
Developing Microservices with webMethods
Microservices Runtime

Version 10.11

October 2021

This document applies to webMethods Integration Server 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2024 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: WMIC-DG-1011-20240709

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Document Conventions...6
Online Information and Support...6
Data Protection...7

1 Getting Started with webMethods Microservices Runtime...9
What Are Microservices?..10
What Is webMethods Microservices Runtime?..10
What Is Microservices Runtime Administrator?...11

2 Starting, Shutting Down, and Restarting Microservices Runtime..13
Starting Microservices Runtime and Microservices Runtime Administrator.........................14
Shutting Down Microservices Runtime..19
Shutting Down Microservices Runtime from the Command Line...20
Restarting Microservices Runtime...20

3 Configuring Microservices Runtime...23
How Is Microservices Runtime Different from Integration Server?...24
Specifying the JDK or JRE for Microservices Runtime...25
Changing the JVM Heap Size Used by Microservices Runtime..25
Passing Java System Properties to Microservices Runtime..26
Enabling Remote Client JMX Monitoring...26
Configuration of Additional Components...27

4 Using a Circuit Breaker with Services..29
About Circuit Breaker..30
How Does a Circuit Breaker for a Service Work?..31
Configuring a Circuit Breaker for a Service..34
Building a Service for Use with an Open Circuit...34
Configuring the Circuit Breaker Thread Pool..35
Circuit Breaker Statistics..37

5 Automatic Package Deployment..39
How Automatic Package Deployment Works...40
Determining Package Dependencies During Automatic Deployment....................................41
Considerations for Auto Deployment of Packages...41
Enabling and Configuring Automatic Package Deployment..42

6 Using Configuration Variables Templates with Microservices Runtime..................................45
About Configuration Variables Templates...46
What Does a Configuration Variables Template Look Like?...46
When Is the Template Applied?...48

Developing Microservices with webMethods Microservices Runtime 10.11 iii

Approaches for Using a Configuration Variables Template with Microservices Runtime....49
Overview of Building a Configuration Variables Template...52
Generating a Configuration Variables Template...53
Editing a Configuration Variables Template..55
Template File Locations...60
Providing a Configuration Variables Template when Starting a Docker Container..............60
Configuration Variables Logging...61
Viewing the Applied Template for a Microservices Runtime..63

7 Monitoring Microservices Runtime..65
Overview of Monitoring Microservices Runtime..66
About the Health Gauge..66
Obtaining Metrics for a Microservices Runtime..71

8 Consul Support..73
Configuring Connections to Consul Server..74
Testing an Alias for the Consul Server..75
Setting the Default Alias for the Consul Server...75
Deleting a Consul Server Alias...76
Consul Public Services Folder..76

A Microservices Runtime vs Integration Server..81
Microservices Runtime vs Integration Server Feature Comparison...82

B Configuration Variables Template Assets..85

C Prometheus Metrics...101
Prometheus Metrics Returned by Microservices Runtime...102
Server Metrics...102
Service Metrics..109
JVM Metrics...111
Prometheus Labels...116

iv Developing Microservices with webMethods Microservices Runtime 10.11

Table of Contents

About this Guide

■ Document Conventions .. 6

■ Online Information and Support ... 6

■ Data Protection ... 7

Developing Microservices with webMethods Microservices Runtime 10.11 5

This guide provides information about administeringwebMethodsMicroservices Runtime aswell
as functionality that is specific to Microservices Runtime.

Note:webMethods Microservices Runtime provides a superset of the functionality available in
webMethods Integration Server. An Integration Server can be equipped with a Microservices
Runtime license to use the features and functionality specific to Microservices Runtime. For
information about administering and using features in webMethods Integration Server, see the
webMethods Integration Server Administrator’s Guide.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

6 Developing Microservices with webMethods Microservices Runtime 10.11

https://documentation.softwareag.com
https://documentation.softwareag.com

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Go to our public GitHub andDocker repositories at https://github.com/softwareag and https://
hub.docker.com/u/softwareag and discover additional Software AG resources.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Developing Microservices with webMethods Microservices Runtime 10.11 7

mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com
https://github.com/softwareag/
https://hub.docker.com/u/softwareag
https://hub.docker.com/u/softwareag

8 Developing Microservices with webMethods Microservices Runtime 10.11

1 Getting Started with webMethods Microservices

Runtime

■ What Are Microservices? ... 10

■ What Is webMethods Microservices Runtime? .. 10

■ What Is Microservices Runtime Administrator? .. 11

Developing Microservices with webMethods Microservices Runtime 10.11 9

What Are Microservices?

Microservices are independently deployable units of logic in which each microservice performs
a single business function. Applications built in themicroservices architectural style are developed
as a suite of microservices.

Microservices can be implemented in various ways, including as a set of services or as event and
channel definitions. Microservices can be distinguished from other types of services in the
webMethods suite as follows:

The following table identifies and describes the types of services in the webMethods suite.

DescriptionType of Service

Single function call, such as an operation on an interface or as part of an
API (that is, a related set of Integration Server services).

Integration Server
service

Formal, WSDL-based grouping of operations, usable for SOA. Many of
these can be hosted in a single runtime.

Web service

Collection of operations implemented as services or as messages and
message handlers, deployed in one or more related Integration Server
packages.

Microservice

What Is webMethods Microservices Runtime?

Software AG offers a lightweight container called webMethods Microservices Runtime to host
microservices you develop in SoftwareAGDesigner. UsingMicroservices Runtime, you can deliver
microservices as an Integration Server package that includes a set of related services, interfaces,
document types, and triggers that subscribe to topics or queues, or as a set of related packages of
this kind (for example, five packages relating to Human Resources functions).

Eachmicroservice can run in its ownMicroservices Runtime and can communicatewith lightweight
mechanisms such as anHTTP resourceAPI. However, you can also executemultiplemicroservices
in the same Microservices Runtime. This hybrid solution enables you to separate microservices
when needed, but also to group them when necessary. For example, suppose that you have two
microservices that need to be scaled together in similarways (that is, when you need a new instance
of one, you need a new instance of the other). If you discover that onemicroservice ismore heavily
loaded than the other, or needs to be enhanced or updated more often, you could deploy the two
microservices to separate Microservices Runtimes. If both microservices tend to be updated at the
same time, you could cohost them in the same Microservices Runtime.

Microservices Runtime is fully compatible with webMethods Integration Server and can also host
services you develop using Software AG Designer and Integration Server. While Microservices
Runtime is optimized to have a reduced disk and memory footprint, you can convert it into a full
Integration Server by installing additional modules, such as support for an external database.

Microservices Runtime provides out-of-the-box support for dynamic lookup of service endpoints
using the open-source service registry named Consul. You can make your microservice available
for remote access by registering the endpoint of the microservice container instance in the Consul

10 Developing Microservices with webMethods Microservices Runtime 10.11

1 Getting Started with webMethods Microservices Runtime

service registry. Microservices Runtime provides services for automating the registration and
deregistration process. Microservices Runtime provides facilities to look up the endpoint
information which can be used to call the microservice at run time. You can also create your own
package integratingwith any other service registry provider. The packagewould provide services
similar to those described for Consul in this guide.

Microservices Runtime is optimized for execution in aDocker container. You can run amicroservice
or a set of related microservices in a Docker container, precluding the need to purchase expensive
virtual machines. Docker images include configuration, enabling you to deploy the exact same
configuration anywhere. The Docker image can include one package or a set of related packages.

What Is Microservices Runtime Administrator?

MicroservicesRuntimeAdministrator is anHTML-basedutility youuse to administerMicroservices
Runtime. It allows you to monitor server activity, manage user accounts, make performance
adjustments, and set operating parameters.

You can run the Microservices Runtime Administrator from any browser-equipped workstation
on your network. Microservices Runtime Administrator is a browser-based application that uses
services to accomplish its work.

Developing Microservices with webMethods Microservices Runtime 10.11 11

1 Getting Started with webMethods Microservices Runtime

12 Developing Microservices with webMethods Microservices Runtime 10.11

1 Getting Started with webMethods Microservices Runtime

2 Starting, Shutting Down, and Restarting

Microservices Runtime

■ Starting Microservices Runtime and Microservices Runtime Administrator 14

■ Shutting Down Microservices Runtime ... 19

■ Shutting Down Microservices Runtime from the Command Line 20

■ Restarting Microservices Runtime ... 20

Developing Microservices with webMethods Microservices Runtime 10.11 13

Starting Microservices Runtime and Microservices Runtime
Administrator

Microservices Runtimemust be running in order for clients to execute services or forMicroservices
Runtime to send outbound requests. If you are using Microservices Runtime in a development
environment, it must be running in order for your developers to build, update, and test services
using the Software AG Designer.

Before starting Microservices Runtime, make sure there is enough free disk space on the host
machine to accommodate the storage of configuration and log files on disk. Running out of disk
space can affect performance and lead to errors.

Note:
During installation of Microservices Runtime, an option can be set requiring that the password
for the Administrator user account be changed immediately upon successful log in to
Microservices Runtime. If so, theAdministrator user account passwordmust be changed before
the server can do anything else. Any requests sent to Microservices Runtime before the
Administrator password is changed will be rejected.

For information about startingMicroservices Runtime in safemode, see thewebMethods Integration
Server Administrator’s Guide.

Starting Microservices Runtime on Windows

To start Microservices Runtime on Windows

Click Start > All Programs > Software AG > Start Microservices Runtime.

Starting Microservices Runtime on UNIX

To start Microservices Runtime on UNIX

1. Navigate to the Integration Server_directory /bin directory and run the startup.sh or server.sh
script file.

2. If Microservices Runtime has been configured to request a master password for outbound
password encryption, you will be prompted for this password in a popup window or from
the server console. For information about managing outbound passwords, see thewebMethods
Integration Server Administrator’s Guide.

Starting Microservices Runtime from the Command Line
You can start Microservices Runtime from the command prompt. StartingMicroservices Runtime
this way gives you the option of overriding certain settings in the configuration file.

14 Developing Microservices with webMethods Microservices Runtime 10.11

2 Starting, Shutting Down, and Restarting Microservices Runtime

To start Microservices Runtime from the command line

1. At the command line, type the following to switch toMicroservices Runtime's home directory:

cd Integration Server_directory

2. Type one of the following commands to start the server.

For Windows: bin/startup.bat - switch - switch ...

For UNIX: bin/startup.sh -switch -switch ...

where -switch is optional and can be one of the following:

DescriptionSwitch

Specifies the port on which the server listens for HTTP requests.-port portNumber

portNumber specifies the TCP/IP port number

Example: -port 8080

This switch overrides the value assigned to watt.server.port.

Note:
In addition to overriding the value of watt.server.port, the -port
switch permanently adds a new HTTP port to the WmRoot
package. This newport is added as the primary port and contains
default values. If a port with the same TCP/IP number already
exists in the WmRoot package, the -port switch overrides its
settingswith the newdefault values. In effect, deleting the existing
port and then adding a new port with default settings.

Note:
To use port 80 (the standard for HTTP) or port 443 (the standard
for HTTPS), UNIX users must be running as "root". For security
reasons, a better method is to use a higher number port (5555 for
HTTP and 5543 for HTTPS), and if necessary have the firewall
remap port 80 to the desired port.

Specifies the port number for the DefaultSecure (HTTPS) port.-secureport portNumber

portNumber specifies the TCP/IP port number

Example: -secureport 4355

This switch overrides the value assigned to watt.server.securePort.

Note:
In addition to overriding the value of watt.server.securePort, the
-secureport switch permanently adds a new HTTPS port to the

Developing Microservices with webMethods Microservices Runtime 10.11 15

2 Starting, Shutting Down, and Restarting Microservices Runtime

DescriptionSwitch

WmRoot package. This new port is added as the DefaultSecure
port and contains default values.

Specifies the level of detail you want the server to maintain in its
server log for this session.

-debug level

level indicates the level of detail you want to record in the log.

To record...Specify...

Fatal messages only.Fatal

Error and fatal messages.Error

Warning, error, and fatal messages.Warn

Informational, warning, error, and fatal
messages.

Info

Debug, informational, warning, error, and
fatal messages.

Debug

Trace, debug, informational, warning, error,
and fatal messages.

Trace

For this session, this switch overrides the value specified for the
Default facility on theLogs > Logging configuration > View server
logger details page and assigned to watt.debug.level.

Specifies where you want the server to write its server log
information for this session. Specify one of the following for
destination:

-log destination

DescriptionOption

Specify the fully qualified path or relative
path to the file in which you want the server

filename

to write server log information for this
session. Relative path is relative to the
Microservices Runtime home directory.

The filenamemust specify a directory and
filename.

The default destination is controlled by the
watt.debug.logfile server configuration
parameter.

Write server log information to the computer
screen (STDOUT).

none

16 Developing Microservices with webMethods Microservices Runtime 10.11

2 Starting, Shutting Down, and Restarting Microservices Runtime

DescriptionSwitch

Write server log information to the computer
screen (STDOUT) and to the destination

both

specified by the watt.debug.logfile
parameter.

When setting -log both, server logmessages
written to STDOUT include the identifier
“ISSERVER” to help differentiate server log
messages fromothermessageswritten to the
console.

The filename and none values override the value assigned to
watt.debug.logfile for this session.

For UNIX, setting -log to none or both results in the redirection of
STDOUT to the server.out file located under
Integration Server_directory /bin/logs

Note:
A -log switch value of none or both also determines where
Microservices Runtime writes the configuration variables log.
However, Microservices Runtime ignores a filename value. If
you specify a filename, Microservices Runtime writes the
configuration variables log file to this location only:
Integration Server_directory /i/logs/configurationvariables.log.

For more information about configuration variable templates and
the associated logging, see “Using Configuration Variables
Templates with Microservices Runtime ” on page 45

Specifies the format to which Integration Server converts the server
log and audit log entries written to the console (STDOUT or

-logformat type

computer screen). Specify 'type' as json. Integration Server supports
only "json" type.

To send the audit log entries in the JSON format to the console, in
addition to setting the -logformat switch, set the
SAG_IS_AUDIT_STDOUT_LOGGERS environment variable to a
comma-separated list of the audit loggers that log entries to
STDOUT. For example, WMSESSION, WMERROR. For more
information, seewebMethods Integration Server Administrator’s Guide.

Note:
This switch applies when you start Integration Server with the
-log both switch. Using the -logformat switch does not affect
log files such as server.log and error.log.

Specifies to start the server in quiesce mode.-quiesce

Developing Microservices with webMethods Microservices Runtime 10.11 17

2 Starting, Shutting Down, and Restarting Microservices Runtime

DescriptionSwitch

Note:
If the server cannot disable or suspend an asset or activity as it
enters quiesce mode, the server displays a warning message and
continues the quiesce process. If the condition stated in the
warning interfereswith amaintenance task you intend to perform,
resolve the issue stated in thewarning and then restart the server
in quiesce mode.

Running Microservices Runtime in Debug Mode
If youwantMicroservices Runtime to run in debugmode, you can run the startDebugMode.bat(sh)
script located in Integration Server_directory /bin/. Running in debug mode allows you to connect
an Eclipse-based Debugger to your running Microservices Runtime.

The default port used for debug mode is 10033. Additionally, by default, the JVM waits for
Debugger to attach before the actual startup of Microservices Runtime. The DEBUG_PORT and
SUSPEND_MODE properties in the startDebugMode.bat(sh) script control these defaults. You
can change the debug port and suspend mode for a session by starting debug mode from the
command line using a command like the following:
startDebugMode.bat address 8787 suspend n

Where address refers to the port used for DEBUG_PORT (default is 10033) and suspend indicates
whether to wait for Debugger to attach to the JVM (default is y).

Starting Microservices Runtime Administrator

To start Microservices Runtime Administrator

1. Do one of the following:

Open a browser and point it to the host and port where Microservices Runtime is running
(for example, http://localhost:5555 or http://EXAMPLE:4040).

On Windows, click Start > All Programs > Software AG > Administration >
Microservices Runtime Administrator.

2. Log on to Microservices Runtime Administrator with a user name and password that has
administrator privileges. User names and passwords are case sensitive.

If this is the first time the Administrator user is logging in to Microservices Runtime
Administrator, keep the following points in mind:

During installation of Microservices Runtime, the person performing the installation
specifies a password for the Administrator user. You must supply this password on initial
log in to Microservices Runtime Administrator.

18 Developing Microservices with webMethods Microservices Runtime 10.11

2 Starting, Shutting Down, and Restarting Microservices Runtime

The person performing the installation might also set an option requiring that the
Administrator password be changed immediately upon successful log in to Microservices
Runtime Administrator. If so, Microservices Runtime Administrator displays the Create
new password dialog box after the Administrator logs in for the first time.

Important:
Use the exact combination of upper and lowercase characters as user names and passwords
are case sensitive.

Shutting Down Microservices Runtime

When you shut down Microservices Runtime, all active sessions also shut down. for instructions
on viewing active sessions before shutting down, seewebMethods Integration Server Administrator’s
Guide.

Shutting Down Microservices Runtime on Windows

To shut down Microservices Runtime on Windows

Click Start > All Programs > Software AG > Stop Microservices Runtime

Shutting Down Microservices Runtime from Microservices
Runtime Administrator on Windows or UNIX

To shutdownMicroservicesRuntime fromMicroservicesRuntimeAdministrator onWindows
or UNIX

1. In Microservices Runtime Administrator, click > Shut down or restart.

2. Specify whether you want you want Microservices Runtime to wait before shutting down or
shut down immediately.

Do thisTo

Select After all client sessions end. Then in the Maximum wait
time field, specify the number ofminutes youwantMicroservices

Shut down after number
minutes or after all client
sessions are complete Runtime to wait before restarting. Microservices Runtime will

beginmonitoring user activity and then automatically shut down
after all non-administrator sessions complete or after the time
you specify elapses, whichever comes first.

Select Immediately.Microservices Runtime and all active sessions
will terminate immediately.

Shut down immediately

Developing Microservices with webMethods Microservices Runtime 10.11 19

2 Starting, Shutting Down, and Restarting Microservices Runtime

3. Click Shut Down.

Shutting Down Microservices Runtime from the Command Line

Use this procedure to shut downMicroservices Runtime and all active sessions from the command
prompt.

To shut down Microservices Runtime from the command prompt

1. At the command line, type the following to switch toMicroservices Runtime's home directory:

cd Integration Server_directory

2. Type the following command to stop Microservices Runtime.

For Windows: bin\shutdown.bat

For UNIX: bin/shutdown.sh

Restarting Microservices Runtime

You should restart Microservices Runtime when:

You make certain configuration changes. Some configuration changes require Microservices
Runtime to be restarted before they take effect.Microservices RuntimeAdministrator displays
a notification when a configuration change was made that requires a server restart for the
change to take effect.

Youwant to incorporate updated services that cannot be dynamically reloaded.This typically
occurs for non-Java services.

To restart Microservices Runtime

1. In Microservices Runtime Administrator, click > Shut down or restart.

2. Specify whether you want Microservices Runtime to wait before restarting or restart
immediately.

Do thisTo

Select After all client sessions end. Then in the Maximum wait
time field, specify the number ofminutes youwantMicroservices

Restart after number
minutes or after all client
sessions are complete Runtime to wait before restarting. Microservices Runtime will

beginmonitoring user activity and then automatically restart after
all non-administrator sessions complete or after the time you
specify elapses, whichever comes first.

20 Developing Microservices with webMethods Microservices Runtime 10.11

2 Starting, Shutting Down, and Restarting Microservices Runtime

Do thisTo

Select Immediately.Microservices Runtime and all active sessions
will terminate immediately. ThenMicroservices Runtime restarts.

Restart immediately

3. Click Restart.

Developing Microservices with webMethods Microservices Runtime 10.11 21

2 Starting, Shutting Down, and Restarting Microservices Runtime

22 Developing Microservices with webMethods Microservices Runtime 10.11

2 Starting, Shutting Down, and Restarting Microservices Runtime

3 Configuring Microservices Runtime

■ How Is Microservices Runtime Different from Integration Server? 24

■ Specifying the JDK or JRE for Microservices Runtime .. 25

■ Changing the JVM Heap Size Used by Microservices Runtime 25

■ Passing Java System Properties to Microservices Runtime .. 26

■ Enabling Remote Client JMX Monitoring .. 26

■ Configuration of Additional Components .. 27

Developing Microservices with webMethods Microservices Runtime 10.11 23

In general, configuring Microservices Runtime is the same as configuring Integration Server.
However, there are differences between Integration Server andMicroservices Runtime that result
in differences in how each is configured. This topic provides more information about those
differences.

For information about configuring Integration Server, see the webMethods Integration Server
Administrator’s Guide.

How Is Microservices Runtime Different from Integration
Server?

Microservices Runtime is a superset of Integration Serverwhichmeans thatMicroservices Runtime
provides features and functionality that Integration Server does not. However, in addition to these
features, Microservices Runtime differs from Integration Server in the following ways:

Microservices Runtime does not support runningmultiple instances ofMicroservices Runtime
on the same host machine under the same Software AG_directory . As such, the Microservices
Runtime directory structure does not include the following directories:

Integration Server_directory /instances/instanceName

When reviewingdocumentation, references to Integration Server_directory /instances/instanceName
for Integration Servermap to the Integration Server_directorydirectory inMicroservices Runtime.

Microservices Runtimedoes not use theOSGi platform.Consequently, aMicroservices Runtime
installation does not include the following directory: Integration Server_directory /profiles/

Microservices Runtime does not use the Java Service Wrapper developed by Tanuki Software,
Ltd., Consequently,Microservices Runtimedoes not use the Java ServiceWrapper configuration
files wrapper.conf and custom_wrapper.conf for property settings. Instead, Java system
properties are set in Integration Server_directory /bin/setenv.bat(sh) using the
JAVA_CUSTOM_OPTS property.

A JMX port is not enabled by default for Microservices Runtime.

Microservices Runtime cannot be run as a Windows service.

Features available on a standard Integration Server are optional on a Microservices Runtime.
Optional feature are not installed by default on Microservices Runtime and must be selected
specifically during the installation of Microservices Runtime.

Note:
The information above applies to a Microservices Runtime only. That is, the information does
not apply to an Integration Server equipped with a Microservices license. For a detailed
comparison of the functionality available in Integration Server vs. Microservices Runtime, see
“ Microservices Runtime vs Integration Server ” on page 81.

24 Developing Microservices with webMethods Microservices Runtime 10.11

3 Configuring Microservices Runtime

Specifying the JDK or JRE for Microservices Runtime

Microservices Runtime must point to a Java location. By default, Microservices Runtime points to
the location of the JRE installed at the same time you installedMicroservices Runtime. If necessary,
you can specify a different location.

Before you specify the location of Java for Microservices Runtime, determine whether you need
to specify the location of the JDK or the JRE. If you intend to useMicroservices Runtime to develop
and compile Java services on Microservices Runtime, specify the location of the JDK. If you will
not be using this installation of Microservices Runtime to compile Java services, you can specify
the location of a JRE.

To specify the Java location for Microservices Runtime

1. Navigate to Integration Server_directory /bin and use a text editor to open the setenv.bat/sh file.

2. Set the JAVA_DIR parameter so that it specifies the location of the JDK or JRE installation
directory.

3. Save and close the file.

4. Restart Microservices Runtime.

Note:
If you change the Java location and you use Microservices Runtime to develop and compile
Java services, youmust also change the value of thewatt.server.compile configuration parameter.

Changing the JVM Heap Size Used by Microservices Runtime

The JVM heap or on-heap size indicates how much memory is allotted for server processes. At
some point, you might need to increase the minimum and maximum heap size to ensure that the
JVM that Microservices Runtime uses does not run out of memory. You will want to consider the
heap size when you configure your server to publish and subscribe to documents and when you
configure an on-heap cache.

The heap size is controlled by the following Java parameters specified in the setenv.bat/sh file.

DescriptionParameter

The minimum heap size. The default value is 256 MB.JAVA_MIN_MEM

The maximum heap size. The default value is 1024 MB.JAVA_MAX_MEM

Your capacity planning and performance analysis should indicate whether you need to set higher
maximum and minimum heap size values.

Note:

Developing Microservices with webMethods Microservices Runtime 10.11 25

3 Configuring Microservices Runtime

You can change the heap size for Microservices Runtime at start up by starting Microservices
Runtime from the command line and supplying the JAVA_MAX_MEM and JAVA_MIN_MEM environment
variables. Using the environment variables allows you to override the values set forMicroservices
Runtime in the Integration Server_directory /bin/setenv.bat|sh file without having to edit the file
itself.

To change the heap size for Microservices Runtime

1. Navigate to Integration Server_directory /bin and use a text editor to open the setenv.bat/sh file.

2. Set the JAVA_MIN_MEMand JAVA_MAX_MEMparameters so that they specify theminimum
and maximum heap size required by Microservices Runtime.

3. Save the file.

4. Restart Microservices Runtime.

Passing Java System Properties to Microservices Runtime

You can pass Java system properties to Microservices Runtime by modifying the setenv.bat/sh
file.

To pass Java system properties to Microservices Runtime

1. Navigate to Integration Server_directory /bin and use a text editor to open the setenv.bat/sh file.

2. Set the JAVA_CUSTOM_OPTS parameter so that it specifies the property name and value you
want to pass to Microservices Runtime. The property name must be preceded by -D.

For example, the JAVA_CUSTOM_OPTS parameter in the setenv.bat file could look similar
to the following:

set JAVA_CUSTOM_OPTS="-Dmy.prop1=value1 -Dmy.prop2=value2"

3. Save the file.

4. Restart Microservices Runtime for the changes to take effect.

Enabling Remote Client JMX Monitoring

Microservices Runtime enables you to use JMX monitoring from a remote client. You enable JMX
monitoring and set the JMX monitoring remote port in the setenv.bat/sh file of the Microservices
Runtime you want to monitor. Unlike Integration Server, Microservices Runtime does not enable
JMX monitoring by default.

To enable remote client JMX monitoring on Microservices Runtime

26 Developing Microservices with webMethods Microservices Runtime 10.11

3 Configuring Microservices Runtime

1. On the Microservices Runtime that you want to monitor remotely, navigate to
Integration Server_directory /bin and use a text editor to open the setenv.bat/sh file.

2. Set the JMX_ENABLED property to true.

3. Set the JMX_PORT property to the port number of the JMX port. This is 9192 by default.

4. Restart Microservices Runtime.

Configuration of Additional Components

The following table identifies additional components that you might have installed with
Microservices Runtime and provides the name of the guide that contains more information about
configuring the component.

See this guide for more informationComponent

webMethods Service Development HelpCentraSite Asset Publisher Support

webMethods Integration Server Administrator’s GuideCommonDirectory Service Support

webMethods Integration Server Administrator’s GuideExternal RDBMS Support

Developing Microservices with webMethods Microservices Runtime 10.11 27

3 Configuring Microservices Runtime

28 Developing Microservices with webMethods Microservices Runtime 10.11

3 Configuring Microservices Runtime

4 Using a Circuit Breaker with Services

■ About Circuit Breaker ... 30

■ How Does a Circuit Breaker for a Service Work? ... 31

■ Configuring a Circuit Breaker for a Service .. 34

■ Building a Service for Use with an Open Circuit ... 34

■ Configuring the Circuit Breaker Thread Pool .. 35

■ Circuit Breaker Statistics .. 37

Developing Microservices with webMethods Microservices Runtime 10.11 29

About Circuit Breaker

Circuit breaker is an established design pattern that applications implement to prevent a failure
in one part of the system from cascading to the rest of the system. In an architecturewith distributed
applications, such as microservices, many services call other services running on remote servers.
If the remote service is unavailable or the network is slow, the calling service may wait until a
timeout occurs. During this time, the calling service continues to consume critical resources such
as server threads andmemory. If multiple services call the unresponsive or failing remote service,
the impact of the remote service cascades throughout all the calling services, causing even more
resources to be consumed and affected by a single failing service. Implementing a circuit breaker
on the call to the remote service can prevent the impact of the failing or unresponsive service or
network latency from cascading throughout the system.

The circuit breaker design pattern works much like an electrical circuit breaker which is intended
to “trip” or open the circuit when failure is detected. This prevents the flow of electrical current
through the circuit. After a time delay, the electrical circuit breaker resets and closes the circuit,
which causes the flow of electricity to resume.

In a software application, a circuit breaker functions as a proxy that executes the remote services
andmonitors the remote service for failures. A failure can be an exception and/or a timeout.When
the number of failures meets a predetermined thresholdwithin a specified time period, the circuit
breaker “trips” or opens the circuit. Subsequent requests for the service endwith an error or result
in execution of an alternative service. After a reset period elapses, the circuit breaker sets the circuit
state to half-open and executes the next request for the service. By allowing a single request to
execute and causing other requests to wait, the circuit breaker gauges the health of the service.
Upon success of the service, the circuit breaker closes circuit and waiting requests proceed.
However, if the service ends with another failure, the circuit breaker re-opens the circuit.

Circuit breakers can be especially useful in systems with a microservices architecture as these
systems often feature a large number of distributed components. By configuring a circuit breaker
on the invocation of the remote service, you can limit the impact the abnormal behavior of a remote
service on other micorservices and critical resources in your system.

Note:
The circuit breaker feature is available by default for a service that resides in a Microservices
Runtime. To use the circuit breaker feature with Integration Server, your Integration Server
must have additional licensing.

Circuit States
The state of a circuit for a service determines how circuit breaker responds to a request to invoke
the service.

The following table identifies how the circuit breaker responds to an invocation request based on
the circuit state.

ThenIf the circuit state is

The circuit breaker executes the service.Closed

30 Developing Microservices with webMethods Microservices Runtime 10.11

4 Using a Circuit Breaker with Services

ThenIf the circuit state is

The circuit breaker does not execute the service. Instead, the circuit
breaker returns an exception, which allows the request to fail
immediately, or circuit breaker invokes an alternative service.

Open

The circuit breaker executes the service the next time it is requested.
If the service executes successfully, then the circuit breaker changes

Half-open

the circuit state to closed. If the service ends because of a failure
event (exception and/or timeout), the circuit breaker changes the
circuit state to open.

While the circuit is in a half-open state and circuit breaker is already
executing a request for the service, any other requests for the service
wait until the circuit exits the half-open state. If service execution
is successful, circuit breaker closes the circuit and executes the
waiting requests for the service.

How Does a Circuit Breaker for a Service Work?

A circuit breaker works by monitoring a service for failures. The circuit breaker allows service
execution to proceed when failure events do not meet an established threshold. However, when
the number of failure eventsmeets the established failure thresholdwithin the failure time period,
the circuit breaker opens the circuit, preventing further execution of the service.

The following table provides an overview of how a circuit breaker works.

DescriptionStep

The server receives a request to invoke a service. Upon receiving a request
to invoke a service, the server first determineswhether or not a circuit breaker
is configured for the service.

1

If a circuit breaker is configured for the service, the server passes the
request to the circuit breaker which checks the state of the circuit as
described in step 2, below.

If a circuit breaker is not used with the service, the server invokes the
service.

The circuit breaker examines the state of the circuit for the service.2

If the circuit is closed, the circuit breaker invokes the service using a new
thread from the circuit breaker thread pool, which is separate from the
server thread pool. The thread that called the service originally waits for
the results of the service execution.

If the circuit is open, the circuit breaker does not invoke the service. See
step 5, below, formore information about how the circuit breaker responds
to a request for service with an open circuit.

Developing Microservices with webMethods Microservices Runtime 10.11 31

4 Using a Circuit Breaker with Services

DescriptionStep

If the circuit is half-open and this is the first request for the service since
the circuit state became half-open, the circuit breaker invokes the service.

When executing a service in a half-open state, any other requests for the
service wait until the circuit exits the half-open state. For more
information, see step 8, below.

When the circuit state is closed, upon execution of the service by the circuit
breaker, one of the following occurs:

3

The service executes successfully.

Note:
If the Failure event property is set to Timeout only or Exception or
timeout, a successful execution indicates that the service executed
successfully within the specified timeout period.

The service ends with an exception.

If the Failure event property is set to Exception only or Exception or
Timeout, the circuit breaker considers the exception to be a failure event.
The circuit breaker increments the failure count for the service by 1.

The service does not execute to completion before the timeout period
elapses. If the Failure event property is set toTimeout only orException
or Timeout, the circuit breaker considers the timeout to be a failure event.
The circuit breaker increments the failure count for the service by 1.

If theCancel thread on timeout property is set to true, the circuit breaker
attempts to cancel the thread executing the service.

If the service ends with a failure event and it is the first failure event, the
circuit breaker starts the failure timeout period. If the number of failure events
specified in Failure threshold property occurs before the failure timeout
period ends, the circuit opens. Circuit breaker determines the time that the
failure period ends by adding the number of seconds specified in the Failure
period property to the time the first failure event occurred. If the service
executes successfully and completes after the failure timeout period ends,
circuit breaker resets the failure count for the service to 0.

Subsequent invocations of the service result in the circuit breaker opening
or “tripping” the circuit for the service if:

4

The number of failure events for the service equals the Failure threshold
property value and

The failure events occur within the failure timeout period which circuit
breaker determines by adding the value of Failure period property to
the time of the first failure event.

32 Developing Microservices with webMethods Microservices Runtime 10.11

4 Using a Circuit Breaker with Services

DescriptionStep

The circuit breaker starts the reset period which determines the length of
time to keep the circuit in an open state. The Circuit reset period property
determines the length of the reset period.

For example, suppose that circuit breaker treats exceptions as a failure event,
the Failure threshold property is set to 5, and the Failure period is set to 60
seconds. Further suppose that the first failure event occurs at 10:07:10. Circuit
breaker starts the failure timeout period. The failure timeout period ends at
10:08:10which circuit breaker determines by adding the Failure period value
to the time of the first failure event. If 5 invocations of the service end with
an exception in less than 60 seconds, that is, before 10:08:10, the circuit breaker
opens the circuit for the service.

When the circuit breaker receives a request to execute the service, the circuit
breaker does one of the following:

5

If theCircuit open action property is set to Throw exception, the circuit
breaker responds to the invoke request by throwing the exception that
caused the circuit to open.

If the Circuit open action property is set to Invoke service, the circuit
breaker executes the alternate service specified in theCircuit open service
property and returns the results to the calling service. The circuit breaker
places the $circuitBreakerService and $circuitBreakerEvent parameters in
the input pipeline for the alternate service. For more information about
the circuit open service, see the section Building a Service for Use with an
Open Circuit Building a Service for Use with an Open Circuit .

Note:
When the circuit is open, circuit breaker does not use the circuit breaker
thread pool to throw the exception or execute the alternate, open circuit
service. Instead, circuit breaker uses the same thread that executes the
calling service to return the exception or execute the alternate, open circuit
service.

The circuit breaker repeats the previous step in response to a request for the
service until the time specified in the Circuit reset period property elapses.

6

When the circuit reset period elapses, the circuit breaker sets the circuit to a
half-open state.

7

The circuit breaker receives a request for the service.8

If this is the first request for the service since the circuit state became
half-open, the circuit breaker invokes the requested service. One of the
following occurs:

Developing Microservices with webMethods Microservices Runtime 10.11 33

4 Using a Circuit Breaker with Services

DescriptionStep

If the service executes successfully, the circuit breaker closes the circuit.
The circuit breaker will invoke the service upon subsequent service
executions. The circuit breaker resets the failure count to 0 (zero).

If service execution results in a failure event, the circuit breaker
re-opens the circuit and restarts the reset period. The circuit breaker
proceeds as described in step 5.

While the circuit is in a half-open state and circuit breaker is already
executing a request for the service, any other requests for the servicewait
until the circuit exits the half-open state. If service execution is successful,
circuit breaker closes the circuit and executes the waiting requests for the
service. If service execution is not successful, circuit breaker re-opens the
circuit and responds to the waiting services as described in step 5.

Configuring a Circuit Breaker for a Service

You can configure a circuit breaker for any user-defined service. Use the Service Development
perspective in Software AG Designer to enable and configure a circuit breaker for a service. For
configuration instructions, considerations, and guidelines, see thewebMethods Service Development
Help.

Building a Service for Use with an Open Circuit

When a circuit for a service is open, the service does not execute. Instead, circuit breaker responds
to requests for the service by throwing the same exception that caused the last failure event or by
executing an alternate service. The alternate service, known as the open circuit service, is a
user-defined service that performs an action that makes sense for your application. In some
applications, youmightwant the open circuit service to return a cached value or an alternate result
to the calling service. You can also code the open circuit service to perform a different action based
on whether it is the first invocation of the open circuit service since the circuit opened or if it is a
subsequent invocation.

Whether a circuit breaker throws an exception or executes an alternate service depends on the
value of theCircuit open action property. If you specify Invoke service as the circuit open action,
youmust identify the service to invoke in theCircuit open service property.When circuit breaker
invokes the open circuit service, circuit breaker places parameters and values in the service pipeline
for use by the open circuit service.

The following identifies and describes the parameters that circuit breaker places in the pipeline
for an open circuit service.

DescriptionParameter Name

String. Fully qualified name of the servicewith the open circuit.$circuitBreakerService

34 Developing Microservices with webMethods Microservices Runtime 10.11

4 Using a Circuit Breaker with Services

DescriptionParameter Name

String. Indicates whether this is the first time circuit breaker
called the open circuit service since the circuit opened or if this

$circuitBreakerEvent

is a subsequent invocation. The $circuitBreakerEvent parameter
has one of the following values:

CIRCUIT_OPENED if this is the first execution of this open
circuit service since the circuit opened.

CIRCUIT_OPEN if this is not the first execution of the open
circuit service since the circuit opened.

Note:
The open circuit service has access to the parameters in the above table aswell as any parameters
that existed in the pipeline at the time of the execution request for the service with a configured
circuit breaker.

Keep the following information in mind when building an open circuit service for use with a
circuit breaker:

If the open circuit service interacts with a remote resource, such as a database or web server,
make the interaction asynchronous to prevent a service execution from blocking other threads
or delaying the execution of the original calling service.

An open circuit service can be used with more than one service with a configured circuit
breaker.

Circuit breaker does not use a thread from the circuit breaker thread pool to execute the open
circuit service. Circuit breaker uses the same thread that executed the calling service to execute
the open circuit service.

If an exception occurswhile executing this service, it does not impact the circuit breaker failure
count for the originally requested service.

SoftwareAG recommends that the open circuit service is not configured to use a circuit breaker.

Software AG recommends that the open circuit service is not the same as the service with the
configured circuit breaker. That is, do not create a circular situation where a service with an
open circuit calls itself.

Configuring the Circuit Breaker Thread Pool

Circuit breaker uses a dedicated thread pool, separate from the server thread pool, to execute
services for which a circuit breaker is configured. This thread pool is referred to as the circuit
breaker thread pool. You can specify theminimum andmaximumnumber of threads in the circuit
breaker thread pool.

At run time, circuit breaker uses a thread from the circuit breaker thread pool to execute the
requested service, passing the service invocation pipeline to the new thread. This thread is separate
from the thread executing the calling service. The calling service waits for a response from the

Developing Microservices with webMethods Microservices Runtime 10.11 35

4 Using a Circuit Breaker with Services

requested service. Circuit breaker returns the service results and then returns the thread to the
circuit breaker thread pool. The calling service then proceeds with execution. If the requested
service is configured to treat a time out as a failure event and the service does not execute to
completion before the timeout period elapses, circuit breaker returns an exception to the calling
service. If theCancel thread on timeout property is set to false, circuit breaker orphans the thread.
If the Cancel thread on timeout property is set to true, circuit breaker attempts to cancels the
thread. If the thread cannot be canceled, circuit breaker abandons the thread.

Circuit breaker uses a separate thread pool because it decouples the thread that executes the calling
service from the thread that executes the requested service. This decoupling allows the calling
service to proceed with execution if the requested service does not complete before the timeout
period elapses. As a result, failures can return quickly. For example, suppose that a circuit breaker
is configured for a service that reads information from a database. If the database goes off line, an
attempt to connect to the unavailable database and execute a query may wait a while before
returning because network input/output operations typically cannot be interrupted. By using a
separate thread for the requested service, the circuit breaker can abandon the thread and return
an exception to the client without needing to wait for the input/output operation to complete.

Note:
Circuit breaker uses the circuit breaker thread pool to execute only those services for which a
circuit breaker is configured. Circuit breaker does not use a thread from the circuit breaker
thread pool to execute the circuit open service.

You can configure the size of the circuit breaker thread pool by specifying the minimum and
maximum number of threads for the pool. When the server starts, the circuit breaker thread pool
initially contains theminimumnumber of threads. The server adds threads to the pool, as needed,
until the pool contains themaximumnumber of allowed threads. If the pool reaches themaximum
number of threads, before executing the next requested service with a configured circuit breaker,
circuit breaker must wait for a thread to be returned to the pool.

The server provides server configuration parameters for specifying the minimum and maximum
number of threads in the circuit breaker thread pool.

watt.server.circuitBreaker.threadPoolMin specifies the minimum number of threads that the
server maintains in the circuit breaker thread pool. The circuit breaker thread pool is used to
execute services with a configured circuit breaker. When the server starts, the circuit breaker
thread pool initially contains this minimum number of threads. The server adds threads to the
pool as needed until it reaches the maximum allowed, which is specified by the
watt.server.circuitBreaker.threadPoolMax. You must specify a value greater than or equal to
0 (zero) and less than or equal to the value of watt.server.circuitBreaker.threadPoolMax. The
default is 10.

Note:
You must restart Microservices Runtime for changes to take effect.

watt.server.circuitBreaker.threadPoolMax specifies the maximum number of threads that the
server maintains in the circuit breaker thread pool. The circuit breaker thread pool is used to
execute services with a configured circuit breaker. If this maximum number is reached, the
serverwaits until services complete and return threads to the circuit breaker thread pool before
runningmore serviceswith a configured circuit breaker. Youmust specify a value greater than

36 Developing Microservices with webMethods Microservices Runtime 10.11

4 Using a Circuit Breaker with Services

0 and greater than or equal to the value of watt.server.circuitBreaker.threadPoolMin. The
default is 75.

Note:
You must restart Microservices Runtime for changes to take effect.

Use the server configuration properties to size the circuit breaker thread pool appropriately for
your environment. Keep in mind that all services for which a circuit breaker is configured share
the circuit breaker thread pool.

Circuit Breaker Statistics

Microservices Runtime gathers circuit breaker statistics for each service with a configured circuit
breaker.MicroservicesRuntimeAdministrator displays statistics in theCircuit Breaker Information
table on the Server > Service usage page.

The following table identifies the circuit breaker information thatMicroservices Runtimemaintains
for each service with a configured circuit breaker.

DescriptionField

Name of the service for which a circuit breaker is configured.Name

The state of the circuit. The circuit state can be one of the following:State

Closed. The service executes.

Open. The service does not execute. Instead, depending on the circuit
breaker configuration, the service returns an exception or executes an
alternative service.

Half-Open. The first request for this service since the circuit state changes
to half-open results in service execution. All other requests wait. If the
service executes successfully, the circuit is closed and waiting requests
execute. If the service ends with a failure exception, the circuit is
re-opened.

For a detailed explanation of possible circuit states, see “Circuit States” on
page 30.

Time at which circuit breaker last set the circuit state to open.Open Time

Time at which circuit breaker last set the circuit state to half-open.Half-Open Time

Time at which the circuit breaker last set the circuit state to closed.Closed Time

Number of times that circuit breaker set the circuit state to open since
Microservices Runtime started.

Open Count

Number of incoming requests for the service since the circuit breaker changed
the circuit state to open. For information about how circuit breaker handles

Request Count

Developing Microservices with webMethods Microservices Runtime 10.11 37

4 Using a Circuit Breaker with Services

DescriptionField

requests for a service with an open circuit, see How Does a Circuit Breaker for
a Service Work? How Does a Circuit Breaker for a Service Work? .

Note:
If a circuit breaker is not configured for any service, the Circuit Breaker Information table
displays the message “No Services with a Circuit Breaker Enabled”.

38 Developing Microservices with webMethods Microservices Runtime 10.11

4 Using a Circuit Breaker with Services

5 Automatic Package Deployment

■ How Automatic Package Deployment Works ... 40

■ Determining Package Dependencies During Automatic Deployment 41

■ Considerations for Auto Deployment of Packages ... 41

■ Enabling and Configuring Automatic Package Deployment ... 42

Developing Microservices with webMethods Microservices Runtime 10.11 39

Automatic package deployment allows Microservices Runtime to install or upgrade packages
automatically. When automatic package deployment is enabled, packages can be installed or
upgraded without using Deployer or an administrator tool such as, Microservices Runtime
Administrator. Automatic deployment can be used with an on-premises Microservices Runtime
and an Microservices Runtime that runs inside a Docker container.

Automatically deploying packages can be particularly useful for a Microservices Runtime that
runs in a Docker container. Instead of creating the Docker image containing individual Packages,
creating a base image containingDefault package can be used to bring in custompackages. Packages
to be installed or updated on the container can be placed in an autodeploy directory that
Microservices Runtime periodically scans. Microservices Runtime will find and install the new or
updated packages. If you do not use automatic deployment, you must rebuild the Docker image
to use any new or updated packages with Microservices Runtime container.

Note:
The automatic package deployment feature is available by default for a webMethods
Microservices Runtime. To use the automatic package deployment feature with Integration
Server, your Integration Server must have additional licensing.

When using the automatic package deployment with a Microservices Runtime that runs in a
Docker container where the Microservices Runtime does not have web services functionality
installed and the automatically deployedpackage containsweb service assets (provider or consumer
web service descriptors), one of the following occurs:

If the automatically deployed package is a user-defined package, the package is partially
loaded.

If the automatically deployed package is a system package, the package is fully loaded.

However, the web service assets will be not work and Microservices Runtime writes a warning
message to the server.log. For example: TheWeb service descriptor folder.subFolder:exampleWSD
cannot be loaded. WebServices Support (WebServices) is not available in the installed product.

Formore information about excludingweb services from aDocker image created forMicroservices
Runtime, see webMethods Integration Server Administrator's Guide .

How Automatic Package Deployment Works

In automatic package deployment, the packages that you want Microservices Runtime to deploy
automatically are placed in a location that Microservices Runtime periodically scans for new or
updated custom packages. Microservices Runtime executes a system task named “Auto Package
Deployer” that scans the folder and checks for new or updated custom packages. When
Microservices Runtime finds new or updated custom packages, Microservices Runtime does one
of the following:

For a new package, Microservices Runtime installs, archives, and activates the package.

For an updated custom package, Microservices Runtime does one of the following:

If hot deployment is enabled for automatic package deployment, Microservices Runtime
uses the block-and-wait approach employed by hot deployment to deploy the package.
This ensures that Microservices Runtime assets are available for processing without any

40 Developing Microservices with webMethods Microservices Runtime 10.11

5 Automatic Package Deployment

noticeable downtime. For more information about how hot deployment works, see
webMethods Integration Server Administrator’s Guide

If hot deployment is not enabled, Microservices Runtime unloads the existing package
information from memory and loads the new version of the package and its contents into
memory. While the package is being upgraded, it is possible that some assets might be
unavailable for some time. This could cause serious issues such as denial of service or
disruption of the in-flight tasks.

Hot deployment is enabled for automatic package deployment if either of the following is true:

Hot deployment is enabled globally for theMicroservices Runtime.Hot deployment is enabled
globally when the Enabled field is set to Yes on the Settings > Hot deployment page.

Hot deployment is enabled for automatic package deployment when the
watt.server.autodeploy.alwaysUseHotDeployment server configuration parameter is set to
true.

By default, the automatic package deployment feature is disabled in Microservices Runtime. To
enable automatic package deployment or configure other aspects of hot deployment, such as the
system task execution frequency, see the section Enabling and Configuring Automatic Package
Deployment Enabling and Configuring Automatic Package Deployment .

Determining Package Dependencies During Automatic
Deployment

If you are deploying newpackage or updated custompackages and it has newdependent packages,
you have to deploy the dependent packages too in the autodeploy folder. If you are deploying a
new package or updated custom packages with existing dependent packages that are already
deployed, then Microservices Runtime activates the new package. If you are deploying a new or
updated custom packages withmissing package dependencies the activation will fail. Also, if you
are using hot deployment then you should identify package dependencies correctly. For more
information see webMethods Integration Server Administrator’s Guide.

Considerations for Auto Deployment of Packages

Before you configure automatic package deployment inMicroservices Runtime, keep the following
behavior limitations and considerations in mind.

You cannot cancel an in-progress automatic package deployment operation.

If thewatt.server.autodeploy.alwaysUseHotDeployment parameter is set to true.Microservices
Runtime performs hot deployment for the installation of any custom package regardless of
whether it is a newpackage or an upgraded package. Formore information on hot deployment,
see “Enabling and Configuring Automatic Package Deployment” on page 42.

If you are deploying new package and it has new dependent packages, you have to deploy all
at once in the autodeploy folder.

If you use hot deployment for automatic package deployment, all of the hot deployment
considerations apply to automatic package deployment as well. For more information about

Developing Microservices with webMethods Microservices Runtime 10.11 41

5 Automatic Package Deployment

hot deployment considerations, see “Enabling and Configuring Automatic Package
Deployment” on page 42.

When hot deployment is used for automatic package deployment,Microservices Runtime uses
the configuredhot deployment values. Formore information about configuringhot deployment,
see “Enabling and Configuring Automatic Package Deployment” on page 42.

Enabling and Configuring Automatic Package Deployment

Microservices Runtime uses various configuration settings for automatic package deployment of
new and updated packages. Most of the settings have defaults. You can change these settings on
the Settings > Extended settings page of the Microservices Runtime Administrator as follows:

To configure automatic deployment for Microservices Runtime

1. In the Microservices Runtime Administrator, go to Settings > Extended.

2. Set the following server configuration properties in Microservices Runtime.

DescriptionFor this extended setting

Enables automatic package deployment .watt.server.autodeploy.
enabled=true

Use hot deployment for automatic deployment of
packages.

watt.server.autodeploy.
alwaysUseHotDeployment=true

Specifies the interval, measured in minutes, at which
Microservices Runtime executes the autodeploy system
task.

watt.server.autodeploy.interval=5

3. Click Save Changes.

4. Restart the Microservices Runtime.

The updated settings are now in effect.

Automatic Package Deployment Location
Where you place custom packages for automatic package deployment depends on whether you
are using an on-premisesMicroservices Runtime or anMicroservices Runtime running in aDocker
container.

For an on-premises Microservices Runtime, place packages that you want automatically
deployed in this location:

Integration Server_directory \replicate\autodeploy

42 Developing Microservices with webMethods Microservices Runtime 10.11

5 Automatic Package Deployment

Note:
For an on-premises Integration Server, place packages that youwant automatically deployed
in this location:

Integration Server_directory \instances\instance_name\replicate\autodeploy

For aMicroservices Runtime or Integration Server running a Docker container, when you start
the Docker container, you can map the above folder of a container to a volume which points
to a folder on your HOST machine. You can then place packages that you want to the server
to automatically deploy in the folder specified by the volume.

Developing Microservices with webMethods Microservices Runtime 10.11 43

5 Automatic Package Deployment

44 Developing Microservices with webMethods Microservices Runtime 10.11

5 Automatic Package Deployment

6 Using Configuration Variables Templates with

Microservices Runtime

■ About Configuration Variables Templates ... 46

■ What Does a Configuration Variables Template Look Like? ... 46

■ When Is the Template Applied? .. 48

■ Approaches for Using a Configuration Variables Template with Microservices Runtime . 49

■ Overview of Building a Configuration Variables Template .. 52

■ Generating a Configuration Variables Template ... 53

■ Editing a Configuration Variables Template .. 55

■ Template File Locations .. 60

■ Providing a Configuration Variables Template when Starting a Docker Container 60

■ Configuration Variables Logging ... 61

■ Viewing the Applied Template for a Microservices Runtime ... 63

Developing Microservices with webMethods Microservices Runtime 10.11 45

About Configuration Variables Templates

Microservices Runtime provides the ability to create a Docker image from an installed and
configured instance of Microservices Runtime. The Docker image contains the Microservices
Runtime application including packages and Microservices Runtime assets such as ports, JMS
connection aliases, keystores, and JDBCpools. Because you can executemultiple Docker containers
from a single Docker image, a Docker image for a Microservices Runtime instance might be used
across development, testing, and production environments. While the microservices and
accompanying artifacts are the same across the running containers and stages, configuration
informationmight be different. For example, user name andpassword combinations, proxy server
host and port, remote server host and port, and global variable values might be different across
different instances of running Docker containers. While a Microservices Runtime stores
configuration information inside its file system and therefore inside any Docker image created
from the Microservices Runtime, some configuration information can be externalized and passed
to the Microservices Runtime at startup. With Microservices Runtime you can accomplish this
through use of a configuration variables template and environment variables.

A configuration variables template contains configuration properties that map to properties on
the Microservices Runtime. The property values can be set externally in the template and then
passed to aMicroservices Runtimewhen it starts up. As part of the startup process, Microservices
Runtime loads the information from the configuration variables template and creates or replaces
the configuration information stored in the file system.

By externalizing configuration information, a single Docker image created for a Microservices
Runtime can be used across multiple environments, including different stages of the production
cycle. For example, you might use different templates for specific environments such as testing
versus production. Or youmight use the same template for all environments but use environment
variables to vary the configuration in each environment.

While the primary purpose of configuration variables is to extend the usefulness of single
Microservices Runtime image bymaking it possible to reuse a single Docker image acrossmultiple
stages in the production cycle, you can also use configuration variables templates in situations
where other deployment options are too heavyweight.

Note:
The configuration variables feature is available by default for Microservices Runtime. To use
the configuration variables feature with Integration Server, your Integration Server must have
additional licensing.

What Does a Configuration Variables Template Look Like?

A configuration variables template is a properties file that contains configuration data as a series
of key-value pairs where the key name reflects the asset and particular asset property for which
you can supply a value. For example,
jndi.DEFAULT_IS_JNDI_PROVIDER.providerURL=nsp://myHost:9000 indicates that the JNDI provider
alias named DEFAULT_IS_JNDI_PROVIDER has a URL of nsp://myHost:9000.

When a configuration variables template is generated from an existing Microservices Runtime,
the template is populated with configuration data from the Microservices Runtime instance. The

46 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

template content reflects the Microservices Runtime configuration at the time Microservices
Runtime generated the template. For example, the configuration variables template lists a key-value
pair for each defined global variable.

The generated configuration variables template does not contain key-value pairs for all of
configuration information forMicroservices Runtime. This is because only a subset of configuration
information is supported for use in configuration variables template.

Below is an excerpt of a configuration variables template:
#Sample Generated Template
#Wed Jun 20 17:13:40 EDT 2018
email.WmRoot.myEmailPort.host=exchange
email.WmRoot.myEmailPort.password=******
email.WmRoot.myEmailPort.server_port=7891
email.WmRoot.myEmailPort.user=user123ispasswordexpirationsettings.
jms.DEFAULT_IS_JMS_CONNECTION.clientID=DEFAULT_IS_JMS_CLIENT
jndi.DEFAULT_IS_JNDI_PROVIDER.providerURL=nsp\://localhost\:9000
settings.watt.server.compile=C\:\\IS_10-3\\June6\\jvm\\jvm\\bin\\javac -
classpath {0} -d {1} {2}
settings.watt.ssh.jsch.ciphers=aes256-ctr,aes192-
ctr,arcfour,arcfour128,arcfour256,aes128-ctr,aes128-cbc,3des-ctr,3des-
cbc,blowfish-cbc,aes192-cbc,aes256-cbc

Only specific values can be supplied via the template for an asset. For example, for a JMS connection
alias a configuration variables template lists a key-value pair for the clientID, user, and password
properties. The template omits key-value pairs for all other properties.

In the template, eachproperty name follows this pattern: assetType.assetName.propertyName=value
where assetType is the type of administrative asset, assetName is the name given to the asset
such as an alias name, and propertyName is the asset property for which you can set a value.

For example, following are key-value pairs for a global variable named serverhost, a global variable
named serverport, the DEFAULT_IS_JMS_CONNECTION connection alias, and the JDBC pool
alias named webMPool:
globalvariable.serverhost.value=server123.example.com
globalvariable.serverport.value=5555
jms.DEFAULT_IS_JMS_CONNECTION.clientID=DEFAULT_IS_JMS_CLIENT
jms.DEFAULT_IS_JMS_CONNECTION.password=******
jms.DEFAULT_IS_JMS_CONNECTION.user= userA
jdbc.webMPool.dbURL=jdbc:wm:oracle://testserver:1521;serviceName=webm
jdbc.webMPool.password={AES}CszC/Yl1w1XqEK0B17RFucP0kgMHNt823RUU6ad39tw\=
jdbc.webMPool.userid=jdbcuserTest

To change the assigned values in a configuration variables template, use a text editor to open the
template andmake changes. Any value you specify for a propertymust adhere to the requirements
for that property. For example, the global variable value cannot exceed 255 characters. For
passwords or other types of values that should be encrypted,Microservices RuntimeAdministrator
provides a utility to encrypt a value.Microservices RuntimeAdministrator uses password handles
and the Password-Based Encryption technology installed with Microservices Runtime for
encryption.

You can also add an asset by editing the configuration variables template. Not all assets for which
you can edit configuration in a configuration variables template can be created via a template.

Developing Microservices with webMethods Microservices Runtime 10.11 47

6 Using Configuration Variables Templates with Microservices Runtime

As an alternative to “hard coding” a value for a property in a template, you can specify an
environment variable (ENV variable) as the value of a property in the configuration variables
template. Using ENV variables can make the configuration variables template more flexible. For
example, the following line specifies that the JDBC pool URL for the alias webMPool should be
set to the value of the environment variable named JDBC_URL: jdbc.webMPool.dbURL=$env{JDBC_URL}

If you opt to use an ENVvariable as a value for configuration variables, make sure that you specify
the values for ENV variables defined in the configuration variables template. Refer to the Docker
documentation or the documentation for your container orchestration tool for more information
about how to specify the ENV variables for Docker containers.

When Is the Template Applied?

Microservices Runtime applies a configuration variables template at startup.WhenMicroservices
Runtime starts, either in a Docker container or on-premises, Microservices Runtime looks for a
configuration variables template in the following locations in the specified order.

1. The location identified by the SAG_IS_CONFIG_PROPERTIES environment variable.

2. Integration Server_directory /instances/instanceName/application.properties

3. Integration Server_directory /application.properties

OnceMicroservices Runtime locates a template,Microservices Runtimedoes not look for a template
in any remaining locations.

Note:
If Microservices Runtime does not find a configuration variables template at any of the above
locations, Microservices Runtime proceeds with start up and does not apply a template.

Microservices Runtime processes the template, updating the configuration information in
Microservices Runtime with the information in the template. While processing the template,
Microservices Runtime writes log messages to the logs/configurationvariables.log to reflect the
progress of the variable substitution.When updating is complete,Microservices Runtime proceeds
with startup.

After applying a fix with PIE-73984 (IS_10.11_Core_Fix4 and higher), if Microservices Runtime
cannot apply an application.properties file because the file is malformed, Microservices Runtime
logs errors about the malformed file to the server log and error log.Microservices Runtime writes
the following to the error log: Dynamic variables processor has encountered an error. Please
refer to configuraitonvariables.log for details.Microservices Runtime logs the actual
exception to the error log. Prior to application of IS_10.11_Core_Fix4,Microservices Runtime does
not start if a malformed application.properties file was supplied.

If theMicroservices Runtime license file cannot be readduring start up and a configuration variables
file is present, Microservices Runtime does not proceedwith start up and logs the following error:
[ISS.0028.9999C] com.softwareag.is.dynamicvariables.DynamicVariablesCriticalException:
The license provided is invalid or cannot be read. Remove application.properties file
or provide a valid MSR license

When updating the configuration, if Microservices Runtime encounters an asset that does not
exist, one of the following happens:

48 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

If the asset is one of the types that can be created through a configuration variables template,
Microservices Runtime creates it using the supplied key-value pairs. Only a subset of all the
properties for an asset can be set in a configuration variables template. Microservices Runtime
uses default values for all other asset properties. For a list of assets that can be created via
application of a configuration variables templates, see “Creating New Assets with the
Configurations Variable Template” on page 59.

If an asset type cannot be created through a configuration variables template, Microservices
Runtime ignores properties and values that do not correspond to existing assets on the
Microservices Runtime.

During substitution or asset creation, Microservices Runtime sets values for properties that are
specified in the template but not set on the Microservices Runtime. For example, suppose the
configuration variables template file specifies the following for a JMS connection alias named
myAlias:
jms.myAlias.clientID=abc
jms.myAlias.password=encryptedValue
jms.myAlias.user= userA

If the Microservices Runtime contains a JMS connection alias named “myAlias” and that alias
specifies a Connection Client ID value of “xyz”, at startup, Microservices Runtime substitutes
“abc” for “xyz”. If themyAlias connection alias does not specify values forUsername orPassword,
Microservices Runtime substitutes the values set in jms.myAlias.password and jms.myAlias.user
in the application properties template for the JMS connection alias Username and Password
fields.

Approaches for Using a Configuration Variables Template with
Microservices Runtime

Because a configuration variables template can be used with a Microservices Runtime running in
a Docker container or an on-premises Microservices Runtime, there are multiple approaches to
using the template. The approach you select determines the template file name, the template file
location, whether the template file is part of a Docker image, and how to start the Microservices
Runtime so that Microservices Runtime applies the template.

To help determine which approach to use, decide the following:

Will the Microservices Runtime with which you want to use the template run in a Docker
container or on-premises (outside of a Docker container)?

If Microservices Runtime runs in a Docker container, do you want to include the template as
part of the Docker image or external to the image?

Do you want to hard code values for variables in the template or use environment (ENV)
variables to specify some or all values?

The answers to the above questions help determine which approach to use, which in turn,
determines the files that you need to create, where you place the configuration variables template,
the name of the file, and how to start the Microservices Runtime so that Microservices Runtime
applies the template values.

Developing Microservices with webMethods Microservices Runtime 10.11 49

6 Using Configuration Variables Templates with Microservices Runtime

The following table describes the possible approaches for using a configuration variables template
with Microservices Runtime

Description and requirementsApproach

Microservices Runtime runs in a Docker container, the template is
not included in the Docker image, and configuration variables values

Docker image does not
include template which
does not use ENVvariables are hard coded in the template only. The template does not use ENV

variables.

Template file name: application.properties or a user-defined name

Template location: A location that is accessible to theDocker container.

Start up: The docker run command includes the
SAG_IS_CONFIG_PROPERTIES environment variable which specifies the
name and location of the configuration variables template.

Microservices Runtime runs in a Docker container, the template is
not included in the Docker image, and configuration variable values

Docker image does not
include template and

are hard coded in the template and/or the template uses environment
variables.

template uses ENV
variables

Template file name: application.properties or a user-defined name

Template location: A location that is accessible to theDocker container.

If you are using ENV variables for some or all of the variable values,
refer to the Docker documentation or the documentation for your
container orchestration tool formore information about how to specify
the ENV variables for Docker containers.

Start up: The docker run command includes the
SAG_IS_CONFIG_PROPERTIES environment variable which specifies the
name and location of the configuration variables template. If using
the docker run command, the command must also include options
--env, -e or --env-file options for setting the ENV variables in the
container.

Microservices Runtime runs in a Docker container, the configuration
variables template is part of the Docker image, and the template uses
environment variables for some or all the values in the template.

Docker image includes
template which uses ENV
variables

Template name: application.properties

Template location is one of the following:

Integration Server_directory
/instances/instanceName/application.properties

Integration Server_directory /application.properties

50 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

Description and requirementsApproach

If you are using ENV variables for some or all of the variable values,
refer to the Docker documentation or the documentation for your
container orchestration tool formore information about how to specify
the ENV variables for Docker containers.

Start up: The docker run command must include options --env, -e
or --env-file options for setting the ENV variables in the container.

Microservices Runtime runs on-premises, configuration variables
values are hard coded in the template only, and the template is not

On-premisesMicroservices
Runtime installation does

included in theMicroservices Runtime file system. The template does
not use ENV variables.

not include template and
template does not use ENV
variables.

Template name: application.properties or a user-defined name

Template location: A location that is accessible to the Microservices
Runtime.

Start up: Microservices Runtime start up includes the
SAG_IS_CONFIG_PROPERTIES ENV variable which specifies the name
and location of the configuration variables template.

MicroservicesRuntime runs on-premises and a configuration variables
template defines all the values. The template does not use ENV
variables.

On-premisesMicroservices
Runtime includes template
which does not use ENV
variables.

Template name: application.properties

Template location is one of the following:

Integration Server_directory
/instances/instanceName/application.properties

Integration Server_directory /application.properties

Start up: This approach does not require any special steps at start up.

MicroservicesRuntime runs on-premises and a configuration variables
template hard codes the values and/or uses environment variables
for the values.

On-premisesMicroservices
Runtime includes template
which uses ENV variables

Template name: application.properties

Template location is one of the following:

Integration Server_directory
/instances/instanceName/application.properties

Integration Server_directory /application.properties

Developing Microservices with webMethods Microservices Runtime 10.11 51

6 Using Configuration Variables Templates with Microservices Runtime

Description and requirementsApproach

Environment variables can be specified in Integration Server_directory
/bin/setenv.bat(sh) files or ENV variables can be pre-defined in your
environment.

For an Integration Server with an Microservices Runtime license,
environment variables can be specified in Integration Server_directory
profiles/IS_instanceName/bin/custom_setenv.bat(sh) files or ENV
variables can be pre-defined in your environment.

Start up: This approach does not require any special steps at start up.

Overview of Building a Configuration Variables Template

Preparing a configuration variables template for use with Microservices Runtime consists of a
series of general tasks. The order in which you complete these tasks may be affected by whether
you intend to use the template with a Microservices Runtime in a Docker container or an
on-premises Microservices Runtime.

The following table identifies the general tasks that you complete for preparing a configuration
variables template for use with Microservices Runtime.

DescriptionTask

Decide how you want to use the configuration variables template and how you want
to supply values. Do you want to use the template with a Microservices Runtime

1

running in a Docker container or an on-premises Microservices Runtime? Do you
want to supply all the variable values in the template or do you want to use an
environment variables as well? For more information, see “Approaches for Using a
Configuration Variables Template with Microservices Runtime ” on page 49.

Configure aMicroservices Runtime such that the generated template will contain the
properties that you want to control. When generating a template, the Microservices

2

Runtime includes properties only for those assets which exist on the Microservices
Runtime.

Generate the configuration variables template for the Microservices Runtime. For
more information about creating a configuration variables template, see “Generating
a Configuration Variables Template” on page 53.

3

Edit the configuration variables template to contain the property values that youwant
the Microservices Runtime to modify at startup. For more information about this

4

stage, see “Editing a Configuration Variables Template” on page 55. If you want to
add assets to Microservices Runtime by applying configuration variables template,
add the key-value pairs for the asset and its properties to the template. Keep in mind
that you can use a configuration variables template to add only certain asset types to
the Microservices Runtime. For more information about adding assets, see “Creating
New Assets with the Configurations Variable Template” on page 59.

52 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

DescriptionTask

Place the configuration variables template in the correct locationwith the appropriate
name. The template location depends on whether or not you are using the template

5

with a Docker image or on-premises Microservices Runtime and if the template is
part of the image or file system. For more information, see “Approaches for Using a
Configuration Variables Template with Microservices Runtime ” on page 49.

If you are using ENV variables as values in the configuration variables template, refer
to the Docker documentation or the documentation for your container orchestration
tool for more information about how to specify the ENV variables for Docker
containers.

If you are using the template in a Docker container and the template resides inside
the Microservices Runtime file system, build the Docker image.

6

Formore information about creating aDocker image, seewebMethods Integration Server
Administrator’s Guide webMethods Integration Server Administrator’s Guide

For more information about creating a Docker image, see the webMethods Integration
Server Administrator’s Guide.

Generating a Configuration Variables Template

Microservices Runtime provides a utility to generate a configuration variables template based on
the configuration of a running Microservices Runtime. This configuration variables template
reflects the current configuration of the Microservices Runtime.

After the Microservices Runtime is configured, you can use the utility to generate the template.
The resulting template serves as the starting point for creating a customized configuration variables
template.

Before you generate the configuration variables template from aMicroservices Runtime, youmight
want to:

Make sure to favorite (star) all of the server configuration parameters that youwant to set with
the template on the Settings > Extended page.

Ensure that the keystores and truststores are loaded. When a keystore or truststore is loaded
it indicates that the keystore or truststore configuration is valid and that the Microservices
Runtime initialized the keystore or truststore alias successfully. To see if a keystore or truststore
is loaded, navigate to the Security > Keystore page and ensure that the Loaded column
displays Yes.

Note:
You can create a configuration variables template manually. You do not need to generate a
template from an existing configuredMicroservices Runtime.However, generating the template
from aMicroservices Runtime is a time-saving option that provides a starting point. A generated
templatemay also be less prone to errorswith key names in the template than a template created
manually.

Developing Microservices with webMethods Microservices Runtime 10.11 53

6 Using Configuration Variables Templates with Microservices Runtime

To generate a configuration variables template

1. Open the Microservices Runtime Administrator for the Microservices Runtime from which
you want to generate the variables

2. Go to Microservices > Configuration variables.

3. Click Generate Configuration Variables Template.

Microservices Runtime generates an application.properties file. The application.propeties file
includes the text #Sample Generated Template followed by the date and time of the generation.

4. Download the application.properties file and save it to your preferred location for editing.

The generated application.properties file includes the following:

The date and time that Microservices Runtime generated the template.

Key-value pairs for asset properties forwhich a value is specified on theMicroservices Runtime.
The template does not include variables for assets that do not exist or for asset properties that
are not specified.

For a list of assets and properties for which Microservices Runtime generates configuration
variables see “Configuration Variables Template Assets” on page 85.

Note:
In the template, any key that contain a period (.) as part of its name is escaped using another
period. For example, for a JMS connection alias named my.JMS.alias, the template property
corresponding to the Client ID in the alias the name: jms.my..JMS..alias.clientID=value

Key-value pairs for the server configuration parameters that were configured to show on the
Extended Settings page only.

Keystore and truststore alias properties for keystores and truststores that were loaded at the
time of template generation only.

The text ****** for any passwords that appear as property values in the template.

The environment variable name in the format $env[environmentVariableName] for any key for
which an environment variable was used as the value.

The Kubernetes variable itself in the format $secret[secretName] for any key for which a
Kubernetes Secret was used as the value.

For a configured asset, the configuration variables template lists properties only for which a
value is specified. For example, if you specify a client ID for a JMS connection alias, but do not
specify a user name or password for use with the JMS connection alias, the configuration
variables template contains jms.aliasName.clientID=value but not jms.aliasName.password
or jms.aliasName.user.

54 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

Editing a Configuration Variables Template

After you generate a configuration variables template from aMicroservices Runtime, you modify
the configuration variables template to contain the property values that you want applied to a
Microservices Runtime at startup. You can hard code values or specify an environment variable
as the value. You can also encrypt values or use a Kubernetes Secret to protect sensitive data. In
addition, you can also add assets to the template.

Keep the following information in mind when you edit a configuration variables template.

Any value that you specify must meet the requirements for the associated property. For
example, global variable values cannot exceed 255 characters. If the value is not valid, failures
will occur at runtime, either during server initialization orwhen clients start sending in requests.

A configuration variables template can be used to change the configuration information for
assets that already exist on the Microservices Runtime.

You can add assets for some asset types to aMicroservices Runtime by adding key-value pairs
to a template. Any asset that you create must meet the naming requirements for the asset. If
it does not, the improperly configured asset might result in Microservices Runtime failure at
start up or during operations. For a list of assets that you can add, “Overview of Building a
Configuration Variables Template” on page 52

The configuration variables template lists only assets that existed on theMicroservices Runtime
fromwhich you generated the template. You can add an asset for an asset type for which asset
creation is allowed via a configuration variables template. If asset creation is not allowed for
that type but you know the asset will exist on the Microservices Runtime that will use the
template, you can add the asset and the necessary key-value pairs to the template. At startup,
if the template specifies a value for a non-existent asset, the Microservices Runtime logs a
message to the configuration variables log.

For more information about assets and properties and the corresponding key name, see
“Configuration Variables Template Assets” on page 85.

When Microservices Runtime generates an application.properties template, any properties
that contain an alias name with a period (.) include another period as an escape character. For
example, for a JMS connection alias named my.JMS.alias, the template property corresponding
to the Client ID in the alias the name: jms.my..JMS..Alias.clientID=value

Do not remove the period (.) acting as the escape character.

If you edit the template by adding a key-value pair for an asset property and the asset property
includes an alias namewith a period (.), make sure to add another period to serve as the escape
character.

To supply a value in the configuration variables template

1. Open the template in a text editor.

2. For each key for which you want to supply a value, do one of the following:

Developing Microservices with webMethods Microservices Runtime 10.11 55

6 Using Configuration Variables Templates with Microservices Runtime

Enter this for the property valueTo

The value you want to use.Hard code a value

The name of the environment variable in the format:
$env{environmentVariableName}

Use an environment value as the value

Where environmentVariableName is the name of the
environment variable. For example: $env{JDBC_URL}

$secret{SecretName}Use a Kubernetes Secret as the value

Where secretName is the key for the secret whose
value you want to use. For example:
$secret{mySecretPassword}

Formore information about using aKubernetes Secret
with a configuration variables template, see “Using a
Kubernetes Secret with a Configuration Variables
Template” on page 58.

UseMicroservices RuntimeAdministrator to generate
an encrypted value and then copy that value into the

Encrypt a value

template. Formore information see,“EncryptingValues
for the Variables Template” on page 57.

While Microservices Runtime accepts clear text
passwords as well as encrypted ones, Software AG
recommends that you encrypt all passwords and other
sensitive data in your configuration variables
templates.

3. Repeat the above step for each key that you want to set.

4. To add an asset, add the key-value pair for each property of the asset that you want to set.

For example, to add a global variable, insert the following into the template:

globalvariable.globalVariableName.value

Where globalVariableName is the name of the global variable that you want to create.

5. Repeat step 4 for every asset that you want to create.

6. Save the template.

56 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

Encrypting Values for the Variables Template
You may want your configuration variables template to use encrypted values for sensitive data
such as passwords. Microservices Runtime provides a way to generate an encrypted value which
can then be placed in the template.

For encryption,Microservices Runtime uses AES to encrypt the values for configuration variables,
in particularAES/ECB/PKCS5Padding.When aDocker image is created forMicroservices Runtime
using theDocker script is_container.bat/sh, the script bundles a secret keywith the image, allowing
the encrypted values from one instance to be decrypted and reused in another.

Instead of encrypting values, you can use Kubernetes Secrets for confidential data such as
passwords. For more information about Kubernetes Secrets, see “Using a Kubernetes Secret with
a Configuration Variables Template” on page 58.

Note:
When you generate a configuration variables template, Microservices Runtime replaces any
passwords and any secret global variables with ****** .

Software AG recommends that you encrypt all passwords and other sensitive data in your
configuration variables templates.

To encrypt a value

1. Open the Microservices Runtime Administrator for the Microservices Runtime that you want
to use to generate an encrypted value.

2. Go to Microservices > Configuration variables.

3. Click Generate Encrypted Configuration Variables.

4. In the Value field, enter the value that you want encrypted.

By default, Microservices Runtime Administrator masks any characters that you enter in the
Value field. Click theShow Value check box if youwantMicroservices RuntimeAdministrator
to display the characters in clear text.

5. Click Encrypt.

Microservices Runtime encrypts the value and displays the encrypted value in the Encrypted
Value field.

6. Click Copy to copy the encrypted value to the clipboard.

7. Open the configuration variables template to which you want to add the encrypted value,
locate the key for which you want to use the value, and then paste the copied value into the
template.

Developing Microservices with webMethods Microservices Runtime 10.11 57

6 Using Configuration Variables Templates with Microservices Runtime

8. Repeat steps 4 –7 for each value you want to encrypt.

Using a Kubernetes Secret with a Configuration Variables
Template
AKubernetes Secret is an object that contains a small piece of confidential data such as credentials.
The Secret is separate from a Docker container image, meaning the confidential data can be
externalized. You can use a Kubernetes Secret with Microservices Runtime by specifying the key
for the Secret in the configuration variables file that is passed into aMicroservices Runtime running
in a Docker container.

Microservices Runtime supports one Secret per container (each Secret can containmultiple entries
often called keys) and a Secret of type Opaque only.

Prior to using a Secret with a configuration variables files (application.properties), you must do
the following:

Create the Secret with Kubernetes

Mount the Secret as a data volume

To use a Kubernetes Secret for a property value in a configuration variables file, set the key-value
pair for the asset property using the following format:

key=$secret{SecretName}

Where the SecretName is the key for the secret whose value you want to use. For example:

truststore.DEFAULT_JVM_TRUSTSTORE.ksPassword=$secret{TruststorePasswordSecretName}

user.userName.password=$secret{mySecretPassword}

When you start the container, you can set the SECRET_PATH environment variable to the pathwhere
the Secret will be present inside the container. You do not need to specify this environment variable
if the Secret is mounted at /etc/secrets.

WhenMicroservices Runtime applies the configuration variables file,Microservices Runtime looks
for the location of the Secret by first checking if the SECRET_PATH environment variable is present.
If so, then Microservices Runtime reads the Secret from the path present in this environment
variable. If the SECRET_PATH environment variable was not provided when the container started,
then Microservices Runtime expects the Secret will be mounted at /etc/secrets and will read the
Secret from there.

If Microservices Runtime cannot find the Secret used in the configuration variables file (the Secret
is not present or access to the file is restricted due to file permissions), the following Info level
message will be written to the configurationvariables.log:

[ISS.0028.0039I] Exception occurred while reading secret file: <pathToFile>

58 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

Creating New Assets with the Configurations Variable Template
For some asset types, you can add assets to Microservices Runtime by adding key-value pairs to
the configuration variables template that is applied at start up. Any asset that you create must
meet the naming requirements for the asset. An incorrectly configured asset can causeMicroservices
Runtime start up fail or result in failure during later server operations.

To add an asset to a configuration variables template, follow the procedure and guidelines in
“Editing a Configuration Variables Template” on page 55.

The following list identifies the asset types for which you can create an asset through application
of a configuration variables template:

Broker connection alias

Note:
Only one Broker connection alias can exist on a Microservices Runtime (or an Integration
Server). If the application.properties file being applied to theMicroservices Runtime specifies
a Broker connection alias, but a Broker connection alias already exists on Microservices
Runtime, an error is written to the configurationvariables.log and the Broker configuration
is not updated.

Consul

Email port

File polling port

Global variable

JDBC pool alias

JMS connection alias

JNDI provider alias

Keystore alias

LDAP configuration

Proxy server alias

Remote server alias

SFTP server alias

SFTP user alias

Truststore alias

Universal Messaging connection alias (webMethods messaging)

User account

Developing Microservices with webMethods Microservices Runtime 10.11 59

6 Using Configuration Variables Templates with Microservices Runtime

Template File Locations

When the configuration variables template is ready for use with a Microservices Runtime, you
need to save the template to a place accessible toMicroservices Runtime upon startup.Where you
place the configuration variables template file and any accompanying environment variables list
depends on whether you are using the template with Microservices Runtime running in a Docker
container or on-premises.

You can place the template file in one of the following locations.

The location to be identified by the SAG_IS_CONFIG_PROPERTIES environment variable.

Integration Server_directory /instances/instanceName

For this option, the configuration variables templatemust be a file named application.properties.
If you use this location with Microservices Runtime running in a Docker container, create the
Docker image after completing the template and placing it here.

Integration Server_directory

For this option, the configuration variables templatemust be a file named application.properties.
If you use this location with Microservices Runtime running in a Docker container, create the
Docker image after completing the template and placing it here.

For more details about where to place the configuration variables template and an environment
variables list, if you are using one, see “Approaches for Using a Configuration Variables Template
with Microservices Runtime ” on page 49.

Providing a Configuration Variables Template when Starting a
Docker Container

When running a Microservices Runtime image in a Docker container, you can specify the
configuration variables template and/or environment (ENV) variables in the docker run command.

Example

The following docker run command uses the SAG_IS_CONFIG_PROPERTIES ENV variable to specify
the name and location of the configuration variables template. In this example, the Docker image
for theMicroservices Runtime is named is:microPkg and exposes ports 5555 and 9999. Additionally,
the customApplication.properties file location is accessible by the Docker container using Docker
volume.
docker run -d --name IS_Default -p 5555 -p 9999
-v
/opt/softwareag/customApplication.properties:/opt/softwareag/customApplication.properties

-e SAG_IS_CONFIG_PROPERTIES=/opt/softwareag/customApplication.properties
is:microPkg

60 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

Example

The following docker run command uses the SAG_IS_CONFIG_PROPERTIES ENV variable to specify
the name and location of the configuration variables template and uses the --env-file option to
specify the list of ENV variables that are used in the configuration variables template. In this
example, theDocker image for theMicroservices Runtime is named is:microPkg and exposes ports
5555 and 9999.
docker run -d --name IS_Default -p 5555 -p 9999
-e SAG_IS_CONFIG_PROPERTIES=/opt/softwareag/customApplication.properties
-v
/opt/softwareag/customApplication.properties:/opt/softwareag/customApplication.properties

--env-file env.list is:microPkg

Configuration Variables Logging

WhenMicroservices Runtime applies the configuration variables template at startup,Microservices
Runtime has not yet initialized the journal logger which is used for the server log. For this reason,
Microservices Runtime uses a separate logging capability for logging Microservices Runtime
messages related to processing a configuration variables template. The configuration variables
log contains messages about the operations, warnings, and errors that occur while Microservices
Runtime applies the template.

Below is an excerpt from the configuration variables log:
2018-06-18 15:34:10 EDT [ISS.0028.0016I] Configuration variables template file
found at C:\SoftwareAG\IntegrationServer\application.properties will be used for
processing.
2018-06-18 15:34:12 EDT [ISS.0028.0007I] Changed property in
C:\SoftwareAG\IntegrationServer\instances\default\config\server.cnf. Old value:
localhost. New value: localhost,127.0.0.1. Configuration variable key:
watt.net.proxySkipList.
2018-06-18 15:34:12 EDT [ISS.0028.0017W] Encryptor is creating password handle
because the given password handle
wm.is.admin.WSEndpoint.message.CONSUMER.HTTPS.ws_cons_https does not exist in
the password store.
2018-06-18 15:34:12 EDT [ISS.0028.0008I] Set password in secure password store.
Password handle: wm.is.admin.WSEndpoint.message.CONSUMER.HTTPS.ws_cons_https
2018-06-18 15:34:12 EDT [ISS.0028.0017W] Encryptor is creating password handle
because the given password handle
wm.is.admin.WSEndpoint.transport.CONSUMER.HTTPS.ws_cons_https does not exist in the
password store.
2018-06-18 15:34:12 EDT [ISS.0028.0008I] Set password in secure password store.
Password handle: wm.is.admin.WSEndpoint.transport.CONSUMER.HTTPS.ws_cons_https
2018-06-18 15:34:12 EDT [ISS.0028.0008I] Set password in secure password store.
Password handle: wm.is.admin.WSEndpoint.message.CONSUMER.HTTPS.ws_cons_https
2018-06-18 15:34:12 EDT [ISS.0028.0007I] Changed property in
C:\SoftwareAG\IntegrationServer\instances\default\config\kerberos.cnf. Old
value: . New value:

Each log message is prefixed with the time stamp and a message ID that includes the logging
facility (0028),message code, and the severity level. The severity levels are described in the following
table:

Developing Microservices with webMethods Microservices Runtime 10.11 61

6 Using Configuration Variables Templates with Microservices Runtime

ExampleDescriptionLevel

Configuration file C:\SoftwareAG\
IntegrationServer\instances\

Could not execute the configuration
variables processing or an error

CriticalC

default\packages\WmPublic\config\
listeners.cnf not found

occurred that causedMicroservices
Runtime initialization to stop.

java.io.FileNotFoundException:One or more of the intended
configuration changes could not be
applied

ErrorE

C:\SoftwareAG\IntegrationServer\
instances\default\config\jndi\
jndi_BasicAuth.properties

(The system cannot find the file
specified)

Property corresponding to key
username not found in XML file
proxy.cnf.

A configuration variable was
applied, but there is something
about which you should be aware.

WarningW

Changed property inInformational messages about the
progress of configuration variables
processing.

InformationI

C:\SoftwareAG\IntegrationServer\
instances\default\config\
server.cnf.

Old value: localhost

New value: localhost,127.0.0.1

Configuration variable key:
watt.net.proxySkipList.

Processor found for the assetType
truststore.

Low level messages, helpful for
troubleshooting.

DebugD

Microservices Runtime does not support filtering the contents of the configuration variables log
based on logging level. By default, the configuration variables log includes all messages with a
severity of Information or higher. To include debug messages in the log, you must set the
SAG_IS_CONFIG_VARIABLES_DEBUG environment variable to true at startup.

Microservices Runtime writes the configuration variables log messages to the console (STDOUT)
and/or to the location: Integration Server_directory
/instances/instanceName/logs/configurationvariables.log. A Microservices Runtime running in a
Docker container always writes the configuration variables log messages to both locations.

Note:Microservices Runtime running in a Docker container also writes the server log to the
console. Configuration variables log messages include “ISS.0028” in the message ID which
distinguishes the messages from server log messages.

When starting an on-premises Microservices Runtime from the command line, you can specify
the destination for the configuration variables log using the -log switch.

62 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

The following table identifies the command line options for specifying the destination of the
configuration variables log file.

Log DestinationCommand Line Option

The console (STDOUT).-log none

The console (STDOUT) and Integration Server_directory
/instances/instanceName/logs/configurationvariables.log.

-log both

Note:
If the -log switch is not specified,Microservices Runtimewrites the logmessages to this location
only: Integration Server_directory /instances/instanceName/logs/configurationvariables.log

Starting Microservices Runtime from the command line is the same as starting Integration Server
from the command line.

For information about starting Integration Server from the command line, seewebMethods Integration
Server Administrator’s Guide.

Microservices Runtime does not preserve the contents of the configurations variable log across
restarts.When running on-premisesMicroservices Runtime overwrites the existing configurations
variable log upon startup.

Viewing the Applied Template for a Microservices Runtime

For a running Microservices Runtime you may want to see the configuration variables templates
that Microservices Runtime applied at startup. This can help you compare current configuration
to configuration at the time of startup. UsingMicroservices RuntimeAdministrator, you can obtain
the application.properties file used at startup. If the application.properties used environment
variables as values,Microservices Runtime substitutes the actual value for the environment variable
value.

To view the applied configuration variables template

1. OpenMicroservices RuntimeAdministrator for which youwant to view the applied template.

2. Go to Microservices > Configuration variables.

3. Click Get Active Configuration Variables Template.

Microservices Runtime generates an application.properties file that contains the key-value
pairs from the applied temple. The application.properties file includes the text #No Active
Template if Microservices Runtime did not apply a template at startup.

Developing Microservices with webMethods Microservices Runtime 10.11 63

6 Using Configuration Variables Templates with Microservices Runtime

64 Developing Microservices with webMethods Microservices Runtime 10.11

6 Using Configuration Variables Templates with Microservices Runtime

7 Monitoring Microservices Runtime

■ Overview of Monitoring Microservices Runtime ... 66

■ About the Health Gauge ... 66

■ Obtaining Metrics for a Microservices Runtime .. 71

Developing Microservices with webMethods Microservices Runtime 10.11 65

Overview of Monitoring Microservices Runtime

Microservices Runtime provides capabilities formonitoring the health of aMicroservices Runtime
and gathering metrics about the server and the microservices it contains. External applications
such as container management and monitoring tools, can use the metrics and data supplied by
Microservices Runtime to help determine whether the Microservices Runtime is performing
correctly or optimally.

MicroservicesRuntime exposes themonitoring features via endpoints. Requests sent to the endpoint
result in the invocation of an internal service that gathers data and then returns the status and/or
payload do the requester.

Microservices Runtime includes the following monitoring capabilities:

Health gauge which returns an overall up or down status for a Microservices Runtime based
on a set of health indicators. The health gauge endpoint is http://host:port/health

Metrics which returns server and service metrics in Prometheus configuration format. The
metrics endpoint is http://host:port/metrics

Note:
The monitoring features are available by default for Microservices Runtime. To use the
monitoring features with Integration Server, your Integration Server must have additional
licensing.

About the Health Gauge

The health gauge returns an overall UP or DOWN status for the Microservices Runtime based on
the collective status of enabled health indicators. When the health endpoint is invoked,
Microservices Runtime executes all of the enabled health indicators. A health indicator determines
the UP or DOWN status of a specific component of Microservices Runtime. If all of the health
indicators return anUP status, the entireMicroservices Runtime is considered to be up. The health
gauge returns a HTTP 200 status code to the requester. If even one of the health indicators returns
a DOWN status, the entire Microservices Runtime is considered to be down. The health gauge
returns a HTTP 503 status code to the requester.

Regardless of the overall status, the response includes a payload in JSON format that contains
more details for each health indicator, including whether the indicator returned a status of UP or
DOWN. By default, the response follows the ASCII order. For example, the ServiceThread health
indicator returns the current number of service threads in use, the current number of available
threads, and the maximum number of available threads.

Predefined Health Indicators
Microservices Runtime includes predefined health indicators for some of the basic components
of aMicroservices Runtime. Some, but not all, of the health indicators have a configurable property
that you can use to specify the threshold at which a health indicator returns an UP or DOWN
status.

66 Developing Microservices with webMethods Microservices Runtime 10.11

7 Monitoring Microservices Runtime

The following table describes the predefinedhealth indicators includedwithMicroservicesRuntime.

DescriptionIndicator Name

Checks for the number of available servers in a cluster of Microservices
Runtime servers. Returns a status of UP if the number of available servers is

Cluster

greater than or equal to the defined minimum in the Number of cluster
hosts property for the Cluster health indicator. Otherwise, returns a status
of DOWN. This health indicator is returned only for aMicroservices Runtime
that is a member of a configured cluster. That is the Microservices Runtime
must be a member of a stateful cluster.

Checks for low disk space. Returns status of UP if the percentage of free disk
space is greater than what is specified in the Free disk space threshold

Diskspace

property for the Diskspace health indicator. Otherwise, returns a status of
DOWN.

Checks all the listed tenant connection aliases and associated accounts for
webMethods Cloud. Returns a status of UP if all of the listed tenant

HybridConnections

connections and associated accounts are UP. Returns a status of DOWN if
any of the listed tenant or account connections are down.

The health indicator includes individual statuses for tenant connections and
associated accounts, along with the overall hybrid connection status.

If an enabled tenant does not have an account alias or the account alias is not
enabled, the health indicator does not list the tenant alias.

If a tenant is disabled and the associated account is enabled, the health
indicator shows the account status as UP. This behavior is as designed.

Note:
The hybrid connectivity alerts are introduced as part of PIE-81171 in
IS_10.11_Core_Fix9.

Checks for available JDBC connections across all JDBC functions such as
ISInternal and ISCoreAudit. Returns a status of UP if, for each JDBC

JDBC

connection pool, Microservices Runtime can obtain a valid JDBC connection
before a 200 millisecond time out elapses. Otherwise, returns a status of
DOWN. The timeout value is not configurable. The JDBC health indicator
skips any JDBC functions that do not have an associated pool.

Checks that JMS connection alias are available. Returns a status of UP if all
enabled JMS connection aliases are active, meaning that Microservices

JMS

Runtime can ping the JMS Provider or create a connection successfully.
Otherwise, returns a status of DOWN.

Checks that the connections for a JNDI aliases are up by attempting to make
a connection for JNDI.

JNDIAliases

Developing Microservices with webMethods Microservices Runtime 10.11 67

7 Monitoring Microservices Runtime

DescriptionIndicator Name

Checks for low available memory. Returns a status of UP if the percentage
of free memory is greater than what is specified for the Free memory

Memory

threshold property for the Memory health indicator. Otherwise, returns a
status of DOWN.

Checks the status of remote servers. Returns a status of UP if Microservices
Runtime can successfully invoke the internal service wm.server:ping on each

RemoteServers

server for which there exists a remote server alias. Otherwise, returns a status
of DOWN.

Checks the connection to remote SFTP serves for which an SFTP server alias
is configured. Returns a status of UP if a connection can be obtained for all
of SFTP server aliases with at least one SFTP user alias.

SFTPServers

Checks for low available server threads. Returns a status of UP if the
percentage of available server threads is greater than what is specified in the

ServiceThread

Available threads thresholdproperty for the ServiceThread health indicator.
Otherwise, returns a status of DOWN.

Checks for low available licensed sessions. Returns a status of UP if the
percentage of available licensed sessions is greater than the value specified

Sessions

for the Used licenses threshold property for the Sessions health indicator.
Otherwise, returns a status of DOWN.

Checks that the Universal Messaging connection aliases for webMethods
messaging. Returns a status of UP if all of the enabled Universal Messaging
connection aliases are available. Otherwise, returns a status of DOWN.

UMAliases

Note:
Products installed on top of Microservices Runtime might provide their own health indicators.

Enabling and Disabling Health Indicators
Whether or not a health indicator is enabled determines if the healthy gauge includes the indicator
when determining the UP or DOWN status of the Microservices Runtime. If you do not want the
health gauge to include a particular indicator when determining the overall UP or DOWN status,
disable the indicator. A disable indicator does not execute when the health endpoint is invoked.

To enable or disable a health indicator

1. Go to Microservices > Health gauge.

2. In the Health Indicator List, do one of the following:

To enable a disabled health indicator, click No in the Enabled column.

To disable an enabled health indicator, click Yes in the Enabled column.

68 Developing Microservices with webMethods Microservices Runtime 10.11

7 Monitoring Microservices Runtime

Health Indicator Properties
Some of the health indicators have a configurable property that determineswhen a health indicator
returns a status ofUPorDOWN. For example, the ServiceThreads health indicator has theAvailable
threads threshold which specifies the percentage of the server threads that must be available for
the indicator to return a status of UP. You can edit the threshold to tailor the indicator to your
environment.

The following table identifies the configurable properties for the predefined health indicators.

ValueProperty NameHealth Indicator

Specify the minimum number of cluster members that
must be available for the Cluster health indicator to

Number of cluster
hosts

Cluster

return a status of UP. When the number of servers in the
cluster is less than the specified minimum number, the
Cluster health indicator returns a status of DOWN. The
default is 2.

Specify the percentage of free disk space out of the
maximum available disk space above which the

Free disk space
threshold (as

Disks-pace

Diskspace health indicator returns a status of UP. Whenpercentage of
free disk space on the host or container on whichmaximum
Microservices Runtime resides is less than or equal toavailable disk

space) the specified percentage, the Diskspace health indicator
returns a status of DOWN. The default is 10 percent.

Specify the percentage of free memory above which the
Memory health indicator returns a status of UP. When

Free memory
threshold (as

Memory

free JVMmemory forMicroservices Runtime is less thanpercentage of
or equal to the specified percentage, the Memory healthmaximum

memory) indicator returns a status of DOWN. The default is 10
percent.

Specify the percentage of available server threads in the
server thread pool at which the ServiceThread health

Available threads
threshold (as

ServiceThread

indicator returns a status of UP. When the percentage ofpercentage of
available threads is less than or equal to the specifiedmaximum server

threads) percentage, the ServiceThread health indicator returns
a status of DOWN. The default is 10 percent.

Specify the percentage of used licensed sessions atwhich
the Sessions health indicator returns a status of DOWN.

Used licenses
threshold (as

Sessions

When the percentage of available licensed sessions is lesspercentage of total
licensed sessions) than or equal to the specified percentage, the Sessions

health indicator returns a status of DOWN. The default
is 85 percent.

Configuring Health Indicator Properties

Developing Microservices with webMethods Microservices Runtime 10.11 69

7 Monitoring Microservices Runtime

You can edit the properties of a health indicator to tailor the indicator for your environment. A
health indicatorwith one ormore configurable properties appears as a hypertext link in theHealth
Indicators List on the Microservices > Health Gauge page.

To configure health indicator properties

1. Go to Microservices > Health gauge.

2. In the Health Indicator List, click the name of the health indicator you want to configure.

3. On the IndicatorName Properties page, click Edit next to the property name.

4. In the Value field, set a new threshold value for the property.

5. Click Save Changes.

Invoking the Health Gauge
You can invoke the health gauge via the health endpoint on the Microservices Runtime. When
Microservices Runtime runs in a Docker container, you can use the health endpoint to monitor
the state of the container from tools such as Kubernetes.

The request URL for the health endpoint is:

http://<hostname>:<port>/health

Where <hostname> is the IP address or name of the machine and <port> is the port number
where Microservices Runtime is running.

For a Microservices Runtime or an Integration Server running in a Docker container that was
created using the is_container.bat/sh script, the default ACL for accessing the healths endpoint is
“Anonymous”, which means authentication is not required when the endpoint is invoked. For all
otherMicroservices Runtimes or an Integration Servers, the default ACL is “Administrator”, which
means that authentication is required to access the endpoint.However, you can use the environment
variable SAG_IS_HEALTH_ENDPOINT_ACL to set the ACL whose members can invoke the
health endpoint. For more information about environment variables, see webMethods Integration
Server Administrator’s Guide webMethods Integration Server Administrator’s Guide .

Note:
The health endpoint is a predefined URL alias named “health” for the internal service that
executes all enabled health indicators. SoftwareAGdoes not recommend editing the predefined
“health” URL alias. If you migrate to Microservices Runtime version 10.3 or higher from an
earlier version and you already have a URL alias named “health”, Microservices Runtime does
not create a health URL alias that points to the internal service. Any invocations of the health
endpoint will not result in execution of health indicators. If you want to use the health gauge
and the associated health indicators, you need to rename your existing health URL alias. Upon
restart, Microservices Runtime creates a new health URL alias that corresponds to the health
endpoint.

70 Developing Microservices with webMethods Microservices Runtime 10.11

7 Monitoring Microservices Runtime

Obtaining Metrics for a Microservices Runtime

Microservices Runtime can generate metrics about the server and services on the server that the
Prometheus server can use to provide insight to the operation of the Microservices Runtime and
the services it contains. Microservices Runtime generates metrics in a Prometheus format.
Prometheus is an open source monitoring and alerting toolkit which is frequently used for
monitoring microservices.

Microservices Runtime exposes the metrics generating feature via the metrics endpoint. When
the metrics endpoint is invoked, Microservices Runtime gathers server, service-level, and JVM
metrics and returns the data in a Prometheus format.

Microservices Runtime can also gather and returnmetrics forwhen the metrics endpoint is called.

For a detailed list of the metrics returned by Microservices Runtime, see “Prometheus Metrics
Returned by Microservices Runtime ” on page 102.

Note:
TheMicroservices Runtime documentation assumes a familiarity with Prometheus technology.
An in-depth discussion of Prometheus is beyond the scope of this guide but is available
elsewhere.

Invoking the Metrics Endpoint
To instruct Microservices Runtime to gather metrics, you invoke the metrics endpoint on the
Microservices Runtime. The request URL would be:

http://<hostname>:<port>/metrics

Where <hostname> is the IP address or name of the machine and <port> is the port number
where Microservices Runtime is running.

Invocation of the metrics endpoint is restricted to users with Administrator access.

For a Microservices Runtime or an Integration Server running in a Docker container that was
created using the is_container.bat/sh script, the default ACL for accessing the metrics endpoint
is “Anonymous”, which means authentication is not required when the endpoint is invoked. For
all other Microservices Runtimes or an Integration Servers, the default ACL is “Administrator”,
which means that authentication is required to access the endpoint. However, you can use the
environment variable SAG_IS_METRICS_ENDPOINT_ACL to set the ACL whose members can
invoke the metrics endpoint. For more information about environment variables, see webMethods
Integration Server Administrator’s Guide webMethods Integration Server Administrator’s Guide .

Note:
The metrics endpoint is a predefined URL alias named “metrics” for the internal service that
gathers statistics. SoftwareAGdoes not recommend editing the predefined “metrics”URL alias.
If you migrate to Microservices Runtime version 10.3 or higher from an earlier version and you
already have a URL alias named “metrics”, Microservices Runtime does not create a metrics
URL alias that points to the internal service. Any invocations of the metrics endpoint will not
result in the gathering and return of metrics. If you want to use the metrics gathering

Developing Microservices with webMethods Microservices Runtime 10.11 71

7 Monitoring Microservices Runtime

functionality, you need to rename your existing metrics URL alias name. Upon restart,
Microservices Runtime creates a newmetricsURL alias that corresponds to the metrics endpoint.

72 Developing Microservices with webMethods Microservices Runtime 10.11

7 Monitoring Microservices Runtime

8 Consul Support

■ Configuring Connections to Consul Server .. 74

■ Testing an Alias for the Consul Server ... 75

■ Setting the Default Alias for the Consul Server .. 75

■ Deleting a Consul Server Alias ... 76

■ Consul Public Services Folder ... 76

Developing Microservices with webMethods Microservices Runtime 10.11 73

Configuring Connections to Consul Server

Configure one or more server aliases for the public services provided in WmConsul to use to
connect to a Consul server. You must create at least one server alias for the services to execute
successfully. An alias name used as the registryAlias input parameter value for aWmConsul public
service must exist in the Microservice Consul Registry Server alias list.

Note:
The WmConsul package contains the public services for interacting with a Consul server.

To create an alias to the Consul server

1. Open Microservices Runtime Administrator.

2. Go to Packages > Management.

3. Click the icon for the WmConsul package.

4. On theMicroserviceConsul Registry Servers page, clickCreate Microservice Consul Registry
Server Alias.

5. UnderMicroserviceConsul Registry ServerAlias Properties, provide the following information.

SpecifyFor this field

Name for the server alias.Alias

Location of the Consul server as a host name or IP address.Host Name or IP Address

Port on which to connect to the Consul server.Port Number

Whether to enable a health check for microservices registered
using this alias. Consul uses the health check to keep track of the

Enable Consul Health
Check

health of a registered microservice . Select Yes to enable health
checks.

Optional. If the Consul server is configured to use a user name
and password, the user name.

User Name

Optional. If the Consul server is configured to use a user name
and password, the password.

Password

Whether to use a secure connection to connect to the Consul
server. To use SSL, select Yes and then provide truststore and
possibly keystore information.

Use SSL

Note:

74 Developing Microservices with webMethods Microservices Runtime 10.11

8 Consul Support

SpecifyFor this field

If you select yes, the Consul servermust be configured to accept
HTTPS requests.

Optional. Keystore alias that contains the client certificates to use
for the secure connection. You need to provide this information

Keystore Alias

only ifUse SSL is set to Yes and the registry server requires client
certificates.

Optional. Key alias for the private key and certificates to use for
establishing a secure connection. You need to provide this

Key Alias

information only if Use SSL is set to Yes and the Consul server
requires client certificates .

Optional. Truststore alias that contains the Consul server's
certificate authority certificates. You need to provide this
information only if Use SSL is set to Yes.

Truststore Alias

6. Click Save Changes.

Testing an Alias for the Consul Server

After you add an alias for a Consul server, you can test the alias to ensure that Microservices
Runtime can establish a connection to the Consul server using the information provided in the
alias.

To test a Consul server alias

1. Open Microservices Runtime Administrator.

2. Go to Packages > Management.

3. Click the icon for the WmConsul package.

4. On the Microservice Consul Registry Servers page, in the Microservce Consul Registry Server
List click in the Test column for the alias you want to test.

Microservices Runtime Administrator displays a status message above the list of aliases that
indicates whether or not the connection is successful.

Setting the Default Alias for the Consul Server

You can identify one of the Consul server aliases as the default alias. The pub.consul.client services
will use this alias to connect to the Consul server if you do not specify a different alias in the
registryAlias input parameter.

Developing Microservices with webMethods Microservices Runtime 10.11 75

8 Consul Support

To specify the default Consul server alias

1. Open Microservices Runtime Administrator.

2. Go to Packages > Management.

3. Click the icon for the WmConsul package.

4. On the Microservice Consul Registry Servers page, click Change Default Alias.

5. On theMicroservice Consul Registry Servers > ChangeDefault Alias page, in theDefault Alias
list, select the Consul server alias to use as the default.

6. Click Update.

Deleting a Consul Server Alias

If you no longer need an alias to a Consul server, you can delete it.

To delete a Consul server alias

1. Open Microservices Runtime Administrator.

2. Go to Packages > Management.

3. Click the icon for the WmConsul package.

4. On theMicroservice Consul Registry Servers page, in theMicroservice Consul Registry Server
List click in the Delete column for the alias you want to delete. Microservices Runtime
Administrator prompts you to confirm deleting the alias. Click OK.

If you delete the default Consul server alias, Microservices Runtime Administrator displays
a status message stating there is no longer a default Consul server alias which can prevent
microservice registration.

Consul Public Services Folder

The following table identifies the elements available in the consul folder of theWmConsul package:

Package and DescriptionElement

WmConsul. De-registers a microservice from a
Consul server. Use as a shutdown service for the
package being registered as a microservice.

76 Developing Microservices with webMethods Microservices Runtime 10.11

8 Consul Support

Package and DescriptionElement

WmConsul. Queries the Consul server for a list of
active hosts that have registered the given
microservice with Consul.

WmConsul. Queries the Consul server for a list of
active hosts that have registered the given
microservice with Consul and if there are multiple
hosts for this microservice, randomly return one of
those hosts.

WmConsul. Registers a microservice with a Consul
server. Use as a startup service for the package being
registered as a microservice.

pub.consul.client:deregisterService
WmConsul. De-registers a microservice from a Consul server. Use this service as a shutdown
service for the package being registered as a microservice.

Input Parameters

String. Optional. Alias to use to connect to a Consul server. If you do not
specify this parameter, the service uses the default Consul server alias

registryAlias

String. Microservice name to de-register from the Consul server.microserviceName

Output Parameters

None

Usage Notes

A package that identifies pub.consul.client:deregisterService as a shutdown service must identify
WmConsul as a package dependency.

pub.consul.client:getAllHostsForService
WmConsul. Queries the Consul server for a list of active hosts that have registered the given
microservice with Consul.

Developing Microservices with webMethods Microservices Runtime 10.11 77

8 Consul Support

Input Parameters

String. Optional. Alias to use to connect to a Consul server. If you do not
specify this parameter, the service uses the default Consul server alias

registryAlias

String. Microservice for which you want to retrieve a list of active hosts.microserviceName

Output Parameters

String List. An array containing the names of hosts of the microservice. Each
element is in the format host:port (for example, appserver.xyz.com:4555). If
there are no hosts registered for the given microservice, returns null.

hostList

pub.consul.client:getAnyHostForService
WmConsul. Queries the Consul server for a list of active hosts that have registered the given
microservice with Consul and if there are multiple hosts for this microservice, randomly return
one of those hosts.

Input Parameters

String. Optional. Alias to use to connect to a Consul server. If you do not
specify this parameter, the service uses the default Consul server alias

registryAlias

String. Microservice for which you want to retrieve an active host.microserviceName

Output Parameters

String. Name of a host of the microservice, chosen randomly. The host name
is in the format: port (for example, appserver.xyz.com:4555). If there are no
hosts registered for the given microservice, returns null.

hostName

pub.consul.client:registerService
WmConsul. Registers a microservice with a Consul server. Use this service as a startup service
for the package being registered as a microservice.

Input Parameters

String. Optional. Alias to use to connect to a Consul server. If
you do not specify this parameter, the service uses the default
Consul server alias.

registryAlias

78 Developing Microservices with webMethods Microservices Runtime 10.11

8 Consul Support

String. Microservice name to register with the Consul server.microserviceName

Output Parameters

None

Usage Notes

Apackage that identifies pub.consul.client:registerService as a startup servicemust identifyWmConsul
as a package dependency.

Developing Microservices with webMethods Microservices Runtime 10.11 79

8 Consul Support

80 Developing Microservices with webMethods Microservices Runtime 10.11

8 Consul Support

A Microservices Runtime vs Integration Server

■ Microservices Runtime vs Integration Server Feature Comparison 82

Developing Microservices with webMethods Microservices Runtime 10.11 81

Microservices Runtime vs Integration Server Feature
Comparison

Microservices Runtime is a superset of Integration Server. In general, thismeans thatMicroservices
Runtime includes features that are not part of a standard Integration Server. However, some of
the features available on a standard Integration Server are not installed by default onMicroservices
Runtime and must be selected specifically during the installation of Microservices Runtime.
Additionally, because Microservices Runtime is optimized for running in a Docker container,
Microservices Runtime does not include all of the behavior available on an Integration Server,
such as running multiple instances on the same host machine or the use of Command Central.
However an Integration Server equipped with a Microservices license provides all of the
functionality of Integration Server and Microservices Runtime without the size and speed
optimizations made for a Microservices Runtime.

The following table compares features and functionality available across Integration Server,
Integration Server equipped with Microservices license, and Microservices Runtime.

Microservices
Runtime

Integration Server with
a Microservices license

Integration
Server

Feature

YesYesYesIntegration Server - core
functionality

NoYesYesOSGi platform

NoYesYesCommand Central support

OptionalYesYesCommon Directory Services
Support

NoYesYesJava Service Wrapper developed
by Tanuki Software, Ltd.

NoYesYesMulti-instance support

NoYesYesRunning as a Windows service

NoYesYesDigital Event Services support

OptionalYesYesExternal RDMS support

OptionalYesYesPublishing to CentraSite

YesNoNoConsul registry (WmConsul
package)

NoYesYesWmParquet package

YesYesNoCircuit breaker support

YesYesNoConfiguration variables support

82 Developing Microservices with webMethods Microservices Runtime 10.11

A Microservices Runtime vs Integration Server

Microservices
Runtime

Integration Server with
a Microservices license

Integration
Server

Feature

YesYesNoAutomatic package deployment

YesYesNoHealth check endpoint

YesYesNoMetrics endpoint with metrics in
Prometheus format

YesYesYesCloudStreams

YesYesYesDeployer

Note:
When a Docker image is built for a Microservices Runtime the web service functionality can be
excluded. This reduces the size of Docker image. Any web service descriptors that reside on
theMicroservices Runtimewill not execute. Additionally, attempts to execute any of the following
web service related built-in services results in a ServiceException:

pub.soap* services
pub.utils.ws.setCompatibilityModeFalse
pub.client:soapClient
pub.client:soapHTTP
pub.client:soapRPC
pub.trigger:createJMSTrigger, when jmsTriggerType=SOAPJMS

For more information about excluding web services from a Docker image created for
Microservices Runtime, see webMethods Integration Server Administrator's Guide .

Developing Microservices with webMethods Microservices Runtime 10.11 83

A Microservices Runtime vs Integration Server

84 Developing Microservices with webMethods Microservices Runtime 10.11

A Microservices Runtime vs Integration Server

B Configuration Variables Template Assets

A configuration variables template is a properties file that contains configuration data as a series
of key-value pairs where the key name reflects the asset and particular asset property for which
you can supply a value. A configuration variables template contains key-value pairs for a subset
of Microservices Runtime configuration only. That is, a configuration variables template does not
include key-value pairs for all of the configuration information for aMicroservices Runtime. Only
some configuration information is supported for usewith configuration variables templates. Assets
can be modified and created when Microservices Runtime applies the template at start up.

The following table identifies the assets and property names that correspond to the key names in
a template. An asterisk (*) next to an asset indicates that the asset can be created through application
of a configuration variables template.

Key NamePropertyAsset

messaging.BROKERALIAS.brokerHostBroker HostBroker connection
alias*

messaging.BROKERALIAS.brokerNameBroker Name

messaging.BROKERALIAS.clientGroupNameClient Group

messaging.BROKERALIAS.certfileKeystore

messaging.BROKERALIAS.keystorePasswordKeystore Password

messaging.BROKERALIAS.truststoreTruststore

messaging.BROKERALIAS.userUsername

messaging.BROKERALIAS.passwordPassword

cachemanager.cacheManagerName.urlsTerracotta Server
Array URLs

Cache Manager

consul.aliasName.hostHost Name or IP
Address

Consul*

consul.aliasName.passwordPassword

consul.aliasName.portPort Number

Developing Microservices with webMethods Microservices Runtime 10.11 85

Key NamePropertyAsset

consul.aliasName.userUser Name

statisticsdatacollector.monitorConfig.luceneMemorySizeIndexer thread countDashboard
configuration

statisticsdatacollector.monitorConfig.maxJdbcPoolConnectionsMaximum JDBC pool
connections

statisticsdatacollector.monitorConfig.maxResultsMaximum number of
results

statisticsdatacollector.monitorConfig.luceneMemorySizeMemory size (MB)

statisticsdatacollector.monitorConfig.retentionDayRetention days

statisticsdatacollector.monitorConfig.searcherThreadCountSearcher thread
count

statisticsdatacollector.monitorConfig.enabled=trueStatistics Data
Collection

email.packageName.aliasName.hostHost NameEmail Port*

email.packageName.aliasName.passwordPassword

email.packageName.aliasName.server_portPort

email.packageName.aliasName.typeType

email.packageName.aliasName.userUser Name

filepolling.packageName.aliasName. completionDirCompletion
Directory

File Polling Port*

filepolling.packageName.aliasName. errorDirError Directory

filepolling.packageName.aliasName. monitorDirMonitoring Directory

filepolling.packageName.aliasName. workDirWorking Directory

healthindicators.Diskspace.enabledEnabledHealth Indicators

healthindicators.Diskspace.properties.threshold.valueFree disk space
threshold

healthindicators.JDBC.enabledEnabled

healthindicators.JMS.enabledEnabled

healthindicators.JNDIAliases.enabledEnabled

healthindicators.Memory.enabledEnabled

86 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

healthindicators.Memory.properties.threshold.valueFree memory
threshold

healthindicators.RemoteServers.enabledEnabled

healthindicators.SFTPServers.enabledEnabled

healthindicators.ServiceThread.enabledEnabled

healthindicators.ServiceThread.properties.threshold.valueAvailable threads
threshold

healthindicators.Sessions.enabledEnabled

healthindicators.Sessions.properties.threshold.valueUsed licenses
threshold

healthindicators.UMAliases.enabledEnabled

globalvariable.globalVariableName.valueValueGlobal Variable*

jdbcfunc.functionName.connPoolAliasAssociated Pool
Alias

JDBC Functional
Alias

Note:
The specified JDBC connection pool aliasmust exist
before the JDBC functional alias is updated.

jdbc.aliasName.dbURLDatabase URLJDBC Pool Alias*

jdbc.aliasName.driverAliasAssociated Driver
Alias

jdbc.aliasName.useridUser ID

jdbc.aliasName.passwordPassword

jms.aliasName.enabledEnabledJMS Connection
Alias*

Set to true to enable. Set to false to disable.

jms.aliasName.descriptionDescription

jms.aliasName.transactionTypeTransaction Type

Set to:

0 for NO_TRANSACTION.

1 for LOCAL_TRANSACTION.

2 for XA_TRANSACTION.

jms.aliasName.clientIDConnection Client ID

Developing Microservices with webMethods Microservices Runtime 10.11 87

B Configuration Variables Template Assets

Key NamePropertyAsset

jms.aliasName.userUser

jms.aliasName.passwordPassword

jms.aliasName.associationTypeCreate Connection
Using

Set to:

0 for JNDI LOOKUP.

1 for NATIVE WEBMETHODS API.

jms.aliasName.jndi_jndiAliasNameJNDI Provider Alias
Name

The specified JNDI aliasmustmatch an existing JNDI
provider alias.

jms.aliasName.jndi_connectionFactoryLookupNameConnection Factory
Lookup Name

jms.aliasName.jndi_automaticallyCreateUMAdminObjectsCreate Administered
Objects On Demand

Set to true to create a connection factory or destination
on the JNDI provider if the object is not found at the

(Universal
Messaging)

time Integration Server looks up the object. Otherwise,
set to false.

jms.aliasName.jndi_enableFollowTheMasterEnable Follow the
Master (Universal
Messaging) Set to true to follow the master realm server. Set to

false to disable following the master realm server.

jms.aliasName.jndi_connectionFactoryUpdateTypeMonitor
webMethods
Connection Factory Set to:

NO - Do not monitor the webMethods Connection
Factory.

CLIENT_POLL - Poll for changes at a specified
interval.

JNDI_POLL - Poll for changes at the interval defined
by webMethods Connection Factory object.

NOTIFICATION - Monitor the connection factory by
registering an event listener.

jms.aliasName.jndi_connectionFactoryPollingIntervalPolling Interval
(minutes)

jms.aliasName.nwm_brokerHostBroker Host

88 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

jms.aliasName.nwm_brokerNameBroker Name

jms.aliasName.nwm_clientGroupClient Group

jms.aliasName.jms.jmsAliasName.nwm_brokerListBroker List (optional)

jms.aliasName.nwm_keystoreKeystore (optional)

jms.aliasName.nwm_keystoreTypeKeystore Type
(optional)

Set to JKS or PCKS12.

jms.aliasName.nwm_truststoreTruststore (optional)

jms.aliasName.nwm_truststoreTypeTruststore Type
(optional)

Set to JKS.

jms.aliasName.classLoaderClass Loader

Set to:

INTEGRATION_SERVER

PACKAGE: PackageNamewhere PackageName is the
name of the package class loader.

jms.aliasName.csqSizeMaximum CSQ Size

jms.aliasName.csqDrainInOrderDrain CSQ in Order

Set to true to drain in order. Set to false to disable
draining in publishing order.

jms.aliasName.optTempQueueCreateCreate Temporary
Queue

Set to true to create a temporary queue for
request-reply operations that do not specify a replyTo
destination. Otherwise, set to false.

jms.aliasName.allowReplyToConsumerEnable
Request-Reply

Set to true to create a single dedicated
MessageConsumer for receiving synchronous replies

Listener for
Temporary Queue

delivered to the temporary queue for this JMS
connection alias. Set to false to create a new JMS
MessageConsumer for each reply message.

jms.aliasName.manageDestinationsEnable Destination
Management with

Set to true to allow creating destinations on the
messaging provider using Designer. Otherwise, set
to false.

Designer (Broker and

Developing Microservices with webMethods Microservices Runtime 10.11 89

B Configuration Variables Template Assets

Key NamePropertyAsset

Universal
Messaging)

jms.aliasName.allowNewConnectionPerTriggerCreate New
Connection per
Trigger Set to true to create a separate connection per

concurrent JMS trigger. Otherwise, set to false.

jms.aliasName.producerCachingModeCaching Mode

Set to:

0 to disable.

2 to enable per destination.

jms.aliasName.producerSessionPoolMinSizeMinimum Pool Size
(unspecified
destinations)

jms.aliasName.producerSessionPoolSizeMaximum Pool Size
(unspecified
destinations)

jms.aliasName.cacheProducersPoolMinSizeMinimum Pool Size
Per Destination

jms.aliasName.cacheProducersPoolSizeMaximum Pool Size
Per Destination

jms.aliasName.cacheProducersQueueListDestination Lookup
Names (semicolon
delimited)

jms.aliasName.cacheProducersTopicListTopic List
(semicolon
delimited)

jms.aliasName.poolTimeoutIdle Timeout
(milliseconds)

jms.aliasName.producerMaxRetryAttemptsMax Retry Attempts

jms.aliasName.producerRetryIntervalRetry Interval
(milliseconds)

jms.aliasName.um_loggingOutputLogging Type

Set to:

0 for SERVER LOG.

90 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

1 for MESSAGING AUDIT LOG.

jms.aliasName.um_producerMessageTrackingEnable Producer
Message ID Tracking

Set to true to enable, false to disable.

jms.aliasName.um_producerIncludedStringsProducer Message
ID Tracking: Include
Destinations
(semicolon
delimited)

jms.aliasName.um_consumerMessageTrackingEnable Consumer
Message ID Tracking

Set to true to enable, false to disable.

jms.aliasName.um_consumerIncludedStringsConsumer Message
ID Tracking: Include
Triggers (semicolon
delimited)

jndi.aliasName.initialContextFactoryInitial Context
Factory

JNDI Provider
Alias*

jndi.aliasName.providerURLProvider URL

jndi.aliasName.providerURLFailoverListProvider URL
Failover List

jndi.aliasName.securityPrincipalSecurity Principal

jndi.aliasName.securityCredentialsSecurity Credentials

kerberos.KerberosConfig.kerberosConfigRealmKerberos

kerberos.KerberosConfig.kerberosKDCKey Distribution
Center Host

kerberos.KerberosConfig.kerberosRealmKerberos
Configuration File

kerberos.KerberosConfig.useSubjectCredsUse Subject
Credentials Only

keystore.aliasName.ksDescriptionDescriptionKeystore Alias*

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

keystore.aliasName.ksTypeType

Developing Microservices with webMethods Microservices Runtime 10.11 91

B Configuration Variables Template Assets

Key NamePropertyAsset

Default supported values are: JKS and PKCS12. Other
keystore typesmay be available by loading additional
security providers, or by setting the
watt.security.keyStoreTypes server configuration
property.

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

keystore.aliasName.ksStoreProviderNameProvider

Default supported values are as follows:

If keystore.aliasName.ksType is set to JKS: SUN

keystore.aliasName.ksType is set to PCKS12: BC,
SUN, or SunJSSE

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

keystore.aliasName.ksLocationLocation

keystore.aliasName.ksPasswordPassword

keystore.aliasName.keyAlias.keyAliasName.
keyAliasPassword

Key Alias Password

keystore.aliasName.ksIsHsmHSM Based Keystore

Set to true to specify that the keystore is stored on a
Hardware Security Module (HSM) device. If set to
true, the value of the keystore.aliasName.ksLocation
is ignored.

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

ldap.ldapDirectory.urlDirectory URLLDAP
Configuration*

ldap.ldapDirectory.prinPrincipal

ldap.ldapDirectory.passwordCredentials

ldap.uuid.useafSynthesize DN and
Query DN

92 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

Set to true to specify that Microservices Runtime
builds a distinguished name by adding a prefix and
suffix to the username. A value of true is equivalent
to selecting theSynthesize DN option on theSecurity
> User Management > LDAP configuration page.

Set to false to specify that Microservices Runtime
builds a query that searches a specified root directory
for the user. A value of false is equivalent to selecting
the Query DN option on the Security > User
Management > LDAP configuration page.

The default is true.

ldap.uuid.uidpropUID Property

ldap.uuid.mattrGroup Member
Attribute

ldap.uuid.userrootdnUser Root DN

ldap.uuid.gidpropGroup ID Property

ldap.uuid.grouprootdnGroup Root ID

ldap.uuid.timeoutConnection Timeout

ldap.uuid.poolminMinimum
Connection Pool
Size

ldap.uuid.poolmaxMaximum
Connection Pool
Size

ldap.uuid.dnprefixDN Prefix

ldap.uuid.dnsuffixDN Suffix

ldap.uuid.useremailUser Email

ldap.uuid.groupDefault Group

The uuid is a unique identifier for the LDAP directory. When an
application.properties file is generated byMicroservices Runtime, the UUID
is automatically generated by Microservices Runtime. When using an
application.properties file to create an LDAP configuration, make sure to
specify a unique value in the UUID portion of the key name.

proxyserver.aliasName.hostHost Name or IP
Address

Proxy Server Alias*

Developing Microservices with webMethods Microservices Runtime 10.11 93

B Configuration Variables Template Assets

Key NamePropertyAsset

proxyserver.aliasName.portPort Number

proxyserver.aliasName.usernameUser Name

proxyserver.aliasName.passwordPassword

settings.watt.net.proxySkipListAddressesProxy Server
Bypass

remoteserver.aliasName.hostHost Name or IP
Address

Remote Server
Alias*

remoteserver.aliasName.portPort Number

remoteserver.aliasName.userUser Name

remoteserver.aliasName.passwordPassword

remoteserver.aliasName.retryServerRetry Server

settings.serverConfigurationParameterNameAnyServer
configuration
parameters
(server.cnf)

sftpserver.aliasName.versionSFTP Client VersionSFTP Server Alias*

The SFTP client to use. Set to v1 or v2 .

sftpserver.aliasName.hostNameHost Name or IP
Address

The hostname or IP address of the SFTP server.

sftpserver.aliasName.portPort Number

The port number of the SFTP server.

sftpserver.aliasName.proxyAliasProxy Alias

The proxy alias through which requests are routed.

sftpserver.aliasName.hostKeyHost Key

The public key of the SFTP server.

sftpserver.aliasName.minDHKeySizeMin DH Key Size

The minimum DH key size. Not applicable to SFTP
Client Version 1.

sftpserver.aliasName.maxDHKeySizeMax DH Key Size

94 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

The maximum DH key size. Not applicable to SFTP
Client Version 1.

sftpserver.aliasName.preferredKeyExchangeAlgorithmPreferred Key
Exchange
Algorithms Preferred key exchange algorithms separated by a

comma.

sftpserver.aliasName.preferredMACS2CPreferred MAC
Algorithms S2C

MessageAuthenticationCode (MAC) Server to Client
algorithms separated by a comma.

sftpserver.aliasName.preferredMACC2SPreferred MAC
Algorithms C2S

MessageAuthenticationCode (MAC)Client to Server
algorithms separated by a comma.

sftpserver.aliasName.preferredCiphersS2CPreferred Ciphers
S2C

Preferred Server to Client Ciphers separated by a
comma.

sftpserver.aliasName.preferredCiphersC2SPreferred Ciphers
C2S

Preferred Client to Server Ciphers separated by a
comma.

sftpuser.aliasName.userNameUser NameSFTP User Alias*

The user name for the SFTP user account.

sftpuser.aliasName.authenticationTypeAuthentication Type

The type of authentication that Integration Server uses
to authenticate itself to the SFTP server. The value can
be password or publicKey.

sftpuser.aliasName.privateKeyFileLocationPrivate Key Location

The location of the private key for the specified SFTP
user if the authentication type is publickey.

Note:
The path of the private key must be relative to the
installation directory.

sftpuser.aliasName.passwordPassword

The password for the SFTP user account.

sftpuser.aliasName.passPhrasePassPhrase

Developing Microservices with webMethods Microservices Runtime 10.11 95

B Configuration Variables Template Assets

Key NamePropertyAsset

The passphrase generated while creating the private
key.

sftpuser.aliasName.sftpServerAliasSFTP Server Alias

The alias of the SFTP server to which you want the
SFTP user account to connect.

sftpuser.aliasName.strictHostKeyCheckingStrict Host Key
Checking

Whether Integration Server verifies the host key of
the SFTP server before establishing a connection to
the SFTP server. Set to yes or no.

truststore.aliasName.ksDescriptionDescriptionTruststore Alias*

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

truststore.aliasName.ksTypeType

Default supported values are: JKS and PKCS12. Other
truststore types can be made available by loading
additional security providers, or by setting the
watt.security.TrustStoreTypes server configuration
property.

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

truststore.aliasName.ksStoreProviderNameProvider

Default supported values are as follows:

If truststore.aliasName.ksType is set to JKS: SUN

If truststore.aliasName.ksType is set to PKCS12:
BC, SUN, or SunJSSE

Note:
This key is available only after applying a fix that
includes PIE-87505 (IS_10.11_Core_Fix15).

truststore.aliasName.ksLocationLocation

truststore.aliasName.ksPasswordPassword

messaging.connectionAliasName.descriptionDescriptionUniversal
Messaging

96 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

Connection Alias*
(webMethods
messaging)

messaging.connectionAliasName.CLIENTPREFIXClient Prefix

messaging.connectionAliasName.isClientPrefixSharedClient Prefix Is
Shared

Whether the client prefix is shared with other
Integration Servers. Set to true to indicate client prefix
is shared. Set to false to indicate client prefix is not
shared.

messaging.connectionAliasName.urlRealm URL

messaging.connectionAliasName.um_tryAgainMaxAttemptsMaximum
Reconnection
Attempts

messaging.connectionAliasName.useCSQEnable CSQ

Whether to use a client side queue for the connection
alias. Set to true to use a client side queue. Set to false
if you do not want the connection alias to use a client
side queue.

messaging.connectionAliasName.csqSizeMaximum CSQ Size

messaging.connectionAliasName.csqDrainInOrderDrain CSQ in Order

Set to true to drain the client side queue in the same
order in which messages were placed in the queue.
Set to false if you do not want the client side queue to
drain in order.

messaging.connectionAliasName.um_publishWaitTimePublish Wait Time
while Reconnecting

messaging.connectionAliasName.um_followTheMasterForPublishEnable Follow the
Master for Producers

Set to true to follow the master realm server when
publishing. Set to false to disable follow the master
realm behavior for publishing.

messaging.connectionAliasName.enableRequestReplyEnable
Request-Reply

Set to true to use a request/reply channel for the alias.
Set to false to disable use of a request/reply channel
for the alias.

Channel and
Listener

Developing Microservices with webMethods Microservices Runtime 10.11 97

B Configuration Variables Template Assets

Key NamePropertyAsset

messaging.connectionAliasName.um_followTheMasterForSubscribeEnable Follow the
Master for
Consumers Set to true to follow the master realm server when

retrieving messages. Set to false to disable follow the
master realm behavior for message retrieval.

messaging.connectionAliasName.userUsername

messaging.connectionAliasName.passwordPassword

messaging.connectionAliasName.trustStoreAliasTruststore Alias

messaging.connectionAliasName.keyStoreAliasKeystore Alias

messaging.connectionAliasName.keyAliasKey Alias

messaging.connectionAliasName.um_loggingOutputLogging Type

Set to 0 for SERVER LOG. Set to 1 for MESSAGING
AUDIT LOG

messaging.connectionAliasName.um_producerMessageTrackingEnable Producer
Message ID Tracking

Set to true to enable additional logging for message
producers that use this connection alias. Set to false
to disable the additional logging.

messaging.connectionAliasName.um_producerIncludedStringsProducer Message
ID Tracking: Include
Channels

messaging.connectionAliasName.um_consumerMessageTrackingEnable Consumer
Message ID Tracking

Set to true to enable additional logging for message
consumers (triggers) that use this connection alias.
Set to false to disable the additional logging.

messaging.connectionAliasName.um_consumerIncludedStringsConsumer Message
ID Tracking: Include
Triggers

messaging.connectionAliasName.default=trueDefault Connection
Alias

messaging.connectionAliasName.typeType

Specifies whether the alias connects to Broker or
UniversalMessaging. Set toUMor Broker. The default
is UM.

user.userName.passwordPasswordUser account*

98 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

Key NamePropertyAsset

wmcloudaccount.webMethodsCloudAccountAlias. stageStagewebMethodsCloud
Account

wmcloudaccount.webMethodsCloudAccountAlias.
onPremiseHosts

Allowed On-Premise
Hosts

wmcloudsettings.default.usernameUser NamewebMethodsCloud
Settings

wmcloudsettings.default.passwordPassword

wmcloudsettings.default.iLiveURLwebMethods Cloud
URL

webserviceendpoint.type.protocol.
aliasName.transportInfo.host

Host Name or IP
Address(HTTP/S
Transport Properties)

Web Service
Endpoint Alias

webserviceendpoint.type.protocol.
aliasName.transportInfo.port

Port Number (HTTP/S
Transport Properties)

webserviceendpoint.type.protocol.
aliasName.transportInfo.user

User Name (HTTPS
Transport Properties)

webserviceendpoint.consumer.protocol.
aliasName.transportInfo.transportPassword

Password (HTTPS
Transport Properties)

webserviceendpoint.type.protocol.
aliasName.messageInfo.user

User Name (WS
Security Properties)

webserviceendpoint.type.protocol.
aliasName.messageInfo.messagePassword

Password (WS
Security Properties)

webserviceendpoint.type.protocol.
aliasName.messageaddressingproperties. toMsgAddr

To (Message
Addressing
Properties)

webserviceendpoint.type.protocol.
aliasName.messageaddressingproperties.
fromMsgAddr

From (Message
Addressing
Properties)

webserviceendpoint.type.protocol.
aliasName.messageaddressingproperties.
replyToMsgAddr

Reply To (Message
Addressing
Properties)

webserviceendpoint.type.protocol.aliasName.
messageaddressingproperties.faultToMsgAddr

Fault To (Message
Addressing
Properties)

Where type can be consumer, provider, or messageaddressing and
protocol can be HTTP, HTTPS, or JMS.

Developing Microservices with webMethods Microservices Runtime 10.11 99

B Configuration Variables Template Assets

100 Developing Microservices with webMethods Microservices Runtime 10.11

B Configuration Variables Template Assets

C Prometheus Metrics

■ Prometheus Metrics Returned by Microservices Runtime ... 102

■ Server Metrics .. 102

■ Service Metrics ... 109

■ JVM Metrics .. 111

■ Prometheus Labels .. 116

Developing Microservices with webMethods Microservices Runtime 10.11 101

Prometheus Metrics Returned by Microservices Runtime

When the metrics endpoint is called, Microservices Runtime gathers metrics and returns the data
in a Prometheus format. Prometheus is an open source monitoring and alerting toolkit which is
frequently used for monitoring containers.

Microservices Runtime returns server-level metrics, service-level metrics, and JVMmetrics. All of
the metrics returned by Microservices Runtime are gaugemetrics, one of the core metric types.
The following sections identify the server, service-level, and JVM metrics gathered and returned
by Microservices Runtime.

Microservices Runtime can also gather and return metrics for layered products. For a list and
description ofmetrics returned by layered products, consult the documentation for those products.

Note:
TheMicroservices Runtime documentation assumes a familiarity with Prometheus technology.
An in-depth discussion of Prometheus is beyond the scope of this guide but is available
elsewhere.

Server Metrics

Server metrics are metrics about the Microservices Runtime that are returned when the metrics
endpoint is called. Microservices Runtime obtains some metrics from MBeans available in the
JVM.

For each server metric, the following table provides the name, description including the JMX
MBean and the method used to obtain the metric if one was used, and the Prometheus labels.

Prometheus LabelsMetric DescriptionPrometheus Metric Name

hostThe number of adapter
packages loaded on
Microservices Runtime

sag_is_adapter_count

hostThe running average for the
connection time expressed in

sag_is_average_connection_
time

milliseconds. This can also be
described as the average session
time or how long a connection
is kept alive.

hostThe running average time for all
HTTP/S requests measured in
milliseconds.

sag_is_avg_time_per_
http_requests

This metric excludes requests
for services in packages listed
in the

102 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

watt.server.stats.packages.exclude
parameter.

hostThe number of loaded
CloudStreams connectors on
Microservices Runtime.

sag_is_cloudstream_count

hostThe current number of stateful
sessions.

sag_is_current_
stateful_sessions

hostThe number of custompackages
loaded on Microservices

sag_is_custom_package_count

Runtime. A package is
considered a custom package if
the package manifest contains
system_package=no.

hostThe total free memory for the
Microservices Runtime JVM.

sag_is_free_memory_bytes

hostThe total number of HTTP/S
requests since the last statistics

sag_is_http_requests

poll. The statistics poll interval
is controlled by the
watt.server.stats.pollTime server
configuration parameter. The
default interval is 60 seconds.

This metric excludes requests
for services in packages listed
in the
watt.server.stats.packages.exclude
parameter.

hostThepeaknumber of connections
to Microservices Runtime the

sag_is_max_connections

connection is a session which
can be created multiple ways
such as through an HTTP
connection, a trigger, the
scheduler, etc.

hostThe maximum memory of the
Microservices Runtime JVM.

sag_is_max_memory_bytes

hostThe maximum number of
sessions allowed at one time as
determined by the license.

sag_is_max_number_sessions_
allowed

Developing Microservices with webMethods Microservices Runtime 10.11 103

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

hostThe maximum number of
services that have run

sag_is_max_services

concurrently on the server
excluding services in a package
set in the
watt.sever.stats.packages.exclude
parameter.

hostThe peak number of system
threads used by Microservices
Runtime since startup.

sag_is_max_system_threads

hostThe number of current
connections to theMicroservices

sag_is_number_current_
connections

Runtime where the connection
is a sessionwhich can be created
multiple ways such as through
an HTTP connection, a trigger,
the scheduler, etc.

hostThe number of errors that were
caused by exceptions that are

sag_is_number_
nonservice_errors

not ServiceExceptions. This is
the same value returned by
sag_is_number_unknown_errors.

hostThe number of service errors
since startup, which includes

sag_is_number_service_errors

any service that gets an
exception of any kind.

hostThe number of service errors in
the last minute, which includes

sag_is_number_service_errors_
excluding_internal_svc_
per_minute any service that gets an

exception of any kind but
excludes any services in a
package set in the
watt.sever.stats.packages.exclude
server configuration parameter.

hostThe number of service errors in
the last minute.

sag_is_number_service_
errors_per_minute

hostThe number of successful
service invokes and service

sag_is_number_service_invokes

errors since Microservices
Runtime startup. This metric
excludes services in a package

104 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

set in the
watt.sever.stats.packages.exclude
parameter.

hostThe number of sessions used
since Microservices Runtime
startup.

sag_is_number_sessions_used

hostThe number of errors that were
caused by exceptions that are

sag_is_number_unknown_errors

not ServiceExceptions. This is
the same value returned by
sag_is_number_nonservice_errors.

hostThe peak number of sessions
since Microservices Runtime
startup.

sag_is_peak_number_sessions

hostThe peak number of threads
used by the server since
Microservices Runtime startup.

sag_is_peak_service_threads

hostThe peak number of stateful
sessions since Microservices
Runtime startup.

sag_is_peak_stateful_sessions

hostThe total duration in
milliseconds for all service

sag_is_request_duration

requests over the last interval
where the interval length is
determined by the value of the
watt.server.stats.pollTime server
configuration parameter. This
metric excludes services in a
package set in the
watt.sever.stats.packages.exclude
parameter.

hostNumber of threads running in
theMicroservicesRuntime JVM.

sag_is_server_jvm_thread_count

hostTotal open file descriptors.
Returned only for UNIX\Linux
operating systems.

sag_is_server_open_files_count

JMXMBean/Method:
com.sun.management.
UnixOperatingSystemMXBean.
getMaxFileDescriptorCount

Developing Microservices with webMethods Microservices Runtime 10.11 105

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

hostPercentage of the CPU used for
theMicroservicesRuntime JVM.

sag_is_server_proc_cpu_percent

JMXMBean/Method:
com.sun.management.
OperatingSystemMXBean.
getProcessCpuLoad converted to
an integer from 0 to 100.

hostPercentage of the CPU used by
the Operating System.

sag_is_server_proc_sys_percent

JMXMBean/Method:
com.sun.management.
OperatingSystemMXBean.
getSystemCpuLoad converted to an
integer from 0 to 100.

hostNumber of active licensed
MicroservicesRuntime sessions.

sag_is_server_
session_licensed_count

(Administrator sessions are not
included in this count.)

hostNumber of active stateful
sessions.

sag_is_server_
session_stateful_count

hostNumber of active stateless
sessions.

sag_is_server_
session_stateless_count

hostThe time atwhichMicroservices
Runtime started up.

sag_is_server_startup_Time

hostNumber of Microservices
Runtime server threadswaiting

sag_is_server_sysload_average

for CPU resources. Returned
only forUNIX\Linux operating
systems.

JMXMBean/Method:
java.lang.managment
.OperatingSystemMxBean
.getSystemLoadAverage

hostTotal available disk space
measured in megabytes on the

sag_is_server_total_disk_
mbytes

disk where Microservices
Runtime is installed.

106 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

JMXMBean/Method:
java.io.File.getTotalSpace

hostTotal amount of physical
memory available on the

sag_is_server_total
_memory_mbytes

machineonwhichMicroservices
Runtime is installed measured
in megabytes.

JMXMBean/Method:
java.lang.Runtime.totalMemory

hostUsed disk space measured in
megabytes on the disk where

sag_is_server_used_disk_mbytes

Microservices Runtime is
installed.

JMXMBean/Method:Thevalue
of the metric is calculated by
subtracting the value obtained
from java.io.File.getFreeSpace from
java.io.File.getTotalSpace.

hostTotal amount of physical
memory used on the machine

sag_is_server_used_
memory_mbytes

on which Microservices
Runtime is installed measured
in megabytes measured in
megabytes.

JMXMBean/Method:Thevalue
of the metric is calculated
subtracting the value of
java.lang.Runtime.freeMemory from
java.lang.Runtime.totalMemory.

hostThe number of top-level service
completions per minute.

sag_is_service_
completions_per_minute

hostThe number of services in
custom packages loaded on

sag_is_service_count

Microservices Runtime. A
package is considered a custom
package if the packagemanifest
contains system_package=no.

hostThenumber of top-level services
started each minute.

sag_is_service_starts_per_
minute

Developing Microservices with webMethods Microservices Runtime 10.11 107

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

hostThe total number of threads
used for service executionwhere

sag_is_service_threads

the threads are obtained from
the server thread pool

hostThe total number of running
services currently active

sag_is_services

excluding services in a package
set in the
watt.sever.stats.packages.exclude
parameter.

hostThe maximum number of
stateful sessions.

sag_is_stateful_sessions_limit

If
watt.server.session.stateful.max
is set to 0 or
watt.server.session.stateful.enableLimit
is set to false, this is the
maximum number of sessions
as specified in the license.

If
watt.server.session.stateful.max
is not 0 and
watt.server.session.stateful.enableLimit
is set to true, then this is the
value of
watt.server.session.stateful.max.

hostThe number of loaded system
packages on Microservices

sag_is_system_package_count

Runtime. A package is
considered a system package if
the package manifest contains
system_package=yes.

hostThe total number of Java system
threads which is any thread not

sag_is_system_threads

obtained from the server thread
pool.

hostThe total number of HTTP/S
requests since Microservices
Runtime startup.

sag_is_total_http_requests

This metric excludes requests
for services in packages listed

108 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelsMetric DescriptionPrometheus Metric Name

in the
watt.server.stats.packages.exclude
parameter.

hostThe total memory for the
Microservices Runtime JVM.

sag_is_total_memory_bytes

hostThe total duration, in
milliseconds, for all service

sag_is_total_request_durations

requests since Microservices
Runtime startup measured in
milliseconds. This metric
excludes services in a package
set in the
watt.sever.stats.packages.exclude
parameter.

hostThe total used memory for the
Microservices Runtime JVM.

sag_is_used_memory_bytes

Service Metrics

Service metrics are metrics about a service onMicroservices Runtime. When the metrics endpoint
is called, Microservices Runtime returns service metrics for services called as top-level services.
Microservices Runtime does not return metrics for internal services or nested services which are
those services invoked within another service.

Note:
A top-level service is a service that is invoked by a client request.

The following table identifies the service metrics returned by Microservices Runtime when the
metrics endpoint is called, a description of the metric, and the Prometheus label for the metric.

Prometheus LabelDescription and Prometheus
Label

Prometheus Metric Name

host, serviceThe current number of active
cached entries for this service in
service results cache.

sag_is_service_cache_ entries

host, serviceThe current number of expired
cache entries for the service.

sag_is_service_cache_ expires

host, serviceThe percentage of request for
the service that have been

sag_is_service_cache_
hit_ratio

fulfilled using cached service

Developing Microservices with webMethods Microservices Runtime 10.11 109

C Prometheus Metrics

Prometheus LabelDescription and Prometheus
Label

Prometheus Metric Name

results since the cache was last
reset.

host, serviceThe number of times the service
has executed since the

sag_is_service_number_ access

Microservices Runtime last
started.

host, serviceThe total number of times that
a cached service result pipeline

sag_is_service_number_
cache_hit

has been returned instead of
calling the service since the
cache was last reset.

host, serviceThe number of times the circuit
has opened for this service since

sag_is_service_number_
circuit_open

Microservices Runtime last
started. Thismetric applies only
to services for which a circuit
breaker is enabled.

host, serviceThe number of requests for the
service when the circuit was in

sag_is_service_number_
circuit_open_request

an open state since
Microservices Runtime last
started. Thismetric applies only
to services for which a circuit
breaker is enabled.

host, serviceThe total number of errors for
the service since Microservices
Runtime last started.

sag_is_service_number_errors

host, serviceThe number of times that
Microservices Runtime has

sag_is_service_number_
prefetch

prefetched and then cached the
results for this service since the
cache was last reset.

host, serviceThe number of times
Microservices Runtime has

sag_is_service_number_
recent_prefetch

prefetched and cached the
results for the service since the
last statistics poll. The statistics
poll interval is controlled by the
watt.server.stats.pollTime server

110 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelDescription and Prometheus
Label

Prometheus Metric Name

configuration parameter. The
default interval is 60 seconds.

host, serviceThe number of concurrent
service executions for this

sag_is_service_number_
running

service at the timeMicroservices
Runtime gathered the metrics.

apiCat, code, execStat, host,
service, origin

The average number of
milliseconds to process the
Microservices Runtime service
in the last polling interval.

sag_is_service_requests
_avg_exec_millis

apiCat, code, execStat, host,
origin, service,

The total number of times the
service was executed in the last
polling interval.

sag_is_service_requests_total

JVM Metrics

JVMmetrics are statistics about the JVM in whichMicroservices Runtime runs. The JVM contains
a wide variety of information which is exposed via Managed Beans (MBeans). Microservices
Runtime gathers the JVM metrics data from available MBeans.

Note:
The JDK internal MBeans belong to the java.lang.management package.

The following table identifies the JVMmetrics returned by the metrics endpoint, a description of
each metric, the Prometheus label for the metric, and the JMX MBean and method from which
Microservices Runtime obtains the data.

Prometheus LabelDescriptionPrometheus Metric Name

hostTotal number of current classes
loaded in the Microservices
Runtime JVM.

sag_is_jvm_classes_loaded_total

JMXMBean/Method:
java.lang.management.
ClassLoadingMXBean.
getLoadedClassCount

hostThe total number of classes
loaded in the Microservices

sag_is_jvm_classes_total

Runtime JVM since it was
started.

Developing Microservices with webMethods Microservices Runtime 10.11 111

C Prometheus Metrics

Prometheus LabelDescriptionPrometheus Metric Name

JMXMBean/Method:
java.lang.management.
ClassLoadingMXBean.
getTotalLoadedClassCount

hostTotal number of classes
unloaded in the Microservices
Runtime JVM.

sag_is_jvm_classes_
unloaded_total

JMXMBean/Method:
java.lang.management.
ClassLoadingMXBean.
getUnloadedClassCount

host, nameThe total number of freed
objects from garbage collection
cycle.

sag_is_jvm_gc_collection_count

JMXMBean/Method:
java.lang.management.
GarbageCollectorMXBean.
getCollectionCount

host, nameNumber ofmilliseconds elapsed
since the last garbage collection
cycle.

sag_is_jvm_gc_collection_millis

JMXMBean/Method:
java.lang.management.
GarbageCollectorMXBean.
getCollectionTime

host, nameThe total number of allocated
megabytes from NIO buffer
pools.

sag_is_jvm_memory_buffer_
pool_capacity_mbytes

JMXMBean/Method:
java.lang.management.
BufferPoolMXBean.getTotalCapacity

host, nameThe total number of buffers
from NIO buffer pools.

sag_is_jvm_memory_
buffer_pool_count

JMXMBean/Method:

java.lang.management.
BufferPoolMXBean.getCount

112 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelDescriptionPrometheus Metric Name

host, nameThe total number of used
megabytes from NIO buffer
pools.

sag_is_jvm_memory_
buffer_pool_used_mbytes

JMXMBean/Method:

java.lang.management.
BufferPoolMXBean.getMemoryUsed

hostThe total number of allocated
megabytes from heap memory

sag_is_jvm_memory
_heap_used_mbytes

in the Microservices Runtime
JVM.

JMXMBean/Method:
java.lang.management.
MemoryMXBean.getHeapMemoryUsage

hostThe total number of allocated
megabytes that are not from

sag_is_jvm_memory_
nonheap_used_mbytes

heap memory in the
Microservices Runtime JVM.

JMXMBean/Method:

java.lang.management.
MemoryMXBean.
getNonHeapMemoryUsage

host, name, poolTypeThe total number of committed
megabytes in the named
memory pool.

sag_is_jvm_memory_
pool_committed_mbytes

JMXMBean/Method:

java.lang.management.
MemoryPoolMXBean
java.lang.management.
MemoryUsage.getCommitted()

host, name, poolTypeThe total number of initially
allocated megabytes in the
named memory pool.

sag_is_jvm_memory_
pool_init_mbytes

JMXMBean/Method:
java.lang.management.
MemoryPoolMXBean

java.lang.management.
MemoryUsage.getInit()

Developing Microservices with webMethods Microservices Runtime 10.11 113

C Prometheus Metrics

Prometheus LabelDescriptionPrometheus Metric Name

host, name, poolTypeThe total number of allocated
megabytes in the named
memory pool.

sag_is_jvm_memory
_pool_max_mbytes

JMXMBean/Method:
java.lang.management.
MemoryPoolMXBean

java.lang.management.
MemoryUsage.getMax()

host, name, poolTypeThe total number of used
megabytes in the named
memory pool.

sag_is_jvm_memory_
pool_used_mbytes

JMXMBean/Method:
java.lang.management.MemoryPoolMXBean

java.lang.management.
MemoryUsage.getUsed()

hostThe number of objects ready for
garbage collection.

sag_is_jvm_objects_
pending_finalizer_count

JMXMBean/Method:
java.lang.management.MemoryMXBean.
getObjectPendingFinalizationCount

hostThe number of BLOCKED
threads where BLOCKED is

sag_is_jvm_thread_
state_blocked_count

defined in
java.lang.Thread.State.

JMXMBean/Method:
java.lang.management.ThreadMXBean

java.lang.management.
ThreadInfo.getBlockedCount

hostThe number of NEW threads
where NEW is defined in
java.lang.Thread.State.

sag_is_jvm_thread
_state_new_count

JMXMBean/Method:
java.lang.management.ThreadMXBean

hostThe number of RUNNABLE
threads where RUNNABLE is

sag_is_jvm_thread_
state_runnable_count

defined in
java.lang.Thread.State.

114 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

Prometheus LabelDescriptionPrometheus Metric Name

JMXMBean/Method:
java.lang.management.ThreadMXBean

hostThe number of TERMINATED
threads where TERMINATED

sag_is_jvm_thread_
state_terminated_count

is defined in
java.lang.Thread.State.

JMXMBean/Method:
java.lang.management.
ThreadMXBean.dumpAllThreads

hostThe number of
TIMED_WAITING threadswith

sag_is_jvm_thread_
state_timed_waiting_count

a timeout where
TIMED_WAITING is defined in
java.lang.Thread.State.

JMXMBean/Method:
java.lang.management.ThreadMXBean

hostThe number of WAITING
threads without a timeout

sag_is_jvm_thread
_state_waiting_count

where WAITING is defined in
java.lang.Thread.State.

JMXMBean/Method:
java.lang.management.ThreadMXBean

hostThe number of blocked threads.sag_is_jvm_threads
_blocked_count

JMXMBean/Method:
java.lang.management.ThreadMXBean

hostThe total number of
milliseconds threads have been
in a blocked state.

sag_is_jvm_
threads_blocked_millis

JMXMBean/Method:
java.lang.management.ThreadMXBean

java.lang.management.
ThreadInfo.getBlockedTime

hostThe number of threads
executing code outside of the
JVM.

sag_is_jvm_threads_
native_count

JMXMBean/Method:
java.lang.management.ThreadMXBean

Developing Microservices with webMethods Microservices Runtime 10.11 115

C Prometheus Metrics

Prometheus LabelDescriptionPrometheus Metric Name

java.lang.management.
ThreadInfo.isInNative

hostThe number of suspended
threads.

sag_is_jvm_
threads_suspend_count

JMXMBean/Method:
java.lang.management.ThreadMXBean

java.lang.management.
ThreadInfo.isSuspended

hostThe number of times the thread
has been blocked.

sag_is_jvm_
threads_waited_count

JMXMBean/Method:
java.lang.management.ThreadMXBean

java.lang.management.
ThreadInfo.getWaitedCount

hostTotal number milliseconds all
threads have waited for a lock.

sag_is_jvm_
threads_waited_millis

JMXMBean/Method:
java.lang.management.ThreadMXBean

java.lang.management.
ThreadInfo.getWaitedTime

Prometheus Labels

Prometheus metrics can contain labels which can be used with a metric to differentiate metrics
returned by the metrics endpoint from each other. For example the label service="createCustomer"
used with the metric sag_is_service_requests_total indicates that the metric describes the total
number of requests made in the last polling interval for the service createCustomer. Whereas the
label service="updateCustomer" used with the samemetric indicates the total number of requests
made in the last polling interval for the service updateCustomer.

The following table identifies the Prometheus labels that may be associated with a Prometheus
metric returned by the metrics endpoint.

DescriptionPrometheus Label

API Category for a service invocation.apiCat

API_GRAPHQL

API_ODATA

116 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

DescriptionPrometheus Label

API_REST

API_SOAP

API_WEBSOCKET (Outbound service calls
to a remote WebSocket listener only.)

An integer value associatedwith themetric. The
code relates to the type of service that is

code

executing. For example, a service that receives
an HTTP response will have an HTTP status
code.

The execution state of the service. The execStat
can be one of the following values:

execStat

Y for service success.

N for service failure.

U for unknown which indicates the service
had not yet executed completion at the time
the metrics were gathered.

Host name of theMicroservices Runtime in the
format: <hostname|ipaddress> .

host.

Name associatewith themetric. The name value
varies and depends on the data in themetric. For

name

example, if the metric is for a service, the name
might be the service name. If the metric is for a
memory-related metric, the name might be the
memory pool name.

Origin for the service invocation. The type of
origin information will vary per apiCat. For

origin

example for a service invocation for an
API_REST call, the origin is the REST resource
endpoint. For an API_SOAP call, the origin is a
service endpoint.

Type of memory pool as returned by
java.lang.management.MemoryPoolMXBean.getType.

poolType

The type name varies depending on the JDK
implementation.

Fully qualified name of a service.service

Developing Microservices with webMethods Microservices Runtime 10.11 117

C Prometheus Metrics

118 Developing Microservices with webMethods Microservices Runtime 10.11

C Prometheus Metrics

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 Getting Started with webMethods Microservices Runtime
	What Are Microservices?
	What Is webMethods Microservices Runtime?
	What Is Microservices Runtime Administrator?

	2 Starting, Shutting Down, and Restarting Microservices Runtime
	Starting Microservices Runtime and Microservices Runtime Administrator
	Shutting Down Microservices Runtime
	Shutting Down Microservices Runtime from the Command Line
	Restarting Microservices Runtime

	3 Configuring Microservices Runtime
	How Is Microservices Runtime Different from Integration Server?
	Specifying the JDK or JRE for Microservices Runtime
	Changing the JVM Heap Size Used by Microservices Runtime
	Passing Java System Properties to Microservices Runtime
	Enabling Remote Client JMX Monitoring
	Configuration of Additional Components

	4 Using a Circuit Breaker with Services
	About Circuit Breaker
	How Does a Circuit Breaker for a Service Work?
	Configuring a Circuit Breaker for a Service
	Building a Service for Use with an Open Circuit
	Configuring the Circuit Breaker Thread Pool
	Circuit Breaker Statistics

	5 Automatic Package Deployment
	How Automatic Package Deployment Works
	Determining Package Dependencies During Automatic Deployment
	Considerations for Auto Deployment of Packages
	Enabling and Configuring Automatic Package Deployment

	6 Using Configuration Variables Templates with Microservices Runtime
	About Configuration Variables Templates
	What Does a Configuration Variables Template Look Like?
	When Is the Template Applied?
	Approaches for Using a Configuration Variables Template with Microservices Runtime
	Overview of Building a Configuration Variables Template
	Generating a Configuration Variables Template
	Editing a Configuration Variables Template
	Template File Locations
	Providing a Configuration Variables Template when Starting a Docker Container
	Configuration Variables Logging
	Viewing the Applied Template for a Microservices Runtime

	7 Monitoring Microservices Runtime
	Overview of Monitoring Microservices Runtime
	About the Health Gauge
	Obtaining Metrics for a Microservices Runtime

	8 Consul Support
	Configuring Connections to Consul Server
	Testing an Alias for the Consul Server
	Setting the Default Alias for the Consul Server
	Deleting a Consul Server Alias
	Consul Public Services Folder

	A Microservices Runtime vs Integration Server
	Microservices Runtime vs Integration Server Feature Comparison

	B Configuration Variables Template Assets
	C Prometheus Metrics
	Prometheus Metrics Returned by Microservices Runtime
	Server Metrics
	Service Metrics
	JVM Metrics
	Prometheus Labels

