
Using webMethods Integration Server to Build a
Client for JMS

Version 10.7

October 2020

This document applies to webMethods Integration Server 10.7 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: IS-JMS-DG-107-20201015

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Document Conventions...6
Online Information and Support...7
Data Protection...8

1 Introduction to JMS..9
JMS Messaging..10
Messaging Styles...10
JMS API Programming Model..12

2 Working with JMS Triggers..17
About SOAP-JMS Triggers..18
Overview of Building a Non-Transacted JMS Trigger..19
Standard JMS Trigger Service Requirements...20
Creating a JMS Trigger...21
Managing Destinations and Durable Subscribers on the JMS Provider through Designer...30
Building Standard JMS Triggers with Multiple Routing Rules...31
Enabling or Disabling a JMS Trigger...32
Setting an Acknowledgement Mode...34
About Join Time-Outs..35
About Execution Users for JMS Triggers..36
About Message Processing..37
Fatal Error Handling for Non-Transacted JMS Triggers...45
Transient Error Handling for Non-Transacted JMS Triggers...46
Exactly-Once Processing for JMS Triggers..52
Debugging a JMS Trigger..55
Building a Transacted JMS Trigger..55

3 Sending and Receiving JMS Messages...65
The JMS Services...66
Sending a JMS Message...66
Sending a JMS Message and Waiting for a Reply..71
Replying to a JMS Message...77
Receiving a JMS Message Using Built-In Services...78
Sending a JMS Message as Part of a Transaction...83
Setting Properties in a JMS Message..85

4 Exactly-Once Processing for JMS Triggers...87
Overview of Exactly-Once Processing for JMS Triggers...88
Duplicate Detection Methods for JMS Triggers...88
Summary of Duplicate Detection Process for JMS Triggers...89
Delivery Count for JMS Messages...91
Document History Database for Use with JMS Triggers..92

Using webMethods Integration Server to Build a Client for JMS 10.7 iii

Document Resolver Service for a JMS Trigger...95
Extenuating Circumstances for Exactly-Once Processing..96
Exactly-Once Processing and Performance..97

5 Transient Error Handling During Trigger Preprocessing..99
Server and Trigger Properties that Affect Transient Error Handling During Trigger
Preprocessing..100
Overview of Transient Error Handling During Trigger Preprocessing..................................101

6 How Triggers Correspond to Durable Subscribers on Universal Messaging.........................103

7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion...................................105
Introduction...106
Consuming JMS Messages Concurrently from the webMethods Broker..............................107
Configuring JMSTriggers, Integration Server, andwebMethods Broker for Load-Balancing.107
Consuming JMS Messages in Order with Multiple Consumers...108

8 Using JMS Trigger Groups..111
About JMS Trigger Groups...112
Creating a JMS Trigger Group..112
Managing JMS Triggers in a JMS Trigger Group...113
Using JMS Trigger Groups with Round Robin in Universal Messaging................................113

9 Working with Cluster Policies..115
Introduction...116
Working with the Multisend Guaranteed Policy...116
Working with the Multisend Best Effort Policy...119
Overriding the Cluster Policy when Sending JMS Messages..119

A Building a Resource Monitoring Service..123
About a Resource Monitoring Service...124
Service Requirements...124

B Building a Document Resolver Service..125
About a Document Resolver Service...126
Service Requirements...126

C Transaction Management..127
Transaction Management Overview..128
Built-In Transaction Management Services..130

iv Using webMethods Integration Server to Build a Client for JMS 10.7

Table of Contents

About this Guide

■ Document Conventions ... 6

■ Online Information and Support .. 7

■ Data Protection .. 8

Using webMethods Integration Server to Build a Client for JMS 10.7 5

Using webMethods Integration Server to Build a Client for JMS is for the developer who is responsible
for developing solutions that use webMethods Integration Server to send and receive messages
using the Java Message Service (JMS) standard.

This guide explains:

How to build services that send and receive JMS messages using built-in services.

How to create and configure JMS triggers for receiving JMS messages

How Integration Server works with cluster policies when sending JMS messages.

How to configure JMS triggers to consume messages from a destination in a load-balanced
fashion.

This guide assumes that you are familiar with the following:

Basic concepts of webMethods architecture and terminology.

Usage of Designer to create elements and build services.

General knowledge of programming, the Java programming language, and the JMS API.

How to establish connections to one ormore JMS providers by creating JMS connection aliases.
For more information about creating a JMS connection alias, see webMethods Integration Server
Administrator’s Guide.

Note:
An in-depth treatment ofmessaging architecture is beyond the scope of this guide but is available
elsewhere.

Note:
This guide describes features and functionality that may or may not be available with your
licensed version of webMethods Integration Server For information about the licensed
components for your installation, see the Settings > Licensing page in the webMethods
Integration Server Administrator.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

6 Using webMethods Integration Server to Build a Client for JMS 10.7

DescriptionConvention

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Using webMethods Integration Server to Build a Client for JMS 10.7 7

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

8 Using webMethods Integration Server to Build a Client for JMS 10.7

http://techcommunity.softwareag.com

1 Introduction to JMS

■ JMS Messaging .. 10

■ Messaging Styles .. 10

■ JMS API Programming Model .. 12

Using webMethods Integration Server to Build a Client for JMS 10.7 9

JMS Messaging

The Java Message Service (JMS) is a Java API that allows applications to communicate with each
other using a common set of interfaces. The JMS API provides messaging interfaces, but not the
implementations.

A JMS provider, such as SoftwareAGUniversalMessaging orwebMethods Broker, is amessaging
system that supports the JMSmessage interfaces and provides administrative and control features.
It supports the routing and delivery of JMS messages.

JMS clients are the programs or components, written in Java, that produce and consumemessages.

Note:webMethods Broker is deprecated.

Messaging Styles

A messaging style refers to how messages are produced and consumed. JMS supports the
publish-subscribe (pub-sub) and point-to-point (PTP) messaging styles.

Point-to-point (PTP) Messaging

In point-to-point (PTP) messaging, message producers and consumers are known as senders and
receivers.

The central concept in PTPmessaging is a destination called a queue. A queue represents a single
receiver. Message senders submit messages to a specific queue and another client receives the
messages from the queue.

In the PTP model, a queue may receive messages from many different senders and may deliver
messages to multiple receivers; however, each message is delivered to only one receiver.

10 Using webMethods Integration Server to Build a Client for JMS 10.7

1 Introduction to JMS

Publish-Subscribe Messaging

In publish-subscribe messaging, message producers and consumers are known as publishers and
subscribers.

The central concept in the publish-subscribe messaging is a destination called a topic. Message
publishers send messages of specified topics. Clients that want to receive that type of message
subscribe to the topic.

The publishers and subscribers never communicate with each other directly. Instead, they
communicate by exchanging messages through a JMS provider.

Publishers and subscribers have a timing dependency. Clients that subscribe to a topic can consume
only messages published after the client has created a subscription. In addition, the subscriber
must continue to be active to consume messages.

ThemessagingAPIs relax this dependency bymaking a distinction betweendurable subscriptions
and non-durable subscriptions.

Durable Subscriptions

Durable subscriptions allow subscribers to receive all themessages published on a topic, including
those publishedwhile the subscriber is inactive.When the subscribing applications are not running,
the messaging provider holds the messages in nonvolatile storage. It retains the messages until
one of the following occurs:

The subscribing application becomes active, identifies itself to the provider, and sends an
acknowledgment of receipt of the message.

The expiration time for the messages is reached.

Non-durable Subscriptions

Using webMethods Integration Server to Build a Client for JMS 10.7 11

1 Introduction to JMS

Non-durable subscriptions allow subscribers to receive messages on their chosen topic only if the
messages are published while the subscriber is active. You generally use this type of subscription
for any kind of data that is time sensitive, such as financial information.

JMS API Programming Model

The following section summarizes the most important components of the JMS API.

The building blocks of a JMS application consist of the following:

Administered objects (connection factories and destinations)

Connections

Sessions

Message producers

Message consumers

Messages

Administered Objects

Administered objects are pre-configured objects that an administrator creates for use with JMS
client programs. Administered objects serve as the bridge between the client code and the JMS
provider.

By design, the messaging APIs separate the task of configuring administered objects from the
client code. This architecturemaximizes portability: the provider-specific work is delegated to the
administrator rather than to the client code. However, the implementation must supply its own
set of administrative tools to configure the administered objects.

JMS administered objects are stored in a standardized namespace called the Java Naming and
Directory Interface (JNDI). JNDI is a Java API that provides naming and directory functionality
to Java applications. JNDI provides a way to store and retrieve objects by a user supplied name.

Types of Administered Objects

There are two types of administered objects: connection factories and destinations.

Connection Factories

A connection factory is the object a client uses to create a connection with a JMS provider. It
encapsulates the set of configuration parameters that a JMS administrator defines for a connection.

The type of connection factory determines whether a connection is made to a topic (in a
publish-subscribe application), a connection is make to a queue (in a point-to-point application),
or a connection can be made to both (generic connection). The connection factory type also
determines whether messages are managed like elements in a distributed transaction in the client
application.

12 Using webMethods Integration Server to Build a Client for JMS 10.7

1 Introduction to JMS

You use XA-based connection factories in JMS applications managed by an application server, in
the context of a distributed transaction.

Destinations

Destinations are the objects that a client uses to specify the target of messages it produces and the
source of messages it consumes. These objects specify the identity of a destination to a JMS API
method. Four types of destinations exist; only the first two (queues and topics) are administered
objects.

Queue. An object that covers a provider-specific queue name. This object is how a client
specifies the identity of a queue to JMS methods.

Topic. An object that covers a provider-specific topic name. This object is how a client specifies
the identity of a topic to JMS methods.

Temporary Queue. A queue object created for the duration of a particular connection (or
QueueConnection). It can only be consumed by the connection from which it was created.

Temporary Topic. A topic object that is created for the duration of a particular connection (or
TopicConnection). It can only be consumed by the connection from which it was created.

Connections

A connection object is an active connection from a client to its JMS provider. In JMS, connections
support concurrent use. A connection serves the following purposes:

A connection encapsulates an open connection with a JMS provider. It typically represents an
open TCP/IP socket between a client and the service provider software.

The creation of a connection object is the point where client authentication takes place.

A connection object can specify a unique client identifier.

A connection object supports a user-supplied ExceptionListener object.

A connection should always be closed when it is no longer needed.

Sessions

A session object is a single-threaded context for producing and consuming messages. If a client
uses different threads for different paths of message execution, then a session must be created for
each of the threads.

A session is used to create message producers, message consumers, temporary topics, and
temporary queues; it also supplies provider-optimized message factories.

In JMS, a session provides the context for grouping a set of send and receive messages into a
transactional unit.

Using webMethods Integration Server to Build a Client for JMS 10.7 13

1 Introduction to JMS

Message Producer

A message producer is an object that a session creates to send messages to a destination (a topic
or a queue).

Message Consumer

A message consumer is an object that a session creates to receive messages sent to a destination.
Amessage consumer allows a client to register interest in a destination,whichmanages the delivery
of messages to the registered consumers of that destination.

Message Selector

A client may want to receive subsets of messages. A message selector allows a client to filter the
messages it wants to receive by use of a SQL92 string expression in the message header. That
expression is applied to properties in the message header (not to the message body content)
containing the value to be filtered.

If the SQL expression evaluates to true, the message is sent to the client; if the SQL expression
evaluates to false, it does not send the message.

Messages

Messages are objects that communicate information between client applications. Following are
descriptions of several key concepts related to JMS messages.

Message Structure

Messages are composed of the following parts:

Header.All messages support the same set of header fields. Header fields contain predefined
values that allow clients and providers to identify and route messages. Each of the fields
supports its own set and getmethods for managing data. Some fields are set automatically
by the send and publishmethods, whereas others must be set by the client.

Examples of header fields include:

JMSDestination, which holds a destination object representing the destination to which
the message is to be sent.

JMSMessageID, which holds a unique message identifier value and is set automatically.

JMSCorrelationID, which is used to link a reply message with its requesting message. This
value is set by the client application.

JMSReplyTo, which is set by the client and takes as a value a Destination object representing
where the reply is being sent. If no reply is being sent, this field is set to null.

14 Using webMethods Integration Server to Build a Client for JMS 10.7

1 Introduction to JMS

Properties (optional).Properties are used to add optional fields to themessage header. Several
types of message property fields exist:

Application-specific properties are typically used to holdmessage selector values.Message
selectors are used to filter and route messages.

Standard properties. The API provides some predefined property names that a provider
may support. Support for the JMSXGroupID and JMSXGroupSeq is required; however, support
for all other standard properties is optional.

Provider-specific properties are unique to the messaging provider and typically refer to
internal values.

Body (optional). The JMS standard defines various types of message body formats that are
compatible with most messaging styles. Each form is defined by a message interface.

StreamMessage. A message whose body contains a stream of Java primitive values. It is
filled and read sequentially.

MapMessage. A message whose body contains a set of name-value pairs where names are
Strings and values are Java primitive types. The entries can be accessed sequentially by
enumerator or randomly by name. The order of the entries is undefined.

TextMessage. A message whose body contains a java.lang.String.

ObjectMessage. A message that contains a Serializable Java object.

BytesMessage.Amessage that contains a streamof uninterpreted bytes. Thismessage type
is for literally encoding a body to match an existing message format. In many cases, it will
be possible to use one of the other, self-defining, message types instead.

Both StreamMessage and MapMessage support the same set of primitive data types. Conversions
from one data type to another are possible.

Message Acknowledgment

Amessage is not considered to be successfully consumed until it is acknowledged. Depending on
the session acknowledgment mode, the messaging provider may send a message more than once
to the same destination. Several message acknowledgment constants exist.

DescriptionValue

Automatically acknowledges the successful receipt of a
message.

AUTO_ACKNOWLEDGE

Acknowledges the receipt of a message when the client
calls the message’s acknowledge() method.

CLIENT_ACKNOWLEDGE

Instructs the session to automatically, lazily acknowledge
the receipt of messages, which reduces system overhead
but may result in duplicate messages being sent.

DUPS_OK_ACKNOWLEDGE

Using webMethods Integration Server to Build a Client for JMS 10.7 15

1 Introduction to JMS

16 Using webMethods Integration Server to Build a Client for JMS 10.7

1 Introduction to JMS

2 Working with JMS Triggers

■ About SOAP-JMS Triggers .. 18

■ Overview of Building a Non-Transacted JMS Trigger ... 19

■ Standard JMS Trigger Service Requirements .. 20

■ Creating a JMS Trigger .. 21

■ Managing Destinations and Durable Subscribers on the JMS Provider through
Designer ... 30

■ Building Standard JMS Triggers with Multiple Routing Rules .. 31

■ Enabling or Disabling a JMS Trigger ... 32

■ Setting an Acknowledgement Mode ... 34

■ About Join Time-Outs .. 35

■ About Execution Users for JMS Triggers ... 36

■ About Message Processing .. 37

■ Fatal Error Handling for Non-Transacted JMS Triggers ... 45

■ Transient Error Handling for Non-Transacted JMS Triggers .. 46

■ Exactly-Once Processing for JMS Triggers .. 52

■ Debugging a JMS Trigger .. 55

■ Building a Transacted JMS Trigger .. 55

Using webMethods Integration Server to Build a Client for JMS 10.7 17

A JMS trigger subscribes to destinations (queues or topics) on a JMS provider and then specifies
how Integration Server processes messages the JMS trigger receives from those destinations.
Integration Server and Designer support two types of JMS triggers:

Standard JMS triggers use routing rules to specify which services can process messages
received by the trigger. The trigger service in the routing rule receives the entire JMS message
as an IData.

SOAP- JMS triggers are used to receive JMS messages that contain SOAP messages. When a
SOAP-JMS trigger receives a message, Integration Server extracts the SOAPmessage from the
JMSmessage and passes the SOAPmessage to the internalweb services stack. Theweb services
stack processes themessage according to theweb service descriptor specified in the SOAP-JMS
request.

Note:
WSendpoint triggers are SOAP-JMS triggers. However,WS endpoint triggers can be created
andmanaged using Integration Server Administrator only. For more information aboutWS
endpoint triggers, see webMethods Integration Server Administrator’s Guide.

Standard JMS triggers and SOAP-JMS triggers can be transacted or non-transacted triggers. The
transactionality of a JMS trigger along with the trigger type affect the properties and functionality
that can be configured for the trigger.

Note:
Information about using Integration Server for JMS is located in webMethods Integration Server
Administrator’s Guide, webMethods Service Development Help, and Using webMethods Integration
Server to Build a Client for JMS.

webMethods Integration Server Administrator’s Guide contains information about how to
configure Integration Server to work with a JMS provider, how to create a WS endpoint
trigger, and how to manage JMS triggers at run time.
webMethods Service Development Help includes this “Workingwith JMS Triggers” on page 17
topic which provides procedures for using Designer to create JMS triggers and set JMS
trigger properties.
Using webMethods Integration Server to Build a Client for JMS contains information such as
how to build services that send and receive JMS messages, how Integration Server works
with cluster policies when sending JMSmessages, and detailed information regarding how
Integration Server performs exactly-once processing. For completeness, Using webMethods
Integration Server to Build a Client for JMS also includes the “Working with JMS Triggers” on
page 17 topic that appears in webMethods Service Development Help.

About SOAP-JMS Triggers

A SOAP-JMS trigger is a JMS trigger that receives SOAP over JMSmessages and routes the SOAP
message to theweb services stack for processing.More specifically, the SOAP-JMS trigger receives
JMS messages from a destination (queue or topic) on the JMS provider. Note that a SOAP-JMS
trigger can specify a message selector which limits the messages the SOAP-JMS trigger receives
from that destination. Integration Server extracts the SOAP message and passes it to the internal
web services stack for processing. Integration Server also retrieves JMS message properties that
it passes to the web services stack, including targetService, soapAction, contentType, and
JMSMessageID. These properties specify the web service descriptor and operation for which the

18 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

SOAP request is intended. The web services stack then processes the SOAPmessage according to
the web service descriptor (for example, executing request handlers) and invokes the web service
operation specified in the SOAP request message.

A SOAP-JMS trigger is associatedwith one ormore providerweb service descriptors via a provider
web service endpoint alias. The providerweb service endpoint alias specifies the SOAP-JMS trigger
that receives messages from destinations on the JMS provider. The provider web service endpoint
alias is assigned to a JMS binder in a provider web service descriptor. In this way, SOAP-JMS
triggers act as listeners for provider web service descriptors.

Note:
Even though a SOAP-JMS trigger is associatedwith one ormore providerweb service descriptors,
the SOAP-JMS trigger can pass any SOAP-JMSmessage to theweb services stack for processing.

The properties assigned to the SOAP-JMS trigger determine how Integration Server acknowledges
the message, provides exactly-once processing, or handles transient or fatal errors.

While SOAP-JMS triggers and standard JMS triggers share many properties and characteristics,
some properties available to standard JMS triggers are not available to SOAP-JMS triggers,
specifically:

SOAP-JMS triggers can subscribe to one destination only. Consequently, SOAP-JMS triggers
do not have joins. Designer does not display the Join expires and Expire after properties for
a SOAP-JMS trigger.

SOAP-JMS triggers useweb services to process the payload of the JMSmessage. Designer does
not display the Message Routing table for SOAP-JMS triggers.

SOAP-JMS triggers cannot be used to performordered service execution. Standard JMS triggers
use multiple routing rules and local filters to perform ordered service execution. Because
SOAP-JMS triggers do not use routing rules, SOAP-JMS triggers cannot be used to perform
ordered service execution.

A SOAP-JMS trigger, specifically a connection for a SOAP-JMS trigger, can process only one
message at a time. Batch processing is not available for SOAP-JMS triggers. Designer does not
display the Max batch processing property for SOAP-JMS triggers.

A transacted SOAP-JMS trigger (one that executes as part of a transaction) has additional
requirements and limitations when used with web service descriptors. For more information,
see theWeb Services Developer’s Guide.

Overview of Building a Non-Transacted JMS Trigger

Building a JMS trigger is a process that involves the following basic stages.

Create a new JMS trigger on Integration Server.Stage 1

During this stage, you useDesigner to create the new JMS trigger on the Integration
Server where you will do your development and testing.

Specify a JMS connection alias.Stage 2

Using webMethods Integration Server to Build a Client for JMS 10.7 19

2 Working with JMS Triggers

During this stage, you specify the JMS connection alias that Integration Server uses
to create connections to the JMSprovider. The transaction type of the JMS connection
alias determines whether or not the JMS trigger receives and processes messages
as part of transaction.

Specify JMS destinations and message selectors.Stage 3

During this stage, you specify the destinations (queues or topics) on the JMS
provider to which the JMS trigger subscribes. That is, the destination is the source
of the messages that the JMS trigger consumes. You also specify any message
selectors that you want the JMS provider to use to filter the messages it enqueues
for the JMS trigger.

Create routing rules (for standard JMS triggers only).Stage 4

During this stage, you specify the service that Integration Server invokes when the
standard JMS trigger receives messages. You can also specify a local filter that
Integration Server applies to messages.

Set JMS trigger properties.Stage 5

During this stage, you determine the type of message processing, the
acknowledgement mode, fatal and transient error handling, and exactly-once
processing.

Test and debug the JMS trigger.Stage 6

During this stage, you test and debug the trigger using the tools provided by
Integration Server. For more information, see “Debugging a JMS Trigger” on
page 55.

Standard JMS Trigger Service Requirements

The service that processes a message received by a standard JMS trigger is called a trigger service.
Each routing rule in a standard JMS trigger specifies a single trigger service.

Before a JMS trigger can be enabled, the trigger service must already exist on the same Integration
Server.

The signature for the trigger service must reference one of the following specifications:

Use pub.jms:triggerSpec as the specification reference if the trigger servicewill process onemessage
at a time.

Use pub.jms:batchTriggerSpec as the specification reference if the trigger service will process
multiple messages at one time. That is, the trigger service will receive a batch of messages as
input and process all of those messages in a single execution. A trigger that receives and
processes a batch of messages is sometimes referred to as a batch trigger.

20 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Creating a JMS Trigger

When you create a JMS trigger, keep the following points in mind:

The JMS connection alias you want Integration Server to use to obtain connections to and
receive messages from the JMS provider must already exist. Although a JMS connection alias
does not need to be enabled at the time you create the JMS trigger, the JMS connection alias
must be enabled for the JMS trigger to execute at run time.

Note:
If you want to manage destinations and durable subscribers on a webMethods Broker that
is used as a JMS provider, the JMS connection alias must be enabled when you work with
the JMS trigger.

If you use a JNDI provider to store JMS administered objects, the Connection Factories that
you want the JMS trigger to use to consume messages must already exist.

If you use a JNDI provider to store JMS administered objects and the JMS provider is not
webMethods Broker, the destinations (queues and topics) from which this JMS trigger will
receive messages must already exist.

Note:webMethods Broker is deprecated.

If the JMSprovider iswebMethodsBroker or SoftwareAGUniversalMessaging, the destinations
(queues and topics) from which the JMS trigger receives messages do not need to exist before
you create the JMS trigger. Instead, you can create destinations using the JMS trigger editor.
You can also create, modify, and delete durable subscribers via the JMS trigger. For more
information, see “ManagingDestinations andDurable Subscribers on the JMSProvider through
Designer ” on page 30.

If the JMS provider is Universal Messaging, administered objects can be created on demand.
If you specify a destination that does not exist in the JNDI namespace and the JMS connection
alias used by the JMS trigger is configured to create administered objects on demand, Integration
Server creates the destination the first time the JMS trigger starts. For more information about
creating administered objects on demand, see webMethods Integration Server Administrator’s
Guide.

The transaction type of the JMS connection alias determines whether or not the JMS trigger is
transacted (that is, it receives and processes messages as part of a transaction). Transacted JMS
triggers have slightly different properties and operate differently than non-transacted JMS
triggers. For more information about building a transacted JMS trigger, see “Building a
Transacted JMS Trigger” on page 55.

The trigger service that you want to specify in the routing rule must already exist on the same
Integration Server on which you create the JMS trigger. For more information, see “Standard
JMS Trigger Service Requirements” on page 20.

A standard JMS trigger can contain multiple routing rules. Each routing rule must have a
unique name. Formore information about usingmultiple routing rules, see “Building Standard
JMS Triggers with Multiple Routing Rules” on page 31.

Using webMethods Integration Server to Build a Client for JMS 10.7 21

2 Working with JMS Triggers

A standard JMS trigger that contains an All (AND) or Only one (XOR) join can only have one
routing rule and cannot have a batch processing size (Max batch messages property) greater
than 1. A JMS trigger with an Any (Or) join can have multiple routing rules. For more
information about batch processing, see “About Batch Processing for Standard JMSTriggers” on
page 39.

Integration Server uses a consumer to receive messages for a JMS trigger. This consumer
encapsulates the actual javax.jms.MessageConsumer and javax.jms.Session.

To create a JMS trigger

1. In the Package Navigator view of Designer, click File > New > JMS Trigger.

2. In the New JMS Trigger dialog box, select the folder in which youwant to save the JMS trigger.

3. In the Element name field, type a name for the JMS trigger using any combination of letters,
numbers, and/or the underscore character.

4. Click Finish.

5. In the JMS connection alias name field in the Trigger Settings tab, click .

Note:
A transacted JMS connection alias cannot be assigned to a JMS trigger if a cluster policy is
applied to the connection factory used by the JMS connection alias.

6. In the Select a JMS connection alias for triggerName dialog box, select the JMS connection alias
that you want this JMS trigger to use to receive messages from the JMS provider. Click OK.

Designer sets the Transaction type property to match the transaction type specified for the
JMS connection alias.

If a JMS connection alias has not yet been configured on Integration Server, Designer displays
a message stating the JMS subsystem has not been configured. For information abut creating
a JMS connection alias, see webMethods Integration Server Administrator’s Guide.

7. In the JMS trigger type list, select one of the following:

To...Select

Create a standard JMS trigger.Standard

Create a SOAP-JMS trigger.SOAP-JMS

8. Under JMS destinations and message selectors, specify the destinations from which the
JMS trigger will receive messages. For more information, see “Adding JMS Destinations and
Message Selectors to a JMS Trigger” on page 23.

22 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Note:
For SOAP-JMS triggers, you can specify one destination only.

9. If you selected multiple destinations, select the join type. The join type determines whether
Integration Server needs to receive messages from all, any, or only one of destinations to
execute the trigger service.

If you want...Select...

Integration Server to invoke the trigger servicewhen the trigger receives
a message from every destination within the join time-out period. The
messages must have the same activation.

All (AND)

Integration Server to invoke the trigger servicewhen the trigger receives
a message from any of the specified destinations.

Any (OR)

This is the default join type.

Note:
Using an Any (OR) join is similar to creating multiple JMS triggers
that listen to different destinations.While a JMS trigger with an Any
(OR) join will use fewer resources (a single thread will poll each
destination for messages), it may cause a decrease in performance
(it may take longer for one thread to poll multiple destinations).

Integration Server to invoke the trigger service when it receives a
message from any of the specified destinations. For the duration of the

Only one (XOR)

join time-out period, the Integration Server discards anymessageswith
the same activation that the trigger receives from the specified
destinations.

10. If this is a standard JMS trigger, under Message routing, add routing rules. For more
information, see “Adding Routing Rules to a Standard JMS Trigger” on page 28.

11. In the Properties view, set properties for the JMS trigger.

12. Enter comments or notes, if any, in the Comments tab.

13. Click File > Save.

Adding JMS Destinations and Message Selectors to a JMS
Trigger
The destination is the queue or topic to which the JMS trigger subscribes on the JMS provider.
When a JMS trigger subscribes to a topic, you can also indicate whether Integration Server creates
a durable subscriber or a non-durable subscriber for the topic.

Using webMethods Integration Server to Build a Client for JMS 10.7 23

2 Working with JMS Triggers

To add a JMS destination to a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger.

2. In the Trigger Settings tab, under JMS destinations and message selectors, click .

3. In the Destination Name column, do one of the following to specify the destination from
which you want the JMS trigger to receive messages.

If the JMS connection alias uses JNDI to retrieve administered objects, specify the lookup
name of the Destination object.

If the JMS connection alias uses the native webMethods API to connect directly to
webMethods Broker, specify the provider-specific name of the destination.

If the JMS connection alias creates a connection on webMethods Broker or Universal
Messaging, click to select from a list of existing destinations. You can also create a
destination and then select it. After you select the destination, click OK.

Note:
If you do not see and the Enable Destination Management with Designer option
is enabled for the JMS connection alias, refresh the package that contains the JMS trigger.

If the Order By mode for the selected destination does not match the existing message
processing mode, Designer prompts you to change the processing mode. This situation
can occur only when the JMS provider is webMethods Broker.

For instructions for creating a destination, see “Creating a Destination on the JMS
Provider” on page 25.

4. In the Destination Name column, in the Destination Type column, select the type of
destination:

If...Select...

The destination is a queue. This is the default.Queue

The destination is a topic.Topic

The destination is a topic for which there is a durable
subscriber.

Topic (Durable Subscriber)

Note:Designer populatesDestination Type automatically if you selected a destination from
the list of existing destinations on the JMS provider.

5. In the JMS Message Selector column, click . In the Enter JMS Message Selector dialog
box, enter the expression that you want to use to receive a subset of messages from this
destination and click OK.

24 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

For more information about creating a JMS message selector, see “Creating a Message
Selector” on page 28.

6. If you specified the destination type as Topic (Durable Subscriber), in theDurable Subscriber
Name column, do one of the following:

Enter a name for the durable subscriber.

If the JMS connection alias creates a connection on webMethods Broker or Universal
Messaging, click to select from a list of existing durable subscribers for the topic. In
the Durable Subscriber List dialog box select the durable subscriber and click OK.

If the durable subscriber that youwant this JMS trigger to use does not exist, you can create
it by entering in the name in the Durable Subscriber Name column. The name must be
unique for the connectionwhere the connection name is the client ID of the JMS connection
alias. webMethods Broker or UniversalMessaging, will create the durable subscriber name
using the client ID of the JMS connection alias and the specified durable subscriber name.

Note:Designer populates Durable Subscriber Name automatically if you selected a Topic
(Durable Subscriber) destination from the list of existing destinations onwebMethods Broker
or Universal Messaging.

7. If you want the JMS trigger to ignore messages sent using the same JMS connection alias as
the JMS trigger, select the check box in the Ignore Locally Published column. This property
applies only when the Destination Type is Topic or Topic (Durable Subscriber).

Note:
If the JMS connection alias specified for this trigger has the Create New Connection per
Trigger option enabled, then Ignore Locally Published will not work. For the JMS trigger
to ignore locally published messages, the publisher and subscriber must share the same
connection. When the JMS connection alias uses multiple connections per trigger, the
publisher and subscriber will not share the same connection.

8. Repeat this procedure for each destination from which you want the JMS trigger to receive
messages.

9. Click File > Save.

Notes:

If you specify a newdurable subscriber name and the JMS connection alias that the JMS trigger
uses to retrieve messages is configured to manage destinations, Integration Server creates a
durable subscriber for the topic when the JMS trigger is first enabled.

If you specify a destination type of Topic (Durable Subscriber) but do not specify a durable
subscriber name, Designer changes the destination type to Topic when you save the JMS
trigger.

Creating a Destination on the JMS Provider

Using webMethods Integration Server to Build a Client for JMS 10.7 25

2 Working with JMS Triggers

If the JMS connection alias that the JMS trigger uses to retrieve messages is configured to manage
destinations, you can create a destination on the JMS provider while using the JMS trigger editor.

Keep the following points in mind when creating destinations using Designer:

The JMS connection alias used by the JMS trigger must use Universal Messaging, Nirvana, or
webMethods Broker as the JMS provider.

Note:
Prior to version 9.5 SP1, SoftwareAGUniversalMessagingwas namedwebMethodsNirvana.

The JMS connection alias used by the JMS trigger must be configured to manage destinations.

The JMS connection alias must be enabled when you work with the JMS trigger.

If the JMS connection alias creates a connection on a webMethods Broker in a webMethods
Broker cluster, you will not be able to create a destination at the webMethods Broker.

To create a destination on the JMS provider

1. In the Package Navigator view of Designer, open the JMS trigger that uses a JMS connection
alias that connects to the JMS provider on which you want to create the destinations.

2. In the Trigger Settings tab, under JMS destinations and message selectors, click .

3. In the Destination Name column, click .

4. In the Destination List dialog box, click Create New Destination.

5. In the Create New Destination dialog box, provide the following information:

Specify...In this field...

A name for the destination.Destination Name

A name for the destination key. If you do not specify a
destination key, Integration Server uses the destination name
as the destination key.

Destination Key

In theDestination List, when a destination has a destination key
Designer displays the destination name using this format:
destinationKey (destinationName)

The type of destination. Select one of the following:Destination Type

To...Select...

The destination is a queue.Queue

This is the default.

26 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Specify...In this field...

The destination is a topic.Topic

The destination is a topic for which you
want to create a durable subscriber.

Topic (Durable
Subscriber)

A name for the durable subscriber. The name must be unique
for the connection, where the connection name is the client ID

Durable Subscriber Name

of the JMS connection alias. The JMS provider (webMethods
Broker, UniversalMessaging, orNirvana)will create the durable
subscriber name using the client ID of the JMS connection alias
and the specified durable subscriber name.

This field only applies if the destination is Topic (Durable
Subscriber).

HowwebMethods Broker distributesmessages received by this
destination.

Order By

This field only apples if the JMS provider used y the trigger JMS
connection alias is the webMethods Broker and the destination
is Queue.

To...Select...

Distribute messages received by this
destination one at a time in the order in

Publisher

which they were received from the
publisher.

Distribute the messages received by this
destination in any order.

None

This is the default.

Note:
An order mode of publisher maps to a serial message
processing mode. An order mode of none maps to a
concurrent message processing mode.

6. Click OK to create the destination.

7. If you want the current JMS trigger to retrieve messages from the new destination, select the
destination and click OK.

Designer adds the destination to the JMS destinations and message selectors list. If the
Order Bymode for the newdestination does notmatch the existingmessage processingmode,
Designer prompts you to change the processing mode.

Notes:

Using webMethods Integration Server to Build a Client for JMS 10.7 27

2 Working with JMS Triggers

Integration Server adds the newdestination to thewebMethods Broker as a shared-state client.

If you specify a destination type of Topic (Durable Subscriber) but do not specify a durable
subscriber name, Designer changes the destination type to Topic when you save the JMS
trigger.

About Durable and Non-Durable Subscribers

When a JMS trigger receivesmessages from a topic, you can specifywhether or not the JMS trigger
is a durable subscriber.

Adurable subscriber establishes a durable subscriptionwith a unique identity on the JMSprovider.
Adurable subscription allows subscribers to receive all themessages published on a topic, including
those publishedwhile the subscriber is inactive (for example, if the JMS trigger is disabled).When
the associated JMS trigger is disabled, the JMS provider holds themessages in guaranteed storage.
If a durable subscription already exists for the specified durable subscriber on the JMS provider,
this service resumes the subscription.

A non-durable subscription allows subscribers to receive messages on their chosen topic only if
the messages are published while the subscriber is active. A non-durable subscription lasts the
lifetime of its message consumer. Note that non-durable subscribers cannot receive messages in
a load-balanced fashion.

Creating a Message Selector

If you want the JMS trigger to receive a subset of messages from a specified destination, create a
message selector. A message selector is an expression that specifies the criteria for the messages
in which the JMS trigger is interested.

The JMS provider applies the message selector to messages it receives. If the selector evaluates to
true, the message is sent to the JMS trigger. If the selector evaluates to false, the message is not
sent to the JMS trigger.

By creating message selectors, you can delegate some filtering work to the JMS provider. This can
preserve Integration Server resources that otherwise would have been spent receiving and
processing unwanted messages.

The message selector must use the message selector syntax specified in the Java Message Service
standard. The message selector can reference header and property fields in the JMSmessage only.

Note:
If you want to filter on the contents of the JMS message body, write a local filter. Integration
Server evaluates a local filter after the JMS trigger receives the message from the JMS provider.
Only standard JMS triggers can use local filters.

Adding Routing Rules to a Standard JMS Trigger
The routing rule specifies the service that Integration Server invokeswhen the standard JMS trigger
receive a message from a destination.

28 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

To add a routing rule to a standard JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger.

2. In the Trigger Settings tab, under Message routing, click to add a new routing rule.

3. In the Name column, type a name for the routing rule. By default Designer assigns the first
rule the name “Rule 1”.

4. In the Service column, click to navigate to and select the service that you want to invoke
when Integration Server receives messages from the specified destinations.

5. In the Local Filter column, click to enter the filter that youwant Integration Server to apply
to messages this JMS trigger receives. For more information about creating a local filter, see
“Creating a Local Filter” on page 29.

6. Click File > Save.

Creating a Local Filter

You can further refine the messages received and processed by a standard JMS trigger by creating
local filters. A local filter specifies criteria for the contents of the message body. Integration Server
applies a local filter to amessage after the JMS trigger receives themessage from the JMS provider.
If the message meets the filter criteria, Integration Server executes the trigger service specified in
the routing rule. If the message does not meet the filter criteria, Integration Server discards the
message and acknowledges the message to the JMS provider.

If a JMS trigger contains multiple routing rules to support ordered service execution, you can use
local filters to process a series of messages in a particular order. For more information about
ordered service execution, see “Building Standard JMS Triggers with Multiple Routing Rules” on
page 31.

When creating a local filter, you can omit the JMSMessage document from the filter expression
even though it is part of the pipeline provided to the JMS trigger service. For example, a filter that
matches thosemessageswhere the value of themyFieldfield is “XYZ”would look like the following:
%properties/myField% == "XYZ"

Note that even though the properties field is a child of the JMSMessage document, the JMSMessage
document does not need to appear in the filter expression.

The following filtermatches thosemessageswhere the datadocumentwithin the JMSMessage/body
document contains a field named myFieldwhose value is “A”:
%body/data/myField% == "A"

Note:

Using webMethods Integration Server to Build a Client for JMS 10.7 29

2 Working with JMS Triggers

When receiving a batch of messages, Integration Server evaluates the local filter against the first
message in the batch only. Integration Server does not apply the filter to subsequent messages
in the batch. For more information about batch processing, see “About Batch Processing for
Standard JMS Triggers” on page 39.

Managing Destinations and Durable Subscribers on the JMS
Provider through Designer

When editing a JMS trigger in Designer, you can create and manage destinations and durable
subscribers on Software AGUniversal Messaging, webMethods Nirvana, or webMethods Broker.
Specifically, you can do the following:

Create a destination.

Create and delete a durable subscriber.

Select the destination from which you want the JMS trigger to receive messages from a list of
existing destinations.

Select a durable subscriber that you want the JMS trigger to use from a list of existing durable
subscribers for a specified topic.

Change the Shared State or Order By mode for a queue or durable subscriber by changing the
message processing mode of the JMS trigger. You can do this only when webMethods Broker
is the JMS provider only.

Designer uses the JMS connection alias specified by the JMS trigger to make the changes on the
JMS provider. To manage destinations on the JMS provider, the JMS connection alias that the JMS
trigger uses must be

Configured to manage destinations

Enabled when you create and edit the JMS trigger.

To manage destinations on webMethods Broker, Integration Server must be version 8.0 SP1
or higher.

To manage destinations on Universal Messaging, Integration Server must be version 9.0 SP1
or higher.

Note:
Prior to version 9.5 SP1, SoftwareAGUniversalMessagingwas namedwebMethodsNirvana.

For a complete list of the requirements for using Designer to manage destinations and durable
subscribers on the JMS provider, see webMethods Integration Server Administrator’s Guide.

Note:
The ability to use Designer to manage JMS destinations on webMethods Broker, Nirvana, and
Universal Messaging is a design-time feature. In a production environment, this functionality
should be disabled.

30 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Modifying Destinations or Durable Subscribers via a JMS Trigger
in Designer
If a JMS trigger uses a JMS connection alias that is configured to manage destinations, you can
modify the destination or durable subscriberswhile editing a JMS trigger. Changes to destinations
or durable subscriptions can result in unused durable subscriptions on the JMS provider. Changing
destinations can make the JMS trigger out of sync with the destination. For example, when using
the webMethods Broker, modifying the destination could result in out of sync Shared State or
Order By mode settings.

When you make a change that results in a change to a destination or durable subscriber, Designer
informs you about the necessary change and then prompts you to confirm making change to the
destination or durable subscriber on the JMS provider.

For example, if you change the name of the durable subscriber for a Topic (Durable Subscriber)
destination, Designer displays amessage stating, “Bymaking this change the triggerwill no longer
subscribe to durable subscriber oldDurableSubscriberName. Would you like to remove this durable
subscriber from the JMS provider?” If you confirm the change, Integration Server removes the
durable subscriber from webMethods Broker. If you do not confirm the change, the durable
subscriber will remain on webMethods Broker. You will need to use the webMethods Broker
interface in My webMethods to remove the durable subscriber.

Note:
If another client, such as another JMS trigger, currently connects to the queue or durable
subscriber that youwant tomodify or remove, then Integration Server cannot update or remove
the queue or durable subscriber. If the JMS provider is webMethods Broker, updates must be
made through My webMethods. If the JMS provider is Universal Messaging, updates must be
made throughUniversalMessaging EnterpriseManager. If the JMSprovider isNirvana, updates
must be made through Nirvana Enterprise Manager.

Formore information aboutmanaging destinations and durable subscriptions on the JMSprovider,
see “Managing Destinations and Durable Subscribers on the JMS Provider through Designer ” on
page 30.

Building Standard JMS Triggers with Multiple Routing Rules

A JMS trigger can contain more than one routing rule. Each routing rule can specify a different
local filter and a different service to invoke.

You might create multiple routing rules so that a JMS trigger processes a group of messages in a
specific order. Each routing rule might execute a different trigger service based on the contents
or type ofmessage received.When a JMS trigger receives amessage, Integration Server determines
which service to invoke by evaluating the local filters for each routing rule.

Integration Server evaluates the routing rules in the same order in which the rules appear in the
editor. It is possible that amessage could satisfymore than one routing rule. However, Integration
Server executes only the service associated with the first satisfied routing rule and ignores the
remaining routing rules. Therefore, the order in which you list routing rules on the editor is
important.

Using webMethods Integration Server to Build a Client for JMS 10.7 31

2 Working with JMS Triggers

You might want to use multiple routing rules to control service execution when a service that
processes a message depends on successful execution of another service. For example, to process
a purchase order, you might create one service that adds a new customer record to a database,
another that adds a customer order, and a third that bills the customer. The service that adds a
customer order can only execute successfully if the new customer record has been added to the
database. Likewise, the service that bills the customer can only execute successfully if the order
has been added. You can ensure that the services execute in the necessary order by creating a
trigger that contains one routing rule for each expected message.

Note:
SOAP-JMS triggers do not have routing rules.

Guidelines for Building a JMS Trigger that Performs Ordered
Service Execution
Use the following general guidelines to build a JMS trigger that performs ordered service execution.

Because the JMS provider cannot guaranteemessage order across destinations, the JMS trigger
must specify a single destination. That is, the JMS trigger cannot include a join.

Each routing rule, except the last one,must contain a local filter. For example, youmight create
a filter based on a custom property that the sending client adds to the message. Integration
Server uses the local filters to differentiate between the messages. Without a local filter, only
the first routing rule would ever execute.

Routing rules must appear in the order in which you want the messages to be processed. Each
routing rule must have a unique name.

Set the Processing mode property to serial to ensure that the Integration Server processes the
messages in the same order in which the JMS trigger receives them. Serial processing ensures
that the services that process the messages do not execute at the same time.

Set Max batch messages to 1 (the default). When a trigger service processes a batch of
messages, Integration Server only applies the filter to the first message in the batch.

Important:
Messages must be sent to JMS provider in the same order in which you want the messages to
be processed.

Enabling or Disabling a JMS Trigger

You can enable or disable a JMS trigger.

Note:
If you disable a SOAP-JMS trigger that acts as a listener for one or more provider web service
descriptors, Integration Server will not retrieve anymessages for those web service descriptors.

To enable or disable a JMS trigger

32 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

1. In the Package Navigator view of Designer, open the JMS trigger that you want to enable or
disable.

2. In the Properties view, under General, set the Enabled property to one of the following:

To...Select...

Enable a JMS trigger that is currently disabled.True

Disable a JMS trigger that is currently enabled.False

3. Click File > Save.

Notes:

When you disable a JMS trigger, Integration Server interrupts any server threads that are
processing messages. If the JMS trigger is currently processing messages, Integration Server
waits 3 seconds before forcing the JMS trigger to stop processing messages. If it does not
complete within 3 seconds, Integration Server stops the message consumer used to receive
messages for the JMS trigger and closes the JMS consumer. At this point the server thread for
the JMS trigger may continue to run to completion. However, the JMS trigger will not be able
to acknowledge the message when processing completes. If the message is persistent, this can
lead to duplicate messages.

You can disable one or more JMS triggers using the pub.triggers:disableJMSTriggers service.

You can enable one or more JMS triggers using the pub.triggers:enableJMSTriggers service.

You can enable, disable, and suspend one or more JMS triggers using Integration Server
Administrator.

JMS Trigger States
A JMS trigger can have one of the following states:

DescriptionTrigger State

The JMS trigger is available. A JMS trigger must be enabled for it to receive
and process messages.

Enabled

An enabled trigger can have a status of “Not Running” which means that it
would not receive and processmessages. Reasons that an enabled JMS trigger
can be disabled include: a disabled JMS connection alias, an exception thrown
by the trigger, and trigger failure at startup. JMS trigger status can be seen
on theMessaging > Messaging Configuration > JMS Trigger Management
page in Integration Server Administrator.

Using webMethods Integration Server to Build a Client for JMS 10.7 33

2 Working with JMS Triggers

DescriptionTrigger State

The JMS trigger is not available. Integration Server neither retrieves nor
processes messages for the JMS trigger. The JMS trigger remains in this state
until you enable the trigger.

Disabled

The JMS trigger is running and connected to the JMS provider. Integration
Server has stoppedmessage retrieval, but continues processing anymessages

Suspended

it has already retrieved. Integration Server enables the JMS trigger
automatically upon server restart or when the package containing the JMS
trigger reloads.

Note:
You can suspend a JMS trigger using Integration Server Administrator or
the pub.triggers:suspendJMSTriggers service.

Setting an Acknowledgement Mode

Acknowledgment mode indicates how Integration Server acknowledges messages received on
behalf of a JMS trigger. A message is not considered to be successfully consumed until it is
acknowledged.

Note:
The Acknowledgement mode property is not available for transacted JMS triggers. That is, if
the JMS connection alias is of type XA_TRANSACTIONor LOCAL_TRANSACTION,Designer
does not display the Acknowledgement mode property.

To set an acknowledgment mode

1. In the Package Navigator view of Designer, open the JMS trigger for which you want to set
the acknowledgment mode.

2. In the Properties view, under General, select one of the following for Acknowledgement
mode:

To...Select...

Acknowledge or recover the message only after the
JMS trigger processes the message completely.

CLIENT_ACKNOWLEDGE

This is the default.

Lazily acknowledge the delivery of messages. This
may result in the delivery of duplicate messages.

DUPS_OK_ACKNOWLEDGE

Automatically acknowledge the message when it is
received by the JMS trigger. Integration Server will

AUTO_ACKNOWLEDGE

acknowledge themessage before the trigger completes

34 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

To...Select...

processing. The JMS provider cannot redeliver the
message if Integration Server becomes unavailable
before message processing completes.

3. Click File > Save.

About Join Time-Outs

When you create a standard JMS trigger that receives messages from two or more destinations),
you create a join. Consequently, you need to specify a join time-out. A join time-out specifies how
long Integration Server waits for additional messages to fulfill the join. Integration Server starts
the join time-out period when it receives the first message that satisfies the join.

The implications of a join time-out are different depending on the join type.

Note:
You need to specify a join time-out only when the join type is All (AND) or Only one (XOR).
You do not need to specify a join time-out for an Any (OR) join.

Join Time-Outs for All (AND) Joins

A join time-out for an All (AND) join specifies how long Integration Server waits for messages
from all of the destinations specified in the join.

When a JMS trigger receives a message that satisfies part of an All (AND) join, Integration Server
stores the message. Integration Server waits for the JMS trigger to receive messages from the
remaining destinations specified in the join. Only messages with the same activation ID as the
first received message will satisfy the join.

If Integration Server receives messages from all of the destinations specified in the join before the
time-out period elapses, Integration Server executes the service specified in the routing rule. If
Integration Server doe not receivemessages from all of the destinations before the time-out period
elapses, Integration Server discards the messages and writes a log entry.

When the time-out period elapses, the next message that satisfies the All (AND) join causes the
time-out period to start again.

Join Time-Outs for Only One (XOR) Joins

A join time-out for anOnly one (XOR) join specifies how long Integration Server discards instances
of the other messages received from the specified destinations.

When a JMS trigger receives a message that satisfies part of an Only one (XOR) join, Integration
Server executes the service specified in the routing rule. Integration Server starts the join time-out
when the JMS trigger receives the message. For the duration of the time-out period, Integration
Server discards any messages the JMS trigger receives from a destination specified in the JMS

Using webMethods Integration Server to Build a Client for JMS 10.7 35

2 Working with JMS Triggers

trigger. Integration Server only discards those messages with the same activation ID as the first
message.

When the time-out period elapses, the next message that the JMS trigger receives that satisfies the
Only one (XOR) join causes the trigger service to execute and the time-out period to start again.

Setting a Join Time-Out
When configuring JMS trigger properties, you can specify whether a join times out and if it does,
what the time-out period should be. The time-out period indicates how long Integration Server
waits formessages from the other destinations specified in the join after Integration Server receives
the first message.

Note:
You need to specify a join time-out only when the join type is All (AND) or Only one (XOR).
You do not need to specify a join time-out for an Any (OR) join.

To set a join time-out

1. In the Package Navigator view of Designer, open the JMS trigger for which you want to set
the join time-out.

2. In the Properties view, under General, next to Join expires, select one of the following:

To...Select...

Specify that Integration Server should stop waiting for messages from
other destinations in the join after the time-out period elapses.

True

In theExpire after property, specify the length of the join time-out period.
The default join time-out period is 1 day.

Specify that the join does not expire. Integration Server should wait
indefinitely for messages from the additional destinations specified in

False

the join condition. Set the Join expires property to False only if you are
confident that all of the messages will be received eventually.

Important:
A join is persisted across server restarts.

3. Click File > Save.

About Execution Users for JMS Triggers

For a JMS trigger, the execution user indicates which credentials Integration Server should use
when invoking services associated with the JMS trigger. When a client invokes a service via an
HTTP request, Integration Server checks the credentials and user group membership of the client

36 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

against the Execute ACL assigned to the service. Integration Server performs this check to make
sure that the client is allowed to invoke that service. When a JMS trigger executes, however,
Integration Server invokes the service when it receives a message rather than as a result of a client
request. Integration Server does not associate user credentials with a message. You can specify
which credentials Integration Server should supplywhen invoking a JMS trigger service by setting
an execution user for a JMS trigger.

You can instruct Integration Server to invoke a service using the credentials of one of the predefined
user accounts (Administrator, Default, Developer, Replicator). You can also specify a user account
that you or another server administrator defined. When Integration Server receives a message for
the JMS trigger, Integration Server uses the credentials for the specified user account to invoke
the service specified in the routing rule.

Assigning an Execution User to a JMS Trigger
Make sure that the user account you select includes the credentials required by the execute ACL
assigned to the services associated with the JMS triggers.

To assign an execution user for a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which youwant to assign
the execution user.

2. In the Properties view, under General, in the Execution user property, type the name of the
user account whose credentials Integration Server uses to execute a service associated with
the JMS trigger. You can specify a locally defined user account or a user account defined in a
central or external directory.

3. Click File > Save.

About Message Processing

Message processing determines how Integration Server processes the messages received by the
JMS trigger. You can specify serial processing or concurrent processing.

In serial processing, Integration Server processes messages received by a JMS trigger one after
the other in the order in which the messages were received from the JMS provider.

In concurrent processing, Integration Server processesmessages received from the JMSprovider
in parallel.

Serial Processing
In serial processing, Integration Server processes messages received by a JMS trigger one after the
other in the order in which the messages were received from the JMS provider. Integration Server
uses a single thread for receiving and processing a message for a serial JMS trigger. Integration
Server evaluates the first message it receives, determines which routing rule the message satisfies,

Using webMethods Integration Server to Build a Client for JMS 10.7 37

2 Working with JMS Triggers

and executes the service specified in the routing rule. Integration Server waits for the service to
finish executing before processing the next message received from the JMS provider.

If you want to process messages in the same order in which JMS clients sent the messages to the
JMS provider, you will need to configure the JMS provider to ensure that messages are received
by the JMS trigger in the same order in which the messages are published.

For information about using serial JMS triggers in a cluster to process messages from a single
destination in publishing order, see the Using webMethods Integration Server to Build a Client for
JMS.

Tip:
If your trigger contains multiple routing rules to handle a group of messages that must be
processed in a specific order, use serial processing.

Concurrent Processing
In concurrent processing, Integration Server processes messages received from the JMS provider
in parallel. That is, Integration Server processes as many messages for the JMS triggers as it can
at the same time, using a separate server thread to process each message. Integration Server does
not wait for the service specified in the routing rule to finish executing before it begins processing
the next message. You can specify the maximum number of messages Integration Server can
process concurrently. This equates to specifying the maximum number of server threads that can
process messages for the JMS trigger at one time.

Concurrent processing provides faster performance than serial processing. Integration Server
processes the received messages more quickly because it can process more than one message for
the trigger at a time. However, the more messages Integration Server processes concurrently, the
more server threads it dispatches, and the more memory the message processing consumes.

Additionally, for JMS triggers with concurrent processing, Integration Server does not guarantee
that messages are processed in the order in which they are received.

A concurrent trigger can connect to the JMS provider through multiple connections, which can
increase trigger throughout. For more information about multiple connections, refer to “Using
Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger” on page 40.

Message Processing and Message Consumers
Integration Server uses a consumer to receive messages for a JMS trigger. This consumer
encapsulates the actual javax.jms.MessageConsumer and javax.jms.Session. The type of message
processing affects how Integration Server uses consumers to receive messages.

Serial JMS triggers have one consumer and will use one thread from the server thread pool to
receive and process a message.

Concurrent JMS triggers use a pool of consumers to receive and processmessages. Each consumer
uses one thread from the server thread pool to receive and process a message. For a concurrent
JMS trigger, the Max execution threads property specifies how many threads can be used to
process messages for the trigger at one time. For concurrent JMS triggers, Integration Server also

38 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

dedicates a thread to managing the pool of consumers. Consequently, the maximum number of
threads that can be used by a JMS trigger is equal to the Max execution threads value plus 1. For
example, a concurrent JMS trigger configured to use 10 threads at a time can use a maximum of
11 server threads.

When there are multiple connections to the webMethods Broker, the threads are divided among
the connections. Therefore, if a trigger is configured so that Connection count is 2 and Max
execution threads is set to 10, each connection will have 5 threads plus 1, for a total of 12 threads.

Message Processing and Load Balancing

Load balancing allows multiple consumers on one or more Integration Servers to retrieve and
processmessages concurrently. Load balancing is necessary for concurrent JMS triggers regardless
of whether or not they are running in a cluster of Integration Servers. This is because concurrent
JMS triggers use multiple consumers. Each consumer receives a message from the JMS provider,
processes themessage, and acknowledges themessage to the JMS provider. Each consumer needs
to consume a message from the same destination, but not process any duplicate message. For
information about configuring load-balancing, see webMethods Integration Server Administrator’s
Guide.

About Batch Processing for Standard JMS Triggers
You can configure a standard JMS trigger and its associated trigger service to process a group or
“batch” of messages at one time. Batch processing can be an effective way of handling a high
volume of small messages for the purposes of persisting them or delivering them to another
back-end resource. For example, you might want to take a batch of messages, create a packet of
SAP IDocs, and send the packet to SAP with a single call. Alternatively, you might want to insert
multiple messages into a database at one time using only one insert. The trigger service processes
the messages as a unit as opposed to in a series.

The Max batch messages property indicates the maximum number of messages that the trigger
service can receive at one time. For example, if the Max batch messages property is set to 5,
Integration Server passes the trigger service up to 5messages received by the JMS trigger to process
during a single execution.

Integration Server uses one consumer to receive and process a batch of messages. During
pre-processing, Integration Server checks the maximum delivery count for each message and, if
exactly-once processing is configured, determines whether or not the message is a duplicate.
Integration Server then bundles themessage into a single IData and passes it to the trigger service.
If the message has exceeded the maximum delivery count or is a duplicate message, Integration
Server does not include it in the message batch sent to the trigger service.

Note:
The watt.server.jms.trigger.maxDeliveryCount property determines the maximum number of
times the JMS provider can deliver a message to a JMS trigger.

Integration Server acknowledges all the messages received in a batch from the JMS provider at
one time. This includes messages that failed pre-processing. As described by the Java Message
Service standard, when a client acknowledges one message, the client acknowledges all of the

Using webMethods Integration Server to Build a Client for JMS 10.7 39

2 Working with JMS Triggers

messages received by the session. Because Integration Server uses a consumer that includes a
javax.jms.MessageConsumer and a javax.jms.Session, when Integration Server acknowledges one
message in the batch, it effectively acknowledges all the messages received in the batch.

If a batch of messages is not acknowledged or they are recovered back to the JMS provider, the
JMS provider can redeliver all of the messages in the batch to the JMS trigger. However, when
using webMethods Broker, Integration Server can acknowledge individual messages that fail
pre-processing.

Guidelines for Configuring Batch Processing

When configuring JMS trigger for batch processing, keep the following in mind:

The trigger service must be coded to handle multiple messages as input. That is, the trigger
service must use the pub.jms.batchTriggerSpec as the service signature.

When receiving a batch of messages, Integration Server evaluates the local filter in the routing
rule against the first message in the batch only.

A transacted JMS trigger can be used for batch processing if the JMS connection alias used by
the trigger connects to a JMS provider that supports reuse of transacted JMS sessions. If the
JMS provider does not support reuse of transacted JMS sessions, set Max batch processing
to 1.

Consult the documentation for your JMSprovider to determinewhether or not the JMSprovider
supports the reuse of transacted JMS sessions. Note that webMethods Broker version 8.2 and
higher, Software AG Universal Messaging version 9.5 SP1 and higher, and webMethods
Nirvana version 7 and higher support the reuse of transacted JMS sessions.

A JMS trigger that contains an All (AND) or Only one (XOR) join cannot use batch processing.

SOAP-JMS triggers cannot process messages in batches.

Using Multiple Connections to Retrieve Messages for a
Concurrent JMS Trigger
You can configure a concurrent JMS trigger to obtain multiple connections to the JMS provider.
Multiple connections can improve trigger throughput. Keep inmind, however, that each connection
used by the JMS trigger requires a dedicated Integration Server thread, regardless of the current
throughput.

For a JMS trigger to have multiple connections to the JMS provider, the JMS connection alias used
by the triggermust be configured to create a new connection for each trigger. Formore information
about JMS connection aliases, refer to webMethods Integration Server Administrator’s Guide.

A concurrent JMS trigger can use multiple connections to retrieve messages from a JMS provider.
For a trigger to use multiple connections, the following must be true:

The JMS trigger must be configured for concurrent processing. Serial JMS triggers cannot use
multiple connections.

40 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

The JMS triggermust receivemessages from a queue or from a topicwith a durable subscriber.
JMS triggers that receive messages from non-durable subscribers (topics) cannot use multiple
connections.

The JMS trigger must not have the Ignore locally published option selected when the JMS
connection alias is configured to use the Create New Connection per Trigger option. For the
JMS trigger to ignore locally publishedmessages, the publisher and subscriber must share the
same connection. When the JMS connection alias uses multiple connections per trigger, the
publisher and subscriber will not share the same connection.

The JMS connection alias used by the JMS trigger must be configured to create an individual
connection for each trigger. To configure a JMS alias to create individual connections for each
JMS trigger, select the Create New Connection per Trigger option on the Messaging >
Messaging Configuration > JMS Settings > JMS Connection Alias screen on Integration
Server Administrator.

Note:
Whenusingmultiple connections to thewebMethods Broker, Integration Server uses a different
client ID for each JMS trigger that uses the JMS connection alias. However, when Integration
Server connects to other JMS providers, it uses the same client ID for each connection. Some
JMS providers do not permitmultiple connections to use the same client ID to retrievemessages
from a Topic with a durable subscriber. Review the JMS provider documentation before
configuring the use of multiple connections for a JMS connection alias and any concurrent JMS
triggers that use the JMS connection alias.

Retrieving Multiple Messages for a JMS Trigger with Each
Request
You can instruct Integration Server to retrieve multiple messages for a JMS trigger with each
request by using the prefetch cache. A prefetch cache is also referred to as a consumer cache.When
a JMS trigger is configured to use the prefetch cache, Integration Server retrievesmultiplemessages
for the trigger each time Integration Server requests more messages for the trigger from either
UniversalMessaging orwebMethods Broker.When a JMS trigger needs a newmessage to process,
the JMS trigger retrieves the message from the local, prefetched cache instead of requesting a new
message from the JMSprovider (UniversalMessaging orwebMethods Broker). Use of the prefetch
cache may improve performance of the JMS trigger because it reduces the time spent retrieving
messages for the JMS trigger. It can also reduce the burden onUniversalMessaging orwebMethods
Broker as it reduces the number or requests to which the JMS provider needs to respond.

Using the prefetch cache ismost likely to improve performance for JMS triggers that processmany
small messages and have trigger services that execute quickly. If the JMS trigger receives large
messages or the JMS trigger has long-running trigger services, using the prefetch cache may
increase the overall time needed to retrieve and process a message. For JMS triggers that fit this
use case, reducing the number of prefetched messages may actually decrease the time needed to
retrieve and process a message.

Note:
This prefetch cache can be used with JMS triggers that receive messages from Universal
Messaging or webMethods Broker only. webMethods Broker is deprecated.

Using webMethods Integration Server to Build a Client for JMS 10.7 41

2 Working with JMS Triggers

Which JMS triggers can use a prefetch cache depends and how that works depends on whether
JMS provider is Universal Messaging or Broker.

Prefetching Messages from webMethods Broker

When Broker is the JMS provider, either serial or concurrent JMS triggers can prefetch messages.
The number of messages Integration Server might retrieve with each request is determined by the
value of the Max prefetch size property for the JMS trigger and the value of the
watt.server.jms.trigger.maxPrefetchSize parameter.

When the Max prefetch size property is greater than 0, Integration Server uses the prefetch
cache with the JMS trigger. The Max prefetch size property value specifies the number of
messages that Integration Server might retrieve and cache for the trigger. The default is 10.

When the Max prefetch size property is set to -1, Integration Server uses the prefetch cache
with the JMS trigger. Thewatt.server.jms.trigger.maxPrefetchSize parameter value determines
how many messages Integration Server might retrieves and cache for the JMS trigger.

When the Max prefetch size property is set to 0, Integration Server does not use the prefetch
cache with the JMS trigger.

When the prefetch cache is in use and the number of messages retrieved by Integration Server is
greater than one, the same server threadmight process all of themessages retrieved by the prefetch
request. This is true even for concurrent JMS triggers. The first thread for the concurrent JMS
trigger processes the first set of prefetched messages. The second thread for the concurrent JMS
trigger processes the second set of prefetched messages.

For example, suppose that the number of available messages is 22, Max execution threads is 4,
andMax prefetch size is 10. In the initial request formessages, the first server threadmay retrieve
10messages. The same server threadwill process these first 10messages. The second server thread
may retrieve 10 messages, all of which will be processed by the second server thread. The third
server threadmay retrieve the remaining 2messages, both of which will be processed by the third
server thread. While the concurrent JMS trigger can use up to 4 server threads, Integration Server
might use only 3 server threads to retrieve and process messages due to the way in which a JMS
trigger processes prefetched messages. A concurrent JMS trigger will use all of the configured
execution threads to process messages only when the number of messages on the webMethods
Broker is greater than the number of messages that can be prefetched.

Note:
When you areworkingwith a cluster of Integration Servers, the prefetch behaviormight appear
at first to bemisleading. For example, suppose that you have a cluster of two Integration Servers.
Each Integration Server contains the same JMS trigger. Twentymessages are sent to a destination
from which JMS trigger receives messages. It might be expected the JMS trigger on Integration
Server 1 will receive the first message, the JMS trigger on Integration Server 2 will receive the
secondmessage, and so forth. However, whatmay happen is that the JMS trigger on Integration
Server 1will receive the first 10messages and the JMS trigger on Integration Server 2will receive
the second 10 messages.

Prefetching Messages with Universal Messaging

42 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

When Universal Messaging is the JMS provider from which a JMS trigger receives messages, the
JMS trigger can use prefetch cache (consumer cache) when the triggermeets the following criteria:

The JMS trigger uses concurrent processing. Serial JMS triggers that receive messages from
Universal Messaging cannot user prefetch caching.

The JMS trigger is not transacted. That is, the JMS connection alias that the trigger uses to
retrieve messages has NO_TRANSACTION as the transaction type.

If the JMS trigger receives messages frommultiple destinations (that is, the trigger uses a join)
and the number of destinations equals the Connection count property value. For example, if
the JMS trigger receives messages from 3 destinations, and the Connection count value is 3,
the JMS trigger can use the prefetch caching functionality. If the JMS trigger receives messages
from 4 desalinations and Connection count value is 3, the JMS trigger cannot use the prefetch
caching functionality.

The Max prefetch size is greater than 1.

When prefetch caching is used for JMS trigger, each request for messages retrieves up to the
number of messages specified in the Max prefetch size property. The JMS trigger processes the
first of the retrieved messages and places the remainder in a cache. Subsequent requests for
messages by the trigger will pull messages from the cache instead of retrieving messages from
Universal Messaging.

The frequency with which a concurrent JMS trigger that uses prefetch caching polls theUniversal
Messaging for more messages is controlled by the watt.server.jms.trigger.caching.pollingInterval
parameter.

When a concurrent JMS trigger uses prefetch caching, the following server configuration parameters
do not apply and do not affect the frequency with which Integration Server polls Universal
Messaging for more messages on behalf of the trigger:

watt.server.jms.trigger.concurrent.consecutiveMessageThreshold

watt.server.jms.trigger.concurrent.primaryThread.pollingInterval

watt.server.jms.trigger.concurrent.secondaryThread.pollingInterval

watt.server.jms.trigger.extendedDelay.delayIncrementInterval

watt.server.jms.trigger.extendedDelay.delays

watt.server.jms.trigger.maxPrefetchSize

Configuring Message Processing
Keep the following points in mind when configuring message processing for a JMS trigger:

You can configure a standard JMS trigger and its associated trigger service to process a group
or “batch” of messages at one time. For information about batch processing, see “About Batch
Processing for Standard JMS Triggers” on page 39 and “Guidelines for Configuring Batch
Processing” on page 40.

Using webMethods Integration Server to Build a Client for JMS 10.7 43

2 Working with JMS Triggers

If the JMS provider fromwhich the JMS trigger retrievesmessages does not support concurrent
access by durable subscribers, you must set the Max execution threads property to 1 for the
concurrent JMS trigger. Consult the documentation for your JMSprovider formore information.

Non-durable subscribers, i.e., JMS triggers that subscribe to topics but do not specify a durable
subscriber, cannot receivemessages in a load-balanced fashion. Because it is possible for a JMS
trigger using a non-durable subscriber to process duplicates of a message, set Max execution
threads to 1.

For a destination that acts as a shared state client, the serial processing mode corresponds to
a shared state ordermode of publisher; a concurrent processingmode corresponds to a shared
state order mode of none.

If you use webMethods Broker as the JMS provider, changing the message processing mode
for a JMS trigger can create amismatchwith the corresponding destination on thewebMethods
Broker. If you do not use Designer to make the changes, you need to use the webMethods
Broker interface of My webMethods to update the destination.

A concurrent JMS trigger can use multiple connections to retrieve messages from the JMS
provider. For information about requirements for using multiple connections, see “Using
Multiple Connections to Retrieve Messages for a Concurrent JMS Trigger” on page 40.

You can only use the Max prefetch size property when the JMS provider is webMethods
Broker or Universal Messaging. For more details about requirements for using this feature,
see “PrefetchingMessages fromwebMethods Broker ” on page 42 and “PrefetchingMessages
with Universal Messaging ” on page 42.

To configure message processing for a JMS trigger

1. In the PackageNavigator view ofDesigner, open the JMS trigger forwhich youwant to specify
message processing.

2. In the Properties view, under Messaging processing, next to Processing mode, select one of
the following:

To...Select...

Specify that Integration Server should process messages received by
the trigger one after the other.

Serial

Specify that Integration Server should process multiple messages for
this trigger at one time.

Concurrent

In theMax execution threadsproperty, specify themaximumnumber
of messages that Integration Server can process concurrently.

3. If you want this trigger to perform batch processing, next to Max batch messages, specify
the maximum number of messages that the trigger service can receive at one time. If you do
not want the trigger to perform batch processing, leave this property set to 1. The default is 1.

44 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

4. If youwant this trigger to usemultiple connections to receivemessages from the JMS provider,
next to Connection count, specify the number of connections you want the JMS trigger to
make to the JMS provider. The default is 1.

5. If youwant Integration Server to use the prefetch cache with this JMS trigger, in the Properties
view, under Universal Messaging and webMethods Broker do one of the following for Max
prefetch size:

Specify the number of messages you want Integration Server to retrieve and cache for this
JMS trigger. The default is 10 messages.

Specify -1 if the JMS trigger retrieves messages from webMethods Broker and you want
the value of watt.server.jms.trigger.maxPrefetchSize parameter to determine how many
messages Integration Server retrieves and caches for the JMS trigger.

Specify 0 if you do not want to use the prefetch cache with this JMS trigger.

6. Click File > Save.

If the destination is Queue or Topic (Durable Subscriber) and the JMS trigger is connected to
the queue or durable subscriber, Designer prompts you to update the correspondingdestination
on the webMethods Broker with the changed shared state order mode, click Yes to update the
destination. Click No to skip the destination update. Note that messages might be lost while
Designer and Integration Server make the update because Integration Server deletes and
recreates the subscription as part of the update.

Note:
A JMS trigger is connected to the webMethods Broker when the specified JMS connection
alias is enabled and connected to the webMethods Broker.

Fatal Error Handling for Non-Transacted JMS Triggers

You can specify that Integration Server suspend a JMS trigger automatically if a fatal error occurs
during trigger service execution. A fatal error occurs when the trigger service ends because of an
exception.

If a trigger service ends because of an exception, and you configured the JMS trigger to suspend
on fatal errors, Integration Server suspends the trigger and acknowledges the message to the JMS
provider. The JMS trigger remains suspended until one of the following occurs:

You enable the trigger using the pub.trigger:enableJMSTriggers service.

You enable the trigger using Integration Server Administrator.

Integration Server restarts or the package containing the trigger reloads. (When Integration
Server suspends a trigger because of a fatal error, Integration Server considers the change to
be temporary. Formore information about temporary vs. permanent state changes for triggers,
see webMethods Integration Server Administrator’s Guide.)

Automatic suspension of a trigger can be especially useful for serial triggers that are designed to
process a group of messages in a particular order. If the trigger service ends in error while

Using webMethods Integration Server to Build a Client for JMS 10.7 45

2 Working with JMS Triggers

processing the first message, you might not want the trigger to proceed with processing the
subsequent messages in the group. If Integration Server automatically suspends the trigger, you
have an opportunity to determine why the trigger service did not execute successfully.

Important:
If you disable or suspend a SOAP-JMS trigger that acts as a listener for one or more provider
web service descriptors, Integration Server will not retrieve anymessages for those web service
descriptors until the trigger is enabled.

You can handle the exception that causes the fatal error by configuring Integration Server to
generate JMS retrieval failure events for fatal errors and by creating an event handler that subscribes
to JMS retrieval failure events. Integration Server passes the event handler the contents of the JMS
message as well as information about the exception.

Integration Server handles fatal errors for transacted JMS differently than for non-transacted JMS
triggers. For information about fatal error handling for transacted JMS triggers, see “Fatal Error
Handling for Transacted JMS Triggers” on page 59.

Configuring Fatal Error Handling for Non-Transacted JMS
Triggers

To configure fatal error handling for a non-transacted JMS trigger

1. In the PackageNavigator view ofDesigner, open the JMS trigger forwhich youwant to specify
document processing.

2. In the Properties view, under Fatal error handling, set the Suspend on error property to True
if youwant Integration Server to suspend the triggerwhen a trigger service endswith an error.
Otherwise, select False. The default is False.

3. Click File > Save.

Transient Error Handling for Non-Transacted JMS Triggers

When building a JMS trigger, you can specifywhat action Integration Server takeswhen the trigger
service fails because of a transient error caused by a run-time exception. A transient error is an
error that arises from a temporary condition that might be resolved or corrected quickly, such as
the unavailability of a resource due to network issues or failure to connect to a database. Because
the condition that caused the trigger service to fail is temporary, the trigger service might execute
successfully if Integration Server waits and then re-executes the service.

A run-time exception (specifically, an ISRuntimeException) occurs in the following situations:

The trigger service catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

Theweb service operation that processes themessage received by a SOAP-JMS trigger catches
and wraps a transient error and then re-throws it as an ISRuntimeException.

46 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Note:
For a service handler invoked by a SOAP-JMS trigger, Integration Server treats all errors as
fatal. Service handlers invoked by SOAP-JMS triggers cannot be retried.

A pub.jms:send, pub.jms:sendAndWait, or pub.jms:reply service fails because a resource (such as the
JNDI provider or JMS provider) is not available.

If the JMS provider is not available, and the settings for the pub.jms* service indicate that
Integration Server should write messages to the client side queue, Integration Server does not
throw an ISRuntimeException.

A transient error occurs on the back-end resource for an adapter service. Adapter services built
on Integration Server 6.0 or later, and based on the ART framework, detect and propagate
exceptions that signal a retry automatically if a transient error is detected on their back-end
resource.

Note:
A web service connector that sends a JMS message can throw an ISRuntimeException, such as
when the JMS provider is not available. However, Integration Server automatically places the
ISRuntimeException in the fault document returned by the web service connector. If you want
the parent flow service to catch the transient error and re-throw it as an ISRuntimeException,
you must code the parent flow service to check the fault document for an ISRuntimeException
and then throw an ISRuntimeException explicitly.

You can also configure Integration Server and/or a JMS trigger to handle transient errors that occur
during trigger preprocessing. The trigger preprocessing phase encompasses the time from when
a trigger first receives a message from it’s local queue on Integration Server to the time the trigger
service executes.

For more information about transient error handling for trigger preprocessing, see “Transient
Error Handling During Trigger Preprocessing” on page 99.

About Retry Behavior for Trigger Services
When you configure transient error handling for a non-transacted JMS trigger, you specify the
following retry behavior:

Whether Integration Server should retry trigger services for the standard JMS trigger. Keep
in mind that a trigger service can retry only if it is coded to throw ISRuntimeExceptions. For
more information, see “Service Requirements for Retrying a Trigger Service” on page 48.

For a SOAP-JMS trigger, whether Integration Server should retry web service operation that
throw and an ISRuntimeException.

Note:Integration Server does not apply the SOAP-JMS trigger transient error handling
behavior to service handlers executed as part of processing web services. Integration Server
treats all errors thrown by service handler as fatal errors.

The maximum number of retry attempts Integration Server should make for each trigger
service.

Using webMethods Integration Server to Build a Client for JMS 10.7 47

2 Working with JMS Triggers

The time interval between retry attempts.

How to handle a retry failure. That is, you can specify what action Integration Server takes if
all the retry attempts aremade and the trigger service orweb service operation still fails because
of an ISRuntimeException. Formore information about handling retry failures, see “Handling
Retry Failure” on page 48.

Service Requirements for Retrying a Trigger Service
To be eligible for retry, the trigger service or web service operation must do one of the following
to catch a transient error and re-throw it as an ISRuntimeException:

If the trigger service or web service operation is a flow service, the trigger service must invoke
pub.flow:throwExceptionForRetry. For more information about the pub.flow:throwExceptionForRetry, see
the webMethods Integration Server Built-In Services Reference.

If the trigger service or web service operation is written in Java, the service can use
com.wm.app.b2b.server.ISRuntimeException(). For more information about constructing
ISRuntimeExceptions in Java services, see the webMethods Integration Server Java API Reference
for the com.wm.app.b2b.server.ISRuntimeException class.

When a service invokes a pub.jms* service that sends a JMS message and the service fails because
a resource needed by the pub.jms* service is not available, Integration Server automatically detects
and propagates an ISRuntimeException.

Adapter services built on Integration Server 6.0 or later, and based on the ART framework, detect
and propagate exceptions that signal a retry if a transient error is detected on their back-end
resource. This behavior allows for the automatic retry when the service functions as a trigger
service.

Note:Integration Server does not retry a trigger service that fails because a ServiceException
occurred. A ServiceException indicates that there is something functionally wrong with the
service. A service can throw a ServiceException using the EXIT step.

Handling Retry Failure

Retry failure occurs for a standard JMS trigger when Integration Server makes the maximum
number of retry attempts and the trigger service still fails because of an ISRuntimeException. Retry
failure occurs for a SOAP-JMS trigger when Integration Server makes the maximum number of
retry attempts to process a web service operation and the operation still fails because of an
ISRuntimeException.

When you configure retry properties, you can specify one of the following actions to determine
how Integration Server handles retry failure for a trigger.

Throw exception.When Integration Server exhausts the maximum number of retry attempts,
Integration Server treats the last trigger service or web service operation failure as a service
error. This is the default behavior.

48 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Suspend and retry later.When Integration Server reaches the maximum number of retry
attempts, Integration Server suspends the trigger and then retries the trigger service or web
service operation at a later time.

Overview of Throw Exception for Retry Failure

The following table provides an overview of how Integration Server handles retry failure when
the Throw exception option is selected.

DescriptionStep

Integration Server makes the final retry attempt and the trigger service or web service
operation fails because of an ISRuntimeException.

1

Integration Server treats the last trigger service or web service operation failure as a
ServiceException.

2

Integration Server rejects the message.3

If the message is persistent, Integration Server returns an acknowledgement to the
JMS provider.

Integration Server generates a JMS retrieval failure event if the
watt.server.jms.trigger.raiseEventOnRetryFailure property is set to true (the default).

4

If the JMS trigger is configured to suspend on error when a fatal error occurs,
Integration Server suspends the JMS trigger. Otherwise, Integration Server processes
the next message for the JMS trigger.

5

In summary, the default retry failure behavior (Throw exception) rejects the message and allows
the trigger to continue with message processing when retry failure occurs for a trigger service.

Overview of Suspend and Retry Later for Retry Failure

The following table provides more information about how the Suspend and retry later option
works.

DescriptionStep

Integration Server makes the final retry attempt and the trigger service or web service
operation fails because of an ISRuntimeException.

1

Integration Server suspends the JMS trigger temporarily.2

Note:
The change to the trigger state is temporary. Message processing will resume for
the trigger if Integration Server restarts, the trigger is enabled or disabled, or the
package containing the trigger reloads. You can also enable triggersmanually using
Integration Server Administrator or by invoking the pub.trigger:enableJMSTriggers
service.

Using webMethods Integration Server to Build a Client for JMS 10.7 49

2 Working with JMS Triggers

DescriptionStep

Important:
If you disable or suspend a SOAP-JMS trigger that acts as a listener for one or more
provider web service descriptors, Integration Server will not retrieve anymessages
for those web service descriptors until the SOAP-JMS trigger is enabled.

Integration Server recovers the message back to the JMS provider. This indicates that
the required resources are not ready to process the message and makes the message

3

available for processing at a later time. For serial triggers, it also ensures that the
message maintains its position at the top of trigger queue.

Optionally, Integration Server schedules and executes a resource monitoring service.
A resource monitoring service is a service that you create to determine whether the

4

resources associatedwith a trigger service are available. A resourcemonitoring service
returns a single output parameter named isAvailable.

If the resource monitoring service indicates that the resources are available (that is,
the value of isAvailable is true), Integration Server enables the trigger. Message
processing and message retrieval resume for the JMS trigger.

5

If the resource monitoring service indicates that the resources are not available (that
is, the value of isAvailable is false), Integration Server waits a short time interval (by
default, 60 seconds) and then re-executes the resourcemonitoring service. Integration
Server continues executing the resource monitoring service periodically until the
service indicates the resources are available.

Tip:
You can change the frequencywithwhich the resourcemonitoring service executes
by modifying the value of the watt.server.jms.trigger.monitoringInterval property.

After Integration Server resumes the JMS trigger, Integration Server passes themessage
to the trigger. The trigger and trigger service (or web service operation) process the
message just as they would any message received by the JMS trigger.

6

Note:
At this point, the retry count is set to 0 (zero).

In summary, the Suspend and retry later option provides a way to resubmit the message
programmatically. It also prevents the trigger from retrieving and processing othermessages until
the cause of the transient error condition has been remedied.

Configuring Transient Error Handling for a Non-Transacted JMS
Trigger
The transient error handling and retry behavior that you specify for a non-transacted JMS trigger
determines how Integration Server handles retry failure caused by transient errors during trigger
service execution. The selected behavior also determines how Integration Server handles transient
errors that occur during trigger preprocessing.

50 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

For more information about transient error handling for trigger preprocessing, see “Transient
Error Handling During Trigger Preprocessing” on page 99.

Note:
If you do not configure service retry for a trigger, set the Max retry attempts property to 0.
Because managing service retries creates extra overhead, setting this property to 0 can improve
the performance of services invoked by the trigger.

To configure transient error handling for a non-transacted JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want to
configure retry behavior.

2. In the Properties view, under Transient error handling, in the Max retry attempts field,
specify the maximum number of times Integration Server should attempt to re-execute the
trigger service. The default is 0 retries (the trigger service does not retry).

3. In the Retry interval property, specify the time period the Integration Server waits between
retry attempts. The default is 10 seconds.

4. Set the On retry failure property to one of the following:

To...Select...

Specify that Integration Server should throw a service exception
when the last allowed retry attempt ends because of an
ISRuntimeException.

Throw exception

This is the default.

Specify that Integration Server should recover themessage back
to the JMS provider and suspend the trigger when the last
allowed retry attempt ends because of an ISRuntimeException.

Suspend and retry later

Note:
If you want Integration Server to automatically enable the
trigger when the trigger’s resources become available, you
must provide a resource monitoring service that Integration
Server can execute to determine when to resume the trigger.

5. If you selected Suspend and retry later, then in the Resource monitoring service property
specify the service that Integration Server should execute to determine the availability of
resources associated with the trigger service. Multiple triggers can use the same resource
monitoring service. For information about building a resource monitoring service, see Using
webMethods Integration Server to Build a Client for JMS.

6. Click File > Save.

Using webMethods Integration Server to Build a Client for JMS 10.7 51

2 Working with JMS Triggers

Notes:

Standard JMS triggers and services can both be configured to retry. When a trigger invokes a
service (that is, the service functions as a trigger service), Integration Server uses the trigger
retry properties instead of the service retry properties.

SOAP-JMS triggers and services used as operations in provider web service descriptors can
both be configured to retry. When a web service operation processes a message received by a
SOAP-JMS trigger, Integration Server uses the trigger retry properties instead of the service
(operation) retry properties.

Integration Server does not retry service handlers invoked by a SOAP-JMS trigger.

When Integration Server retries a trigger service and the trigger service is configured to generate
audit data on error, Integration Server adds an entry to the audit log for each failed retry
attempt. Each of these entries will have a status of “Retried” and an error message of “Null”.
However, if Integration Server makes the maximum retry attempts and the trigger service still
fails, the final audit log entry for the service will have a status of “Failed” and will display the
actual error message. Integration Server makes the audit log entry regardless of which retry
failure option the trigger uses.

Integration Server generates the following journal log message between retry attempts:

[ISS.0014.0031D] Service serviceName failed with ISRuntimeException. Retry x of ywill begin
in retryIntervalmilliseconds.

You can invoke the pub.flow:getRetryCount servicewithin a trigger service to determine the current
number of retry attempts made by Integration Server and the maximum number of retry
attempts allowed for the trigger service. For more information about the pub.flow:getRetryCount
service, see the webMethods Integration Server Built-In Services Reference.

Exactly-Once Processing for JMS Triggers

Within Integration Server, exactly-once processing is a facility that ensures one-time processing
of a persistent message by a JMS trigger. The trigger does not process duplicates of the message.
Integration Server provides exactly-once processing when all of the following are true:

The message is persistent.

The JMS trigger has an acknowledgement mode set to CLIENT_ACKNOWLEDGE.

Exactly-once properties are configured for the JMS trigger.

Note:Software AG recommends that if youwant to use exactly-once processing for JMS triggers
subscribing to topics, make sure the topic uses a durable subscriber.

Duplicate Detection Methods for JMS Triggers
Integration Server ensures exactly-once processing by performing duplicate detection and by
providing the ability to retry trigger services.Duplicate detection determineswhether the current
message is a copy of one previously processed by the trigger.

52 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Duplicate messages can be introduced in to the webMethods system in the following situations:

The sending client sends the same message more than once.

When receiving persistent messages from the JMS provider, Integration Server and the JMS
provider lose connectivity before the JMS trigger processes and acknowledges the message.
The JMS trigger will receive the message again when the connection is restored.

Integration Server uses duplicate detection to determine the message’s status. The message status
can be one of the following:

New. The message is new and has not been processed by the trigger.

Duplicate. The message is a copy of one already processed the trigger.

In Doubt. Integration Server cannot determine the status of the message. The trigger may or
may not have processed the message before.

To resolve themessage status, Integration Server evaluates, in order, one or more of the following:

Delivery count indicates how many times the JMS provider has delivered the message to the
JMS trigger.

Document history databasemaintains a record of all persistent message IDs processed by
JMS triggers that have an acknowledgment mode of CLIENT_ACKNOWLEDGE and for which
exactly-once processing is configured.

Document resolver service is a service created by a user to determine the message status. The
document resolver service can be used instead of or in addition to the document history
database.

The steps that Integration Server takes to determine amessage’s status depend on the exactly-once
properties configured for the JMS trigger.

Note:
For detailed information about exactly-once processing for messages received by JMS triggers,
see Using webMethods Integration Server to Build a Client for JMS.

Configuring Exactly-Once Processing for a JMS Trigger
Configure exactly-once processing for a JMS triggerwhen youwant the trigger to process persistent
messages once and only once. If it is acceptable for a trigger service to process duplicates of a
message, you should not configure exactly-once processing for the trigger.

Keep the following points in mind when configuring exactly-once processing:

Integration Server can perform exactly-once processing for persistent messages only. The
sending client must set the JMSDeliveryMode to persistent.

The JMS trigger must specify CLIENT_ACKNOWLEDGE for the acknowledgement mode.

Using webMethods Integration Server to Build a Client for JMS 10.7 53

2 Working with JMS Triggers

You do not need to configure all three methods of duplicate detection. However, if you want
to ensure exactly-once processing, you must use a document history database or implement
a custom solution using the document resolver service.

A document history database offers a simpler approach than building a custom solution and
will typically catch all duplicate messages. There may be exceptions depending on your
implementation. Formore information about these exceptions, see “Building a Transacted JMS
Trigger” on page 55. To minimize these exceptions, it is recommended that you use a history
database and a document resolver service.

Stand-alone Integration Servers cannot share a document history database. Only a cluster of
Integration Servers or a non-clustered group of Integration Servers can (and must) share a
document history database.

Make sure the duplicate detection window set by the History time to live property is long
enough to catch duplicate messages but does not cause the document history database to
consume too many server resources. If sending JMS clients reliably send messages once, you
might use a smaller duplicate detection window. If the JMS clients are prone to sending
duplicate messages, consider setting a longer duplicate detection window.

If you intend to use a document history database as part of duplicate detection, you must first
install the document history database component and associate it with a JDBC connection
pool. For instructions, see Installing Software AG Products.

Note:
For detailed information about exactly-once processing for messages received by JMS triggers,
see Using webMethods Integration Server to Build a Client for JMS.

To configure exactly-once processing for a JMS trigger

1. In the Package Navigator view of Designer, open the JMS trigger for which you want to
configure exactly-once processing.

2. In the Properties view, under Exactly Once, set the Detect duplicates property to True.

3. To use a document history database as part of duplicate detection, do the following:

a. Set the Use history property to True.

b. In the History time to live property, specify how long the document history database
maintains an entry for a message processed by this trigger. This value determines the
length of the duplicate detection window.

4. To use a service that you create to resolve the status of In Doubt messages, specify that service
in the Document resolver service property.

5. Click File > Save.

54 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

Disabling Exactly-Once Processing for a JMS Trigger

If you later determine that exactly-once processing is not necessary for a JMS trigger, you can
disable it.

To disable exactly-once processing for a JMS trigger

1. In the Package Navigator view of Designer, open the trigger for which you want to configure
exactly-once processing.

2. In the Properties view, under Exactly Once, set the Detect duplicates property to False.

Designer disables the remaining exactly-once properties.

3. Click File > Save.

Debugging a JMS Trigger

To debug and test a JMS trigger you can:

Instruct Integration Server to produce trace logging for the trigger. To do this, configure the
JMS connection alias used by the trigger to produce enhanced logging formessage consumers.
You can indicate that Integration Server writes additional log messages for a specific JMS
trigger or all JMS triggers that use the JMS connection alias. For more information about
enhanced logging for JMS triggers, seewebMethods Integration Server Administrator’s Guideextra
level of verbose logging.

Send messages to which the JMS trigger subscribes to the JMS provider. You can create a
service that sends the messages. Alternatively, you can create a launch configuration that
publishes a JMS message that contains an instance of a specified IS document type to the JMS
provider.

Building a Transacted JMS Trigger

A transacted JMS trigger is a JMS trigger that executes within a transaction. A transaction is a
logical unit of work composed of one or more interactions with one or more resources. The
interactions within a transaction are either all committed or all rolled back. A transaction either
entirely succeeds or has no effect at all.

For a transacted JMS trigger, Integration Server uses a transacted JMS connection alias to receive
messages from the JMS provider and to process themessages. A JMS connection alias is considered
to be transactedwhen it has a transaction type of XATRANSACTIONor LOCALTRANSACTION.

The execution of a transacted JMS trigger is an implicit transaction. In an implicit transaction,
Integration Server starts and completes the transaction automatically,without the need for executing
any of the transaction management services.

Integration Server starts the implicit transaction when it uses the specified transacted JMS
connection alias to connect to the JMS provider and receivemessages for the transacted JMS trigger.

Using webMethods Integration Server to Build a Client for JMS 10.7 55

2 Working with JMS Triggers

Integration Server implicitly commits or rolls back the transaction based on the success or failure
of the trigger service.

Integration Server commits the transaction if the trigger service executes successfully.

Integration Server rolls back the transaction if the trigger service fails with an
ISRuntimeException (a transient error). For detailed information about how Integration Server
handles a transient error within a transaction, see “Transient Error Handling for Transacted
JMS Triggers” on page 60.

Integration Server rolls back the transaction if the trigger service fails with a Service Exception
(a fatal error). For detailed information about how Integration Server handles a fatal error
within a transaction, see “Fatal Error Handling for Transacted JMS Triggers” on page 59.

Because Integration Server handles the transaction implicitly, you do not need to use any of the
transaction management services, such as pub.art.transaction:startTransaction, in the trigger service.
However, if the trigger service includes a nested transaction, you can use the transaction
management services to explicitly manage the nested transaction.

Like a non-transacted JMS trigger, a transacted JMS trigger specifies a destination from which it
would like to receive documents and specifies routing rules to process messages it receives.
However, a transacted JMS trigger has some prerequisites as well as some properties that are
different from a non-transacted JMS trigger.

Prerequisites for a Transacted JMS Trigger
Before you build a transacted JMS trigger, make sure the following points are true:

A transacted JMS connection alias exists. A JMS connection alias is considered to be transacted
when it has a transaction type of XA TRANSACTION or LOCAL TRANSACTION.

Note:
A transacted JMS connection alias cannot be assigned to a JMS trigger if a cluster policy is
applied to the connection factory used by the JMS connection alias.

The WmART package is installed and enabled.

Properties for Transacted JMS Triggers
Integration Server and Designer provide different properties for a transacted JMS trigger than for
a non-transacted JMS trigger. The following list identifies properties that are specific to transacted
JMS triggers, specific to non-transacted JMS triggers, or apply to both butmust be set to a particular
value for transacted JMS triggers.

For transacted JMS triggers, message acknowledgement is handled by the transaction; the
acknowledgement mode does not apply. Consequently, Designer does not display the
Acknowledgement mode property for a transacted JMS trigger.

A transacted JMS trigger can only use Any (OR) joins, for which you do not need to specify a
join time-out. Because All (AND) andOnly one (XOR) joins cannot be used, Designer does not
display the Join expires and Expire after properties for a transacted JMS trigger.

56 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

A transacted JMS trigger can be used for batch processing if the JMS connection alias used by
the trigger connects to a JMS provider that supports reuse of transacted JMS sessions. If the
JMS provider does not support reuse of transacted JMS sessions, set Max batch processing
to 1.

Consult the documentation for your JMSprovider to determinewhether or not the JMSprovider
supports the reuse of transacted JMS sessions. Note that webMethods Broker version 8.2 and
higher, Software AG Universal Messaging version 9.5 SP1 and higher, and webMethods
Nirvana version 7 and higher support the reuse of transacted JMS sessions.

Because a transaction is an all or nothing situation, a trigger service cannot retry a message if
a trigger service ends because of a transient error. Designer does not display the retry properties
(Max retry attempts, Retry interval, and On retry failure) for a transacted JMS trigger.

You can specify how Integration Server handles a transient error that causes the transaction
to be rolled back. Designer displays an On transaction rollback property that you can use to
specify whether Integration Server simply recovers the message from the JMS provider or
whether it suspends the JMS trigger in addition to recovering themessage. Formore information
about transient error handling for transacted JMS triggers, see “Transient Error Handling for
Transacted JMS Triggers” on page 60.

Steps for Building a Transacted JMS Trigger
Building a transacted JMS trigger is a process that involves the following basic stages.

Create a new JMS trigger on Integration Server.Stage 1

Specify a JMS connection alias with a transaction type of XA TRANSACTION or
LOCAL TRANSACTION.

Stage 2

Specify the destination (queues or topics) on the JMS provider from which you
want to receive messages. You also specify any message selectors that you want
the JMS provider to use to filter messages for the JMS trigger.

Stage 3

If this a SOAP-JMS trigger, you can specify one destination only.

For a standard JMS trigger, create routing rules and specify the services that
Integration Server invokes when the JMS trigger receives messages.

Stage 4

SOAP-JMS triggers do not use routing rules.

Set the following JMS trigger properties:Stage 5

DescriptionProperty name...

Enables or disables a JMS trigger as follows:Enabled

If set to True, enables a JMS trigger that is currently
disabled.

If set to False, disables a JMS trigger that is currently
enabled.

Using webMethods Integration Server to Build a Client for JMS 10.7 57

2 Working with JMS Triggers

Name of the user account whose credentials Integration
Server uses to execute a service associated with the JMS
trigger.

Execution user

Specifies whether Integration Server should process
messages serially or concurrently. When set to:

Message processing

Serial, Integration Server processesmessages received
by the trigger one after the other.

Concurrent, Integration Server processes multiple
messages for the trigger at one time.

Specifieswhether youwant Integration Server to suspend
the trigger when a trigger service ends with an error.
Select True or False.

Fatal error handling >
Suspend on error

Specifies how Integration Server responds when a
transaction is rolled back due to a transient error that

Transient error handling

occurs during processing of a transacted JMS trigger.
When the On transaction rollback property is set to:

Recover only, Integration Server recovers themessage
after a transaction is rolled back due to a transient
error. This is the default.

Suspend and recover, Integration Server suspends
the JMS trigger and recovers the message after a
resource monitoring service indicates that the
resources needed by the trigger service are available.

Specifies whether you want the trigger to process
persistent messages once and only once. Set Detect
duplicates to True to configure exactly once processing.

Exactly once

In Designer, select the ACLs that you want to assign for
each level of access as follows:

Permissions

For the List ACL permission, specify the ACL whose
allowed member can see that the element exists and
view the element’s metadata (such as input, output).

For the Read ACL, specify the ACL whose allowed
member can view the source code and metadata of
the element.

For the Write ACL, specify the ACL whose allowed
member can lock, check out, edit, rename, and delete
the element.

58 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

For theExecute ACL, specify theACLwhose allowed
member can execute the service. This level of access
only applies to services and web service descriptors.

Test and debug the JMS trigger. For more information, see “Debugging a JMS
Trigger” on page 55.

Stage 6

Fatal Error Handling for Transacted JMS Triggers
You can specify that Integration Server suspend a transacted JMS trigger automatically if a fatal
error occurs during trigger service execution. For a standard JMS trigger, a fatal error occurswhen
the trigger service ends because of a ServiceException. For a SOAP-JMS trigger, a fatal error occurs
when the web service operation ends because of a ServiceException.

When a transacted JMS trigger is configured to suspend when a fatal error occurs, Integration
Server does the following when the trigger service or web service operation ends with a
ServiceException:

DescriptionStep

The trigger service for a transacted JMS trigger fails because of a ServiceException. Or,
a web service operation invoked via a transacted SOAP-JMS trigger fails because of a
ServiceException.

1

Integration Server rolls back the entire transaction and Integration Server recovers the
message back to the JMS provider. The JMS provider marks the message as redelivered
and increments the value of the JMSXDeliveryCount property in the JMS message.

2

If the JMS trigger is configured to use a document history database for exactly-once
processing, Integration Server adds an entrywith a status of “completed” for themessage
to the document history database.

3

Because Integration Server does not acknowledge the message when it is rolled back,
the JMS providermakes themessage available for redelivery to the JMS trigger. However,
a message that causes a trigger service to end because of a Service Exception typically
does not process successfully upon redelivery. Integration Server adds the “completed”
entry so that the message is treated as a duplicate when it is received from the JMS
provider. The message is rejected after it is resent.

If the JMS trigger does not use a document history database, Integration Server continues
to receive and attempt message processing until the message processes successfully or
the maximum delivery count has been met. The maximum delivery count determines
the maximum number of time the JMS provider can deliver the message to the JMS
trigger. It is controlled by the watt.server.jms.trigger.maxDeliveryCount property.

Integration Server suspends the JMS trigger.4

Important:

Using webMethods Integration Server to Build a Client for JMS 10.7 59

2 Working with JMS Triggers

DescriptionStep

If you disable or suspend a SOAP-JMS trigger that acts as a listener for one or more
provider web service descriptors, Integration Server will not retrieve any messages
for those web service descriptors until the trigger is enabled.

The JMS trigger remains suspended until one of the following occurs:5

You enable the trigger using the pub.trigger:enableJMSTriggers service.

You enable the trigger using Integration Server Administrator.

Integration Server restarts or the package containing the trigger reloads. (When
Integration Server suspends a trigger because of a fatal error, Integration Server
considers the change to be temporary. For more information about temporary vs.
permanent state changes for triggers, seewebMethods Integration Server Administrator’s
Guide.)

You can handle the exception that causes the fatal error by configuring Integration Server to
generate JMS retrieval failure events for fatal errors and by creating an event handler that subscribes
to JMS retrieval failure events. Integration Server passes the contents of the JMS message and
exception information to the event handler.

Configuring Fatal Error Handling for Transacted JMS Triggers

To configure fatal error handling for a transacted JMS trigger

1. In the PackageNavigator view ofDesigner, open the JMS trigger forwhich youwant to specify
document processing.

2. In the Properties view, under Fatal error handling, set the Suspend on error property to True
if youwant Integration Server to suspend the triggerwhen a trigger service endswith an error.
Otherwise, select False. The default is False.

3. Configure exactly-once processing for the JMS trigger. Formore information about configuring
exactly-once processing, see “Configuring Exactly-Once Processing for a JMS Trigger” on
page 53.

4. Click File > Save.

Transient Error Handling for Transacted JMS Triggers
When building a transacted JMS trigger, you can specify what action Integration Server takes
when a transient error causes a trigger service or a web service operation to fail and the entire
transaction is rolled back.

60 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

A transient error is an error that arises from a temporary condition that might be resolved or
corrected quickly, such as the unavailability of a resource due to network issues or failure to
connect to a database. A transient error is caused by a run-time exception. A run-time exception
(specifically, an ISRuntimeException) occurs in the following situations.

The trigger service catches and wraps a transient error and then re-throws it as an
ISRuntimeException.

Theweb service operation that processes themessage received by a SOAP-JMS trigger catches
and wraps a transient error and then re-throws it as an ISRuntimeException.

Note:
For a service handler invoked by a SOAP-JMS trigger, Integration Server treats all errors as
fatal. Service handlers invoked by SOAP-JMS triggers cannot be retried.

The pub.jms:send, pub.jms:sendAndWait, or pub.jms:reply service fails because a resource (such as the
JNDI provider or JMS provider) is not available.

If the JMS provider is not available, and the settings for the pub.jms* service indicate that
Integration Server should write messages to the client side queue, Integration Server does not
throw an ISRuntimeException.

A transient error occurs on the back-end resource for an adapter service. Adapter services built
on Integration Server 6.0 or later, and based on the ART framework, detect and propagate
exceptions that signal a retry automatically if a transient error is detected on their back-end
resource.

Note:
Aweb service connector that sends a JMS message can throw an ISRUntimeException, such as
when the JMS provider is not available. However, Integration Server automatically places the
ISRuntimeException in the fault document returned by the web service connector. If you want
the parent flow service to catch the transient error and re-throw it as an ISRuntimeException,
you must code the parent flow service to check the fault document for an ISRuntimeException
and then throw an ISRuntimeException explicitly.

You can specify one of the following transient error handling options for a transacted JMS trigger:

Recover only. After a transaction is rolled back, Integration Server receives the message from
the JMS provider almost immediately. This is the default.

Suspend and recover. After a transaction is rolled back, Integration Server suspends the JMS
trigger and receives the message from the JMS provider at a later time.

You can also configure Integration Server and/or a JMS trigger to handle transient errors that occur
during trigger preprocessing. The trigger preprocessing phase encompasses the time from when
a trigger first receives amessage from it’s local queue on Integration Server b to the time the trigger
service executes.

For more information about transient error handling for trigger preprocessing, see “Transient
Error Handling During Trigger Preprocessing” on page 99.

Overview of Recover Only for Transaction Rollback

Using webMethods Integration Server to Build a Client for JMS 10.7 61

2 Working with JMS Triggers

The following table provides an overview of how Integration Server handles transaction rollback
when the Recover Only option is selected for a transacted JMS trigger.

DescriptionStep

The trigger service web service operation fails because of an ISRuntimeException.1

Integration Server rolls back the entire transaction.2

When the transaction is rolled back, Integration Server recovers the message back to the
JMS provider automatically. The JMS provider marks the message as redelivered and
increments the delivery count (JMSXDeliveryCount field in the JMS message).

At this point, a JMS provider typically makes the message available for immediate
redelivery.

Integration Server receives the same message from the JMS provider and processes the
message.

3

Because Integration Server receives the message almost immediately after transaction
roll back, it is likely that the temporary condition that caused the ISRuntimeException
has not resolved and the trigger service will end with a transient error again.
Consequently, setting On transaction rollback to Recover only could result in wasted
processing.

Note:Integration Server enforces a maximum delivery count, which determines the
maximumnumber of time the JMSprovider can deliver themessage to the JMS trigger.
If the maximum delivery count has been met, the JMS provider will not deliver the
message to the JMS trigger. Instead, the JMS provider will acknowledge and remove
the message. The maximum delivery count is controlled by the
watt.server.jms.trigger.maxDeliveryCount property.

Overview of Suspend and Recover for Transaction Rollback

The following table provides an overview of how Integration Server handles transaction rollback
when the Suspend and recover option is selected for a transacted JMS trigger.

DescriptionStep

The trigger service or web service operation fails because of an ISRuntimeException.1

Integration Server rolls back the entire transaction.2

When the transaction is rolled back, Integration Server recovers the message back to the
JMS provider automatically. The JMS provider marks the message as redelivered and
increments the delivery count (JMSXDeliveryCount field in the JMS message).

Integration Server suspends the JMS trigger temporarily.3

62 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

DescriptionStep

The JMS trigger is suspended on this Integration Server only. If the Integration Server
is part of a cluster, other servers in the cluster can retrieve and process messages for the
trigger.

Important:
If you disable or suspend a SOAP-JMS trigger that acts as a listener for one or more
provider web service descriptors, Integration Server will not retrieve any messages
for those web service descriptors until the SOAP-JMS trigger is enabled.

Note:
The change to the trigger state is temporary. Message processing will resume for the
trigger if Integration Server restarts, the trigger is enabled or disabled, or the package
containing the trigger reloads. You can also enable triggersmanually using Integration
Server Administrator or by invoking the pub.trigger:enableJMSTriggers service.

Optionally, Integration Server schedules and executes a resource monitoring service. A
resource monitoring service is a service that you create to determinewhether the resources

4

associated with a trigger service are available. A resource monitoring service returns a
single output parameter named isAvailable.

If the resource monitoring service indicates that the resources are available (that is, the
value of isAvailable is true), Integration Server enables the trigger. Message processing
and message retrieval resume for the JMS trigger.

5

If the resource monitoring service indicates that the resources are not available (that is,
the value of isAvailable is false), Integration Server waits a short time interval (by default,
60 seconds) and then re-executes the resource monitoring service. Integration Server
continues executing the resourcemonitoring service periodically until the service indicates
the resources are available.

Tip:
You can change the frequency at which the resource monitoring service executes by
modifying the value of the watt.server.jms.trigger.monitoringInterval property.

After Integration Server resumes the JMS trigger, Integration Server receives themessage
from the JMS provider and processes the message.

6

Note:
If the maximum delivery count has been met, the JMS provider will not deliver the
message to the JMS trigger. The maximum delivery count determines the maximum
number of time the JMS provider can deliver the message to the JMS trigger. It is
controlled by the watt.server.jms.trigger.maxDeliveryCount property.

Configuring Transient Error Handling for Transacted JMS Triggers

The transient error handling and transaction rollback behavior that you specify for a transacted
JMS trigger determines how Integration Server handles transaction rollback caused by transient

Using webMethods Integration Server to Build a Client for JMS 10.7 63

2 Working with JMS Triggers

errors during trigger service execution. The selected behavior also determines how Integration
Server handles transient errors that occur during trigger preprocessing.

For more information about transient error handling for trigger preprocessing, see “Transient
Error Handling During Trigger Preprocessing” on page 99.

Use the following procedure to configure how Integration Server responds when a transaction is
rolled back due to a transient error that occurs during processing of a transacted JMS trigger.

To configure transient error handling for a transacted JMS trigger

1. In the Package Navigator view of Designer, open the trigger for which you want to configure
transient error handling.

2. In the Properties view, under Transient error handling, in the On transaction rollback
property, select one of the following:

To...Select...

Specify that Integration Server recovers the message after a transaction
is rolled back due to a transient error.

Recover only

This is the default.

Specify that Integration Server does the following after a transaction is
rolled back due to a transient error:

Suspend and
recover

Suspends the JMS trigger

Recovers the message after a resource monitoring service indicates
that the resources needed by the trigger service are available.

3. If you selected Suspend and recover, in the Resource monitoring service property, specify
the service that Integration Server should execute to determine the availability of resources
associatedwith the trigger service orweb service operation.Multiple triggers can use the same
resource monitoring service.

4. Click File > Save.

64 Using webMethods Integration Server to Build a Client for JMS 10.7

2 Working with JMS Triggers

3 Sending and Receiving JMS Messages

■ The JMS Services ... 66

■ Sending a JMS Message .. 66

■ Sending a JMS Message and Waiting for a Reply ... 71

■ Replying to a JMS Message ... 77

■ Receiving a JMS Message Using Built-In Services ... 78

■ Sending a JMS Message as Part of a Transaction .. 83

■ Setting Properties in a JMS Message ... 85

Using webMethods Integration Server to Build a Client for JMS 10.7 65

The JMS Services

Using the following JMS services, you can create services that send and/or receive JMS messages.
The JMS services are located in the WmPublic package.

DescriptionService

Sends an acknowledgement for amessage to the JMSprovider.pub.jms:acknowledge

Creates a message consumer to receive messages from
destinations on the JMS provider.

pub.jms:createConsumer

Synchronously receives a message from a queue or topic on
the JMS provider.

pub.jms:receive

Sends a reply message to a requesting client.pub.jms:reply

Sends a JMS message to the JMS provider.pub.jms:send

Sends a request in the form of a JMS message to the JMS
provider and, optionally, waits for a reply.

pub.jms:sendAnd Wait

Sends multiple JMS messages to the same destination on the
JMS provider.

pub.jms:sendBatch

Retrieves the reply message for an asynchronous request.pub.jms.waitForReply

Sending a JMS Message

When you build a service that sends a JMS message, you specify how Integration Server connects
to the JMS provider, the message destination, and whether or not a client side queue should be
used.

How to Send a JMS Message
The following describes the general steps you take to send a JMS message to a JMS provider.

1. Create an empty flow service.

2. Create the message body.

How you build themessage body depends on the format that youwant to use for themessage.
For example, if you want to use a String as the message body, create a field of type String and
then add content to the String field. If you want to use a Document (IData) as the message
body, create a document and then add content to the document. Note that a Document (IData)
should only be used when sending a JMS message from one Integration Server to another.

If you want more control over the actual javax.jms.Message that Integration Server sends to
the JMS provider, you can create a Java service that calls the

66 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

com.wm.app.b2b.server.jms.producer.ProducerFacade class, and then invoke one of the
following methods to create the desired javax.jms.Message:

createBytesMessage(String)

createMapMessage(String)

createObjectMessage(String)

createStreamMessage(String)

createTextMessage(String)

The Java service calling this API must return an Object of type javax.jms.Message, which can
then be mapped to the JMSMessage/body/message input parameter of the pub.jms:send service.

Important:
If you want to send a StreamMessage or a MapMessage, you need to use the appropriate
com.wm.app.b2b.server.jms.producer.ProducerFacade API to create the javax.jms.Message
object.

When you create the javax.jms.Message with the
com.wm.app.b2b.server.jms.producer.ProducerFacade, you can use the javax.jms.Message
setter methods to set the values of the message headers and properties directly. You can also
set the value of message headers and properties using the input parameters of the pub.jms*
service that you use to send the message. If you set the message headers and properties both
ways, the values provided to the pub.jms* service take precedence.

Software AG recommends that you use a pub.jms* service to create and send the JMS message.
This may provide better performance on average.

3. Invoke pub.jms:send.

This service creates a JMSmessage (javax.jms.Message) based on input provided to the service
or takes an existing JMS message and sends it to the JMS provider.

Note:
If you want to send multiple JMS messages to the same destination, use pub.jms:sendBatch.
For more information about the pub.jms:sendBatch services, see the webMethods Integration
Server Built-In Services Reference .

4. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS provider. The
alias also specifieswhether the alias uses a client side queue and if Integration Serverwill retry
the pub.jms:send service automatically if the service fails because of a transient error.

DescriptionName

Name of the JMS connection alias that you want to use to send
the message.

connectionAliasName

5. Specify the destination to which you want to send the message.

Using webMethods Integration Server to Build a Client for JMS 10.7 67

3 Sending and Receiving JMS Messages

If the JMS connection alias you specified in step 4 uses the native webMethods API to create
the connection directly on the webMethods Broker, you need to specify the destinationName
as well as the destinationType.

DescriptionName

Name or lookup name of the Destination to which you want to
send the message.

destinationName

Specify the lookup name of the Destination object when the
JMS connection alias uses JNDI to retrieve administered
objects.

Specify the provider-specific name of theDestinationwhen
the JMS connection alias uses the native webMethods API
to connect directly to the webMethods Broker.

Specifies whether the Destination is a queue or a topic. The
default is queue.

destinationType

6. Set values for the header fields in the JMS message.

All of the header fields are optional.

DescriptionName

Specifies the message delivery mode for the message. Specify one
of the following:

deliveryMode

PERSISTENT provides once-and-only-once delivery for the
message. The message will not be lost if a JMS provider failure
occurs.

NON_PERSISTENT provides at-most-once delivery for themessage.
The message has no guarantee of being saved if a JMS provider
failure occurs.

The default is PERSISTENT.

Specifies the message priority. The JMS standard defines priority
levels from 0 to 9, with 0 as the lowest priority and 9 as the highest.

priority

The default is 4.

Message priority is not supported by Universal Messaging. Any
priority assigned to a JMS message sent to Universal Messaging
will be ignored.

Specifies the length of time, in milliseconds, that the JMS provider
retains the message.

timeToLive

The default is 0, meaning that the message does not expire.

68 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

DescriptionName

Message type identifier for the message.JMSType

If you created a javax.jms.Message and you set the message header fields using the
javax.jms.Message setter methods, you do not need to provide inputs to the fields in
JMSMessage/header. If you do set message header fields using both approaches, Integration
Server uses the values provided as input to the pub.jms:send service.

7. Set values for the Integration Server-specific properties.

The properties fields are optional fields added to the message header and are often used to
holdmessage selector values. Integration Server adds the following properties to JMSmessages
it sends. You can set these values as follows.

DescriptionName

Specifies the activation ID for the message. A JMS trigger
uses the activation ID to join togethermessages it receives.

activation

For more information about setting the activation, see
“Assigning an Activation to a JMS Message” on page 85.

Specifies a universally unique identifier for amessage. For
more information about setting a UUID, see “Setting the
UUID” on page 86.

uuid

If you created a javax.jms.Message and you set the message property fields using the
javax.jms.Message setter methods, you do not need to provide inputs to the fields in
JMSMessage/properties. If you do setmessage property fields using both approaches, Integration
Server uses the values provided as input to the pub.jms:send service.

For information about setting the JMS_WMClusterNodes property, see “Overriding the Cluster
Policy when Sending JMS Messages” on page 119.

8. Add any custom properties to the JMS message.

To add a new property to JMSMessage/properties, click on the Pipeline view. Select a
data type for the property and assign it a name. Make sure to place the new property in the
JMSMessage/properties field.

Assign a value to any custom properties that you add.

When publishing a message supplied as IData in the JMSMessage/body/data input parameter
and Universal Messaging is the JMS provider, Integration Server provides a custom property
that indicates that the message should be encoded as XML and decoded from XML instead of
as a byte array. Add a String field named $coderType to the JMSMessage/properties document.
Set the value of $coderType to: idata_xml_bytes

9. Map data to the body of the JMSMessage document.

Using webMethods Integration Server to Build a Client for JMS 10.7 69

3 Sending and Receiving JMS Messages

Specifically, map the field that contains the data you want to included in the message body to
the field in JMSMessage/bodywith the appropriate data type.

If you...Map to this field...

Used a field of type String for the message body content.string

Used a one-dimensional byte array for the message body
content.

bytes

Used a Serializable Java object for the message body content.object

Used a Document (IData) for the JMS message body content.
Keep in mind that the IData message format can only be used

data

when sending a JMS message from one Integration Server to
another.

Used a Java service to create an object of type
javax.jms.Message.

message

Note:
If you created a Java service that used one of the
com.wm.app.b2b.server.jms.producer.ProducerFacade
methods to create a javax.jms.Message object, map the
javax.jms.Message object produced by the Java service to
message.

10. Specify whether the client side queue should be used.

When the client side queue is in use, Integration Server placesmessages in the client side queue
if the JMS provider is not available at the time the pub.jms:send service executes. If you want to
use the client side queuewith this implementation of the pub.jms:send service, the JMS connection
alias specified for connectionAliasNamemust be configured to have a client side queue. A JMS
connection alias has a client side queue if the Maximum CSQ Size property for the alias is set
to a value other than 0 (zero).

DescriptionName

Indicateswhether Integration Server places the sentmessage
in the client side queue if the JMS provider is not available
at the time the message is sent.

useCSQ

True specifies that Integration Server writes messages to
the client side queue if the JMS provider is not available
at the time this service executes. When the JMS provider
becomes available, Integration Server sends messages
from the client side queue to the JMS provider.

False indicates that Integration Server throws an
ISRuntimeException if the JMS provider is not available
at the time this service executes.

70 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

DescriptionName

The default is False.

Note:
If the specified connectionAliasName uses a cluster
connection factory to which the multisend guaranteed
policy is applied, set useCSQ to False. For more
information about the multisend guaranteed policy, see
“Working with the Multisend Guaranteed Policy” on
page 116.

Sending a JMS Message and Waiting for a Reply

Integration Server provides the pub.jms:sendAndWait service, which you can use to send a message
and wait for a reply.

You can use the pub.jms:sendAndWait service to issue a request/reply in a synchronous or asynchronous
manner.

In a synchronous request/reply, the service that sends the request stops executing while it
waits for a reply. When the service receives a reply message, the service resumes execution.
If the timeout elapses before the service receives a reply, Integration Server ends the request,
and the service returns a null message that indicates that the request timed out. Integration
Server then executes the next step in the flow service.

In an asynchronous request/reply, the service that sends the request continues executing the
steps in the service after sending themessage. To retrieve the reply, the requesting flow service
must invoke the pub.jms:waitForReply service. If the timeout elapses before the pub.jms:waitForReply
service receives a reply, the pub.jms:waitForReply service returns a null document indicating that
the request timed out.

A service that contains multiple asynchronous send and wait invocations allows the service to
send all the requests before collecting the replies. This approach can bemore efficient than sending
a request, waiting for a reply, and then sending the next request.

How to Send a Request Message and Wait for a Reply
The following describes the general steps you take to build a service that sends a request message
and then waits for a reply.

1. Create an empty flow service.

2. Create the message body.

For more information about creating content for the body of a JMS message, see step 2 in the
section “How to Send a JMS Message” on page 66.

3. Invoke pub.jms:sendAndWait.

Using webMethods Integration Server to Build a Client for JMS 10.7 71

3 Sending and Receiving JMS Messages

This service creates a JMSmessage (javax.jms.Message) based on input provided to the service
or takes an existing JMS message and sends it to the JMS provider.

4. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS provider.

DescriptionName

Name of the JMS connection alias that youwant to use to send
the message.

connectionAliasName

5. Specify the destination to which you want to send the message.

If the JMS connection alias you specified in step 4 uses the native webMethods API to create
the connection directly on the webMethods Broker, you need to specify the destinationName
as well as the destinationType.

DescriptionName

Name or lookup name of theDestination towhich youwant
to send the message.

destinationName

Specify the lookup name of theDestination objectwhen
the JMS connection alias uses JNDI to retrieve
administered objects.

Specify the provider-specific name of the Destination
when the JMS connection alias uses the native
webMethodsAPI to connect directly to thewebMethods
Broker.

Specifies whether the Destination is a queue or a topic. The
default is queue.

destinationType

6. Specify the destination towhichmessage recipients should send the replymessage. (Optional)

If youdonot specify a destination for replymessages, Integration Server uses a temporaryQueue
to receive the reply. A temporaryQueue is a queue object created for the duration of a particular
connection.

When using pub.jms:sendAndWait to issue a request/reply, you must specify a queue as the value
of the destinationNameReplyTo parameter. In a request/reply scenario, it is possible that the
message consumer created to receive the reply might be created after the reply message is
sent. (In a synchronous request/reply, the pub.jms:sendAndWait service creates the message
consumer. In an asynchronous request/reply, the pub.jms:waitForReply service or a custom solution,
such as a JMS trigger, creates the message consumer.) If the reply destination is a queue, a
message consumer can receive messages published to the queue regardless of whether the
message consumer was active at the time the message was published. If the destination is a
topic, a message consumer can receive only messages published when the message consumer
was active. If the reply is sent to a topic before the message consumer is created, the message

72 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

consumer will not receive the reply. Consequently, when creating a request/reply, the
destinationNameReplyTo parameter should specify the name or lookup name of a queue.

DescriptionName

Name or lookup name of the Destination to which you
want the reply message sent.

destinationNameReplyTo

Specify the lookupname of theDestination objectwhen
the JMS connection alias uses JNDI to retrieve
administered objects.

Specify the provider-specific name of the Destination
when the JMS connection alias uses the native
webMethods API to connect directly to the
webMethods Broker.

Specifieswhether theDestination is a queue or a topic. The
default is queue.

destinationTypeReplyTo

7. If this is a synchronous request/reply, set the request timeout.

The timeout indicates how long Integration Server waits for a reply message. The timeout
parameter only applies to synchronous send and wait requests.

DescriptionName

Time towait (inmilliseconds) for the response to arrive. You
must set this to a value greater than 0 (zero). If no timeout

timeout

value is specified, the service does not wait and returns a
null document.

8. Populate the JMS message.

To populate the JMS message header, properties, and body, follow steps 5–9 in the section
“How to Send a JMS Message” on page 66.

9. Indicate whether the request is synchronous or asynchronous.

The pub.jms:sendAndWait provides a parameter that you can set to indicate whether the request
is synchronous or asynchronous. By default, the request is synchronous.

DescriptionName

Flag specifyingwhether this is an asynchronous or synchronous
request/reply.

async

True indicates that this is an asynchronous request/reply.
After sending the message, Integration Server executes the
next step in the flow service immediately. Integration Server

Using webMethods Integration Server to Build a Client for JMS 10.7 73

3 Sending and Receiving JMS Messages

DescriptionName

does not wait for a reply before continuing service
execution.

False indicates that this is a synchronous request/reply.
After sending the message, Integration Server waits for a
reply before executing the next step in the flow service.

The default is False.

10. Specify whether the client side queue should be used.

When the client side queuing is in use, Integration Server places messages in the client side
queue if the JMS provider is not available at the time the pub.jms:sendAndWait service executes.
If you want to use the client side queue with this implementation of the pub.jms:sendAndWait
service, the JMS connection alias specified for connectionAliasNamemust be configured to have
a client side queue. A JMS connection alias has a client side queue if the Maximum CSQ Size
property for the alias is set to a value other than 0 (zero).

The client side queue can be used with asynchronous requests only.

If the client side queue is in use, the reply destination must be a queue that is not temporary.
Consequently, if useCSQ is set to true, values must be specified for the destinationNameReplyTo
and destinationTypeReplyTo input parameters.

DescriptionName

Indicates whether Integration Server places the sent message
in the client side queue if the JMS provider is not available at
the time the message is sent.

useCSQ

True specifies that Integration Serverwritesmessages to the
client side queue if the JMS provider is not available at the
time this service executes. When the JMS provider becomes
available, Integration Server sendsmessages from the client
side queue to the JMS provider.

False indicates that Integration Server throws an
ISRuntimeException if the JMS provider is not available at
the time this service executes.

The default is False.

Note:
If the specified connectionAliasNameuses a cluster connection
factory to which the multisend guaranteed policy is applied,
set useCSQ to False. For more information about the
multisend guaranteed policy, see “Working with the
Multisend Guaranteed Policy” on page 116.

74 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

11. Invoke pub.jms:waitForReply.

If you configured pub.jms:sendAndWait as an asynchronous request/reply, you need to invoke
the pub.jms:waitForReply service to retrieve the reply message.

Specify the following input values for the pub.jms:waitForReply service.

DescriptionName

Aunique identifier used to associate the replymessagewith
the initial request. Integration Server uses the value of the

correlationID

uuid or JMSMessageID fields in the requesting JMS message
to correlate the response to the request.

If you set the uuid in the JMS message request, you can
link the value of the uuid field from the JMSMessage
produced by pub.jms:sendAndWait to the correlationID.

If you did not specify a uuid, you can link the
JMSMessageID field from the JMSMessage produced by
pub.jms:sendAndWait to the correlationID.

Optional. Time to wait (in milliseconds) for the reply to
arrive.

timeout

If timeout is greater than 0 (zero) and a reply is not available
at the time the pub.jms:waitForReply service executes, the service
continues to wait for the document until the time specified
in the timeout parameter elapses. If the service does not
receive a reply by the time the timeout interval elapses, the
pub.jms:waitForReply service returns a null document.

If timeout is set to 0 (zero), the pub.jms:waitForReply servicewaits
indefinitely for a response. Software AG does not
recommend setting timeout to 0 (zero).

If timeout is not set, the pub.jms:waitForReply service does not
wait for a reply. The pub.jms:waitForReply service always returns
a null document. The service returns a null document even
if the reply queue contains a response for the request.

Note:
The pub.jms:waitForReply service cannot be used to retrieve a response to requests that were
routed through the client side queue. To retrieve the response, create a JMS trigger that
subscribes to the reply queue.

Note:
If the pub.jms:sendAndWait service executes and themessage is sent directly to the JMS provider
(i.e., it is not sent to the client side queue), the JMSMessage\header\JMSMessageID contains
a unique identifier assigned by the JMS provider. If the JMSMessageID field is null, after the

Using webMethods Integration Server to Build a Client for JMS 10.7 75

3 Sending and Receiving JMS Messages

service executes, the JMS provider was not available at the time the service executed.
Integration Server wrote the message to the client side queue.

12. Process the reply message.

The pub.jms:sendAndWait (or pub.jms:waitForReply) service produces the output parameter
JMSReplyMessage, which contains the JMS message received as a reply.

If Integration Server does not receive a reply before the specified timeout value elapses or if a
timeout value was not specified, the JMSReplyMessage is null. Be sure to code your service to
handle this situation.

How to Send a Request that Uses a Dedicated Listener to
Retrieve Replies
Integration Server provides the ability to use a dedicated MessageConsumer to retrieve all the
replies for a published request. By default Integration Server creates a new JMSMessageConsumer
for each reply message. In many cases, this does not impact performance. However, in situations
where many threads invoke pub.jms:sendAndWait concurrently, creating a MessageConsumer for
every expected response can impact performance.

To send a request that uses a dedicated listener to retrieve the reply, the following must be true:

The JMS connection alias specified in connectionAliasNamemust be configured to use a dedicated
listener to retrieve replies. Specifically:

The Create Temporary Queuecheck box must be selected for the alias.

The Enable Request-Reply Listener for Temporary Queue check box must be selected
for the alias.

The pub.jms:sendAndWait invocation must be synchronous. The async input parameter must be
set to false.

The pub.jms:sendAndWait invocation must not specify value for the destinationNameReplyTo input
parameter.

How to Send a JMS Message and Specify a Reply Destination
without Waiting for a Reply
Integration Server provides the ability to send a message, specify a destination for replies, but not
wait for or retrieve any replymessages. The act ofwaiting comeswith extra overhead for Integration
Server that is unnecessary if you do not want the sending service to wait for a reply.

The pub.jms:send service includes an input parameter for setting the JMSReplyTo header, specifically
the JMSMessage/header/replyTo field. When executing the pub.jms:send service with a valid value for
the JMSMessage/header/replyTo parameter, Integration Server creates the javax.jms.Destination and
maps it to the JMSReplyTo field within the message header. Integration Server sends the message
and returns immediately. The service does not wait for a response message. If
JMSMessage/header/replyTo parameter is empty, then Integration Server does not set the JMSReplyTo

76 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

header for the JMSmessage. If JMSMessage/header/replyTo is invalid, then Integration Server throws
a ServiceException.

The following procedure describes the general steps you take to build a service that sends a request
message, specifies a reply destination, but does not wait for a reply:

1. Follow the steps for sending a JMSmessage as described in “How to Send a JMSMessage” on
page 66.

2. When setting the values for the header fields in the JMS message, specify one of the following
for the replyTo field.

If the JMS connection alias used by the pub.jms:send service connects to the JMS provider
using JNDI, set replyTo to be the lookup name of the destination lookup object name.

If the JMS connection alias used by the pub.jms:send service connects to the JMS provider
using a native Broker connection, set JMSMessage/header/replyTo to the Broker queue
name. That is, if the JMS connection alias specifies the webMethods Broker as the JMS
provider and uses the native webMethods API to connect directly to the Broker, specify
the name of the queue on the Broker that should receive replies to the message.

Note:
When using the native webMethods API to connect to the Broker, the
JMSMessage/header/replyTo destination must be a queue. Topics are not supported.

Replying to a JMS Message

You can create a service that sends a reply message in response to a received request message.
The reply message might be a simple acknowledgement or might contain information requested
by the sender.

When you send a reply message, Integration Server uses information in the request message to
determine the reply destination. The JMSReplyTo field in the request message is set by the sending
client and indicates the destination towhich the replywill be sent. The replying Integration Server
automatically sets this value when it executes the pub.jms:reply service.

When replying to a message, Integration Server also automatically sets the JMSCorrelationID in
the replymessage. Integration Server, andmany JMS clients, use the JMSCorrelationID to correlate
the reply message with the request message. Integration Server uses the value of the wm_tag, uuid
or JMSMessageID fields in the requesting JMS message to correlate the request and the
response.Integration Server determines which field to use as the JMSCorrelationID using the
following order.

If the request message contains awm_tagvalue in the JMSMessage/properties, Integration Server
uses the wm_tag value as the JMSCorrelationID of the reply message. The wm_tag field is used
to correlate the reply with a dedicated listener created for a particular JMS connection alias.

If the sender of the request message specified the uuid, the replying Integration Server uses
the uuid as the JMSCorrelationID of the reply message.

If the sender of the requestmessage did not specify a uuid, the replying Integration Server uses
the JMSMessageID from the request message as the JMSCorrelationID of the reply message.

Using webMethods Integration Server to Build a Client for JMS 10.7 77

3 Sending and Receiving JMS Messages

The pub.jms:reply service sends the replymessage using the same connection thatwas used to retrieve
the message.

How to Send a Reply Message
The following describes the general steps you take to build a service that sends a reply message.

1. Open or create the service that will send the reply.

If a JMS trigger received the message, this might be the trigger service or a service invoked by
the trigger service. If you used the pub.jms:receive service to retrieve the message from the JMS
provider, youmight reply to themessagewithin the same service or in another service invoked
by the same top-level service.

2. Invoke pub.jms:reply.

This service takes the reply message you created and delivers it to the destination specified in
the JMSReplyTo field in the header of the request message.

3. Populate the JMS message.

If a JMS trigger received themessage, populate the JMSmessage header, properties, and body,
follow steps 5–9 in the section “How to Send a JMS Message” on page 66.

4. Specify the consumer and message.

If you received the message using the pub.jms:receive service, you must specify the message
consumer used to receive the message and the request message. You do not need to specify
this information if a JMS trigger received the message.

DescriptionName

The message consumer object used to receive the request
message from the JMS provider. Integration Server uses

consumer

information from the consumer to create a message
producer that will send the reply message.

A javax.jms.Message object that contains the request
message. You canmap the JMSMessage/body/message field

message

in the request message to the pub.jms:reply message input
parameter. The pub.jms:reply service uses the request
message to determine the replyTo destination.

Receiving a JMS Message Using Built-In Services

At times, you might not want to wait for a JMS trigger to execute to receive a message. Instead,
you might want to receive a message from the JMS provider on demand. Receiving a message on
demandprovidesmore control overwhen andhow Integration Server receives amessage; however,
it may not be as efficient or practical as using a JMS trigger to listen for and then receive the

78 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

message. You can use the pub.jms:receive service to retrieve messages on demand from the JMS
provider.

To listen for messages and receive them when they are available, create a JMS trigger that listens
to the destination. For more information about creating a JMS trigger, see webMethods Service
Development Help.

How to Actively Receive a JMS Message
The following describes the general steps you take to build a service that receives a message from
the JMS provider.

1. Create a new service.

2. Invoke a pub.jms:createConsumer.

This service creates amessage consumer that receivesmessages sent to a particular destination.

Use the following steps to create the message consumer.

a. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS provider.

DescriptionName

Name of the JMS connection alias that you want to use
to receive the message.

connectionAliasName

b. Specify the destination from which you want to receive the message.

Specify the messages that you want the consumer to receive by selecting a destination and
by creating a message selector. Amessage selector is a filter that the JMS provider evaluates.
If a message does not meet the criteria specified in the filter, the consumer does not receive
the message. Use a message selector to receive a subset of messages from a destination.

DescriptionName

Name or lookup name of the Destination from which
you want to receive the message.

destinationName

Specify the lookup name of the Destination object
when the JMS connection alias uses JNDI to
retrieve administered objects.

Specify the provider-specific name of the
Destination when the JMS connection alias uses
the native webMethods API to connect directly to
the webMethods Broker.

Using webMethods Integration Server to Build a Client for JMS 10.7 79

3 Sending and Receiving JMS Messages

DescriptionName

Specifieswhether theDestination is a queue or a topic.
The default is queue.

destinationType

If the JMS connection alias you specified in step 2a
uses the native webMethods API to create the
connection directly on the webMethods Broker, you
need to specify the destinationName as well as the
destinationType.

Optional. Specifies a filter used to receive a subset of
messages from the specified destination.

messageSelector

The message selector must use the message selector
syntax specified in the JavaMessage Service standard.

For more information about message selectors, see
webMethods Service Development Help.

Optional. Name of the durable subscriber that you
want this service to use on the JMSprovider. A durable

durableSubscriberName

subscriber creates a durable subscription on the JMS
provider. If a durable subscriber of this name already
exists on the JMS provider, this service resumes the
previously established subscription.

Note:
This parameter only applies when the
destinationType is set to TOPIC. If you select TOPIC,
but do not specify a durableSubscriberName, this
service creates a nondurable subscriber. If
destinationType is set to QUEUE, this parameter is
ignored.

c. Determine the acknowledgment mode.

Acknowledgment mode indicates how Integration Server acknowledgesmessages received
by a message consumer.

Use the following parameter to specify the acknowledgment mode.

DescriptionName

acknowledgmentMode AUTO_ACKNOWLEDGE Automatically acknowledge the
message when it is received by the message
consumer. Themessage consumerwill acknowledge
the message before the message processing
completes. The JMS provider cannot redeliver the

80 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

DescriptionName

message if Integration Server becomes unavailable
before message processing completes.

CLIENT_ACKNOWLEDGE Acknowledge the receipt of a
message when the JMS client explicitly
acknowledges it. In this case, acknowledge the
message when Integration Server invokes the
pub.jms:acknowledge service.

DUPS_OK_ACKNOWLEDGE Automatically, lazily
acknowledge the receipt ofmessages,which reduces
system overhead but may result in duplicate
messages being sent.

The default is AUTO_ACKNOWLEDGE.

d. Indicate whether locally published messages are ignored.

If you specified TOPIC as the destinationType, you can configure a consumer to ignore
messages published using the same JMS connection alias used by the consumer.

Integration Server considers a message to be local if it is:

Sent by the same Integration Server, and

Sent using the same JMS connection alias.

DescriptionName

Indicates whether the consumer ignores locally
published messages:

noLocal

True indicates the consumer will not receive locally
published messages.

False indicates the consumer can receive locally
published messages.

The default is False.

3. Invoke pub.jms:receive.

This service uses the consumer created by the pub.jms:createConsumer service to receivemessages
from the specified destination.

In the Pipeline view, make sure the consumer created by the pub.jms:createConsumer service is
linked to the pub.jms:receive service input parameter consumer. Designer should link these
automatically.

Specify how long the consumer should wait to receive a message from the JMS provider.

Using webMethods Integration Server to Build a Client for JMS 10.7 81

3 Sending and Receiving JMS Messages

DescriptionName

Specifies the time to wait, in milliseconds, for a message to
be received from the JMS provider.

timeout

If you specify 0 (zero), the consumer will not wait.

The default is 0 (zero).

4. Process the received JMS message.

Invoke a service or a sequence of services to process the message received from the JMS
provider. In the Pipeline view, link the JMSMessage returned by pub.jms:receive to the input for
the service that processes the message.

If the timeout period elapses before a message is received, the value of JMSMessage is null.
Make sure to code your service to handle this situation.

5. Invoke pub.jms:acknowledge.

If the acknowledgment mode of the consumer that received the message is set to
CLIENT_ACKNOWLEDGE use the pub.jms:acknowledge service to acknowledge the message to the JMS
provider. A message is not considered to be successfully consumed until it is acknowledged.

Provide the following input parameter.

DescriptionName

A javax.jms.Message object that identifies themessage for
which you want Integration Server to send an
acknowledgement to the JMS provider.

message

You can map the value of the JMSMessage/body/message
field in the JMS message retrieved by the pub.jms:receive
service to this field.

If you use the consumer created by the pub.jms:createConsumer service to receivemultiplemessages,
keep in mind that acknowledging a message automatically acknowledges the receipt of all
messages received in the same session. That is, all messages received by the same consumer
will be acknowledged when just one of the received messages is acknowledged. Therefore, if
the consumer receivesmultiplemessages, invoke the pub.jms:acknowledge service after processing
all of the received messages.

Anymessage consumers created during the execution of a servicewill be closed automatically
when the service completes. If the consumer closeswithout acknowledgingmessages,messages
are implicitly recovered back to the JMS provider.

82 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

Sending a JMS Message as Part of a Transaction

A transaction is a logical unit of work, composed of many different processes and involving one
or more resources, that either entirely succeeds or has no effect at all. Transactions can either be
implicit or explicit.

In an implicit transaction, the transaction manager in Integration Server automatically manages
the transactions without requiring any additional services or input. In an explicit transaction, you
control the transactional units of work by defining the start and completion boundaries of the
transaction. The WmART package on Integration Server provides built-in services that you can
use to start and complete transactions.

In some situations, you might use the built-in service pub.art.transaction:startTransaction to start a
transaction explicitly, but then allow Integration Server to commit or roll back the transaction
implicitly based on the success or failure of the service.

For more information about transactions see “Transaction Management” on page 127.

You can create a service that sends or receives JMS messages within an explicit transaction. The
service must do the following:

Use pub.art.transaction:startTransaction to start the transaction.

Create a connection to the JMS provider using a JMS connection alias with a transaction type
of LOCAL_TRANSACTION or XA_TRANSACTION, depending on the kind of transaction.

Use pub.art.transaction:commitTransaction to commit the transaction.

Use pub.art.transaction:rollbackTransaction to roll back the transaction.

Keep the following points in mind when building services that send or receive JMS messages
within a transaction:

To send or receive JMSmessageswithin a transaction, youmust install and enable theWmART
package. (This is true even if you intend to use Integration Server to manage all transactions
implicitly.)

To use pub.jms:send or pub.jms:sendAndWait within a transaction, the client side queue cannot be
used (the useCSQ parameter must be set to false).

To use pub.jms:sendAndWait within a transaction, the request/reply must be asynchronous (the
async parameter must be set to true). If async is set to false, Integration Server throws a
JMSSubsystemException when the service executes.

If you do not specifically invoke pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction, Integration Server implicitly commits the transaction when
the services within the transaction are successful. Integration Server implicitly rolls back the
transaction when one of the services within the transaction fails with any type of exception.

Using webMethods Integration Server to Build a Client for JMS 10.7 83

3 Sending and Receiving JMS Messages

How to Send a JMS Message within a Transaction
The following describes the general steps you take to send a JMS message to a JMS provider as
part of a transaction (XA or Local).

1. Create an empty flow service.

2. Create the message body.

For more information about creating content for the body of a JMS message, see step 2 in the
section “How to Send a JMS Message” on page 66.

3. Invoke pub.art.transaction:startTransaction.

This service starts an explicit transaction. This service is located in the WmART package.

In the startTransactionInput document list, you can provide the following optional parameter.

DescriptionName

A String that specifies the name of the transaction to be
started. If this field is blank, Integration Serverwill generate
a name for you.

transactionName

If you do not use pub.art.transaction:startTransaction to start an explicit transaction, Integration
Server starts an implicit transaction when it executes a pub.jms:send service that specifies a
transacted JMS connection alias.

4. Invoke pub.jms:send.

This service takes the JMS message you created and sends it to the JMS provider.

5. Specify the JMS connection alias.

The JMS connection alias indicates how Integration Server connects to the JMS provider.

DescriptionName

Name of the JMS connection alias that youwant to use to send
the message.

connectionAliasName

The specified JMS connection alias must have a transaction
type of LOCAL_TRANSACTION or XA_TRANSACTION,
depending on the kind of transaction.

6. Finish supplying inputs to the pub.jms:send service.

Follow steps 5-9 under “How to Send a JMS Message” on page 66.

7. Add any additional services to the transaction.

For example, you might want to invoke another built-in JMS service or an adapter service.

84 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

8. Insert logic to commit and/or rollback the transaction explicitly.

You may build your service to commit the transaction if all services execute successfully and
to rollback the transaction if all services do not execute successfully.

Invoke pub.art.transaction:commitTransaction to commit the transaction and send the JMSmessage.
In the Pipeline view, map the contents of startTransactionOutput/transactionName to
commitTransactionInput/transactionName.

Invoke pub.art.transaction:rollbackTransaction to roll back the transaction. The message will not
be sent to the JMS provider. In the Pipeline view, map the contents of
startTransactionOutput/transactionName to rollbackTransactionInput/transactionName.

If you do not specifically invoke pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction, Integration Server implicitly commits the transaction when
the services within the transaction are successful. Integration Server implicitly rolls back the
transaction when one of the services within the transaction fails with any type of exception.

Setting Properties in a JMS Message

Properties are an optional part of a JMS message that enable you to add fields to the message
header. Properties usually hold message selector values and are application-specific, standard, or
provider-specific.

When building a service that sends a JMS message, you can:

Add your own custom properties to the JMSMessage/properties document using the pipeline
in Designer.

Assign values to the application-specific properties activation and uuid included by Integration
Server.

The following sections provide information about setting the activation and uuid. For information
about adding fields to the pipeline in Designer, see webMethods Service Development Help.

Assigning an Activation to a JMS Message

An activation is a unique identifier assigned to a message that will be processed by a JMS trigger
that contains a join. A join specifies that a JMS trigger handles messages received from two or
more destinations as a single unit and with a single routing rule. The JMS trigger needs to receive
messages from all, only one, or any of the destinations before it executes the associated routing
rule.

Because a JMS trigger can receive multiple messages from the destinations, Integration Server
uses the activation value to identify the set of messages processed by an instance of a join.

For anAll (AND) join, Integration Serverwaits until it receivesmessageswith the same activation
from each destination before executing the routing rule.

Using webMethods Integration Server to Build a Client for JMS 10.7 85

3 Sending and Receiving JMS Messages

For an Only one (XOR) join, Integration Server executes the routing rule after it receives a
message from any destination in the join; however, the JMS trigger discards messages with
the same activation received from the other destinations for the duration of the join time-out.

For an Any (OR) join, Integration Server executes the routing rule when it receives messages
from any destination in the join. Integration Server does not use the activation value when
processing JMS triggers with an Any (OR) join.

When the JMS trigger receives messages with a different activation from one the destinations,
Integration Server treats it as another instance of the join.

Integration Server stores the activation in the activation field of a JMS message, specifically,
JMSMessage/properties/activation. The activation field is of type String.You assign an activation to a
message manually. Integration Server does not assign an activation automatically.

Setting the UUID

The UUID is a universally unique identifier for a message. Integration Server uses the UUID to
provide duplicate detection for exactly-once processing. Integration Server stores the UUID in the
JMSMessage/properties/uuid field.

You might want to assign a UUID in the following situation:

The JMS message originated in a back-end system that assigned a unique identifier to the
message data. You canmap the value assigned by the system to the JMSMessage/properties/uuid
field. A JMS trigger that receives themessage can use the assignedUUID to filter out duplicate
messages from a back-end system.

A JMS message is part of a request/reply. If you specify the uuidwhen sending the request,
the replying Integration Server will use the uuid as the JMSCorrelationID of the reply message.
If you do not specify a uuid, the replying Integration Server uses the JMSMessageID of the
request message as the JMSCorrelationID of the reply message.

The maximum length of a UUID is 96 characters. Integration Server does not assign a UUID
automatically.

86 Using webMethods Integration Server to Build a Client for JMS 10.7

3 Sending and Receiving JMS Messages

4 Exactly-Once Processing for JMS Triggers

■ Overview of Exactly-Once Processing for JMS Triggers .. 88

■ Duplicate Detection Methods for JMS Triggers .. 88

■ Summary of Duplicate Detection Process for JMS Triggers .. 89

■ Delivery Count for JMS Messages ... 91

■ Document History Database for Use with JMS Triggers .. 92

■ Document Resolver Service for a JMS Trigger ... 95

■ Extenuating Circumstances for Exactly-Once Processing .. 96

■ Exactly-Once Processing and Performance .. 97

Using webMethods Integration Server to Build a Client for JMS 10.7 87

Overview of Exactly-Once Processing for JMS Triggers

Within Integration Server, exactly-once processing is a facility that ensures one-time processing
of a persistent message by a JMS trigger. The trigger does not process duplicates of the message.
Integration Server provides exactly-once processing when all of the following are true:

The message is persistent.

The JMS trigger has an acknowledgement mode set to CLIENT_ACKNOWLEDGE.

Exactly-once properties are configured for the JMS trigger.

Note:
Exactly-once processing typically only provides value for JMS triggers that receive messages
from queues or JMS triggers that receive messages from topics using durable subscribers.

Duplicate Detection Methods for JMS Triggers

Integration Server ensures exactly-once processing by performing duplicate detection and by
providing the ability to retry trigger services.Duplicate detection determineswhether the current
message is a copy of one previously processed by the trigger.

Duplicate messages can be introduced into the webMethods system in the following situations:

The sending client sends the same message more than once.

When receiving persistent messages from the JMS provider, Integration Server and the JMS
provider lose connectivity before the JMS trigger processes and acknowledges the message.
The JMS trigger will receive the message again when the connection is restored.

Integration Server uses duplicate detection to determine the message’s status. The message status
can be one of the following:

New. The message is new and has not been processed by the trigger.

Duplicate. The message is a copy of one already processed the trigger.

In Doubt. Integration Server cannot determine the status of the message. The trigger may or
may not have processed the message before.

To resolve themessage status, Integration Server evaluates, in order, one or more of the following:

Delivery count indicates how many times the JMS provider has delivered the message to the
JMS trigger.

Document history databasemaintains a record of all persistent message IDs processed by
JMS triggers that have an acknowledgment mode of CLIENT_ACKNOWLEDGE and for which
exactly-once processing is configured.

Document resolver service is a service created by a user to determine the message status. The
document resolver service can be used instead of or in addition to the document history
database.

88 Using webMethods Integration Server to Build a Client for JMS 10.7

4 Exactly-Once Processing for JMS Triggers

The steps that Integration Server takes to determine amessage’s status depend on the exactly-once
properties configured for the JMS trigger. For more information about configuring exactly-once
properties, see webMethods Service Development Help.

Summary of Duplicate Detection Process for JMS Triggers

The following table summarizes the process Integration Server follows to determine a message’s
status and the action the server takes for each duplicate detection method.

Check Delivery CountStep 1

When a JMS trigger is configured to detect duplicates, Integration Server checks
the message’s delivery count to determine if the JMS trigger processed the
message previously. Specifically, Integration Server checks the value of the
JMSXDeliveryCount property in the message.

ActionDelivery Count

If using document history, Integration Server proceeds
to Step 2 to check the document history database.

1

If document history is not used, Integration Server
considers the message to be New. Integration Server
executes the trigger service.

If using document history, Integration Server proceeds
to Step 2 to check the document history database.

>1

If document history is not used, Integration Server
proceeds to Step 3 to execute the document resolver
service.

If neither document history nor a document resolver
service are used, Integration Server considers the
message to be In Doubt.

If using document history, Integration Server proceeds
to Step 2 to check the document history database.

-1 (Undefined)

If document history is not used, Integration Server
proceeds to Step 3 to execute the document resolver
service.

Otherwise, Integration Server considers the message to
be New. Integration Server executes the trigger service.

Check Document HistoryStep 2

If a document history database is configured and the trigger uses it tomaintain
a record of processed messages, Integration Server checks for the message’s
UUID in the document history database. If themessage does not have aUUID,

Using webMethods Integration Server to Build a Client for JMS 10.7 89

4 Exactly-Once Processing for JMS Triggers

Integration Server uses the value of the JMSMessageID field from the message
header.

ActionUUID or
JMSMessageID
Exists?

Message is New. Integration Server executes the trigger
service.

No

Integration Server checks the processing status of the
entry.

Yes

If the processing status indicates that message
processing completed, then Integration Server
considers themessage to be a Duplicate. Integration
Server acknowledges the message but does not
execute the trigger service.

If the processing status indicates that processing
started but did not complete, Integration Server
considers the message to be In Doubt.

If provided, Integration Server proceeds to Step 3 to
invoke the document resolver service. Otherwise,
Integration Server considers the message to be In
Doubt. Integration Server acknowledges themessage
but does not execute the trigger service.

Execute Document Resolver ServiceStep 3

If a document resolver service is specified, Integration Server executes the
document resolver service assigned to the trigger.

ActionReturned Status

Integration Server executes the trigger service and
acknowledges the message.

NEW

Integration Server acknowledges the message but does
not execute the trigger service.

DUPLICATE

Integration Server acknowledges the message but does
not execute the trigger service.

IN_DOUBT

Notes:

When a transacted JMS trigger fails because of a transient error and the document history
database is configured and enabled, Integration Server considers the message to be New the
next time it is received.

90 Using webMethods Integration Server to Build a Client for JMS 10.7

4 Exactly-Once Processing for JMS Triggers

When a transacted JMS trigger fails because of a fatal error and the document history database
is configured and enabled, Integration Server rejects the message the next time it is received
and generates a JMS retrieval failure event.

When a transacted JMS trigger fails because of a fatal or transient error and the document
history database is neither configured nor enabled, Integration Server does not send a JMS
retrieval failure event the next time the message is received. Integration Server sends a JMS
retrieval failure event if the maximum delivery count is eventually reached.

Delivery Count for JMS Messages

The delivery count indicates the number of times the JMS provider has delivered or attempted to
deliver a message to the JMS trigger. Most JMS providers track the message delivery count in the
JMS-defined property JMSXDeliveryCount. The initial delivery is 1, the second delivery is 2, and
so on. A delivery count other than 1 indicates that the trigger might have received and processed
(or partially processed) the message before.

For example, when Integration Server first retrieves a message for a JMS trigger, the
JMSXDeliveryCount count is 1 (one). If a resource (JMS provider or Integration Server) shuts down
before the trigger processes and acknowledges the message, Integration Server retrieves the
message againwhen the connection is re-established. The second time Integration Server retrieves
the message, the JMSXDeliveryCount is 2. A delivery count greater than 1 indicates that the JMS
provider may have delivered the message to the trigger before.

The following table identifies the possible delivery count values and themessage status associated
with each value.

Indicates...A delivery count of...

The JMS provider that delivered the message does not maintain
a JMSXDeliveryCount or an error occurred when retrieving the

-1

JMSXDeliveryCount. As a result, the delivery count is undefined.
Integration Server uses a value of -1 to indicate that the delivery
count is absent.

If other methods of duplicate detection are configured for this
trigger (document history database or document resolver service),
Integration Server uses these methods to determine the message
status. If no other methods of duplicate detection are configured,
Integration Server assigns the message a status of New and
executes the trigger service.

This is the first time the JMS trigger received the message.1

If the JMS trigger uses a document history to perform duplicate
detection, Integration Server checks the document history database
to determine the message status. If no other methods of duplicate
detection are configured, Integration Server assigns the message
a status of New and executes the trigger service.

Using webMethods Integration Server to Build a Client for JMS 10.7 91

4 Exactly-Once Processing for JMS Triggers

Indicates...A delivery count of...

The JMS provider has delivered themessagemore than once. The
trigger might or might not have processed the message before.

>1

The delivery count does not provide enough information to
determine whether the trigger processed the message before.

If other methods of duplicate detection are configured for this
trigger (document history database or document resolver service),
Integration Server uses these methods to determine the message
status. If no other methods of duplicate detection are configured,
Integration Server assigns the message a status of In Doubt and
acknowledges the message.

Integration Server uses delivery count to determine message status whenever you enable
exactly-once processing for a JMS trigger. That is, setting the Detect duplicates property to true
indicates delivery count will be used as part of duplicate detection.

Note:webMethods messaging triggers use a redelivery count instead of a delivery count for
exactly-once processing.

Document History Database for Use with JMS Triggers

The document history database maintains a history of the persistent messages processed by JMS
triggers. Integration Server adds an entry to the document history database when a trigger service
begins executing and when it executes to completion (whether it ends in success or failure). The
document history database contains message processing information only for triggers for which
the Use history property is set to true.

The database saves the following information about each message:

Trigger ID. Universally unique identifier for the JMS trigger processing the message.

UUID or JMSMessageID.Universally unique identifier for the message. If the sending client
assigned a value to the uuid field in the message, Integration Server uses the uuid value to
identify the message. If the uuid field is empty, Integration Server uses the value of the
JMSMessageID field in the message header to identify the message.

Processing Status. Indicates whether the trigger service executed to completion or is still
processing the message. An entry in the document history database has either a status of
“processing” or a status of “completed.” Integration Server adds an entry with a “processing”
status immediately before executing the trigger service. When the trigger service executes to
completion, Integration Server adds an entry with a status of “completed” to the document
history database.

Time. The time the trigger service began executing. The document history database uses the
same time stamp for both entries it makes for a message. This allows Integration Server to
remove both entries for a specific message at the same time.

92 Using webMethods Integration Server to Build a Client for JMS 10.7

4 Exactly-Once Processing for JMS Triggers

To determine whether a message is a duplicate of one already processed by the JMS trigger,
Integration Server checks for the message’s UUID (or JMSMessageID) in the document history
database. The existence or absence of the message’s UUID (JMSMessageID) can indicate whether
the message is new or a duplicate.

Then Integration Server...If the UUID or
JMSMessageID...

Assigns the message a status of New and executes the
trigger service. The absence of the UUID (JMSMessageID)

Does not exist

indicates that the trigger has not processed the message
before.

Assigns the message a status of Duplicate. The existence
of the “processing” and “completed” entries for the

Exists in a “processing” entry
and a “completed” entry

message’s UUID (JMSMessageID) indicate the trigger
processed the message successfully already. Integration
Server acknowledges themessage, discards it, andwrites
a journal log entry indicating that a duplicate message
was received.

Cannot determine the status of the message conclusively.
The absence of an entry with a “completed” status for the

Existing in a “processing” entry
only

UUID (JMSMessageID) indicates that the trigger service
started to process the message but did not finish. The
trigger servicemight still be executing or the servermight
have unexpectedly shut down during service execution.

If a document resolver service is specified for the JMS
trigger, Integration Server invokes it. If a document
resolver service is not specified, Integration Server assigns
the message a status of In Doubt, acknowledges the
message, and writes a journal log entry stating that an In
Doubt message was received.

Determines the message is a Duplicate. The existence of
the “completed” entry indicates the JMS trigger processed

Exists in a “completed” entry
only

the message successfully already. Integration Server
acknowledges the message, discards it, and writes a
journal log entry indicating that a Duplicatemessagewas
received.

Note:Integration Server also considers amessage to be InDoubtwhen the value of themessage’s
UUID (or JMSMessageID) exceeds 96 characters. If specified, Integration Server executes the
document resolver service to determine the message’s status. Otherwise, the Integration Server
logs the message as In Doubt.

If you want to use document history to ensure exactly-once processing for some or all of your JMS
triggers, you or the server administrator must create the Document History database component

Using webMethods Integration Server to Build a Client for JMS 10.7 93

4 Exactly-Once Processing for JMS Triggers

and connect it to a JDBC connection pool. For information about configuring the document history
database, refer to Installing Software AG Products.

What Happens when the Document History Database Is Not
Available for a JMS Trigger?
If the connection to the document history database is unavailablewhen Integration Server attempts
to query the database, Integration Server considers the lack of availability to be a transient error
in the preprocessing phase of trigger execution. How Integration Server responds to the transient
error depends on the configured transient error handling for trigger preprocessing.

For more information about transient error handling during trigger preprocessing, see “Transient
Error Handling During Trigger Preprocessing” on page 99.

Managing the Size of the Document History Database
To keep the size of the document history database manageable, Integration Server periodically
removes expired rows from the database. The length of time the document history database
maintains information about aUUIDvaries for each trigger (JMS trigger orwebMethodsmessaging
trigger) and depends on the value of the History time to live property for the trigger.

Integration Server provides a scheduled service, namely theMessageHistory Sweeper, that removes
expired entries from the database. By default, the Message History Sweeper task executes every
10 minutes. You can change the frequency with which the task executes. For information about
editing scheduled services, see webMethods Integration Server Administrator’s Guide .

Note:
The watt.server.idr.reaperInterval property determines the initial execution frequency for the
Message History Sweeper task. After you define a JDBC connection pool for Integration Server
to use to communicate with the document history database, change the execution interval by
editing the scheduled service.

You can also use Integration Server Administrator to clear expired document history entries from
the database immediately.

Clearing Expired Entries from the Document History Database

To clear expired entries from the document history database

1. Open Integration Server Administrator.

2. From the Settings menu in the Navigation panel, click Resources.

3. Click Exactly Once Statistics.

4. Click Remove Expired Document History Entries.

94 Using webMethods Integration Server to Build a Client for JMS 10.7

4 Exactly-Once Processing for JMS Triggers

Document Resolver Service for a JMS Trigger

The document resolver service is a service that you build to determine whether a message’s status
is New, Duplicate, or In Doubt. Integration Server passes the document resolver service some
basic information that the service will use to determine message status, such as the trigger name
and the JMS message. The document resolver service must return one of the following for the
message status: NEW, DUPLICATE, or IN_DOUBT.

By using the delivery count and the document history database, Integration Server can assign
most messages a status of New or Duplicate. However, a small window of time exists where
checking the delivery count and the message history database might not conclusively determine
whether a trigger processed a message before. For example:

If a duplicate message arrives before the trigger finishes processing the original message, the
document history database does not yet contain an entry that indicates processing completed.
Integration Server assigns the second message a status of In Doubt. Typically, this is only an
issue for long-running trigger services.

If Integration Server fails before completing message processing, the JMS provider redelivers
the message. However, the document history database contains only an entry that indicates
message processing started. Integration Server assigns the redelivered message a status of In
Doubt.

You can write a document resolver service to determine the status of messages received during
these windows. How the document resolver service determines the message status is up to the
developer of the service. Ideally, the writer of the document resolver service understands the
semantics of all the applications involved and can use themessage to determine themessage status
conclusively. If processing an earlier copy of the message left some application resources in an
indeterminate state, the document resolver service can also issue compensating transactions.

If provided, the document resolver service is the final method of duplicate detection.

Document Resolver Service and Exceptions for a JMS Trigger
At run time, a document resolver service might end because of an exception. How Integration
Server proceeds depends on the type of exception and how the JMS trigger is configured to handle
transient errors.

If the document resolver service endswith an ISRuntimeException, and transient error handling
for the JMS trigger is configured to Suspend and retry later (non-transacted JMS trigger) or
Suspend and recover (transacted JMS trigger), Integration Server suspends the trigger and
schedules a system task to execute the trigger’s resourcemonitoring service (if one is specified).
Integration Server enables the trigger and retries trigger executionwhen the resourcemonitoring
service indicates that the resources used by the trigger are available.

If a resource monitoring service is not specified, you will need to resume the trigger manually
(via the Integration Server Administrator or the pub.trigger:enableJMSTriggers service). For more
information about configuring a resource monitoring service, see “Building a Resource
Monitoring Service” on page 123.

Using webMethods Integration Server to Build a Client for JMS 10.7 95

4 Exactly-Once Processing for JMS Triggers

If the document resolver service endswith an ISRuntimeException, and transient error handling
for the JMS trigger is configured to Throw exception (non-transacted JMS trigger) or Recover
only (transacted JMS trigger), Integration Server assigns the document a status of In Doubt,
acknowledges the document, and generates a JMS retrieval failure event.

If the document resolver service ends with an exception other than an ISRuntimeException,
Integration Server assigns the message a status of In Doubt, acknowledges the message, and
generates a JMS retrieval failure event.

Note:
The watt.server.jms.trigger.raiseEventOnRetryFailure property must be set to true (the
default) for Integration Server to generate JMS retrieval failure events.

Extenuating Circumstances for Exactly-Once Processing

Although Integration Server provides robust duplicate detection capabilities, activity outside of
the scope or control of the Integration Server retrieving the message might cause a trigger to
process amessage (document)more than once. Alternatively, situations can occurwhere Integration
Server might determine a message is a duplicate when it is actually a new message.

Circumstances in which Duplicate Messages Can Be Processed
In the following situations, a trigger with exactly-once processing configured might process a
duplicate message (document).

If the client sends a message twice and assigns a different UUID each time, Integration Server
does not detect the secondmessage as a duplicate. Because themessages have different UUIDs,
Integration Server processes both messages.

If the document resolver service incorrectly determines the status of a message to be new
(when it is, in fact, a duplicate), Integration Server processes the message a second time.

If a client sends a message twice, and the second message is sent after Integration Server
removes the expiredmessageUUID entries from the document history table, Integration Server
determines the second message is new and processes it. Because the second message arrives
after the first message’s entries have been removed from the document history database,
Integration Server does not detect the second message as a duplicate.

If the time drift between the computers hosting a cluster of Integration Servers is greater than
the duplicate detection window for the trigger, one of the Integration Servers in the cluster
might process a duplicate message. (The size of the duplicate detectionwindow is determined
by the History time to live property under Exactly Once.)

For example, suppose the duplicate detection window is 15 minutes and that the clock on the
computer hosting one Integration Server in the cluster is 20 minutes ahead of the clocks on
the computers hosting the other Integration Servers. A trigger on one of the Integration Servers
with a slower clock processes a message successfully at 10:00 GMT.

The Integration Server adds two entries to the document history database. Both entries use
the same time stamp and both entries expire at 10:15 GMT. However, the Integration Server

96 Using webMethods Integration Server to Build a Client for JMS 10.7

4 Exactly-Once Processing for JMS Triggers

with the faster clock is 20 minutes ahead of the others and might reap the entries from the
document history database before one of the other Integration Servers in the cluster does.

If the Integration Server with the faster clock removes the entries before 15 minutes have
elapsed and a duplicate of the message arrives, the Integration Servers in the cluster will treat
the message as a new message.

Note:
Time drift occurs when the computers that host the clustered servers gradually develop
different date/time values. Even if the administrator synchronizes the computer date/time
when configuring the cluster, the time maintained by each computer can gradually differ
as time passes. To alleviate time drift, synchronize the cluster node times regularly.

Circumstances in which New Messages Are Treated as Duplicates
In some circumstances Integration Server might not process a new, unique message (document)
because duplicate detection determines the message is duplicate. For example:

If the sending client assigns two different messages the same UUID, the Integration Server
detects the second message as a duplicate and does not process it.

If the document resolver service incorrectly determines the status of a message to be duplicate
(when it is, in fact, new), Integration Server discards the message without processing it.

Important:
In the previous examples, Integration Server functions correctly when determining the
message status. However, factors outside of the control of Integration Server create situations
in which duplicate messages are processed or newmessages are marked as duplicates. The
designers anddevelopers of the solutionmustmake sure that clients properly sendmessages,
exactly-once properties are optimally configured, and that document resolver services
correctly determine a message’s status.

Exactly-Once Processing and Performance

Exactly-once processing for a trigger consumes server resources and can introduce latency into
message processing by triggers. For example, when Integration Server maintains a history of
persistent messages processed by a JMS trigger (or guaranteed documents for a webMethods
messaging trigger), each trigger service execution causes two inserts into the document history
database. This requires Integration Server to obtain a connection from the JDBC pool, traverse the
network to access the database, and then insert entries into the database.

Additionally, when the delivery count cannot conclusively determine the status of a message or
document, Integration Server must obtain a database connection from the JDBC pool, traverse the
network, and query the database to determine whether the trigger processed the message.

If querying the document history database is inconclusive or if the server does not maintain a
document history for the trigger, invocation of the document resolver service will also consume
resources, including a server thread and memory.

Using webMethods Integration Server to Build a Client for JMS 10.7 97

4 Exactly-Once Processing for JMS Triggers

The more duplicate detection methods that are configured for a trigger, the higher the quality of
service. However, each duplicate detection method can lead to a decrease in performance.

If a trigger does not need exactly-once processing (for example, the trigger service simply requests
or retrieves data), consider leaving exactly-once processing disabled for the trigger. However, if
you want to ensure exactly-once processing, you must use a document history database or
implement a custom solution using the document resolver service.

98 Using webMethods Integration Server to Build a Client for JMS 10.7

4 Exactly-Once Processing for JMS Triggers

5 Transient Error Handling During Trigger

Preprocessing

■ Server and Trigger Properties that Affect Transient Error Handling During Trigger
Preprocessing ... 100

■ Overview of Transient Error Handling During Trigger Preprocessing 101

Using webMethods Integration Server to Build a Client for JMS 10.7 99

Trigger preprocessing encompasses the time from when a trigger first receives a message
(document) from its local queue on Integration Server to the time Integration Server invokes the
trigger service. Transient errors can occur during this time. A transient error is an error that arises
from a temporary condition that might be resolved or corrected quickly, such as the unavailability
of a resource due to network issues or failure to connect to a database. For example, if a document
history database is used for exactly-once processing, the unavailability of the database may cause
a transient error. Because the condition that caused the trigger preprocessing to fail is temporary,
the trigger preprocessing might complete successfully if Integration Server waits and then
re-attempts trigger preprocessing. To allow the preprocessing to complete successfully, Integration
Server provides some properties and settings for transient error handling.

Note:
The transient error handling for trigger preprocessing applies towebMethodsmessaging triggers
and JMS triggers. It does not apply to MQTT triggers.

Server and Trigger Properties that Affect Transient Error
Handling During Trigger Preprocessing

Integration Server and Designer provide properties that you can use to configure how Integration
Server handles transient errors that occur during the preprocessing phase of trigger execution.

The watt.server.trigger.preprocess.suspendAndRetryOnError server configuration property.
This property determines if Integration Server suspends a trigger if an error occurs during
trigger preprocessing. This server configuration parameter acts as a global on/off switch.When
set to true, Integration Server suspends any trigger that experiences an error during
preprocessing. When set to false, Integration Server uses the individual trigger properties to
determine whether or not to suspend the trigger.

The watt.server.trigger.preprocess.monitorDatabaseOnConnectionException server
configuration property. This property determines how Integration Server handles a
ConnectionException that causes a transient error. A ConnectionException occurs when the
document history database is not enabled or is configured incorrectly.

TheOn Retry Failure trigger property forwebMethodsmessaging triggers and non-transacted
JMS triggers. When set to Suspend and retry later, Integration Server suspends a trigger that
encounters a transient error during trigger preprocessing.

Note:
TheOn Retry Failure trigger property also determines how Integration Server handles retry
failure for a trigger service.

TheOn Transaction Rollback property for a transacted JMS trigger. When set to Suspend and
recover, Integration Server suspends a transacted JMS trigger that encounters a transient error
during trigger preprocessing.

Note:
The On Transaction Rollback property also determines how Integration Server handles a
transaction rollback caused by a transient error that occurs during trigger execution.

100 Using webMethods Integration Server to Build a Client for JMS 10.7

5 Transient Error Handling During Trigger Preprocessing

For a detailed explanation about how Integration Server uses these property settings when a
transient error occurs during trigger preprocessing, see “Overview of Transient Error Handling
During Trigger Preprocessing” on page 101.

Overview of Transient Error Handling During Trigger
Preprocessing

Following is an overview of how Integration Server performs transient error handling for an
ISRuntimeException that occurs during trigger preprocessing. Typically, transient errors that occur
during preprocessing occur during exactly-once processing. For example, the document history
database might not be available of the document resolver service fails because of an
ISRuntimeException.

DescriptionStep

A transient error, specifically an ISRuntimeException, occurs during the
preprocessing phase of trigger execution.

1

Integration Server checks the values of
watt.server.trigger.preprocess.suspendAndRetryOnError server configuration

2

property and the On Retry Failure trigger property. If this is a transacted JMS
trigger, Integration Serverchecks the value of the On Transaction Rollback
property instead of the On Retry Failure property.

If one of the following is true, Integration Server suspends the trigger, rolls the
message back to the messaging provider, and proceeds as described in step 3:

watt.server.trigger.preprocess.suspendAndRetryOnError is set to true.

On Retry Failure property is set to Suspend and retry later or On
Transaction Rollback property is set to Suspend and recover.

If none of the above are true, then Integration Server does not suspend the trigger
if a transient error occurs during trigger preprocessing. Instead, Integration
Server does one of the following:

If the trigger specifies a document resolver service, Integration Server executes
the document resolver service to determine the status of the document. If
the document resolver service ends because of an ISRuntimeException,
Integration Server assigns the document a status of In Doubt, acknowledges
the document, and uses the audit subsystem to log the document.

If the trigger does not specify a document resolver service, Integration Server
assigns the document a status of In Doubt. Integration Server throws an
exception, acknowledges the document to themessaging provider, and uses
the audit subsystem to log the document. This may result in message loss.

Note:

Using webMethods Integration Server to Build a Client for JMS 10.7 101

5 Transient Error Handling During Trigger Preprocessing

DescriptionStep

If the trigger is a webMethods messaging trigger, Integration Server uses the
audit subsystem to log the document. You can use webMethods Monitor to
resubmit the document.

Integration Server does one of the following once the trigger is suspended:3

If the transient error (ISRuntimeException) is caused by a SQLException
(which indicates that an error occurred while reading to or writing from the
database), Integration Server suspends the trigger and schedules a system
task that executes an internal service that monitors the connection to the
document history database. Integration Server resumes the trigger and
re-executes it when the internal service indicates that the connection to the
document history database is available.

If the transient error (ISRuntimeException) is caused by a
ConnectionException (which indicates that document history database is
not enabled or is not properly configured), and the
watt.server.trigger.preprocess.monitorDatabaseOnConnectionException
property is set to true, Integration Server schedules a system task that executes
an internal service that monitors the connection to the document history
database. Integration Server resumes the trigger and re-executes it when the
internal service indicates that the connection to the document history database
is available.

If the transient error (ISRuntimeException) is caused by a
ConnectionException and the
watt.server.trigger.preprocess.monitorDatabaseOnConnectionException
property is set to false, Integration Server does not schedule a system task
to check for the database's availability and will not resume the trigger
automatically. You must manually resume the trigger after configuring the
document history database properly.

If the transient error (ISRuntimeException) is caused by some other type of
exception, Integration Server suspends the trigger and schedules a system
task to execute the trigger's resource monitoring service (if one is specified).
When the resource monitoring service indicates that the resources used by
the trigger are available, Integration Server resumes the trigger and again
receives the message from the messaging provider. If a resource monitoring
service is not specified, you will need to resume the trigger manually (via
Integration Server Administrator or the pub.trigger* services).

102 Using webMethods Integration Server to Build a Client for JMS 10.7

5 Transient Error Handling During Trigger Preprocessing

6 How Triggers Correspond to Durable Subscribers

on Universal Messaging
When Universal Messaging is used as the provider for webMethods messaging or JMS, triggers
on Integration Server may map to a durable on Universal Messaging, specifically:

When Universal Messaging is used as the webMethods messaging provider, the webMethods
messaging triggers map to durable subscribers on Universal Messaging. Integration Server
configures this automatically for webMethods messaging triggers.

When Universal Messaging is the JMS provider, the JMS triggers that receive messages from
a topic with a JMS durable subscription do use a durable on Universal Messaging. The JMS
triggers receivemessages from a channel onUniversalMessagingwith a durable, either shared
or serial.

For a JMS trigger that uses a durable subscriber to retrievemessages from a topic on Universal
Messaging, the type of durable is set on the connection factory. The type of durable is not set
on or by Integration Server. You must use Universal Messaging Enterprise Manager to set the
durable on the connection factory. Software AG recommends that you set the type of durable
based on the processing mode for the JMS trigger.

Note:
JMS triggers that receive messages from a queue do not use a durable on Universal Messaging.
The triggers receive messages from a queue on Universal Messaging. JMS triggers that receive
messages from a topic without a durable subscription do not use a durable on Universal
Messaging either. The triggers receive messages from a channel on Universal Messaging

Knowingwhich durable corresponds to a particular type of trigger can help you locate information
in the Universal Messaging documentation about the durable. This may provide a more complete
picture about the behavior of the trigger and its durable as well as make it easier to troubleshoot
issues that may occur.

The following table identifies the durable type usedwith a specific combination of the trigger type
and message processing mode.

Durable TypeProcessing ModeTrigger Type

SerialSerialwebMethods messaging
trigger

Using webMethods Integration Server to Build a Client for JMS 10.7 103

Durable TypeProcessing ModeTrigger Type

SharedConcurrentwebMethods messaging
trigger

SerialSerialJMS trigger that receives
messages from a topic for

Note:
This is the recommended
durable type for the serial

which there is a durable
subscription

processing mode. You must
set this on the connection
factory.

SharedConcurrentJMS trigger that receives
messages from a topic for

Note:
This is the recommended
durable type for the

which there is a durable
subscription

concurrent processing mode.
You must set this on the
connection factory.

Note:
For a JMS trigger that uses a durable subscriber to retrieve messages from a topic on Universal
Messaging, the type of durable is controlled by the connection factory. The type of durable is
not set automatically Integration Server. Software AG recommends that you set the durable
type on a connection factory to match the processing mode identified in the above table.

104 Using webMethods Integration Server to Build a Client for JMS 10.7

6 How Triggers Correspond to Durable Subscribers on Universal Messaging

7 Consuming JMS Messages Concurrently in a Load-

Balanced Fashion

■ Introduction .. 106

■ Consuming JMS Messages Concurrently from the webMethods Broker 107

■ Configuring JMS Triggers, Integration Server, and webMethods Broker for Load-
Balancing .. 107

■ Consuming JMS Messages in Order with Multiple Consumers 108

Using webMethods Integration Server to Build a Client for JMS 10.7 105

Introduction

You may want to your JMS triggers to consume messages from a destination in a load-balanced
fashion. To load balance message consumption, you can use multiple consumers on one or more
Integration Servers to retrieve and process messages concurrently.

Within Integration Server, the ability to receive messages from a destination in a load-balanced
fashion is important in two situations:

Concurrent JMS triggers

When a concurrent JMS trigger receives messages from the JMS provider, it creates multiple
consumers. Each consumer receives a message from the JMS provider, processes the message,
and acknowledges the message to the JMS provider. Each consumer needs to consume a
message from the same destination but not process any duplicate messages.

A cluster of Integration Servers

The same JMS trigger, running on multiple Integration Servers, needs to consume messages
from the same destination without processing any duplicate messages.

Note:
Load balancing is necessary for concurrent JMS triggers regardless of whether or not they
are running in a cluster of Integration Servers.

The Java Message Service standard does not supply semantics for consuming messages from a
destination in a load-balanced fashion. However, it does state that a client can have multiple
sessions in which each session is an independent consumer and producer of messages. Regarding
the type of destination used by each messaging style, the Java Message Service standard makes
the following provisions:

Queues (point-to-pointmessaging).While the JavaMessage Service standard does not supply
the semantics for multiple consumers receiving messages concurrently, it does not prohibit a
JMS provider from supporting it. Most JMS providers support load balancing of messages
from a queue acrossmultiple consumers.However, reviewyour JMSprovider’s documentation
to determine how to consume messages from a queue concurrently. For information about
using thewebMethodsBroker to consumemessages fromaqueue concurrently, see “Consuming
JMS Messages Concurrently from the webMethods Broker ” on page 107.

Topics (publish-subscribemessaging). The JavaMessage Service standard specifies that each
subscriber to the same topic receives each message. The standard does not provide semantics
regarding how to concurrently consume messages published to a topic in a load-balanced
fashion. Some JMS providers work around this limitation by offering a proprietary extension
to the JMS API. Review your JMS provider’s documentation to determine how to consume
messages from a topic concurrently. For information about how to configure JMS triggers and
the webMethods Broker to consume messages from a topic in a load-balanced fashion, see
“Consuming JMS Messages Concurrently from the webMethods Broker ” on page 107.

106 Using webMethods Integration Server to Build a Client for JMS 10.7

7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion

Consuming JMS Messages Concurrently from the webMethods
Broker

webMethods Broker supports the following load-balancing behavior for JMS destinations.

Queues.Multiple clients can connect to and receivemessages from the same queue if the queue
is configured to share state and all the clients use the same client ID.

Topics.Multiple clients can consume messages in a load-balanced fashion if the clients are
connecting to a durable subscriber, state sharing is enabled for the durable subscriber, and all
the clients use the same client ID.

Note:
Non-durable subscribers (i.e., JMS triggers that subscribe to topics but do not specify a
durable subscriber) cannot receivemessages in a load-balanced fashion. A JMS trigger using
a non-durable subscriberwill process duplicates. Therefore,make sure to setMax execution
threads to 1 when setting message processing properties for a JMS trigger that specifies a
non-durable subscriber. This behavior may vary with other JMS providers. For more
information about configuringmessage processing, seewebMethods Service DevelopmentHelp.

Note:webMethods Broker is deprecated.

Configuring JMS Triggers, Integration Server, and webMethods
Broker for Load-Balancing

To perform load-balancing while consuming messages concurrently from destinations on the
webMethods Broker, the following must be true:

The JMS triggermust receivemessages from a topic using a durable subscriber or from a queue.

The JMS trigger must specify a JMS connection alias that configures a connection to the
webMethods Broker.

The JMS trigger must process messages concurrently.

The JMS trigger must be configured identically on all of the Integration Servers across which
you are load-balancing message consumption.

The queue or durable subscriber must be configured to share state. Sharing client state allows
multiple clients, each using its own session, to process messages from a single destination in
parallel, on a first-come, first-serve basis. To configure state sharing for a queue or durable
subscriber, use the Broker user interface in My webMethods. You can also configure state
sharing as part of creating the destination or durable subscriber in Designer. For more
information about configuring queues and durable subscribers, see Administering webMethods
Broker.

If the JMS trigger specifies a JMS connection alias that is configured to manage destinations
on the webMethods Broker, Integration Server and Designer can configure state sharing for
the durable subscriber automatically.

Using webMethods Integration Server to Build a Client for JMS 10.7 107

7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion

The JMS connection aliasmust be configured identically on all of the Integration Servers across
which you are load-balancing message consumption.

Automatic Load Balancing Configuration for Durable Subscribers
when Using the webMethods Broker
When the JMS connection alias specified by a JMS trigger connects to the webMethods Broker and
is configured tomanage destinations, Integration Server can automatically configure load balancing
for a JMS trigger that specifies a durable subscriber.

If the durable subscriber specified by the JMS trigger does not exist, when you save a JMS trigger,
Integration Server creates the durable subscriber at the Broker. By default, Integration Server
enables state sharing for the durable subscriber. Integration Server uses the message processing
mode specified for the JMS trigger to set the shared state order mode for the durable subscriber.
(A message processing mode of serial maps to a shared state order mode of publisher; a message
processing mode of concurrent maps to a shared state order mode of none.)

If the durable subscriber specified by the JMS trigger exists already, Integration Server can update
the shared state order mode of the durable subscriber when you save the JMS trigger. To change
the shared state order mode for a durable subscriber, change the message processing mode for
the JMS trigger and confirm making the change on Broker when prompted by Designer.

If a JMS trigger specifies a durable subscriber that already exists and you want to change the state
sharing property of the durable subscriber to true, you need to use the Broker interface in My
webMethods to delete the durable subscription. Then, you can either allow Integration Server to
re-create the durable subscription by saving the JMS trigger or you can use the Broker interface
in My webMethods to re-create the durable subscription with the correct shared state and shared
state order values.

Note:
When Integration Server creates a destination or durable subscriber on the Broker, Integration
Server sets the shared state to true.

Important:
If the JMS connection alias is not configured to manage destinations, you must use the Broker
interface in My webMethods to manage the destinations and durable subscribers used with
JMS triggers.

Consuming JMS Messages in Order with Multiple Consumers

The Java Message Service standard states that messages sent by a session to a destination must be
received by consumers in the same order in which the messages were sent. However, the Java
Message Service standard does not specify how the JMS provider should distribute messages
whenmultiple consumers receivemessages from the same destination. Because each JMS provider
is different, it is advisable to review the documentation from your JMS provider to determine how
to use load-balanced consumers to receivemessages in the same order inwhich themessageswere
sent to the destination.

108 Using webMethods Integration Server to Build a Client for JMS 10.7

7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion

Consuming JMS Messages in Order Using the webMethods
Broker
You can configure the webMethods Broker to distribute messages to multiple consumers in the
same order in which the webMethods Broker received the messages. To do this, when creating
destinations in Designer, set theOrder By property to Publisher. When using the Broker interface
in My webMethods to create destinations (queue or durable subscriber), set the Shared State
property to “publisher”.

When a destination has a shared state order of publisher, the webMethods Broker distributes
messages to consumers in a serial fashion. This occurs even if multiple load-balanced consumers
share the same destination. For example, suppose that Server1 and Server2 requestmessages from
QueueA on behalf of JMS triggers. The webMethods Broker gives Server1 the first message in the
queue. The request from Server2 for amessage is blocked until Server1 acknowledges themessage.
Server2 then receives the next message.

Note:
By default, Integration Server retrieves and caches up to 10 messages per request for a JMS
trigger. The watt.server.jms.trigger.maxPreFetchSize server parameter determines the number
of messages retrieved for each request. For more information about this parameter, see
webMethods Integration Server Administrator’s Guide.

Using webMethods Integration Server to Build a Client for JMS 10.7 109

7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion

110 Using webMethods Integration Server to Build a Client for JMS 10.7

7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion

8 Using JMS Trigger Groups

■ About JMS Trigger Groups .. 112

■ Creating a JMS Trigger Group ... 112

■ Managing JMS Triggers in a JMS Trigger Group .. 113

■ Using JMS Trigger Groups with Round Robin in Universal Messaging 113

Using webMethods Integration Server to Build a Client for JMS 10.7 111

About JMS Trigger Groups

A JMS trigger group is a collection of two or more JMS triggers whose names match a particular
naming convention. Typically, the JMS triggers are nearly identical, with themain difference being
the JMS connection alias used to retrieve messages. A JMS trigger group can be beneficial when
the same message type is sent to more than one queue or topic across multiple JMS providers.
This can occur when the JMS provider supports a load balancer on the producer side. In such a
scenario, the receiving Integration Server would need to poll for messages across each of the
providers. That is, the subscribing Integration Server needs to have a subscriber for each queue
or topic on each provider. A JMS trigger group provides a way to more easily create and manage
these triggers.

Integration Server considers a JMS trigger to be amember of a JMS trigger groupwhen the trigger
name portion of the fully qualified name includes the following suffix:

_groupTag_Id

Where

groupTag is the unique tag used to indicate a trigger group. By default, the groupTag is WMTG.
You can change the groupTag using the watt.server.jms.trigger.groupTag server configuration
parameter.

Id is a unique identifier for the trigger in the trigger group. This might be a number or text that
indicates what differentiates the trigger from others in the group. For example, Integration Server
considers the following two JMS triggers to be in the same JMS trigger group:

myFolder.mySubFolder:myTrigger_WMTG_01

myFolder.mySubFolde:myTrigger_WMTG_02

Additionally, Integration Server considers a JMS trigger to be a member of a JMS trigger group if
other JMS triggers have the same fully qualified name followed by the _groupTag_Id suffix.

For example, Integration Server considers the following three triggers to be in the same JMS trigger
group:

myFolder.mySubFolder:triggerA

myFolder.mySubFolder:triggerA_WMTG_01

myFolder.mySubFolder:triggerA_WMTG_AA

Creating a JMS Trigger Group

You can quickly create new JMS triggers and establish a JMS trigger group using the methods in
the com.wm.app.b2b.server.jms.consumer.JMSTriggerGroupFacade class. The class includes
methods for creating a new JMS trigger quickly by copying an existing JMS trigger, specifying a
different JMS connection alias for the trigger, and designating an Id for the trigger in the group.
This can be accomplished by copying a specific trigger, copying all the JMS triggers in a particular
package, or copying all the JMS triggers that use a particular JMS connection alias to retrieve
messages from the JMS provider. For more information about the

112 Using webMethods Integration Server to Build a Client for JMS 10.7

8 Using JMS Trigger Groups

com.wm.app.b2b.server.jms.consumer.JMSTriggerGroupFacade class, see thewebMethods Integration
Server Java API Reference.

Managing JMS Triggers in a JMS Trigger Group

On theSettings > Messaging > JMS Trigger Managementpage, Integration ServerAdministrator
displays a JMS trigger group as a single rowwhich provides a summary of information about the
group members collects all of the JMS triggers into a single trigger group header row which
functions as a summary of the trigger group. Expand the group to view state, status, alias, and
thread usage for each JMS trigger in the group.

You can change the state of all of the JMS triggers in a JMS trigger group in the same way you
would change the state of an individual JMS trigger. When you edit the JMS trigger group state,
the change affects all of the JMS triggers in the group.

For more information about managing JMS triggers and information about the possible state and
status values for a JMS trigger group, see webMethods Integration Server Administrator’s Guide.

Using JMS Trigger Groups with Round Robin in Universal
Messaging

Note:UniversalMessaging 10.2 and higher include theHorizontal Scaling featurewhich provides
a connection factory that can be used to send and receive JMS messages from multiple realms.
The Horizontal Scaling feature removes the need for the work around described below.
Software AG recommends that you use the APIs offered by the Horizontal Scaling feature
instead of the APIs provided for JMS Round Robin publishing. For more information about
Horizontal Scaling, see the Universal Messaging documentation.

Universal Messaging provides a JMS connection factory that can be used to send messages to
multiple Universal Messaging servers in a round-robin fashion. Using round-robin to distribute
the messages across Universal Messaging servers helps to balance the messaging load and can
improve message throughput. However, the connection factory for Universal Messaging JMS
Round Robin Publishing works with message producers only. Message consumers, such as JMS
triggers, cannot consume messages in a round-robin fashion using the round-robin connection
factory. On Integration Server, you can work around this limitation by creating:

A JMS connection alias for each server in the Universal Messaging cluster.

A JMS trigger for each destination (queue or topic) on a server in the Universal Messaging
cluster using one of the JMS connection aliases. Repeat this for each JMS connection alias. That
is, create JMS trigger for each Universal Messaging server and destination combination.

For example, consider a Universal Messaging cluster that consists of 3 servers with 50 queues on
each server. On Integration Server, you would create 3 JMS connection aliases (one for each server
in the Universal Messaging cluster) and 150 JMS triggers (50 destinations multiplied by 3 servers
in the Universal Messaging cluster). This can be time consuming and error prone. Additionally it
does not scale. Supposed you add another server to theUniversalMessaging cluster. On Integration
Server you need to add one more JMS connection alias and 50 more JMS triggers. To facilitate the
quick addition of new JMS triggers, use the methods in the

Using webMethods Integration Server to Build a Client for JMS 10.7 113

8 Using JMS Trigger Groups

com.wm.app.b2b.server.jms.consumer.JMSTriggerGroupFacade class to create a new JMS trigger
by copying an existing JMS trigger. You can specify a different JMS connection alias for use with
the new trigger. You can copy a specific trigger, all the JMS triggers in a particular package, all
the JMS triggers that use a particular JMS connection alias.

Note:
The round-robin aspect of the publishing is handled by Universal Messaging. The Universal
Messaging client that publishes the messages, i.e., Integration Server, is unaware of the
round-robin messaging distribution. For information about configuring Universal Messaging
JMS Round Robin Publishing, see the Universal Messaging documentation.

114 Using webMethods Integration Server to Build a Client for JMS 10.7

8 Using JMS Trigger Groups

9 Working with Cluster Policies

■ Introduction .. 116

■ Working with the Multisend Guaranteed Policy ... 116

■ Working with the Multisend Best Effort Policy ... 119

■ Overriding the Cluster Policy when Sending JMS Messages 119

Using webMethods Integration Server to Build a Client for JMS 10.7 115

Introduction

When using the webMethods Broker as a JMS provider, Integration Server can send and receive
JMSmessages in accordancewith a cluster policy. The cluster policy,which is applied to the cluster
connection factory used by a JMS connection alias, determines the Broker to which the message
is sent. Integration Server automatically handles sending and receiving JMS messages using the
cluster connection factory. However, the multisend guaranteed and multisend best effort cluster
policies have specific requirements for the JMS client sending themessage. The following sections
provide more information about how Integration Server acts as the JMS client for these policies
and explain how to override a cluster policy when sending a JMS message.

Note:webMethods Broker is deprecated.

Working with the Multisend Guaranteed Policy

The multisend guaranteed policy specifies that the JMS client should send the same JMS message
to exactly n out of m Brokers in the Broker cluster. The publishing operation is successful only if
the JMS message is sent to precisely n Brokers. The policy specifies that if the JMS client cannot
send the JMS message to the precise number of Brokers successfully, the JMS client should not
send the JMS message to any Brokers.

To ensure that Integration Server sends the JMSmessage to the exact number of Brokers, Integration
Server uses an XA transaction to perform a two-phase commit. Integration Server manages the
entire transaction as part of executing the pub.jms:* sending service. Consequently, regardless of
the connection type of the JMS connection alias, the multisend guaranteed policy does not require
special configuration or set up in the sending service or the JMS connection alias.

When sending a multisend guaranteed JMS message using a connection with a transaction type
of NO_TRANSACTION, Integration Server starts the transaction when it begins executing the
pub.jms* service. Integration Server dynamically adds the n participating Brokers to the transaction.
(Integration Server treats each Broker enlisted in the transaction as an XA resource.) After n Brokers
receive themessage, Integration Server commits the transaction and the pub.jms* service completes
execution.

However, if you want more control over the transaction or if you want to enlist other resources
in the transaction, use a JMS connection alias with a transaction type set to XA_TRANSACTION
or LOCAL_TRANSACTION. Integration Server can then use an implicit or explicit transaction to
send the message.

When sending a multisend guaranteed JMSmessage in an implicit transaction, Integration Server
starts the transaction when executing the pub.jms* service that specifies a JMS connection alias of
type XA_TRANSACTION or LOCAL_TRANSACTION. Integration Server commits or rolls back
the transaction when the top-level service executes to completion. When the transaction type is
XA_TRANSACTION, Integration Server logs the state of each transaction. This XA transaction
logging allows Integration Server to recover any transactions that did not complete due to
Integration Server failure.

When sending a multisend guaranteed JMS message in an explicit transaction, you control the
transactional units of work by defining the start and completion boundaries of the transaction.

116 Using webMethods Integration Server to Build a Client for JMS 10.7

9 Working with Cluster Policies

The parent service that sends the JMS message must use the pub.art.transaction* services to start,
commit, and roll back the transaction. Integration Server enlists the Brokers as XA resources when
it executes the pub.jms:* service.

In some situations, you might use the built-in service pub.art.transaction:startTransaction to start a
transaction explicitly, but then allow Integration Server to commit or roll back the transaction
implicitly based on the success or failure of the top-level service.

By default, Integration Server performs transaction logging only when the JMS connection alias
has a transaction type of XA_TRANSACTION. However, you can configure Integration Server to
perform transaction logging whenever it sends a JMS message as part of a multisend guaranteed
policy. For more information about transaction logging, see “Transaction Logging with the
Multisend Guaranteed Policy” on page 118.

For more information about sending a JMS message within a transaction, see “Sending a JMS
Message as Part of a Transaction” on page 83.

Note:
When sending a JMS message as part of a transaction, client side queuing cannot be used. The
useCSQ input parameter for the pub.jms:send and pub.jms:sendAndWait services must be set to false
when sending JMS messages in a transaction. If the useCSQ input parameter is set to true and
the sending service executeswithin an explicit or implicit transaction, Integration Server throws
a ServiceException.

Error Handling with the Multisend Guaranteed Policy
When sending JMS messages using a connection with a multisend guaranteed policy, how
Integration Server handles errors depends on the transaction type of the connection used to send
the JMS message.

Error Handling for Transaction Type of NO_TRANSACTION

When sending JMS messages using a multisend guaranteed policy with a connection of type of
NO_TRANSACTION, the following error handling may occur:

If the minimum number of Brokers required by the multisend guaranteed policy are not
available, Integration Server will try various combinations of Brokers in the Broker cluster to
ensure that the JMS message is sent to the minimum number of Brokers. For example, if the
multisend guaranteed policy specifies that the JMS message must be sent to 2 of 4 Brokers in
a Broker cluster that consists of BrokerA, BrokerB, BrokerC, and BrokerD. Integration Server
might first try to send the JMS message to BrokerA and BrokerB. If BrokerA is not available,
Integration Server retrieswith a different combination of Brokers, such as BrokerB andBrokerC.
Integration Server will retry up to two times to send themessage using different combinations
of Brokers. If the minimum number of Brokers is not available after the final retry attempt,
Integration Server throws an ISRuntimeException.

If a fatal error occurs while Integration Server is sending messages to multiple Brokers,
Integration Server throws a ServiceException and the sending service fails. For example, an
invalid destination lookup name or invalid connection factory name results in a
ServiceException and thus a fatal error.

Using webMethods Integration Server to Build a Client for JMS 10.7 117

9 Working with Cluster Policies

Note:
When overriding a multisend guaranteed policy and using a connection transaction type
of NO_TRANSACTION, if one of the Brokers is not available while Integration Server is
sending themessage, Integration Server does not retry sending themessagewith a different
combination of Brokers. Instead, Integration Server throws an ISRuntimeException.

Error Handling for Transaction Type of XA_TRANSACTION or LOCAL_TRANSACTION

When sending JMS messages using a multisend guaranteed policy with a connection of type of
XA_TRANSACTION or LOCAL_TRANSACTION, the following error handling may occur:

If the minimum number of Brokers required by the multisend guaranteed policy are not
available and the transaction type is XA_TRANSACTION or LOCAL_TRANSACTION,
Integration Server throws an ISRuntimeException and the service fails. Integration Server
considers this a transient error. Consequently, you can configure service retry to instruct
Integration Server to retry the top-level service automatically.

If a fatal error occurs while Integration Server is sending messages to multiple Brokers,
Integration Server throws a ServiceException and the sending service fails. For example, an
invalid destination lookup name or invalid connection factory name results in a
ServiceException and thus a fatal error. Integration Server rolls back the transaction after a
fatal error.

If a transient error occurs while Integration Server is sending messages to multiple Brokers
and the connection transaction type is XA_TRANSACTION or LOCAL_TRANSACTION,
Integration Server throws an ISRuntimeException and rolls back the transaction.

You can configure a service to re-execute automatically after an ISRuntimeException occurs. For
more information about configuring service retry, see webMethods Service Development Help.

Transaction Logging with the Multisend Guaranteed Policy
When executing an XA transaction, Integration Server logs the state of each transaction. This
transaction logging allows Integration Server to recover any transactions that did not complete
due to Integration Server failure. While this is the most reliable way to ensure the integrity of a
transaction, it may be expensive in terms of performance and it may not always be necessary.

When sending a message using a connection from a cluster connection factory that specifies a
multisend guaranteed policy, Integration Server performs transaction logging only if the connection
transaction type is XA_TRANSACTION.

However, youmightwant Integration Server to performXA transaction logging andXA transaction
recovery for all transactions that involve the multisend guaranteed policy, regardless of the
connection transaction type. To do this, set the
watt.server.jms.guaranteedMultisend.alwaysUseTXLoggingparameter to true. Formore information
about this parameter, see webMethods Integration Server Administrator’s Guide.

118 Using webMethods Integration Server to Build a Client for JMS 10.7

9 Working with Cluster Policies

Working with the Multisend Best Effort Policy

The multisend best effort policy specifies that a JMS client send the same JMS message to all, or
as many Brokers in the Broker cluster as possible. The publish operation is considered to be
successful if even one of the Brokers receives themessage. Themultisend best effort policy requires
the connection to be non-transacted.When sending JMSmessages in conjunctionwith themultisend
best effort policy, the connection transaction typemust be NO_TRANSACTION. If the connection
transaction type is XA_TRANSACTION or LOCAL_TRANSACTION, Integration Server throws
a JMSSubsystemExceptionwhen attempting to enable the connection and the sending service fails.

For information about specifying a transaction type for a JMS connection alias, see webMethods
Integration Server Administrator’s Guide.

Overriding the Cluster Policy when Sending JMS Messages

When Integration Server sends a JMSmessage using a connection from a cluster connection factory,
the policy applied to the cluster connection factory determines the Broker (or Brokers in the case
of a multisend best effort or multisend guaranteed policy) to which the message is sent. When a
series of JMSmessages are sent using the same connection factory, different Brokers might receive
the messages. In some situations, you might want the same Broker to receive all of the messages
in the series.

For example, suppose that Integration Server sends a group of three JMSmessages using a cluster
connection factory to which the “random” policy is applied. It might not matter which Broker in
the Broker cluster receives the first JMS message, but you might want the same Broker to receive
the two remaining messages. For example, you might want the JMS messages to be processed in
the same order in which the messages were sent. Or, if the Brokers in the cluster have different
receivers that can process the message, you might want the same receiver to process all of the
messages.

You can instruct the Broker Server to route the messages to the same Broker (or Brokers in the
case of a multisend best effort or multisend guaranteed policy) by overriding the cluster policy.

Overriding the policy consists of two basic tasks:

Determining the Broker (or Brokers) to which Integration Server sent the initial message.

Specifying the Broker (or Brokers) to which Integration Server sends a subsequent message.

To accomplish both tasks, most built-in services that send and receive JMS messages (pub.jms*)
include a parameter named JMS_WMClusterNodes. This parameter is a child of the
JMSMessage/properties document and JMSReplyMessage/properties documents. The
JMS_WMClusterNodes parameter can be in the input and/or output signatures of the services.

In the service output, the JMS_WMClusterNodes parameter contains the names of the Broker
that received the JMS message. For a cluster connection factory with a multisend guaranteed
or multisend best effort policy, the JMS_WMClusterNodes parameter lists multiple Brokers.
The sending Integration Server supplies the service with this information.

Using webMethods Integration Server to Build a Client for JMS 10.7 119

9 Working with Cluster Policies

In the service input, the JMS_WMClusterNodes parameter specifies the Broker (or Brokers in
the case of a multisend guaranteed or multisend best effort policy) to which you want the
message sent.

How to Override the Cluster Policy when Sending a JMS
Message
You can instruct Broker Server to override the policy applied to a cluster connection factory only
when the following conditions are met:

JMS messages are sent using a JMS connection alias that uses a cluster connection factory.

JMS messages are sent using the same cluster connection factory. Note that multiple JMS
connection aliases can use the same cluster connection factory.

The cluster connection factory configuration allows the policy to be overridden. (In My
webMethods Server, the Cluster Policy Override option is selected for the cluster connection
factory.)

The following steps describe how to build a service that overrides a cluster policy to specify that
the same Broker (or Brokers in the case of a multisend policy) processes a series of JMS messages.

Note:
When overriding the policy for a series of JMS messages, the messages do not need to be sent
within the same flow service. Information about the Broker that received the initial message
needs to be captured after the initial message is sent and then used when sending subsequent
messages. This can be done across multiple services as long as each sending service uses the
same cluster connection factory. For the sake of simplicity, the following steps explain how to
send the messages in a single flow service.

1. Create the flow service that will send the JMS messages.

2. Insert a service to send the first JMS message.

Send the JMS message by invoking the pub.jms:send or pub.jms:sendAndWait service. For more
information about sending JMS messages, see “Sending and Receiving JMS Messages” on
page 65.

If you use the pub.jms:sendAndWait service to perform an asynchronous request-reply, you also
need to invoke pub.jms:waitForReply to retrieve the reply message.

3. In the pipeline, add a new String variable to Pipeline Out.

4. Map the value of the JMS_WMClusterNodes output parameter to a new String variable in the
pipeline.

Then map this to the new String...If you sent themessage using...

The value of the service output parameter
JMSMessage/properties/JMS_WMClusterNodesproduced
by the pub.jms:send service

pub.jms:send

120 Using webMethods Integration Server to Build a Client for JMS 10.7

9 Working with Cluster Policies

Then map this to the new String...If you sent themessage using...

The value of the
JMSMessageReply/properties/JMS_WMClusterNodes

pub.jms:sendAndWait
(synchronous)

output parameter produced by the pub.jms:sendAndWait
service

The value of the
JMSMessageReply/properties/JMS_WMClusterNodes

pub.jms:sendAndWait
(asynchronous)

output parameter produced by the pub.jms:waitForReply
service

Do not edit the contents of the JMS_WMClusterNodes output parameter.

5. Insert a service to send the next JMS message.

Send the JMS message by invoking the pub.jms:send or pub.jms:sendAndWait service.

6. Map the value of the String field added in step 3 to the
JMSMessage/properties/JMS_WMClusterNodes input parameter for the service invoked in step
5.

7. Repeat steps 4–6 for each JMS message that you want to be received by the same Broker (or
Brokers).

Notes:

Make sure to code the service to handle any ISRuntimeExceptions thrown as a result of a
Broker Server exception for invalid data or as the result of unavailable Brokers. For more
information, see “Exceptions when Overriding Cluster Policies” on page 121.

When overriding a multisend guaranteed policy and using a connection transaction type of
NO_TRANSACTION, if one of the Brokers is not available while Integration Server is sending
themessage, Integration Server does not retry sending themessagewith a different combination
of Brokers. Instead, Integration Server throws an ISRuntimeException.

Exceptions when Overriding Cluster Policies
In addition to handling the exceptions that may occur when sending a JMSmessage, a service that
overrides a cluster policymust handle ISRuntimeExceptions that result when policy requirements
are not or cannot be met. Integration Server throws an ISRuntimeException after attempting to
override a policy for the following general reasons:

The service sending the JMS message provided invalid data and the Broker Server throws an
exception. Integration Server wraps the Broker Server exception and rethrows it as an
ISRuntimeException.

The Brokers specified in the JMS_WMClusterNodes input parameter are not available.

Following is a list of situations in which Integration Server throws an ISRuntimeException while
attempting to override the connection factory policy when sending a JMS message.

Using webMethods Integration Server to Build a Client for JMS 10.7 121

9 Working with Cluster Policies

The JMS_WMClusterNodes specifies a single Broker and that Broker is not available. This applies
to policies such as round robin, round robin weighted, random, and sticky.

The JMS_WMClusterNodes specifies multiple Brokers and the policy requires that the JMS
message be sent to one Broker. This applies to the round robin, round robinweighted, random,
and sticky policies.

The cluster policy is multisend best effort and none of the Brokers specified in
JMS_WMClusterNodes are available.

The cluster policy is multisend guaranteed and one or more of the Brokers specified in
JMS_WMClusterNodes are not available.

The JMS_WMClusterNodes specifies a Broker that is no longer part of the Broker cluster for the
cluster connection factory.

122 Using webMethods Integration Server to Build a Client for JMS 10.7

9 Working with Cluster Policies

A Building a Resource Monitoring Service

■ About a Resource Monitoring Service ... 124

■ Service Requirements ... 124

Using webMethods Integration Server to Build a Client for JMS 10.7 123

About a Resource Monitoring Service

A resource monitoring service is a service that you create to check the availability of resources
that a trigger uses. Integration Server schedules a system task to execute a resource monitoring
service after it suspends a trigger. Specifically, Integration Server suspends a trigger and invokes
the associated resource monitoring service when one of the following occurs:

During exactly-once processing, the document resolver service ends because of an
ISRuntimeException and thewatt.server.trigger.preprocess.suspendAndRetryOnErrorproperty
is set to true (the default).

A retry failure occurs for a non-transacted trigger and the configured retry behavior is “suspend
and retry later.”

A transient error occurs for a transacted JMS trigger and the configured behavior when
transaction roll back occurs is to suspend the JMS trigger and recover the message.

The same resourcemonitoring service can be used formultiple triggers.When the service indicates
that resources are available, Integration Server resumes all the triggers that use the resource
monitoring service.

Service Requirements

A resource monitoring service must do the following:

Use the pub.trigger:resourceMonitoringSpec as the service signature.

Check the availability of the resources used by the document resolver service and all the trigger
services associatedwith a trigger. Keep inmind that each condition in a trigger can be associated
with a different trigger service. However, you can only specify one resourcemonitoring service
per trigger.

Return a value of “true” or “false” for the isAvailable output parameter. The author of the
resource monitoring service determines what criteria makes a resource available.

Catch and handle any exceptions that might occur. If the resource monitoring service ends
because of an exception, Integration Server logs the exception and continues as if the resource
monitoring service returned a value of “false” for the isAvailable output parameter.

124 Using webMethods Integration Server to Build a Client for JMS 10.7

A Building a Resource Monitoring Service

B Building a Document Resolver Service

■ About a Document Resolver Service .. 126

■ Service Requirements ... 126

Using webMethods Integration Server to Build a Client for JMS 10.7 125

About a Document Resolver Service

Adocument resolver service is a service that you create to performduplicate detection formessages
received by a JMS trigger or documents received by a webMethodsmessaging trigger. Integration
Server uses the document resolver service as the final method of duplicate detection.

Service Requirements

The document resolver service must do the following:

Use pub.jms:documentResolverSpec as the service signature if the service is for a JMS trigger. Use
pub.publish:documentResolverSpec as the service signature if the service is for a webMethods
messaging trigger. Integration Server passes the document resolver service values for each of
the variables declared in the input signature. Integration Server passes the document resolver
service values for each of the variables declared in the input signature.

Return a status of NEW, DUPLICATE, or IN_DOUBT. Integration Server uses the status to
determine whether or not to process the message.

Catch and handle any exceptions that might occur, including an ISRuntimeException. For
information about how Integration Server proceedswith duplicate detectionwhen an exception
occurs, see “Document Resolver Service for a JMSTrigger” on page 95 and “Document Resolver
Service and Exceptions for a JMS Trigger” on page 95.

Determine how farmessage processing progressed. If necessary, the document resolver service
can issue compensating transactions to reverse the effects of a partially completed transaction.

126 Using webMethods Integration Server to Build a Client for JMS 10.7

B Building a Document Resolver Service

C Transaction Management

■ Transaction Management Overview .. 128

■ Built-In Transaction Management Services .. 130

Using webMethods Integration Server to Build a Client for JMS 10.7 127

Transaction Management Overview

This appendix provides an overview of transactionmanagement, including transaction types and
implicit vs. explicit transactions. It also describes how Integration Server supports the built-in
services used to manage explicit transactions. For descriptions of each of the specific built-in
transaction management services, see “Built-In Transaction Management Services” on page 130.

Transactions
Integration Server considers a transaction to be one ormore interactionswith one ormore resources
that are treated as a single logical unit of work. The interactions within a transaction are either all
committed or all rolled back. For example, if a transaction includes multiple database inserts, and
one or more inserts fail, all inserts are rolled back.

Transaction Types
Integration Server supports the following kinds of transactions:

A local transaction (LOCAL_TRANSACTION), which is a transaction to a resource’s local
transaction mechanism

An XAResource transaction (XA_TRANSACTION), which is a transaction to a resource’s
XAResource transaction mechanism

Integration Server can automaticallymanage both kinds of transactionswithout requiring the user
to do anything. For more information about implicit transactions, see “Implicit and Explicit
Transactions” on page 129.

However, in some cases, users need to explicitly control the transactional units of work. Examples
of these cases are provided in “Implicit and Explicit Transactions” on page 129.

To support transactions, Integration Server relies on a built-in Java EE transaction manager. The
transactionmanager is responsible for beginning and ending transactions,maintaining a transaction
context, enlisting newly connected resources into existing transactions, and ensuring that local
and XAResource transactions are not combined in illegal ways.

The transaction manager onlymanages operations performed by adapter services, a transacted
JMS trigger, or a built-in JMS service that uses a transacted JMS connection alias.

Important:
You cannot step or trace a flow that contains a transacted adapter service or a transacted JMS
service.

XA Transactions

If anXA transactional connection throws an exception during a service transaction and the exception
results in an inconsistent state, you may need to resolve the transaction using the tools provided
with the database.

128 Using webMethods Integration Server to Build a Client for JMS 10.7

C Transaction Management

For information about using Integration Server to manage XA transactions, see webMethods
Integration Server Administrator’s Guide.

Implicit and Explicit Transactions
Implicit transactions are automatically handled by the Integration Server transaction manager.
When you define an explicit transaction, you define the start-on-completion boundaries of the
transaction. As such, implicit and explicit transactions need to be created andmanaged differently.

The following sections describe implicit and explicit transactions and how to manage them.

Implicit Transactions

With implicit transactions, Integration Server automatically manages both local and XAResource
transactions without requiring you to explicitly do anything. That is, the Integration Server starts
and completes an implicit transaction with no additional service calls required by the user.

A transaction context, which the transaction manager uses to define a unit of work, starts when
one of the following occurs:

An adapter service is encountered during flow service execution. The connection required by
the adapter service is registeredwith the newly created context and used by the adapter service.
If another adapter service is encountered, the transaction context is searched to see if the
connection is already registered. If the connection is already registered, the adapter service
uses this connection. If the connection is not registered, a new connection instance is retrieved
and registered with the transaction.

Integration Server uses a transacted JMS connection alias to receive messages from the JMS
provider for a JMS trigger. A JMS connection alias is considered to be transacted when it has
a transaction type of XA TRANSACTION or LOCAL TRANSACTION.

A built-in JMS service that uses a transacted JMS connection alias to connect to the JMSprovider
is encountered during flow service execution.

Note that if the top-level flow service invokes another flow, services in the child flow use the same
transaction context.

When the top-level flow service completes, the transaction is completed and is either committed
or rolled back, depending on the status (success or failure) of the top-level flow service or the JMS
trigger service.

A single transaction context can contain any number of XA_TRANSACTION connections but no
more than one LOCAL_TRANSACTION connection.

For more information about designing and using flows, see webMethods Service Development Help.

Explicit Transactions

You use explicit transactions when you need to explicitly control the transactional units of work.
To do this, you use additional services, known as built-in services, in your flow.

Using webMethods Integration Server to Build a Client for JMS 10.7 129

C Transaction Management

A transaction context starts when the pub.art.transaction:startTransaction service is executed. The
transaction context is completed when either the pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction service is executed. As with implicit transactions, a single
transaction context can contain any number of XA_TRANSACTIONconnections but nomore than
one LOCAL_TRANSACTION connection.

Note:
With explicit transactions, you must be sure to call either pub.art.transaction:commitTransaction or
pub.art.transaction:rollbackTransaction for each pub.art.transaction:startTransaction; otherwise, youwill have
dangling transactions that will require you to reboot Integration Server. You must also ensure
that the startTransaction is outside the SEQUENCE.

A new explicit transaction context can be started within a transaction context, provided that you
ensure that the transactionswithin the context are completed in the reverse order theywere started.
That is, the last transaction to start should be the first transaction to complete, and so on.

The following example shows a valid construct:
pub.art.transaction:startTransaction

pub.art.transaction:startTransaction
pub.art.transaction:startTransaction
pub.art.transaction:commitTransaction

pub.art.transaction:commitTransaction
pub.art.transaction:commitTransaction

The following example shows an invalid construct:
pub.art.transaction:startTransaction

pub.art.transaction:startTransaction
pub.art.transaction:commitTransaction

pub.art.transaction:commitTransaction

Note:
You can use the pub.flow:getLastError service in the SEQUENCE to retrieve the error information
when a sequence fails. For more information about using the pub.flow:getLastError service, see
webMethods Integration Server Built-In Services Reference.

For more information about designing and using flows, see webMethods Service Development Help.

Built-In Transaction Management Services

The following table identifies each of the built-in services you can use for transactionmanagement.

DescriptionService

Commits an explicit transaction. It must be used in
conjunction with the pub.art.transaction:startTransaction

pub.art.transaction:commitTransaction

service. If it does not have this corresponding
service, your flow service will receive a run time
error.

130 Using webMethods Integration Server to Build a Client for JMS 10.7

C Transaction Management

DescriptionService

Rolls back an explicit transaction. It must be used
in conjunctionwith the pub.art.transaction:startTransaction

pub.art.transaction:rollbackTransaction

service. If it does not have this corresponding
service, your flow service will receive a run time
error.

Manually sets a transaction timeout interval for
implicit and explicit transactions.When you use this

pub.art.transaction:setTransactionTimeout

service, you are temporarily overriding the
Integration Server transaction timeout interval.

Starts an explicit transaction. It must be used in
conjunction with either a

pub.art.transaction:startTransaction

pub.art.transaction:commitTransaction service or
pub.art.transaction:rollbackTransaction service. If it does
not have one of these corresponding services, your
flow service will receive an run time error.

Formore information about the transactionmanagement services, including detailed descriptions
of the service signatures, see webMethods Integration Server Built-In Services Reference.

Using webMethods Integration Server to Build a Client for JMS 10.7 131

C Transaction Management

132 Using webMethods Integration Server to Build a Client for JMS 10.7

C Transaction Management

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 Introduction to JMS
	JMS Messaging
	Messaging Styles
	JMS API Programming Model

	2 Working with JMS Triggers
	About SOAP-JMS Triggers
	Overview of Building a Non-Transacted JMS Trigger
	Standard JMS Trigger Service Requirements
	Creating a JMS Trigger
	Managing Destinations and Durable Subscribers on the JMS Provider through Designer
	Building Standard JMS Triggers with Multiple Routing Rules
	Enabling or Disabling a JMS Trigger
	Setting an Acknowledgement Mode
	About Join Time-Outs
	About Execution Users for JMS Triggers
	About Message Processing
	Fatal Error Handling for Non-Transacted JMS Triggers
	Transient Error Handling for Non-Transacted JMS Triggers
	Exactly-Once Processing for JMS Triggers
	Debugging a JMS Trigger
	Building a Transacted JMS Trigger

	3 Sending and Receiving JMS Messages
	The JMS Services
	Sending a JMS Message
	Sending a JMS Message and Waiting for a Reply
	Replying to a JMS Message
	Receiving a JMS Message Using Built-In Services
	Sending a JMS Message as Part of a Transaction
	Setting Properties in a JMS Message

	4 Exactly-Once Processing for JMS Triggers
	Overview of Exactly-Once Processing for JMS Triggers
	Duplicate Detection Methods for JMS Triggers
	Summary of Duplicate Detection Process for JMS Triggers
	Delivery Count for JMS Messages
	Document History Database for Use with JMS Triggers
	Document Resolver Service for a JMS Trigger
	Extenuating Circumstances for Exactly-Once Processing
	Exactly-Once Processing and Performance

	5 Transient Error Handling During Trigger Preprocessing
	Server and Trigger Properties that Affect Transient Error Handling During Trigger Preprocessing
	Overview of Transient Error Handling During Trigger Preprocessing

	6 How Triggers Correspond to Durable Subscribers on Universal Messaging
	7 Consuming JMS Messages Concurrently in a Load-Balanced Fashion
	Introduction
	Consuming JMS Messages Concurrently from the webMethods Broker
	Configuring JMS Triggers, Integration Server, and webMethods Broker for Load-Balancing
	Consuming JMS Messages in Order with Multiple Consumers

	8 Using JMS Trigger Groups
	About JMS Trigger Groups
	Creating a JMS Trigger Group
	Managing JMS Triggers in a JMS Trigger Group
	Using JMS Trigger Groups with Round Robin in Universal Messaging

	9 Working with Cluster Policies
	Introduction
	Working with the Multisend Guaranteed Policy
	Working with the Multisend Best Effort Policy
	Overriding the Cluster Policy when Sending JMS Messages

	A Building a Resource Monitoring Service
	About a Resource Monitoring Service
	Service Requirements

	B Building a Document Resolver Service
	About a Document Resolver Service
	Service Requirements

	C Transaction Management
	Transaction Management Overview
	Built-In Transaction Management Services

