
webMethods Microgateway User's Guide

Version 10.11

October 2021

This document applies to webMethods Microgateway 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2016-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: YAM-UG-1011-20220719

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Document Conventions...6
Online Information and Support...6
Data Protection...7

1 About webMethods Microgateway...9
Introduction...10
API Gateway Integration...11
Microgateway Installation...11

2 Asset and Configuration Provisioning...13
Asset Provisioning..14
Configuration Provisioning..19

3 Microgateway Provisioning..27
Microgateway Provisioning..28
Instance-based Provisioning...28
Docker-based Provisioning...31

4 SSL Configuration in Microgateway...41
SSL Configuration in Microgateway...42
How Do I Secure Microgateway Communication with Clients?..43
How Do I Secure Microgateway Communication with API Gateway Server?.......................45
How Do I Secure Microgateway Communication with the Native API?.................................45
How Do I Secure Microgateway Communication with Elasticsearch?....................................46
Importing Truststore Configuration Configured in API Gateway..47
Configuring Keystore in Microgateway..48

5 Kubernetes Support..51
Overview...52
Deploying Microgateway as a Kubernetes Service...52
Deploying Microgateway as a Kubernetes Service using a YAML file....................................53
Kubernetes Sidecar Deployment..55
Prometheus Microgateway Metrics...61

6 Policies..65
Policies Supported in Microgateway...66
Transport..66
Identify and Access..67
Request Processing...77
Routing...87
Traffic Monitoring..103

webMethods Microgateway User's Guide 10.11 iii

Response Processing..109
Error Handling..119
API Scopes...123

7 Service Registry Support...125
Overview...126
Service Registry Configuration...126

8 Command Line Reference...129
Microgateway Command Line Reference...130

9 REST APIs..143
Administration API..144

iv webMethods Microgateway User's Guide 10.11

Table of Contents

About this Guide

■ Document Conventions .. 6

■ Online Information and Support ... 6

■ Data Protection ... 7

webMethods Microgateway User's Guide 10.11 5

This guide describes how you can use API Gateway and other API Gateway components to
effectively manage APIs for services that you want to expose to applications, whether inside your
organization or outside to partners and third parties.

To use this guide effectively, you should have an understanding of the APIs that you want to
expose to the developer community and the access privileges you want to impose on those APIs.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

6 webMethods Microgateway User's Guide 10.11

https://documentation.softwareag.com
https://documentation.softwareag.com

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

webMethods Microgateway User's Guide 10.11 7

mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

8 webMethods Microgateway User's Guide 10.11

1 About webMethods Microgateway

■ Introduction ... 10

■ API Gateway Integration ... 11

■ Microgateway Installation ... 11

webMethods Microgateway User's Guide 10.11 9

Introduction

The adoption of the micro-service architecture pattern drives the need for lightweight gateways
or Microgateways. The Microgateway gives control over a micro-service landscape by enforcing
policieswhich perform authentication, trafficmonitoring, and trafficmanagement. The lightweight
nature of a Microgateway allows a flexible deployment to avoid gaps or bottlenecks in the policy
enforcement.

Microgateway is a gateway that enables micro-services to communicate with each other directly
without re-routing the communication channel through an API Gateway. This eases out the traffic
overload on API Gateway with communication between micro-services. You can enforce the
required protection policies on theMicrogateway to have a secure communication channel between
the micro-services.

This figure illustrates an API Gateway with micro-services suffering from network latency and
security issues as figure 1 followed by figure 2 that depicts a Microgateway with micro-services
addressing network latency and security issues by side car deployment.

The first part, figure 1, of the diagram depicts micro-services with a single API Gateway that does
the enforcement of policies. Here, each micro-service exposes an endpoint where no policy
enforcement is done.Moreover, considering that themicro-services are interactingwith each other,
all the traffic needs to be routed to the API Gateway. This leads to additional network latency and
the API Gatewaymight become a bottleneck. In the second part, figure 2, API Gateway is replaced
with a set ofMicrogateways that are deployed near themicro-services. Such a sidecar deployment
does not leave any gaps and avoids bottlenecks, thereby solving the network latency issues and
ease of policy enforcement.

10 webMethods Microgateway User's Guide 10.11

1 About webMethods Microgateway

Microgateway Components

Microgateway comes with a service performing the policy enforcement on REST APIs. The
Microgateway service runswithin its own Java runtime environment and is controlled by a simple
command line interface that supports basic lifecycle operations like start and stop. The configuration
of the service consists of system settings and assets that can be provisioned from a running API
Gateway or can be provisioned through a filesystem. The provisioned assets include application,
API, policy, and alias definitions. The Microgateway service exposes an administrator REST API
to query the status, the system setting, and the provisioned assets and shut down Microgateway
as well.

API Gateway Integration

The Microgateway's responsibility is focused on a single micro-service or a small number of
micro-services. To manage a micro-service landscape an API Gateway is required. It offers the
user interface for configuring the policy configuration and system configurations. Moreover, it is
responsible for monitoring the traffic within the micro-service landscape. The following figure
shows how Microgateways are interacting with an API Gateway.

TheMicrogateways pull the assets includingAPIs, applications, and policies from theAPIGateway
where they are configured. Also, other administrative settings including SSL configuration and
fault configurations are defined in the API Gateway and pulled by the Microgateway during
startup. The download of assets is done through the API Gateway REST APIs.

Whilemonitoring theAPI requests and responses, theMicrogateway pushes the runtime analytics
information to API Gateway. API Gateway provides a consolidated view through its dashboards.

The download of assets and administrative settings can be done up-front using theMicrogateway
tooling that allows to provision stand-aloneMicrogateways, which do not require any connection
to a running API Gateway. Stand-alone Microgateways do not allow to perform a consolidated
traffic monitoring of a micro-service landscape.

Microgateway Installation

You can install a Microgateway using Software AG Installer. In the Software AG Installer,
Microgateway appears as a subnodeunder theAPIGatewaynode in the installer tree.Microgateway

webMethods Microgateway User's Guide 10.11 11

1 About webMethods Microgateway

is selected by default when you select API Gateway in the installer tree. For details on installing
using installer, see Installing Software AG Products.

Note:
Microgateway can only be installed togetherwith theAPIGateway. An independent installation
of theMicrogateway is not supported. TheMicrogateway installation becomes operational only
if the Microservices feature is active in the API Gateway license.

12 webMethods Microgateway User's Guide 10.11

1 About webMethods Microgateway

2 Asset and Configuration Provisioning

■ Asset Provisioning .. 14

■ Configuration Provisioning ... 19

webMethods Microgateway User's Guide 10.11 13

Asset Provisioning

Provisioning assets in Microgateway makes assets available for use in Microgateway. The assets
you can provision inMicrogateway are, APIs including policies and policy properties, API scopes,
runtime aliases, applications, and global policies.

Note:
Microgateway only supports the REST APIs and do not support the SOAP and OData APIs.

Asset provisioning in Microgateway covers the following:

Reading APIs, API scopes, policies, aliases, and applications from API Gateway on
Microgateway start

Updating APIs, API scopes, aliases, and policies from API Gateway

Updating Applications from API Gateway

Reading APIs, API scopes, policies, aliases, and applications from a file system by importing
an asset archive

Reading administrative settings from API Gateway

Note:

Only simple aliases, endpoint aliases, and HTTP transport security aliases are supported
in Microgateway.
If an API has an unsupported policy the provisioning of the API is rejected.
If a global policy references an unsupported policy property then, the provisioning of the
global policy is rejected.

You can provision assets to a Microgateway in one of the following ways:

API Gateway asset archive-based provisioning

Pulling assets from API Gateway

Microgateway also supports a mixed provisioning. Asset archives are preferred over the assets
being pulled from an API Gateway when there is duplication of APIs.

Alias Provisioning

Simple aliases, Endpoint aliases, and HTTP Transport Security aliases can be configured in one
of the following ways:

By API Gateway asset archive-based provisioning, where the asset archive file exported from
API Gateway contains the aliases in API. Microgateway, on startup, imports the aliases from
the archive file and replaces all the aliases found in the APIs.

By configuring the alias values in the custom settings file that is passed as an argument using
the -c option during Microgateway startup.

14 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

A sample workflow that explains alias provisioning by passing the custom settings YAML file
using the -c option during Microgateway start up is as follows:
./microgateway.sh downloadSettings -gw hostname:port
–-output my-custom-settings.yml
./microgateway.sh createInstance –instance MyInst.zip
–-config my-custom-settings.yml
unzip MyInst.zip –d /tmp/inst
/tmp/inst/microgateway.sh start –c my-custom-settings.yml

The aliases provided in the custom settings YAML file take precedence over aliases defined
in the archive for aliases that have the same ID. A sample custom settings YAML file is as
follows:
aliases:
petstore_host:

type: simple
value: petstore.swagger.iov2

petstore_endpoint:
type: endpoint
endPointURI: http://petstore.swagger.io/v2/pet/4
connectionTimeout: 30
readTimeout: 30
suspendDurationOnFailure: 0
optimizationTechnique: None
passSecurityHeaders: false
keystoreAlias: ''

BasicAuth_Custom:
type: httpTransportSecurityAlias
authType: HTTP_BASIC
authMode: INCOMING_HTTP_BASIC_AUTH
httpAuthCredentials:

userName: Administrator123
password: manage
domain: null

BasicAuth_Incoming:
type: httpTransportSecurityAlias
authType: HTTP_BASIC
authMode: INCOMING_HTTP_BASIC_AUTH

JWT_Outbound:
type: httpTransportSecurityAlias
authType: JWT
authMode: INCOMING_JWT

Oauth_custom:
type: httpTransportSecurityAlias
authType: OAUTH2
authMode: INCOMING_OAUTH_TOKEN
oauth2Token: 407e5c8d33c54c57bc7932bf5e803979

Oauth_incomingToken:
type: httpTransportSecurityAlias
authType: OAUTH2
authMode: INCOMING_OAUTH_TOKEN

Endpoint configuration through aliases

For aMicrogateway server to run in a Kubernetes sidecar environment, the hostname of the native
service URL must be changed to localhost. The most convenient way is to use aliases for the

webMethods Microgateway User's Guide 10.11 15

2 Asset and Configuration Provisioning

respective Routing policy. Hence the API in API Gateway should use either a Simple alias or an
Endpoint alias.

The alias value is included in the config.yml configuration file. You have to configure the alias
name and the type, which are mandatory.

Example where API Gateway uses a Simple alias.
Name = “MySimpleAlias”, Value = “myhost”

Overwrite the alias value as follows in the config.yml file and start Microgateway.
…
aliases:
MySimpleAlias:

type: simple
value: localhost

Example where API Gateway uses an Endpoint alias.
Name = “MyEndpointAlias”, Endpoint = “http://myhost:1234/service”

Overwrite the alias value as follows in the config.yml file and start Microgateway.
…
aliases:
MyEndpointAlias:

type: endpoint
uri: http://localhost:1234/service

These alias values can be usedwith the genericMicrogateway environment variables in the format
mcgw_aliases_name_propery = "value" .

For example, the endpoint alias with the URI http://localhost:1234/service is specified in the
environment variables as follows:
mcgw_aliases_MySimpleAlias_type = "endpoint"

mcgw_aliases_MySimpleAlias_uri = “http://localhost:1234/service”

Asset Provisioning through the API Gateway Asset Archive

You can start the Microgateway server with one or more API Gateway asset archives exported
that contain the assets to be provisioned. Microgateway supports archives exported from version
10.3 or higher. All the supported assets are imported during Microgateway startup.

You can pass on theAPIGateway asset archive in the start command through the archive parameter:
./microgateway.sh start -p 9090 --archive apigw_archive.zip

You can specify multiple archives using a comma separated list. Ensure that there is no space
within the comma separated list.
./microgateway.sh start -p 9090
--archive apigw_archive1.zip,apigw_archive2.zip

16 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

TheMicrogateway reads the archives in the specified order. If there are any assets provisioned by
an earlier archive, they are overwritten by the assets present in the later archives.

Creating API Gateway Asset Archives using the Command Line

You can use the createAssetArchive command that Microgateway CLI provides for creating an
asset archive. The command takes the parameters detailed in the Command Line Reference.

A Sample workflow for Asset Provisioning using Asset Archive

A sample sequence for asset provisioning by importing the package looks as follows. A sample
archive EmployeeService.zip is used to describe the example.

1. Start API Gateway with the given archive EmployeeService.zip
./microgateway.sh start -p 9090 -a /tmp/EmployeeService.zip

2. Check status of the Microgateway instance.
GET http://localhost:9090/rest/microgateway/status

The status response looks like this:
{

"description": "webMethods Microgateway",
"publisher": "Software AG",
"version": "10.4.0.0"

}

3. Retrieve details about the deployedAPIs, applications, and global policies using the following
request.
GET http://localhost:9090/rest/microgateway/assets

The details display the provisioned APIs.

4. Invoke the Employee API.
GET http://localhost:9090/gateway/EmployeeService/employees

5. Stop the Microgateway listening on port 9090.
./microgateway.sh stop -p 9090

Pulling Assets from API Gateway

You can start the Microgateway server with a URL and credentials pointing to an API Gateway.
Microgateway pulls the assets from the referenced API Gateway.

webMethods Microgateway User's Guide 10.11 17

2 Asset and Configuration Provisioning

Microgateway can only pull assets from API Gateways with version 10.3 or higher. Multiple
Microgateways can pull assets from the same API Gateway. To pull assets from API Gateway, use
theMicrogateway start commandwith the required command line optionsdetailed in theCommand
Line Reference.

Connecting to API Gateway

Microgateway connects to the API Gateway during startup. If the API Gateway can't be contacted,
then Microgateway terminates with an error message as follows:
Start of process failed :
>>> Microgateway server not started <<<
Error during startup: API Gateway not active or accessible: status 503,
errorMessage: server is not active

Pulling Specific Assets

An API, policy or application is identified either using its unique identifier or by the combination
of name and version. If an asset name or identifier can't be resolved, a respective error message
is written to the Microgateway log.

For an identified API, the API along with the API-level policies and policy properties, registered
applications, and referenced runtime aliases are pulled from API Gateway.

For an identified global policy, the policy, the policy properties, and referenced runtime aliases
are pulled from API Gateway.

For an identified global application, only the application is pulled. For runtime aliases, the default
values become effective.

If you do not specify anAPI, application or policy, then no assets are pulled from theAPIGateway.

Note:

If an API has a unsupported policy, the provisioning of the API is rejected.
If a global policy references an unsupported policy property then, the provisioning of the
global policy is rejected.
When provisioning runtime aliases the default values become effective.

18 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

A Sample workflow for Asset Provisioning by pulling from API Gateway

The following sample sequence shows the flow for provisioningAPIs by pulling fromAPIGateway.
It assumes that the API Gateway holds 2 REST APIs: EmployeeService and EmployService2.

1. Start Microgateway with given a API Gateway URL and API name.
./microgateway.sh start -p 9090
-gw localhost:5555 -gwu Administrator -gwp password
-apis EmployeeService

2. Check the deployed assets.
GET http://localhost:9090/rest/microgateway/assets

3. Call the API.
GET http://localhost:9090/gateway/EmployeeService/employees

4. Stop the Microgateway listening on port 9090 .
./microgateway.sh stop -p 9090

5. Start Microgateway with given a API Gateway URL with multiple API names .
./microgateway.sh start -p 9090
-gw localhost:5555 -gwu Administrator
-gwp password -apis EmployeeService,EmployeeService2

Configuration Provisioning

The Administration configuration for Microgateway is provisioned in one of the following ways:

From the default settings file, system-settings.yml, which is used for starting aMicrogateway
server.

From the user-defined custom settings YAML file, which is used when you want to include
some custom settings that needs to override the default settings. The user-defined custom
settings YAML file is passed as an argument using the -c option duringMicrogateway startup.

Note:
From release 10.4, the administration configuration settings are no longer picked up from input
archive files.

Default settings file: system-settings.yml

When you start Microgateway server the default settings are read from the system configuration
file, which is under config/system-settings.yml and contains the following entries:

faults: contains variables for error handling during runtime.

extended_settings: various kinds of settings for runtime.

gateway_destination: API Gateway settings for logging into API Gateway.

webMethods Microgateway User's Guide 10.11 19

2 Asset and Configuration Provisioning

key_store: Keystore settings for establishing HTTPS connections.

trust_store: Truststore settings for HTTPS handshake for specific policies.

system: internal settings.

To enable the policy enforcement on a Microgateway the following configurations need to be
provisioned in Microgateway:

extended

apiFault

elasticsearchDestinationConfig

gatewayDestinationConfig

Note:
The external Elasticsearch configuration is optional, and needs to be specified if you have such
an Elasticsearch in your environment. You require an external Elasticsearch if you have the Log
Invocation policy enforced where Elasticsearch destination is selected. You have to specify the
external Elasticsearch configuration settings in the user-defined custom settings YAML file.

The system settings file should not be modified. Any specific changes required are specified in
the custom settings file.

The default configuration file system-settings.yml looks as follows:

faults:

default_error_message: "API Gateway encountered an error.
Error Message: $ERROR_MESSAGE. Request Details: Service - $SERVICE,
Operation - $OPERATION, Invocation Time:$TIME, Date:$DATE,
Client IP - $CLIENT_IP, User - $USER and Application:$CONSUMER_APPLICATION"
native_provider_fault: "false"

extended_settings:
defaultEncoding: "UTF-8"
apiKeyHeader: "x-Gateway-APIKey"
apig_MENConfiguration_tickInterval: "60"
events.collectionQueue.size: "10000"
events.collectionPool.minThreads: "1"
events.collectionPool.maxThreads: "8"

gateway_destination:
sendPolicyViolationEvent: "true"

key_store:
type: JKS
provider: SUN
location: config/keystore.jks
password: password

system:
version: "10.4.0.0.303"

User-defined Custom settings YAML file

If you have certain custom settings that you want Microgateway to use by overriding the default
settings specified in the system-settings.yml file, you can provision these configuration settings

20 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

from a user-defined custom settings YAMLfile. You can create the custom settings file as required.
If a particular setting value is not present in the custom settings YAML file, then the appropriate
value is taken from the default config/system-settings.yml file. The custom settings YAML file
contains the configuration values for starting Microgateway and the settings for replacing the
system-settings.yml.

The configuration values for starting a Microgateway are as follows in this table.

SettingsConfiguration values

Ports configuration sectionports

http. HTTP port exposed by Microgateway.

https. HTTP port exposed by Microgateway.

key_alias. Key alias for exposing the server certificate on theHTTPS
port.

API Gateway configuration sectionapi_gateway

url. API Gateway URL.

user. API Gateway user.

password. API Gateway user password.

dir. API Gateway installation folder.

download_settings. Flag to control the download of settings.

API endpoint sectionapi_endpoint

base_path. Base path of the APIs exposed by Microgateway.

Admin API sectionadmin_api

user. Microgateway user for authenticating requests against the
Admin API section.

password. Microgateway user password.

admin_path. base path of the Admin API.

downloads. Asset provisioning section.

apis. APIs to download from API Gateway.

applications. Applications to download form API Gateway.

policies. Global policies to download form API Gateway.

Archive sectionarchive

file. Archives to be loaded during startup.

webMethods Microgateway User's Guide 10.11 21

2 Asset and Configuration Provisioning

SettingsConfiguration values

Policy configuration sectionpolicies

user_auth. Configuring user configuration.

Logging configuration sectionlogging

level. Logging level.

path. File system path for storing log files.

Application synchronization sectionapplications_sync

enabled. Flag to enable application synchronization.

applications_to_sync. Applications to synchronize.

polling_interval_secs. Polling interval in seconds.

connection_timeout_secs. Connection time in seconds when
synchronizing applications.

A sample user-defined custom settings YAML file looks as follows:
ports:

http: 7000
archive:

file: /tmp/myarchive.zip
fault:

...
extended_settings:

...
gateway_destination:

...
es_destination

protocol: "http"
hostName: "<name of the ElasticSearch host>"
port: "9240"
userName: ""
password: ""
indexName: "gateway_default_analytics"

metricsPublishInterval: "60"
sendErrorEvent: "false"
sendLifecycleEvent: "false"
sendPerformanceMetrics: "false"
sendPolicyViolationEvent: "true"

sendAuditlogPackageManagementEvent: "false"
sendAuditlogPlanManagementEvent: "false"
sendAuditlogApplicationManagementEvent: "false"
sendAuditlogAliasManagementEvent: "false"
sendAuditlogRuntimeDataManagementEvent: "false"
sendAuditlogPolicyManagementEvent: "false"
sendAuditlogApprovalManagementEvent: "false"
sendAuditlogUserManagementEvent: "false"

22 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

sendAuditlogAdministrationEvent: "false"
sendAuditlogGroupManagementEvent: "false"
sendAuditlogAccessProfileManagementEvent: "false"
sendAuditlogAPIManagementEvent: "false"
sendAuditlogPromotionManagementEvent: "false"

Reading Settings from API Gateway

You can read and use the settings from API Gateway during the startup of the Microgateway
server, by using the parameter download_settings from the YAML configuration file. The default
value of the parameter is false.
API Gateway configuration
api_gateway:

url: http://hostname:port
user: Administrator
password: password
dir: /opt/softwareag/IntegrationServer/instances/default
download_settings: true | false

You can also specify download_settings as a command line option during Microgateway startup
as follows:

DescriptionDefault-Shortcut, --Name

Download the settings from API Gateway.false-ds, --download_settings

Creating Individual Settings Files

You can create a custom configuration file including all the settings. These settings are pulled from
a specified API Gateway.

Use the following command to create a settings file:
./microgateway.sh downloadSettings options

where you can use the various command line options detailed in the Command Line Reference.

Example: Use the following command within CLI to create the custom settings YAML file:
./microgateway.sh downloadSettings -gw gateway-url -gwu user
-gwp password [--config config-file] --output filename

If you do not specify any input settings while creating the custom settings YAML file, then the
custom settings file created contains all the API Gateway setting entries, such as fault,
extended_settings, and so on. The following invocation creates a custom settings YAML file by
downloading settings from the API Gateway running on apigateway-host:
./microgateway.sh downloadSettings -gw http://apigateway-host:5555 -gwu Administrator

-gwp password --output config/custom-settings.yml

webMethods Microgateway User's Guide 10.11 23

2 Asset and Configuration Provisioning

If you have specified an input settings file, the input settings are merged with the settings
downloaded form API Gateway. The following invocation creates a merged settings file, custom-
settings.yml:
./microgateway.sh downloadSettings -gw http://apigateway-host:5555 -gwu Administrator

-gwp password --config my-config.yml --output config/custom-config.yml

Security Settings

The security settings can be pulled fromAPI Gateway directly or can be configured in the custom
settings YAML file. The security settings pulled directly from API Gateway take precedence over
the security settings configured in the custom settings YAML file.

A sample configuration file with the aliases looks as follows:

security_settings:
providers:
- !<clientMetadataMapping>

id: "PingFederate"
name: "PingFederate"
type: "clientMetadataMapping"
owner: "Administrator"
providerName: "PingFederate"
implNames:

grant_types: "grantTypes"
logo_uri: "logoUrl"
scope: "restrictedScopes"
client_secret: "secret"
redirect_uris: "redirectUris"
client_name: "name"
client_id: "clientId"

extendedValues: {}
extendedValuesV2:
- endpointType: "CLIENT_REGISTRATION"

key: "restrictScopes"
value: "true"

- endpointType: "CLIENT_UPDATE"
key: "restrictScopes"
value: "true"

- !<clientMetadataMapping>
id: "OKTA"
name: "OKTA"
type: "clientMetadataMapping"
owner: "Administrator"
providerName: "OKTA"
implNames: {}
extendedValues: {}
extendedValuesV2: []

auth_servers:
- !<authServerAlias>

id: "local"
name: "local"
description: "Gateway default authorization server"
type: "authServerAlias"
owner: "Administrator"
localIntrospectionConfig:

24 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

issuer: "JWTISSUER"
remoteIntrospectionConfig:
introspectionEndpoint: "http://localhost:5555/invoke/pub.oauth/instrospectToken"
clientId: "introspection-client"
clientSecret: "********************************"
user: "Administrator"

tokenGeneratorConfig:
audience: "SAG"
expiry: 30
algorithm: "RS256"
accessTokenExpInterval: 3600
authCodeExpInterval: 3600

sslConfig:
keyStoreAlias: "DEFAULT_IS_KEYSTORE"
keyAlias: "ssos"

metadata: {}
authServerScopes:
- "Test_LocalOauth"
- "Dev_LocalOauth"
supportedGrantTypes:
- "authorization_code"
- "password"
- "client_credentials"
- "refresh_token"
- "implicit"
oauthTokens: []

webMethods Microgateway User's Guide 10.11 25

2 Asset and Configuration Provisioning

26 webMethods Microgateway User's Guide 10.11

2 Asset and Configuration Provisioning

3 Microgateway Provisioning

■ Microgateway Provisioning ... 28

■ Instance-based Provisioning .. 28

■ Docker-based Provisioning ... 31

webMethods Microgateway User's Guide 10.11 27

Microgateway Provisioning

Microgateway provisioning allows you to spawn multiple Microgateway instances from a single
Microgateway installation. The instances can be defined as self-contained including assets and
configuration. You can only provision a pre-configured Microgateway.

You can provision a Microgateway in one of the following ways:

Instance-based provisioning.

Docker-based provisioning.

Instance-based Provisioning

You can create aMicrogateway package from an existing installation and copy it tomultiple target
machines. A Microgateway instance package is a self-contained zip file that contains all artifacts
for running a Microgateway. The contents of the zip file are:

JRE

Microgateway server

Microgateway CLI

Configuration files

One or more exported API Gateway asset archives

After copying the zip file , you have to extract the zip file contents and run the commandline
scripts of the Microgateway CLI to start the Microgateway. A package is configured based on a
Microgateway configuration file. The configuration file either points to an API Gateway or to one
or more API Gateway asset archives for asset promotion. The asset promotion is performedwhen
you start the Microgateway within the package.

Note:
OnLinux it is required that certain permissionsmust be set after the package has been extracted
from the zip. This should be done with the provided script: ./setpermissions.sh

The figure illustrates creating a Microgateway package from an existing installation and copying
it to multiple target machines.

28 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

Creating a Microgateway Instance

For the package-based provisioning theMicrogatewayCLI provides the createInstance command.
The command creates aMicrogateway package that can be transferred to any target environment.
The command has the following parameters:

config: optional Microgateway configuration file

instance: the required file or path name of the Microgateway package.

Instance-based Provisioning Flow

A sample sequence for executing an instance-based provisioning is as follows:

1. Create API Gateway archives and set the configuration file accordingly.

ports:

http: 5554
https: 5553

api_gateway:
url: host:port
user: Administrator
password: password

archive:
file: asset.zip

2. Create a Microgateway instance.
microgateway.bat createInstance -config/config custom-settings.yml
--instance c:/tmp/Microgateway.zip -os win

webMethods Microgateway User's Guide 10.11 29

3 Microgateway Provisioning

The provided custom-settings.yml is added to the root of MyMicrogateway.zip that can be
used for server startup.

3. Copy the Microgateway instance to the target environment.

4. Extract the contents of the zip file using the unzip command and start the Microgateway
instance.
cd c:/tmp/myinst
unzip c:/tmp/MyMicrogateway.zip
microgateway.bat start --config custom-settings.yml

The unzip operation creates the sub-folders of the Microgateway. The start command picks
up the custom settings file from the base location. Ensure that on the necessary files the
execute-bit is set by applying the setpermissons.sh command (linux-only):

microgateway.sh

microgateway-jre-linux/bin/java

A Sample workflow for Instance-based Provisioning with Custom Settings

You can establish a Microgateway instance with a customized configuration setting environment.
On start the Microgateway server picks up the specified customized settings. A sample sequence
for instance-based provisioning with custom settings looks as follows.

1. Create a Microgateway instance with settings picked up from API Gateway.
./microgateway.sh downloadSettings -gw http://hostname:port
–-output my-custom-settings.yml
./microgateway.sh createInstance –instance MyInst.zip
–-config my-custom-settings.yml

2. Publish the Microgateway instance and start it.
unzip MyInst.zip –d /tmp/inst
cd /tmp/inst
. ./setpermissions.sh
./microgateway.sh start –c my-custom-settings.yml

You can also save a Microgateway environment (used API and all configuration settings) in
a version control system, check it out when required, and start as follows:
Checkout a microgateway environment and start it
svn checkout http://repository/... myarchive.zip my-custom-settings.yml
./microgateway.sh start –-config my-custom-settings.yml --archive myarchive.zip

3. Once the settings are created, you can spawn multiple instances with the same settings on
multiple machines.

A Sample workflow for Instance-based Provisioning by Downloading the settings
from API Gateway

A sample flow is as follows:

30 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

./microgateway.sh createInstance –instance MyInst.zip –c my-base-settings.yml
unzip MyInst.zip –d /tmp/inst
/tmp/inst/microgateway.sh start –c my-base-settings.yml --download_settings true

The download_settings parameter usedwhile startingMicrogateway downloads the settings from
API Gateway.

Docker-based Provisioning

Docker-based provisioning involves the creation of a Microgateway Docker file from an existing
installation, building the image, and running it multiple times in a container environment as
depicted in the following figure.

Microgateway Docker image

For theDocker-basedprovisioning theMicrogatewayCLI provides the createDockerFile command.
The command creates a Docker file that can be consumed by docker build for creating a Docker
image. The Microgateway Docker image contains an unzipped Microgateway package.

The command takes the command line options detailed in the Command Line Reference.

You can run the Docker image to spawn a Docker container from the created docker image.

The Docker images resulting from Docker files created using the createDockerFile command
feature the following:

Docker logging

Microgateway Docker containers log to stdout and stderr. The Microgateway logs can be
fetched with the Docker logs command.

Docker health check

webMethods Microgateway User's Guide 10.11 31

3 Microgateway Provisioning

Microgateway Docker containers perform health checks.
HEALTHCHECK CMD ${MICROGW_DIR}/microgateway.sh status 2>&1 | grep 'Server active'

The status command checks the Microgateway availability. If the status command confirms
an active Microgateway the container is considered healthy.

Graceful shutdown

When the docker stop command is used on a Microgateway container it performs a graceful
shutdown.

Entrypoint support

Microgateway Dockerfile exposes an ENTRYPOINT. The options provided to the
createDockerFile command are supplied to the ENTRYPOINT through a CMD specification.
An example of a generated Docker file is as follows:
FROM openjdk:8-jre-alpine
ENV MICROGW_DIR /opt/softwareag/Microgateway
MAINTAINER SoftwareAG
RUN mkdir -p ${MICROGW_DIR}/logs
RUN adduser -u 1724 -g 1724 -D -h ${MICROGW_DIR} sagadmin
RUN chown -R 1724:1724 /opt/softwareag
COPY --chown=1724:1724 ./config/ ${MICROGW_DIR}/config/
COPY --chown=1724:1724 ./lib/ ${MICROGW_DIR}/lib/
COPY --chown=1724:1724 ./files/ ${MICROGW_DIR}/files/
COPY --chown=1724:1724 ./resources/ ${MICROGW_DIR}/resources/
COPY --chown=1724:1724 ./*.jar ${MICROGW_DIR}/
COPY --chown=1724:1724 ./*.sh ${MICROGW_DIR}/
COPY --chown=1724:1724 ./tmp-docker/EmployeeService.zip ${MICROGW_DIR}/config
USER 1724
EXPOSE 4001

WORKDIR ${MICROGW_DIR}

ENTRYPOINT ["java","-jar","microgateway-server.jar"]
CMD ["-p", "9090", "-a", "config/EmployeeService.zip", "-lv", "INFO"]

When running a Microgateway Docker image the default options may be overridden by
supplying them as options to the docker run command line.
docker build -t sag:mcgw -f Microgateway_DockerFile .
docker run -d -p 9091:9091 --name mcgw sag:mcgw -p 9091
-a config/EmployeeService.zip -lv TRACE

This docker run command overrides the default port, asset archive, and logging levels specified
by the Dockerfile CMD.

JRE support

The createDockerFile command adds a Microgateway JRE to the Docker file so that
Microgateway Docker image can be self-contained. Since the custom base image provides a
JRE, the createDockerFile command supports the jre=none option to reuse the existing JRE
and not copy the Microgateway JRE.

32 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

Microgateway provides a musl libc compatible JRE to support Alpine Docker-based images.
The Microgateway installation provides the musl libc compatible JRE in the
microgateway-jre-linux-musl folder. You have to specify the jre=linux-musl option in the
createDockerFile command to copy the musl libc compatible JRE. If there is no base image
specified themusl libc compatible JRE is copied. The available JRE options are linux, linux-musl,
and none. The default value for the jre option depends on the docker_from value:

If there is no docker_from value specified, then the JRE used is linux-musl as the default
base image is Alpine.

If you specify docker_from value, then the JRE used is linux

A Sample workflow for Docker-based Provisioning with Asset Archive

A sample sequence for executing a Docker-based provisioning with the asset archive looks as
follows.

1. Create API Gateway archives and set the configuration file accordingly

ports:

http: 5554
https: 5553

api_endpoint:
base_path: /gateway

api_gateway:
url: http://localhost:5555/rest/apigateway
user: Administrator
password: <pwd>

admin_api:
base_path: /rest/microgateway

archive:
file: asset.zip

You can specify the archive zip file in the custom settings YAMLfile or have it on the command
line.

Note:
The command line parameters take precedence over the configuration values specified in
the custom settings YAML file.

2. Create Microgateway Docker file.
./microgateway.sh createDockerFile --docker_dir . -p 9090 -a <file-name>.zip

The command creates the Docker file Microgateway_DockerFile that copies the asset archives
referenced by the zip file into the Docker image.

webMethods Microgateway User's Guide 10.11 33

3 Microgateway Provisioning

The createDockerFile command allows to configure the Docker file creation using command
line parameters. For example, the following command sequence creates a Docker file for a
Microgateway container listening on port 9090 and with the assets from the archives apis.zip
and policies.zip.
./microgateway.sh createDockerFile -p 9090 -c custom-settings.yml
-a apis.zip,policies.zip

3. Create the Docker image with asset archive.
docker build -t sag:mcgw-static -f Microgateway_DockerFile .

The command creates the image sag:mcgw-static from the generated Docker file.

4. Run the Docker image.
docker run -d -p 9090:9090 --name mcgw-static sag:mcgw-static

The command spawns aDocker container from the image sag:mcgw-static. TheMicrogateway
container listens on the host port 9090.

A Sample workflow for Docker-based Provisioning with pulling from API Gateway

A sample sequence for executing a Docker-based provisioning with pulling from API Gateway
looks as follows.

1. Create Microgateway Docker file points to an API Gateway for pulling APIs on startup.
./microgateway.sh createDockerFile --docker_dir . -c config/custom-settings.yml

The command creates the Docker file Microgateway_DockerFile that copies the API Gateway
configurations from the custom settings YAML file into the Docker image.

2. Create the Docker image.
docker build -t sag:mcgw-dynamic -f Microgateway_DockerFile .

The command creates the image sag:mcgw-dynamic from the generated Docker file.

3. Run the Docker image.
docker run -d -p 9090:9090 --name mcgw-dynamic sag:mcgw-dynamic

The command spawns a Docker container from the image sag:mcgw. The Microgateway
container listens on the host port 9090.

A Sample workflow for Docker-based Provisioning with dynamic configuration

Dynamic configuration is applied by mapping a volume holding the config folder of the
Microgateway instance.

A sample sequence for executing a Docker-based provisioning with dynamic configuration looks
as follows.

1. Create Docker file pointing to the user-defined custom settings YAML file.

34 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

./microgateway.sh createDockerFile --docker_dir . -c config/custom-settings.yml
-p 9090

The command creates theDocker fileMicrogateway_DockerFile that copies the configurations
from the custom-settings.yml file into the Docker image.

2. Create the Docker image.
docker build -t sag:mcgw-dynamic -f Microgateway_DockerFile .

The command creates the image sag:mcgw-dynamic from the generated Docker file.

3. Provide config directory with host file system with required Microgateway configurations:
> ls ~/mcgw-conf/
custom-settings.yml keystore.jks license.xml system-settings.yml

4. Start container with volume mapping pointing to config directory in host file system.
docker run -d -v ~/mcgw-conf:/Microgateway/config
-p 9090:9090 --name mcgw-dynamic sag:mcgw-dynamic

The command spawns a Docker container from the image sag:mcgw-dynamic. The
Microgateway container listens on the host port 9090.

A Sample workflow for Docker-based Provisioning with Custom Settings

AMicrogateway Docker instance can be established and run using customized settings. A sample
sequence for docker-based provisioning with custom settings looks as follows.

1. Create the custom settings file. These settings are pulled from a specified API Gateway
./microgateway.sh downloadSettings -gw http://hostname:port
–-output my-custom-settings.yml

These settings are pulled from a particular API Gateway instance specified by its hostname
and port number.

2. Create Docker file pointing to the customized settings file.
./microgateway.sh createDockerFile --http_port 7071 --docker_dir .
--archive myarchive.zip --config my-custom-settings.yml

The command creates the Docker file Microgateway_DockerFile that copies the API Gateway
configurations from the my-custom-settings.yml file into the Docker image.

3. Create the Docker image.
docker build -t sag:mgcustomsettings -f Microgateway_DockerFile .

The command creates the image sag:mgcustomsettings from the generated Docker file.

4. Run the Docker image.
docker run -d -p 7071:7071 --name mgcustomsettings sag:mgcustomsettings

webMethods Microgateway User's Guide 10.11 35

3 Microgateway Provisioning

The command spawns aDocker container from the image sag:mgcustomsettings. The contained
Microgateway listens at the host port 7071.

Sidecar Container support

You can have Microgateway in a sidecar deployment mode where Microgateway runs with
micro-services in the same Docker container. This provides protection to the micro-service as the
micro-services can only be reached through the Microgateway. In the sidecar deployment, you
can have the Microgateway Docker image in one of the following ways:

Microgateway Docker image is the base image for the sidecar image.

Microgateway is added on top of an existing custom image holding the micro-service

This figure depicts the two different ways in which you can have theMicrogateway Docker image
in the sidecar deployment.

The sidecar deployment requires to spawnmultiple processes inMicrogateway container. Therefore,
the createDockerFile command supports the exec option.

The purpose of the exec option in the createDockerFile command is to start the micro-service
process. The exec option allows you to specify a shell command that is being added to the
Microgateway docker-entrypoint.sh. For example, the following command creates a sidecarDocker
image based on a micro-service base image running the SAG node-tours application:
./microgateway.sh createDockerFile -dor sag:node-tours
-exec "(cd /usr/src/app; npm start)" -dod . -p 9090 -a ../node-tours.zip

When starting the image the command specified in the exec option is executed first. The Docker
file looks as follows:
FROM sag:node-tours

MAINTAINER SoftwareAG

ENV MICROGW_DIR /opt/softwareag/Microgateway

RUN mkdir -p ${MICROGW_DIR}/logs

COPY adduser.sh ${MICROGW_DIR}
RUN ${MICROGW_DIR}/adduser.sh sagadmin 1724 ${MICROGW_DIR}

36 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

RUN chown -R 1724:1724 /opt/softwareag

COPY --chown=1724:1724 ./config/ ${MICROGW_DIR}/config/
COPY --chown=1724:1724 ./lib/ ${MICROGW_DIR}/lib/
COPY --chown=1724:1724 ./files/ ${MICROGW_DIR}/files/
COPY --chown=1724:1724 ./resources/ ${MICROGW_DIR}/resources/
COPY --chown=1724:1724 ./*.jar ${MICROGW_DIR}/
COPY --chown=1724:1724 ./*.sh ${MICROGW_DIR}/

COPY --chown=1724:1724 ./tmp-docker/node-tours.zip ${MICROGW_DIR}/config

COPY --chown=1724:1724 ./microgateway-jre-linux/
${MICROGW_DIR}/microgateway-jre-linux/

EXPOSE 9090

HEALTHCHECK CMD ${MICROGW_DIR}/microgateway.sh status 2>&1 |
grep 'Server active'

WORKDIR ${MICROGW_DIR}

USER 1724

ENTRYPOINT ["./docker-entrypoint.sh"]
CMD ["-p", "9090", "-a", "config/node-tours.zip", "-lv", "ERROR"]

The simple docker-entrypoint.sh script is as follows:
#!/bin/sh
(cd /usr/src/app; npm start) &
./microgateway-jre-linux/bin/java -jar microgateway-server.jar $@

The sample script runs the provided command to start the node.js based micro-service in the
background. Then Microgateway is started with the command line parameters.

The Docker file can be used for creating an image using the docker build command.
docker build -t sag:mcgw-node-tours .

The resulting Docker image sag:mcgw-node-tours holds the Microgateway and the NodeTours
micro-service. Starting the Docker container starts the Microgateway and the node.js at runtime.
docker run -d -p9090:9090--name mcgw-node-tours
sag:mcgw-node-tours

TheDocker container only exposes theMicrogateway port the node.js port is not exposed. Therefore
the NodeTours micro-service can not be called directly.

Microgateway image based on an MSR image

You can use the --msr option in the createDockerFile command to detect an image holding a
webMethods Microservice Runtime (MSR).

If a MSR image is detected, the createDockerFile command does not add any jre, since the MSR
already provides a jvm. The createDockerFile command for creating anMSR based sidecar image
is as follows:

webMethods Microgateway User's Guide 10.11 37

3 Microgateway Provisioning

./microgateway.sh createDockerFile -dod . -dor sag:msr-employee-service
-msr -p 9090 -a ../EmployeeService.zip

The Docker file created by the command is as follows:
FROM sag:msr-employee-service

MAINTAINER SoftwareAG

ENV MICROGW_DIR /opt/softwareag/Microgateway

RUN mkdir -p ${MICROGW_DIR}/logs

COPY --chown=1724:1724 ./config/ ${MICROGW_DIR}/config/
COPY --chown=1724:1724 ./lib/ ${MICROGW_DIR}/lib/
COPY --chown=1724:1724 ./files/ ${MICROGW_DIR}/files/
COPY --chown=1724:1724 ./resources/ ${MICROGW_DIR}/resources/
COPY --chown=1724:1724 ./*.jar ${MICROGW_DIR}/
COPY --chown=1724:1724 ./*.sh ${MICROGW_DIR}/

COPY --chown=1724:1724 ./tmp-docker/EmployeeService.zip ${MICROGW_DIR}/config

EXPOSE 9090

HEALTHCHECK CMD ${MICROGW_DIR}/microgateway.sh status 2>&1 | grep 'Server active'

WORKDIR ${MICROGW_DIR}

USER 1724

ENTRYPOINT ["./docker-entrypoint.sh"]
CMD ["-p", "9090", "-a", "config/EmployeeService.zip", "-lv", "ERROR"]

TheDocker image sag:msr-employee-service provides anMSR instance that runs themicro-service
EmployeeService. TheAPI definition for themicro-service is provided by the exportedAPIGateway
asset archive, EmployeeService. The image can be created using the docker build command.
docker build -t
sag:mcgw-msr-employee-service .

The resulting Docker image sag:mcgw-msr-employee-service holds the Microgateway and the
MSR. Starting the Docker container starts the Microgateway and the MSR.
docker run -d -p9090:9090--name mcgw-msr-employee-service
sag:mcgw-msr-employee-service

The Docker container only exposes the Microgateway port and the MSR port is not exposed.
Therefore the MSR can not be called directly.

Microgateway Docker Environment Variables
You can run aMicrogateway docker containerwith environment variables. This has the advantage
that a prepared Docker image can be executed with parameters.

The environment variables can be specified in an generic way based on the YAML configuration
layout.

38 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

Example:

ports:

http: 7071
api_gateway:

url: “http://localhost:5555”
dir: "C:\\SoftwareAGapigw"

logging:
level: "ERROR"

The variables have the prefixmcgw and every path in the YAMLfile translates to the environment
variables as mcgw_port_http, mcgw_api_gateway_url,
mcgw_api_gateway_url,mcgw_logging_level, and so on.

To build and run the Docker image with environment settings, do the following:

1. Create a docker file with a configuration file.
./microgateway.sh createDockerFile --docker_file DockerFileEnv --docker_dir .
-c myconfig.yml

The myconfig.yml file looks as follows:
myconfig.yml:
ports:

http: 7077
api_gateway:

url: "myhost:port"
user: "myuser"
password : "mypwd"

policies:
user_auth: "internal"

2. Build Docker image.
docker build -t mg-env-image -f DockerFileEnv .

3. Build Docker image and display the logs.
docker run -d -p 7077:7077 --name mg-env-image-bad mg-env-image:latest
docker logs mg-env-image-bad

This displays that the accesses do notwork since theAPIGateway access properties are invalid
and there is no deployed API.

4. Create environment setting file. Prepare a valid environment settings in a file. These are the
effective API Gateway access as well as APIs to be pulled from the gateway (env.list):
mcgw_api_gateway_url=localhost:5555
mcgw_api_gateway_user=Administrator
mcgw_api_gateway_password=pwd
mcgw_downloads_apis=Employees,EmployeeService

5. Run docker image with environment settings.
docker run -d -p 7077:7077 --env-file env.list --name mg-env-image
mg-env-image:latest

webMethods Microgateway User's Guide 10.11 39

3 Microgateway Provisioning

docker logs mg-env-image

This displays that everything is fine.

40 webMethods Microgateway User's Guide 10.11

3 Microgateway Provisioning

4 SSL Configuration in Microgateway

■ SSL Configuration in Microgateway ... 42

■ How Do I Secure Microgateway Communication with Clients? 43

■ How Do I Secure Microgateway Communication with API Gateway Server? 45

■ How Do I Secure Microgateway Communication with the Native API? 45

■ How Do I Secure Microgateway Communication with Elasticsearch? 46

■ Importing Truststore Configuration Configured in API Gateway 47

■ Configuring Keystore in Microgateway ... 48

webMethods Microgateway User's Guide 10.11 41

SSL Configuration in Microgateway

SSL creates a secure connection between servers and clients over the web and internal network,
safeguarding and allowing sensitive data to be securely transmitted. HTTPS (Hypertext Transfer
Protocol Secure) is an internet communicationprotocol that protects the integrity and confidentiality
of data between the user's computer and the site. The data sent over HTTPS is secured using TLS,
which provides protection using encrypted channel.

A Microgateway instance can be communicating with various other components such as, API
Gateway server, native services, clients, and Elasticsearch. You must create secure connections
between the Microgateway instance and these components in order to enable a secure channel of
communication. This article explains SSL configuration in Microgateway.

The article assumes that you have a runningMicrogateway instance. Additionally, youmust have
a basic understanding of the following:

API Gateway server and administration configuration in API Gateway

Java security using keystore and truststore certificates

The figure depicts various scenarios where a truststore is used in Microgateway.

1. Two-way SSL connection with the end user

2. HTTPS connection with the native API

3. HTTPS communication with related servers depending on their usage

This figure depicts various scenarios where a keystore is used in Microgateway.

42 webMethods Microgateway User's Guide 10.11

4 SSL Configuration in Microgateway

1. HTTPS connection with an end user

2. HTTPS connection with the native API

Managing Certificates in Microgateway

AsMicrogateway is expected to be scaled up tomany instances,managing certificates is important.
Microgateway has its ownkeystore and truststore tomanage its certificates. Certificates are required
to implement a trust relationship between API consumers, Microgateways, API Gateways and
native (micro) services depending on the scenario in which it is used.

Public Certificates

To expose a trusted endpoint, Microgateway has to expose a certificate that has been signed by a
certificate authority (CA). Usually the CA is a global widely trusted authority such as GlobalSign,
Let's Encrypt, or GeoTrust. For internal usage, CA can also be established within an organization.
Usingmulti-name certificates (SAN) or wild card certificates allow the reuse of a certificate across
multiple domains or servers.

Internal Certificates

For internal certificates, you can establish a private CA. You can manually manage certificates
through SSL tooling. For example, you can have Vault fromHashicorp that provides a private CA
solution, which can be deployed on-premises. Other CA solutions are offered by cloud vendors
such as Amazon.

How Do I Secure Microgateway Communication with Clients?

Secure Microgateway to enable various clients to communicate with the Microgateway instance
over HTTPS. This use case explains how to secure Microgateway communication using HTTPS
protocol with the existing server and client certificates.

The use case starts when you have a Microgateway instance to be secured using HTTPS and you
have the required server and client certificates to secure the communication channel between
Microgateway and the client. It ends when the secure channel is configured for communication
between Microgateway and the client.

To secure Microgateway communication with clients

1. Configure keystore.

Ensure that the keystore with the required certificates is located at
Install_dir/Microgateway/config/microgateway_keystore.jks. Open the system-settings.yml
file and update the following information.
key_store:

type: JKS
provider: SUN
location: config/microgateway_keystore.jks
password: yourpwd

You can use the default keystore or use any other custom key.

webMethods Microgateway User's Guide 10.11 43

4 SSL Configuration in Microgateway

2. Configure HTTPS port in Microgateway using the following parameters:

Use the parameter key_alias in the config.yml file to force using a dedicated certificate, if
the keystore contains multiple certificates. For example, to configure the HTTPS port as
9093 and use the certificate microgateway_cert, the entry in the config.yml file should be
as follows:
ports:

https: 9093
key_alias: microgateway_cert

Use the advanced parameters to set Jetty SSLContext parameters for the exposed HTTPS
port. For details, see https://wiki.eclipse.org/Jetty/Howto/Configure_SSL. Microgateway
supports the following parameters:

include_cipher_suites. For details, see https://wiki.eclipse.org/Jetty/Howto/
CipherSuites.

exclude_cipher_suites. For details, see https://wiki.eclipse.org/Jetty/Howto/CipherSuites
.

need_client_auth. The default value is false.

want_client_auth. The default value is false.

crl_path. Specifies the path to certificate revocation list file, which is located at
Install_dir/config/, for SSL certificate validation.

max_cert_path_length. Specifies the maximum number of intermediate certificates
allowed. The default value is -1, which denotes that it is unlimited.

3. Configure truststore.

Microgateway works with one single truststore for all purposes. Manage this truststore with
an entry in config/system-settings.yml, similar to the keystore definition, as follows:
trust_store:

type: JKS
provider: SUN
location: config/truststore.jks
password: <pwd>

4. Enable host name verification.

Set the Global SSL setting as default.
ssl_options:
host_name_verifier: default #none can be specified to deactivate hostname

verification

The available values are:

default: Provide this value to enable host name verification.

none: Provide this value to disable host name verification.

The default value is none.

44 webMethods Microgateway User's Guide 10.11

4 SSL Configuration in Microgateway

https://wiki.eclipse.org/Jetty/Howto/Configure_SSL
https://wiki.eclipse.org/Jetty/Howto/CipherSuites
https://wiki.eclipse.org/Jetty/Howto/CipherSuites
https://wiki.eclipse.org/Jetty/Howto/CipherSuites

How Do I Secure Microgateway Communication with API
Gateway Server?

This use case explains how to secure Microgateway communication with API Gateway server
using HTTPS protocol.

The use case starts when you have a Microgateway instance to be secured using HTTPS and you
have the required certificates to secure the communication channel between Microgateway and
API Gateway. It ends when the secure channel is configured for communication between
Microgateway and API Gateway server.

To secure Microgateway communication with API Gateway server

1. Configure truststore.

Microgateway may use any of the following:

Default truststore: The default truststore is located in the cacerts of the Microgateway JRE.

Custom truststore: Custom trusstore that may have a truststore configuration imported
from API Gateway.

For details on importing truststore configuration from API Gateway, see “Importing
Truststore Configuration Configured in API Gateway” on page 47

2. Ensure that Microgateway communicates over the HTTPS port exposed by the API Gateway
server.

3. Configure Keystore.

Ensure that the required API Gateway server certificates are placed in the Microgateway
keystore located at Install_dir/Microgateway/config/.

You can use self-signed certificates or custom CA. For details on configuring keystore for
self-signed certificates, see “Configuring Keystore in Microgateway” on page 48

4. Ensure that the Microgateway cacerts are placed in the API Gateway server truststore located
at API Gateway _Install_dir/common/config/.

How Do I Secure Microgateway Communication with the Native
API?

This use case explains how to secure Microgateway communication with the native service using
HTTPS protocol.

The use case starts when you have a Microgateway instance to be secured using HTTPS and you
have the required certificates to secure the communication channel between Microgateway and
the native API. It ends when the secure channel is configured for communication between
Microgateway and the native API.

webMethods Microgateway User's Guide 10.11 45

4 SSL Configuration in Microgateway

To secure Microgateway communication with native API

1. Configure truststore.

Microgateway may use any of the following:

Default truststore: The default truststore is located in the cacerts of the Microgateway JRE.

Custom truststore: Custom truststore that may have a truststore configuration imported
from API Gateway.

For details on importing truststore configuration from API Gateway, see “Importing
Truststore Configuration Configured in API Gateway” on page 47

2. Ensure that Microgateway accesses the native API using the API's HTTPS endpoint exposed.

How Do I Secure Microgateway Communication with
Elasticsearch?

This use case explains how to secure Microgateway communication with Elasticsearch using the
HTTPS protocol.

The use case starts when you have a Microgateway instance to be secured using HTTPS and you
have the required certificates to secure the communication channel between Microgateway and
Elasticsearch. It ends when the secure channel is configured for communication between
Microgateway and Elasticsearch.

To secure Microgateway communication with Elasticsearch

1. Configure truststore.

Microgateway may use any of the following:

Default truststore: The default truststore is located in the cacerts of the Microgateway JRE.

Custom truststore: Custom truststore that may have a truststore configuration imported
from API Gateway.

For details on importing truststore configuration from API Gateway, see “Importing
Truststore Configuration Configured in API Gateway” on page 47

2. Ensure that Microgateway communicates over the HTTPS port configured on Elasticsearch.

Configure the port of communication with Elasticsearch, in the system-settings.yml file, as
follows:
es_destination:

protocol: "https"
hostName: "localhost"
port: "8880"
userName: ""
password: ""

46 webMethods Microgateway User's Guide 10.11

4 SSL Configuration in Microgateway

3. Ensure that the required Elasticsearch certificates are placed in the Microgateway truststore
located at Install_dir/Microgateway/config/.

You can use self-signed certificates or custom CA. For details on configuring keystore for
self-signed certificates, see “Configuring Keystore in Microgateway” on page 48

Importing Truststore Configuration Configured in API Gateway

When SSL configurations are imported from API Gateway to Microgateway, they must function
seamlessly without any disruption. The multiple truststore files used in API Gateway are
successfully imported intoMicrogateway at startup and used across different SSL configurations.
You can copy the truststore configurations from API Gateway including the passwords to these
files during theMicrogateway instance creation. These password files and truststore configurations
are loaded during Microgateway startup.

Microgateway works with one single truststore for all purposes. You can manage this truststore
with an entry in config/system-settings.yml, similar to the keystore definition:
trust_store:

type: JKS
provider: SUN
location: config/truststore.jks
password: <pwd>

By default, Microgateway does not use any particular truststore for communication. In such a
case, the default cacerts are located in the Microgateway JVM.

API Gateways may have more than one truststore defined. If the API Gateway instance from
where the truststore is imported has multiple truststores, then specify multiple truststore names
(and passwords) to import them from respective truststores.

You can also use the import_truststore parameter within createDockerFile, where the truststore
used within the image is prepared with importing certificates. The resulting truststore is targeted
in the folder for creating the docker image: .../Microgateway/tmp-docker/truststore.jks

To import the truststore configuration from an API Gateway instance

1. You can perform one of the following based on your requirement:

To create a newMicrogateway instance and import the default truststore fromAPIGateway,
run the following command:
./microgateway.sh createInstance -gwd c:/SoftwareAGapigw
-itf name -itp pwd

Where the name is set to "." . In this case the API Gateway default trust store
platform_truststore.jks is imported.

For example, if you want to import the default truststore, run the following command:
microgateway createInstance -gwd c:/SoftwareAGapigw -itf default -itp manage

webMethods Microgateway User's Guide 10.11 47

4 SSL Configuration in Microgateway

Where the default truststore is default and password is manage.

To start the Microgateway server and import certificates from multiple truststores
configured and available in
c:/SoftwareAGapigw/common/conf/mytrust/my_truststore_file.jks, run the following
command:
./microgateway.sh start -c config.yml -gwd c:/SoftwareAGapigw
-itf name[,name...]
-itp pwd[,pwd...]

Where, the name argument is the truststore name of the user-configured trust store.

Microgateway reads all the certificates from the API Gateway truststore(s) and saves them
to the Microgateway truststore. If a certificate being imported is already present in the
Microgateway truststore, then it gets overwritten.

For example, if you want to import certificates from two user-configured truststores from
c:/SoftwareAGapigw/common/conf/mytrust/my_truststore_file.jks, run the following
command:
./microgateway.sh start -c config.yml -gwd c:/SoftwareAGapigw -itf
mytrust,mytrust2
-itp mytrustpwd,mytrustpwd2

To create a Docker file by importing truststore data from API Gateway, run the following
command:
./microgateway.sh createDockerFile -c config.yml -dod . -gwd c:/SoftwareAGapigw

-itf - -itp manage

Here, - denotes that you are importing the default truststore and the truststore is updated
in .../Microgateway/tmp-docker/truststore.jks

Configuring Keystore in Microgateway

Microgateway comes with a default keystore, containing a private and a public key for HTTPS
communicationwith the user. The keystore is located in Install_dir/Microgateway/config/keystore.jks
and you can manage the keystore with an entry in config/system-settings.yml file.

At times, you may want to use a private and public key within a keystore, due to the fact that a
Microgateway can be duplicatedwith the createInstance command and the keystore can be copied
as well.

To configure keystore in Microgateway

1. Create a self-signed certificate.

Note:
You perform this step only if you want to use self-signed certificates. If you are using the
existing certificates, go to Step 2.

48 webMethods Microgateway User's Guide 10.11

4 SSL Configuration in Microgateway

a. To create a keystore file, run the following command with the required information:

cd …/Microgateway/config
keytool -genkeypair –alias microgateway_cert -keyalg RSA
-keysize 2048 -keystore microgateway_keystore.jks –storepass yourpwd

This creates the keystore file.

b. Open the system-settings.yml file and update the following information.

key_store:
type: JKS
provider: SUN
location: config/microgateway_keystore.jks
password: yourpwd

On the first access of the Microgateway server, the keystore password gets encrypted and
inserted into the Microgateway's passman file to avoid a clear-text password in the file.

2. Start the Microgateway server with an HTTPS port to communicate over HTTPS.

For example:
./microgateway.sh start --https_port 7072 -a BayernRest.zip

webMethods Microgateway User's Guide 10.11 49

4 SSL Configuration in Microgateway

50 webMethods Microgateway User's Guide 10.11

4 SSL Configuration in Microgateway

5 Kubernetes Support

■ Overview .. 52

■ Deploying Microgateway as a Kubernetes Service .. 52

■ Deploying Microgateway as a Kubernetes Service using a YAML file 53

■ Kubernetes Sidecar Deployment .. 55

■ Prometheus Microgateway Metrics .. 61

webMethods Microgateway User's Guide 10.11 51

Overview

Microgateway can be runwithin aKubernetes (k8s) environment. Kubernetes provides a platform
for automating deployment, scaling, and operations of services. The basic scheduling unit in
Kubernetes is a pod. It adds a higher level of abstraction by grouping containerized components.
A pod consists of one or more containers that are co-located on the host machine and can share
resources. A Kubernetes service is a set of pods that work together, such as one tier of a multi-tier
application.

The Kubernetes support includes the following:

Liveliness check to support Kubernetes pod lifecycle: This helps in verifying that the
Microgateway container is up and responding. You can perform the liveliness check by checking
the alive file of Microgateway.

Readiness check to support Kubernetes pod lifecycle: This helps in verifying that the
Microgateway container is ready to serve requests.

For details on pod lifecycle, see Kubernetes documentation.

Prometheus metrics to support the monitoring of Microgateway pods. Microgateway exposes
metrics in Prometheus format. The Prometheus basedmonitoring provides information relevant
for the Microgateway operation. You use the metrics endpoint /rest/microgateway/metrics
to gather the required metrics. The metrics gathered are of two types; the server-level metrics
and API-level metrics. For details of the server-level metrics and API-level metrics collected,
see “Prometheus Microgateway Metrics” on page 61.

The following sections describe in detail the various ways of deploying Microgateway in
Kubernetes. Each of the deploymentmodels described require an existingKubernetes environment.
For details on setting up of a Kubernetes environment, see Kubernetes documentation.

Deploying Microgateway as a Kubernetes Service

Microgateway can run as a separate Kubernetes service protecting other Kubernetes services.
Microgateway as a Kubernetes service is running in a dedicated pod and protects one or more
native services running within the Kubernetes environment. The set of services have to be static
since Microgateway can only handle a static set of services.

This section explains how to deploy Microgateway as a Kubernetes service.

To deploy a Microgateway as a Kubernetes service

1. Ensure you have a running Kubernetes environment.

For details on setting up of a Kubernetes environment, see Kubernetes documentation.

2. Create a Microgateway Docker image.

a. Create a Docker file with any configuration.

52 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

For example, prepare a Microgateway image running the EmployeeService:
./microgateway.sh createDockerFile --http_port 7071
--docker_file MyDockerFile --docker_dir . --archive EmployeeService.zip

b. Build the Microgateway Docker image and prepare it for pushing to a Docker registry to
make it available for Kubernetes.

docker build -t mg-employees -f MyDockerFile .
docker tag my-microgw reghost:regport/mg-employees

c. Push the Docker image to the Docker registry.

docker push reghost:regport/mg-employees

The Microgateway Docker image is now ready and can be used from Kubernetes.

3. Create and expose Microgateway as Kubernetes deployment as follows:

kubectl create deployment mg-employees
--image=reghost:regport/my-employees
kubectl expose deployment mg-employees --type=NodePort --port=7071

AKubernetes pod is created and started, after which a Kubernetes service is exposed through
a port that can be accessed from outside the cluster.

4. Verify the Microgateway Kubernetes service definition and the exposed IP and port.

Get the Kubernetes services and find out the IP of the running Microgateway service:
kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) …
mg-employees NodePort 10.99.156.94 <none> 7071:31428/TCP
. . .

You should now be able to access Microgateway service as follows:
GET http://10.99.156.94:31428/rest/microgateway/status

Deploying Microgateway as a Kubernetes Service using a YAML
file

Microgateway offers capability to generate a deployment YAML file, which can be used to set up
pods and services indside a Kubernetes server. WHen accessing API Gateway for APIs to be used,
you can specify appropriate parameters, which are then specified as environment settings in the
YAML file.

To deploy a Microgateway as a Kubernetes service using a YAML file

1. Ensure you have a running Kubernetes environment.

For details on setting up of a Kubernetes environment, see Kubernetes documentation.

webMethods Microgateway User's Guide 10.11 53

5 Kubernetes Support

2. Ensure that you have a Microgateway Docker image for the containers to be started on
Kubernetes.

3. Create the deployment YAML file by running the createKubernetesFile command.

Example:
./microgateway.sh createKubernetesFile -p 7071
-di lean-docker-image -pn mymg -gw myhost:5555
-gwu admin -apis MyAPI -au accessUrl -o MyMicrogatewayDeploy.yaml

The arguments used in the command specify the following:

DescriptionArgument

Microgateway access port to be used-p

Reference to a Microgateway image in a docker registry-di <a lean docker image>

Name for deployment, pod and service-pn

API Gateway host and port (can also be an address of
Kubernetes service)

-gw

User accessingAPIGateway. The password should be specified
with standard Kubernetes secrets)

-gwu

API to be used that are accessed API Gateway-apis

The access URL through which Microgateway can be reached.-au

If this value is not provided the default value taken would be
http://Kubernetes-service-name:port

The output YAML file, which can be used for deployment-o

4. Deploy the deployment YAMLfile to establish aMicrogateway podwith aKubernetes service.

Example:
kubectl -f MyMicrogatewayDeploy.yaml

Microgateway now registers to the specified API Gateway, and API Gateway can reach
Microgateway through the address given with the -au parameter.

5. Verify that the connections are successful from the Microgateway management section in API
Gateway UI.

For details about Microgateway management section in API Gateway, see webMethods API
Gateway User's Guide

54 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

Kubernetes Sidecar Deployment

AMicrogateway Kubernetes sidecar deployment can be established by creating a pod containing
two containers; one container runs the native service, and the other container runs theMicrogateway
protecting the native service.

The diagram depicts Microgateway Kubernetes sidecar deployment.

Each pod consists of aMicrogateway container and the native service container. TheMicrogateway
can be connected to an API Gateway to pull API definitions and to push runtime metrics.

The native services are accessed by consumers through the Microgateway endpoint. Since the
native services are not exposed by the Kubernetes configuration the Microgateway can't be
by-passed. Consumer requests are routed by the Microgateways to the native services.

To access the native service from theMicrogateway container, Microgateway has to use localhost
as URL together with the port exposed by the native service as both the containers are treated as
being within the same host.

You can have the following sidecar deployment models:

A stand-alone Kubernetes sidecar deployment

A Kubernetes sidecar connected to API Gateway

webMethods Microgateway User's Guide 10.11 55

5 Kubernetes Support

Deploying a Stand-alone Kubernetes Sidecar
This section describes how you can deploy a stand-alone Kubernetes sidecar. Stand-alone means
that the Microgateways are not connected to an API Gateway. The API definitions are provided
through API Gateway export archives.

Before you start with the deployment ensure you have done the following:

Ensure you have a running Kubernetes environment.

For details on setting up of a Kubernetes environment, see Kubernetes documentation.

The native service Docker images are pushed to a Docker registry to make them available for
the Kubernetes environment.

To set up a Kubernetes sidecar deployment

1. Prepare the Microgateway Docker file.

You first create an archive with the prepared API from an API Gateway that holds the API
definition for EmployeeService and then create a Docker file that runsMicrogatewaywith that
asset archive.
./microgateway.sh createAssetArchive -gw localhost:5555
-gwu user –gwp password –apis EmployeeService –a EmployeeService.zip

./microgateway.sh createDockerFile --http_port 7076
--docker_file DockerFileEmployees
--docker_dir . --archive EmployeeService.zip

2. Build the Microgateway Docker image and push it to the Docker registry.

This is achieved by tagging it with the registry URL.
docker build -t mg-employees-sidecar -f DockerFileEmployees .

docker tag mg-employees-sidecar reghost:regport/mg-employees-sidecar

docker push reghost:regport/mg-employees-sidecar

3. Create a template for Kubernetes sidecar deployment.

Microgateway offers a function to generate a Kubernetes YAML file, which can be used for a
convenient deployment. You may specify the sidecar parameters together with the
Microgateway image parameters to have the two containers created within one pod. There
are additional options for number of pods or adjusting health checks.
./microgateway.sh createKubernetesFile
--docker_image reghost:regport/mg-employees-sidecar
--pod_name mg-employees-sidecar
--sidecar_docker_image reghost:regport/employees-sservice
--sidecar_pod_name employees-sservice
--output mg-employees-sidecar-deployment.yml

4. Create and check the Kubernetes deployment.

56 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

kubectl create –f mg-employees-sidecar-deployment.yml

kubectl get pods
NAME READY STATUS ...
mg-employees-sidecar 2/2 Running

TheKubernetes podwith the 2 containers are created and started. If the deployment is successful
you should see 2 out of 2 containers running. You can now expose Microgateway sidecar
deployment as a Kubernetes service.
kubectl expose deployment mg-employees-sidecar --type=NodePort --port=7076

5. Verify the Microgateway Kubernetes service definition including the exposed IP and port.

Get the Kubernetes services and find out the IP of the running Microgateway sidecar service:
kubectl get services
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) …
mg-employees-sidecar NodePort 10.99.106.44 <none> 7076:31238/TCP

You can now access the Microgateway server.
GET http://10.99.106.44:31238/rest/microgateway/status

Deploying a Kubernetes Sidecar Connected to API Gateway
This section describes a Microgateway Kubernetes sidecar deployment where the Microgateways
are connected to anAPIGateway for pullingAPI definitions and runtimemetrics data aggregation.
The API Gateway instance may run as Kubernetes service.

Before you start with the deployment ensure you have done the following:

Ensure you have a running Kubernetes environment.

For details on setting up of a Kubernetes environment, see Kubernetes documentation.

There is an API Gateway instance running in a dedicated Kubernetes service.

There is a native service Docker image in the Docker registry (employees-service).

To set up a Kubernetes sidecar deployment connected to API Gateway

1. Create aMicrogatewayDocker image that can be pushed to the registry the Kubernetes cluster
is connected to.
./microgateway.sh createDockerFile -c ../pull-employee-service.yml
--docker_file DockerFileEmployees -dod .

The command creates the Docker file DockerFileEmployees based on the custom settings file
pull-employee-service.yml that holds the configuration for pulling the definition of the
EmployeeService API.
api_gateway:
url: 'http://localhost:5555/rest/apigateway'
user: 'Administrator'

webMethods Microgateway User's Guide 10.11 57

5 Kubernetes Support

password: 'manage'
ports:
http: '9090'

downloads:
apis: "EmployeeService"

microgatewayPool:
microgatewayPoolName: employee-service-mcgw
microgatewayPoolDescription: Microgateways of EmployeeServices.

The configuration also holds entries to register the Microgateway to the Microgateway pool
employee-service-mcgw in the referenced API Gateway.

2. Create the imagemg-employees-registered, from the resultingDocker fileDockerFileEmployees,
using docker build.
docker build -t mg-employees-registered -f DockerFileEmployees .

3. Tag the resulting image and push it to the registry.
docker tag mg-employees-sidecar reghost :regport /mg-employees-registered
docker push reghost :regport /mg-employees-registered

4. Create the Kubernetes YAML file using the createKubernetesFile command.
./microgateway.sh createKubernetesFile
--docker_image reghost:regport/mg-employees-registered
--pod_name mg-employees-registered
--sidecar_docker_image reghost:regport/employees-sservice
--sidecar_pod_name employees-sservice
--output mg-employees-registered-deployment.yml

5. Change the Microgateway configuration, in the resulting Kubernetes file, by modifying the
Microgateway environment variables.

For example, the API Gateway URL can be reconfigured through the environment variable
mcgw_api_gateway_url as shown by the following YAML fragment:
containers:

name: mg-employees-registered
image: reghost:regport/mg-employees-registered
imagePullPolicy: IfNotPresent

- env:
- name: mcgw_api_gateway_url
value: http://10.20.198.90:31929/rest/apigateway

- name: mcgw_api_gateway_user
value: Administrator

- name: mcgw_api_gateway_password
value: manage

livenessProbe:
exec:

command:
- /bin/sh
- -c
- /opt/softwareag/Microgateway/files/k8s-lifenesscheck.sh

failureThreshold: 3
initialDelaySeconds: 10
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 5

58 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

readinessProbe:
exec:

command:
- /bin/sh
- -c
- /opt/softwareag/Microgateway/files/k8s-readinesscheck.sh

failureThreshold: 3
initialDelaySeconds: 10
periodSeconds: 10
successThreshold: 1
timeoutSeconds: 5

Deploying a Kubernetes Sidecar using Helm Charts
If you are using helm charts for your Kubernetes deployments and management, then you can
follow the outlined procedure for a convenient Microgateway Kubernetes deployment.

To set up a Microgateway Kubernetes sidecar deployment with Helm charts

1. Install Helm and Tiller.

For details on installing Helm and Tiller, see Helm documentation and Tiller documentation.

2. Create your Helm chart.
helm create mg-helmchart

3. Replace deployment template data.

To achieve this, edit ./mg-helmchart/templates/deployment.yaml and replace the given content.
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ .Release.Name }}
labels:

app: {{ .Release.Name }}
category: microgateway

spec:
replicas: {{ .Values.replicaCount }}
selector:

matchLabels:
app: {{ .Release.Name }}

template:
metadata:

labels:
app: {{ .Release.Name }}

annotations:
prometheus.io/scrape: "{{ .Values.metrics.prometheus }}"

spec:
containers:

- name: {{ .Release.Name }}
image: "{{ .Values.image.repository }}:{{ .Values.image.tag }}"
imagePullPolicy: {{ .Values.image.pullPolicy }}
ports:

- name: http
containerPort: {{ .Values.image.containerPort }}

webMethods Microgateway User's Guide 10.11 59

5 Kubernetes Support

protocol: TCP
livenessProbe:

exec:
command:
- /bin/sh
- -c
- /opt/softwareag/Microgateway/files/k8s-lifenesscheck.sh

initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

readinessProbe:
exec:

command:
- /bin/sh
- -c
- /opt/softwareag/Microgateway/files/k8s-readinesscheck.sh

initialDelaySeconds: 10
periodSeconds: 10
timeoutSeconds: 5
failureThreshold: 3

{{- if .Values.sidecarimage }}
- name: "{{ .Values.sidecarimage.name }}"
image: "{{ .Values.sidecarimage.repository }}:

{{ .Values.sidecarimage.tag }}"
imagePullPolicy: {{ .Values.sidecarimage.pullPolicy }}

{{- end }}
resources:

{{- toYaml .Values.resources | nindent 12 }}
{{- with .Values.nodeSelector }}
nodeSelector:
{{- toYaml . | nindent 8 }}

{{- end }}
{{- with .Values.affinity }}

affinity:
{{- toYaml . | nindent 8 }}

{{- end }}
{{- with .Values.tolerations }}

tolerations:
{{- toYaml . | nindent 8 }}

{{- end }}

4. Replace and adapt the values data.

To achieve this, edit ./mg-helmchart/values.yaml and adapt values (for example, the
Microgateway Docker image or if a sidecar image is to be used).
This is a YAML-formatted file.
Declare variables to be passed into your templates.

replicaCount: 1

The Microgateway Docker image
image:
repository: localhost:5000/mg-node-tours
tag: latest
containerPort: 7072
pullPolicy: IfNotPresent

The sidecar Docker image of the native service (if used, uncomment

60 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

and adapt values)
sidecarimage:
repository: localhost:5000/node-tours
tag: latest
name: sidecar-node
pullPolicy: IfNotPresent

metrics:
prometheus: true

service:
type: NodePort
type: LoadBalancer
port: 7072

ingress:
enabled: false
paths: []
hosts: []
tls: []

resources: {}
We usually recommend not to specify default resources and to leave this

as a conscious # choice for the user.

nodeSelector: {}

tolerations: []

affinity: {}

5. Check your environment.
helm install --dry-run --debug --name mg-test ./mg-helmchart

6. Deploy the chart to Kubernetes.
helm install --name mg-test ./mg-helmchart

7. Check the pods, deployment, and services for the resources created.

You can clear the entire deployment using the following command:
helm delete --purge mg-test

You have to restart the Kubernetes pods for the environment settings to be used.

Prometheus Microgateway Metrics

The Prometheus Microgateway metrics are provided at the server and API levels. This section
provides details of both these metrics.

Server-Level Metrics

All servermetrics have themetric typeguage and a Prometheus label ofhost="hostname|ipaddress".
The table lists the server-level Prometheus metrics for a Microgateway.

webMethods Microgateway User's Guide 10.11 61

5 Kubernetes Support

DescriptionPrometheus metric name

The number of deployed APIs.sag_microgateway_api_count

The total number of HTTP requests
since the last statistics poll.

sag_microgateway_http_requests

The total number of HTTP requests
since Microgateway startup.

sag_microgateway_total_http_requests

The maximummemory in MB that the
Microgateway JVM instance attempts
to use.

sag_microgateway_max_memory_mb

This indicates the upper memory
threshold.

The total memory in MB allocated in
the Microgateway JVM.

sag_microgateway_total_memory_mb

This value may vary over time
depending on the JVM memory
handling.

The free memory in MB in the
Microgateway JVM.

sag_microgateway_free_memory_mb

This value may increase due to JVM's
garbage collection.

The memory in MB that is occupied in
the Microgateway JVM.

sag_microgateway_used_memory_mb

This value is calculated as
sag_microgateway_total_memory_mb
- sag_microgateway_free_memory_mb.

The current number of threads in use
in a Microgateway instance.

sag_microgateway_threads

The maximum number of threads in a
Microgateway JVMwithin a measured
interval.

sag_microgateway_max_threads

The current number of internal TCP
connections allocated by the
Microgateway server.

sag_microgateway_connections

This number might increase during
parallel multi-user access to the server.

62 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

DescriptionPrometheus metric name

Themaximum number of internal TCP
connections the Microgateway server
has allocated.

sag_microgateway_max_connections

The total number of internal TCP
connections the Microgateway server
might allocate.

sag_microgateway_total_connections

This indicates the upper threshold
number of TCP connections allocated
by the Microgateway server.

The metrics are stored as time series. Each sample consists of:

a float64 value

a millisecond-precision timestamp

Sample for the metric sag_microgateway_api_count
HELP sag_microgateway_api_count The number of deployed APIs.
TYPE sag_microgateway_api_count gauge
sag_microgateway_api_count{host="microgateway-10-4-cd6d47f85-z2rwq"}
2 1549887734839

Sample for the metric sag_microgateway_http_requests
HELP sag_microgateway_http_requests The total number of HTTP requests since
last poll.
TYPE sag_microgateway_http_requests gauge
sag_microgateway_http_requests{host="microgateway-10-4-cd6d47f85-z2rwq"}
100 1549887734839

Sample for the metric sag_microgateway_total_http_requests
HELP sag_microgateway_total_http_requests The total number of HTTP requests
since Microgateway startup.
TYPE sag_microgateway_total_http_requests gauge
sag_microgateway_total_http_requests{host="microgateway-10-4-cd6d47f85-z2rwq"}
1100 1549887734839

API-Level Metrics

All API-level metrics have the metric type guage and Prometheus labels of
host="hostname|ipaddress" and api="apiName". The table lists the API-level Prometheusmetrics for
a Microgateway.

DescriptionPrometheus metric name

Total number of error events.sag_microgateway_api_error_count

webMethods Microgateway User's Guide 10.11 63

5 Kubernetes Support

DescriptionPrometheus metric name

Total number of policy violations.sag_microgateway_api_policy_violation_count

Total number of transactions.sag_microgateway_api_transaction_count

The average time taken by the API to
complete all invocations in the current

sag_microgateway_api_average_response_time

interval. This is measured from the
moment API Gateway receives the
request until the moment it returns the
response to the client.

The number of failed invocations since
the last statistics poll.

sag_microgateway_api_fault_count

The maximum time taken by the API to
complete an invocation since the last
statistics poll.

sag_microgateway_api_maximum_response_time

The minimum time taken by the API to
complete an invocation since the last
statistics poll.

sag_microgateway_api_minimum_response_time

The number of successful API
invocations since the last statistics poll.

sag_microgateway_api_successful_request_count

The total number of requests for each
activeAPI inAPIGateway since the last
statistics poll.

sag_microgateway_api_total_request_count

64 webMethods Microgateway User's Guide 10.11

5 Kubernetes Support

6 Policies

■ Policies Supported in Microgateway ... 66

■ Transport .. 66

■ Identify and Access .. 67

■ Request Processing ... 77

■ Routing ... 87

■ Traffic Monitoring .. 103

■ Response Processing .. 109

■ Error Handling .. 119

■ API Scopes ... 123

webMethods Microgateway User's Guide 10.11 65

Policies Supported in Microgateway

This section provides information about the runtime policies supported inMicrogateway. A policy
can be enforced on an API to perform specific tasks, such as transport, authorization, routing of
requests to target services, logging, , and error handling of data. For example, a policy could
instruct Microgateway to perform any of the following tasks and prevent malicious attacks:

Verify that the requests submitted to an API come from applications that are authenticated
and authorized using only Basic Auth and API Key headers.

Limits the number of invocations during a specified time interval for a particular API and for
applications, and send alerts to API Gatewaywhen these performance conditions are violated.

Log the request and response messages.

Note:
These policies are configured inAPI Gateway and provisioned toMicrogateway.Microgateway
neglects the configurations that are not supported.

Policies are grouped into stages as per their usage. For example, the policies in the Identify and
Access stage can be enforced on an API to specify the kind of identifiers that are used to identify
the application and authorize it against all applications registered in Microgateway.

Microgateway supports the system-defined policies that are grouped into stages depending on
their usage.

Transport

Identity and Access

Request Processing

Routing

Traffic Monitoring

Response Processing

Error Handling

Transport

The policies in this stage specify the protocol to be used for an incoming request during
communication between Microgateway and an application. The policy included in this stage is
Enable HTTP/HTTPS.

Enable HTTP/HTTPS
This policy specifies the protocol to use for an incoming request to the API on Microgateway. If
you have a native API that requires clients to communicate with the server using the HTTP and

66 webMethods Microgateway User's Guide 10.11

6 Policies

HTTPS protocols, you can use the Enable HTTP or HTTPS policy. This policy allows you to bridge
the transport protocols between the client and Microgateway.

For example, you have a native API that is exposed over HTTPS and an API that receives requests
over HTTP. If you want to expose the API to the consumers of Microgateway through HTTP, then
you configure the incoming protocol as HTTP.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Specifies the protocol (HTTP orHTTPS) to be used to accept and process
the requests.

Protocol

The following properties when set specify the following:

HTTP. Microgateway accepts requests that are sent using the HTTP
protocol. This is the default setting.

HTTPS.Microgateway accepts requests that are sent using theHTTPS
protocol.

Identify and Access

The policies in this stage provide different ways of identifying and authorizing an application,
and providing the required access rights for the application.Microgateway supports the following
identify and access management policies:

Authorize User

Identify & Authorize

The Authorize User policy authorizes the application against a list of users and a list of groups
registered in Microgateway.

The Identify and Authorize policy is used to authorize and allow the client applications to access
APIs depending on the identification type specified to validate the client credentials.

User Identification to Support Identity and Access Management
Policy
Microgateway supports authentication against users who are defined through API Gateway. The
authentication is performed against a read-only user repository. This ensures that users can be
authenticated even if Microgateway is not connected to any running API Gateway instance. The
Microgateway user repository is populated by copying theAPIGateway user repository (users.cnf)
when provisioning a Microgateway.

The figure illustrates the Microgateway user repository being populated by copying the API
Gateway user repository.

webMethods Microgateway User's Guide 10.11 67

6 Policies

When you provision a Microgateway or start a Microgateway the users.cnf and related
configurations are picked up from the location IntegrationServer\instances\default\config\
users.cnf in the API Gateway installation directory.

The API Gateway installation directory can be specified using the Microgateway configuration
parameter apigw_dir

The parameter can be specified either as a command line option or through the Microgateway
configuration file.

The configuration parameter applies to the following Microgateway commands:

createInstance

createDockerFile

These commands create a copy of the users.cnf. The apigw_dir also affects the users.cnf lookup
that happens during Microgateway start. The lookup procedure checks for local users.cnf
(config/users.cnf). If there is no local users.cnf, then lookup users.cnf using apigw_dir. If apigw_dir
or users.cnf is not found, then the startup fails.

Microgateway does not support user authentication by default. To activate user authentication
you have to specify the parameter user_auth = internalwhen provisioning or starting a
Microgateway.

If the user authentication is not activated, APIs with authentication policies are rejected. The
users.cnf lookup is only performed when user authentication is activated.

Delegated authentication using API Gateway

Microgateway supports the delegated authentication to API Gateway. API Gateway performs the
authentication against the configured LDAP or the user repository.

68 webMethods Microgateway User's Guide 10.11

6 Policies

The delegated authentication is activated by setting the parameter user_auth = delegated . When
the delegated authentication is activated, Microgateway talks to the API Gateway authentication
API.

The authentication API exposes the resource: /rest/apigateway/authenticate

The resource exposes a POST method. The a user authentication is triggered through the request:
POST /rest/apigateway/authenticate
{

"user-id":"",
"password:"",
"domain":""
"includeGroups":true

}

includeGroups is set to true only when Authorize User policy is configured. Based on the value,
the groups details of the user are sent in response from API Gateway to Microgateway.

The password and user credentials are transferred in an unencryptedway. Therefore, the delegated
authentication must happen through HTTPS.

On successful authentication the API returns a HTTP 200 response with user information and
expiry information as follows:
HTTP 200 OK
{

"status": "Authenticated",
"accessProfiles": [

"Administrators",
"Tyche"

],
"groups": [

"Administrators",
"Tyche"

],
"user": "user1",

"expires":"60"
}

The response provides information about the user, accessProfiles, groups, and the expiry interval.
This tells the Microgateway for how long the delegated authentication result can be cached.

webMethods Microgateway User's Guide 10.11 69

6 Policies

If the authentication fails the API returns a HTTP 401 response.

Authorize User
This policy authorizes incoming requests against the list of users in the users.cnf file in
Microgateway, or the list of users in the users.cnf file in API Gateway, or against the list of users,
groups or LDAP groups configured in API Gateway. This authentication happens depending on
the setting user_auth configured in Microgateway and the authentication configuration in API
Gateway. For details, see “User Identification to Support Identity and Access Management
Policy” on page 67.

Use this policy together with an authentication policy (for example, Require HTTP Basic
Authentication).

The table lists the parameters of this policy and howMicrogateway applies them to authorize the
incoming requests.

DescriptionParameter

Authorizes incoming requests against a list of users configured in
Microgateway in the users.cnf file.

List of Users

Authorizes incoming requests against a list of groups configured in
this policy.

List of Groups

This is performed by delegating the authorization to API Gateway
to verify if the user identified from the request belongs to any groups
configured in the policy. The delegation to API Gateway is achieved
when the property user_auth is set as delegated. When the property
user_auth is not set as delegated, the policy executes this condition
as false.

Note:
You cannot use the List of Groups configuration option to
authorize the LDAP groups.

Authorizes incoming requests against a list of teams configured in
this policy.

List of Teams

This is performed by delegating the authorization to API Gateway
to verify if the user identified from the request belongs to any team
configured in the policy. The delegation to API Gateway is achieved
when the property user_auth is set as delegated. When the property
user_auth is not set as delegated, the policy executes this condition
as false.

70 webMethods Microgateway User's Guide 10.11

6 Policies

Identify and Authorize
This policy authorizes and allows the client applications to access APIs depending on the
identification type specified to validate the client credentials.

The table lists the parameters of this policy and how Microgateway applies them to validate the
client credentials and authorize the client application to access the APIs.

DescriptionParameter

The condition operator for the identification and authentication
types specified for validating the client credentials.

Condition

Select one of the following condition operators:

AND. Applies all the identification and authentication types.

OR. Applies one of the specified identification and authentication
types.

Enable or disable the incoming requests to access the API without
any restriction.

Allow anonymous

When you enforce a security policy and select Allow anonymous,
Microgateway allows all incoming requests to pass through to the
native API. The successfully identified requests are grouped under
the respective identified application, and all unidentified requests
are grouped under a common application named unknown.

Even when all the incoming requests are allowed to pass through
without any restriction you can perform all application-specific
actions, such as:

Viewing the runtime events for a particular application.

Monitoring the service level agreement for a few applications
and sending an alert email based on some criteria like request
count or availability.

Throttling the incoming requests from a particular application
and not allowing the request from that application if the number
of requests reach the configured hard limitwithin the configured
interval.

Identification Type. Specifies the identification type. You can configure one or more of the
following identification types.

Denotes using the API key to identify and validate the authenticity
of the client's identity against the registered applications for the
specified API.

API Key

webMethods Microgateway User's Guide 10.11 71

6 Policies

DescriptionParameter

Denotes using the host name to identify the client, extract the client's
host name from the HTTP request header, and verify the client's
identity against the specified applications in Microgateway.

Hostname Address

Configure one of the following Application Lookup conditions to
verify the client's identity:

Registered applications. Verifies the client's hostname against
a list of registered applications for the specified API.

Global applications. Verifies the client's hostname against a list
of global applications.

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

Denotes using the Authorization request header to identify and
authorize the client application against the specified applications in
Microgateway that have the identifier username.

HTTP Basic Authentication

Configure one of the following Application Lookup conditions to
verify the client's identity:

Registered applications. Verifies the client's credentials against
the list of registered applications for the specified API.

Global applications. Verifies the client's credentials against a
list of global applications.

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

Denotes using the IP address range to identify the client, extract the
client's IP address from the HTTP request header, and verify the
client's identity against the specified applications in Microgateway.

IP Address Range

Configure one of the following Application Lookup conditions to
verify the client's identity:

Registered applications. Verifies the client's credentials against
a list of registered applications for the specified API.

Global applications. Verifies the client's credentials against a
list of global applications.

72 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

Denotes using the OAuth2 token to identify the client, extract the
client's credentials from the OAuth2 token, and verify the client's
identity against the specified list of applications in Microgateway.

OAuth2 Token

The tokens issued byAPIGateway are validated by delegating them
to the API Gateway instance. Configure the communication details
that are used byMicrogateway to introspect theAPIGateway-issued
OAuth2 tokens. For details on how to configure the communication
details, see webMethods API Gateway User's Guide.

Note:
The client id and other parameters can be used for further
processing using the request transformation policy.

Denotes using the JSONWeb Token (JWT) to identify the client,
extract the claims from the JWT and validate the client's claims, and

JWT

verify the client's identity against the specified applications in
Microgateway.

Configure one of the following Application Lookup conditions to
verify the client's identity:

Registered applications. Verifies the JWT against a list of
registered applications for the specified API.

Global applications. Verifies the JWT against a list of global
applications.

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

Note:
The claims in the JWT can be used for further processing using
the request transformation policy.

Denotes using the OpenID (ID) token to identify the client, extract
the client's credentials from the ID token, and verify the client's
identity against the specified list of applications in Microgateway.

OpenID Connect

webMethods Microgateway User's Guide 10.11 73

6 Policies

DescriptionParameter

You might have one of the following Application Lookup
conditions to verify the client's identity:

Registered applications. Verifies the ID token against a list of
registered applications for the specified API.

Global applications. Verifies the ID token against a list of global
applications.

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

Note:
The client id and other parameters can be used for further
processing using the request transformation policy.

Denotes using the SSL certificate to identify the client, extract the
client's identity certificate, and verify the client's identity

SSL Certificate

(certificate-based authentication) against the specified applications
in Microgateway.

Whenever both SSL certificate and custom header certificate are
present, the identification is done using the SSL certificate. When
the identification fails for the certificate obtained from SSL
handshake, the identification using the certificate from the custom
header is done.

Microgateway extracts the client certificate that is used to identify
the client from the request header. The certificate passed in the
header should be Base64Encoded or the certificate chain passed in
the header should be in the Base64Encoded (.pem) format.

If the transport protocol is HTTP or HTTPS, Microgateway checks
for the existence of a header and fetches the certificate from the
certificate header.

If the certificate is from the custom header, Microgateway does not
check the validity of the certificate and identifies the application
using the certificate.

Note:
Software AG recommends that an external entity validates the
certificate sent in the custom header.

During asset provisioning at Microgateway start up, the header
name is included in the system-settings.yml file. You can customize

74 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

the header name by modifying the value and including it in the
user-defined custom settings YAML file.

Configure one of the following Application Lookup conditions to
verify the client's identity:

Registered applications. Verifies the client certificate against
a list of registered applications for the specified API.

Global applications. Verifies the client certificate against a list
of global applications.

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

Denotes using the payload identifier to identify the client, extract
the custom authentication credentials supplied in the request

Payload Element

represented using the payload identifier, and verify the client's
identity against the specified applications in Microgateway.

Configure one of the following Application Lookup conditions to
verify the client's identity:

Registered applications. Verifies the client's payload identifier
against a list of registered applications for the specified API.

Global applications. Verifies the client's identity credentials
against a list of global applications.

Global applications and DefaultApplication. Identifies an
application against a list of global applications. If the application
is not identified, Microgateway sets this application to
DefaultApplication and forwards the request to the native
service.

In the Payload identifier section, provide the following information:

Expression type: Specifies the type of expression that is used
for identification. Use one of the following expression types:

XPath. Contains the following information:

Payload Expression. The payload expression to which
to convert the specified expression type in the request.

For example: /name/id

webMethods Microgateway User's Guide 10.11 75

6 Policies

DescriptionParameter

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

JSONPath. Specifies the JSONPath for the payload
identification.

For example: $.name.id

Text. Specifies the regular expression for the payload
identification.

You can have multiple payload identifiers. However, only one
payload of each type is allowed. For example, you can have a
maximumof three payload identifiers, each being of a different type.

Application Synchronization to support Identity and Access Management Policy

For Microgateway to support the Identity and Access Management (IAM) policies it is necessary
that Microgateway has the recently updated applications from the API Gateway instance from
where the applications are provisioned. Microgateway provides a mechanism to synchronize
applications between API Gateway and Microgateway to support the IAM policy.

During API provisioning the applications are pulled from the API Gateway instance into
Microgateway. After provisioning these applications in Microgateway, these applications have to
be in synchronization with those in API Gateway, from where they are provisioned, so that any
changes in the applications in the API Gateway instance is reflected in the Microgateway. This
helps the IAM policy execution for an API in Microgateway validate with the latest applications
instead of validating against the stale application data.

Application synchronization inMicrogateway is achieved through a pollingmechanism. To avoid
the consumption of a considerable amount ofmemory andCPU, theAPI Provider provides certain
configurations for polling the applications to minimize the memory and CPU utilization. Polling
can be done for the following parameters:

List of application ids

All registered applications of the APIs in Microgateway

All global applications

The property applicationstoSync is configured for polling the applicationswhere you can specify
the parameters in the format registeredapplication, all, or comma separated ids.

Considerations during application synchronization:

Microgateway is provisioned with the application synchronization configuration before start
up.

76 webMethods Microgateway User's Guide 10.11

6 Policies

Only one thread runs for synchronization.

When the thread execution crashes, it starts again.

A timestamp of the last synchronized application is maintained in the Microgateway instance
so that the next polling would be for applications updated > timestamp.

A property to specify the polling interval is added.

A property to enable or disable synchronization is added.

Request Processing

These policies are used to specify how the request message from an application has to be
transformed or pre-processed and configure the masking criteria for the data to be masked before
it is submitted to the native API. This is required to protect the data and accommodate differences
between themessage content that an application is capable of submitting and themessage content
that a native API expects. The policies included in this stage are:

Request Transformation

Validate API Specification

Data Masking

Request Transformation
This policy enables you to configure several transformations on the request messages from clients
into a format required by the native API before it is submitted to the native API.

The transformations include Header, Query Parameter, Path Parameter transformation, HTTP
Method transformation, and Payload transformation. You can configure conditions according to
which the transformations are executed.

Microgateway supports the following parameter types that can be used to configure the
transformation policy:

request.headers

request.query.QUERY_NAME (applicable only for REST API)

request.path(applicable only for REST API)

request.path.regex[Expression] (applicable only for REST API)

request.httpmethod (applicable only for REST API)

request.headers.HEADER_NAME

request.authorization.clientId

request.authorization.claims.CLAIM_NAME

request.authorization.userName

webMethods Microgateway User's Guide 10.11 77

6 Policies

Microgateway supports the followingQuery types that can be used to configure the transformation
policy:

xpath

jsonPath

regex

When you use these syntaxes to extract a value from the payload, the content-types applicable
are:

${payload.jsonPath} - application/json, application/json/badgerfish

${payload.regex} - text/plain

${payload.xpath} - application/xml, text/xml, text/html.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Conditions are used to specify when the policy has to be executed. You
can have multiple conditions with logical operators.

Condition

Available values are:

AND. Microgateway transforms the requests that complywith all the
configured conditions.

OR. This is selected by default.Microgateway transforms the requests
that comply with at least one configured condition.

Various conditions you can define are:

Variable: Specifies the variable type with a syntax as follows:

${PARAMTYPE} : This is applicable for variables of string type -
path, payload, httpMethod. For example: ${request.path}

${PARAMTYPE.paramName} : This is applicable formap types - query
and headers and also applicable for path. For example:
${request.query.var1}, ${request.header.Content-Type},
${request.path.name}

${PARAMTYPE.QUERYTYPE[queryValue]} : This syntax is applicable
for payload and path. regex can be applied on path while XPath,
JSONPath and regex can be applied on payload. For example:

${request.payload.xpath[//ns:emp/ns:empName]}where
//ns:emp/ns:empName is the xpath to be applied on the payload
if contentType is application/xml

78 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

${request.payload.jsonPath[$.cardDetails.number]}where
$.cardDetails.number is the jsonPath to be applied on the payload
if contentType is application/json

${request.payload.regex[[0-9]+]}where [0-9]+ is the regex to
be applied on the payload if contentType is text/plain

If you want Microgateway to apply xpath, jsonPath, regex based
on Content-Type of the payload, use the following common
syntax: ${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

For example:

${request.payload.xpath[//ns:emp/ns:empName] ||
request.payload.jsonPath[$.cardDetails.number]}This applies
xpath for application/xml and jsonPath for application/json

${request.payload.xpath[//ns:emp/ns:empName] ||
request.payload.jsonPath[$.cardDetails.number] ||
request.payload.regex[[0-9]+]} This applies xpath for
application/xml, jsonPath for application/json, and regex for
text/plain.

Operator: Specifies the operator to use to relate variable and the
value provided. You can select one of the following:

Equals

Equals ignore case

Not equals

Contains

Exists

Value: Specifies a value with a syntax as follows:

PLAIN VALUE, for example, application/json

${PARAMTYPE.paramName}

${PARAMTYPE.QUERYTYPE[queryValue]}

${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

Transformation Configuration: Specifies various transformations to be configured.

Specifies the Header, Query or path transformation to be configured for
incoming requests.

Header/Query/Path
Transformation

webMethods Microgateway User's Guide 10.11 79

6 Policies

DescriptionParameter

Various configurations you can define are:

Variable. Specifies the variable type with a syntax as follows:

${PARAMTYPE}. This is applicable for variables of string type - path,
payload, httpMethod. For example: ${request.path}

${PARAMTYPE.paramName}. This is applicable formap types - query
and headers and also applicable for path. For example:
${request.query.var1}, ${request.header.Content-Type},
${request.path.name}

${PARAMTYPE.QUERYTYPE[queryValue]}. This syntax is applicable
for payload and path. regex can be applied on path while XPath,
JSONPath and regex can be applied on payload. For example:

${request.payload.xpath[//ns:emp/ns:empName]}where
//ns:emp/ns:empName is the xpath to be applied on the payload
if contentType is application/xml

${request.payload.jsonPath[$.cardDetails.number]}where
$.cardDetails.number is the jsonPath to be applied on the payload
if contentType is application/xml

${request.payload.regex[[0-9]+]}where [0-9]+ is the regex to
be applied on the payload if contentType is anything

If you want Microgateway to apply xpath, jsonPath, regex based
on Content-Type of the payload, use the following common
syntax: ${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

For example:

${request.payload.xpath[//ns:emp/ns:empName] ||
request.payload.jsonPath[$.cardDetails.number]}This applies
xpath for application/xml and jsonPath for application/json

${request.payload.xpath[//ns:emp/ns:empName] ||
request.payload.jsonPath[$.cardDetails.number] ||
request.payload.regex[[0-9]+]} This applies xpath for
application/xml, jsonPath for application/json, and regex for
text/xml.

Value. Specifies a value with a syntax as follows:

PLAIN VALUE, for example, application/json

${PARAMTYPE.paramName}

${PARAMTYPE.QUERYTYPE[queryValue]}

80 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

Specifies the method transformation to be configured for incoming
requests.

Method
transformation for
REST API

You can have any of the HTTP Method listed:

GET

POST

PUT

DELETE

HEAD

CUSTOM

Note:

WhenCUSTOM is selected, theHTTPmethod in incoming request
is sent to the native service. When other methods are selected, the
selected method is used in the request sent to the native service.
OnlyMethod Transformation happens when configured, but you
have to take care of adding payload during transformations
involving method change like GET to POST, and so on.

Specifies the payload transformation to be configured for incoming
requests.

Payload
Transformation

Specifies the following information:

An xslt document that contains the following information:

XSLT file. Specifies the XSLT file used to transform the request
messages as required.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can have multiple XSLT features and xslt documents.

Transformation Metadata: Specifies the metadata for transformation of the incoming requests.
For example, the namespaces configured in this section can be usedwhen you provide the syntax
for XPath ${request.payload.xpath} For example: ${request.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for transformation.Namespace

Provide the following information:

webMethods Microgateway User's Guide 10.11 81

6 Policies

DescriptionParameter

Namespace Prefix. The namespace prefix of the payload expression
to be validated.

Namespace URI. The namespace URI of the payload expression to
be validated.

Note:
You can have multiple namespace prefix and URI.

Validate API Specification
This policy validates the incoming request against various components of an API specification
such as schema, query parameters, path parameters, content-types, and HTTP headers.

The various components of an API specification are referenced as follows:

The schema for REST APIs can be imported through a swagger or a RAML file, or a file you
upload. The schema is available as part of the API definition.

The query parameters, path parameters, and content-types are available as part of the API
definition.

The HTTP headers are specified in the Validate API Specification policy page.

The requests sent to the API by a client application must conform with the structure or format
expected by the API. The incoming requests are validated against the API specifications selected
in this policy to conform to the structure or format expected by the API.

The various components of an API specification that can be validated are:

Schema

The incoming requests are validated against the schema provided in the API definition. The
schema defines the elements and attributes in the request payload and specifies the data types
of these elements to ensure that only appropriate data is allowed through to the API.

For a REST API, the schema validation execution depends on the content-type header in the
request. The default content-type header and schema validation type mapping is as follows:

Schema validation typeContent-type header

JSON schemaapplication/json

application/json/badgerfish

XML schemaapplication/xml

text/xml

text/html

82 webMethods Microgateway User's Guide 10.11

6 Policies

Schema validation typeContent-type header

Regular expressiontext/plain

Note:
If the schema specified for a content-type header in the API definition is not as specified in
the mapping table, then the behavior is as follows:

If there is no schema specified for a content-type header in a REST API, the validation
is skipped.
If application/json is mapped to XML schema in the API definition, then the JSON
content in the request is validated against XML schema to provide a backward
compatibility support for APIs migrated from API Gateway 10.1 version.
If only XML schemamappings exist for any of the content-types, the payload is converted
into XML and validated against all the XML schemas. If the payload is valid against
one of the schemas, the validation is successful.
If the payload cannot be converted to XML format, the validation is not performed and
the request is allowed to reach the native API.

Query Parameters

The query parameters in the incoming requests are validated against the corresponding query
parameter data type specified in the API definition.

Path Parameters

The path parameters in the incoming requests are validated against the corresponding path
parameter data type specified in the API definition.

Cookie Parameters

The cookie parameters in the incoming requests are validated against the corresponding cookie
parameter data type specified in the API definition.

Content-types

The content-types in the incoming requests are validated against the corresponding
content-types specified in the API definition.

HTTP Headers

The HTTP headers in the incoming requests are validated against the corresponding HTTP
headers specified in this policy to conform to the HTTP headers expected by the API.

The API requests that fail the specification validation are considered as policy violations. You can
view such policy violation events in the API Gateway dashboard.

The table lists the parameters of this policy and how they are applied to validate API requests.

DescriptionParameter

Validates the request payload against the appropriate schema (based on
the content-type header in the request).

Schema

webMethods Microgateway User's Guide 10.11 83

6 Policies

DescriptionParameter

Additional features for XML schema validation are:

Feature name. The name for the schema configuration.

For example: TOLERATE_DUPLICATES, NAMESPACE_GROWTH

Feature value. Specifies whether the feature value is True or False.

Validates the query parameters in the incoming request against the query
parameters defined in the API definition.

Query Parameters

Note:
Except File data type, all the other data types,String,Date,Date time,
Integer, Double, and Boolean, are supported for the available types.

Validates the path parameters in the incoming request against the path
parameters defined in the API definition.

Path Parameters

Note:
Except File data type, all the other data types,String,Date,Date time,
Integer, Double, and Boolean, are supported for the available types.

Validates the cookie parameters in the incoming request against the
cookie parameters defined in the API definition.

Cookie Parameters

Note:
Except File data type, all the other data types,String,Date,Date time,
Integer, Double, and Boolean, are supported for the available types.

Validates the content-types in the incoming request against the
content-types defined in the API definition.

Content-types

Validates the HTTP header parameters in the incoming request against
the HTTP headers defined in this policy.

HTTP Headers

Various conditions and additional information you can define are:

Condition. Specifies the logical operator to use to validate multiple
HTTP headers in the incoming API requests.

Available values are:

AND. Microgateway accepts only the requests that contain all
configured HTTP headers.

OR. This is selected by default. Microgateway accepts requests
that contain at least one configured HTTP header.

HTTP Header Key. Specifies a key that must be passed through the
HTTP header of the incoming API requests.

84 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Header Value. Optional. Specifies the corresponding key value that
could be passed through the HTTP header of the incoming API
requests.

The Header Value field type accepts string and regular expression
(regex).

Data Masking
Data masking is a technique whereby sensitive data is masked in some way to render it safe and
protect the actual data while having a functional substitute for occasions when the real data is not
required.

This policy is used to mask sensitive data at the application level. At the application level you
must have an Identify and Access policy configured to identify the application for which the
masking is applied. If no application is specified then it will be applied for all the other requests.
Fields can be masked or filtered in the request messages received. You can configure the masking
criteria as required for the XPath, JSONPath, and Regex expressions based on the content-type.
This policy can also be applied at the API scope level.

The table lists the content-type and masking criteria mapping.

Masking CriteriaContent-type

XPathapplication/xml

text/xml

text/html

JSONPathapplication/json

application/json/badgerfish

Regextext/plain

The table lists themasking criteria properties configured tomask the data in the request messages
received:

DescriptionParameter

Optional. Specifies the applications for which the masking criterion has
to be applied.

Consumer
Applications

For example: If there is a DataMasking(DM1) criteria created for
application1 a second DataMasking(DM2) for application2 and a third
DataMasking(DM3) with out any application, then for a request that
comes from consumer1 themasking criteria DM1 is applied, for a request

webMethods Microgateway User's Guide 10.11 85

6 Policies

DescriptionParameter

that comes from consumer2 DM2 is applied. If a request comes with out
any application or from any other application except application1 and
application2 DM3 is applied.

XPath: Specifies the masking criteria for XPath expressions in the request messages.

Specifies the masking criteria that contains the following information:Masking Criteria

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specifies the query expression that has to be
masked or filtered.

For example: /pet/details/status, /user/details/card/ccnumber.

Mask Value. This is available if masking type selected is Mask.
Specifies themask value. For example: sold, anymask value #####.

Note:
You can have multiple masking criteria.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:
You can have multiple namespace prefix and URI specified.

JSONPath: Specifies the masking criteria for JSONPath expressions in the request messages.

Specifies the masking criteria that contains the following information::Masking Criteria

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specifies the query expression that has to be
masked or filtered. For example: $.pet.details.status

Mask Value. This is available if masking type selected is Mask.
Specifies the mask value. For example: sold

86 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Regex: Specifies the masking criteria for regular expressions in the request messages.

Specifies the masking criteria that contains the following information::Masking Criteria

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specifies the query expression that has to be
masked or filtered. For example: [0-9]+

Mask Value. This is available if masking type selected is Mask.
Specifies the mask value. For example: ########

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

Select this option to apply masking criteria for payload in the incoming
request.

Apply for payload

Routing

The policies in this stage enforce routing of requests to target APIs based on the rules you can
define to route the requests andmanage their respective redirections according to the initial request
path. The policies included in this stage are

Straight-through routing

Content-based routing

Conditional routing

Outbound Auth - Transport

Straight Through Routing
When you select the Straight Through routing protocol, the API routes the requests directly to the
native service endpoint you specify. If your entry protocol is HTTP or HTTPS, you can select the
Straight Through routing policy.

The table lists the properties that are supported for this policy in Microgateway:

ValueParameter

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

webMethods Microgateway User's Guide 10.11 87

6 Policies

ValueParameter

have been added to the Microgateway instance are also included
in the list.

Note:
Only simple aliases, endpoint aliases, and service registry aliases
are supported in Microgateway.

If you choose a service registry, Microgateway sends a request to
the service registry to discover the IP address and port at which the
native service is running.Microgateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned
by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

Specifies the available routingmethods:GET, POST,PUT,DELETE,
and CUSTOM (default).

HTTP Method

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then Microgateway uses the value
specified in theConnection timeoutfield in the routingprotocol
processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing

88 webMethods Microgateway User's Guide 10.11

6 Policies

ValueParameter

step at the API level or specify a value 0 at an alias level, then
Microgateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then Microgateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then Microgateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then Microgateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then Microgateway uses the default value of 30 seconds.

SSL configuration - Specifies values to enable SSL client authentication that Microgateway uses
to authenticate incoming requests for the native API.

Specifies the keystore alias that is present in the system-settings.yml.
This value (along with the value of Client Certificate Alias) is used
for performing SSL client authentication.

Keystore Alias

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter. An alias that you have included in the discovery
service URI while adding the service registry to Microgateway.

webMethods Microgateway User's Guide 10.11 89

6 Policies

ValueParameter

Value. A value for the path parameter. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must provide {serviceName} as Parameter and the name of the
service as Value.

Content-based Routing
If you have a native API that is hosted at two or more endpoints, you can use the Content-based
routing protocol to route specific types of messages to specific endpoints. You can route messages
to different endpoints based on specific values that appear in the request message. You might use
this capability, for example, to determinewhich operation the consuming application has requested,
and route requests for complex operations to an endpoint on a fast machine. For example, if your
entry protocol is HTTP or HTTPS, you can select the Content-based routing. The requests are
routed according to the content-based routing rules you create. Youmay specify how to authenticate
requests.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Default Route To: Specifies the URLs of two or more native services in a pool to which the
requests are routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that

Endpoint URI

have been added to the Microgateway instance are also included
in the list.

Note:
Only simple aliases, endpoint aliases, and service registry aliases
are supported in Microgateway.

If you choose a service registry, Microgateway sends a request to
the service registry to discover the IP address and port at which
the native service is running. Microgateway replaces the service
registry alias in the Endpoint URI with the IP address and port
returned by the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

90 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

HTTP Method

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then Microgateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
Microgateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then Microgateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the

webMethods Microgateway User's Guide 10.11 91

6 Policies

DescriptionParameter

Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then Microgateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then Microgateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then Microgateway uses the default value of 30 seconds.

SSL Configuration. Specifies values to enable SSL client authentication that Microgateway uses
to authenticate incoming requests for the native API.

Specifies the keystore alias that is present in the system-settings.yml.
This value (along with the value of Client Certificate Alias) is used
for performing SSL client authentication.

Keystore Alias

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter. An alias that you have included in the discovery
service URI while adding the service registry to Microgateway.

Value. A value for the path parameter. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must provide {serviceName} as Parameter and the name of the
service as Value.

Rule: Defines the routing decisions based on one of the following routing options.

Specifies using the payload identifier to identify the client, extract
the custom authentication credentials supplied in the request

Payload Identifier

92 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

represented using the payload identifier, and verify the client's
identity.

The Payload identifier includes the following information.

Expression type. Specifies the type of expression, which is
used for identification. You can have one the following
expression type:

XPath. Provide the following information:

Payload Expression. Specifies the payload expression
that the specified XPath expression type in the request
has to be converted to. For example: /name/id

Namespace Prefix. The namespace prefix of the
payload expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

JSONPath. Provide thePayload Expression that specifies
the payload expression that the specified JSONPath
expression type in the request has to be converted to. For
example: $.name.id

Text. Provide the Payload Expression that specifies the
payload expression that the specified Text expression type
in the request has to be converted to. For example: any valid
regular expression.

You can have multiple payload identifiers as required.

Note:
Only one payload identifier of each type is allowed. For example,
you can have amaximumof three payload identifiers, each being
of a different type.

Route To. Specifies the Endpoint URI of native APIs in a pool to which the requests are routed.

Specifies the URI of the native API endpoint to route the request
to. You can use service registries in a similar manner as described
in the main Endpoint URI above.

Endpoint URI

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

HTTP Method

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are

webMethods Microgateway User's Guide 10.11 93

6 Policies

DescriptionParameter

selected, the selectedmethod is used in the request sent to the native
service.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then Microgateway uses the value
specified in the Connection timeout field in the routing
protocol processing step of an API. The Read Timeout value
specified at an API level takes precedence over the global
configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
Microgateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then Microgateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then Microgateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API

94 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

level or specify a value 0 at an alias level, then Microgateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then Microgateway uses the default value of 30 seconds.

Specifies values to enable SSL client authentication that
Microgateway uses to authenticate incoming requests for the native
API.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias that is present in
the system-settings.yml. This value (along with the value of
Client Certificate Alias) is used for performing SSL client
authentication.

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery Endpoint
Parameter

Parameter. An alias that you have included in the discovery
service URI while adding the service registry to Microgateway.

Value. A value for the path parameter. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must provide {serviceName} as Parameter and the name of the
service as Value.

Conditional Routing
If you have a native API that is hosted at two or more endpoints, you can use the conditional
protocol to route specific types ofmessages to specific endpoints. The requests are routed according
to the conditional routing rules you create. For example, if your entry protocol is HTTP or HTTPS,
you can select conditional routing. A routing rule specifies where requests should be routed to,
and the criteria bywhich they should be routed to the specifiedURL. In addition, youmay specify
how to authenticate the incoming requests.

The table lists the properties that are supported for this policy in Microgateway:

webMethods Microgateway User's Guide 10.11 95

6 Policies

DescriptionParameter

Default Route To. Specifies the URLs of two or more native services in a pool to which the
requests are routed.

Specifies the URI of the native API endpoint to route the request to
in case all routing rules evaluate to False. Service registries that have

Endpoint URI

been added to the Microgateway instance are also included in the
list.

Note:
Only simple aliases, endpoint aliases, and service registry aliases
are supported in Microgateway.

If you choose a service registry, Microgateway sends a request to
the service registry to discover the IP address and port at which the
native service is running.Microgateway replaces the service registry
alias in the Endpoint URI with the IP address and port returned by
the service registry.

For example, if your service is hosted at the URL:
http://host:port/abc/, you need to configure the Endpoint URI
as: http://${ServiceRegistryName}/abc/.

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

HTTP Method

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Note:
Software AG recommends to use Request Transformation >
Method Transformation to achieve this as other transformations
can also be done under the same policy.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then Microgateway uses the value
specified in theConnection timeoutfield in the routing protocol

96 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
Microgateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then Microgateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then Microgateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then Microgateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then Microgateway uses the default value of 30 seconds.

SSL Configuration. Specifies values to enable SSL client authentication that Microgateway uses
to authenticate incoming requests for the native API.

Specifies the keystore alias that is present in the system-settings.yml.
This value (along with the value of Client Certificate Alias) is used
for performing SSL client authentication.

Keystore Alias

Specifies the alias for the private key, which must be stored in the
keystore specified by the keystore alias.

Key Alias

Service Registry Configuration

webMethods Microgateway User's Guide 10.11 97

6 Policies

DescriptionParameter

Values required for constructing the discovery service URI.Service Discovery
Endpoint Parameter

Parameter: An alias that you have included in the discovery
service URI while adding the service registry to Microgateway.

Value: A value for the path parameter. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must provide {serviceName} as Parameter and the name of the
service as Value.

Rule. Defines the routing decisions based on one of the following routing options.

Specifies the name for the rule.Name

Specifies the condition operator to be used.Condition Operator

The operators can be one of the following operators:

OR. Specifies that one of the set conditions should be applied.

AND. Specifies all the set conditions should be applied.

Specify the context variables for processing client requests.Condition

Select any of the following variables:Variable

Consumer. Specifies the name of the consumer application in
the text box.

Variable Value. Specifies a value in the Variable Value text
box.

Date

Operator. Specifies one of the following operators: After or
Before .

Variable Value. Specifies a date value.

IPV4. Specifies that IP version to be IPV4.

From IP.Type an IP address range.

To IP. Type an IP address range.

IPV6. Specifies that IP version to be IPV6.

98 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

From IP. Type an IP address range.

To IP. Type an IP address range.

Predefined Context Variable

Predefined Context. Specifies a predefined context.

Operator. Select one of the following operators: Equal To
or Not Equal To.

Variable Value. Specifies a value for the selected predefined
context.

Time

Operator. Specifies one of the following operators: After or
Before.

Hours. Specifies a time value in hours.

Minutes. Specifies a time value in minutes.

Route To. Specifies the endpoint URI of native services in a pool towhich the requests are routed.

Specifies the URI of the native API endpoint to route the request to.
You can use service registries in a similar manner as described in
the main Endpoint URI above.

Endpoint URI

Specifies the available routingmethods:GET,POST,PUT,DELETE,
and CUSTOM (default).

HTTP Method

When CUSTOM is selected, the HTTP method in the incoming
request is sent to the native service. When other methods are
selected, the selectedmethod is used in the request sent to the native
service.

Specifies the time interval (in seconds) after which a connection
attempt times out.

HTTP Connection Timeout
(seconds)

The precedence of the Connection Timeout configuration is as
follows:

1. If you specify a value for the Connection timeout field in
routing endpoint alias, then the Connection timeout value
specified in the Endpoint alias section takes precedence over
the timeout values defined at the API level and the global level.

2. If you specify a value 0 for the Connection timeout field in
routing endpoint alias, then Microgateway uses the value
specified in theConnection timeoutfield in the routing protocol

webMethods Microgateway User's Guide 10.11 99

6 Policies

DescriptionParameter

processing step of an API. The Read Timeout value specified at
an API level takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the
Connection timeout field in the routing protocol processing
step at the API level or specify a value 0 at an alias level, then
Microgateway uses the value specified in this
pg.endpoint.connectionTimeout property.

4. If you do not specify any value for
pg.endpoint.connectionTimeout, then Microgateway uses the
default value of 30 seconds.

Specifies the time interval (in seconds) after which a socket read
attempt times out.

Read Timeout (seconds)

The precedence of the Read Timeout configuration is as follows:

1. If you specify a value for the Read timeout field in routing
endpoint alias, then the Read timeout value specified in the
Endpoint alias section takes precedence over the timeout values
defined at the API level and the global level.

2. If you specify a value 0 for the Read timeout field in routing
endpoint alias, then Microgateway uses the value specified in
the Read Timeout field in the routing protocol processing step
of an API. The Read Timeout value specified at an API level
takes precedence over the global configuration.

3. If you specify a value 0 or do not specify a value for the Read
timeout field in the routing protocol processing step at the API
level or specify a value 0 at an alias level, then Microgateway
uses the value specified in this pg.endpoint.readTimeout
property.

4. If you do not specify any value for pg.endpoint.readTimeout,
then Microgateway uses the default value of 30 seconds.

Specifies values to enable SSL client authentication that
Microgateway uses to authenticate incoming requests for the native
API.

SSL Configuration

Provide the following information:

Keystore Alias. Specifies the keystore alias that is present in
the system-settings.yml. This value (along with the value of
Client Certificate Alias) is used for performing SSL client
authentication.

100 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Key Alias. Specifies the alias for the private key, which must
be stored in the keystore specified by the keystore alias.

Service Registry Configuration

Values required for constructing the discovery service URI.Service Discovery
Endpoint Parameter

Parameter. An alias that you have included in the discovery
service URI while adding the service registry to Microgateway.

Value. A value for the path parameter. The alias specified in
Path Parameter is substituted with this value when invoking
the discovery service.

For example: if the service registry configuration of the service
registry that you have selected in Endpoint URI has Service
discovery path set to /catalog/service/{serviceName} (and the
{serviceName} alias is intended for passing the service name), you
must provide {serviceName} as Parameter and the name of the
service as Value.

Outbound Auth - Transport
When the native API is protected and expects the authentication credentials to be passed through
transport headers, you can use this policy to provide the credentials that will be added to the
request and sent to the nativeAPI.Microgateway supports awide range of authentication schemes,
such as Basic Authentication, OAuth, and JWT at the transport-level.

Note:
Transport-level authentication can be used to secure the REST APIs.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Specifies one of the following schemes for outbound authentication
at the transport level:

Authentication scheme

Basic. Uses basic HTTP authentication details to authenticate
the client.

OAuth2. Uses OAuth token details to authenticate the client.

JWT. Uses JSON web token details to authenticate the client.

Anonymous. Authenticates the client without any credentials.

Alias. Uses the configured alias name for authentication.

webMethods Microgateway User's Guide 10.11 101

6 Policies

DescriptionParameter

Specifies one of the following modes to authenticate the client:Authenticate using

Custom credentials. Uses the values specified in the policy to
obtain the required token to access the native API.

Delegate incoming credentials. Uses the values specified in
the policy by the API providers to select whether to delegate
the incoming token or act as a normal client.

Incoming HTTP Basic Auth credentials. Uses the incoming
user credentials to retrieve the authentication token to access
the native API.

Incoming OAuth token. Uses the incoming OAuth2 token to
access the native API.

Incoming JWT. Uses the incoming JSONWeb Token (JWT) to
access the native API.

Uses the HTTP authentication details to authenticate the client.Basic

Microgateway supports the following modes of HTTP
authentication:

Custom credentials

Incoming HTTP Basic Auth credentials

Provide the following credentials:

User Name. Specifies the user name.

Password. Specifies the password of the user.

Domain Name. Specifies the domain in which the user resides.

Uses the OAuth2 token to authenticate the client.OAuth2

Microgateway supports the following modes of OAuth2
authentication:

Custom credentials

Incoming OAuth token

OAuth2 token. Specifies the client's OAuth2 token.

Uses the JSONWeb Token (JWT) to authenticate the client.JWT

If the native API is enforced to use JWT for authenticating the client,
then Microgateway enforces the need for a valid JWT in the
outbound request while accessing the native API.

102 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Microgateway supports the Incoming JWT mode of JWT
authentication.

Name of the configured HTTP Transport Security alias.Alias

Traffic Monitoring

The policy in this stage provides ways to enable logging request and responses to a specified
destination. The policy included in this stage is Log Invocation.

The policies in this stage provide ways to enable logging request and responses to a specified
destination and enforce limits for the number of service invocations during a specified time interval
and send alerts to a specified destination when the performance conditions are violated. The
policies included in this stage are:

Log Invocation

Traffic Optimization

Monitor Performance

Monitor Level Agreement

Log Invocation
This policy enables logging requests or responses to API Gateway and external Elasticsearch. This
action also logs other information about the requests or responses, such as theAPI name, operation
name, the Integration Server user, a timestamp, and the response time.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Logs all requests.Store Request

Logs all responses.Store Response

Compresses the logged payload data.Compress Payload Data

Specifies how frequently to log the payload.Log Generation Frequency

You can have one of the following options:

Always. Logs all requests and responses.

On Failure. Logs only the failed requests and responses.

On Success. Logs only the successful responses and requests.

webMethods Microgateway User's Guide 10.11 103

6 Policies

DescriptionParameter

Specifies the destination where to log the payload.Destination

You can have one of the required destinations:

API Gateway

Elasticsearch

Microgateway does not support destinations other than the ones
listed above.

Traffic Optimization
This policy limits the number of API invocations during a specified time interval, and sends alerts
to a specified destination when the performance conditions are violated. You can use this policy
to avoid overloading the back-end services and their infrastructure, to limit specific clients in terms
of resource usage, and so on.

This policy only limits the number of API invocationswithin a singleMicrogateway instance. That
is, the policy is not applicable across Microgateway instances holding the same APIs.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Limit Configuration.

Specifies the name of throttling rule to be applied. For example, Total
Request Count.

Rule name

Specifies the operator that connects the rule to the value specified.Operator

The operator specified is Greater Than. For example, in this case the
throttling rule is applied when the Total Request Count is greater
than (exceeds the limit specified for) the value specified in the Value
field.

Specifies the value of the request count beyond which the policy is
violated.

Value

Note:

When multiple requests are made at the same time, it may be
possible that this limit applied to trigger an alert is not strictly
adhered to. There is no loss observed in the invocation counts
data, but there might be a delay in aggregating the count.
Aggregation across multiple Microgateway instances is not
supported. Aggregation is done at the instance level and the
same is considered for throttling limit.

104 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Specifies the destination to log the alerts.Destination

You can have one of the following required options:

API Gateway

Elasticsearch

Microgateway does not support destinations other than the ones listed
above.

Specifies the interval of time for the limit to be reached.Alert Interval

Specifies the unit for the time interval in minutes, hours, days, or
weeks for the alert interval.

Unit

Specifies the frequency at which the alerts are issued.Alert Frequency

You can have one of the following options:

Only Once. Triggers an alert only the first time the specified
condition is violated.

Every Time. Triggers an alert every time the specified condition
is violated.

Specifies the text message to be included in the alert.Alert Message

Specifies the application to which this policy applies.Consumer Applications

Monitor Performance
This policy is similar to the Monitor Level Agreement policy and does monitor the same set of
run-time performance conditions for an API in a Microgateway instance, and sends alerts when
the performance conditions are violated. However, this policy monitors run-time performance at
the API level. Parameters like success count, fault count, and total request count are immediate
monitoring parameters and the evaluation happens immediately after the limit is breached. The
rest of the parameters are Aggregatedmonitoring parameters whose evaluation happens once the
configured interval is over. If there is a breach in any of the parameters, an event notification (
Monitor event) is sent to the configureddestination. In a single policy,multiple action configurations
behave as AND condition. The OR condition can be achieved by configuring multiple policies.

This policy onlymonitors run-time performance conditionswithin a singleMicrogateway instance.
That is, the policy is not applicable across Microgateway instances holding the same APIs.

The table lists the properties that you can specify for this policy:

webMethods Microgateway User's Guide 10.11 105

6 Policies

ValueParameter

Action Configuration. Specifies the type of action to be configured.

Specifies the name of the metric to be monitored.Name

You can have one of the available metrics:

Availability. Indicates whether the API is available to the specified
clients in the current interval.

Average Response Time. Indicates the average time taken by the
API to complete all invocations in the current interval. The average
is calculated from the instant the API activation takes place for the
configured interval.

For example, if you set an alert for Average response time greater
than 30 ms with an interval of 1 minute then on API activation, the
monitoring interval starts and the average of the response time of
all runtime invocations for this API in 1minute is calculated. If this
is greater than 30 ms, then a monitor event is generated. If this is
configured under Monitor performance, then all the runtime
invokes are taken into account.

Fault Count. Indicates the number of faults returned in the current
interval.

Maximum Response Time. Indicates the maximum time to
respond to a request in the current interval.

Minimum Response Time. Indicates theminimum time to respond
to a request in the current interval.

Success Count. Indicates the number of successful requests in
the current interval.

Total Request Count. Indicates the total number of requests
(successful and unsuccessful) in the current interval.

Specifies the operator applicable to the metric selected.Operator

You can have one of the available operator: Greater Than, Less Than,
Equals To.

Specifies the alert value for which the monitoring is applied.Value

Specifies the destination where the alert is to be logged.Destination

You can have the required options:

API Gateway

Elasticsearch

106 webMethods Microgateway User's Guide 10.11

6 Policies

ValueParameter

Microgateway does not support destinations other than the ones listed
above.

Specifies the time period in which to monitor performance before
sending an alert if a condition is violated.

Alert Interval

The timer starts once theAPI is activated and resets after the configured
time interval. If an API is deactivated the interval gets reset and on
API activation it starts afresh.

Specifies the unit for the time interval inminutes, hours, days, orweeks
for the alert interval.

Unit

Specifies how frequently to issue alerts for the counter-based metrics
(Total Request Count, Success Count, Fault Count).

Alert Frequency

You can have one of the following options:

Only Once. Triggers an alert only the first time one of the specified
conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text to be included in the alert.Alert Message

Monitor Level Agreement
This policy monitors a set of run-time performance conditions for an API in a Microgateway
instance, and sends alerts to a specified destinationwhen the performance conditions are violated.
This policy enables you to monitor run-time performance for one or more specified applications.
You can configure this policy to define a Service Level Agreement (SLA),which is a set of conditions
that defines the level of performance that an application should expect from an API. You can use
this policy to identify whether the API threshold rules are met or exceeded. For example, you
might define an agreement with a particular application that sends an alert to the application if
responses are not sent within a certain maximum response time. You can configure SLAs for each
API or application combination.

Parameters like success count, fault count, and total request count are immediate monitoring
parameters and the evaluation happens immediately after the limit is breached. The rest of the
parameters areAggregatedmonitoring parameterswhose evaluation happens once the configured
interval is over. If there is a breach in any of the parameters, an event notification (Monitor event)
is sent to the configured destination. In a single policy, multiple action configurations behave as
AND condition. The OR condition can be achieved by configuring multiple policies.

This policy action only monitors run-time performance conditions within a single Microgateway
instance. That is, the policy is not applicable across Microgateway instances holding the same
APIs.

webMethods Microgateway User's Guide 10.11 107

6 Policies

The table lists the properties that you can specify for this policy:

ValueParameter

Action Configuration. Specifies the type of action to be configured.

Specifies the name of the metric to be monitored.Name

You can have one of the available metrics:

Availability. Indicates whether the API is available to the specified
clients in the current interval.

Average Response Time. Indicates the average time taken by the
API to complete all invocations in the current interval. The average
is calculated from the instant the API activation takes place for the
configured interval.

For example, if you set an alert for Average response time greater
than 30 ms with an interval of 1 minute then on API activation, the
monitoring interval starts and the average of the response time of
all runtime invocations for this API in 1 minute is calculated. If this
is greater than 30 ms, then a monitor event is generated. If this is
configured under Monitor Level Agreement policy with an option
to configure applications so that application specific SLAmonitoring
can be done, then the monitoring for the average response time is
done only for the specified application.

Fault Count. Indicates the number of faults returned in the current
interval.

Maximum Response Time. Indicates themaximum time to respond
to a request in the current interval.

Minimum Response Time. Indicates theminimum time to respond
to a request in the current interval.

Success Count. Indicates the number of successful requests in the
current interval.

Total Request Count. Indicates the total number of requests
(successful and unsuccessful) in the current interval.

Specifies the operator applicable to the metric selected.Operator

You can have one of the available operator: Greater Than, Less Than,
Equals To.

Specifies the alert value for which the monitoring is applied.Value

Specifies the destination where the alert is to be logged.Destination

You can have the required options:

108 webMethods Microgateway User's Guide 10.11

6 Policies

ValueParameter

API Gateway

Elasticsearch

Microgateway does not support destinations other than the ones listed
above.

Specifies the time period (in minutes) in which to monitor performance
before sending an alert if a condition is violated.

Alert Interval

The timer starts once theAPI is activated and resets after the configured
time interval. If and API is deactivated the interval gets reset and on
API activation its starts afresh.

Specifies how frequently to issue alerts for the counter-based metrics
(Total Request Count, Success Count, Fault Count).

Alert Frequency

You can have one of the options:

Only Once. Triggers an alert only the first time one of the specified
conditions is violated.

Every Time. Triggers an alert every time one of the specified
conditions is violated.

Specifies the text to be included in the alert.Alert Message

Specifies the application towhich this Service Level Agreement applies.Consumer Applications

Response Processing

These policies are used to specify how the response message from the API has to be transformed
or pre-processed and configure themasking criteria for the data to bemasked before it is submitted
to the application. This is required to protect the data and accommodate differences between the
message content that an API is capable of submitting and the message content that an application
expects. The policies included in this stage are:

Response Transformation

Validate API Specification

Data Masking

CORS

Response Transformation
This policy specifies the properties required to transform response messages from native APIs
into a format required by the client.

webMethods Microgateway User's Guide 10.11 109

6 Policies

This policy enables you to configure several transformations on the response messages before it
is sent to the client.

Microgateway supports the following parameter types that can be used to configure the
transformation policy:

response.payload

response.headers

response.statusCode

response.statusMessage

Microgateway supports the followingQuery types that can be used to configure the transformation
policy:

xpath

jsonPath

regex

When you use these syntaxes to extract a value from the payload, the content-types applicable
are:

${payload.jsonPath} - application/json, application/json/badgerfish

${payload.regex} - text/plain

${payload.xpath} - application/xml, text/xml, text/html.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Conditions are used to specify when the policy has to be executed. We
can add multiple conditions with logical operators.

Condition

Available values are:

AND. Microgateway transforms the responses that comply with all
the configured conditions

OR. This is selected by default. Microgateway transforms the
responses that comply at least one configured condition.

Various conditions you can define are:

Variable. Specifies the variable type with a syntax as follows:

${PARAMTYPE} : This is applicable for variables of string type -
payload, statusCode and statusMessage. For example:
${response.payload}

110 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

${PARAMTYPE.paramName} : This is applicable for map types -
headers. For example: , ${response.header.Content-Type},

${PARAMTYPE.QUERYTYPE[queryValue]} : This syntax is applicable
for payload. XPath, JSONPath and regex can be applied on
payload. For example:

${response.payload.xpath[//ns:emp/ns:empName]}where
//ns:emp/ns:empName is the xpath to be applied on the payload
if contentType is application/xml

${response.payload.jsonPath[$.cardDetails.number]}where
$.cardDetails.number is the jsonPath to be applied on the payload
if contentType is application/json

${response.payload.regex[[0-9]+]}where [0-9]+ is the regex to
be applied on the payload if contentType is text/plain

If you want Microgateway to apply xpath, jsonPath, regex based
on Content-Type of the payload, use the following common
syntax: ${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

For example:

${response.payload.xpath[//ns:emp/ns:empName] ||
response.payload.jsonPath[$.cardDetails.number]}This applies
xpath for application/xml and jsonPath for application/json

${response.payload.xpath[//ns:emp/ns:empName] ||
response.payload.jsonPath[$.cardDetails.number] ||
response.payload.regex[[0-9]+]} This applies xpath for
application/xml, jsonPath for application/json, and regex for
text/plain.

Operator. Specifies the operator to use to relate variable and the
value provided. You can select one of the following:

Equals

Equals ignore case

Not equals

Contains

Exists

Value. Specifies a value with a syntax as follows:

PLAIN VALUE, for example, application/json

webMethods Microgateway User's Guide 10.11 111

6 Policies

DescriptionParameter

${PARAMTYPE.paramName}

${PARAMTYPE.QUERYTYPE[queryValue]}

${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

Transformation Configuration. Specifies various transformations to be configured.

Specifies the Header, Query or path transformation to be configured for
the responses received from the native API.

Header/Query/Path
Transformation for
REST API

Various configurations you can define are:

Variable. Specifies the variable type with a syntax as follows:

${PARAMTYPE} : This is applicable for variables of string type -
payload, statusCode and statusMessage. For example:
${response.payload}

${PARAMTYPE.paramName} : This is applicable for map types -
headers. For example: , ${response.header.Content-Type},

${PARAMTYPE.QUERYTYPE[queryValue]} : This syntax is applicable
for payload. XPath, JSONPath and regex can be applied on
payload. For example:

${response.payload.xpath[//ns:emp/ns:empName]}where
//ns:emp/ns:empName is the xpath to be applied on the payload
if contentType is application/xml

${response.payload.jsonPath[$.cardDetails.number]}where
$.cardDetails.number is the jsonPath to be applied on the payload
if contentType is application/json

${response.payload.regex[[0-9]+]}where [0-9]+ is the regex to
be applied on the payload if contentType is text/plain

If you want Microgateway to apply xpath, jsonPath, regex based
on Content-Type of the payload, use the following common
syntax: ${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

For example:

${response.payload.xpath[//ns:emp/ns:empName] ||
response.payload.jsonPath[$.cardDetails.number]}This applies
xpath for application/xml and jsonPath for application/json

${response.payload.xpath[//ns:emp/ns:empName] ||
response.payload.jsonPath[$.cardDetails.number] ||

112 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

response.payload.regex[[0-9]+]} This applies xpath for
application/xml, jsonPath for application/json, and regex for
text/plain.

Value. Specifies a value with a syntax as follows:

PLAIN VALUE, for example, application/json

${PARAMTYPE.paramName}

${PARAMTYPE.QUERYTYPE[queryValue]}

${PARAMTYPE.QUERYTYPE[queryValue] ||
PARAMTYPE.QUERYTYPE2[queryValue2] || ...}

Specifies the status transformation to be configured for the responses
received from the native API.

Status transformation

Code. Specifies the status code that is sent in the response to the
client.

Message. Specifies the Status message that is sent in the response to
the client.

Specifies the payload transformation to be configured for the responses
received from the native API.

Payload
Transformation

Specifies the following information:

An xslt document that contains the following information:

XSLT file. Specifies the XSLT file used to transform the response
messages as required.

Feature Name. Specifies the name of the XSLT feature.

Feature value. Specifies the value of the XSLT feature.

You can have multiple XSLT features and xslt documents.

Transformation Metadata. Specifies the metadata for transformation of the responses received
from the native API. For example, the namespaces configured in this section can be used when
you provide the syntax for XPath ${response.payload.xpath} For example:
${response.payload.xpath[//ns:emp/ns:empName]}

Specifies the namespace information to be configured for transformation.Namespace

Provide the following information:

Namespace Prefix. The namespace prefix of the payload expression
to be validated.

webMethods Microgateway User's Guide 10.11 113

6 Policies

DescriptionParameter

Namespace URI. The namespace URI of the payload expression to
be validated.

Note:
You can have multiple namespace prefix and URI.

Validate API Specification
This policy validates the responses against various components of an API specification such as
schema, content-types, and HTTP headers.

The various components of an API specification are referenced as follows:

The schema for REST APIs can be imported through a swagger or a RAML file, or a file you
upload. The schema is available as part of the API definition.

The content-types are available as part of the API definition.

The HTTP headers are specified in the Validate API Specification policy page.

The response sent to the API by the native service must conform with the structure or format
expected by theAPI. The responses from the nativeAPI are validated against theAPI specifications
selected in this policy to conform to the structure or format expected by the API.

The various components of an API specification that can be validated are:

Schema

The responses from the native API are validated against the schema provided in the API
definition. The schemadefines the elements and attributes in the response payload and specifies
the data types of these elements to ensure that only appropriate data is allowed through to
the API.

For a RESTAPI, the schema validation execution depends on the accept header in the response.
The default accept header and schema validation type mapping is as follows:

Schema validation typeAccept header

JSON schemaapplication/json

application/json/badgerfish

XML schemaapplication/xml

text/xml

text/html

Regular expressiontext/plain

114 webMethods Microgateway User's Guide 10.11

6 Policies

Content-types

The content-types in the responses from the nativeAPI are validated against the corresponding
content-types specified in the API definition.

HTTP Headers

TheHTTPheaders in the responses from the nativeAPI are validated against the corresponding
HTTP headers specified in this policy to conform to the HTTP headers expected by the API.

The API requests that fail the specification validation are considered as policy violations. Such
policy violation events that are generated can be viewed in the API Gateway dashboard.

The table lists the parameters of this policy and how they are applied to validate API requests:

DescriptionParameter

Validates the response payload against the appropriate schema (based
on the accept header in the response).

Schema

Additional features for XML schema validation are:

Feature name. The name for the schema configuration.

For example: TOLERATE_DUPLICATES, NAMESPACE_GROWTH

Feature value. Specifies whether the feature value is True or False.

Validates the content-types in the incoming response against the
content-types defined in the API definition.

Content-types

Validates the HTTP header parameters in the incoming response against
the HTTP headers defined in this policy.

HTTP Headers

Various conditions and additional information you can define are:

Condition: Specifies the logical operator to use to validate multiple
HTTP headers in the incoming API responses.

Available values are:

AND. Microgateway accepts only the responses that contain all
configured HTTP headers.

OR. This is selected by default. Microgateway accepts responses
that contain at least one configured HTTP header.

HTTP Header Key. Specifies a key that must be passed through the
HTTP header of the incoming API responses.

Header Value. Optional.. Specifies the corresponding key value that
could be passed through the HTTP header of the incoming API
responses.

webMethods Microgateway User's Guide 10.11 115

6 Policies

DescriptionParameter

The Header Value field type accepts string and regular expression
(regex).

Data Masking
Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data at the application level. At the application level you
must have an Identify and Access policy configured to identify the application for which the
masking is applied. If no application is specified then it is applied for all the other responses. Fields
can be masked or filtered in the response messages to be sent. You can configure the masking
criteria as required for the XPath, JSONPath, and Regex expressions based on the content-types.
This policy can also be applied at the API scope level.

The table lists the content-type and masking criteria mapping.

Masking CriteriaContent-type

XPathapplication/xml

text/xml

text/html

JSONPathapplication/json

application/json/badgerfish

Regextext/plain

The table lists the masking criteria properties that are configured to mask the data in the response
messages in Microgateway:

DescriptionParameter

Optional. Specifies the applications for which the masking criterion has
to be applied.

Consumer
Applications

For example: If there is a DataMasking(DM1) criteria created for
application1 a second DataMasking(DM2) for application2 and a third
DataMasking(DM3) with out any application, then for a request that
comes from consumer1 themasking criteria DM1 is applied, for a request
that comes from consumer2 DM2 is applied. If a request comes with out
any application or from any other application except application1 and
application2 DM3 is applied.

116 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

XPath: Specifies the masking criteria for XPath expressions in the response messages.

Specifies the masking criteria that contains the following information:Masking Criteria

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specifies the query expression that has to be
masked or filtered.

For example: /pet/details/status, /user/details/card/ccnumber.

Mask Value. This is available if masking type selected is Mask.
Provide a mask value. For example: sold, any mask value #####.

Note:
You can have multiple masking criteria.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:
You can have multiple namespace prefix and URI.

JSONPath. Specifies the masking criteria for JSONPath expressions in the response messages.

Specifies the masking criteria that contains the following information:Masking Criteria

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specify the query expression that has to be
masked or filtered. For example: $.pet.details.status

Mask Value. This is available if masking type selected is Mask.
Provide a mask value. For example: sold

Regex. Specifies the masking criteria for regular expressions in the response messages.

Specifies the masking criteria that contains the following information:Masking Criteria

webMethods Microgateway User's Guide 10.11 117

6 Policies

DescriptionParameter

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specify the query expression that has to be
masked or filtered. For example: [0-9]+

Mask Value. This is available if masking type selected is Mask.
Provide a mask value. For example: ########

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

Select this option to apply masking criteria for payload in the response
message.

Apply for payload

CORS
The Cross-Origin Resource Sharing (CORS) mechanism supports secure cross-domain requests
and data transfers between browsers and web servers. The CORS standard works by adding new
HTTP headers that allow servers to describe the set of origins that are permitted to read that
information.

This policy uses CORS support that uses additional HTTP headers to let a client or an application
gain permission to access selected resources. An application or a client makes a cross-originHTTP
request when it requests a resource from a different domain, protocol, or port than the one from
which the current request originated.

The table lists the CORS response specifications that are supported for this policy inMicrogateway:

DescriptionParameter

Specifies the origin from which the responses originating are allowed.Allowed Origins

syntax for the origin: scheme://host:port

You can have multiple origins and you can also provide Regular
expressions for allowed origins.

Allowed origins of applications registeredwith this API are also allowed
to access this API.

Specifies the age for which the preflight response is valid.Max Age

Specifies the methods that are allowed in the request.Allowed Methods

Specify one or more of the following: GET, POST, PUT, DELETE, and
PATCH.

118 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Specifies the Headers that are allowed in the request.Allow Headers

You can have multiple headers that are to be allowed.

Specifies whether the request credentials could be exposed to the user
on request failure.

Allow Credentials

Specifies the headers that be exposed to the user on request failure.Expose Headers

You can have multiple headers that are to be allowed.

A correspondingHTTPheader is set for all the values above as per the specification. For additional
information, see https://www.w3.org/TR/cors/.

Error Handling

The policy in this stage enables you to specify the error conditions, lets you determine how these
error conditions are to be processed. The policy included in this stage is Conditional Error
Processing. You can alsomask the datawhile processing the error conditions. The policies included
in this stage are:

Conditional Error Processing

Data Masking

Conditional Error Processing
Error Handling is the process of passing an exception message issued as a result of a run-time
error to take any necessary actions. This policy returns a custom error message (and the native
provider's service fault content) to the applicationwhen the native provider returns a service fault.
You can configure conditional error processing and use variables to create custom error messages.

The table lists the properties that are supported for this policy in Microgateway:

DescriptionParameter

Error conditions. Specifies the error conditions and how these error conditions should be
processed.

Specify the error status code.Status Code Error Criteria

Provide a value for the Code.

Provide the details of the custom HTTP header(s) included in the
client requests.

Header Error Criteria

Provide the following information:

Header Name. Specifies the name of the HTTP header.

webMethods Microgateway User's Guide 10.11 119

6 Policies

https://www.w3.org/TR/cors/

DescriptionParameter

Header Value. Specifies the value of the HTTP header.

Provide the details of the payload criteria in the API request.Payload Criteria

You can have the following information in the payload identifier
section:

Expression type. Specifies the type of expression,which is used
for identification. You can select one the following expression
type:

XPath. Provide the following information:

Payload Expression. Specifies the payload expression
that the specified XPath expression type in the request
or the response has to be converted to. For example:
/name/id.

The response maybe a native service error or
Microgateway generated error.

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload
expression to be validated.

Note:
You can include multiple namespace prefix and URI.

JSONPath. Provide the Payload Expression that specifies
the payload expression that the specified JSONPath
expression type in the request or the response has to be
converted to. For example: $.name.id.

The response maybe a native service error or Microgateway
generated error.

Text. Provide the Payload Expression that specifies the
payload expression that the specified Text expression type
in the request or response has to be converted to. For
example: any valid regular expression.

The response maybe a native service error or Microgateway
generated error.

You can add multiple payload identifiers as required.

Note:

120 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Only one payload identifier of each type is allowed. For
example, you can add amaximumof three payload identifiers,
each being of a different type.

Value: Specifies a value that has to match with the value contained
in the error Response.

Custom Error Variables. Specifies the error variables to be used in the custom error message.

Specify the payload type.Payload Type

Available values are:

Request. Specifies the request payload type.

Response. Specifies the response payload type.

Provide a name for the payload type.Name

Provide the details of the payload criteria in the API request.Payload Identifier

Provide the following information in the Payload identifier section:

Expression type. Specifies the type of expression contained in
the payload request.

Payload Expression. Specifies the payload expression that the
specified expression type in the request has to be converted to.

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespaceURI of the payload expression
to be validated.

Note:
You can add multiple namespace prefix and URI.

You can add multiple payload identifiers as required.

Failure Message. Specifies the custom failure message format that Microgateway should send
to the application. Specify whether the message should be in the text, json, or xml format.

Enable this parameter so that Microgateway sends the native REST
failure message to the application.

Send Native Provider Fault
Message

When you disable this parameter, the failure message is ignored
when a fault is returned by the native API provider.

webMethods Microgateway User's Guide 10.11 121

6 Policies

Data Masking
Data masking is a technique whereby sensitive data is obscured in some way to render it safe and
to protect the actual data while having a functional substitute for occasions when the real data is
not required.

This policy is used to mask sensitive data in the custom error messages being processed and sent
to the application. Fields can be masked or filtered in the error messages. You can configure the
masking criteria as required for the XPath, JPath, and Regex expressions. This policy can also be
applied at the API scope level.

The table lists the masking criteria properties that are supported for this policy in Microgateway
to mask the data in the error messages received:

DescriptionParameter

Specifies the applications for which the masking criterion has to be
applied.

Consumer
Applications

XPath. Specifies the masking criteria for XPath expressions in the error messages.

Specifies the masking criteria that contains the following information:Masking Criteria

Masking Type. Specifies the type of masking required. You can have
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specifies the query expression that has to be
masked or filtered. For example: /soapenv:Fault/faultstring

Mask Value. This is available if masking type selected is Mask.
Provide amask value. For example:Error occurred while processing
the request. Please check your input request or any other meaningful
message or string.

Note:
You can have multiple masking criteria.

Namespace. Specifies the following Namespace information:

Namespace Prefix. The namespace prefix of the payload
expression to be validated.

Namespace URI. The namespace URI of the payload expression
to be validated

Note:
You can have multiple namespace prefix and URI.

JPath. Specifies the masking criteria for JPath expressions in the error messages.

122 webMethods Microgateway User's Guide 10.11

6 Policies

DescriptionParameter

Specifies the masking criteria that contains the following information:Masking Criteria

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specify the query expression that has to be
masked or filtered. For example: $.error.reason

Mask Value. This is available if masking type selected is Mask.
Provide amask value. For example:Error occurred while processing
the request. Please check your input request or any other meaningful
message or string.

Regex. Specifies the masking criteria for regular expressions in the error messages.

Specifies the masking criteria that contains the following information:Masking Criteria

Masking Type. Specifies the type of masking required. You select
either Mask or Filter. Mask replaces the value with the given value
(the default value being ********) and Filter removes the field
completely.

Query expression. Specify the query expression that has to be
masked or filtered. For example: (.*)

Mask Value. This is available if masking type selected is Mask.
Provide amask value. For example:Error occurred while processing
the request. Please check your input request or any other meaningful
message or string.

Select this option to apply masking criteria for transactional logs.Apply for transaction
Logging

Select this option to apply masking criteria for payload.Apply for payload

API Scopes

API definitions can be complex and span acrossmultiple REST resources andmethods for an API.
To reduce the complexity of an API definition, you can define scopes and impose a set of policies
on each scope to suit your requirements. A scope represents a logical grouping of REST resources,
methods, or both in an API. An API can have a set of declared scopes.

API scopes are configured in API Gateway and provisioned to Microgateway.

Only the following policies are supported for API Scopes:

Identify and Access policy: Identify & Authorize

webMethods Microgateway User's Guide 10.11 123

6 Policies

Traffic Monitoring policies: Log Invocation, Traffic Optimization

Note:
If a scope references an unsupported policy, then the provisioning of the API is rejected.

124 webMethods Microgateway User's Guide 10.11

6 Policies

7 Service Registry Support

■ Overview .. 126

■ Service Registry Configuration ... 126

webMethods Microgateway User's Guide 10.11 125

Overview

Microgateway supports service discovery and provides capability to publish APIs to runtime
service registries.

In a micro-service landscape, service registries provide the information about service instances
and their location or endpoints. This information enables the service discovery during runtime.
Accordingly you can configure a Microgateway instance to register all its provisioned APIs to a
service registry. During startup, it generates one service registry entry per API. The endpoints of
the registered APIs are based on the host and port of the Microgateway instance. Multiple
Microgateway instances can expose the same APIs and register them to the same service registry.
The service registry then shows all the endpoints of the given APIs. During shutdown, a
Microgateway instance removes the service registry entries it has generated.

Microgateway currently supports the following service registries.

Eureka

Eureka is a REST-based service for locating services for the purpose of load balancing and
failover of middle-tier servers. It has been primarily designed for applications in the AWS
cloud.

Service Consul

Service Consul is a tool for discovering and configuring services in IT infrastructure.

Service Registry Configuration

You can configure service registry settings in one of the following ways:

By configuring the service registry settings in the user-defined custom settings YAML file that
is passed as an argument using the -c option during Microgateway startup.

By downloading the service registry settings from API Gateway using the -ds option with the
value true duringMicrogateway startup. The downloaded settings aremergedwith the settings
from the custom settings YAML file. The downloaded settings take preference over the values
in the custom settings YAML file in case of conflict during the merge.

To control the registration of APIs in a runtime service registry, theMicrogateway custom settings
file provides a publish section.

The publish section in the custom settings file is as follows:
publish:
registries:
- EurekaDefault

The publish section contains the registry names referencing the Service Registries. The APIs are
only published to the specified service registries during Microgateway startup. To address all the
configured service registries, use * as the registry name.Microgatewaydoes not supportAPI-specific
registration. Either all or none of theAPIs are published to the configured registries. The referenced
registries point to the entries in the service_registries section in the custom settings file.

126 webMethods Microgateway User's Guide 10.11

7 Service Registry Support

The yaml section for the service registry looks as follows:
service_registries:
EurekaDefault:

type: serviceRegistryAlias
description: Eureka is a REST based service that is primarily used in the

AWS cloud for locating services for the purpose of load balancing
and failover of middle-tier servers

owner: Administrator
endpointURI: http://localhost:9091
heartBeatInterval: 0
discoveryInfo:

path: /eureka/apps/{app}
httpMethod: GET

registrationInfo:
path: /eureka/apps/{app}
httpMethod: POST

deRegistrationInfo:
path: /eureka/apps/{app}/{instanceId}
httpMethod:DELETE

serviceRegistryType: EUREKA
connectionTimeout: 30
readTimeout: 30

The table lists the variables in the yaml file, their description and their usage.

DescriptionVariable

Name of the registryname

Type of the registry.serviceRegistryType

It is either EUREKA or SERVICE_CONSUL

Specifies the time, in seconds, for which the Microgateway tries to
connect to the registry.

connectionTimeout

Specifies the time, in seconds, for which the registry tries to connect
to the service endpoint.

readTimeout

The path of the registry.endpointURI

Information required to discover the registrydiscoveryInfo

path. The rest path of the registry to register services

http Method. The rest path of the registry to register services.

Information required to register services.registrationInfo

path. The rest path of the registry to register services.

http Method. The rest path of the registry to register services.

Information required to deregister services.deRegistrationInfo

path. The rest path of the registry to deregister services.

webMethods Microgateway User's Guide 10.11 127

7 Service Registry Support

DescriptionVariable

http Method. The rest path of the registry to deregister services.

A map of all custom Headers you need to reach your registry.customHeaders

This is required only if you use consul with "X-Consul-Token" : "" as
entry.

Optional. The username of the user authorized to to register services
at your registry.

username

Required if you are using the username. Specifies the password of the
user authorized to to register services at your registry.

password

128 webMethods Microgateway User's Guide 10.11

7 Service Registry Support

8 Command Line Reference

■ Microgateway Command Line Reference ... 130

webMethods Microgateway User's Guide 10.11 129

Microgateway Command Line Reference

This section describes operations you can perform such as, start and stop Microgateway, retrieve
Microgateway status, view the assets provisioned, create aMicrogateway instance, create an asset
archive, create a docker file, and so on through Command Line Interface(CLI).

Using Microgateway CLI

The Microgateway CLI script comes in 2 flavors: Windows (.bat) and Linux (.sh). Invoking the
script provides usage information:
Please renew the usage action:

start - Start a Microgateway server
stop - Stop a Microgateway server
status - Retrieve the Microgateway server status
assets - Show the provisioned assets of a running server
createInstance - Create a Microgateway instance
createAssetArchive - Create an asset archive
createDockerFile - Create a Microgateway docker file
createKubernetesFile - Create a Kubernetes file
downloadSettings - Create a custom settings file
settings - Show the settings configured in the Microgateway instance

Starting a Microgateway

Run the following command to start a Microgateway.
./microgateway.sh start options

where the options are:

Description-Shortcut, --Name

List of API Gateway archives-a, --archive <arg>

Password for administration access-adp,--admin_password <arg>

User for administration access-adu,--admin_user <arg>

List of API identifiers (name, unique identifier,
name/version).

-apis, --apis <arg>

List of global applications (name, unique identifier)-apps, --applications <arg>

Enable Applications sync-as, --apps_sync

Polling interval in secs for applications sync-asi, --apps_sync_interval

Connection timeout in secs for applications sync-ast, --apps_sync_timeout

Applications to synchronize (all, registeredApplications,
comma separated ids)

-asv, --apps_to_sync

130 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

Description-Shortcut, --Name

API Gateway base path-bp,--base_path <arg>

Configuration (YAML) file-c,--config <arg>

Downloads the settings from API Gateway.-ds,--download_settings

API Gateway URL-gw,--api_gateway <arg>

API Gateway password-gwp,--api_gateway_password <arg>

API Gateway user-gwu,--api_gateway_user <arg>

API Gateway install directory-gwd,--api_gateway_dir <arg>

To import one or more keystore files into Microgateway.-ikf,--import_keystore_file <arg>

If there are multiple keystore files you can provide the
keystore file names as comma separated items.

To import one ormore keystore passwords corresponding
to the keystore files being imported into Microgateway.

-ikp,--import_keystore_password
<arg>

To import one or more truststore files into Microgateway.-itf, --import_truststore_file <arg>

If there are multiple truststore files you can provide the
truststore file names as comma separated items.

To import one ormore truststore passwords corresponding
to the truststore files being imported into Microgateway

-itp, --import_truststore_password
<arg>

If there aremultiple truststore passwords you can provide
the password names as comma separated items.

JVM option.-jvmopt,--jvm_option <arg>

Microgateway supports multiple JVMs.

ERROR, WARN, INFO, DEBUG, TRACE-lv,--log_level <arg>

The default value is ERROR

Path to log files-lp,--log_path <arg>

The default value is logs

Number of parallel HTTP connections to the native API.-mpc,--max_parallel_connections <arg>

HTTP port number-p,--http_port <arg>

List of global policy identifiers (name, unique identifier).-pols,--policies <arg>

HTTPS port number-sp,--https_port <arg>

List of service registry names.-sr,--service_registries <arg>

webMethods Microgateway User's Guide 10.11 131

8 Command Line Reference

Description-Shortcut, --Name

User authentication method (internal or delegated)-ua,--user_auth <arg>

Print more information to console-v,--verbose

You will see a status message for each provisioned API.
Also, the user authentication status is exposed.

Stopping a Microgateway

Run the following command to stop a Microgateway.
./microgateway.sh stop options

where the options are:

Description-Shortcut, --Name

Configuration (YAML) file-c,--config <arg>

HTTP port number-p,--http_port <arg>

HTTPS port number-sp,--https_port <arg>

User for administration access-adu,--admin_user <arg>

Password for administration access-adp,--admin_password <arg>

Retrieving Microgateway Status

Run the following command to retrieve the status of a Microgateway.
./microgateway.sh status

Viewing the Provisioned Assets in Microgateway

Run the following command to view the assets provisioned in Microgateway.
./microgateway.sh assets options

where the options are:

Description-Shortcut, --Name

Configuration (YAML) file-c,--config <arg>

HTTP port number-p,--http_port <arg>

HTTPS port number-sp,--https_port <arg>

132 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

Description-Shortcut, --Name

User for administration access-adu,--admin_user <arg>

Password for administration access-adp,--admin_password <arg>

Print all details-v,--verbose

Creating a Microgateway Instance

Run the following command to create a Microgateway instance package.
./microgateway.sh createInstance options

where the options are:

Description-Shortcut, --Name

API Gateway install directory for taking over the user
credential file

-gwd,--api_gateway_dir <arg>

Configuration (YAML) file that would be copied into the
instance

-c,--config <arg>

Operating system (windows / linux)-os,--os <arg>

Zip filename to hold the resulting Microgateway instance
(mandatory)

-ins,--instance <arg>

To import one or more keystore files into Microgateway.-ikf,--import_keystore_file <arg>

If there aremultiple keystore files you can provide the keystore
file names as comma separated items.

To import one or more keystore passwords corresponding to
the keystore files being imported into Microgateway.

-ikp,--import_keystore_password
<arg>

To import one or more truststore files into Microgateway.-itf, --import_truststore_file <arg>

If there are multiple truststore files you can provide the
truststore file names as comma separated items.

To import one or more truststore passwords corresponding
to the truststore files being imported into Microgateway

-itp, --import_truststore_password
<arg>

If there aremultiple truststore passwords you can provide the
password names as comma separated items.

Print all details-v,--verbose

webMethods Microgateway User's Guide 10.11 133

8 Command Line Reference

Creating an Asset Archive

Run the following command to create an asset archive from a running API Gateway instance.
./microgateway.sh createAssetArchive options

where the options are:

Description-Shortcut, --Name

The resulting API Gateway archive-a, --archive <arg>

List of API identifiers (name, unique identifier, name/version).-apis, --apis <arg>

List of global applications (name, unique identifier,
name/version).

-apps, --applications <arg>

API Gateway URL-gw,--api_gateway <arg>

API Gateway password-gwp,--api_gateway_password
<arg>

API Gateway user-gwu,--api_gateway_user <arg>

List of global policy identifiers (name, unique identifier).-pols,--policies <arg>

Creating a Microgateway Docker File

Run the following command to create a Microgateway docker file.
./microgateway.sh createDockerFile options

where the options are:

Description-Shortcut, --Name

List of API Gateway archives-a, --archive <arg>

List of API identifiers-apis,--apis <arg>

List of global application identifiers-apps,--applications <arg>

Configuration (YAML) file-c,--config <arg>

Microgateway directory to use in Docker file-dod,--docker_dir

Filename to hold Docker file-dof,--docker_file

FROM image to use in Docker file-dor,--docker_from

Command to start micro service-exec, --exec

API Gateway URL-gw,--api_gateway <arg>

134 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

Description-Shortcut, --Name

API Gateway install directory-gwd,--api_gateway_dir <arg>

API Gateway password-gwp,--api_gateway_password
<arg>

API Gateway user-gwu,--api_gateway_user <arg>

To import one or more keystore files into Microgateway.-ikf,--import_keystore_file <arg>

If there aremultiple keystore files you can provide the keystore
file names as comma separated items.

To import one or more keystore passwords corresponding to
the keystore files being imported into Microgateway.

-ikp,--import_keystore_password
<arg>

To import one or more truststore files into Microgateway.-itf, --import_truststore_file <arg>

If there are multiple truststore files you can provide the
truststore file names as comma separated items.

To import one or more truststore passwords corresponding
to the truststore files being imported into Microgateway

-itp, --import_truststore_password
<arg>

If there aremultiple truststore passwords you can provide the
password names as comma separated items.

none, linux or linux-musl-jre, --jre

JVM option.-jvmopt,--jvm_option <arg>

Microgateway supports multiple JVMs.

ERROR, WARN, INFO, DEBUG, TRACE-lv,--log_level <arg>

The default value is ERROR

Indicates MSR base image-msr, --msr

HTTP port number-p,--http_port <arg>

List of global policy identifiers-pols,--policies <arg>

HTTPS port number-sp,--https_port <arg>

User authentication method (internal or delegated)-ua,--user_auth <arg>

Creating a Microgateway Kubernetes File

You can prepare aKubernetes deployment file (yml format) for deploying aMicrogatewayDocker
image toKubernetes. Sidecar deployment is possible and also health-checkmethods can be selected.

Run the following command to create a Microgateway Kubernetes file:

webMethods Microgateway User's Guide 10.11 135

8 Command Line Reference

./microgateway.sh createKubernetesFile options

where the options are:

Description-Shortcut, --Name

Name for the Kubernetes pod and deployment-pn,--pod_name <arg>

The Microgateway Docker image name (inside a docker
registry in the shape: registry/ imagename)

-di,--docker_image <arg>

Mode for Kubernetes health checks (all, lifeness, readiness)-hm,--health_mode <arg>

The default value is all.

The exposed port of the Microgateway Docker image-p,--http_port <arg>

Number of pod replicas.-rep,--replicas <arg>

The default value is 1.

Optional. Docker image name for the sidecar container (inside
a docker registry in the shape: registry/imagename)

-sdi,--sidecar_docker_image <arg>

Optional. NAme for the sidecar Kubernetes pod.-spn,--sidecar_pod_name <arg>

Generated output file (yml format)-o,--output <arg>

Creating Settings file

Run the following command to create a custom settings file.
./microgateway.sh downloadSettings options

where the options are:

Description-Shortcut, --Name

API Gateway URL-gw,--api_gateway <arg>

API Gateway password-gwp,--api_gateway_password
<arg>

API Gateway user-gwu,--api_gateway_user <arg>

Optional: input configuration file-c,--config <arg>

Output settings file-o, - output <arg>

Viewing the Settings in Microgateway

Run the following command to view the settings configured in the Microgateway instance.

136 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

./microgateway.sh settings options

where the options are:

Description-Shortcut, --Name

User for administration access-adu,--admin_user <arg>

Password for administration access-adp,--admin_password <arg>

Configuration (YAML) file-c,--config <arg>

HTTP port number-p,--http_port <arg>

HTTPS port number-sp,--https_port <arg>

Print all details-v,--verbose

system-settings.yml

The following shows a sample system-settings.yml file structure.

faults:

default_error_message: "API Gateway encountered an error.
Error Message: $ERROR_MESSAGE. Request Details: Service - $SERVICE,
Operation - $OPERATION, Invocation Time:$TIME, Date:$DATE,
Client IP - $CLIENT_IP, User - $USER and Application:$CONSUMER_APPLICATION"
native_provider_fault: "false"

extended_settings:
defaultEncoding: "UTF-8"
apiKeyHeader: "x-Gateway-APIKey"
apig_MENConfiguration_tickInterval: "60"
events.collectionQueue.size: "10000"
events.collectionPool.minThreads: "1"
events.collectionPool.maxThreads: "8"

gateway_destination:
sendPolicyViolationEvent: "true"

es_destination:
protocol: "http"
hostName: "localhost"
port: "9240"
indexName: "gateway_default_analytics"
userName: ""
password: ""
sendPolicyViolationEvent: "true"

key_store:
type: JKS
provider: SUN
location: config/keystore.jks
password: password

system:
version: "10.4.0.0"

webMethods Microgateway User's Guide 10.11 137

8 Command Line Reference

custom-settings.yml

The following shows a sample custom-settings.yml file structure.

ports:

http: 7071
https: 7072
key_alias: ssos

api_gateway:
url: http://localhost:5555
user: Administrator
password: password
dir: "C:\\SoftwareAG"
download_settings: "false"

api_endpoint:
base_path: "/gateway"

admin_api:
user: admin
password: password
admin_path: "/rest/microgateway"

downloads:
apis: EmployeeService
applications:
policies:

archive:
file: "E:/archives/gateway/EmployeeService.zip

policies:
user_auth: internal | delegated

logging:
level: "ERROR"
path: "logs"

applications_sync:
enabled: true | false
applications_to_sync: "all | registeredApplications | comma separated ids"
polling_interval_secs: 10
connection_timeout_secs: 10

faults:
default_error_message: "API Gateway encountered an error.
Error Message: $ERROR_MESSAGE.\

\ Request Details: Service - $SERVICE, Operation -
$OPERATION, Invocation Time:$TIME,\
\ Date:$DATE, Client IP - $CLIENT_IP, User - $USER and
Application:$CONSUMER_APPLICATION"

native_provider_fault: "false"
extended_settings:
apiKeyHeader: "x-Gateway-APIKey"
apig_MENConfiguration_tickInterval: "60"
apig_rest_service_redirect: "false"
apig_schemaValidationPoolSize: "10"
customCertificateHeader: "X-Client-Cert"
decodeAllDelimitersInURI: "false"
defaultEncoding: "UTF-8"

138 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

defaultLanguage: "en"
events.collectionPool.maxThreads: "8"
events.collectionPool.minThreads: "1"
events.collectionQueue.size: "10000"
events.reportingPool.maxThreads: "4"
events.reportingPool.minThreads: "2"
events.reportingQueue.size: "5000"
forwardInternalAPIsRequest: "false"
pg.3pSnmpSender.sendDelay: "0"
pg.cs.snmpTarget.base64Encoded: "false"
pg.cs.snmpTarget.connTimeout: "0"
pg.cs.snmpTarget.maxRequestSize: "10485760"
pg.cs.snmpTarget.retries: "1"
pg.cs.snmpTarget.sendTimeOut: "500"
pg.endpoint.connectionTimeout: "30"
pg.endpoint.readTimeout: "30"
pg.lb.failoverOnDowntimeErrorOnly: "true"
pg.snmp.communityTarget.base64Encoded: "false"
pg.snmp.communityTarget.maxRequestSize: "65535"
pg.snmp.communityTarget.retries: "1"
pg.snmp.communityTarget.sendTimeOut: "500"
pg.snmp.customTarget.connTimeout: "0"
pg.snmp.userTarget.maxRequestSize: "65535"
pg.snmp.userTarget.retries: "1"
pg.snmp.userTarget.sendTimeOut: "500"
pg.uddiClient.publish.maxThreads: "2"
pg.uddiClient.uddiClientTimeout: "15000"
pg_Cache_autoScalerRunInterval: "120"
pg_Cache_averageObjectSize: "64"
pg_Cache_boundedCacheResizerRunInterval: "30"
pg_Cache_maxCacheSize: "1048576"
pg_Cache_minCachePercent: "20"
pg_Cache_minCacheSize: "1024"
pg_Cache_statisticsProcessorRunInterval: "15"
pg_JWT_isHTTPS: "true" pg_OpenID_isHTTPS: "true"
pg_oauth2_isHTTPS: "true"
pg_xslt_disableDoctypeDeclarations: "true"
pg_xslt_enableDOM: "false"
pg_xslt_enableSecureProcessing: "true"
pgmen.quotaSurvival.addLostIntervals: "true"
pgmen.quotaSurvival.interval: "1"
retainResponseStatus: "false"
sendClientRequestURI: "false"
setDefaultContentType: "true"
transformerPoolSize: "5"

es_destination:
metricsPublishInterval: "60"
port: "9240"
sendAuditlogAPIManagementEvent: "false"
sendAuditlogAccessProfileManagementEvent: "false"
sendAuditlogAdministrationEvent: "false"
sendAuditlogAliasManagementEvent: "false"
sendAuditlogApplicationManagementEvent: "false"
sendAuditlogApprovalManagementEvent: "false"
sendAuditlogGroupManagementEvent: "false"
sendAuditlogPackageManagementEvent: "false"
sendAuditlogPlanManagementEvent: "false"
sendAuditlogPolicyManagementEvent: "false"
sendAuditlogPromotionManagementEvent: "false"
sendAuditlogRuntimeDataManagementEvent: "false"

webMethods Microgateway User's Guide 10.11 139

8 Command Line Reference

sendAuditlogUserManagementEvent: "false"
sendErrorEvent: "false"
sendLifecycleEvent: "false"
sendPerformanceMetrics: "false"
sendPolicyViolationEvent: "false"

gateway_destination:
metricsPublishInterval: "60"
sendAuditlogAPIManagementEvent: "true"
sendAuditlogAccessProfileManagementEvent: "true"
sendAuditlogAdministrationEvent: "true"
sendAuditlogAliasManagementEvent: "true"
sendAuditlogApplicationManagementEvent: "true"
sendAuditlogApprovalManagementEvent: "true"
sendAuditlogGroupManagementEvent: "true"
sendAuditlogPackageManagementEvent: "true"
sendAuditlogPlanManagementEvent: "true"
sendAuditlogPolicyManagementEvent: "true"
sendAuditlogPromotionManagementEvent: "true"
sendAuditlogRuntimeDataManagementEvent: "true"
sendAuditlogUserManagementEvent: "true"
sendErrorEvent: "true"
sendLifecycleEvent: "true"
sendPerformanceMetrics: "true"
sendPolicyViolationEvent: "true"

security_settings:
providers:
- !<clientMetadataMapping>

id: "PingFederate"
name: "PingFederate"
type: "clientMetadataMapping"
owner: "Administrator"
providerName: "PingFederate"
implNames:

grant_types: "grantTypes"
logo_uri: "logoUrl"
scope: "restrictedScopes"
client_secret: "secret"
redirect_uris: "redirectUris"
client_name: "name"
client_id: "clientId"

extendedValues: {}
extendedValuesV2:

- endpointType: "CLIENT_REGISTRATION"
key: "restrictScopes"
value: "true"

- endpointType: "CLIENT_UPDATE"
key: "restrictScopes"
value: "true"

- !<clientMetadataMapping>
id: "OKTA"
name: "OKTA"
type: "clientMetadataMapping"
owner: "Administrator"
providerName: "OKTA"
implNames: {}
extendedValues: {}
extendedValuesV2: []

auth_servers:
- !<authServerAlias>

id: "local"

140 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

name: "local"
description: "API Gateway as an Authorization server."
type: "authServerAlias"
owner: "Administrator"
tokenGeneratorConfig:

expiry: 0
accessTokenExpInterval: 3600
authCodeExpInterval: 600

authServerScopes: []
supportedGrantTypes:

- "authorization_code"
- "password"
- "client_credentials"
- "refresh_token"
- "implicit"

oauthTokens: []
authServerType: "LOCAL_IS"

service_registries:
- !<serviceRegistryAlias>
id: "ServiceConsulDefault"
name: "ServiceConsulDefault"
description: "Service Consul is a tool for discovering and configuring services\

\ in IT infrastructure."
type: "serviceRegistryAlias"
owner: "Administrator"
endpointURI: "http://localhost:8500/v1"
heartBeatInterval: 0 password: ""
customHeaders: {}
discoveryInfo:

path: "/catalog/service/{serviceName}"
httpMethod: "GET"

registrationInfo:
path: "/agent/service/register"
httpMethod: "PUT"

deRegistrationInfo:
path: "/agent/service/deregister/{serviceId}"
httpMethod: "PUT"

serviceRegistryType: "SERVICE_CONSUL"
connectionTimeout: 30
readTimeout: 30

- !<serviceRegistryAlias>
id: "EurekaDefault"
name: "EurekaDefault"
description: "Eureka is a REST based service that is primarily used in the AWS
cloud\
\ for locating services for the purpose of load balancing and failover of
middle-tier servers"
type: "serviceRegistryAlias"
owner: "Administrator"
endpointURI: "http://localhost:8761"
heartBeatInterval: 0
password: ""
customHeaders: {}
discoveryInfo:

path: "/eureka/apps/{app}"
httpMethod: "GET"

registrationInfo:
path: "/eureka/apps/{app}"
httpMethod: "POST"

webMethods Microgateway User's Guide 10.11 141

8 Command Line Reference

deRegistrationInfo:
path: "/eureka/apps/{app}/{instanceId}"
httpMethod: "DELETE"

serviceRegistryType: "EUREKA"
connectionTimeout: 30
readTimeout: 30

142 webMethods Microgateway User's Guide 10.11

8 Command Line Reference

9 REST APIs

■ Administration API .. 144

webMethods Microgateway User's Guide 10.11 143

Administration API

Microgateway exposes a RESTAPI for administration purpose. Themethods of the API allow you
to query the status, view the provisioned assets, and the configured settings of a running
Microgateway instance.

The Administration API requires a basic authentication, if there are credentials configured in the
Microgateway configuration.

GET /rest/microgateway/status

Retrieves a status message that displays the version of the Microgateway instance.

GET /rest/microgateway/settings

Retrieves the configured settings of the Microgateway instance.

GET /rest/microgateway/assets

Retrieves the provisioned assets of the specified Microgateway.

144 webMethods Microgateway User's Guide 10.11

9 REST APIs

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 About webMethods Microgateway
	Introduction
	API Gateway Integration
	Microgateway Installation

	2 Asset and Configuration Provisioning
	Asset Provisioning
	Configuration Provisioning

	3 Microgateway Provisioning
	Microgateway Provisioning
	Instance-based Provisioning
	Docker-based Provisioning

	4 SSL Configuration in Microgateway
	SSL Configuration in Microgateway
	How Do I Secure Microgateway Communication with Clients?
	How Do I Secure Microgateway Communication with API Gateway Server?
	How Do I Secure Microgateway Communication with the Native API?
	How Do I Secure Microgateway Communication with Elasticsearch?
	Importing Truststore Configuration Configured in API Gateway
	Configuring Keystore in Microgateway

	5 Kubernetes Support
	Overview
	Deploying Microgateway as a Kubernetes Service
	Deploying Microgateway as a Kubernetes Service using a YAML file
	Kubernetes Sidecar Deployment
	Prometheus Microgateway Metrics

	6 Policies
	Policies Supported in Microgateway
	Transport
	Identify and Access
	Request Processing
	Routing
	Traffic Monitoring
	Response Processing
	Error Handling
	API Scopes

	7 Service Registry Support
	Overview
	Service Registry Configuration

	8 Command Line Reference
	Microgateway Command Line Reference

	9 REST APIs
	Administration API

