
Guaranteed Delivery Developer’s Guide

Version 10.11

October 2021

This document applies to webMethods Integration Server 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2007-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: IS-GD-DG-1011-20211015

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Document Conventions...6
Online Information and Support...7
Data Protection...7

1 Overview of Guaranteed Delivery..9
Overview...10
What Is Guaranteed Delivery?...10
Indicating You Want to Use Guaranteed Delivery..10
How Transactions Are Managed..10
Identifying Transactions..12
Specifying How Long Transactions Are Active...12
Handling Failures...13

2 Creating a Java Client that Uses Guaranteed Delivery..15
Overview...16
Sample Code (Synchronous Request)..17
Sample Code (Asynchronous Request)...20

3 Creating a Flow Service that Uses Guaranteed Delivery..23
Overview...24
Sample Flow (Synchronous Request)..24
Sample Flow (Asynchronous Request)...25

Guaranteed Delivery Developer’s Guide 10.11 iii

iv Guaranteed Delivery Developer’s Guide 10.11

Table of Contents

About this Guide

■ Document Conventions .. 6

■ Online Information and Support ... 7

■ Data Protection ... 7

Guaranteed Delivery Developer’s Guide 10.11 5

Guaranteed delivery is a facility of webMethods Integration Server that ensures guaranteed,
one-time execution of services and protects transactional requests from certain failures that might
occur on the network, in the client, or on the server. This guide is for users who want to invoke
services using guaranteed delivery from either a client application or another service.

Note:
This guide describes features and functionality that may or may not be available with your
licensed version of webMethods Integration Server. For information about the licensed
components for your installation, see the Server > Licensing page in webMethods Integration
Server Administrator.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

6 Guaranteed Delivery Developer’s Guide 10.11

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Guaranteed Delivery Developer’s Guide 10.11 7

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

8 Guaranteed Delivery Developer’s Guide 10.11

1 Overview of Guaranteed Delivery

■ Overview .. 10

■ What Is Guaranteed Delivery? ... 10

■ Indicating You Want to Use Guaranteed Delivery ... 10

■ How Transactions Are Managed ... 10

■ Identifying Transactions .. 12

■ Specifying How Long Transactions Are Active ... 12

■ Handling Failures .. 13

Guaranteed Delivery Developer’s Guide 10.11 9

Overview

This chapter explainswhat guaranteed delivery is, how to indicate that youwant to use guaranteed
delivery services from a client application (an Integration Server or standalone Java program) or
from another service, how to customize JobManagers tomanage guaranteed delivery transactions,
what determines how long transactions remain active, and how errors are handled.

Note:
This guide describes how to invoke services using guaranteed delivery from either a client
application or another service. Formore information about guaranteed delivery, including how
to configure thewebMethods Integration Server for guaranteed delivery and how to shut down
and initialize guaranteed delivery transactions, seewebMethods Integration Server Administrator’s
Guide.

What Is Guaranteed Delivery?

Guaranteed delivery is a facility of webMethods Integration Server that ensures guaranteed,
one-time execution of services. It protects transactional requests from transient failures that might
occur on the network, in the client, or on the server.

A transient failure is a failure that can correct itself within a specified period of time. If a request
cannot be delivered to the server due to a transient failure, the request is resubmitted. If the problem
corrected itself, the request is successfully delivered on a subsequent attempt. You can determine
what constitutes a transient error by specifying a time-to-live (TTL) period for a guaranteed delivery
transaction and, optionally, the number of times a transaction should be retried. If you do not
specify the TTL or retry value, the configured defaults are used.

You can use guaranteed delivery when you invoke a service from a client or from within another
service.

Important:
You can only use the guaranteed delivery capabilitieswith stateless (that is, atomic) transactions.
As a result, guaranteed delivery capabilities cannot be used with multi-request conversational
services.

Indicating You Want to Use Guaranteed Delivery

To invoke services using guaranteed delivery from either a client application or another service
use the class watt.client.TContext (TContext) that is part of the Client API. Similar to the standard
class watt.client.Context (Context), you use TContext to request that webMethods Integration
Server execute a service. However, the server performs guaranteed delivery functions when a
client application or service requests services through TContext.

How Transactions Are Managed

Guaranteed delivery transactions are managed by Job Managers. For client applications, the Job
Manager runs on the client. For services, the Job Manager runs on the server.

10 Guaranteed Delivery Developer’s Guide 10.11

1 Overview of Guaranteed Delivery

The Job Managers manage all guaranteed delivery transactions that a process creates using
TContext. The Job Managers maintain a job store of the guaranteed delivery transactions. The job
store contains a record for each transaction. In addition, the Job Managers maintain a log that
tracks the progress of all transaction operations.

The Job Manager handles the invocation of the service using background threads, which the Job
Manager allocates from a configurable pool of threads. The JobManager sends the service requests
to a webMethods Integration Server and accepts the results on behalf of the client applications or
services that use TContext. If the Job Manager does not receive a result for a transaction in its job
store, it resubmits that request to execute the service. It continues to resubmit requests until it
either receives a result or the transaction expires.

Note:
For client applications, a single JobManager runs in the client process and is shared bymultiple
TContext instances. For services, a single Job Manager runs in the server process and is shared
by all TContext instances.

Customizing the Job Manager
You can customize how the Job Manager manages guaranteed delivery transactions
programmatically or through system properties. To specify programmatically, your client
applicationmust specify the settingwith the parameters of TContext methods. To specify through
system parameters, specify the setting on the Java command line.

If a setting is specified both with a parameter of TContext and through a system property, the Job
Manager uses the setting specified through the system property.

Location of the client transaction log. Specify the file in which the Job Manager maintains its
log of all the guaranteed delivery transaction operations for clients that are standalone Java
programs.

Specify using a parameter with the init method.Tcontext Method:

Use the –Dwatt.tx.logfile = filename option. If a parameter is
supplied to the TContext.init method and watt.tx.logfile is set,

System Property:

the value in watt.tx.logfile is used. If neither is set, the default is
.\tx.log.

Submission interval for the Job Store. Specify the number of seconds between sweeps of the
job store. The Job Manager sweeps the job store to submit transactions to a webMethods
Integration Server.

Cannot specify using a TContext method.TContext Method:

Use the -Dwatt.tx.sweepTime= seconds option.System Property:

The default is: 60 seconds

Guaranteed Delivery Developer’s Guide 10.11 11

1 Overview of Guaranteed Delivery

Time to Retry Interval. Specify the number of seconds to wait after a service request failure
before the Job Manager resubmits the request to webMethods Integration Server.

Cannot specify using a TContext method.TContext Method:

Use the -Dwatt.tx.retryBackoffTime= seconds option.System Property:

The default is: 60 seconds

Number of Client Threads in Thread Pool. Specify the number of threads you want to make
available in a thread pool to service pending requests.

Cannot specify using a TContext method.TContext Method:

Use the -Dwatt.tx.jobThreads.System Property:

The default is: 5 threads

Identifying Transactions

It is the responsibility of the client application or service to obtain a transaction ID (tid) for each
guaranteed delivery request and to specify the transaction ID with each subsequent request for
the transaction.

The client application or service obtains the transaction ID from webMethods Integration Server
using the startTx()method,which is used to start a guaranteed delivery transaction. See “Creating
a Java Client that Uses Guaranteed Delivery” on page 15 and “Creating a Flow Service that Uses
Guaranteed Delivery” on page 23 for additional instructions and sample code.

Specifying How Long Transactions Are Active

A guaranteed delivery transaction has two attributes that determine how long it stays active: the
time-to-live (TTL) and the retry limit. The TTL specifies the number of minutes that a transaction
is to remain active. The retry limit specifies the maximum number of times that the Job Manager
is to resubmit a request. A transaction becomes inactivewhen the TTL or the retry limit (if specified)
is reached, whichever comes first.When a transaction becomes inactive, it remains in the job store,
but the Job Manager no longer attempts to submit the request.

The client application or service sets the TTL (and optionally, the retry limit) with the startTx ()
method, which it uses to start a guaranteed delivery transaction. See “Creating a Java Client that
Uses Guaranteed Delivery” on page 15 and “Creating a Flow Service that Uses Guaranteed
Delivery” on page 23 for additional instructions and sample code.

These values determine the degree of tolerance the client application or service has towards
transient network and server errors that occur at run time. Specifically, they determine the length
of the outage that the client application or service considers transient. An outage that exceeds
these limits will be deemed unrecoverable by the Job Manager and will cause the Job Manager to
return an error for the request.

12 Guaranteed Delivery Developer’s Guide 10.11

1 Overview of Guaranteed Delivery

Handling Failures

If a non-transient error prevents your client application or service from receiving the results from
a service request, your application will receive an error message.

Records remain in the job store for a transaction until the client application or service explicitly
ends the transaction. To avoid exhausting the job store, a client application or service must make
sure to complete all the transactions it starts, or a site must establish administrative procedures
to address failed jobs.

TContext can return the following types of errors:

AccessException. The client application or service either supplied invalid credentials or is
denied access to the requested service.

ServiceException. The service encountered an execution error.

DeliveryException. The Job Manager failed and became disabled. An administrator should
be notified to correct this problem. For client applications, code your client application to notify
an administrator when this type of error occurs. After the problem is corrected, re-enable the
Job Manager using the TContext.resetJobMgr() method.

For services, guaranteed delivery notifies the administrator identified by thewatt.server.txMail
configuration setting. After the problem is corrected, re-enable the Job Manager by executing
the pub.tx:resetOutbound service.

IllegalRequestException.The client application or servicemade an invalid request; for example,
supplied an invalid transaction ID (tid) or other invalid parameter.

TXException.A failure occurred with the transaction. The transaction timed out, hit the retry
limit, or encountered a heuristic error. Typically, this type of error indicates that the transaction
became inactive either because the time-to-live (TTL) value elapsed or the retry limit was met.
To distinguish between these two errors, use the isExceededRetries() method.

Heuristic errors will only occur if you altered the default configuration of webMethods
Integration Server to fail PENDING requestswhenwebMethods Integration Server is restarted
after a failure. Use the isHeuristicFailure() method to determine if a heuristic error occurred.

Note:
A heuristic error does not guarantee that your transaction was not executed, only that its
results could not be returned. Keep this inmind if you are processing transactions thatmust
be executed once and only once (for example, an application that enters purchase orders or
pays invoices). You might also need to implement additional mechanisms in your client
application or service to ensure that a transaction does not get posted twice.

Guaranteed Delivery Developer’s Guide 10.11 13

1 Overview of Guaranteed Delivery

14 Guaranteed Delivery Developer’s Guide 10.11

1 Overview of Guaranteed Delivery

2 Creating a Java Client that Uses Guaranteed

Delivery

■ Overview .. 16

■ Sample Code (Synchronous Request) ... 17

■ Sample Code (Asynchronous Request) ... 20

Guaranteed Delivery Developer’s Guide 10.11 15

Overview

Using the TContext function, you can submit requests from a Java client application that uses
guaranteed delivery.

Creating a Java client that uses guaranteed delivery involves the following general steps:

1. Make sure the following are in your classpath:

Integration Server_directory \lib\wm-isserver.jar

(or Integration Server_directory \instances\instance_name\lib\wm-isserver.jar)

Software AG_directory \common\lib\wm-isclient.jar

Software AG_directory \common\lib\ext\mail.jar

Note:
These jar files must be the same version as those present on the Integration Server to which
your client program connects. If you are creating a stand-alone client application, you can
obtain a copy of the jar files from the Integration Server. If you are creating a Java service
for an Integration Server, verify that the Integration Server on which you deploy the service
and the Integration Server to which the service submits guaranteed-delivery requests are
both running the same version of Integration Server software.

2. Initialize TContext when a process starts. The server handles this functionwhen a service uses
guaranteed delivery.

3. Create TContext instances for different connection attributes. If you are only connecting to one
host with a single set of credentials, you need only one TContext regardless of how many
threads share the TContext.

The main difference between Context (the standard class) and TContext is that your client
application or service is responsible for obtaining a transaction ID (tid) and associating it with
each request you make for the same transaction. You receive a transaction ID (tid) when you
start a guaranteed delivery transaction.

4. After a transaction is started and a transaction ID is received, invoke a service using guaranteed
delivery. You must supply the transaction ID when you invoke the service.

5. When the transaction completes, end the transaction to clear the record for the transaction
from the Job Manager’s job store.

You can chain transactions in a sequence so that each transaction in a sequence waits until the
preceding transaction executes. To chain transactions, supply the transaction ID (tid) from the
previous transaction when starting a new transaction.

6. When you are finished executing guaranteed delivery transactions for a specific instance,
disconnect to end the instance of TContext. When you disconnect, TContext unregisters the
instance with the Job Manager.

After a client application disconnects all TContext instances, it should shut down guaranteed
delivery for the process. The server handles this function automatically when a service uses

16 Guaranteed Delivery Developer’s Guide 10.11

2 Creating a Java Client that Uses Guaranteed Delivery

guaranteed delivery. If your client application or service has active TContext instances when
the shutdown occurs, the server throws an exception (unless the shutdown was performed
with the force option).

The following examples showhowyouwould submit both synchronous and asynchronous requests
from a Java client to the Job Manager.

Sample Code (Synchronous Request)

The following code fragment illustrates the basic steps required to submit a synchronous request
to the Job Manager. Synchronous requests are submitted using the invokeTx method. You can
also submit asynchronous requests to the Job Manager as shown in the next section.

Important:
To compile the following sample code (or any Java client that uses guaranteed delivery), you
must include the following import statements in your Java program.

import com.wm.data.*;
import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.app.b2b.client.lic.*;

Guaranteed Delivery Developer’s Guide 10.11 17

2 Creating a Java Client that Uses Guaranteed Delivery

DescriptionStep#

Declare TContext as a variable.Declare TContext.1

Initialize TContext and specify the job store directory and
audit-trail log. The Job Manager starts.

Initialize TContext.2

Important:
Do not include this step if your client will run as a service
on a webMethods Integration Server. This function is
automatically performed by the server and must not be
included in your code.

Create a new TContext object.Instantiate TContext.3

18 Guaranteed Delivery Developer’s Guide 10.11

2 Creating a Java Client that Uses Guaranteed Delivery

DescriptionStep#

Execute connect() to specify thewebMethods Integration Server
on which you want to invoke services using this context.

Establish connection
attributes for the TContext
instance.

4

You must connect as a user who is a member of the
Administrators group on the Integration Server.

Note:
Multiple threads can share an instance of TContext as long
as they use the same connection attributes—i.e., they use the
samewebMethods Integration Server anduser ID/password
(i.e., Administrator/manage) established by that instance of
TContext.

To set other connection attributes, use methods in the class
Context such as the protocol to use (HTTP or HTTPS) and the
proxy to use.

Execute startTx() to obtain a transaction ID (tid) and specify
the transaction time-to-live (TTL).

Start the transaction.5

Execute invokeTX() to invoke a service.Invoke the service.6

Note that you pass the transaction ID (tid) as the first parameter
to this method.

Execute endTx() to end the transaction. This method clears the
record for this transaction from the Job Manager's job store.

End the transaction.7

Check for the different types of errors. Always check for Service
Exceptions last.

Check for errors.8

Execute disconnect to end the use of this instance of TContext.
The application should not perform this step until it is done
because disconnect unregisters TContextwith the JobManager.

Close the session on
webMethods Integration
Server.

9

The Job Manager ends.Shutdown.10

Important:
Do not include this step if your client will run as a service
on a webMethods Integration Server. This function is
automatically performed by the server and must not be
included in your code.

For additional information about TContext and itsmethods, see the TContext class in thewebMethods
Integration Server Java API Reference.

Guaranteed Delivery Developer’s Guide 10.11 19

2 Creating a Java Client that Uses Guaranteed Delivery

Sample Code (Asynchronous Request)

The following example illustrates the steps you take to submit an asynchronous request to the Job
Manager. To submit an asynchronous request, you establish a connection and start a transaction
just like you do for a synchronous request. However, you submit the request using the submitTX
method instead of the invokeTx method. Then, you must retrieve the results of the request using
the retrieveIDTx method (to get results as an IData object).

For additional information about TContext and itsmethods, see the TContext class in thewebMethods
Integration Server Java API Reference.
/**
* Sample of a Java TContext client that uses SSL to perform a GD transaction */
import com.wm.data.IDataFactory;
import com.wm.data.IData;

import com.wm.app.b2b.client.*;
import com.wm.util.*;
import com.wm.app.b2b.client.lic.*;

public class TCSample {

public static void main (String[] args)
{
TContext tc = null;
ClientKeyInfo.setGuaranteedDeliveryLicensed(true);

String privkey = "./config/privKey1.der";
String[] certFiles = {"./config/cert1.der","./config/cacert1.der"};
// initialize TContext and establish connection attributes
try {
TContext.init("./jobs", "./tx.log");
tc = new TContext();
tc.connect("localhost:5555", "Administrator", "manage");
tc.setSecure(true);
tc.setSSLCertificates(privKey,certFiles);

} catch (ServiceException e) {
System.err.println("Error: "+e.getMessage());
System.exit(-1); }

// do work with TContext - get tid, call service, end tid
try {
String tid = tc.startTx(3);

// Make an asynch call to invoke the specified transaction.
tc.submitTx(tid, "wm.server", "ping", IDataFactory.create());

// Retrieve the results of an asynch call in blocking mode.
IData result = tc.retrieveTx(tid);

System.out.println("Result="+result.toString());
tc.endTx(tid);

} catch (TXException e) {
System.err.println("Job Failed: "+e.getMessage());
System.exit(-1);

} catch (DeliveryException e) {
System.err.println("JobMgr Disabled: "+e.getMessage());
System.exit(-1);

20 Guaranteed Delivery Developer’s Guide 10.11

2 Creating a Java Client that Uses Guaranteed Delivery

} catch (AccessException e) {
System.err.println("Access Denied: "+e.getMessage());
System.exit(-1);

} catch (ServiceException e) {
System.err.println("Error: "+e.getMessage());
System.exit(-1);

}
// release connection and shutdown
tc.disconnect();
TContext.shutdown();

}
}

Guaranteed Delivery Developer’s Guide 10.11 21

2 Creating a Java Client that Uses Guaranteed Delivery

22 Guaranteed Delivery Developer’s Guide 10.11

2 Creating a Java Client that Uses Guaranteed Delivery

3 Creating a Flow Service that Uses Guaranteed

Delivery

■ Overview .. 24

■ Sample Flow (Synchronous Request) .. 24

■ Sample Flow (Asynchronous Request) .. 25

Guaranteed Delivery Developer’s Guide 10.11 23

Overview

Using the services in the pub.remote.gd folder, you can build flow services that submit requests to
other webMethods Integration Servers through guaranteed delivery.

Note:
The Integration Servers that participate in a guaranteed-delivery transaction must both be
running the same version of Integration Server software.

The following examples showhowyouwould submit both synchronous and asynchronous requests
using the built-in services. For a description of these services, see webMethods Integration Server
Built-In Services Reference.

Sample Flow (Synchronous Request)

The following flow illustrates the basic steps you use to execute a synchronous transaction from
a flow service.

Flow service that executes a synchronous transaction

To...Invoke this Service...Step

Start the transaction.When you invoke this service, you
specify the alias for thewebMethods Integration Servers

pub.remote.gd:start1

to which you want to submit a request as well as
transaction-related parameters such as time-to-live and
followid.

This service returns a tid as output.

Note:
Internally, this service opens a session on the server
and performs startTx, so there is no need for you to
explicitly open a session on the server like you must
do in a Java guaranteed-delivery client.

Invoke the service.Youmust provide the tid (produced
by start, above), the name of the requested service, and
the input values for that service as input.

pub.remote.gd:invoke2

This service returns the results from the remote service
as output.

24 Guaranteed Delivery Developer’s Guide 10.11

3 Creating a Flow Service that Uses Guaranteed Delivery

To...Invoke this Service...Step

End the transaction. You must call this service to clear
the transaction from the job store. It takes the tid as input.

pub.remote.gd:end3

Sample Flow (Asynchronous Request)

The following flow illustrates the basic steps you use to execute an asynchronous transaction from
a flow service.

Flow service that executes an asynchronous transaction

To...Invoke this Service...Step

Start the transaction.When you invoke this service,
you specify the alias for the webMethods Integration

pub.remote.gd:start1

Server to which you want to submit a request as well
as transaction-related parameters such as time-to-live
and followid.

This service returns a tid as output.

Note:
Internally, this service opens a session on the server
and performs startTx, so there is no need for you
to explicitly open a session on the server like you
must do in a Java guaranteed-delivery client.

Submit the service request. You must provide the
tid (produced by start, above), the name of the

pub.remote.gd:submit2

requested service, and the input values for that service
as input.

Check for results. You can optionally use a REPEAT
step to poll the job store and checkwhether the results

pub.remote.gd:getStatus3

Guaranteed Delivery Developer’s Guide 10.11 25

3 Creating a Flow Service that Uses Guaranteed Delivery

To...Invoke this Service...Step

from the transaction have been received. This service
returns “DONE” when results are available.

Retrieve the results. This service returns the results
from the service request you submitted earlier. It takes
the tid as input.

pub.remote.gd:retrieve4

End the transaction. You must call this service to
clear the transaction from the job store. It takes the
tid as input.

pub.remote.gd:end5

26 Guaranteed Delivery Developer’s Guide 10.11

3 Creating a Flow Service that Uses Guaranteed Delivery

	Table of Contents
	About this Guide
	Document ​Conventions
	Online ​Information ​and ​Support
	Data ​Protection

	1 Overview ​of ​Guaranteed ​Delivery
	Overview
	What ​Is ​Guaranteed ​Delivery?
	Indicating ​You ​Want ​to ​Use ​Guaranteed ​Delivery
	How ​Transactions ​Are ​Managed
	Identifying ​Transactions
	Specifying ​How ​Long ​Transactions ​Are ​Active
	Handling ​Failures

	2 Creating ​a ​Java ​Client ​that ​Uses ​Guaranteed ​Delivery
	Overview
	Sample ​Code ​(Synchronous ​Request)
	Sample ​Code ​(Asynchronous ​Request)

	3 Creating ​a ​Flow ​Service ​that ​Uses ​Guaranteed ​Delivery
	Overview
	Sample ​Flow ​(Synchronous ​Request)
	Sample ​Flow ​(Asynchronous ​Request)

