
REST Developer’s Guide

Version 10.3

October 2018

This document applies to webMethods Integration Server Version 10.3 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2018 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA, and/or its subsidiaries and/or
its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
hp://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation, located
at hp://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: IS-RS-DG-103-20181015

http://softwareag.com/licenses/
http://softwareag.com/licenses/
http://softwareag.com/licenses/

M
Table of Contents

REST Developer’s Guide Version 10.3 3

Table of Contents

About this Guide..5
Document Conventions.. 5
Online Information and Support... 6
Data Protection... 7

About Integration Server REST Processing... 9
Overview... 10
About REST Request Messages..11
Sending Responses to the REST Client..11

Status Line...11
Header Fields.. 12
Message Body...12
Setting Responses Using pub.flow:HTTPResponse... 13

How webMethods Integration Server Processes REST Requests...13

Configuring a REST Resource Using the Legacy Approach.. 15
Processing Requests Using Partial Matching of URL Aliases... 18

Configuring a REST V2 Resource..21
Considerations for Specifying the URL template in a REST V2 Resource Operation.............. 22
Examples of Configuring REST Resources Using the URL Template-Based Approach.......... 23
Configuring a REST V2 Resource Based on JSON API... 25
Examples of Configuring REST Resources Based on JSON API..25

Setting Up a REST Application Using the Legacy REST Approach... 39
Setting Up a REST Application on Integration Server... 40

Setting Up a REST Application Using the Legacy REST Approach................................. 40
Configuration..42

Converting an Existing Application to a REST Application.. 42

Setting Up a REST Application Using REST API Descriptor...45
Using REST API Descriptors for Your REST Application...46
Services for REST Resources Configured Using the URL Template-Based Approach............47
Configuration...48
Converting an Existing Application to a REST Application.. 49

M
Even Header

REST Developer’s Guide Version 10.3 4

M
Odd Header

REST Developer’s Guide Version 10.3 5

About this Guide

This guide is for developers using webMethods Integration Server to create REST
applications. This guide assumes basic knowledge of REST concepts and HTTP request
processing and familiarity with Software AG Designer and webMethods Integration
Server.

Document Conventions

Convention Description

Bold Identifies elements on a screen.

Narrowfont Identifies service names and locations in the format
folder.subfolder.service , APIs, Java classes, methods, properties.

Italic Identifies:

Variables for which you must supply values specific to your own
situation or environment.
New terms the first time they occur in the text.
References to other documentation sources.

Monospace
font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

{ } Indicates a set of choices from which you must choose one. Type
only the information inside the curly braces. Do not type the { }
symbols.

| Separates two mutually exclusive choices in a syntax line. Type
one of these choices. Do not type the | symbol.

[] Indicates one or more options. Type only the information inside
the square brackets. Do not type the [] symbols.

M
Even Header

REST Developer’s Guide Version 10.3 6

Convention Description

... Indicates that you can type multiple options of the same type.
Type only the information. Do not type the ellipsis (...).

Online Information and Support
Software AG Documentation Website

You can find documentation on the Software AG Documentation website at “hp://
documentation.softwareag.com”. The site requires credentials for Software AG's Product
Support site Empower. If you do not have Empower credentials, you must use the
TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to
“empower@softwareag.com” with your name, company, and company email address
and request an account.

Once you have an account, you can open Support Incidents online via the eService
section of Empower at “hps://empower.softwareag.com/”.

You can find product information on the Software AG Empower Product Support
website at “hps://empower.softwareag.com”.

To submit feature/enhancement requests, get information about product availability,
and download products, go to “Products”.

To get information about fixes and to read early warnings, technical papers, and
knowledge base articles, go to the “Knowledge Center”.

If you have any questions, you can find a local or toll-free number for your country
in our Global Support Contact Directory at “hps://empower.softwareag.com/
public_directory.asp” and give us a call.

Software AG TECHcommunity

You can find documentation and other technical information on the Software AG
TECHcommunity website at “hp://techcommunity.softwareag.com”. You can:

Access product documentation, if you have TECHcommunity credentials. If you do
not, you will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to
ask questions, discuss best practices, and learn how other customers are using
Software AG technology.

Link to external websites that discuss open standards and web technology.

http://documentation.softwareag.com
http://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

M
Odd Header

REST Developer’s Guide Version 10.3 7

Data Protection
Software AG products provide functionality with respect to processing of personal data
according to the EU General Data Protection Regulation (GDPR). Where applicable,
appropriate steps are documented in the respective administration documentation.

M
Even Header

REST Developer’s Guide Version 10.3 8

M
Odd Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.3 9

1 About Integration Server REST Processing

■ Overview ... 10

■ About REST Request Messages ... 11

■ Sending Responses to the REST Client ... 11

■ How webMethods Integration Server Processes REST Requests .. 13

M
Even Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.3 10

Overview
Representational State Transfer (REST) is an architectural style used to build distributed
hypermedia systems. The World Wide Web is the best known example of such a system.

The focus of REST is on resources rather than services. A resource is a representation of
an object or information. A resource can represent:

A single entity, like a coffee pot you want to purchase from an online shopping site.

A collection of entities, like records from a database.

Dynamic information, like real-time status updates from a monitoring site.

That is, resources are the entities or collections of entities in a distributed system that
you want to post or retrieve or take action on. In a REST style system, each resource is
identified by a universal resource identifier (URI).

Development of REST systems is defined by a series of constraints:

Clients and servers are separate.

Communication between clients and servers is stateless.

Clients can cache responses returned from servers.

There may be intermediate layers between the client and server.

Servers can supply code for the clients to execute.

Clients and servers remain loosely coupled by communicating through a uniform
interface.

The uniform interface is the key constraint that differentiates REST from other
architectural approaches. The characteristics of this interface are:

Requests identify resources.

Responses contain representations of those resources.

Clients manipulate resources through their representations.

Messages are self-descriptive.

The interface employs Hypermedia as the engine of application state (HATEOAS),
which enables the client to find other resources referenced in the response.

One strength of REST is that it leverages the well understood methods supported by
HTTP to describe what actions should be taken on a resource. To be REST-compliant, an
application must support the HTTP GET, POST, PUT, PATCH, and DELETE methods.
Many applications use web browsers to interact with resources on the Internet. Web
browsers, however, typically support only the HTTP GET and HTTP POST methods.
To get around this restriction, you can use Integration Server to build REST-compliant
applications that support all five methods.

M
Odd Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.3 11

Integration Server can be a REST server or a REST client. When Integration Server acts
as a REST server, it hosts an application that you write. The application includes services
that you write that instruct Integration Server to process some or all of the HTTP GET,
POST, PUT, PATCH, and DELETE methods in request messages against resources.
When Integration Server acts as a REST client, it sends specially formaed requests to
the REST server.

About REST Request Messages
REST clients send specially formaed requests to your REST application. The
format of REST requests is determined by the webMethods Integration Server REST
implementation and your specific application, but essentially it conveys the following
information, or tokens, to the REST server:

The HTTP method to execute

The directive

The name of the resource

A simple REST request looks like this:

METHOD /directive/resource_type/resource_id HTTP/1.1

Where... Is the...

METHOD HTTP request method.

directive The type of processing to perform.

resource_type/
resource_id

Resource to act upon.

More complex request messages can contain more explicit information about the
resource.

Sending Responses to the REST Client
When Integration Server responds to an HTTP request, the response contains a status
line, header fields, and a message body.

Status Line
The status line consists of the HTTP version followed by a numeric status code and
a reason phrase. The reason phrase is a brief textual description of the status code.

M
Even Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.3 12

Integration Server will always set the HTTP version to match the version of the client
that issued the request. You cannot change the HTTP version.

You can use the pub.flow:setResponseCode service to set the status code and reason phrase.
You can also set the status code and reason phrase of an HTTP request by adding a
variable named $hpResponse that references the pub.flow:httpResponse document type
to the flow service pipeline. For more information on this document type, see the
section pub.flow:HTTPResponse in the webMethods Integration Server Built-In Services
Reference. If you do not explicitly set the status code, Integration Server will set it to 200
for successfully completed requests and an appropriate error code for unsuccessful
requests.

HTTP/1.1 defines all the legal status codes in Section “hp://www.w3.org/Protocols/
rfc2616/rfc2616-sec10.html#sec10”. Examine these codes to determine which are
appropriate for your application.

Header Fields
You can communicate information about the request and the response through
header fields in the HTTP response. Integration Server will generate some header
fields, such as Set-Cookie, WWW-Authenticate, Content-Type, Content-Length, and
Connection. You can use the pub.flow:setResponseHeader to set Content-Type and other
header fields. You can also set the header fields of an HTTP request by adding a variable
named $hpResponse that references the pub.flow:httpResponse document type to the
flow service pipeline. For more information on this document type, see the section
pub.flow:HTTPResponse in the webMethods Integration Server Built-In Services Reference..

HTTP/1.1 defines the header fields that can appear in a response in three sections of RFC
2616: “4.5”, “6.2”, and “7.1”. Examine these codes to determine which are appropriate
for your application.

Message Body
The message body usually contains a representation of the requested resource, one or
more URLs that satisfy the request, or both. In some cases, the message body should be
empty, as specified in “RFC 2616, Section 4.3”

You can use the pub.flow:setResponse service to explicitly set the message body. You can
also set the message body of an HTTP request by adding a variable named $hpResponse
that references the pub.flow:httpResponse document type to the flow service pipeline. For
more information on this document type, see the section pub.flow:HTTPResponse in the
webMethods Integration Server Built-In Services Reference.. If you do not explicitly set the
message body, the output pipeline of the top-level service will be returned to the client
in the message body.

In URL template-based approach, Integration Server returns the output defined in the
output of the service as a response to the client.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec6.html#sec6.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec7.html#sec7.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec4.html#sec4.3

M
Odd Header

About Integration Server REST Processing

REST Developer’s Guide Version 10.3 13

For more information about how Integration Server builds HTTP responses, see the
section About Content Handlers for HTTP Responses in the webMethods Integration Server
Administrator’s Guide.

Setting Responses Using pub.flow:HTTPResponse
The pub.flow:HTTPResponse document type helps you to set the response headers.
You can add a reference of pub.flow:HTTPResponse document type with the name
$hpResponse to the pipeline and use this pipeline variable instead of invoking the
pub.flow:setResponseCode, pub.flow:setResponseHeader, and pub.flow:setResponse services to set
the response headers.

For more information, see the section pub.flow:setResponse in the webMethods Integration
Server Built-In Services Reference.

How webMethods Integration Server Processes REST
Requests
When Integration Server processes a REST request, it parses the tokens and identifies
the HTTP method to execute, locates the resource to act upon, and passes additional
information as input parameters to the services you wrote for your application. The
configuration of the REST resources determines how Integration Server handles the
requests from REST clients. Integration Server provides the following two approaches
for configuring REST resources:

Legacy approach, in which creating a REST resource includes creating the resource
folder and flow services that correspond to supported HTTP methods.

URL template-based approach, in which a URL template serves as a template for
client requests to invoke a REST V2 resource.

The following sections explain the approaches in greater detail.

“Configuring a REST Resource Using the Legacy Approach” on page 15

“Configuring a REST V2 Resource” on page 21

M
Even Header

REST Developer’s Guide Version 10.3 14

M
Odd Header

Configuring a REST Resource Using the Legacy Approach

REST Developer’s Guide Version 10.3 15

2 Configuring a REST Resource Using the Legacy
Approach

■ Processing Requests Using Partial Matching of URL Aliases ... 18

M
Even Header

Configuring a REST Resource Using the Legacy Approach

REST Developer’s Guide Version 10.3 16

You can use the legacy approach to create a new REST resource that include the
REST resource folder and the flow services that correspond to HTTP methods. REST
resources generated using the legacy approach are invoked with the rest directive. For
information about the procedure to configure REST resources, see the webMethods Service
Development Help.

On Integration Server the resources of your application are represented as folders within
a package. For each resource, you will write individual services for the HTTP methods
that you want Integration Server to execute against the resource. Those services must
be named _get, _post, _put, _patch, and _delete, and they are stored in the folder for the
resource. For more information, see “Seing Up a REST Application Using the Legacy
REST Approach” on page 40.

Consider a Discussion application that maintains a database of discussions about
different topics. The following examples show how Integration Server would parse these
REST requests.

Example 1

Here is a request to obtain a list of all topics contained in the database, and how
Integration Server parses the request:

GET /rest/discussion/topic HTTP/1.1

Where... Is the...

GET Type of HTTP method to perform. Integration Server maps
this value to the corresponding service on Integration Server,
in this case, the _get service.

rest Type of processing to perform, in this case, Integration Server
REST processing.

Note: For more information about directives, see the section
Controlling the Use of Directives in the webMethods
Integration Server Administrator’s Guide.

discussion/topic Location of the _get service for this resource on Integration
Server. In this example, the _get service resides in the topic
folder in the discussion folder (discussion.topic).

Example 2

Here is a request to display information about topic number 3419, and how Integration
Server parses the request:

GET /rest/discussion/topic/3419 HTTP/1.1

M
Odd Header

Configuring a REST Resource Using the Legacy Approach

REST Developer’s Guide Version 10.3 17

Where... Is...

3419 An instance of a resource passed into a service as the
$resourceID variable. In the example, the $resourceID variable
narrows the focus of the GET request to topic 3419.

Note: Integration Server assigns the first token after the
folder(s) to the $resourceID parameter. To determine
whether a token represents a folder or the $resourceID ,
Integration Server looks in the current namespace for a
folder that has the same name as the token. If it does not
find a folder with this name, Integration Server assigns
the token to the $resourceID variable. In other words, the
first token (after the directive) that does not correspond
to a folder becomes the $resourceID .

Example 3

Here is a request to display information about a particular comment, 17 for example,
and how Integration Server parses the request:

GET /rest/discussion/topic/3419/comment/17 HTTP/1.1

Where... Is...

comment/17 Additional information that further narrows the information
about the resource. This information is passed into a service
as the $path variable. In the example, comment/17 further
narrows the focus of the GET request to comment 17.

Example 4

Here is a request to display information contributed by participant Robertson in 2009
about topic 17, and how Integration Server parses the request:

GET /rest/discussion/topic/3419/comment/17?year=2009&name=Robertson
HTTP/1.1

Where... Are...

year and name Input variables that are specific to your application. Tokens
specified after the ? must be entered as name/value pairs. In
this example, year=2009 and name=Robertson narrow the
focus of the GET request to entries that participant Robertson
added to comment 17 in 2009.

M
Even Header

Configuring a REST Resource Using the Legacy Approach

REST Developer’s Guide Version 10.3 18

Processing Requests Using Partial Matching of URL Aliases
REST URL requests usually include the identifier for a particular resource. However,
because the identifier varies for each instance of a resource, REST requests often do not
exactly match any of the defined URL aliases for a particular resource. To enable you to
define URL aliases for REST resources, Integration Server can use partial matching to
process REST requests. A partial match occurs when a REST request includes only part of
a URL alias. For more information about URL aliases, see the section Creating an HTTP
URL Alias in the webMethods Integration Server Administrator’s Guide.

Note: You can configure URL aliases only for REST resources configured using the
legacy approach.

When partial matching is enabled and Integration Server receives a REST request URL,
an alias is considered a match if the entire alias matches all or part of the request URL,
starting with the first character of the request URL's path.

For example, assume the following URL aliases are defined:

URL Alias URL Path

a1 rest/purchasing/order

a2 rest/purchasing/invoice

a22 rest/purchasing/admin

a3 invoke/pub.flow/debugLog

When partial matching is enabled, the following request URLs would get different
results:

A request URL of hp://MyHost:5555/a1 matches URL alias a1 exactly. The resulting
URL is hp://MyHost:5555/rest/purchasing/order.

A request URL of hp://MyHost:5555/a2/75909 matches alias a2 because the request
URL's path begins with "a2". The trailing characters of the request URL are retained
and the resulting URL is hp://MyHost:5555/rest/purchasing/invoice/75909.

A request URL of hp://MyHost:5555/a1/75909/customer/0122?terms=net7 matches
alias a1 because the request URL's path begins with "a1". The trailing characters
of the request URL are retained and the resulting URL is hp://MyHost:5555/rest/
purchasing/order/75909/customer/0122?terms=net7.

In some cases, a partial match can result in an invalid request. For example, a request
URL of hp://host:5555/a3456 matches alias a3 because the request URL's path
begins with "a3". The trailing characters of the request URL are retained and the

M
Odd Header

Configuring a REST Resource Using the Legacy Approach

REST Developer’s Guide Version 10.3 19

resulting URL is hp://host:5555/invoke/pub.flow/debugLog456. Since there is no
pub.flow:debugLog456 service, this would be an invalid request.

For instructions on enabling partial matching, see the section Enabling Partial Matching of
URL Aliases in the webMethods Integration Server Administrator’s Guide.

M
Even Header

REST Developer’s Guide Version 10.3 20

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 21

3 Configuring a REST V2 Resource

■ Considerations for Specifying the URL template in a REST V2 Resource Operation 22

■ Examples of Configuring REST Resources Using the URL Template-Based Approach 23

■ Configuring a REST V2 Resource Based on JSON API ... 25

■ Examples of Configuring REST Resources Based on JSON API ... 25

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 22

You can use the URL template-based approach to configure REST resources. In this
approach, you define a URL template for client requests to use and invoke the resources.

REST resources configured using this approach are also known as REST V2 resources.

For each REST V2 resource, you must define operations that include the following:

The format of the URL that REST clients must follow when sending requests to
Integration Server acting as the REST server. Integration Server aempts to match a
request URL received from any application against the URL template defined for a
REST V2 resource operation and determines whether the request URL is valid.

The HTTP methods supported by the resource operation.

The flow service associated with a resource operation. You can either associate an
existing service with a resource operation or create a new service and associate it
with the resource operation.

The URL template-based approach provides you with greater flexibility than the legacy
approach in defining REST resources. For a REST V2 resource, you can define multiple
operations and associate each operation with a URL template, HTTP methods, and a
flow service. In addition, you can edit these details based on your requirements.

Important: You cannot configure REST V2 resources when Integration Server is deployed
in a multitenanted environment.

Considerations for Specifying the URL template in a REST V2
Resource Operation
Consider the following while defining the URL template in a REST V2 resource
operation:

A URL template definition is a combination of static path segments and dynamic
parameters. For example, in the URL template /restv2/cust:customerNode/
customer/{id}/order/{orderID}, customer and order are static path segment
while {id} and {orderID} are dynamic.

Enclose dynamic parameters in the URL template within braces ({}). For example,
in the URL template /restv2/customer/{id}, the {id} parameter is dynamic and
represents an aribute of the customer resource.

Any dynamic parameter that you specify in a URL template must be available as
a variable of type String in the input signature of the flow service associated with
the resource operation. If you specify the option of creating a new flow service
when defining the resource operation, a new service with the specified name is
automatically created with the dynamic parameter in the URL template added to the
input signature.

Note: For information about creating REST V2 resources and defining resource
operations, see webMethods Service Development Help.

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 23

While a URL template definition can include multiple dynamic parameters, each
dynamic parameter can appear only once in the URL template.

A URL template cannot include the following characters: & ; ? @ # | []

Query parameters are not supported in the definition of a URL template. However,
the request URL from the client application to Integration Server can include query
parameters at run time.

Ensure that the resource operations in a REST V2 resource are unique, which is a
combination of URL template and the HTTP method.

You can define a logical representation of a resource that is associated with the REST
V2 resource.

You can define aributes for the REST V2 resource.

You can define relationships between REST V2 resources so that using a single
resource all related resources can be accessed.

Important: To invoke REST APIs, Software AG recommends that you create REST API
descriptors.

Examples of Configuring REST Resources Using the URL
Template-Based Approach
Consider the Discussion application described earlier in “Configuring a REST Resource
Using the Legacy Approach” on page 15. Using the URL template-based approach, you
can create a REST V2 resource named discussion in a REST resource element called
app under the discussionNode folder and define resource operations. The following
examples show resource operations for the created resource and how Integration Server
parses these requests:

Example 1

Consider a REST V2 resource operation configured with the following URL template:

/restv2/app:discussionNode/discussion/topic/{id}

Here is an example request to display information about a specific topic:

GET /restv2/app:discussionNode/discussion/topic/236 HTTP/1.1

Where... Is the...

GET HTTP method supported by the resource operation.

Note: Integration Server treats this method as valid only if the
resource and the underlying service are configured to
support the GET method. For more information about

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 24

Where... Is the...
configuring supported HTTP methods for services, see
webMethods Service Development Help.

restv2/
app:discussionNode

Template prefix. This informs the type of processing to
perform, in this case, Integration Server REST processing, and
fully qualified name of the REST v2 element.

Note: For more information about directives, see the section
Controlling the Use of Directives in the webMethods
Integration Server Administrator’s Guide.

discussion Name of the resource on Integration Server.

topic Name of the static part in the URL template.

236 Identifier for a topic. Integration Server matches this value
against the dynamic parameter {id} specified in the URL
template.

Note: The id parameter must be available as a variable of
type String in the input signature of the flow service
associated with the resource operation for which you are
defining the URL template. For more information about
configuring a resource operation for a REST V2 resource,
see webMethods Service Development Help.

Example 2

Consider a REST V2 resource operation configured with the following URL template:

/restv2/app:discussionNode/discussion/topic/t-{id}

Here is a request to display information about a topic based on its identifier and how
Integration Server parses the request:

GET /restv2/app:discussionNode/discussion/topic/t-1591 HTTP/1.1

Where... Is the...

t-1591 Identifier for a topic. In the URL template specified for this
example, t is a static parameter while {id} is a dynamic
parameter. Integration Server matches the value t-1591
against the topic identifier parameters specified in the URL
template (t-{id}).

Note: In this example, Integration Server treats t-1591 as a
valid value considering the URL template specified for

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 25

Where... Is the...
the REST V2 resource operation. However, an identifier
that does not follow the specified format, for example,
236 would be considered invalid.

Example 3

Consider a REST V2 resource operation configured with the following URL template:

/restv2/app:discussionNode/discussion/topic/t-{id}/comment/{cid}

Here is a request to display information about a particular comment related to a topic,
and how Integration Server parses the request:

GET /restv2/app:discussionNode/discussion/topic/t-1591/comment/4
HTTP/1.1

Where... Is the...

comment/4 Additional information for the topic with the identifier
t-1591. Integration Server matches this value with the portion
of the request URL after the topic identifier. The value 4 is
matched against the dynamic parameter {cid}.

Configuring a REST V2 Resource Based on JSON API
You can configure a REST V2 resource based on JSON API to enhance the usage
capabilities of the resource. In this approach, you can define a JSON API based REST V2
resource and JSON API specific URL templates are automatically generated. You can use
these URLs to invoke and use the resources. For more details on JSON API specification,
see “hp://jsonapi.org/format/”.

Examples of Configuring REST Resources Based on JSON
API
You can create a REST V2 resource and make the resource as JSON API compliant.
Integration Server automatically creates all the services, document types, and JSON
API based URL templates for the REST V2 resource along with the applicable input and
output signatures.. The following figure provides an overview,

http://jsonapi.org/format/

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 26

ResourceName_: Contains the relevant documents under docTypes folder and services
under services folder for the JSON API based REST V2 resource.

docTypes: Contains all the automatically generated document types corresponding to
the resource.

services: Contains automatically generated services for the resource. Each service
corresponds to the automatically created URL templates.

This following example creates two REST V2 resources as Article and Author and
both the resources are JSON API compliant. You can create the aributes for Article
ensuring that one aribute, for example, id is set as unique identifier. Integration Server
generates the REST URL templates based on this unique identifier. For more information
about creating a JSON API compliant REST V2 resource and adding new aributes, see
webMethods Service Development Help.

Integration Server generates the following URL templates according to the JSON
API specifications. You can check these URLs and modify them under the Resource
Configuration tab. For example,

/Article GET

/Article/{id} GET

/Article POST

/Article/{id} DELETE

/Article/{id} PATCH

You can assign a relationship between Article and Author by seing the aribute type
as Resource. Integration Server generates the following relationship URL templates
according to the JSON API specification:

/Article/{id}/Author GET

/Article/{id}/Author PATCH

/Article/{id}/Author DELETE

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 27

Once you create the assets, the package viewer might have the following folder structure
as viewed from Software AG Designer.

For more information on defining REST V2 resource aributes and assigning
relationships, see Defining a REST V2 Resource Aribute topic under webMethods Service
Development Help.

For more information about checking these REST V2 URLs and modifying them, see
webMethods Service Development Help.

Request and Response Formats for JSON API Resource

This section lists sample request and response formats for two JSON API resources,
Article and Author .

Get all Article records

Request format: http://host:port/rad/nameSapce/Article with
Accept=application/vnd.api+json

Response format:
{
 "data": [
 {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 28

 },
 "links": {
 "self": "http://host
 :port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/
 rad/nameSapce/Article/1/Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 {
 "id": "3",
 "type": "Article",
 "attributes": {
 "blogname": "gmail"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "4",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/
 Article/3/relationships/Author",
 "related": "http://host:port/rad/nameSapce/
 Article/3/Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/3"
 }
 }
],
 "links": {
 "self": "http://host:port/rad/nameSapce/Article"
 },
 "meta": {
 "total-records": "2"
 }
}

Get single Article record

Request format: http://host:port/rad/nameSapce/Article/1 with
Accept=application/vnd.api+json

Response format:
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 29

 "data": {
 "id": "2",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 },
 "meta": {
 "total-records": "1"
 }
}

Post an Article record

Request format: http://host:port/rad/nameSapce/Article with Content-
Type=application/vnd.api+json and Accept=application/vnd.api+json and
the body as
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 }
 }
 }
 }
}

Response format: Response status is 204. If UID is set or any response code is set
then the response is,
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 30

 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article"
 },
 "meta": {
 "total-records": "1"
 }
}

Delete an Article record

Request format: http://host:port/rad/nameSapce/Article/1 with
Accept=application/vnd.api+json

Response format:
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 },
 "meta": {
 "total-records": "1"
 }
}

Patch a record

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 31

Request format: http://host:port/rad/nameSapce/Article/1 with Content-
Type=application/vnd.api+json and Accept=application/vnd.api+json with
body as
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook",
 "id": "1"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 }
 }
 }
 }
}

Response format:
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 },
 "meta": {
 "total-records": "1"
 }
}

Get all related data

Request format: http://host:port/rad/nameSapce/Article/1/Author

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 32

Response format:
{
 "data": [
 {
 "id": "2",
 "type": "Author",
 "attributes": {
 "name": "social"
 },
 "relationships": {},
 "links": {
 "self": "http://host:port/rad/nameSapce/Author/2"
 }
 }
],
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/Author"
 },
 "meta": {
 "total-records": "1"
 }
}

Update an Author record

Request format: http://host:port/rad/nameSapce/Article/1/Author with
body as
{
 "data":
 {
 "id": "2",
 "type": "Author",
 "attributes": {
 "name": "social"
 }
 }
}

Response format:
{
 "data": {
 "id": "2",
 "type": "Author",
 "attributes": {
 "name": "social"
 },
 "relationships": {},
 "links": {
 "self": "http://host:port/rad/nameSapce/Author/2"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/Author"
 },
 "meta": {
 "total-records": "1"
 }
}

Delete an Author record

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 33

Request format: http://host:port/rad/nameSapce/Article/1/Author with
Accept=application/vnd.api+json

Response format:
{
 "data": {
 "id": "2",
 "type": "Author",
 "attributes": {
 "name": "social"
 },
 "relationships": {},
 "links": {
 "self": "http://host:port/rad/nameSapce/Author/2"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/Author"
 },
 "meta": {
 "total-records": "1"
 }
}

Include an Author record

Request format: http://host:port/rad/nameSapce/Article?include=Author

Response format:
{
 "data": [
 {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 {
 "id": "3",
 "type": "Article",
 "attributes": {
 "blogname": "gmail"
 },

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 34

 "relationships": {
 "Author": {
 "data": {
 "id": "4",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/3/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/3/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/3"
 }
 }
],
 "included": [
 {
 "id": "2",
 "type": "Author",
 "attributes": {
 "name": "social"
 },
 "relationships": {},
 "links": {
 "self": "http://host:port/rad/nameSapce/Author/2"
 }
 },
 {
 "id": "4",
 "type": "Author",
 "attributes": {
 "name": "mail"
 },
 "relationships": {},
 "links": {
 "self": "http://host:port/rad/nameSapce/Author/4"
 }
 }
],
 "links": {
 "self": "http://host:port/rad/nameSapce/Article"
 },
 "meta": {
 "total-records": "2"
 }
}

Sparse field sets

Request format: http://host:port/rad/nameSapce/Article/1?
fields=blogname,id

Response format:
{
 "data": {
 "id": "1",
 "type": "Article",
 "attributes": {

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 35

 "blogname": "facebook",
 "id": "1"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 },
 "meta": {
 "total-records": "1"
 }
}

Sort a record

Request format: http://host:port/rad/nameSapce/Article?
fields=id,blogname&sort=-id

Response format:
{
 "data": [
 {
 "id": "3",
 "type": "Article",
 "attributes": {
 "blogname": "gmail",
 "id": "3"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "4",
 "type": "Author"
 }
 }
 }
 },
 {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook",
 "id": "1"
 },
 "relationships": {
 "Author": {

M
Even Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 36

 "data": {
 "id": "2",
 "type": "Author"
 }
 }
 }
 }
],
 "links": {
 "self": "http://host:port/rad/nameSapce/Article"
 },
 "meta": {
 "total-records": "2"
 }
}

Filter a record

Request format: http://host:port/rad/nameSapce/Article?filter[id]
[EQ]='xyz'

Response format: In pipeline $filter value is set so user needs to implement the
service according to the filter.

Page number and page limit of a record

Request format: http://host:port/rad/nameSapce/Article?
page[number]=0&page[limit]=1

Response format:
{
 "data": [
 {
 "id": "1",
 "type": "Article",
 "attributes": {
 "blogname": "facebook"
 },
 "relationships": {
 "Author": {
 "data": {
 "id": "2",
 "type": "Author"
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1/
 relationships/Author",
 "related": "http://host:port/rad/nameSapce/Article/1/
 Author"
 }
 }
 },
 "links": {
 "self": "http://host:port/rad/nameSapce/Article/1"
 }
 }
],
 "links": {
 "self": "http://host:port/rad/nameSapce/Article",
 "last": "http://host:port/rad/nameSapce/
 Article?page[offset]=1&page[limit]=1"
 },

M
Odd Header

Configuring a REST V2 Resource

REST Developer’s Guide Version 10.3 37

 "meta": {
 "total-records": "2"
 }
}

Processing the Errors

The output signature of a service might have an error structure associated with it.
The error object contains multiple entities that provide additional information about
problems encountered while performing an operation. An error object contains the
following entities:

id: a unique identifier for this particular occurrence of the problem.

links: a link object containing the following members:

about: a link that leads to further details about this particular occurrence of the
problem.

status: the HTTP status code applicable to this problem, expressed as a string value.

code: an application-specific error code, expressed as a string value.

title: a short summary of the problem that should not change from occurrence to
occurrence of the problem.

detail: an explanation specific to this occurrence of the problem.

source: an object containing references to the source of the error, optionally including
any of the following members:

pointer: a JSON Pointer to the associated entity in the request document.

parameter: a string indicating which URL query parameter caused the error.

meta: a meta object containing non-standard meta-information about the error.

M
Even Header

REST Developer’s Guide Version 10.3 38

M
Odd Header

Setting Up a REST Application Using the Legacy REST Approach

REST Developer’s Guide Version 10.3 39

4 Setting Up a REST Application Using the Legacy
REST Approach

■ Setting Up a REST Application on Integration Server ... 40

■ Converting an Existing Application to a REST Application .. 42

M
Even Header

Setting Up a REST Application Using the Legacy REST Approach

REST Developer’s Guide Version 10.3 40

Setting Up a REST Application on Integration Server
Integration Server can act as a REST server or REST client. Integration Server acts as a
REST server in the following ways based on the approach used:

Setting Up a REST Application Using the Legacy REST Approach
In legacy approach, Integraon Server hosts services that perform the GET, PUT, POST,
PATCH, and DELETE methods. These services, which you provide, perform processing
that is specific to your applicaon.

Services for REST Resources Configured Using the Legacy Approach

When you build a REST application on your Integration Server by configuring resources
using the legacy approach, you must include services that correspond to the HTTP
methods you want to provide for each resource. These services must be named as
follows:

Service Description

_get Performs the GET method.

_put Performs the PUT method.

_post Performs the POST method.

_patch Performs the PATCH method.

_delete Performs the DELETE method.

These services reside in folders on your Integration Server in a directory structure that
is specific to your application. For example, the discussion application described in
“Configuring a REST Resource Using the Legacy Approach” on page 15 might have the
following structure as viewed from Software AG Designer:

M
Odd Header

Setting Up a REST Application Using the Legacy REST Approach

REST Developer’s Guide Version 10.3 41

In addition to the _get, _put, _post, _patch, and _delete services, you can also place a special
service named _default in one or more of the application folders. Integration Server
executes this service if a REST request specifies an HTTP method that is not represented
by a service in the folder. For example, suppose the folder contains the _get, _put, and
_post services, but no _patch or _delete service. If the client issues a DELETE request,
Integration Server will execute the _default service, and pass “DELETE” to it in the
$hpMethod variable.

If a request specifies an HTTP request method that is not represented by a service in the
folder and there is no _default service in the folder, the request fails with the “404 Not
Found” or “405 Method Not Allowed error.” Integration Server issues 404 if the first
token in the URI does not exist in the namespace, or 405 if one or more tokens in the
URI identify elements in the namespace but the URI does not correctly identify a REST
resource folder and a service to execute.

Example 1

A REST resource’s folder contains the _get, _post, and _default services:

If the client sends a... Integration Server responds by...

GET request Executing the _get service

POST request Executing the _post service

DELETE request Executing the _default service

Example 2

A REST resource’s folder contains the _get, _put, and _delete services:

If the client sends a... Integration Server responds by...

GET request Executing the _get service

PUT request Executing the _put service

POST request Issuing error “405 Method Not Allowed”

Additional possible uses for the _default service are:

Direct all REST requests through common code before branching off to individual
GET, PUT, POST, PATCH, or DELETE methods.

Make PUT and POST processing the same by directing PUT and POST requests to
the same code.

M
Even Header

Setting Up a REST Application Using the Legacy REST Approach

REST Developer’s Guide Version 10.3 42

Configuration
There are a few things you can configure with respect to REST processing:

Name of the REST directive

Note: You can configure the name of the REST directive only for resources that
use the rest directive, that is, the REST resources configured using the
legacy approach.

If you want to allow clients to specify a name other than “rest” for the REST
directive, you can do so with the wa.server.RESTDirective configuration parameter.
For example, to allow clients to specify “process” for the REST directive, you would
change the property to the following:

watt.server.RESTDirective=process

With this seing, clients can specify “rest” or “process” for the REST directive. In the
following example, the two requests are equivalent:

METHOD /process/discussion/topic/9876 HTTP/1.1

METHOD /rest/discussion/topic/9876 HTTP/1.1

For more information about the wa.server.RESTDirective property, refer to
webMethods Integration Server Administrator’s Guide.

Which ports will accept the rest directive

By default, all Integration Server ports except the proxy port allow use of the rest
directive. You can limit which ports will allow this directive by specifying them on
the wa.server.allowDirective configuration parameter. For more information about
this property, refer to the webMethods Integration Server Administrator’s Guide.

Converting an Existing Application to a REST Application
When using the the legacy approach, consider one of the following approaches to
transform the existing application to a REST application:

Refactor your existing services into _get, _put, _post, _patch and _delete services.

Use the invoke directive, as shown in the following example:

For existing applications that use the invoke directive, you can update a service to
call the pub.flow:getTransportInfo service and then perform a branch on /transport/
http/method to execute the appropriate portions of your existing code, as in the
following example:

M
Odd Header

Setting Up a REST Application Using the Legacy REST Approach

REST Developer’s Guide Version 10.3 43

Note: If you use the invoke directive, you cannot use the $resourceID and $path
pipeline variables. In addition, you cannot use the _default service.

M
Even Header

REST Developer’s Guide Version 10.3 44

M
Odd Header

Setting Up a REST Application Using REST API Descriptor

REST Developer’s Guide Version 10.3 45

5 Setting Up a REST Application Using REST API
Descriptor

■ Using REST API Descriptors for Your REST Application .. 46

■ Services for REST Resources Configured Using the URL Template-Based Approach 47

■ Configuration .. 48

■ Converting an Existing Application to a REST Application .. 49

M
Even Header

Setting Up a REST Application Using REST API Descriptor

REST Developer’s Guide Version 10.3 46

Using REST API Descriptors for Your REST Application
A REST API descriptor provides a way of describing the operations provided by
one or more REST resources together with information about how to access those
operations, the MIME types the resources consume and produce, and the expected
input and output for the operations. Fundamentally, a REST API descriptor is composed
of REST resources and information about how to access those resources. Using this
information, Integration Server creates and maintains a Swagger document for the REST
API descriptor. Integration Server generates the Swagger document based on version 2.0
of the Swagger specification.

Note: You can create REST API descriptors using the legacy approach to expose the
legacy REST APIs as Swagger document.

Using Designer you can create a REST API descriptor using resource first or Swagger
first approach.

Resource first refers to REST API descriptors created using the REST v2 resource.
For more information about creating a REST API descriptor using the resource first
approach, refer to the webMethods Service Development Help.

Note: The base path of the created REST API descriptor is set as /rad/
<namespaceName of the REST API descriptor> or path in the Swagger
document. You can change the base path. To avoid exposing the server
namespace name to the end user, set the base path to an application
specific path. Also, when you change the base path, you must create a URL
alias with the defined base path. For more information about creating a
URL alias, refer to the webMethods Service Development Help.

Swagger first refers to REST API descriptors created by importing a Swagger
document. During this process, Integration Server creates services, doctypes, and
REST V2 resources based on the contents of the Swagger document. The application
developer then provides the service implementation of the generated services.
You can then invoke the REST application through a client. Because the Swagger
specification does not include resource definitions, Integration Server allows you
to create the REST V2 resources based on tags or based on the Swagger paths. Tags
defined in a Swagger document are used for grouping of operations. If you choose
to create a REST V2 resource based on tags, all the operations associated to a tag
are grouped together. Otherwise, the resources are created based on the Swagger
path. For more information about creating a REST API descriptor using a Swagger
document, refer to the webMethods Service Development Help.

Note: In the Swagger first approach to create a REST API descriptor, Integration
Server automatically creates a URL alias for the base path of the created
REST API descriptor.

M
Odd Header

Setting Up a REST Application Using REST API Descriptor

REST Developer’s Guide Version 10.3 47

You can use REST API descriptors to access a Swagger document through a URL in
JSON and YAML format.

The standard URLs to access the Swagger document are:

JSON Format: hp://host:port/<base_path>?swagger.json

YAML Format: hp://host:port/<base_Path>?swagger.yaml

The following table lists the standard URLs under appropriate conditions:

If the URL includes.. URL in JSON format is.. URL in YAML format is..

A default base
path.

hp://host:port/rad/
<namespace_of_rad>?
swagger.json . For example,
hp://host:port/rad/cc:rad?
swagger.json .

hp://host:port/rad/
<namespace_of_rad>>?
swagger.yaml . For example,
hp://host:port/rad/cc:rad?
swagger.yaml .

A application
specific base path.

hp://host:port/
<alias_name>?swagger.json .
For example, hp://
host:port/api?swagger.json .

hp://host:port/
<alias_name>?swagger.yaml .
For example, hp://
host:port/api?swagger.yaml .

The server response type for a JSON based application is, application/json and for a
YAML based application is, application/x-yaml .

You can also access the Swagger document for REST API descriptor that is created using
the legacy REST resources using the above mentioned URLs.

Note: If the REST API Descriptor does not exist in the Integration Server namespace
or if the format is not swagger.json or swagger.yaml , Integration Server returns
an error message. For example, if the URL is hp://host:port/api?swagger.xml ,
then the Integration Server throws an error.

Services for REST Resources Configured Using the URL
Template-Based Approach
The URL template-based approach helps you configure REST resources for an existing
Integration Server service. The HTTP methods that you can configure for a REST
resource are restricted only by the methods that you configure as allowed for the
underlying service. The methods supported by a REST resource must be a subset of the
methods allowed for the service corresponding to the REST resource. For information
about configuring the supported methods for a REST resource and its corresponding
Integration Server service, see the webMethods Service Development Help.

M
Even Header

Setting Up a REST Application Using REST API Descriptor

REST Developer’s Guide Version 10.3 48

If a REST request specifies an HTTP method that is not allowed for its service, the
request fails with a “405 Method Not Allowed error.

Example 1

A REST service and its corresponding resource support the GET, PUT, and DELETE
services:

If the client sends a... Integration Server responds by...

GET request Executing the GET method

PUT request Executing the PUT method

POST request Issuing error “405 Method Not Allowed”

Note: This example assumes that the request URL is in a format supported by the
REST resource.

Configuration
There are a few things you can configure with respect to REST V2 processing:

Name of the REST V2 directive

If you want to allow clients to specify a name other than “restv2” for the REST
V2 directive, you can do so with the wa.server.RESTDirective.V2 configuration
parameter. For example, to allow clients to specify “process” for the REST V2
directive, you would change the property to the following:

watt.server.RESTDirective.V2=process

With this seing, clients can specify “restv2” or “process” for the REST directive. In
the following example, the two requests are equivalent:

METHOD /process/discussion/topic/9876 HTTP/1.1

METHOD /restv2/discussion/topic/9876 HTTP/1.1

For more information about the wa.server.RESTDirective.V2 property, refer to
webMethods Integration Server Administrator’s Guide.

Which ports will accept the restv2 directive

By default, all Integration Server ports except the proxy port allow use of the rest
directive. You can limit which ports will allow this directive by specifying them on
the wa.server.allowDirective.V2 configuration parameter. For more information
about this property, refer to the webMethods Integration Server Administrator’s Guide.

M
Odd Header

Setting Up a REST Application Using REST API Descriptor

REST Developer’s Guide Version 10.3 49

Converting an Existing Application to a REST Application
If you have an existing application that you want to transform into a REST application,
consider using the URL template-based approach and configure REST resources for the
application. This is the most straightforward approach you can use to transform the
application.

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	About Integration Server REST Processing
	Overview
	About REST Request Messages
	Sending Responses to the REST Client
	Status Line
	Header Fields
	Message Body
	Setting Responses Using pub.flow:HTTPResponse

	How webMethods Integration Server Processes REST Requests

	Configuring a REST Resource Using the Legacy Approach
	Processing Requests Using Partial Matching of URL Aliases

	Configuring a REST V2 Resource
	Considerations for Specifying the URL template in a REST V2 Resource Operation
	Examples of Configuring REST Resources Using the URL Template-Based Approach
	Configuring a REST V2 Resource Based on JSON API
	Examples of Configuring REST Resources Based on JSON API

	Setting Up a REST Application Using the Legacy REST Approach
	Setting Up a REST Application on Integration Server
	Setting Up a REST Application Using the Legacy REST Approach
	Configuration

	Converting an Existing Application to a REST Application

	Setting Up a REST Application Using REST API Descriptor
	Using REST API Descriptors for Your REST Application
	Services for REST Resources Configured Using the URL Template-Based Approach
	Configuration
	Converting an Existing Application to a REST Application

