InnerWidth and InnerHeight aributes to set the
width and height of the parent object, your application logic will also have
to handle any size adjustments due to the resizing of the parent object or
changes to orientation of the device.

Positioning Elements in a Parent Object
By default, when an application adds elements to a parent object, the elements are
positioned vertically, one below the other, starting at the top of the parent object.

The elements are indented based on the inner padding of the parent object. When
originally displayed, the first element is spaced from the top of the parent object based
on the vertical inner padding. For more information, see “Controlling the Inner Padding
of Parent Objects” on page 18.

If you place elements in a scrollable parent object, for example a view or scrollable
container, the top padding is not maintained when a user scrolls through the contents.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 21

If you want to position child elements side by side within a parent object, use a table and
place elements within table cells. For more information, see “Using Tables to Control the
Layout of Elements” on page 26.

As an alternative to using the default layout or positioning elements using a table, you
can use absolute positioning. To do so, set the X, Y, and Width aributes of the child
elements that you add to the parent object. While absolute positioning gives you the

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 22

greatest amount of control for exact positioning, using absolute positioning prevents the
application’s user interface from automatically adapting to:

Different size devices

Different size of user interface elements among the various platforms

Re-aligning user interface elements when the orientation of the device is changed

If you use absolute positioning, you must add logic to your application to handle these
types of issues.

Sizing Child Elements
The height of a child element is determined by the data for the element.

Note: For most elements (buons, text, images, etc.), using the Height aribute
to explicitly set the number of pixels for the element’s height is not
recommended.

For the width of an element, you can use the default, or you can set the child element’s
Width aribute to explicitly specify the number of pixels to use for the element’s width.

The default element width is the width of its parent object minus the inner padding.
For more information about a parent object’s inner padding, see “Controlling the Inner
Padding of Parent Objects” on page 18.

If you nest parent objects, child elements placed in the inner parent object are narrower
because the inner padding values are compounded. For example, you might nest a
scrollable container inside a view. Elements added to the view have the width of the
view’s inner width. However, elements added to the scrollable container are narrower
due to the inner padding of both the view and the scrollable container.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 23

When nesting NativeUI objects, you might want to adjust the inner padding of objects.
For example, in the example of a scrollable container inside the view, if you set the
scrollable container’s InnerX to 0 (zero), the widths of the elements both in the view and
the scrollable container will be the same.

In other instances, you might want to remove the inner padding from the outer NativeUI
object. For example, you might have a view that contains a scrollable container, but no
other child elements. The scrollable container might contain additional elements. In this
situation, the inner padding of the view compounded with the inner padding of the
scrollable container results in wasted screen space. As a result, you might want to set the
view’s InnerX and InnerY values to 0 to remove excess padding.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 24

Controlling the Vertical Spacing Between Child Elements
By default, the space between the elements is determined by the
InterElementYSpacing aribute of the parent view. The application can alter
the space between the elements by specifying a pixel value for the parent view’s
InterElementYSpacing aribute.

If you want additional space between two elements, use the following NativeUI objects:

Insert the nUISpacerElement NativeUI object to add additional white space between
two elements. Use the nUISpacerElement NativeUI object’s Height aribute to specify
the pixel height of the white space.

Insert the nUISeparatorElement NativeUI object to display a horizontal line between two
elements. Use the nUISeparatorElement NativeUI object’s Height aribute to specify
the pixel height of the nUISeparatorElement object. The horizontal line displays in the
vertical center of the object.

When determining the vertical height you want to use for the nUISpacerElement
and nUISeparatorElement objects, take into consideration that the parent view’s
interElementYSpacing also displays around the object.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 25

Note: When using grouped buons on platforms where grouped buons are
supported (primarily iOS), buons in the same group will not have
vertical space between them, regardless of the value of the parent view’s
InterElementYSpacing aribute.

Controlling the Horizontal Alignment of Elements
You can control the horizontal alignment of some elements. If a NativeUI object has a
setHalign method, for example, nUITextfieldElement object, you can use the method to control
the object’s horizontal alignment to align its contents left, center, or right within the
parent object. Similarly, other NativeUI objects might use a setAlign method, such as the
nUIImageElement object.

Even if visually, an element does not use the full screen width, as usual, subsequent
elements are added one below the other. For example, consider an example where you
have two text elements, where the first is left-aligned and the second is right-aligned.
Visually, the text in the elements might not span the entire width of the screen.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 26

Using Tables to Control the Layout of Elements
If you want a more complex layout than just elements positioned vertically, one below
the other, you can use tables for your layout. When you use tables, you can:

Use background colors or images to change the background of the entire table, entire
rows, and/or individual cells.

Add borders around cells and control the thickness of the cell borders.

Position elements side by side by placing the elements in table cells.

Span cells horizontally and or vertically.

Using tables allows you to precisely position elements while still allowing your user
interface to scale to all devices, platforms, font sizes, and orientations.

Controlling Inner Padding and Spacing in Tables

When using tables (nUITableElement objects) for element layout, you must consider the
table’s inner padding and the cell spacing within a table. Additionally, table cells
(nUITablecellElement objects) also have inner padding. You control inner padding and
spacing using the following aributes.

NativeUI Object Attribute Description

InnerX Defines the distance from the
table’s left edge to where table
cells are drawn.

InnerY Defines the distance from the
table’s top edge to where table
cells are drawn.

InnerWidth Defines the table’s usable width in
which you can add content.

InnerHeight Defines the table’s usable height
in which you can add content.

cellSpacingWidth Defines the distance between the
table columns.

Table
(nUITableElement object)

cellSpacingHeight Defines the distance between
table rows.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 27

NativeUI Object Attribute Description

InnerX Defines the distance from a cell’s
left edge to where child elements
are drawn.

Table cell
(nUITablecellElement object)

InnerY Defines the distance from a cell’s
left edge to where child elements
are drawn.

 InnerWidth Defines a cell’s usable width in
which you can add content.

 InnerHeight Defines a cell’s usable height in
which you can add content.

The use of InnerX, InnerY, InnerWidth, and InnerHeight aributes in tables and table
cells is the same as for any parent object. For more information, see “Controlling the
Inner Padding of Parent Objects” on page 18.

Adding Background Colors, Images and Borders

You can set the background color and image of tables (nUITableElement objects), table
rows, (nUITablerowElement objects), and table cells (nUITablecellElement objects). Additionally,
you can add borders around the cells in a table. You control background colors, images,
and borders using the following aributes.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 28

NativeUI Object Attribute Description

Table
(nUITableElement object)

Bgcolor Defines the background color
for the entire table.

 BackgroundDrawable Defines the background color or
image for the entire table.

 CellBorderColor Defines the color for the
borders drawn around the cells
in the table.

 CellBorderThickness Defines the width of the
borders drawn around the cells
in the table. Specify a pixel
value for the width. If you do
not want the cells to have a
border, specify 0 (zero).

Table row
(nUITablerowElement object)

Bgcolor Defines the background color
for an entire row.

 BackgroundDrawable Defines the background color or
image for an entire row.

Table cell
(nUITablecellElement object)

Bgcolor Defines the background color
for a cell.

 BackgroundDrawable Defines the background color or
image for a cell.

The following illustrates how to use the aributes for background color and cell borders.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 29

In the illustration above:

For row 1, the row background color is set to green. Because no background colors
are set for the cells in row 1, the row background color displays in the cells.

For row 2, the background color for the row is not set. As a result, the table
background color displays for the row. Cells 1 and 3 in row 2 have a background
color set to blue. The background color is not set for the cell 2 in row 2, so it takes on
the background color of the table.

The table’s cell borders are set to dark blue. As a result, all cells in the table have a
dark blue border.

Sizing Table Columns, Rows, Cells, and the Elements Placed in Cells

When you add a table (nUITableElement object) to a parent object, the table uses the full
width available in the parent object. The following describes how columns, rows, cells,
and elements are sized.

For columns, you specify the relative column width sizes when using the constructor
to create a nUITableElement object. For example, if you specify 1, 2, 1, the constructor
creates a table with 3 columns where column 1 and 3 are half the size of column 2. In
other words, column 1 uses 25% of the table width, column 2 uses 50% of the table
width, and column 3 uses the remaining 25%.

For table rows (nUITablerowElement objects), by default, the height of a row is determined
by the height of the cells that the row contains. If you want, you can set the Height
aribute of a nUITablerowElement object to specify a pixel value to use for the row

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 30

height. However, if the cells in the table are larger than the pixel value you specify,
the content is clipped.

For cells (nUITablecellElement objects):

Cell width is determined by the size of the column in which the cell resides, and
also taking into consideration the column spacing, which is the gap between
columns in the table. The column spacing is set using the CellSpacingWidth
aribute of the nUITableElement object.

Cell height, by default, is determined by the height of the cell’s contents
and inner padding. If you want, you can set the Height aribute of a
nUITablecellElement object to specify a pixel value to use for the cell height.
However, if the contents of a cell is larger than the pixel value you specify, the
content is clipped.

You can span table cells both horizontally or vertically. To span cells
horizontally, use the Hspan aribute of the nUITablecellElement object. To span cells
vertically, use the Vspan aribute of the nUITablecellElement object.

For elements that you place in table cells, the element width and height is determined
in the same way as placing the elements in any parent object. For more information,
see “Sizing Child Elements” on page 22.

Positioning Elements in Table Cells

When an application adds elements into a table cell, the elements are positioned
vertically, one below the other, starting at the top of the table cell. The elements are
indented based on the table cell’s inner padding. You can control the spacing between
elements in a table cell in the same way as you control vertical spacing for any parent
object. For more information, see “Controlling the Vertical Spacing Between Child
Elements” on page 24.

You can leave cells empty. For example, an application might use a single row table with
column widths set to 25%, 50%, 25% of the table width. To have a buon that is 50% the

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 31

size of the table width display in the center of the screen, the application can place the
buon in the center cell, leaving the outer cells empty.

You can use the VAlign aribute of the nUITablecellElement object to vertically align the
contents of a cell. This is useful when tables contain cells that are vertically spanned, and
also when the elements in table cells can potentially be of different heights (images, text,
buons, etc.). The VAlign aribute allows applications to vertically align elements in a
manner that looks good on the device.

Managing Object Focus
In an application’s user interface, when a NativeUI object gains focus, its appearance
changes to indicate that it is ready for user interaction, such as to receive input from
a finger tap or keyboard. How the appearance of a NativeUI object changes depends
on the platform. Platforms use different visual clues, such as highlighting the object,
making the object visually distinct, or changing the color of the background behind the
object.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 32

The NativeUI system has default behavior for whether a newly added object gains focus.
By default, when adding a view to a window or a focusable NativeUI object to a view,
the following behavior occurs:

If the parent object does not already contain an object that has focus, the newly
added object gains focus.

If the parent contains an object that has focus, the focus does not change when the
new object is added to the view or window.

You can override the default behavior for NativeUI objects that are a subclass of the
nUIDisplayObject class by using the parent.setChildFocus(child_to_focus_on) method.

Background Colors and Images
The background of most NativeUI elements can be changed using two properties,
Bgcolor and BackgroundDrawable. Seing a value for Bgcolor will override any
previously set BackgroundDrawable, and similarly, seing a BackgroundDrawable will
override any previous Bgcolor.

Bgcolor is the older of the two properties and has been extended in Mobile Designer
9.12 to support more NativeUI elements (as platform support allows). As the name
suggests, Bgcolor can only influence background colors. Seing Bgcolor's value to
nUIDisplayObject.COLOR_BACKGROUND_NORMAL (0xFFFE00FF) is considered as a
special value and corresponds to whatever the platform would normally do for this
element, so it cannot be set directly as a literal color value.

BackgroundDrawable is a new property added to Mobile Designer 9.12. Using
BackgroundDrawable, you can get a much wider set of options for a NativeUI object.
A new package, com.softwareag.mobile.runtime.nui.background, contains the three types of
background classes that can be set:

ColorBackground for raw color values (including the literal value of
COLOR_BACKGROUND_NORMAL, if required)

PatternImage for images (with optional tiling or scaling if memory and platform
support allows)

DefaultBackground for the default background behavior of this element. Use the static
reference DefaultBackground.DEFAULT if you want to reset a NativeUI object to it's
default background.

Wherever possible, consider using the BackgroundDrawable property in preference to
Bgcolor.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 33

Adding Support for Right-to-Left Languages
The right-to-left (RTL) or left-to-right (LTR) property of a writing system is commonly
referred to as its directionality. The NativeUI library has methods to support locales that
require right-to-left directionality, such as Hebrew and Arabic.

You can change the directionality of the entire application's user interface to use right-
to-left directionality. However, if necessary, an application can use a mix of right-to-left
and left-to-right directionality.

Based on the platform on which an application is running, using right-to-left
directionality for a user interface might change:

Default alignment of the NativeUI objects and the text within the objects

Position of the Back buons and header menus within the user interface

Ordering of the columns within the nUITableElement NativeUI object

Positioning of the carat within the nUIEntryElement NativeUI object

Controlling the Directionality of an Application

The following table describes the NativeUI classes and methods you use to control
directionality of an application:

NativeUI Class Description

nUIConstants Use the following integers to represent the directionality:

TEXT_DIRECTION_LTR for left-to-right directionality

TEXT_DIRECTION_RTL for right-to-left directionality

nUIController Use the following methods to control the global behavior of the
application:

deviceSupportsAppDirectionality() method

The deviceSupportsAppDirectionality() method indicates whether the
platform supports a specified directionality at run time. The
method returns true if the platform supports the directionality or
false if it does not. The method might return false for one of the
following reasons:

Directionality support for the platform was unavailable
through the NativeUI system at the current time.

The device’s locale seings do not allow a directionality
change at the current time.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 34

NativeUI Class Description

The platform does not support the directionality due to other
platform-specific issues.

 void setAppDirectionality(int direction) method

Use the void setAppDirectionality(int direction) method to set the
directionality. For direction, specify either TEXT_DIRECTION_RTL for
right-to-left or TEXT_DIRECTION_LTR for left-to-right.

After changing the directionality, the getAppDirectionality() method
immediately reflects the new direction.

During the next UI update, the class that extends MDApplication will
be notified with the new direction.

Note: You can override the MDApplication.appDirectionalityChanged()
in your MDApplication class if you need to handle changes in
the application directionality. Because your initial Canvas
class already extends CanvasNativeUI, you do not have to
use a separate class to override this function.

 getAppDirectionality() method

The getAppDirectionality() method returns the application’s current
global directionality seing, either TEXT_DIRECTION_LTR or
TEXT_DIRECTION_RTL.

nUITableElement Use the following methods to manage the directionality within a
nUITableElement NativeUI object:

Use the setIgnoreDirectionality() method to have the NativeUI system
ignore the application’s current directionality seing.

If an application’s directionality is set to right-to-left, by default,
the table’s column order is reversed. If you do not want the
columns reversed, use this method to ignore the directionality
seing for the table columns. For example, you might want this
if the table contains images that you want displayed in a specific
order regardless of the application’s directionality.

Use the getIgnoreDirectionality() method to determine whether the
application directionality will affect the ordering of columns
within the table. The method returns true if column ordering will
be affected by the application directionality or false if column
ordering will not be affected.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 35

Exceptions to Right-to-Left Directionality

The following lists situations when the application’s directionality is not enforced:

If an application explicitly sets the position of a NativeUI object, for example, using
the setX method, the NativeUI system does not override the position. Similarly,
if an application explicitly sets the alignment of a NativeUI object, for example,
using the setHAlign method, the NativeUI system does not override the alignment.
Only NativeUI objects that have the default position and alignment are subject to
directionality changes.

The nUIWebviewElement and nUIWebView NativeUI objects are not subject to the
application’s directionality. To change the directionality of text within these
NativeUI objects, use the HTML DIR aribute, for example, <HTML DIR="RTL"> or
<p DIR="RTL”>.

The charting APIs are not subject to the directionality of an application. In most
platforms, right-to-left text displays using a right-to-left direction. However, chart
and axis reordering is not performed.

Platform-Specific Notes and Issues

When an application uses a right-to-left directionality, how objects in the user interface
display depends on the platform's support for right-to-left setups. Wherever possible,
the NativeUI system aempts to use the platform-specific conventions for when a device
uses a right-to-left locale.

Platform Notes

Android Android version 11 and higher support right-to-left
directionality.

The nUICheckboxButton, nUIRadioCheckbox, and
nUIDropdownlistEntry NativeUI objects display using left-
to-right directionality. Additionally, non-custom dialog
boxes, that is, those created using the nUIAlertDialog
NativeUI object, might also retain left-to-right alignments.

iOS The following NativeUI objects display using left-to-right
directionality.

nUICheckboxButton
nUIDropdownlistEntry
nUIRadioCheckbox
nUINavView

The buons within a nUIDialogWindow NativeUI object
display using a left-to-right directionality.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 36

Platform Notes

J2ME (Phoney) The NativeUI system aempts to provide directionality
features similar to those that other platforms provide.
In general, the NativeUI system makes the functionality
align with that provided by Android and iOS.

Using Multiple Panes for Tablet User Interfaces
The NativeUI window object, nUIWindowDisplay, allows you to define multiple panes in
a window. Using multiple panes in a window is primarily useful when creating user
interfaces for tablet devices that have larger screen sizes.

By default, the nUIWindowDisplay object has two panes, one with a nUIViewDisplay object
for the main pane and a nUINavView object for navigation. You can configure the
nUIWindowDisplay object to accept additional nUIViewDisplay and nUINavView objects, allowing
the application to use multiple panes to take advantage of the larger screen size.

Important: Before creating an application that uses multiple panes, ensure the target
platforms on which the application will run support windows with multiple
panes.

NativeUIDemo Sample

The Mobile Designer NativeUIDemo sample application is an example of an application
that uses multiple panes. It is also an example of an application that runs on both tablet
devices and smaller devices, altering the user interface based on the device size. The
following shows a screenshot of the NativeUIDemo.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 37

If the NativeUIDemo application determines that it is running on a tablet device, it
uses multiple panes. To determine whether it is running on a tablet, the application
derives the screen size of the device on which it is running. The NativeUIDemo sample
considers a tablet to be a device with a screen size that exceeds six inches diagonally. For
more information, see “Determining the Device Size at Run Time” on page 38.

Managing the Layout of Panes
The common layout for tablet applications in landscape mode is to divide the screen into
two panes with a smaller, navigation pane and a larger, main pane.

When using the NativeUI, you have complete control over the layout of the panes. By
default, the nUIWindowDisplay object has a navigation pane and a main pane. The main
pane occupies all space that is not used by the navigation pane. You can add additional
panes and divide the window into as many panes as you need.

You should carefully plan how to arrange and size the panes. Consider how the panes
will work on screens with differing resolutions and how device orientation will affect
the usability of the application.

Important: It is recommended that you do not use overlapping panes.

You can add logic to your application that determines the size of the panes at run time.
For example, the NativeUIDemo sample uses a flexible method to determine the size
of its panes. The application sets the width of the left pane to the smaller of either 40%
of the overall screen width or 2 inches. As a result, the user interface is usable even if

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 38

the application is running on a small tablet in portrait mode. The application sets the
height of the left pane to the full screen height less the height of the navigation bar. The
right, main pane fills the remaining space. For more information, see “Adding Panes to a
Window” on page 39.

Designing Applications to Run on Both Tablets and Smaller Devices
You can create applications that support both multiple panes aimed for larger devices,
such as tablets, and single screens aimed for smaller devices, such as smartphones.
When designing the application, it is recommended that you initially design the
application flow for the multiple-pane version as a set of features that you can degrade
gracefully to accommodate the single-screen version. Alternatively, you can design the
single-screen version, and after the application is complete, convert it to a multiple-pane
application.

When designing the application flow, be sure to consider the differences between
displaying information using multiple panes vs. a single pane. For example, the flow
for a single-screen application tends to be linear. Because the logic is more linear, the
behavior of the Back buon is somewhat predictable. When designing the application
flow for an application that will use multiple panes, you can divide the tasks between
the panes. Action in one pane can trigger changes in other panes. Because of the
possibility of changes being triggered in separate panes, in a multiple-pane application,
it is less obvious how and when to display the Back buon.

Another example of a difference is the navigation bar. For a single-screen application
that is aimed for smaller devices with limited screen size, you might need to limit the
icons displayed on the navigation bar. When using multiple panes for a larger device,
you have more room to display icons. Additionally, you can split the contents of the
navigation bar across multiple panes.

When creating an application that supports both multiple-pane and single-screen
versions, you need to add logic to determine when to use the logic for the multiple-pane
version or the single-screen version. One method is to base the decision by determining
the size of the device. For more information, see “Determining the Device Size at Run
Time” on page 38.

Determining the Device Size at Run Time
If a target platform supports multiple panes, one way to determine whether to use the
multiple-pane logic rather than use a single-screen logic is by determining the size of the
device on which the application is running. After determining the size of the device, the
application can then execute the appropriate logic for the device size.

At run time, the physical screen size of the device is not available because this value
is not stored anywhere. However, the application can determine the screen size by
checking the screen resolution against the screen’s pixels per inch (PPI). The screen
resolution and PPI values are stored in the device profile. At run time, the application
can query the values using the nUIController.getScreenWidth(), nUIController.getScreenHeight() and
nUIController.getScreenPPI() methods.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 39

You code the application to determine what size is considered a tablet. For example, the
logic might consider that any device with a screen size that exceeds six inches diagonally
is a tablet.

To see sample code that performs this logic, review the code in the Mobile Designer
NativeUIDemo sample.

Adding Panes to a Window
By default, the NativeUI nUIWindowDisplay object has two panes, Pane 0 and Pane 1. Pane
1 is for navigation using the nUINavView object. Pane 0 is the main pane and occupies all
space that Pane 1 does not use.

The code examples in this section show how to add an additional third pane to the left
side of a window.

The following code example is for a setPaneDimensions method. It defines the dimensions
for three panes: the main pane, the navigation pane, and the additional side pane. The
code explicitly defines the dimensions of the side pane and the navigation pane. The side
pane occupies 40% of the total screen width or two inches, whichever is the smaller. The
pane for the navigation bar uses the full width of the screen. The main pane occupies the
remaining available space.
int mainpane = 0;
int navpane = 1;
int sidepane = 2;
nUIWindowDisplay main_window;
nUINavView main_navbar_view;
protected void setPaneDimensions()
{
 int sidepane_width = Math.min ((CURRENT_SCREEN_WIDTH * 40) / 100,
CURRENT_SCREEN_PPI * 2);
 int navbar_height = 0;
 if (main_navbar_view != null)
//the navigation bar is not used everywhere in the application
 {
 navbar_height = main_navbar_view.getHeight ();
 }
 int height = main_window.getHeight ();
 main_window.setPaneDimensions (sidepane, new int [] { 0, 0, sidepane_width,
height - navbar_height });
 main_window.setPaneDimensions (mainpane, new int [] { sidepane_width, 0,
CURRENT_SCREEN_WIDTH - sidepane_width, height - navbar_height });
//navigation pane is full-width and calculated automatically.
}

After defining the setPaneDimensions method, it can be invoked during onCreateMainWindow
when creating the main window of the application. By doing so, the setPaneDimensions
method creates the pane structure. You should define the pane structure as soon as the
screen dimensions and screen pixels per inch (PPI) are available.

The following code example shows how to create the main pane, navigation pane,
and side pane, as well as showing how to set transitions. Note that the logic adds the
navigation pane before seing the pane dimensions so that the setPaneDimensions method
can adjust the height.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 40

nUIViewDisplay main_view, side_view;
//onCreateMainWindow is called from CanvasNativeUI.
protected nUIWindowDisplay onCreateMainWindow()
{
 main_window = new nUIWindowDisplay(NUIID_MAIN_WINDOW);
 main_window.add(onCreateMainNavbarView());
 main_view = onCreateMainView();
 side_view = onCreateSideView();
 setPaneDimensions(); //size panes according to contents
 transitionToView(main_view, mainpane);
 transitionToView(side_view, sidepane);
 return main_window;
}

Note: By default, the NativeUI system assumes that the application uses two panes,
Pane 0 and Pane 1, and uses the default size for each. If an application uses
additional panes, the NativeUI system must be aware of the additional
panes. To do so, in onCreateMainWindow, the application logic should call the
setPaneDimensions method before adding content to panes higher than 1. In the
above example, that means before adding content to the additional side pane,
Pane 2.

As shown in the code sample below, you can also use the setPaneDimensions method to
handle changing the pane sizes when the orientation of a device changes, for example,
turning an iPad from landscape to portrait. Whenever the orientation of a device
changes, sizeChanged() is called.
public void sizeChanged(int new_width, int new_height)
{
 // IMPORTANT to do this first to enable internal handling
 // that needs to happen when the canvas size changes.
 super.sizeChanged (new_width, new_height);

 setPaneDimensions ();
}

When to Use Views or Panes
As well as using panes to manage nUIViewDisplay objects within a nUIWindowDisplay, you can
also nominate views as "side views". These can be used to provide a pop-up "side menu"
or "toolbox"-style functionality for an application. The table below contrasts the use of
panes and side views. As a general rule, side views are more suitable for phone screens
than tablet devices, but are available for both.

Side View Pane

Pops up when needed. Is always open.

Obscures or displaces other content
when open (may include nUINavViews).

Exists in its own space within the
window.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 41

Side View Pane

Can be defined once to provide a
global pop-up "toolbox" for the entire
application.

Usually changes content throughout
the application's life-cycle.

Only 2 side views per window possible
at the same time (left and right).

Multiple panes possible.

Fixed x/y positions and height (width
configurable).

Arbitrary layouts possible.

More space-efficient with smaller
devices.

Beer side-by-side layout of data and
controls for larger devices.

Blocks interaction in other views when
visible.

Allows for interaction across multiple
views concurrently.

JavaScript Bridge
You can exchange messages between compiled Java code and a running JavaScript
instance inside a nUIWebView or nUIWebviewElement.

Note: While most JavaScript engines implement a wide set of common
functionalities, you must pay aention to differences between the various
platforms. Mobile Designer does not adjust your HTML or JavaScript code to
make it more compatible.

Maintaining Good Security
You must be aware that exchanging messages between JavaScript and Java can have
various security implications. Therefore, you must consider which web pages may
be loaded inside a nUIWebView or nUIWebviewElement, which messages may potentially
be passed to and from that page, and how they are handled. You may consider
implementing some or all of the items on this list:

Checking Object.equals() on the nUIWebView or nUIWebviewElement making calls from
JavaScript into Java.

Using processURL() callbacks to create a URL whitelisting system and/or tracking the
currently loaded web page.

Passing a secret token into JavaScript from Java or an external server before
accepting calls from JavaScript back into Java.

Disabling callbacks with a boolean until they are expected.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 42

Obfuscating JavaScript code for release builds.

Sending a Message to JavaScript from Java
Messages are sent using the callJavaScript() method on the nUIWebView or nUIWebviewElement.
You must specify the name of a JavaScript function to call and an array of java.lang.String
objects for the functions's arguments. If no arguments are required, a string array
of length 0 (zero) should be used. This is an example for two JavaScript functions,
myFirstMethod() and mySecondMethodWithArgs(param1, param2):
//call myFirstMethod() to do something
myWebView.callJavaScript("myFirstMethod", new String[]{});
//call mySecondMethodWithArgs with "one" and "two" as arguments
myWebView.callJavaScript("mySecondMethodWithArgs", new String[]{"one", "two"});

Using callJavaScript() in this manner will cause execution on the Java side to wait for a
return value. You can also pass an additional parameter to callJavaScript() that will allow
the JavaScript function to return a string value to Java. Pass in a reference to a class that
implements the NativeUI interface com.softwareag.mobile.runtime.nui.IJSCallback.

Evaluating an Arbitrary Chunk of JavaScript Code
With callJavaScript(), messages are passed from Java into an existing method hosted on
the JavaScript side. Sometimes, this can be unsuitable for the application, and only a few
simple lines of JavaScript need to be evaluated. For this, the method evaluateJavaScript()
can be called.

As with callJavaScript(), there are two ways to call evaluateJavaScript(). One is to take
a string containing the JavaScript code, run synchronously, and return a string
result (if applicable). The other method will take an additional object conforming to
com.softwareag.mobile.runtime.nui.IJSCallback, and run asynchronously, returning any result at
a later time.

Sending a Message to Java from JavaScript
Sometimes, events inside the browser may require the support of additional Java code,
either for speed or to add functionality. For this purpose, Mobile Designer provides an
additional callback method in nUIWebviewCallbackExt that you can implement. This method
is called onJavaScriptCallback(). After creating a nUIWebviewCallbackExt and associating it with
a nUIWebView or nUIWebviewElement, this callback can be accessed through the JavaScript
function MDInterface.javaScriptCallback(clazz, method, parameters). It is expected that clazz and
method will be directly convertable from a JavaScript-style var into a java.lang.String, and
the parameters argument will become an array of strings. On the Java side, you must
implement the logic required to handle the onJavaScriptCallback() method. Calls coming
from the JavaScript side will be routed directly to this method. Although the parameters
passed suggest the use of class names and methods, this is not mandatory, and you can
implement logic that differs from this paern.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 43

Using Tabbed Views
You can create a tabbed view (also known as a segmented view) using the nUITabView
object. This type of view allows an application to switch between different but related
NativeUI views using a simple left/right swipe gesture. It can be used in place of a
standard nUIViewDisplay as the child of a nUIWindowDisplay. For a visual reference, Google
provide some images at “hps://material.google.com/components/tabs.html” that
illustrate the concept.

Each individual tab in a nUITabView contains two components. First, the content in form
of a standard nUIViewDisplay object with the tables, buons, etc. needed to lay out the
application's content. Second, the label which describes the content of the tab. On
Android and iOS, this may be a simple text such as "Network", an LCDUI image, or
both. Complex arrangements can be created with nUITableButton.

Integration in Mobile Designer
Content is provided to a nUITabView through an ITabViewProvider interface. You must create
a class that implements this interface and assign it to an instance of nUITabView. The
nUITabView object queries the methods in ITabViewProvider at run time to determine how
to draw its contents. The getNumberOfTabs() method is called to determine how many
tabs are required. This method is called only once, near the creation time of the native
objects on-screen. For every tab, createTabElement(int index) is called to create the tab's label,
and createTabView(int index) is called to create the tab's content. A nUITabViewListener can be

https://material.google.com/components/tabs.html

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 44

used to get notifications when a tab is selected. For example code for nUITabView, see the
NativeUIDemoNew Sample Project.

Using List Views and Elements
You can display long lists using two classes that conform to IListRenderer: nUIListView and
nUIListElement. These list objects allow an application to load and display long lists in a
more efficient manner.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 45

To use nUIListElement or nUIListView, you must implement two interfaces and assign them
to the list view:

IListProvider to provide data to the list view.

IListListener to get notifications from the list view. For detailed information, see
webMethods Mobile Designer Java API Reference.

The PullToRefresh method is also available. By default, this functionality is disabled. Call
the enablePullToRefresh(true) method to enable it. When you pull to refresh, the onRefresh()
method is called. With this method, a bigger amount of data can be loaded in an
asynchronous way and thereby prevent that the user interface is blocked. When the data
is loaded, you can hide the top spinner by calling hideSpinner(IListListener.POSITION_TOP)
and notify the list view that data was changed by calling the update() method. For
detailed information, see the example in the com.softwareag.mobile.nativeuidemo.view.ListView
class of the _NativeUIDemoNew_ project.

With the current API, you can easily implement endless scrolling. At first, configure
the list view to notify you if the scrolling process has reached a specified amount of
remaining elements and therefore more data can be loaded. For example, by calling
setScrollThreshold(10), you are informed when less than 10 elements can be scrolled. When
this point is reached, onScrollThresholdReached() is called. With this method, you can show
the boom spinner and load more data in an asynchronous way. When the data is
loaded, you must hide the boom spinner with hideSpinner(IListListener.POSITION_BOTTOM)
and notify the list view that new data is available by calling the update() method.

For a beer performance, use special methods for inserting, deleting, and updating rows
instead of using the update() method.

M
Even Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 46

Swiping Behavior
To be able to use swipe gestures within nUIListView and nUIListElement, you must define
a swipe behavior for a particular cell type and swipe direction by implementing the
getSwipeBehavior method in the IListProvider interface.

You can choose between

SwipeToDeleteBehavior - Allows you to delete a cell by swiping.

SwipeToEditBehavior - Allows you to show action buons in a cell by swiping. However,
the cell is not deleted.

SwipeActionBehavior - Allows you to show action buons in a cell and to delete this cell
by swiping.

Use the factory class SwipeBehavior to create the required SwipeBehavior instance.

Note: You cannot assign different swipe behaviors to the same combination of cell
type and swipe direction.

For detailed information, see the example in the
com.softwareag.mobile.nativeuidemo.view.ListView class of the _NativeUIDemoNew_ project.

Using Edit Mode in List Views
If you want to select multiple rows in a list view, you can enter edit mode by calling the
IListRenderer.startEditMode(IListEditModeListener listener) method. It returns an instance of the
IListEditMode interface that contains some useful methods, such as

selectRow(int row) - Selects a row.

deselectRow(int row) - Deselects a row.

finish() - Finishes edit mode.

cancel() - Cancels edit mode.

In addition, you can determine if a specific row is selectable by implementing the
IListProvider.shouldselectInEditMode(int row) method.

Using Element Identifiers
It can be tedious to test applications manually. A number of UI automation tools, such
as Appium, have become available. Mostly, these tools enable you to run test scripts to
access UI elements on the screen in a number of ways. Commands may be available to
press or swipe at literal pixel positions, find elements according to their index in a parent
object, or search for elements by a unique name assigned by the application developer
and the item's type.

M
Odd Header

Mobile Designer Native User Interface

webMethods Mobile Designer Native User Interface Reference Version 10.3 47

Mobile Designer provides a new Element Identifier API. This allows you to annotate your
NativeUI objects with a unique name so that they can be detected by UI automation
tools. For Android devices, the content description field of an element can be set,
and on iOS, the accessibility identifier is used.

Note: It can be important to set an element's identifier before the element is drawn
on the screen for the first time. For some elements, it is not always possible to
update the value later.

For most elements, the setElementIdentifier() method is used directly:
nUIButtonElement myButton = new nUIButtonElement(-1, "Save Preferences");
myButton.setElementIdentifier("SavePrefs");
...
aView.add(myButton);

When annotating certain other elements, the methods to do so change slightly. Defining
panes in windows is done as follows:
nUIWindowDisplay myWindow = new nUIWindowDisplay(-1);
myWindow.setPaneDimensions(2, sidePaneDimensions, "SideMenuPane");

Similarly, updating pop-up menus is done as follows:
nUIPopupMenuBuilder builder = new nUIPopupMenuBuilder();
builder.addItem("List Tasks", new TaskLister(), "StartListTasks");
builder.addItem("Update Tasks", new TaskUpdater(), "StartUpdateTasks");

For the following elements, the setElementIdentifier() method is not supported:

nUISearchNavButton - Not supported on iOS.

nUISeparatorElement - Not supported on Android.

nUISpacerElement - Not supported on iOS.

nUITabView - Not supported on iOS.

nUITabElement - Not supported on Android.

nUIWebviewElement and nUIWebView - Not supported on Android.

For further information, see webMethods Mobile Designer Java API Reference.

Note: Mobile Development sets element identifiers automatically using the name of
the elements from the application model.

M
Even Header

webMethods Mobile Designer Native User Interface Reference Version 10.3 48

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 49

2 Native User Interface (NativeUI) Objects

■ About the NativeUI Objects ... 51

■ nUIAlertDialog .. 51

■ nUIButtonElement .. 52

■ nUICheckboxButton .. 53

■ nUIContainerElement ... 54

■ nUIDateEntry .. 55

■ nUIDialogWindow ... 56

■ nUIDisplayObject .. 57

■ nUIDropdownlistEntry ... 58

■ nUIElementDisplay ... 58

■ nUIEntryElement .. 59

■ nUIFloatingEntry ... 60

■ nUIImageElement ... 61

■ nUIListElement ... 61

■ nUIListView ... 62

■ nUINavbuttonElement .. 62

■ nUINavView .. 65

■ nUIObject .. 66

■ nUIPopupMenuBuilder ... 66

■ nUIProgressanimElement ... 67

■ nUIRadioCheckbox ... 68

■ nUISearchEntry .. 69

■ nUISearchNavButton .. 70

■ nUISeparatorElement ... 70

■ nUISpacerElement ... 71

■ nUISwitchButton ... 71

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 50

■ nUITableButton ... 72

■ nUITablecellElement ... 73

■ nUITableElement .. 73

■ nUITablerowElement .. 75

■ nUITabView ... 75

■ nUITextfieldElement .. 76

■ nUITimerObject ... 77

■ nUIViewDisplay ... 77

■ nUIWebView ... 78

■ nUIWebviewCallBack ... 80

■ nUIWebviewElement .. 80

■ nUIWindowDisplay ... 82

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 51

About the NativeUI Objects
The webMethods Mobile Designer native user interface (NativeUI) library provides
a standard way to create user interfaces for mobile applications that run on multiple
platforms. The NativeUI library is made up of NativeUI objects.

The NativeUI library includes platform-specific support for Android and iOS. When
the NativeUI has platform-specific support, NativeUI maps each NativeUI object to
a platform-specific object for a target device. As a result, when the user interface is
rendered on a target device, the user interface displays using the platform-specific
object. For example, you might want to include a check box in the mobile application’s
user interface. To do so, you can use the NativeUI object nUICheckboxButton. The
nUICheckboxButton object maps to:

android.widget.CheckBox for an Android device
UISwitch for an iOS device

This Mobile Designer documentation describes the NativeUI objects in the NativeUI
library. For additional information about the NativeUI objects, see information about
the com.softwareag.mobile.runtime.nui package in the webMethods Mobile Designer Java API
Reference.

Naming Conventions for NativeUI Objects

The names of the NativeUI objects begin with the prefix "nUI", followed by the object's
name, which is then followed by the name of the object’s parent. For example, the
NativeUI check box object is a subtype of the NativeUI buon object. Its name is
nUICheckboxButton, where the object’s name is Checkbox and parent name is Button.

Font Sizes Used Text in the NativeUI Objects

When displaying text in a NativeUI object, the font size of the text is based on the
platform’s user interface guidelines and usability requirements. However, some
elements allow you to override the font size used on a per-object basis expressed as
density independent points. Commonly, you use the setFontSize(float points) method.

nUIAlertDialog
com.softwareag.mobile.runtime.nui.nUIAlertDialog

Use to display a small pop-up that contains information. Use the pop-up to:

Present information to the user.

Interact with the user by displaying a simple question, for example, a question
requiring a “yes” or “no” answer.

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 52

Usage Notes

Include at least one buon in a nUIAlertDialog object.

The following are platform-specific considerations:

Android Android devices support no more than three buons and
ignore additional buons.

iOS When using more than two buons, iOS devices stack
the buons vertically in an alert dialog. Software AG
recommends limiting the number of buons to four or five.

Example

This code sample displays an alert dialog with two buons. Details on how the example
code is rendered on various platforms follow the code sample.
nUIAlertDialog alertDialog = new nUIAlertDialog
(
NUIID_MY_ALERT_DIALOG,
"Lorem Ipsum",
"Dolor sit amet?",
new String[]{"Lorem", "Ipsum"},
new int[]{NUIID_BUTTON_LOREM, NUIID_BUTTON_IPSUM}
);

Platform Platform-Specific Class and Visual Reference

Android Dialogs and the android.app.AlertDialog

“hps://developer.android.com/guide/topics/ui/dialogs”

iOS UIAlertView

“hps://developer.apple.com/design/human-interface-
guidelines/ios/views/alerts/”

nUIButtonElement
com.softwareag.mobile.runtime.nui.nUIButtonElement

Use to display a single buon that contains a text label.

Usage Notes

Based on the platform, the nUIButtonElement object exhibits different behavior and
appearance.

https://developer.android.com/guide/topics/ui/dialogs
https://developer.apple.com/design/human-interface-guidelines/ios/views/alerts/
https://developer.apple.com/design/human-interface-guidelines/ios/views/alerts/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 53

The following lists the default horizontal text alignment of the buon label based on
the platform:

Android Buon label is aligned left

iOS Buon label is aligned left

Example

This code sample displays a buon. Details on how the example code is rendered on
various platforms follow the code sample.
view.add(new nUIButtonElement(NUIID_MY_BUTTON, "nUIButtonElement"));

Platform Platform-Specific Class and Visual Reference

Android android.widget.Buon

“hps://developer.android.com/guide/topics/ui/controls/buon”

iOS UIBuon

“hps://developer.apple.com/design/human-interface-guidelines/
ios/controls/buons/”

nUICheckboxButton
com.softwareag.mobile.runtime.nui.nUICheckboxButton

Use to display a check box.

Usage Notes

Valid states for the check box are 0 (zero) meaning clear and 1 (one) meaning
selected.

The nUICheckboxButton object provides the following check box types. Use the type that
is most appropriate for your application’s target platforms.

nUICheckboxButton.TYPE_DEFAULT, which indicates the application uses the
check box type that is considered the most appropriate for the target platform.

nUICheckboxButton.TYPE_OFF_ON indicates a check box that uses “On” and
“Off”.

nUICheckboxButton.TYPE_YES_NO specifies a check box that uses “Yes” and
“No”. For platforms that do not support yes/no check boxes, Mobile Designer
implements a nUIButtonElement object with equivalent “Yes” and “No” text labels.

https://developer.android.com/guide/topics/ui/controls/button
https://developer.apple.com/design/human-interface-guidelines/ios/controls/buttons/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/buttons/

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 54

The default state for a check box is 0 (zero), meaning clear, off, or no.

Example

This code sample displays a check box. Details on how the example code is rendered on
various platforms follow the code sample.
view.add(new nUICheckboxButton(NUIID_MY_CHECKBOX, "nUICheckboxButton"));

Platform Platform-Specific Class and Visual Reference

Android android.widget.CheckBox

“hps://developer.android.com/guide/topics/ui/controls/
checkbox”

iOS UISwitch

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/switches/”

nUIContainerElement
com.softwareag.mobile.runtime.nui.nUIContainerElement

Use to display a container that holds other NativeUI objects.

You can set the container’s aributes to allow scrolling. For example, the application
might use the container to hold long pieces of text that exceeds the viewable area,
allowing the user to scroll through the text.

Usage Notes

Set the Height aribute to set height of the object. By default, the nUIContainerElement
object occupies the remaining width of the parent object. However, you can adjust
the width of the nUIContainerElement object using the Width aribute.

If you want to use a scrolling nUIContainerElement object in a view, ensure that the
parent nUIViewDisplay object does not allow scrolling.

Caution: Seing the Hscrollable aribute to true to allow horizontal scrolling
currently results in undefined behavior.

The following are platform-specific considerations:

Android The InnerX and InnerY default values are 0 (zero).

iOS The InnerX and InnerY default values are 0 (zero).

https://developer.android.com/guide/topics/ui/controls/checkbox
https://developer.android.com/guide/topics/ui/controls/checkbox
https://developer.apple.com/design/human-interface-guidelines/ios/controls/switches/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/switches/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 55

Example

This code sample displays the nUIContainerElement object between two nUIBuonElement
objects. Details on how the example code is rendered on various platforms follow the
code sample.
//Add buttons to help demonstrate the bounds of the container.
view.add(new nUIButtonElement(-1, "nUIButtonElement 1"));

nUIContainerElement my_container = new nUIContainerElement(-1);
my_container.setHeight(150);
my_container.add(new nUITextfieldElement(-1, LOREM_IPSUM_STRING));
view.add(my_container);

view.add(new nUIButtonElement(-1, "nUIButtonElement 2"));

Platform Platform-Specific Class and Visual Reference

Android android.widget.ScrollView with RelativeLayout.LayoutParams

iOS UIView with a UIScrollView

“hps://developer.apple.com/design/human-interface-
guidelines/ios/views/scroll-views/”

nUIDateEntry
com.softwareag.mobile.runtime.nui.nUIDateEntry

Use to display a date or time selector control.

Usage Notes

Use the Format aribute to indicate whether you want a date or time selector
control:

For this type of selector Specify the following for the Format attribute

Date with day, month, and
year

nUIDateEntry.dd_MM_yyyy

Time with hours and minutes nUIDateEntry.HH_mm

When geing the Date aribute after an EVT_POST_EDIT call to a nUIDateEntry object,
only the information for the requested Format is valid. Data outside the specific
Format is undefined.

https://developer.apple.com/design/human-interface-guidelines/ios/views/scroll-views/
https://developer.apple.com/design/human-interface-guidelines/ios/views/scroll-views/

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 56

Example

This code sample displays a date selector control. Details on how the example code is
rendered on various platforms follow the code sample.
view.add(new nUIDateEntry(NUIID_MY_DATE, null)); //null = current date

Platform Platform-Specific Class and Visual Reference

Android DatePickerDialog

“hps://developer.android.com/guide/topics/ui/controls/pickers”

iOS UIDatePicker

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/pickers/”

nUIDialogWindow
com.softwareag.mobile.runtime.nui.nUIDialogWindow

Use to display a pop-up window.

Usage Notes

You can add a nUIViewDisplay object to the nUIDialogWindow object.

The nUIDialogWindow object does not support multiple panes, the nUINavView object,
or nUINavbuonElement object.

Example

This code sample displays a pop-up window. Details on how the example code is
rendered on various platforms follow the code sample.
nUIDialogWindow custom_dialog = new nUIDialogWindow(NUIID_MY_CUSTOM_DIALOG);
nUIViewDisplay view = new nUIViewDisplay(-1);
view.add(new nUITextfieldElement(-1, "Lorem"));
view.add(new nUIEntryElement(NUIID_ENTRYELEMENT_IPSUM, "Ipsum"));
view.add(new nUIEntryElement(NUIID_ENTRYELEMENT_DOLOR, "Dolor"));
nUITableElement button_table = new nUITableElement(-1, new int[]{50, 50});
nUITablerowElement tr = new nUITablerowElement(-1);
{
 nUITablecellElement tc = new nUITablecellElement(-1);
 {
 tc.add(new nUIButtonElement(NUIID_BUTTON_SIT, "Sit"));
 }
 tr.add(tc);
 tc = new nUITablecellElement(-1);
 {
 tc.add(new nUIButtonElement(NUIID_BUTTON_AMET, "Amet"));
 }
 tr.add(tc);

https://developer.android.com/guide/topics/ui/controls/pickers
https://developer.apple.com/design/human-interface-guidelines/ios/controls/pickers/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/pickers/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 57

}
button_table.add(tr);
view.add(button_table);
custom_dialog.add(view);

Platform Platform-Specific Class and Visual Reference

Android android.app.Dialog

“hps://developer.android.com/guide/topics/ui/dialogs”

iOS UIView initialized with a UIModalPresentationFormSheet

Note: On an iPhone, the nUIDialogWindow object occupies the entire
screen.

nUIDisplayObject
com.softwareag.mobile.runtime.nui.nUIDisplayObject

The nUIDisplayObject class is a base class for Display NativeUI objects. The
nUIElementDisplay, nUIViewDisplay, and nUIWindowDisplay classes extend the
nUIDisplayObject class.

Usage Notes

When specifying the Width and Right aributes, you can specify just one of these
aributes. Mobile Designer infers the value of the aribute you do not define from
the value of the defined aribute.

When specifying the Height and Bottom aributes, you can specify just one of these
aributes. Mobile Designer infers the value of the aribute you do not define from
the value of the defined aribute.

The X and Left coordinate position aributes are equivalent. You can specify just
one of them.

The Y and Right coordinate position aributes are equivalent. You can specify just
one of them.

The default value for inner padding aributes is 0 (zero).

Display objects, such as tables and views, might override the default inner padding
values.

By default, the inner width and height values match the values for the X and Y
padding on the Right and Bottom of the object.

You can configure the object's Width and Height aribute values to prevent this
duplication.

https://developer.android.com/guide/topics/ui/dialogs

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 58

nUIDropdownlistEntry
com.softwareag.mobile.runtime.nui.nUIDropdownlistEntry

Use to display a drop-down list that contains selection items.

Usage Notes

If a drop-down list contains less than five items, consider using the
nUIRadioCheckbox object instead.

Example

This code sample displays a drop-down list. Details on how the example code is
rendered on various platforms follow the code sample.
String[] list_items = new String[] {"Lorem", "ipsum", "dolor", "sit", "amet"};
view.add(new nUIDropdownlistEntry(NUIID_MY_DROPDOWNLIST, list_items));

Platform Platform-Specific Class and Visual Reference

Android android.widget.Spinner

“hps://developer.android.com/guide/topics/ui/controls/
spinner”

iOS UIPickerView

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/pickers/”

nUIElementDisplay
com.softwareag.mobile.runtime.nui.nUIElementDisplay

The nUIElementDisplay class is the base class for Element NativeUI objects. The
nUIElementDisplay class overrides the parent's Y aribute and inner padding values.

By default, Element NativeUI objects display one below the other in their parent unless
the application specifically position the Element objects.

https://developer.android.com/guide/topics/ui/controls/spinner
https://developer.android.com/guide/topics/ui/controls/spinner
https://developer.apple.com/design/human-interface-guidelines/ios/controls/pickers/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/pickers/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 59

nUIEntryElement
com.softwareag.mobile.runtime.nui.nUIEntryElement

Use to display a text entry box. You can restrict the user input to alphanumeric
characters or only numbers. You can mask the field's contents, making the field suitable
for a user to enter passwords or personal identifier numbers (PIN)s.

Usage Notes

Set the Format aribute to indicate the type of text allowable in the text entry field.
Use one of the following values:

Value Meaning

nUIEntryElement.FORMAT_STRING_ANY Alphanumeric field

nUIEntryElement.FORMAT_NUMBER_ANY Numeric-only field

nUIEntryElement.FORMAT_STRING_HIDDEN Hidden (masked) alphanumeric
password field

nUIEntryElement.FORMAT_PIN_HIDDEN Hidden (masked) PIN field

Use the HintText aribute to provide text to indicate what the user should enter
in the entry field. The text displays in the entry field, typically in a light gray, and
disappears as soon as the user starts typing in the field.

The following lists platform considerations:

iOS Hint text does not display in multi-line entry boxes.

Example

This code sample displays a text box. Details on how the example code is rendered on
various platforms follow the code sample.
view.add(new nUIEntryElement(NUIID_MY_ENTRY, "nUIEntryElement"));

Platform Platform-Specific Class and Visual Reference

Android android.widget.EditText

iOS UITextField for a single-line text box

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 60

Platform Platform-Specific Class and Visual Reference

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/text-fields/”

UITextView for a multi-line text box

“hps://developer.apple.com/design/human-interface-
guidelines/ios/views/text-views”

nUIFloatingEntry
com.softwareag.mobile.runtime.nui.nUIFloatingEntry

Use to provide a text-entry element that allows any hint-text set to float above the user-
entered text as a label.

Usage Notes

For Android devices, the error color and label color aributes are ignored, and
the system-defaults are used. You can modify these on an app-wide basis with XML
styles. The space allocated to prefix and postfix hint-texts or images is identical on
both sides and therefore is influenced by the larger of the two values.

With iOS devices, the error text aribute occupies the same space as the floating
label. This means that both cannot be visible at the same time. When enabled, the
error text will always take priority over the floating label.

Example

This code sample creates an empty nUIFloatingEntry and sets the floating hint to "Family
Name". An IStringValidator is used to detect @ characters inside the string and switch
the nUIFloatingEntry into error mode if any are detected. Details on how the example code
is rendered on various platforms follow the code sample.
nUIFloatingEntry fe = new nUIFloatingEntry("");
fe.setHintText("Family Name");
fe.setErrorText("No '@' allowed here.");
fe.setStringValidator(new IStringValidator()
{
 public boolean accept(String s)
 {
 return (s.indexOf('@') < 0);
 }
});
view.add(fe);

Platform Platform-Specific Class and Visual Reference

Android TextInputLayout with a TextInputEditText

https://developer.apple.com/design/human-interface-guidelines/ios/controls/text-fields/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/text-fields/
https://developer.apple.com/design/human-interface-guidelines/ios/views/text-views
https://developer.apple.com/design/human-interface-guidelines/ios/views/text-views

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 61

Platform Platform-Specific Class and Visual Reference

“hps://material.io/develop/android/components/text-input-
layout/”

iOS Custom implementation based around JVFloatLabeledTextField
and JVFloatLabelledTextView

“hps://github.com/jverdi/JVFloatLabeledTextField”

nUIImageElement
com.softwareag.mobile.runtime.nui.nUIImageElement

Use to display an image.

Usage Notes

You can make a simple image behave like a buon and generate EVT_TRIGGER events
by calling setTriggerable(true) when creating the image.

The following are platform-specific considerations:

Android The nUIImageElement object is the android.widget.ImageView class.

iOS The nUIImageElement object is the UIImage class. For more
information, see iOS Developer Library’s “Drawing and
Creating Images”.

nUIListElement
com.softwareag.mobile.runtime.nui.nUIListElement

Use to add a scrollable list of elements to the view. Elements are fetched on an as-needed
basis.

Example

This code sample instantiates the user's IListViewProvider class, MyListProvider, and then uses
it for the creation of a nUIListElement with a fixed height. Details on how the example code
is rendered on various platforms follow the code sample.
MyListProvider provider = new MyListProvider();
 nUIListElement list = new nUIListElement(provider);
 list.setHeight(400);
 view.add(list);

https://material.io/develop/android/components/text-input-layout/
https://material.io/develop/android/components/text-input-layout/
https://github.com/jverdi/JVFloatLabeledTextField
http://developer.apple.com/library/ios/#documentation/2ddrawing/conceptual/drawingprintingios/HandlingImages/Images.html
http://developer.apple.com/library/ios/#documentation/2ddrawing/conceptual/drawingprintingios/HandlingImages/Images.html

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 62

Platform Platform-Specific Class and Visual Reference

Android RecyclerView

iOS Custom implementation based around UITableView

nUIListView
com.softwareag.mobile.runtime.nui.nUIListView

Use to add a view that contains a single nUIListElement , filling the entire space
available to it.

Example

This code sample instantiates the user's IListViewProvider class, MyListProvider, and then uses
it for the creation of a nUIListView with header text and a back buon. Details on how the
example code is rendered on various platforms follow the code sample.
MyListProvider l_provider = new MyListProvider();
 nUIListView list_view = new nUIListView(-1, l_provider);
 list_view.setHeadertext("A nUIListView");
 nUINavbuttonElement ne = new nUINavbuttonElement(
 NUIID_BACK_BUTTON, "Back",
 nUINavbuttonElement.TYPE_BACK, null);
 list_view.add(ne);

Platform Platform-Specific Class and Visual Reference

Android RecyclerView

iOS Custom implementation based around UITableView

nUINavbuttonElement
com.softwareag.mobile.runtime.nui.nUINavbuttonElement

Use to display a buon within a nUIViewDisplay object or a nUINavView object.

Usage Notes

To use the nUINavbuttonElement object as a Back buon, set the nUINavbuttonElement
object’s Type aribute to nUINavbuttonElement.TYPE_BACK.

Note: Do not use the nUINavbuttonElement object as a Back buon in a nUINavView.

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 63

When using the nUINavbuttonElement object as a Back buon in a nUIViewDisplay
object, you do not need to define an icon to use for the nUINavbuttonElement object.

When a user presses a physical Back buon or touches a Back area on a touch screen,
the nUINavbuttonElement object reacts to the user interaction.

When using the nUINavbuttonElement object as a buon in a nUINavView object, define
the Text and Icon aributes for the buon.

When specifying an image with the Icon aribute, the file must be a PNG file. For
information about using graphics in a mobile application, see “Preparing Graphics
for Your Mobile Application” and “Icon Creation and Usage for webMethods Mobile
Designer”.

The following are platform-specific considerations:

Android The nUINavbuttonElement object is a android.view.MenuItem class.
For more information, see “hp://developer.android.com/
guide/topics/ui/menus.html”.

When you use the nUINavbuttonElement object in a
nUINavView object, at least the Text or the Icon aributes
must be supplied.

 When you use the nUINavbuttonElement object in a
nUIViewDisplay object:

The buon displays in the header
bar. This support is only available if
android.nativeui.view.header.version is set to
the newer style header bar introduced with Ice Cream
Sandwich.

If you set the Type aribute to
nUINavbuttonElement.TYPE_BACK, and if the Android
device has a physical Back buon, the Back buon
is used. Otherwise, if the newer style header bar
introduced with Ice Cream Sandwich is in use, Android
draws a Back buon in the header.

If you use the HeaderText aribute, and there is
no space available for both the header text and the
nUINavbuttonElement objects, the header text is truncated.

It is recommended that you insert no more than three
nUINavbuttonElement objects in a nUIViewDisplay object.

The Icon aribute is required. The icon will be used if
it is supplied. If not, the Text aribute is used instead.
Provide a brief text for the aribute as the text will be

http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Preparing+Graphics+For+Your+Mobile+application
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Preparing+Graphics+For+Your+Mobile+application
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Icon+Creation+and+Usage+for+webMethods+Mobile+Designer
http://techcommunity.softwareag.com/pwiki/-/wiki/Main/Icon+Creation+and+Usage+for+webMethods+Mobile+Designer
http://developer.android.com/guide/topics/ui/menus.html
http://developer.android.com/guide/topics/ui/menus.html

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 64

cropped at a width 1.5 times the width of the standard
icon width.

 The size of the image you specify with the Icon aribute for
a pop-up menu is based on the density of the screen of the
device:

Low density (ldpi) images is 36x36 pixels.

Medium density (mdpi) images is 48x48 pixels.

High density (hdpi) images is 72x72 pixels.

Note: Extra high density (xdpi) is not applicable.

The size of the image you specify with the Icon aribute
for an action bar is based on the density of the screen of the
device:

Medium density (mdpi) images is 32x32 pixels.

High density (hdpi) images is 48x48 pixels.

Extra high density (xdpi) images is 64x64 pixels.

Note: Low density (ldpi) is not applicable.

iOS The nUINavbuttonElement object is a UITabBarItem class.

When you use the nUINavbuttonElement object in a
nUINavView object:

The Text and Icon aributes are required.

When specifying an image with the Icon aribute, the
image should be 32x32 pixels for a non-retina display
or 64x64 pixels for a retina display. Additionally, the
image should be black or transparent. The iOS device
automatically adds highlighting and gradients at run
time.

 When you use the nUINavbuttonElement object in a
nUIViewDisplay object:

The buon displays in the header bar.

If you set the Type aribute to
nUINavbuttonElement.TYPE_BACK, the buon displays
in the left part of the header.

The Icon or Text aribute is required. If you specify
both, Icon is used.

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 65

If you specify only the Text aribute, the iOS devices
draws the text inside a buon.

When specifying an image with the Icon aribute, it is
recommended that the image be 24x24 pixels for a non-
retina display or 48x48 pixels for a retina display. The
iOS device draws the icon without additional borders.

If you use the HeaderText aribute and space
is not available for both the header text and the
nUINavbuttonElement objects, the header text is truncated.

For an iPhone running on iOS, it is recommended that
you insert no more than three nUINavbuttonElement objects
in a nUIViewDisplay object.

For an iPad running on iOS, it is recommended that you
insert no more than six nUINavbuttonElement objects in a
nUIViewDisplay object.

nUINavView
com.softwareag.mobile.runtime.nui.nUINavView

Use to display the navigation view.

The navigation view has different formats based on the platform. For example, for some
platforms the navigation view might display as a menu bar that is always visible and
uses both icons and text. For other platforms, the navigation view might have hidden
menu items that are displayed only when a user presses a buon.

Usage Notes

You can add nUINavbuonElement objects to the nUINavView object.

Note: The nUINavbuonElement object should not represent Back
buons. That is, the object’s Type aribute should not be set to
nUINavbuttonElement.TYPE_BACK.

The following are platform-specific considerations:

Android It is recommended to limit the number of buons you add
to a nUINavView object to 6 buons. If you add more than 6
buons, a More buon displays on some Android devices.

iOS It is recommended to limit the number of buons you add to
a nUINavView object on an iPhone in full-screen portrait mode
to 8 buons.

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 66

Example

This code sample displays a navigation view. Details on how the example code is
rendered on various platforms follow the code sample.
protected nUIViewDisplay onCreateMainNavbarView()
{
//loadImage calls Image.createImage() with the appropriate path and file
extension.
 navbar_view = new nUINavView(NUIID_NAV_VIEW);
 navbar_view.setVscrollable(false);
 navbar_view.setBgcolor (0);
 navbar_view.add(new nUINavbuttonElement(-1, "Lorem",
 loadImage ("ChartArea")));
 navbar_view.add(new nUINavbuttonElement(-1, "Ipsum",
 loadImage ("ChartPie")));
 navbar_view.add(new nUINavbuttonElement(-1, "Dolor",
 loadImage ("ChartBar")));
 return navbar_view;
}

Platform Platform-Specific Class and Visual Reference

Android Custom code to emulate a split action bar

“hp://developer.android.com/design/paerns/
actionbar.html”

iOS UITabBar

“hps://developer.apple.com/design/human-interface-
guidelines/ios/bars/tab-bars/”

nUIObject
com.softwareag.mobile.runtime.nui.nUIObject

The nUIObject class is the base class for all NativeUI objects. Do not instantiate this object
directly.

nUIPopupMenuBuilder
com.softwareag.mobile.runtime.nui.nUIPopupMenuBuilder

Use to display a lightweight multiple-choice pop-up menu.

http://developer.android.com/design/patterns/actionbar.html
http://developer.android.com/design/patterns/actionbar.html
https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/
https://developer.apple.com/design/human-interface-guidelines/ios/bars/tab-bars/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 67

Usage Notes

Unlike other NativeUI widgets, the pop-up menu is created indirectly through a
builder. This builder does not need to be placed anywhere in the user interface
hierarchy.

Based on the platform and the available screen size, the pop-up either appears as
a menu aached to a nominated on-screen widget, or at the boom of the screen.
Passing the anchor element is mandatory. Calls to show() with null have no effect.

Each element inside the menu has a text label and an associated action. If the action
is null, the menu is closed without taking any actions.

A Cancel buon is available on some platforms. The text of this buon can be
changed.

Example

This code sample displays a simple pop-up menu with three items. Details on how the
example code is rendered on various platforms follow the code sample.
nUIPopupMenuBuilder builder = new nUIPopupMenuBuilder();
//Adding some items to the popup
builder.addItem("Do Something", new DoSomethingRunnable());
builder.addItem("Do Another Thing", new DoAnotherThingRunnable());
builder.addItem("Do Nothing", null);
...
// Later on, we can show the popup.
// We're anchoring to the button that triggered it...
//nUIButtonElement "aNuiButton" is defined elsewhere.
builder.show(aNuiButton);

Platform Platform-Specific Class and Visual Reference

Android android.widget.PopupMenu

“hps://developer.android.com/reference/android/widget/
PopupMenu”

iOS UIAlertAction or UIActionSheet, depending on OS version

“hps://developer.apple.com/design/human-interface-
guidelines/ios/views/action-sheets/”

nUIProgressanimElement
com.softwareag.mobile.runtime.nui.nUIProgressanimElement

Use to display an animated status indicator that an application can display to indicate
background activity is in progress.

https://developer.android.com/reference/android/widget/PopupMenu
https://developer.android.com/reference/android/widget/PopupMenu
https://developer.apple.com/design/human-interface-guidelines/ios/views/action-sheets/
https://developer.apple.com/design/human-interface-guidelines/ios/views/action-sheets/

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 68

Example

This code sample displays a status indicator. Details on how the example code is
rendered on various platforms follow the code sample.
view.add(new nUIProgressanimElement(NUIID_MY_PROGRESSANIM));

Platform Platform-Specific Class and Visual Reference

Android android.widget.ProgressBar

iOS UIActivityIndicatorView

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/progress-indicators/”

nUIRadioCheckbox
com.softwareag.mobile.runtime.nui.nUIRadioCheckbox

Use to display a single radio buon that uses two states, selected or cleared.

Usage Notes

You can place a radio buon in a group with other radio buons and enable the user
to select only one of the available radio buon options. To do so, set the GroupID
aribute of the buons in the group to the same value.

Example

This code sample displays a radio buon. Details on how the example code is rendered
on various platforms follow the code sample.
view.add(new nUIRadioCheckbox(NUIID_MY_RADIOCHECKBOX, "nUIRadioCheckbox"));

Platform Platform-Specific Class and Visual Reference

Android android.widget.RadioBuon

“hps://developer.android.com/guide/topics/ui/controls/
radiobuon”

iOS UIBuon

https://developer.apple.com/design/human-interface-guidelines/ios/controls/progress-indicators/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/progress-indicators/
https://developer.android.com/guide/topics/ui/controls/radiobutton
https://developer.android.com/guide/topics/ui/controls/radiobutton

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 69

nUISearchEntry
com.softwareag.mobile.runtime.nui.nUISearchEntry

Use to display a search entry field. You can restrict the user input to alphanumeric
characters or only numbers.

Note: The nUISearchEntry NativeUI object is similar to the nUIEntryElement NativeUI
object except that the nUISearchEntry object does not allow masking the entry
field.

Usage Notes

Set the Format aribute to indicate the type of text allowable in the text entry field.
Use one of the following values:

Value Meaning

nUIEntryElement.FORMAT_STRING_ANY Alphanumeric field

nUIEntryElement.FORMAT_NUMBER_ANY Numeric-only field

The entered text is always visible in the search entry field. If you need to mask the
field's contents, for example to use for a field where a user enters passwords or
personal identifier numbers (PIN)s, use nUIEntryElement object instead.

Use the HintText aribute to provide text to indicate what the user should enter
in the entry field. The text displays in the entry field, typically in a light gray, and
disappears as soon as the user starts typing in the field.

The following are platform-specific considerations:

Android Android devices generate an EVT_TRIGGER event when a
user selects the buon adjacent to the text field.

iOS iOS devices generate an EVT_TRIGGER event when a user
presses the Search or Enter key.

Hint text does not display in multi-line entry boxes.

Example

This code sample displays a search entry field. Details on how the example code is
rendered on various platforms follow the code sample.
view.add(new nUISearchEntry(NUIID_MY_SEARCH_ENTRY, "nUISearchEntry"));

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 70

Platform Platform-Specific Class and Visual Reference

Android android.widget.SearchView

“hps://developer.android.com/guide/topics/search/”

iOS UISearchBar

“hps://developer.apple.com/design/human-interface-
guidelines/ios/bars/search-bars/”

nUISearchNavButton
com.softwareag.mobile.runtime.nui.nUISearchNavbutton

Use to display an expandable search field within a nUIViewDisplay object. By default,
only a search icon is visible in the header which can be tapped to show/expand the
search field.

Use ISearchFieldListener to get notified when text was changed, or the Submit or Cancel
buons were clicked.

For more information, see webMethods Mobile Designer Java API Reference.

Example
ISearchFieldListener listener = <your_implementation >;
nUIViewDisplay view = <current view>;
nUISearchNavButton searchField = new nUISearchNavButton();
searchField.setSearchFieldListener(listener);
searchField.setSearchFieldHintText(“Enter search query…”);
view.add(searchField);

nUISeparatorElement
com.softwareag.mobile.runtime.nui.nUISeparatorElement

Use to display a horizontal line that separates blocks of content.

Usage Notes

Seing the Height aribute alters the padding above and below the horizontal,
separator line. It does not alter the size of the line itself.

Example

This code sample displays a horizontal, separator line. Details on how the example code
is rendered on various platforms follow the code sample.
view.add(new nUISeparatorElement(-1))

https://developer.android.com/guide/topics/search/
https://developer.apple.com/design/human-interface-guidelines/ios/bars/search-bars/
https://developer.apple.com/design/human-interface-guidelines/ios/bars/search-bars/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 71

Platform Platform-Specific Class and Visual Reference

Android Custom android.view.View

iOS UIView customized with a horizontal rule between content
blocks

nUISpacerElement
com.softwareag.mobile.runtime.nui.nUISpacerElement

Use to add blank space between NativeUI objects to create extra padding.

Usage Notes

Use the Height aribute to set the appropriate size for the blank space.

You can set the height directly using setHeight().

nUISwitchButton
com.softwareag.mobile.runtime.nui.nUISwitchButton

Use to display a single switch that may optionally have a text label.

Usage Notes

Based on the platform, the nUISwitchButton exhibits different behavior and appearance.

The nUISwitchButton will always have two states, on (true) and off (false).

The default state of a nUISwitchButton is off, which corresponds to 0 (zero), false, or
clear.

Additional methods are provided to change the state of the nUISwitchButton that accept
and return boolean values.

Example

This code sample displays two types of switch. The first has a text label, and the second
does not. Details on how the labelled switches are rendered on various platforms follow
the code sample.
view.add(new nUISwitchButton(NUIID_LABEL_SWITCH,"nUISwitchButton"));//with label
view.add(new nUISwitchButton(NUIID_SIMPLE_SWITCH)); //without label

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 72

Platform Platform-Specific Class and Visual Reference

Android android.support.v7.widget.SwitchCompat

“hps://developer.android.com/guide/topics/ui/controls/
togglebuon”

iOS UISwitch

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/switches/”

nUITableButton
com.softwareag.mobile.runtime.nui.nUITableButton

Use to display a table that contains other NativeUI objects and acts as a buon.

Example

This code sample displays a nUITableButton object that contains an image and text.
nUITableElement table;
nUITablerowElement tr;
nUITablecellElement tc;

//loadImage calls Image.createImage() with the appropriate path
//and file extension.
Image person = loadImage("PersonRealisticSingle");
table = new nUITableElement(-1, new int[]{30,70});
{
 tr = new nUITablerowElement(-1);
 {
 tc = new nUITablecellElement(-1);
 {
 tc.add(new nUIImageElement(-1, person));
 tc.setVspan(2);
 tc.setVAlign(nUIConstants.center);
 }
 tr.add(tc);

 tc = new nUITablecellElement(-1);
 {
 nUITextfieldElement header = new nUITextfieldElement(-1, "Lorem
Ipsum.");
 header.setHAlign(nUIConstants.left);
 tc.add(header);
 }
 tr.add(tc);
 }
 table.add(tr);

 tr = new nUITablerowElement(-1);
 {
 //empty cell, cell above us spans into here.

https://developer.android.com/guide/topics/ui/controls/togglebutton
https://developer.android.com/guide/topics/ui/controls/togglebutton
https://developer.apple.com/design/human-interface-guidelines/ios/controls/switches/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/switches/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 73

 tc = new nUITablecellElement(-1);
 tr.add(tc);

 tc = new nUITablecellElement(-1);
 {
 nUITextfieldElement details = new nUITextfieldElement(-1, "Dolor
sit amet, consectetur adipisicing elit, sed do eiusmod tempor.");
 details.setMaxLines(2);
 details.setFontSize(nUIConstants.size_small);
 details.setHAlign(nUIConstants.left);
 tc.add(details);
 }
 tr.add(tc);
 }
 table.add(tr);
}
nUITableButton person_with_text =
 new nUITableButton(NUIID_MY_PERSON_TABLEBUTTON);
person_with_text.add(table);
view.add(person_with_text);

nUITablecellElement
com.softwareag.mobile.runtime.nui.nUITablecellElement

Use to add a table cell to a table row (nUITablerowElement).

Usage Notes

The nUITablecellElement object sets the InnerX aribute to screen_width divided by 128,
and InnerY aribute to screen_height divided by 256 on all platforms.

A table cell can contain more than one child object. The table cell objects are
positioned and aligned in a manner similar to a nUIViewDisplay object.

Use the Bgcolor aribute to set the table cell’s background color. To specify a color,
set the Bgcolor aribute to an integer that is based on a 32-bit Alpha Red Green Blue
(ARGB) format. You can use any solid color. If you specify an Alpha value that is not
opaque (0xFF), the behavior of the table cell object is undefined. Seing a Bgcolor
will override any previous BackgroundDrawable that has been set.

Use the BackgroundDrawable aribute to set the table cell's background drawable.
A background drawable may be a solid color, defined by a ColorBackground object,
or an image defined by a PatternImage object. Specifying a background color with an
alpha value that is not opaque (0xFF) will result in undefined behavior. Seing a
BackgroundDrawable will override any previous Bgcolor that has been set.

nUITableElement
com.softwareag.mobile.runtime.nui.nUITableElement

Use to display a table that is composed of nUITablerowElement and
nUITablecellElement objects.

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 74

Usage Notes

Use the Bgcolor aribute to set the table’s background color. By default, the
background color is transparent. To change the color, set the Bgcolor aribute
to an integer that is based on a 32-bit Alpha Red Green Blue (ARGB) format. You
can use any solid color. If you specify an Alpha value that is not opaque (0xFF),
the behavior of the table object is undefined. Seing a Bgcolor will overrride any
previous BackgroundDrawable set.

Use the BackgroundDrawable aribute to set the table cell's background drawable.
A background drawable may be a solid color, defined by a ColorBackground
object, or an image defined by a PatternImage object. Solid colors with an alpha
value that is not fully opaque (0xFF) will exhibit undefined behavior. Seing a
BackgroundDrawable will override any previous Bgcolor that has been set.

Use the RelWidths aribute to specify an array of integer values that provide a
relative width for each column.

A table occupies the space available from the parent container, minus any padding.
The actual pixel width of each column is determined using the following formula:
column_px_width =
 (table_px_width * column_rel_width) / sum_of_all_rel_widths

Consider the width limitations of the target devices when determining the number
of columns to use in a table.

The RelWidths aribute can be updated after the table has been created, however,
the number of columns in the table must remain constant.

Examples

This code sample creates a table with two equal-width columns.
new nUITableElement(-1, new int [] { 1, 1 });

This code sample uses percentage values to create a table with three columns,
where the middle column is twice as wide as the first and last columns. The column
percentages should add up to 100%.
new nUITableElement(-1, new int [] { 25, 50, 25 });

This code sample creates a table using nUITableElement, nUITableBuon,
nUITablerowElement, and nUITablecellElement.
nUITableElement table;
nUITablerowElement tr;
nUITablecellElement tc;
table = new nUITableElement(-1, new int [] { 70, 30 });
{
 tr = new nUITablerowElement (-1);
 {
 tc = new nUITablecellElement (-1);
 {
 tc.add(new nUITextfieldElement (-1, "Lorem"));
 }
 tr.add (tc);

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 75

 tc = new nUITablecellElement (-1);
 {
 tc.add(new nUITextfieldElement (-1, "ipsum"));
 }
 tr.add (tc);
}
table.add (tr);

tr = new nUITablerowElement (-1);
{
 tc = new nUITablecellElement (-1);
 {
 tc.add(new nUIButtonElement (-1, "dolor"));
 }
 tr.add (tc);
 tc = new nUITablecellElement (-1);
 {
 tc.add(new nUIButtonElement (-1, "sit"));
 }
 tr.add (tc);
 }
 table.add (tr);
}
view.add(table);

nUITablerowElement
com.softwareag.mobile.runtime.nui.nUITablerowElement

Use to add a row to a table (nUITableElement). The table row contains one or more
nUITablecellElement objects.

Usage Notes

Use the Bgcolor aribute to set the table row’s background color. By default, the
background color is transparent. To change the color, set the Bgcolor aribute to an
integer that is based on a 32-bit Alpha Red Green Blue (ARGB) format. You can use
any solid color. If you specify an Alpha value that is not opaque (0xFF), the behavior
of the table row object is undefined. Seing a Bgcolor will override any previous
BackgroundDrawable set.

Use the BackgroundDrawable aribute to set the table row's background drawable.
A background drawable may be a solid color, defined by a ColorBackground object, or
an image defined by a PatternImage. An alpha value that is not fully opaque (0xFF)
will exhibit undefined behavior. Seing a BackgroundDrawable will override any
previous Bgcolor that has been set.

nUITabView
com.softwareag.mobile.runtime.nui.nUITabView

Use to group multiple, similar views together.

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 76

Example

See _NativeUIDemoNew_ sample project for code. The following illustrates how the
code is rendered on various platforms.

Platform Platform-Specific Class

Android android.support.design.widget.TabLayout and
android.support.v4.view.ViewPager

iOS Custom implementation based around the UIScrollView class

nUITextfieldElement
com.softwareag.mobile.runtime.nui.nUITextfieldElement

Use to display plain text in a label or for a block of text.

Usage Notes

The following are platform-specific considerations:

Android By default, the HAlign aribute, which specifies the
horizontal alignment of the text, is set to left.

By default, the TextColor aribute, which specifies the text
color, is set to white.

For the ClipType aribute, Android devices support
CLIP_TYPE_CLIP, which indicates that Android devices
truncate the text if it is too long to display.

iOS By default, the HAlign aribute, which specifies the
horizontal alignment of the text, is set to center.

By default, the TextColor aribute, which specifies the text
color, is set to black.

For the ClipType aribute, iOS devices support
CLIP_TYPE_ELLIPSIS, which indicates that iOS devices
truncate the text that is too long to display and add an
ellipsis to indicate the text has been truncated.

Example

This code sample displays plain text. Details on how the example code is rendered on
various platforms follow the code sample.

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 77

view.add(new nUITextfieldElement(NUIID_MY_TEXTFIELD, "nUITextfieldElement"));

Platform Platform-Specific Class and Visual Reference

Android TextView

“hps://developer.android.com/reference/android/widget/
TextView”

iOS UILabel

“hps://developer.apple.com/design/human-interface-
guidelines/ios/controls/labels/”

nUITimerObject
com.softwareag.mobile.runtime.nui.nUITimerObject

Use to add a timer object that waits a set period of time and then performs an automatic
callback event after the time period elapses.

Usage Notes

You can use the timer object to count up to a timestamp as a literal value. Set the
ActionTime aribute to the required timestamp value and set the Time aribute
using System.currentTimeMillis().

nUIViewDisplay
com.softwareag.mobile.runtime.nui.nUIViewDisplay

Use to create a view that contains other NativeUI objects. A view can contain any object
except a nUIWindowDisplay object or another nUIViewDisplay object.

Usage Notes

You can add a view (nUIViewDisplay) to a nUIWindowDisplay object.

The following are platform-specific considerations:

The InnerX and InnerY aributes are set as follows:

Platform InnerX Attribute Value InnerY Attribute Value

Android 0 (zero) 0 (zero)

iOS screen_width / 40 0 (zero)

https://developer.android.com/reference/android/widget/TextView
https://developer.android.com/reference/android/widget/TextView
https://developer.apple.com/design/human-interface-guidelines/ios/controls/labels/
https://developer.apple.com/design/human-interface-guidelines/ios/controls/labels/

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 78

The following tables lists the number of nUINavbuonElement objects that you
can display in a nUIViewDisplay object based on platform:

Platform nUINavbuttonElement objects allowed in a nUIViewDisplay object

Android 1-3

iOS iPhone: 1-3

iPad: 1-6

Example

This code sample creates a view. Details on how the example code is rendered on
various platforms follow the code sample.
nUIViewDisplay view = new nUIViewDisplay(NUIID_WEBVIEWELEMENT_VIEW);
view.setHeadertext("nUIViewDisplay");

nUINavbuttonElement ne = new nUINavbuttonElement(NUIID_BACK_BUTTON, "Back",
nUINavbuttonElement.TYPE_BACK, null);
view.add(ne);

Platform Platform-Specific Class and Visual Reference

Android View

iOS UIView

nUIWebView
com.softwareag.mobile.runtime.nui.nUIWebView

Use to create a container for the nUIWebviewElement object, which is an object that
allows for the display of rich web content. This object allows you to pass messages
between the Java code and the JavaScript run time in the browser. For guidelines on how
to approach this, see “JavaScript Bridge” on page 41.

Usage Notes

The browser engines that mobile platforms use have differences in terms of how
they display objects and support of JavaScript. You might need to develop platform-
specific changes to support your content. Mobile Designer does not change your raw
HTML content.

Avoid invoking the Javascript alert() method from inside a nUIWebView object. For
security reasons, some manufacturers configure their devices to block displaying

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 79

an alert dialog that results from a call to the Javascript alert() call. As an alternative,
consider one of the following:

Pass an event back to your Java code using a class that implements
nUIWebviewCallBack, which in turn can then open a nUIAlertDialog object if an
alert dialog is required.

Use other web-based elements to display the alert information directly within
your web page.

There are two properties that react slightly differently depending on the platform.

bgcolor

The bgcolor can be set at any time under iOS, and the web page will be redrawn
to react to the change. Under Android, the changes to the bgcolor will only take
affect when the webview redraws in response to changes in content (i.e., when
the setURL() or setHTMLText() methods are called). For both platforms, the extent
to which the web content is effected by this call is dependant on the rendering
engine used in the browser itself, as well as the HTML content being displayed.

Scaling web content to fit

This property is only usable on iOS by using UIWebView as browser engine. All
other platforms ignore it. The seing will only affect page contents when the
content of the page is changed (i.e. via setURL() or setHTMLText()).

There is currently no support for altering bgcolor, changing the scaling of content to
fit, or enabling/disabling overscrolling for Phoney.

On iOS, you can switch from the default WKWebView engine to the deprecated
UIWebView. You can set UIWebView as default browser engine for all nUIWebView and
nUIWebviewElement instances by overriding the system property ios.webview.
For more information about seing system properties, see Using webMethods Mobile
Designer. Or you can pass this property directly into constructor as follows:
<code>
 Hashtable properties = new Hashtable();
 props.put("ios.webview", "UIWebview");
 nUIWebView webview = new nUIWebView(properties);
</code>

Example

This code sample creates a web view with navigation to the parent menu. Details on
how the example code is rendered on various platforms follow the code sample.
protected nUIViewDisplay onCreateWebView()
{
 nUIWebView web_view = new nUIWebView(NUIID_WEB_VIEW);
 web_view.setHeadertext("nUIWebView");
 web_view.setURL("http://www.wikipedia.org/");
 nUINavbuttonElement ne = new nUINavbuttonElement(NUIID_BACK_TO_START_BUTTON,
"Back",
 nUINavbuttonElement.TYPE_BACK, null);
 web_view.add(ne);
 return web_view;
}

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 80

Platform Platform-Specific Class and Visual Reference

Android android.webkit.WebView

iOS UIWebView

“hps://developer.apple.com/design/human-interface-
guidelines/ios/views/web-views/”

nUIWebviewCallBack
Use to monitor when a user clicks a URL, and control the resulting action that the
application takes in response to the user clicking the URL.

To use nUIWebviewCallBack, register a class that implements nUIWebviewCallBack with the
web-based NativeUI object that contains the URL you want to monitor, for example, a
nUIWebView or nUIWebviewElement object. When a user clicks a URL in the web-based
NativeUI object, the application code can then take an appropriate action. For example,
you might code the application to:

Change the URL before passing it to the containing web-based NativeUI object to
redirect the NativeUI object.

Return a null to prevent a page load. This is useful when navigation to a new URL is
not needed.

Queue a new NativeUI event to allow the web-based NativeUI object to interact with
the rest of the application.

nUIWebviewElement
com.softwareag.mobile.runtime.nui.nUIWebviewElement

Use to display rich web content from a local or remote source. This object allows you
to pass messages between the Java code and the JavaScript run time in the browser. For
guidelines on how to approach this, see “JavaScript Bridge” on page 41.

Usage Notes

The browser engines that mobile platforms use have differences in terms of how
they display objects and support of JavaScript. You might need to develop platform-
specific changes to support your content. Mobile Designer does not change your raw
HTML content.

Avoid invoking the Javascript alert() method from inside a nUIWebviewElement object.
For security reasons, some manufacturers configure their devices to block displaying

https://developer.apple.com/design/human-interface-guidelines/ios/views/web-views/
https://developer.apple.com/design/human-interface-guidelines/ios/views/web-views/

M
Odd Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 81

an alert dialog that results from a call to the Javascript alert() call. As an alternative,
consider one of the following:

Pass an event back to your Java code using a class that implements
nUIWebviewCallBack, which in turn can then open a nUIAlertDialog object, if an
alert dialog is required.

Use other web-based elements to display the alert information directly within
your web page.

There are two properties that react slightly differently depending on the platform.

bgcolor

The bgcolor can be set at any time under iOS, and the web page will be redrawn
to react to the change. Under Android, the changes to the bgcolor will only take
affect when the webview redraws in response to changes in content (i.e., when
the setURL() or setHTMLText() methods are called). For both platforms, the extent
to which the web content is effected by this call is dependant on the rendering
engine used in the browser itself, as well as the HTML content being displayed.

Scaling web content to fit

This property is only usable on iOS. All other platforms ignore it. The seing will
only affect page contents when the content of the page is changed (i.e. via setURL()
or setHTMLText()).

There is currently no support for altering bgcolor, changing the scaling of content to
fit or enabling/disabling overscrolling for Phoney.

Example

This code sample displays rich web content from a website. Details on how the example
code is rendered on various platforms follow the code sample.
nUIWebviewElement webelement =
 new nUIWebviewElement(NUIID_MY_WEBVIEWELEMENT);
webelement.setHeight(250);
webelement.setURL("http://www.wikipedia.org/");
view.add(webelement);

Platform Platform-Specific Class and Visual Reference

Android android.webkit.WebView

iOS UIWebView

“hps://developer.apple.com/design/human-interface-
guidelines/ios/views/web-views/”

https://developer.apple.com/design/human-interface-guidelines/ios/views/web-views/
https://developer.apple.com/design/human-interface-guidelines/ios/views/web-views/

M
Even Header

Native User Interface (NativeUI) Objects

webMethods Mobile Designer Native User Interface Reference Version 10.3 82

nUIWindowDisplay
com.softwareag.mobile.runtime.nui.nUIWindowDisplay

Use to add a window.

Usage Notes

By default, the window has two panes, Pane 0 and Pane 1.

Use Pane 0 for the main pane. It occupies all available space.

Use Pane 1 for navigation using the nUINavView object.

Panes are useful when supporting large mobile devices, such as tablets. For
information about using panes, see “About the Native User Interface (NativeUI)
Library” on page 10.

You can add a nUIViewDisplay object to a nUIWindowDisplay object.

Windows can also hold nUIViewDisplay objects as side views to provide a pop-up
side menu throughout the application.

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	Mobile Designer Native User Interface
	About the Native User Interface (NativeUI) Library
	Look-and-Feel When Using the NativeUI Library
	About Using the NativeUI Library
	Mobile Application Design
	Hierarchy of NativeUI Objects for a User Interface
	Setting and Querying NativeUI Object Attributes
	Handling Events Generated by User Actions
	Transitioning Between Windows and Views
	Defining the Layout of Objects in the User Interface
	Controlling the Inner Padding of Parent Objects
	Positioning Elements in a Parent Object
	Sizing Child Elements
	Controlling the Vertical Spacing Between Child Elements
	Controlling the Horizontal Alignment of Elements
	Using Tables to Control the Layout of Elements

	Managing Object Focus
	Background Colors and Images
	Adding Support for Right-to-Left Languages
	Using Multiple Panes for Tablet User Interfaces
	Managing the Layout of Panes
	Designing Applications to Run on Both Tablets and Smaller Devices
	Determining the Device Size at Run Time
	Adding Panes to a Window
	When to Use Views or Panes

	JavaScript Bridge
	Maintaining Good Security
	Sending a Message to JavaScript from Java
	Evaluating an Arbitrary Chunk of JavaScript Code
	Sending a Message to Java from JavaScript

	Using Tabbed Views
	Integration in Mobile Designer

	Using List Views and Elements
	Swiping Behavior
	Using Edit Mode in List Views

	Using Element Identifiers

	Native User Interface (NativeUI) Objects
	About the NativeUI Objects
	nUIAlertDialog
	nUIButtonElement
	nUICheckboxButton
	nUIContainerElement
	nUIDateEntry
	nUIDialogWindow
	nUIDisplayObject
	nUIDropdownlistEntry
	nUIElementDisplay
	nUIEntryElement
	nUIFloatingEntry
	nUIImageElement
	nUIListElement
	nUIListView
	nUINavbuttonElement
	nUINavView
	nUIObject
	nUIPopupMenuBuilder
	nUIProgressanimElement
	nUIRadioCheckbox
	nUISearchEntry
	nUISearchNavButton
	nUISeparatorElement
	nUISpacerElement
	nUISwitchButton
	nUITableButton
	nUITablecellElement
	nUITableElement
	nUITablerowElement
	nUITabView
	nUITextfieldElement
	nUITimerObject
	nUIViewDisplay
	nUIWebView
	nUIWebviewCallBack
	nUIWebviewElement
	nUIWindowDisplay

