
webMethods EntireX

Software AG IDL Extractor for COBOL

Version 10.8

October 2022

This document applies to webMethods EntireX Version 10.8 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBEXTRACTOR-108-20220601

Table of Contents

1 About this Documentation .. 1
Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I Introduction to the IDL Extractor for COBOL ... 5
2 Introduction to the IDL Extractor for COBOL .. 7

Introduction ... 8
Extractor Wizard .. 9
Mapping Editor .. 10
Supported COBOL Interface Types ... 11

II Using the IDL Extractor for COBOL - Overview .. 23
3 Scenario I: Create New IDL and Server Mapping Files .. 27

Step 1: Start the IDL Extractor for COBOL Wizard ... 28
Step 2: Select a COBOL Extractor Environment or Create a New One 29
Step 3: Select the COBOL Source ... 31
Step 4: Define the Extraction Settings and Start Extraction 38
Step 5: Select the COBOL Interface and Map to IDL Interface 48
Step 6: Finish the Mapping Editor ... 49
Step 7: Validate the Extraction and Test the IDL File 50

4 Scenario II: Append to Existing IDL and Server Mapping Files 51
5 Scenario III: Modify Existing IDL and Server Mapping Files 53

III COBOL Mapping Editor .. 57
6 CICS with DFHCOMMAREA Calling Convention - In same as Out 61

Introduction .. 62
Extracting from a CICS DFHCOMMAREA Program 62
Mapping Editor User Interface .. 64
Mapping Editor IDL Interface Mapping Functions ... 71
Programming Techniques .. 99

7 CICS with DFHCOMMAREA Calling Convention - In different to Out 101
Introduction .. 102
Extracting from a CICS DFHCOMMAREA Program 102
Mapping Editor User Interface .. 104
Mapping Editor IDL Interface Mapping Functions 111
Programming Techniques .. 139

8 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out 141
Introduction .. 142
Extracting from a CICS DFHCOMMAREA Large Buffer Program 144
Mapping Editor User Interface .. 145
Mapping Editor IDL Interface Mapping Functions 152

9 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out 181
Introduction .. 182
Extracting from a CICS DFHCOMMAREA Large Buffer Program 184
Mapping Editor User Interface .. 186

iii

Mapping Editor IDL Interface Mapping Functions 193
10 CICS with Channel Container Calling Convention ... 223

Introduction .. 224
Extracting from a CICS Channel Container Program 224
Mapping Editor User Interface .. 227
Mapping Editor IDL Interface Mapping Functions 234

11 COBOL Converter - In same as Out .. 269
Introduction .. 270
Extracting a COBOL Converter .. 270
Mapping Editor User Interface .. 272
Mapping Editor IDL Interface Mapping Functions 279

12 COBOL Converter - In different to Out ... 307
Introduction .. 308
Extracting a COBOL Converter .. 308
Mapping Editor User Interface .. 310
Mapping Editor IDL Interface Mapping Functions 317

13 Batch with Standard Linkage Calling Convention .. 345
Introduction .. 346
Extracting from a Standard Call Interface .. 346
Mapping Editor User Interface .. 348
Mapping Editor IDL Interface Mapping Functions 355

14 IMS BMP with Standard Linkage Calling Convention 379
Introduction .. 380
Extracting from an IMS BMP Standard Call Interface 380
Mapping Editor User Interface .. 382
Mapping Editor IDL Interface Mapping Functions 389

15 IMS MPP Message Interface (IMS Connect) .. 413
Introduction .. 414
Extracting from an IMS MPP Message Interface Program 415
Mapping Editor User Interface .. 418
Mapping Editor IDL Interface Mapping Functions 426

16 COBOL Preferences ... 455
COBOL Wrapper Preferences ... 456
Deployment Environments Preferences .. 456
IDL Extractor for COBOL Preferences ... 457

17 COBOL to IDL Mapping .. 471
COBOL Data Type to Software AG IDL Mapping ... 472
User-defined Mapping ... 476
DATA DIVISION Mapping .. 483
PROCEDURE DIVISION Mapping .. 489
Copybooks .. 490

Software AG IDL Extractor for COBOLiv

Software AG IDL Extractor for COBOL

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Software AG IDL Extractor for COBOL2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Software AG IDL Extractor for COBOL

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

I Introduction to the IDL Extractor for COBOL

5

6

2 Introduction to the IDL Extractor for COBOL

■ Introduction .. 8
■ Extractor Wizard ... 9
■ Mapping Editor ... 10
■ Supported COBOL Interface Types ... 11

7

Introduction

The SoftwareAG IDLExtractor for COBOL inspects a COBOL source and its copybooks for COBOL
data items to extract. It can also extract directly from copybooks. In a user-driven process supported
by an Extractor Wizard, the interface of a COBOL server is extracted and - with various features
offered by aMapping Editor - modelled to a client interface.

Start the wizard, select your server program and make COBOL-specific settings.

Optional. This step is not always necessary: it is possible that parameters have already been
selected, for example as a result of the COBOL USING clause.
Optional. If necessary, you can modify the parameter selection from the Mapping Editor.

Fine-tune the COBOL to IDL mapping.

Generate an IDL file and a server mapping file. These two related files map the client interface
to the COBOL server program and are described below:

■ IDL File
The Software AG IDL file (interface definition language) contains the modelled interface of the
COBOL server. In a follow-up step the IDL file is the starting point for the RPC client-side
wrapping generation tools to generate client interface objects. See EntireX Wrappers in the De-
signer documentation.

■ Server Mapping File
A server mapping file to complete the mapping is generated only if it is required by the RPC
server at runtime to call the COBOL server. See Server Mapping Files for COBOL in the Designer
documentation.

Software AG IDL Extractor for COBOL8

Introduction to the IDL Extractor for COBOL

Extractor Wizard

The extractorwizard guides you through the extraction process. Thewizard supports the following
tasks:

■ AccessingCOBOL source files, either in the local file systemwhere theDesigner runs or remotely
from the host computerwith the RPC server extractor service. Thewizard supports the following:
z/OS partitioned data sets and CA Librarian data sets (includingmember archive levels) as well
as BS2000 LMS libraries. See Extractor Service in the RPC Server documentation for Batch | IMS |
BS2000. For this purpose, define a local or remote COBOL extractor environment. See COBOL
Preferences.

■ Resolving of COBOL copybooks. If a relevant copybook from the COBOL DATA DIVISON is
missing, a browse dialog is offered where you can locate the copybook - either a folder (local
extractor environment) or data set (remote extractor environment) - interactively. Copybook
folder or data sets can also be predefined in the COBOL extractor environment. See COBOL
Preferences.

■ Resolving of COBOL copybooks with the REPLACE option.
■ CA Librarian (-INC) and CA Panvalet (++INCLUDE) control statements are supported. They are
handled in a similar way to copybooks.

■ Various COBOL server interface types, such as standardCICS DFHCOMMAREA, CICSwith different
structures on input andoutput, CICSwith a large buffer compatible towebMethodsWMTLSRVR,
standard batch, and IMSBMP serverwith PCBpointers. See SupportedCOBOL Interface Types.

■ Selecting the COBOL server interface manually within the COBOLMapping Editor page. This
allows you to extract from a COBOL server where the interface definition is not completely
given by the parameters provided in the PROCEDURE DIVISIONMapping, making it impossible
to detect the parameters automatically.

■ Defining the default COBOL to IDLmapping in theCOBOLPreferences for the following fields:
■ COBOL pseudo-parameter FILLER fields. You can define whether they should be part of the
RPC client interface or not. By default, they are not contained in the IDL.

■ The name prefix for FILLER and anonymous groups used for IDL parameters.
■ COBOL alphanumeric fields (PICTURE X, A, G, N). They can bemapped either to variable-length
or fixed-length strings in the IDL. This option is provided formodern RPC clients that support
variable-length strings, and also for legacy RPC clients that support fixed-length strings only.

The extractor wizard is described in a step-by-step tutorial; see Using the IDL Extractor for CO-
BOL - Overview.

9Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Mapping Editor

TheCOBOLMapping Editor is the tool to select andmap the COBOL server interface to IDL. This
section gives a short overview of the mapping features provided. These features are described in
more detail in the documentation section for the respective interface type.

■ Add and remove the parameters of theCOBOL server in the topwindowof theCOBOLMapping
Editor page. The current selection is shown in the bottom window for fine tuning.

■ Provide IDL directions for parameters of the COBOL server. A COBOL server does not contain
IDL direction information, so you can add this information manually in the Mapping Editor.

■ Select REDEFINE paths used in the IDL. TheMapping Editor allows you to select a single REDEFINE
path for every REDEFINE unit (all redefine paths addressing the same storage location).

■ Suppress unneeded fields in the IDL. This keeps the IDL client interface lean and alsominimizes
the amount of data transferred during runtime.

■ Defineparameter constants as input for theCOBOL server. Constant parameters are not contained
in the IDL file, whichmeans they are invisible for RPC clients. Thismakes the IDL client interface
easier and safer to use, minimizing improper usage.

Software AG IDL Extractor for COBOL10

Introduction to the IDL Extractor for COBOL

■ For one COBOL server program, you can create and model multiple interfaces. If the IDL is
processed further with a wrapper of the Designer, the business functions are provided as
■ Web service operations if exposed as a Web service instead of a Web service with a single
operation

■ methods if wrapped with the Java Wrapper or .NET Wrapper instead of a Java class with a
single method

■ etc.

See COBOL Mapping Editor for more information.

Supported COBOL Interface Types

The IDL Extractor for COBOL supports as input a COBOL server with various interface types.
This section covers the following topics:

■ Supported CICS COBOL Interface Types
■ Batch with Standard Linkage Calling Convention
■ IMS MPP Message Interface (IMS Connect)
■ IMS BMP with Standard Linkage Calling Convention
■ COBOL Converter
■ What to do with other Interface Types?
■ Compatibility between COBOL Interface Types and RPC Server
■ Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

The interface type you are mostly working with can be set in the preferences. See COBOL Prefer-
ences.

Supported CICS COBOL Interface Types

Analyzing the technique used to access the interface with COBOL and CICS statements is the
safest way to determine the interface type. The followingCICSCOBOL interface types are suppor-
ted:

■ CICS with DFHCOMMAREA Calling Convention
■ CICS with Channel Container Calling Convention
■ CICS with DFHCOMMAREA Large Buffer Interface

There is no clear and easy indication how to identify the interface type of a CICS COBOL server
without COBOL and CICS knowledge. Below are some criteria that might help to determine the
interface type. If you are unsure, consult a CICS COBOL specialist.

■ The payload size of the CICS COBOL server is greater than 32 KB:

11Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

■ In this case it is not a DFHCOMMAREA interface, because the DFHCOMMAREA is limited
to 32 KB.

■ It could be a large buffer or channel container interface, which are only limited by the storage
(memory) available to them.

■ The CICS COBOL server is located in a remote CICS region:
■ In this case it is not a large buffer interface, because large buffer programs must reside on the
same CICS region as the caller, that is, the RPC Server for CICS.

■ It could be a DFHCOMMAREA or channel container interface, which can reside in a remote
CICS region.

Note: The most used interface type is the DFHCOMMAREA interface. Large buffer and
channel container interfaces are used much less frequently.

CICS with DFHCOMMAREA Calling Convention

The IDL Extractor for COBOL supports CICS programs using the standard DFHCOMMAREA calling
convention.

The following illustrates roughly how you can determine whether a COBOL server follows the
DFHCOMMAREA calling convention standard:

LINKAGE SECTION.
01 DFHCOMMAREA.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
. . .

Most DFHCOMMAREA programs have a DFHCOMMAREA data item in their LINKAGE SECTION and may
address this item in the PROCEDURE DIVISION header. If you find this in your COBOL source it's
a clear indication it is a DFHCOMMAREA server program. But even if this is missing, it can be a
DFHCOMMAREA program, because there are alternative programming styles. If you are unsure, consult
a COBOL CICS specialist or see Supported CICS COBOL Interface Types for more information.

Software AG IDL Extractor for COBOL12

Introduction to the IDL Extractor for COBOL

See Step 4: Define the Extraction Settings and Start Extraction and CICS with DFHCOMMAREA
Calling Convention - In same asOut for more information on extracting COBOL servers with this
interface type.

CICS with Channel Container Calling Convention

The IDL Extractor for COBOL supports CICS programs using the channel container calling con-
vention.

The following illustrates roughly how you can determine whether a COBOL server follows the
Channel Container standard.

WORKING-STORAGE SECTION.
01 WS-CONTAINER-IN-NAME PIC X(16) VALUE "CALC-IN".
01 WS-CONTAINER-OUT-NAME PIC X(16) VALUE "CALC-OUT".
. . .
LINKAGE SECTION.
01 LS-CONTAINER-IN-LAYOUT.
 02 OPERATION PIC X(1).
 02 OPERAND1 PIC S9(9) BINARY.
 02 OPERAND2 PIC S9(9) BINARY.
01 LS-CONTAINER-OUT-LAYOUT.
 02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
 . . .
 EXEC CICS GET CONTAINER (WS-CONTAINER-IN-NAME) SET (ADDRESS OF ↩
LS-CONTAINER-IN-LAYOUT) ...
 . . .
 EXEC CICS PUT CONTAINER (WS-CONTAINER-OUT-NAME) FROM (ADDRESS OF ↩
LS-CONTAINER-OUT-LAYOUT) ...
 . . .

Channel Container programs use EXEC CICS GET CONTAINER in their program body (PROCEDURE
DIVISION) to read their input parameters. Output parameters are written using EXEC CICS PUT

13Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

CONTAINER. There is no clear indication in the linkage or working storage section to identify a
channel container program. If you are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction andCICSwith Channel Container
Calling Convention for more information on extracting COBOL servers with this interface type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data in
CICS. The interface is the same as thewebMethodsWMTLSRVR interface. This enableswebMethods
customers to migrate to EntireX.

Technically,

■ the DFHCOMMAREA layout contains a structure with a length and a pointer to a large buffer. The
following illustrates this:

LINKAGE SECTION.

01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE 'F'.
10 WM-LCB-RESERVED PIC X(3).

01 INOUT-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.

Software AG IDL Extractor for COBOL14

Introduction to the IDL Extractor for COBOL

. . .
SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.

* process the INOUT-BUFFER and provide result
EXEC CICS RETURN.

The fields subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The
field names themselves can be different, but the COBOL data types must match exactly.

■ data is described by separate structures, here INOUT-BUFFER in the linkage section.

If you find this in your COBOL source, it's a clear indication it is a large buffer program. If you
are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction andCICSwith DFHCOMMAREA Large
Buffer Interface - In same as Out for more information on extracting COBOL servers with this
interface type.

15Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Technically, the COBOL server contains

■ a parameter list: PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Batch with Standard Linkage
Calling Convention for more information on extracting COBOL servers with this interface type.

Software AG IDL Extractor for COBOL16

Introduction to the IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

IMSmessage processing programs (MPP) get their parameters through an IMSmessage and return
the result by sending an outputmessage to IMS. The IDL Extractor for COBOL enables extractions
from such programs.

The COBOL server contains:

■ a structure in the working storage section for the input and the output message.
■ an IOPCB in the linkage section used to read input messages and write output messages using
an IMS system call (i.e. CALL "CBLTDLI").

■ The message contains also technical fields specific to IMS (see fields LL, ZZ and TRANCODE in the
picture above).

See Step 4: Define the Extraction Settings and Start Extraction and IMS MPP Message Interface
(IMS Connect) for more information on extracting COBOL servers with this interface type.

17Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

IMS batchmessage processing programs (BMP) with PCB parameters are directly supported. You
have the option to specify a PSB list as input to the extractor to locate PCB parameters.

Technically, the COBOL server contains

■ a parameter list: PROCEDURE DIVISION USING PARM1 PCB PARM2 ... PARMn

■ IMS-specific PCB pointerswithin the parameter list
■ the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and IMS BMP with Standard
Linkage Calling Convention formore information on extracting COBOL serverswith this interface
type.

COBOL Converter

Afile containing valid COBOLdata items can be used to extract a COBOLConverter for the EntireX
Adapter. In most cases the COBOL layout during input and output will be same:

See Step 4: Define the Extraction Settings and Start Extraction and COBOL Converter - In same
as Out for more information on extracting COBOL with this interface type.

Software AG IDL Extractor for COBOL18

Introduction to the IDL Extractor for COBOL

If required, the COBOL layout during input can be different as on output. For example input and
output are described with different REDEFINES clauses.

See COBOL Converter - In different to Out for more information on extracting COBOL with this
interface type.

What to do with other Interface Types?

Other interface types, for example CICS with non-DPL-enabled DFHCOMMAREA, can be supported
bymeans of a customwrapper. If you have to extract from such aCOBOL server, proceed as follows:

1. Implement a custom wrapper, providing one of the supported interface types above.

2. Extract from this custom wrapper.

19Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Compatibility between COBOL Interface Types and RPC Server

To call your server program successfully, the target RPC runtime component used must support
the interface type. The table below gives an overview of possible combinations of an interface type
and RPC server.

BS2000IBM iUNIX/Windowsz/OS

Interface Type of your Server Program BatchAS/400IMS Connect

CICS
Socket
ListenerCICS ECIIMSBatchCICS

xxxCICS with DFHCOMMAREA Calling
Convention

xxCICS with DFHCOMMAREA Large Buffer
Interface

xxCICS with Channel Container Calling
Convention

xxxxBatch with Standard Linkage Calling
Convention

xIMS BMP with Standard Linkage Calling
Convention

xIMSMPPMessage Interface (IMSConnect)

COBOL Converter

Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

The table below gives an overview of COBOL interface types and EntireX Adapter connection
types.

NoteEntireX Adapter Connection TypeInterface Type of your Server Program

CICS ECI Connection or
CICS Socket Listener Connection

CICS with DFHCOMMAREA Calling
Convention

CICS Socket Listener ConnectionCICS with DFHCOMMAREA Large Buffer
Interface

CICS Socket Listener ConnectionCICS with Channel Container Calling
Convention

To call your server program on
a platformother than IBM i, use

AS/400 ConnectionBatch with Standard Linkage Calling
Convention

an RPC Connection or Direct
RPC Connection to an
appropriate RPC Server for
Batch (z/OS | BS2000).

Use the RPC Server for IMS as
RPC server.

RPC Connection or
Direct RPC Connection

IMSBMPwith StandardLinkageCalling
Convention

Software AG IDL Extractor for COBOL20

Introduction to the IDL Extractor for COBOL

NoteEntireX Adapter Connection TypeInterface Type of your Server Program

IMS Connect ConnectionIMS MPP Message Interface (IMS
Connect)

COBOL Converter ConnectionCOBOL Converter

21Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

22

II Using the IDL Extractor for COBOL - Overview

This chapter describes how to extract IDL from a COBOL source, using the IDL Extractor for CO-
BOL, deploy, validate and test the extraction results. IDL extraction is supported by wizards, ed-
itors and generators.

Choosing a Scenario

The following scenarios are supported and are described in separate sections:

■ Scenario I: Create New IDL and Server Mapping Files
■ Scenario II: Append to Existing IDL and Server Mapping Files
■ Scenario III: Modify Existing IDL and Server Mapping Files

See also COBOL Mapping Editor.

23

Software AG IDL Extractor for COBOL24

Using the IDL Extractor for COBOL - Overview

Before Starting an Extraction

Before you start an extraction, we recommend you first clarify the following issues:

■ The interface type of your COBOL program, see Supported COBOL Interface Types.
■ The input and output parameters of your COBOL server. Note the following:

■ COBOLREDEFINES are used in CICS aswell as in batch servers. For all COBOLREDEFINES
you have to clarify which redefine paths are the relevant ones for your extraction.

■ Particularly in CICS, the interface of a COBOL server is in most cases not described by the
parameters given in the PROCEDURE DIVISON header. See PROCEDURE DIVISIONMapping and
see DFHCOMMAREA examples under Programming Techniques.

■ We recommend you have a basic understanding of your COBOL server, especially if you can
simplify your IDL with the following:
■ Map functions of the COBOL server to IDL programs.
■ Suppress unneeded fields.
■ Map COBOL data items to constants.

The COBOL sources can contain

■ copybook references; see Copybooks under COBOL to IDL Mapping
■ CA Librarian (-INC) or CA Panvalet (++INCLUDE) control statements

In sectionCOBOL to IDLMapping youwill find information on how theCOBOL syntax ismapped
to Software AG IDL using this wizard and the Mapping Editor. We recommend you read this
document because it describes possibilities and alternatives for handlingCOBOL syntax constructs.

Make sure the COBOL source

■ can be compiled with no errors and no warning
■ is written in COBOL fixed format, consisting of sequence number (column 1-6), indicator area
(column7), area A, (column 8-11) and area B (column 12-72) for z/OS, BS2000, z/VSE and IBM i
extractions

25Software AG IDL Extractor for COBOL

Using the IDL Extractor for COBOL - Overview

26

3 Scenario I: Create New IDL and Server Mapping Files

■ Step 1: Start the IDL Extractor for COBOL Wizard .. 28
■ Step 2: Select a COBOL Extractor Environment or Create a New One ... 29
■ Step 3: Select the COBOL Source .. 31
■ Step 4: Define the Extraction Settings and Start Extraction .. 38
■ Step 5: Select the COBOL Interface and Map to IDL Interface .. 48
■ Step 6: Finish the Mapping Editor ... 49
■ Step 7: Validate the Extraction and Test the IDL File ... 50

27

Step 1: Start the IDL Extractor for COBOL Wizard

To continue, pressNext and continue with Step 2: Select a COBOL Extractor Environment or
Create a New One.

Software AG IDL Extractor for COBOL28

Scenario I: Create New IDL and Server Mapping Files

Step 2: Select a COBOL Extractor Environment or Create a New One

If no COBOL extractor environments are defined, you only have the option to create a new envir-
onment. An IDL Extractor for COBOL environment provides defaults for the extraction and refers
to COBOL programs and copybooks that are

■ stored locally on the same machine where the Designer is running: a local COBOL extractor en-
vironment

or

■ stored remotely on a host computer: a remoteCOBOLextractor environment. The extractor service
is required to access COBOLprograms and copybooks remotelywith a remote COBOL extractor
environment. The extractor service is supported on platforms z/OS and BS2000. See Extractor
Service in the RPC Server documentation for Batch | IMS | BS2000.

29Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

This page offers the following options:

To select an existing local COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a local
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

To select an existing remote COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a remote
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

To create a new local COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section underCreate New Local Extractor Environment
(z/OS, BS2000, z/VSE and IBM i).

3 Continue with Step 3: Select the COBOL Source below.

To create a new remote COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section underCreateNewRemote Extractor Environment
z/OS | BS2000.

3 Continue with Step 3: Select the COBOL Source below.

Software AG IDL Extractor for COBOL30

Scenario I: Create New IDL and Server Mapping Files

Step 3: Select the COBOL Source

Selecting theCOBOL source is different depending onwhether theCOBOL source is stored locally
on the same machine where the Software AG Designer is running, or on a remote host computer.

■ Selecting a COBOL Source Stored Locally
■ Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)
■ Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)
■ Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
■ Selecting an Element (S) from an LMS Library on Remote Host (BS2000)

Selecting a COBOL Source Stored Locally

In step 2 above you selected or created a local extractor environment for z/OS. If you select a local
COBOL extractor environment, you can browse for the COBOL program in the local file system.
If you selected the COBOL source file before you started the wizard, and do not have a directory
defined in the preferences of your Local Extractor Environment, the file location is already present.
See Create New Local Extractor Environment (z/OS, BS2000, z/VSE and IBM i). To browse for the
COBOL source file, choose Browse.

Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Creating a New Remote Extractor Environment (z/OS) under COBOL
Preferences.

31Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Select the partitioned data set fromwhich youwant to extract and chooseNext. Proceed depending
on the selected data set type. See Selecting aMember from a PartitionedData Set on Remote Host
(z/OS).

The following page offers all members contained in the partitioned data set selected in the previous
step, starting with the member name prefix defined in the Filter Settings of the remote extractor
environment. See Define the remote extractor environment under COBOL Preferences.

Software AG IDL Extractor for COBOL32

Scenario I: Create New IDL and Server Mapping Files

Select the member from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

ChooseNext and continuewith Step 4: Define the Extraction Settings and Start Extraction below.

Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Creating a New Remote Extractor Environment (z/OS) under COBOL
Preferences.

33Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Select theCALibrarian data set fromwhich youwant to extract and chooseNext. Proceed depend-
ing on the selected data set type. See Selecting aMember from a CA Librarian Data Set on Remote
Host (z/OS).

The following page offers all members contained in the CA Librarian data set selected in the pre-
vious step, starting with the member name prefix defined in the Filter Settings of the remote ex-
tractor environment. See Define the remote extractor environment under COBOL Preferences.

Software AG IDL Extractor for COBOL34

Scenario I: Create New IDL and Server Mapping Files

You can select only one COBOL source. The source can be a COBOL program or a COBOL copy-
book. If you want to extract from

■ the latest (current) version of the member, select the member, chooseNext and continue with
Step 4: Define the Extraction Settings and Start Extraction below.

■ a previous (archived) version of the member, check the box Show the Archive Levels of the
selectedmember, select themember, chooseNext and continuewith Selecting aMemberArchive
Level from a CA Librarian Data Set on Remote Host (z/OS).

Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)

The following page offers all archive levels of the previously selected member.

Select the member from which you want to extract. You can select only one archive level. Choose
Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.

Selecting an Element (S) from an LMS Library on Remote Host (BS2000)

In step 2 above you selected or created a remote extractor environment.

The following page offers all data sets starting with the high-level qualifier defined in the Filter
Settings of the remote extractor environment. SeeCreating aNewRemote Extractor Environment
(BS2000) under COBOL Preferences .

35Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

The following page offers all elements contained in the LMS library selected in the previous step,
starting with the member name prefix defined in the Filter Settings of the remote extractor envir-
onment. See Define the remote extractor environment under COBOL Preferences.

Software AG IDL Extractor for COBOL36

Scenario I: Create New IDL and Server Mapping Files

Select the element from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

ChooseNext and continuewith Step 4: Define the Extraction Settings and Start Extraction below.

37Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Step 4: Define the Extraction Settings and Start Extraction

In this page you specify the COBOL source and Software AG IDL target options used for IDL ex-
traction.

■ Operating System
■ Interface Type
■ Software AG IDL File
■ COBOL to IDL Mapping

Operating System

The operating system is already defined in the extractor environment in the IDL Extractor for
COBOL preferences, see COBOL Preferences.

Software AG IDL Extractor for COBOL38

Scenario I: Create New IDL and Server Mapping Files

Interface Type

The interface type must match the type of your COBOL server program. It is used by the RPC
server and the EntireX Adapter at runtime to correctly call the COBOL server and must be a sup-
ported interface type of the EntireX runtime component used. SeeCompatibility betweenCOBOL
Interface Types and RPC Server.

Additional information may be required depending on the interface type:

■ CICS with DFHCOMMAREA Calling Convention
Specify InputMessage same asOutputMessage. If the COBOL server programuses a different
COBOL output data structure compared to its input data structure, that is, the input message
layout is overlaid with another layout on output, you need to uncheck Input Message same as
Output Message. See the following COBOL server examples:
■ Example 1: Redefines
■ Example 2: Buffer Technique
■ Example 3: COBOL SET ADDRESS Statements

If the COBOL server programuses the sameCOBOLdata structure on input aswell as on output,
you need to check Input Message same as Output Message. See the following COBOL server
examples:
■ Example 1: Redefines
■ Example 2: Buffer Technique
■ Example 3: COBOL SET ADDRESS Statements

■ CICS with Channel Container Calling Convention
Optionally, specify a channel name. See Extracting from a CICS Channel Container Program.

■ CICS with DFHCOMMAREA Large Buffer Calling Convention
Specify InputMessage same asOutputMessage. If the COBOL server programuses a different
COBOL large output buffer data structure compared to its large input buffer data structure,
you need to uncheck InputMessage same asOutputMessage. SeeCICS with DFHCOMMAREA Large
Buffer Interface (In same as Out, In different to Out).

■ COBOL Converter
Specify Input Message same as Output Message. If a different COBOL output data structure
compared to its input data structure is used (that is, the input message layout is overlaid with
another layout on output) you need to uncheck Input Message same as Output Message. See
COBOL Converter (In same as Out, In different to Out).

■ IMS MPPMessage Interface (IMS Connect)
Specify how youwant the transaction name to be determined. See Extracting from an IMSMPP
Message Interface Program.

39Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

■ IMS BMP with Standard Linkage Calling Convention
You can optionally set the IMS PSB List. See Extracting from an IMS BMP Standard Call Inter-
face.

■ Batch with Standard Linkage Convention
No further information is required.

For an introduction to interface types, see Supported COBOL Interface Types.

Software AG IDL File

With the Software AG IDL file target options you specify the IDL file and IDL library names used:

■ File name specifies the file name used by the operating system.
■ Modify existing file is enabled onlywhen the IDLfile already exists. If enabled, check this option
to continue the extraction.

■ Library name defines the IDL library name used in the IDL file. The dialog box cannot be edited
when youmodify an existing IDL file. If there are multiple libraries, you can select one of these;
if there is only one library, the box is disabled. When you extract the IDL the first time or you
specify the name of an existing IDL file, the box can be edited (like a text widget). If you specified
an existing IDL file, the currently existing library names are available in the box.

■ Container specifies the eclipse container used for the IDL file

COBOL to IDL Mapping

With these target options you specify how COBOL data items are mapped to IDL. You can turn
fixed lengthCOBOLdata types into variable length data types. This is useful if connectingCOBOL
to endpoints with a concept of string types - such as Java, .NET, C, XML, Web services etc. Real
strings without trailing blanks are received. It also reduces the messages size of RPC requests.

■ With a mapping to Strings with variable length (1), the transfer of data in the RPC data stream
depends on the actual length of the data and not the field size, as seen in COBOL. For the COBOL
side, the actual content length of such fields is determined using a trim mechanism.

For PIC X, A and G, all trailing SPACEs are ignored before send. After receive, the content is
padded with trailing SPACEs up to the COBOL field size.

For PIC N (3), the Unicode code point U+0020 is used for trimming and padding.

If your application relies on trailing SPACEs or Unicode code points U+0020, you cannot use a
mapping to strings with variable length (1). Use strings with fixed length (2) instead.

■ With a mapping to Strings with fixed length (2), no trimming takes place. If the mapping in the
calling endpoint callingCOBOL is a variable length string data type, inmost cases youwill receive
trailing SPACEs or trailing Unicode code points U+0020 respectively.

■ Check the boxMap FILLER fields to IDL if COBOL FILLER pseudo-parameters are to be part
of the RPC client interface. By default they are not mapped to IDL.

Software AG IDL Extractor for COBOL40

Scenario I: Create New IDL and Server Mapping Files

Notes:

1. Technically, a mapping to Strings with variable length forces IDL types AVn, KVn or UVn to be
extracted. See also the notes under IDL Data Types in the IDL Editor documentation.

2. Technically, a mapping to Strings with fixed length the IDL types An, Kn or Un. See also the
notes under IDL Data Types in the IDL Editor documentation.

ChooseNext and start the extraction. The wizard now analyzes the COBOL program. During this
process the following situations are possible:

41Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

■ Referenced copybooks cannot be found. In this case the wizard prompts you for every missing
copybook. Continue with optional step Step 4.1x: Copybook Cannot be Found - Local Extraction |
Remote Extraction (z/OS) | Remote Extraction (BS2000) depending on your situation.

■ If referenced copybooks are not available, you can choose Ignore or Ignore All, a copybook
status summary page is displayed, see Step 4.2: Copybook Status Summary (Optional).

Software AG IDL Extractor for COBOL42

Scenario I: Create New IDL and Server Mapping Files

■ NoCOBOLprogram ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. In this case, the wizard prompts you to enter the COBOL program ID.
Continue with Step 4.3: Enter COBOL Program ID (Optional).

■ There is no copybook reference in your COBOL source or all referenced copybooks are found.
Also the COBOL program ID can be located or is not needed as for interface type COBOL
Converter. In this case continuewith Step 5: Select theCOBOL Interface andMap to IDL Interface
under Scenario I: Create New IDL and Server Mapping Files.

Step 4.1a: Copybook Cannot be Found - Local Extraction

This dialog enables you to browse directories where missing copybooks might be found. If there
are any specific copybook file extensions, you can define them here.

The copybook that cannot be found is given in the window, here its name is "ACPYBK21". In the
extractor Preferences, the copybook directory that contains the copybook or the copybook file ex-
tension is not defined.

Continue with one of the following actions:

To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

43Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

To complete the extractor environment

1 ChooseWorkspace or File System to browse for the copybook directory.

2 Check the copybook file extensions. Both will be saved in the COBOL extractor preferences
and reused in further extractions.

3 ChooseOK and go back to Step 4: Define the Extraction Settings and Start Extraction.

4 ChooseNext to start extraction again.

Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction

This dialog enables you to browse remote locations (partitioned or CA Librarian data sets) where
missing copybooks might be found.

The copybook that cannot be found is given in the window; here its name is "CUSTREC". In the
extractor preferences, the copybook data set that contains the copybook is not defined.

Continue with one of the following choices:

To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

Software AG IDL Extractor for COBOL44

Scenario I: Create New IDL and Server Mapping Files

2 ChooseNext to start extraction again.

To complete the extractor environment

1 Choose Find to browse for the copybook data set. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 ChooseOK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 ChooseNext to start extraction again.

Step 4.1c: Copybook Cannot be Found - BS2000 Remote Extraction

This dialog enables you to browse remote locations (LMS libraries) where missing copybooks
might be found.

The copybook that cannot be found is given in thewindow; here its name is "XTAB". In the extractor
preferences, the copybook LMS library that contains the copybook is not defined.

Continue with one of the following choices:

To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 ChooseNext to start extraction again.

45Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

To complete the extractor environment

1 Choose Find to browse for the copybook LMS library. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 ChooseOK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 ChooseNext to start extraction again.

Step 4.2: Copybook Status Summary (Optional)

This summary page lists all COBOL copybooks which were not available during extraction.

■ If any relevant COBOL data item describing the server interface is contained in one of the listed
copybooks, you cannot continue. Terminate the extraction and try to get themissing copybooks.

■ If no relevant COBOL data item describing the server interface is contained in the copybooks,
you can continue. ChooseOK.

Step 4.3: Enter COBOL Program ID (Optional)

This page is shownwhenever the program ID of the COBOL source is missing. Entering a COBOL
program name is compulsory.

Software AG IDL Extractor for COBOL46

Scenario I: Create New IDL and Server Mapping Files

No COBOL program ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. The COBOL program ID

■ is the COBOL program name
■ is often the name of the executable or load module
■ can be found in the IDENTIFICATION DIVISION (abbreviated to"ID"). Example

ID DIVISION.
PROGRAM-ID. CUSTINFO.
AUTHOR. BMF.
DATE-WRITTEN. 26-11-1996

To complete the extraction

1 Enter the COBOL program ID.

2 ChooseOK to continue with Step 5: Select the COBOL Interface and Map to IDL Interface.

47Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Step 5: Select the COBOL Interface and Map to IDL Interface

A COBOL source program mostly does not contain all the information needed for IDL mapping.
With the Mapping Editor you enter this missing information. In general, mapping the COBOL
data items to IDL with the Mapping Editor is a two-step process:

1. First, select the COBOL data items of the COBOL interface.

2. Then map the COBOL interface to the IDL interface. Define
■ which COBOLdata items aremapped to IDL (Select REDEFINEpaths, SuppressUnneeded
COBOL Data Items)

■ the direction of the COBOL data items (Map to [In, Out, InOut])
■ field values for COBOL data items that are not sent by clients to the COBOL server (Set
COBOL Data Items to Constant)

■ COBOL server with multiple functions (Map to Multiple IDL Interfaces)
■ COBOL server output depends on COBOL input (Map to Multiple IDL Interfaces)
■ COBOL server with conditional output (Set Multiple Possible Output (MPO) Structures)
■ COBOL table usage (Set Array Mapping (fixed <-> unbounded))
■ COBOL data items mapped to binary (Map to Binary, Revert Binary Mapping)
■ etc.

See the guidelines on IDL Extraction per Interface Type for the COBOL Mapping Editor or by
COBOL syntax in User-defined Mapping under COBOL to IDL Mapping for further information
on this important extraction step.

Software AG IDL Extractor for COBOL48

Scenario I: Create New IDL and Server Mapping Files

The outcome of the Mapping Editor is the IDL file and a server mapping file (optional). SeeWhen
is a Server Mapping File Required? under Server Mapping Files for COBOL in the Designer document-
ation. Both files arewrittenwith the file name entered for the IDLfile in Step 4: Define the Extraction
Settings and Start Extraction.

Step 6: Finish the Mapping Editor

When you choose Save in the Mapping Editor, the IDL file is generated. If required, a server
mapping file (.cvm) is generated, too.

49Software AG IDL Extractor for COBOL

Scenario I: Create New IDL and Server Mapping Files

Step 7: Validate the Extraction and Test the IDL File

The IDL file is used to build RPC clients using an EntireXWrapper of your choice, or an IS adapter
service using the Integration Server Wrapper.

If a server mapping file (.cvm) is extracted:

■ You need to rebuild all existing RPC clients communicating with this RPC server program and
re-generate the client interface objects.

■ For existing IS adapters generatedwith theEntireXAdapter need to be updated. See Step 3: Create
or Update an Adapter Connection in the Integration Server Wrapper documentation.

Caution: Do not edit the IDL file manually or with the IDL Editor, except for changing
parameter names. Otherwise, consistency between the IDL file and the server mapping file
will be lost, resulting in unexpected behavior. For this purpose use the COBOL Mapping
Editor instead and choose Scenario III: Modify Existing IDL and Server Mapping Files.

Caution: A server mapping file extracted this way must not be re-created by the COBOL
Wrapper. Server mapping specifications of such a file would not be powerful enough to
adequately describe your COBOL server program extracted here.

If you are using the RPC Server for CICS, before calling your extracted RPC server, check if you
need to alter

■ CICS settings, for example TWASIZE. See CICS Settings.
■ For z/OS additionally IBM LE Runtime Options - for example AMODE24, how to trap ABENDs
etc.

For a quick validation of your extraction (all interface types except COBOL Converter) you can

■ use the IDLTester to validate the extraction, seeEntireX IDLTester in theDesigner documentation.
■ generate an XML mapping file (XMM) and use the EntireX XML Tester for verification. See
EntireX XML Tester in the XML/SOAPWrapper documentation.

Software AG IDL Extractor for COBOL50

Scenario I: Create New IDL and Server Mapping Files

4 Scenario II: Append to Existing IDL and Server Mapping

Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is a Designer file with extension .cvm. See Server Mapping Files for
COBOL in the Designer documentation.

To start the IDL Extractor for COBOL

■ Open the context menu of an IDL file and choose COBOL > Extract further Interface.

51

Continue with Step 2: Select a COBOL Extractor Environment or Create a NewOne as described
under Scenario I: Create New IDL and Server Mapping Files.

Software AG IDL Extractor for COBOL52

Scenario II: Append to Existing IDL and Server Mapping Files

5 Scenario III: Modify Existing IDL and Server Mapping Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is a Designer file with extension .cvm. See Server Mapping Files for
COBOL in the Designer documentation.

To start the COBOL Mapping Editor

■ Open the context menu of an IDL file and choose COBOL > Modify Interface.

53

Or:

ChooseOpen With > EntireX COBOLMapping Editor.

Software AG IDL Extractor for COBOL54

Scenario III: Modify Existing IDL and Server Mapping Files

Continue with Step 5: Select the COBOL Interface and Map to IDL Interface as described under
Scenario I: Create New IDL and Server Mapping Files.

55Software AG IDL Extractor for COBOL

Scenario III: Modify Existing IDL and Server Mapping Files

56

III COBOL Mapping Editor

See also User-defined Mapping under COBOL to IDL Mapping for guidelines on IDL extraction
by COBOL syntax.

Introduction

A COBOL source program mostly does not contain all the information needed for IDL mapping.
With the Mapping Editor you enter this missing information. In general, mapping the COBOL
data items to IDL with the Mapping Editor is a two-step process:

1. First, select the COBOL data items of the COBOL interface.

2. Then map the COBOL interface to the IDL interface. Define
■ which COBOLdata items aremapped to IDL (Select REDEFINEpaths, SuppressUnneeded
COBOL Data Items)

■ the direction of the COBOL data items (Map to [In, Out, InOut])
■ field values for COBOL data items that are not sent by clients to the COBOL server (Set
COBOL Data Items to Constant)

■ COBOL server with multiple functions (Map to Multiple IDL Interfaces)
■ COBOL server output depends on COBOL input (Map to Multiple IDL Interfaces)
■ COBOL server with conditional output (Set Multiple Possible Output (MPO) Structures)
■ COBOL table usage (Set Array Mapping (fixed <-> unbounded))
■ COBOL data items mapped to binary (Map to Binary, Revert Binary Mapping)
■ etc.

57

IDL Extraction per Interface Type

The following table provides guidelines on IDL extraction per interface type. See SupportedCOBOL
Interface Types. For the CICS interface types DFHCOMMAREA and DFHCOMMAREA Large
Buffer, the guidelines distinguish further between

■ COBOL server programs overlaying the input data structure with a different output data
structure, and

■ COBOL server programs using same structures on input and output.

You already selected this in the checkbox Input Message same as Output Message in Step 4:
Define the Extraction Settings and Start Extraction:

CICS Message on Input and OutputInterface TypeEnvironment

same (1,4)DFHCOMMAREA (3)CICS

different (2,5)

same (1)Large Buffer

different (2)

Channel Container

same (1)COBOLConverter (for use by EntireXAdapter)webMethods Integration
Server different (2)

Standard LinkageBatch

BMP with Standard LinkageIMS

MPP Message Interface (IMS Connect)

Notes:

1. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is checked. The COBOL data structure of the input message is the same
as the structure of the output message (applies to CICS or COBOL Converter).

2. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is cleared. The COBOL data structure of the input message is different to

Software AG IDL Extractor for COBOL58

COBOL Mapping Editor

the structure of the output message (that is, the output overlays the input; applies to CICS or
COBOL Converter).

3. Your DFHCOMMAREA COBOL server must be DPL-enabled to be directly supported by EntireX.
The distributed program (DPL) link function enables a CICS client program to call another CICS
program (the server program) in a remote CICS region. Technically, a COBOL server is DPL-
enabled if
■ CICS is able to call the COBOL server remotely
■ the DFHCOMMAREA layout does not contain pointers.
If your program is not DPL-enabled, seeWhat to dowith other Interface Types? in Introduction
to the IDL Extractor for COBOL.

4. See the following COBOL server examples for CICS input message the same as CICS output
message:
■ Example 1: Redefines
■ Example 2: Buffer Technique
■ Example 3: COBOL SET ADDRESS Statements

5. See the following COBOL server examples for CICS input message different to CICS output
message:
■ Example 1: Redefines
■ Example 2: Buffer Technique
■ Example 3: COBOL SET ADDRESS Statements

59Software AG IDL Extractor for COBOL

COBOL Mapping Editor

60

6 CICS with DFHCOMMAREA Calling Convention - In same

as Out
■ Introduction .. 62
■ Extracting from a CICS DFHCOMMAREA Program .. 62
■ Mapping Editor User Interface .. 64
■ Mapping Editor IDL Interface Mapping Functions ... 71
■ Programming Techniques ... 99

61

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Note the following:

■ ACICSprogramdoes not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISIONMapping.

■ The DFHCOMMAEA can be omitted in the linkage section.
■ If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, the DFHCOMMAREA on output is not overlaid
with a data structure different to the data structure on input.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type CICSwithDFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and checkbox Input Message same as Output Message is
not cleared.

Software AG IDL Extractor for COBOL62

CICS with DFHCOMMAREA Calling Convention - In same as Out

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the CICS message to COBOL Interface by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to In, Out, InOut.

2. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

63Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface typeCICSwithDFHCOMMAREA interface, the user interface of the COBOL
Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL64

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

65Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL66

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

67Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple

Set Multiple Possible Out-
put (MPO) Structures

possible output (MPO) structures and the criteria when a struc-
ture is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap to Binary operation and use the standard map-
ping.

Revert Binary Mapping

Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Software AG IDL Extractor for COBOL68

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

69Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL70

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions
in the IDL interface:

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

71Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With theMap to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ONClause) visible as an IDL unbounded group (withmaximum). TheODOobject (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use theMap to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item
TABLE):

Software AG IDL Extractor for COBOL72

CICS with DFHCOMMAREA Calling Convention - In same as Out

Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"

73Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL74

CICS with DFHCOMMAREA Calling Convention - In same as Out

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

75Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

Software AG IDL Extractor for COBOL76

CICS with DFHCOMMAREA Calling Convention - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In,Out or InOut functions available in the context menu of the COBOL inter-
face and asmapping buttons tomake the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

77Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionsMap to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

Software AG IDL Extractor for COBOL78

CICS with DFHCOMMAREA Calling Convention - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

79Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionsMap to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL80

CICS with DFHCOMMAREA Calling Convention - In same as Out

2 Select Unbounded Array and the technique for determining the number of elements.

81Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

The number of array elements is calculated using one of the following options:

■ COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

Software AG IDL Extractor for COBOL82

CICS with DFHCOMMAREA Calling Convention - In same as Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length

COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

■ COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

83Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).
77 EPARM PIC 9(2).
77 EPARM2 PIC 9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).

Software AG IDL Extractor for COBOL84

CICS with DFHCOMMAREA Calling Convention - In same as Out

05 Z-ID PIC X(20).
04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

85Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

Software AG IDL Extractor for COBOL86

CICS with DFHCOMMAREA Calling Convention - In same as Out

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

87Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL88

CICS with DFHCOMMAREA Calling Convention - In same as Out

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

89Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL90

CICS with DFHCOMMAREA Calling Convention - In same as Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

91Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL92

CICS with DFHCOMMAREA Calling Convention - In same as Out

4 Create a new MPO group.

93Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL94

CICS with DFHCOMMAREA Calling Convention - In same as Out

Use the functions to delete and to add MPO selector values:

95Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)

1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL96

CICS with DFHCOMMAREA Calling Convention - In same as Out

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

97Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Software AG IDL Extractor for COBOL98

CICS with DFHCOMMAREA Calling Convention - In same as Out

Programming Techniques

■ Example 1: Redefines
■ Example 2: Buffer Technique
■ Example 3: COBOL SET ADDRESS Statements

Example 1: Redefines

The input and output data is described with a REDEFINE as in the following example. In this case
you need to select REDEFINE path BUFFER2 for the COBOL interface.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 BUFFER1.
03 FIELD-1 PIC X(4).
03 FIELD-2 PIC X(2).

. . .
02 BUFFER2 REDEFINES BUFFER1.

03 OPERATION PIC X(1).
03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.
03 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.
* process BUFFER2

EXEC CICS RETURN.

Often a similar looking technique is used to allow full 32K input and full 32K completely different
output, thus circumventingCICS 32K restrictions somewhat: A REDEFINE is used to describe output
data that overlays the input data, that is, the CICS inputmessage is different to CICS outputmessage.
Formore information seeExample 1: Redefines in sectionCICSwith DFHCOMMAREACalling Convention
- In different to Out.

Example 2: Buffer Technique

On entry, the servermoves linkage section field(s) - often an entire buffer - into theworking storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOLdata items are describedwithin theworking storage section. You need to select WS-BUFFER
for the COBOL interface.

99Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

WORKING STORAGE SECTION.
01 WS-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IO-BUFFER PIC X(9).
. . .
PROCEDURE DIVISION USING DFHCOMMAREA.

MOVE IO-BUFFER TO WS-BUFFER.
* process the WS-BUFFER and provide result in WS-BUFFER

MOVE WS-BUFFER TO IO-BUFFER.
EXEC CICS RETURN.

Asimilar looking technique is used to allow full 32K input and full 32K completely different output,
thus circumventing CICS 32K restrictions somewhat: The buffer techniquemay be used to describe
output data that overlays the input data, that is, the CICS input message is different to CICS output
message. For more information see Example 2: Buffer Technique in section CICS with DFHCOMMAREA
Calling Convention - In different to Out.

Example 3: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used tomanipulate the interface of the CICS server. On entry,
the server addresses the data with a (dummy) structure LS-BUFFER defined in the linkage section.
You need to select LS-BUFFER for the COBOL interface.

LINKAGE SECTION.
01 LS-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION.

SET ADDRESS OF LS-BUFFER TO DFHCOMMAREA.
* process the LS-BUFFER and provide result.

EXEC CICS RETURN.

Asimilar looking technique is used to allow full 32K input and full 32K completely different output,
thus circumventing CICS 32K restrictions somewhat: COBOL SET ADDRESS statements may be
used to describe output data that overlays the input data, that is, the CICS inputmessage is different
to CICS output message. For more information see Example 3: COBOL SET ADDRESS Statements
in section CICS with DFHCOMMAREA Calling Convention - In different to Out.

Software AG IDL Extractor for COBOL100

CICS with DFHCOMMAREA Calling Convention - In same as Out

7 CICSwith DFHCOMMAREACalling Convention - In different

to Out
■ Introduction .. 102
■ Extracting from a CICS DFHCOMMAREA Program .. 102
■ Mapping Editor User Interface .. 104
■ Mapping Editor IDL Interface Mapping Functions ... 111
■ Programming Techniques .. 139

101

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Note the following:

■ ACICSprogramdoes not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISIONMapping.

■ The DFHCOMMAEA can be omitted in the linkage section.
■ If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the DFHCOMMAREA on output is overlaid
with a data structure that is different to the data structure on input. See the examples provided
under Programming Techniques.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type CICSwithDFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

Software AG IDL Extractor for COBOL102

CICS with DFHCOMMAREA Calling Convention - In different to Out

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOLdata items of the CICS inputmessage to InputMessage by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Add the COBOL data items of the CICS output message toOutput Message by using the
context menu and toolbars available in the COBOL Interface and IDL Interface. SeeNotes.

3 Continue with COBOL to IDL Mapping.

Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to.

2. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

103Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

Software AG IDL Extractor for COBOL104

CICS with DFHCOMMAREA Calling Convention - In different to Out

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

105Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL106

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to

107Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

SetMultiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap toBinary operation anduse the standardmapping.Revert Binary Mapping
Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

RemovefromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

Software AG IDL Extractor for COBOL108

CICS with DFHCOMMAREA Calling Convention - In different to Out

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

109Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL110

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu of the COBOL interface and asmapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

2 Do the same for the output message of the COBOL interface.

Notes:

111Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You canmake the COBOLODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (seeCOBOL Tables with Variable Size - DEPENDING ONClause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDLunbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

■ Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

Notes:

1. The ODO subject can be mapped to the IDL interface.

Software AG IDL Extractor for COBOL112

CICS with DFHCOMMAREA Calling Convention - In different to Out

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"

113Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL114

CICS with DFHCOMMAREA Calling Convention - In different to Out

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.
■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

115Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL116

CICS with DFHCOMMAREA Calling Convention - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the contextmenu of the COBOL interface and asmapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

117Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

Software AG IDL Extractor for COBOL118

CICS with DFHCOMMAREA Calling Convention - In different to Out

4. With the inverse functionMap to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

119Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL120

CICS with DFHCOMMAREA Calling Convention - In different to Out

2 Select Unbounded Array and the technique for determining the number of elements.

121Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

The number of array elements is calculated using one of the following options:

■ COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

Software AG IDL Extractor for COBOL122

CICS with DFHCOMMAREA Calling Convention - In different to Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length

COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

■ COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

123Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).
77 EPARM PIC 9(2).
77 EPARM2 PIC 9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).

Software AG IDL Extractor for COBOL124

CICS with DFHCOMMAREA Calling Convention - In different to Out

05 Z-ID PIC X(20).
04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

125Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

Software AG IDL Extractor for COBOL126

CICS with DFHCOMMAREA Calling Convention - In different to Out

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

127Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL128

CICS with DFHCOMMAREA Calling Convention - In different to Out

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

129Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL130

CICS with DFHCOMMAREA Calling Convention - In different to Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

131Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL132

CICS with DFHCOMMAREA Calling Convention - In different to Out

4 Create a new MPO group.

133Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL134

CICS with DFHCOMMAREA Calling Convention - In different to Out

Use the functions to delete and to add MPO selector values:

135Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)

1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL136

CICS with DFHCOMMAREA Calling Convention - In different to Out

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

137Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Software AG IDL Extractor for COBOL138

CICS with DFHCOMMAREA Calling Convention - In different to Out

Programming Techniques

■ Example 1: Redefines
■ Example 2: Buffer Technique
■ Example 3: COBOL SET ADDRESS Statements

Example 1: Redefines

The output data is described with a REDEFINE that overlays the input data as in the following ex-
ample. In this case you need to select IN-BUFFER for the input message and OUT-BUFFER for the
output message of the COBOL interface. This technique is often used to allow full 32K input and
full 32K completely different output, thus circumventing CICS 32K restrictions somewhat.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IN-BUFFER.
03 OPERATION PIC X(1).
03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.

02 OUT-BUFFER REDEFINES IN-BUFFER.
03 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.
* process the IN-BUFFER and provide result in OUT-BUFFER

EXEC CICS RETURN.

REDEFINEs can also be used to describe a single buffer used for input and output, that is, the CICS
input message is the same as the CICS output message. For more information see Example 1: Re-
defines in the section CICS with DFHCOMMAREA Calling Convention - In same as Out.

Example 2: Buffer Technique

On entry, the servermoves linkage section field(s) - often an entire buffer - into theworking storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOLdata items are describedwithin theworking storage section. You need to select IN-BUFFER
for the input message and OUT-BUFFER for the output message of the COBOL interface. This tech-
nique can be used to allow full 32K input and full 32K completely different output, thus circum-
venting CICS 32K restrictions somewhat.

139Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

WORKING STORAGE SECTION
01 IN-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.

01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION
01 DFHCOMMAREA.

02 IO-BUFFER PIC X(9).
. . .

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE IO-BUFFER TO IN-BUFFER.

* process the IN-BUFFER and provide result in OUT-BUFFER
MOVE OUT-BUFFER TO IO-BUFFER.
EXEC CICS RETURN.

The buffer technique can also be used to describe a single buffer used for input and output, that
is, the CICS input message is the same as the CICS output message. For more information see Ex-
ample 2: Buffer Technique in the sectionCICS with DFHCOMMAREACalling Convention - In same as Out.

Example 3: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used tomanipulate the interface of the CICS server. On entry,
the server addresses the input data with a (dummy) structure IN-BUFFER defined in the linkage
section. Upon return, the server addresses the output data againwith a different (dummy) structure
OUT-BUFFER defined in the linkage section. You need to select IN-BUFFER for the input message
and OUT-BUFFER for the output message of the COBOL interface. This technique can be used to
allow full 32K input and full 32K completely different output, thus circumventing CICS 32K re-
strictions somewhat.

LINKAGE SECTION.
01 IN-BUFFER.

02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.

01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION.

SET ADDRESS OF IN-BUFFER TO DFHCOMMAREA.
* process the IN-BUFFER and provide result in OUT-BUFFER

SET ADDRESS OF OUT-BUFFER TO DFHCOMMAREA.
EXEC CICS RETURN.

COBOL SET ADDRESS statements can also be used to describe a single buffer used for input and
output, that is, the CICS input message is the same as the CICS output message. For more inform-
ation seeExample 3: COBOL SET ADDRESS Statements in the sectionCICSwith DFHCOMMAREACalling
Convention - In same as Out.

Software AG IDL Extractor for COBOL140

CICS with DFHCOMMAREA Calling Convention - In different to Out

8 CICSwith DFHCOMMAREA Large Buffer Interface - In same

as Out
■ Introduction .. 142
■ Extracting from a CICS DFHCOMMAREA Large Buffer Program ... 144
■ Mapping Editor User Interface .. 145
■ Mapping Editor IDL Interface Mapping Functions ... 152

141

Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.
The COBOL server has one interface layout structure that is used for input as well as output.

LINKAGE SECTION.

01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE 'F'.
10 WM-LCB-RESERVED PIC X(3).

01 INOUT-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.
. . .

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
* process the INOUT-BUFFER and provide result

EXEC CICS RETURN.

From a programming point of view, the COBOL server behaves as follows:

Software AG IDL Extractor for COBOL142

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

DescriptionVariable

Has eye-catcher "XXXX".WM-LCB-MARKER

Has pointer to a buffer with COBOL server parameter data. This buffer
is described by a COBOL layout structure.

WM-LCB-INPUT-BUFFER

Contains size of COBOL server input parameter data.WM-LCB-INPUT-BUFFER-SIZE

Same as WM-LCB-INPUT-BUFFER.WM-LCB-OUTPUT-BUFFER

On input, same as WM-LCB-INPUT-BUFFER-SIZE.

On return, the size must match the data length returned in the COBOL
layout structure of the WM-LCB-OUTPUT-BUFFER.

WM-LCB-OUTPUT-BUFFER-SIZE

If the called COBOL server returns variable length data, that is, you have
mappedMap OCCURS DEPENDING ON or Set Arrays (Fixed <->
Unbounded), and depending on your runtime architecture, consider the
following:

■ CICS Socket Listener (EntireX Adapter or RPC Server)
Providing a length considering the actual number of occurences instead
of the maximum possible (which was provided on input), reduces
network traffic and may improve performance.

■ CICS RPC Server
Because in this architecture the marshalling is on-host, there will be no
impact on network traffic, even if the provided length is set to the
maximum possible number of occurences that was provided on input.

If the called COBOL server returns fixed-length data, there is no need to
change WM-LCB-OUTPUT-BUFFER-SIZE.

On return, a value of 'F' in this flag indicates that the called COBOL server
allocated an output buffer that had to be released by EntireX.

WM-LCB-FLAGS

WM-LCB-OUTPUT-BUFFER and WM-LCB-FLAGS are normally not changed by the called COBOL server
in this scenario.

If there is a need to return the output data in a different storage, this storage must be allocated by
EXEC CICS GETMAIN. Return the new storage address in WM-LCB-OUTPUT-BUFFER. Indicate with
WM-LCB-FLAGS='F' that the storage is released (EXEC CICS FREEMAIN) by EntireX.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

143Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, WM-LCB-OUTPUT-BUFFER is set to the same address
as WM-LCB-INPUT-BUFFER (as in the DFHCOMMAREA large buffer example above).

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface typeCICSwithDFHCOMMAREA large buffer interface, theExtractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add theCOBOLdata items of the large buffer toCOBOL Interface by using the contextmenu
or toolbar available in the COBOL Source View and COBOL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement and
the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The COBOL data items <x>
and <y> are identical, and this is the large buffer you are looking for. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL144

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface type CICS with DFHCOMMAREA large buffer interface, the user interface
of the COBOL Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

145Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL146

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

147Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

Software AG IDL Extractor for COBOL148

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple

Set Multiple Possible Out-
put (MPO) Structures

possible output (MPO) structures and the criteria when a struc-
ture is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap to Binary operation and use the standard map-
ping.

Revert Binary Mapping

Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

149Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL150

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

151Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions
in the IDL interface:

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

Software AG IDL Extractor for COBOL152

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With theMap to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ONClause) visible as an IDL unbounded group (withmaximum). TheODOobject (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use theMap to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item
TABLE):

153Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"

Software AG IDL Extractor for COBOL154

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

155Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

Software AG IDL Extractor for COBOL156

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

157Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In,Out or InOut functions available in the context menu of the COBOL inter-
face and asmapping buttons tomake the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL158

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionsMap to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

159Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

Software AG IDL Extractor for COBOL160

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionsMap to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

161Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL162

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

The number of array elements is calculated using one of the following options:

■ Large Buffer Length (bytes)
TheCOBOL server program inspects WM-LCB-INPUT-BUFFER-SIZE (large buffer length for input)
for the request and sets WM-LCB-OUTPUT-BUFFER-SIZE (large buffer length for output) for the
reply. To determine the number of array elements, the large buffer length is subtracted first to
calculate the array length. The result is then divided by the length of one array element. All
lengths are in bytes. The following COBOL snippet shows the reply of a large buffer program.
It assumes CONTRACT-BUFFERwith fix array PACKETI is the large buffer.

163Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE "F".
10 WM-LCB-RESERVED PIC X(3).
01 CONTRACT-BUFFER.

04 CONTRACT.
05 C-ID PIC X(8).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ID PIC X(8).
05 P-TEXT PIC X(30).
05 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set large buffer length depending on number of elements

COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE =
(LENGTH OF P-ID +
LENGTH OF P-TEXT +
LENGTH OF P-NUMBER) * II.

ADD LENGTH OF CONTRACT TO WM-LCB-OUTPUT-BUFFER-SIZE.
ADD LENGTH OF ZONE TO WM-LCB-OUTPUT-BUFFER-SIZE.

EXEC CICS RETURN END-EXEC.

■ COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

Software AG IDL Extractor for COBOL164

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length

COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

■ COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

165Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).
77 EPARM PIC 9(2).
77 EPARM2 PIC 9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).

Software AG IDL Extractor for COBOL166

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

05 Z-ID PIC X(20).
04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

167Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

Software AG IDL Extractor for COBOL168

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

169Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL170

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

171Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL172

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

173Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL174

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

4 Create a new MPO group.

175Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL176

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Use the functions to delete and to add MPO selector values:

177Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)

1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL178

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

179Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Software AG IDL Extractor for COBOL180

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

9 CICS with DFHCOMMAREA Large Buffer Interface - In

different to Out
■ Introduction .. 182
■ Extracting from a CICS DFHCOMMAREA Large Buffer Program ... 184
■ Mapping Editor User Interface .. 186
■ Mapping Editor IDL Interface Mapping Functions ... 193

181

Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM-LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.
The COBOL server has two fixed interface layout structures: one for input, the other for output.

LINKAGE SECTION.
01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE 'F'.
10 WM-LCB-RESERVED PIC X(3).

01 IN-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.

01 OUT-BUFFER.
02 FUNCTION-RESULT PIC S9(9) BINARY.

. . .
PROCEDURE DIVISION USING DFHCOMMAREA.
. . .

SET ADDRESS OF IN-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF OUT-BUFFER TO WM-LCB-OUTPUT-BUFFER.

* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

Software AG IDL Extractor for COBOL182

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

From a programming point of view, the COBOL server behaves as follows:

DescriptionVariable

Has eye-catcher "XXXX".WM-LCB-MARKER

Has pointer to a buffer with COBOL server input parameter data. This
buffer is described by a COBOL layout structure.

WM-LCB-INPUT-BUFFER

Contains size of COBOL server input parameter data.WM-LCB-INPUT-BUFFER-SIZE

Has pointer to a buffer with length WM-LCB-OUTPUT-BUFFER-SIZE,
where the COBOL server writes its output parameter data. This buffer is
described by a COBOL layout structure.

WM-LCB-OUTPUT-BUFFER

On input, size of WM-LCB-OUTPUT-BUFFER.

On return, the size must match the data length returned in the COBOL
layout structure of the WM-LCB-OUTPUT-BUFFER.

WM-LCB-OUTPUT-BUFFER-SIZE

If the called COBOL server returns variable length data, that is, you have
mappedMap OCCURS DEPENDING ON or Set Arrays (Fixed <->
Unbounded), and depending on your runtime architecture, consider the
following:

■ CICS Socket Listener (EntireX Adapter or RPC Server)
Providing a length considering the actual number of occurences instead
of the maximum possible (which was provided on input), reduces
network traffic and may improve performance.

■ CICS RPC Server
Because in this architecture the marshalling is on-host, there will be no
impact on network traffic, even if the provided length is set to the
maximum possible number of occurences that was provided on input.

If the called COBOL server returns fixed-length data, there is no need to
change WM-LCB-OUTPUT-BUFFER-SIZE.

On return, a value of 'F' in this flag indicates that the called COBOL server
allocated an output buffer which had to be released by EntireX

WM-LCB-FLAGS

WM-LCB-OUTPUT-BUFFER and WM-LCB-FLAGS are normally not changed by the called COBOL server
in this scenario.

If there is a need to return the output data in a different storage, this storage must be allocated by
EXEC CICS GETMAIN. Return the new storage address in WM-LCB-OUTPUT-BUFFER. Indicate with
WM-LCB-FLAGS='F' that the storage is released (EXEC CICS FREEMAIN) by EntireX.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

183Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the WM-LCB-OUTPUT-BUFFER (as in the large
buffer example above) is set to an address that is different to WM-LCB-INPUT-BUFFER.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface typeCICSwithDFHCOMMAREA large buffer, theExtractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

PressNext to open the COBOL Mapping Editor.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the input large buffer to Input Message by using the context
menu or toolbar available in theCOBOLSource View andCOBOL Interface. To do this, locate
in the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement.
The COBOL data item <x> is the input large buffer you are looking for. SeeNotes.

2 Add theCOBOLdata items of the output large buffer toOutputMessage by using the context
menu and toolbars available in the COBOL Interface and IDL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The
COBOL data item <y> is the output large buffer you are looking for. SeeNotes.

3 Continue with COBOL to IDL Mapping.

Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

Software AG IDL Extractor for COBOL184

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

185Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL186

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

187Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL188

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

189Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

SetMultiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap toBinary operation anduse the standardmapping.Revert Binary Mapping
Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

RemovefromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Software AG IDL Extractor for COBOL190

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

191Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL192

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu of the COBOL interface and asmapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

2 Do the same for the output message of the COBOL interface.

Notes:

193Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You canmake the COBOLODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (seeCOBOL Tables with Variable Size - DEPENDING ONClause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDLunbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

■ Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

Notes:

1. The ODO subject can be mapped to the IDL interface.

Software AG IDL Extractor for COBOL194

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"

195Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL196

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.
■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

197Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL198

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the contextmenu of the COBOL interface and asmapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

199Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

Software AG IDL Extractor for COBOL200

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

4. With the inverse functionMap to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

201Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL202

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

2 Select Unbounded Array and the technique for determining the number of elements.

203Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

The number of array elements is calculated using one of the following options:

■ Large Buffer Length (bytes)
TheCOBOL server program inspects WM-LCB-INPUT-BUFFER-SIZE (large buffer length for input)
for the request and sets WM-LCB-OUTPUT-BUFFER-SIZE (large buffer length for output) for the
reply. To determine the number of array elements, the large buffer length is subtracted first to
calculate the array length. The result is then divided by the length of one array element. All
lengths are in bytes. The following COBOL snippet shows the reply of a large buffer program.
It assumes CONTRACT-BUFFERwith fix array PACKETI is the large buffer.

Software AG IDL Extractor for COBOL204

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-OUTPUT-BUFFER VALUE "F".
10 WM-LCB-RESERVED PIC X(3).
01 CONTRACT-BUFFER.

04 CONTRACT.
05 C-ID PIC X(8).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ID PIC X(8).
05 P-TEXT PIC X(30).
05 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set large buffer length depending on number of elements

COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE =
(LENGTH OF P-ID +
LENGTH OF P-TEXT +
LENGTH OF P-NUMBER) * II.

ADD LENGTH OF CONTRACT TO WM-LCB-OUTPUT-BUFFER-SIZE.
ADD LENGTH OF ZONE TO WM-LCB-OUTPUT-BUFFER-SIZE.

EXEC CICS RETURN END-EXEC.

■ COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

205Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length

COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

■ COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

Software AG IDL Extractor for COBOL206

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

WORKING-STORAGE SECTION.
77 II PIC S9(4).
77 EPARM PIC 9(2).
77 EPARM2 PIC 9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).

207Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

05 Z-ID PIC X(20).
04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

Software AG IDL Extractor for COBOL208

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

209Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL210

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

211Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

Software AG IDL Extractor for COBOL212

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

213Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL214

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

215Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

4 Create a new MPO group.

Software AG IDL Extractor for COBOL216

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

5 Set MPO selector values for MPO Structures.

217Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Use the functions to delete and to add MPO selector values:

Software AG IDL Extractor for COBOL218

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

219Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI
(BV) in this example).

Software AG IDL Extractor for COBOL220

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

221Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

222

10 CICS with Channel Container Calling Convention

■ Introduction .. 224
■ Extracting from a CICS Channel Container Program ... 224
■ Mapping Editor User Interface .. 227
■ Mapping Editor IDL Interface Mapping Functions ... 234

223

Introduction

Modern CICS programs may use the CICS channels and containers model. During extraction,
containers are mapped to IDL structures. See structure-parameter-definition (IDL) under
Software AG IDL Grammar in the IDL Editor documentation.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a CICS Channel Container Program

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type CICS with channel container calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and, if required, that the channel name (max. 16 characters)
is provided. If you do not provide a channel name, "EntireXChannel" is used as the default value.

PressNext to open the COBOL Mapping Editor.

Software AG IDL Extractor for COBOL224

CICS with Channel Container Calling Convention

To select the COBOL interface data items of your COBOL server

1 Define all the CICS input containers, one after another: in the Source View, use the toolbar
icon Find text in Source and enter "EXEC CICS" to find a GET call containing "EXEC CICS
GET", function "CONTAINER" etc. Example:

EXEC CICS GET
CONTAINER(<container name constant>)
CHANNEL (<channel>)
INTO (<container>)
NOHANDLE

END-EXEC

The COBOL data item <container> is the item you are looking for. Add the COBOL data
item <container> to Input Message by using the context menu or toolbar available in the
COBOLSource View andCOBOL Interface. In the InputMessagepane, select the correspond-
ingCOBOLdata item <container>. Enter the container name, found in the value of <container
name constant>. You can select multiple CICS input containers. SeeNotes.

2 Define all the CICS output containers that are created in any case by your COBOL server using
the steps as above, but look for "EXEC CICS PUT". Example:

EXEC CICS PUT
CONTAINER(<container name constant>)
CHANNEL (<channel>)
FROM (<container>)
FLENGTH (LENGTH OF <container>)
NOHANDLE

END-EXEC

Add the corresponding COBOL data item <container> toOutput Message. In theOutput
Message pane, select the corresponding COBOL data item <container>. Enter the container
name, found in the value of <container name constant>. You can selectmultiple CICS output
containers. SeeNotes.

3 Optional. If your COBOL server createsmultiple output containers, all with the sameCOBOL
layout, map them as an array. SeeMap Array of Containers.

4 Optional. If your COBOL server creates an output container under certain conditions only,
map this container as an optional container. SeeMap Optional Containers.

5 Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

225Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

2. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

3. The container name length is restricted to 16 characters by CICS.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL226

CICS with Channel Container Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

ForCOBOL server programswithCICS channel container interface, the user interface of theCOBOL
Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

227Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL228

CICS with Channel Container Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

229Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress

Software AG IDL Extractor for COBOL230

CICS with Channel Container Calling Convention

Set COBOL data items to constant.Set Constant
Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

SetMultiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap toBinary operation anduse the standardmapping.Revert Binary Mapping
Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

RemovefromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

231Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL232

CICS with Channel Container Calling Convention

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

233Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping
■ Map Array of Containers
■ Map Optional Containers

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu of the COBOL interface and asmapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

Software AG IDL Extractor for COBOL234

CICS with Channel Container Calling Convention

2 Do the same for the output message of the COBOL interface.

Notes:

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You canmake the COBOLODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (seeCOBOL Tables with Variable Size - DEPENDING ONClause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDLunbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

■ Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

235Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

Software AG IDL Extractor for COBOL236

CICS with Channel Container Calling Convention

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

237Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL238

CICS with Channel Container Calling Convention

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

239Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ('REPLY') Out
end-define

struct 'REQUEST' is
define data parameter
1 OPERAND1 (I4)
1 OPERAND2 (I4)
end-define

struct 'REPLY' is
define data parameter
1 FUNCTION-RESULT (I4)
end-define

program 'SUBTRACT' is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ('REPLY') Out
end-define

program 'MULTIPLY' is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ('REPLY') Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

Software AG IDL Extractor for COBOL240

CICS with Channel Container Calling Convention

DescriptionFunctionIcon

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the contextmenu of the COBOL interface and asmapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

241Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Software AG IDL Extractor for COBOL242

CICS with Channel Container Calling Convention

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionMap to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

243Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL244

CICS with Channel Container Calling Convention

2 Select Unbounded Array and the technique for determining the number of elements.

245Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

The number of array elements is calculated using one of the following options:

■ Container Length (bytes)
TheCOBOL server program inspects CICS GET CONTAINERparameter FLENGTH (container length
for input) of the input container for the request and sets CICS PUT CONTAINER parameter FLENGTH
(container length for output) of the output container for the reply. To determine the number of
array elements, the container length is subtracted first to calculate the array length. The result
is then divided by the length of one array element. All lengths are in bytes. The followingCOBOL

Software AG IDL Extractor for COBOL246

CICS with Channel Container Calling Convention

snippet shows the reply of a CICS container. It assumes LS-CONTRACT-BUFFER-LAYOUTwith fixed
array PACKETI is the CICS container.

WORKING-STORAGE SECTION.
77 II PIC S9(4).
. . .
LINKAGE SECTION.
01 LS-CONTRACT-BUFFER-LAYOUT.
03 CONTRACT.
04 C-ID PIC X(8).
04 C-ACTION PIC X(4).
03 ZONE.
04 Z-NUMBER PIC 9(2).
04 Z-ID PIC X(20).
03 PACKETI OCCURS 99.
04 P-ID PIC X(8).
04 P-TEXT PIC X(30).
04 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set container length depending on number of elements

COMPUTE WS-LENGTH =
(LENGTH OF P-ID +
LENGTH OF P-TEXT +
LENGTH OF P-NUMBER) * II.

ADD LENGTH OF CONTRACT TO WS-LENGTH.
ADD LENGTH OF ZONE TO WS-LENGTH.

* Reply CICS container
EXEC CICS PUT

CONTAINER (WS-CONTRACT-BUFFER-NAME)
FROM (LS-CONTRACT-BUFFER-LAYOUT)
FLENGTH (WS-LENGTH)
RESP (WS-RESP)
RESP2

END-EXEC.

■ COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following

247Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length

COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

■ COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

Software AG IDL Extractor for COBOL248

CICS with Channel Container Calling Convention

WORKING-STORAGE SECTION.
77 II PIC S9(4).
77 EPARM PIC 9(2).
77 EPARM2 PIC 9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).

249Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

05 Z-ID PIC X(20).
04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with Containers
■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

Software AG IDL Extractor for COBOL250

CICS with Channel Container Calling Convention

■ Steps

Multiple Possible Output with Containers

Containers can be used to describe the possible output structures. The COBOL server program
decides at runtime which container is created and returned. In this way the output varies.

Containers are ideal for mapping MPO cases. The MPO selector and its value are contained in a
different container, this is created by your COBOL server in any case. In this way, the caller of
your COBOL server can investigate the MPO selector first to find out which MPO container was
returned.

To map MPO with containers

1 Map the container with the MPO selector as a simple output container. See Extracting from
a CICS Channel Container Program.

2 Map all MPO containers as optional containers, seeMap Optional Containers.

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

251Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

Software AG IDL Extractor for COBOL252

CICS with Channel Container Calling Convention

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

253Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

Software AG IDL Extractor for COBOL254

CICS with Channel Container Calling Convention

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).
02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.

255Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL256

CICS with Channel Container Calling Convention

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

257Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

This section is for multiple possible output (MPO) with REEFINES or groups only. For multiple
possible output (MPO) with containers, seeMultiple Possible Output with Containers.

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

Software AG IDL Extractor for COBOL258

CICS with Channel Container Calling Convention

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

4 Create a new MPO group.

259Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL260

CICS with Channel Container Calling Convention

Use the functions to delete and to add MPO selector values:

261Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ('REPLY') Out
end-define

struct 'REQUEST' is
define data parameter
1 ORDER-NUMBER (NU10)
end-define

struct 'REPLY' is
define data parameter
1 PAYMENT-TYPE (AV2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)
end-define

Software AG IDL Extractor for COBOL262

CICS with Channel Container Calling Convention

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

263Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI
(BV) in this example).

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL264

CICS with Channel Container Calling Convention

Map Array of Containers

If your COBOL server program creates a series of output containers, you canmap them to an array
of containers if the COBOL layout used is the same for each container and the container names
are formed using a prefix.

In the example below, each container layout is described with COBOL data item
WS-EMPLOYEE-RECORDS-LAYOUT, "EMPLOYEE" is the prefix used for each container name and 0 to 999
containers may be created.

DATA DIVISION.
WORKING-STORAGE-SECTION.

* Direction OUT Container Names
01 WS-EMPLOYEE-RECORDS-NAME PIC X(16) VALUE "EMPLOYEE000".
01 REDEFINES WS-EMPLOYEE-RECORDS-NAME.
02 WS-EMPLOYEE-RECORDS-PRE PIC X(8).
02 WS-EMPLOYEE-RECORDS-NUM PIC 3.
02 FILLER PIC X(5).

. . .
01 WS-EMPLOYEE-RECORDS-LAYOUT.
02 EMPLOYEE-NAME PIC X(32).
02 EMPLOYEE-BIRTH PIC 9(8).

. . .
PROCEDURE DIVISION.

MAIN SECTION.
. . .

PERFORM 0 ... 999 TIMES
PERFORM 9100-REPLY-EMPLOYEE-RECORDS

END-PERFORM.
. . .

9100-REPLY-EMPLOYEE-RECORDS.
IF (WS-EMPLOYEE-RECORDS-NUM IS >= 999) THEN

* Overflow
EXEC CICS ABEND

ABCODE(ABEND-CONTAINER-OVF)
END-EXEC

END-IF.
ADD 1 to WS-EMPLOYEE-RECORDS-NUM.
EXEC CICS PUT

CONTAINER (WS-EMPLOYEE-RECORDS-NAME)
FROM (WS-EMPLOYEE-RECORDS-LAYOUT)
FLENGTH (LENGTH OF WS-EMPLOYEE-RECORDS-LAYOUT)
RESP (WS-RESP)
RESP2 (WS-RESP2)

END-EXEC.
IF (WS-RESP NOT = DFHRESP(NORMAL)) THEN
EXEC CICS ABEND

ABCODE(ABEND-CONTAINER-MOV)
END-EXEC

END-IF.

265Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

To map an array of containers

1 Locate the container layout and container name as described under Extracting from a CICS
Channel Container Program.

2 Add the container layout to theOutput Message.

3 Enter the prefix as the container name, set the columnArray in the wizard to "Yes" and enter
the maximum number of occurrences for the container in theMax column.

Notes:

1. The container name length is restricted to 16 characters by CICS.

2. Make sure all containers related to this array created by your COBOL server program can be
uniquely identified by its prefix and the number of created containers fit into the array bound-
aries. Set theMax column accordingly.

3. The easiest way is to use numbers as the suffix as in the COBOL program example above. If
you do so, your COBOL program builds a container name using the prefix and enlarges it with
the suffix. In the example, the COBOL server creates a maximum of 999 containers, resulting
in container names EMPLOYEE001 - EMPLOYEE999. In theMax column, 999 is set to be able to hold
all possibly created containers.

Software AG IDL Extractor for COBOL266

CICS with Channel Container Calling Convention

4. Containers are delivered in the array in lexicographical order of their names. Because each
container name has the same prefix, the lexicographical order of the suffix is relevant for it.

5. As a minimum, 2 can be specified in theMax column. If you enter 1, "Optional" will be forced
in the column Array. Technically, an optional container is the same as an array of containers
with upper limit 1. SeeMap Optional Containers.

Map Optional Containers

If your COBOL server program creates an output container under certain conditions only, map it
as an optional container.

To map an optional container

1 Locate the container layout and container name as described under Extracting from a CICS
Channel Container Program.

2 Add the container layout to theOutput Message.

3 Enter the container name and set the columnArray in thewizard to "Optional". Thiswill force
the maximum number of occurrences for container in theMax column to 1.

Notes:

1. Make sure your COBOL server program either creates the container with the name defined or
does not create it.

2. Technically, an optional container is the same as an array of containers with 1 as upper limit (1
set in theMax column).

3. At runtime, the container array with upper limit 1 either contains the container if created by
your COBOL server, or is empty (no item) if it not created.

267Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

268

11 COBOL Converter - In same as Out

■ Introduction .. 270
■ Extracting a COBOL Converter ... 270
■ Mapping Editor User Interface .. 272
■ Mapping Editor IDL Interface Mapping Functions ... 279

269

Introduction

A file containing valid COBOL data items describing the COBOL payload can be used to extract
a COBOL converter for the EntireXAdapter. If you have selected an IDLfile and opened theCOBOL
Mapping Editor with an existing COBOL to IDL mapping, continue withMapping Editor User
Interface.

Extracting a COBOL Converter

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, the output is not overlaid with a data structure
different to the data structure on input.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type COBOL Converter, the Extractor Settings dialog appears (see
also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and checkbox Input Message same as Output Message is
not cleared.

PressNext to open the COBOL Mapping Editor.

Software AG IDL Extractor for COBOL270

COBOL Converter - In same as Out

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface by using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

271Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface type COBOL Converter, the user interface of the COBOL Mapping Editor
looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL272

COBOL Converter - In same as Out

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

273Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL274

COBOL Converter - In same as Out

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

275Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple

Set Multiple Possible Out-
put (MPO) Structures

possible output (MPO) structures and the criteria when a struc-
ture is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap to Binary operation and use the standard map-
ping.

Revert Binary Mapping

Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

Remove fromCOBOL Inter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Software AG IDL Extractor for COBOL276

COBOL Converter - In same as Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

277Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL278

COBOL Converter - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions
in the IDL interface:

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

279Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map OCCURS DEPENDING ON

With theMap to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ONClause) visible as an IDL unbounded group (withmaximum). TheODOobject (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use theMap to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item
TABLE):

Notes:

Software AG IDL Extractor for COBOL280

COBOL Converter - In same as Out

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

281Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL282

COBOL Converter - In same as Out

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

283Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

Software AG IDL Extractor for COBOL284

COBOL Converter - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In,Out or InOut functions available in the context menu of the COBOL inter-
face and asmapping buttons tomake the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

285Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionsMap to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

Software AG IDL Extractor for COBOL286

COBOL Converter - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

287Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionsMap to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL288

COBOL Converter - In same as Out

2 Select Unbounded Array and the technique for determining the number of elements.

289Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

The number of array elements is calculated using one of the following options:

■ COBOL Converter length (bytes)
For input, the COBOLConverter uses the length of byte array cobolInput as COBOLConverter
length. For output, the length of byte array cobolOutput has to be used accordingly. To determine
the number of array elements, the length of the byte array is subtracted first to calculate the array
length. The result is then divided by the length of one array element. All lengths are in bytes.
The following COBOL snippet shows the layout of a COBOL interface with fixed-size array
PACKETI used in this manner:

Software AG IDL Extractor for COBOL290

COBOL Converter - In same as Out

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filled with 15 occurrences. The length of byte array cobolInput is
calculated then as follows: (LENGTH OF ZONE) + (LENGTH OF CONTRACT) + (LENGTH OF P-ITEM) *
15.
The number of array elements of the fixed-size array PACKETI is implicitly contained in the
COBOL converter length.

■ COBOL data item contains array length (bytes)
For input, The COBOL Converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobolOutput. This COBOL data item contains the
array length. To determine the number of array elements, the contents of the COBOL data item
are divided by the length of one array element. All lengths are in bytes. The following COBOL
snippet shows the layout of a COBOL interface with fixed-size array PACKETI and C-BYTES as
the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filledwith 7 occurrences. The contents of COBOLdata item C-BYTES
are calculated as follows: (LENGTH OF P-ITEM) * 7.
The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL
data item C-BYTES.

291Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

■ COBOL data item contains length of valid data within messages (bytes)
For input, The COBOL converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobolOutput. To determine the number of array
elements, the contents of the COBOL data item are subtracted first to calculate the array length.
The result is then divided by the length of one array element. The length of the transferred ap-
plication data within the message can be shorter than COBOL converter length. All lengths are
in bytes. The following COBOL snippet shows the layout of a COBOL interface with fixed-size
array PACKETI and C-APPDATA as the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filled with 31 occurrences. The contents of COBOL data item
C-APPDATA are calculated as follows: (LENGTH OF CONTRACT) + (LENGTH OF P-ITEM) * 31.
The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL
data item C-APPDATA.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.

Software AG IDL Extractor for COBOL292

COBOL Converter - In same as Out

06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

293Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

Software AG IDL Extractor for COBOL294

COBOL Converter - In same as Out

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

295Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL296

COBOL Converter - In same as Out

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

297Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL298

COBOL Converter - In same as Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

299Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL300

COBOL Converter - In same as Out

4 Create a new MPO group.

301Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL302

COBOL Converter - In same as Out

Use the functions to delete and to add MPO selector values:

303Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)

1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL304

COBOL Converter - In same as Out

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

305Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Software AG IDL Extractor for COBOL306

COBOL Converter - In same as Out

12 COBOL Converter - In different to Out

■ Introduction .. 308
■ Extracting a COBOL Converter ... 308
■ Mapping Editor User Interface .. 310
■ Mapping Editor IDL Interface Mapping Functions ... 317

307

Introduction

A file containing valid COBOL data items describing the COBOL payload can be used to extract
a COBOL converter for the EntireXAdapter. If you have selected an IDLfile and opened theCOBOL
Mapping Editor with an existing COBOL to IDL mapping, continue withMapping Editor User
Interface.

Extracting a COBOL Converter

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the output is overlaid with a data structure
that is different to the data structure on input.

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type COBOL Converter, the Extractor Settings dialog appears (see
also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

PressNext to open the COBOL Mapping Editor.

Software AG IDL Extractor for COBOL308

COBOL Converter - In different to Out

To select the COBOL interface data items of your COBOL server

1 Add theCOBOLdata items of the inputmessage to InputMessage by using the contextmenu
or toolbar available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Add the COBOL data items of the output message toOutput Message by using the context
menu and toolbars available in the COBOL Interface and IDL Interface. SeeNotes.

3 Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

309Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

Software AG IDL Extractor for COBOL310

COBOL Converter - In different to Out

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

311Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL312

COBOL Converter - In different to Out

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to

313Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

SetMultiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap toBinary operation anduse the standardmapping.Revert Binary Mapping
Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

RemovefromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

Software AG IDL Extractor for COBOL314

COBOL Converter - In different to Out

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

315Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL316

COBOL Converter - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu of the COBOL interface and asmapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

2 Do the same for the output message of the COBOL interface.

Notes:

317Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You canmake the COBOLODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (seeCOBOL Tables with Variable Size - DEPENDING ONClause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDLunbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

■ Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

Notes:

1. The ODO subject can be mapped to the IDL interface.

Software AG IDL Extractor for COBOL318

COBOL Converter - In different to Out

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"

319Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL320

COBOL Converter - In different to Out

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.
■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

321Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL322

COBOL Converter - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the contextmenu of the COBOL interface and asmapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

323Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionMap to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Software AG IDL Extractor for COBOL324

COBOL Converter - In different to Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

325Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL326

COBOL Converter - In different to Out

2 Select Unbounded Array and the technique for determining the number of elements.

327Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

The number of array elements is calculated using one of the following options:

■ COBOL Converter length (bytes)
For input, the COBOLConverter uses the length of byte array cobolInput as COBOLConverter
length. For output, the length of byte array cobolOutput has to be used accordingly. To determine
the number of array elements, the length of the byte array is subtracted first to calculate the array
length. The result is then divided by the length of one array element. All lengths are in bytes.
The following COBOL snippet shows the layout of a COBOL interface with fixed-size array
PACKETI used in this manner:

Software AG IDL Extractor for COBOL328

COBOL Converter - In different to Out

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filled with 15 occurrences. The length of byte array cobolInput is
calculated then as follows: (LENGTH OF ZONE) + (LENGTH OF CONTRACT) + (LENGTH OF P-ITEM) *
15.
The number of array elements of the fixed-size array PACKETI is implicitly contained in the
COBOL converter length.

■ COBOL data item contains array length (bytes)
For input, The COBOL Converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobolOutput. This COBOL data item contains the
array length. To determine the number of array elements, the contents of the COBOL data item
are divided by the length of one array element. All lengths are in bytes. The following COBOL
snippet shows the layout of a COBOL interface with fixed-size array PACKETI and C-BYTES as
the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filledwith 7 occurrences. The contents of COBOLdata item C-BYTES
are calculated as follows: (LENGTH OF P-ITEM) * 7.
The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL
data item C-BYTES.

329Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

■ COBOL data item contains length of valid data within messages (bytes)
For input, The COBOL converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobolOutput. To determine the number of array
elements, the contents of the COBOL data item are subtracted first to calculate the array length.
The result is then divided by the length of one array element. The length of the transferred ap-
plication data within the message can be shorter than COBOL converter length. All lengths are
in bytes. The following COBOL snippet shows the layout of a COBOL interface with fixed-size
array PACKETI and C-APPDATA as the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filled with 31 occurrences. The contents of COBOL data item
C-APPDATA are calculated as follows: (LENGTH OF CONTRACT) + (LENGTH OF P-ITEM) * 31.
The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL
data item C-APPDATA.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.

Software AG IDL Extractor for COBOL330

COBOL Converter - In different to Out

06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

331Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

Software AG IDL Extractor for COBOL332

COBOL Converter - In different to Out

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

333Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL334

COBOL Converter - In different to Out

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

335Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL336

COBOL Converter - In different to Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

337Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL338

COBOL Converter - In different to Out

4 Create a new MPO group.

339Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL340

COBOL Converter - In different to Out

Use the functions to delete and to add MPO selector values:

341Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)

1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL342

COBOL Converter - In different to Out

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI
(BV) in this example).

343Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL344

COBOL Converter - In different to Out

13 Batch with Standard Linkage Calling Convention

■ Introduction .. 346
■ Extracting from a Standard Call Interface .. 346
■ Mapping Editor User Interface .. 348
■ Mapping Editor IDL Interface Mapping Functions ... 355

345

Introduction

Because COBOL servers with a standard call interface always contain a PROCEDURE DIVISION
header (see PROCEDURE DIVISIONMapping) with all parameters, the COBOL data items of the in-
terface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard.
In most cases the offered COBOL data items will be correct, but you should always check them
manually.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from a Standard Call Interface

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL source with interface type Batch with standard linkage calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

PressNext to open the COBOL Mapping Editor.

Software AG IDL Extractor for COBOL346

Batch with Standard Linkage Calling Convention

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface, using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

347Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL348

Batch with Standard Linkage Calling Convention

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

349Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL350

Batch with Standard Linkage Calling Convention

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

351Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

Set Multiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap to Binary operation and use the standard map-
ping.

Revert Binary Mapping

Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

Remove fromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Software AG IDL Extractor for COBOL352

Batch with Standard Linkage Calling Convention

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

353Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL354

Batch with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions
in the IDL interface:

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

355Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With theMap to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ONClause) visible as an IDL unbounded group (withmaximum). TheODOobject (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use theMap to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item
TABLE):

Software AG IDL Extractor for COBOL356

Batch with Standard Linkage Calling Convention

Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"

357Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL358

Batch with Standard Linkage Calling Convention

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

359Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

Software AG IDL Extractor for COBOL360

Batch with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In,Out or InOut functions available in the context menu of the COBOL inter-
face and asmapping buttons tomake the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

361Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionsMap to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

Software AG IDL Extractor for COBOL362

Batch with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

363Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionsMap to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology
■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".

Software AG IDL Extractor for COBOL364

Batch with Standard Linkage Calling Convention

88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

365Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

Software AG IDL Extractor for COBOL366

Batch with Standard Linkage Calling Convention

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

367Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).
02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.

Software AG IDL Extractor for COBOL368

Batch with Standard Linkage Calling Convention

02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

369Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL370

Batch with Standard Linkage Calling Convention

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

371Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

4 Create a new MPO group.

Software AG IDL Extractor for COBOL372

Batch with Standard Linkage Calling Convention

5 Set MPO selector values for MPO Structures.

373Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Use the functions to delete and to add MPO selector values:

Software AG IDL Extractor for COBOL374

Batch with Standard Linkage Calling Convention

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).

375Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL376

Batch with Standard Linkage Calling Convention

377Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

378

14 IMS BMP with Standard Linkage Calling Convention

■ Introduction .. 380
■ Extracting from an IMS BMP Standard Call Interface .. 380
■ Mapping Editor User Interface .. 382
■ Mapping Editor IDL Interface Mapping Functions ... 389

379

Introduction

If your IMSBMPprogram contains PCBpointers, you have assigned the IMSPSB list in the previous
step Step 4: Define the Extraction Settings and Start Extraction. If a required IMS PSB list is not
assigned, the PCB pointers are not detected; go back to Step 4: Define the Extraction Settings and
Start Extraction and assign the IMS PSB list first.

If the IMS PSB list is correctly assigned, the COBOL data items (including the PCB pointers) can
be evaluated by the extractor because this type of COBOL server contains a PROCEDURE DIVISION
header (see PROCEDURE DIVISIONMapping) with all parameters. Inmost cases the offered COBOL
data items will be correct, but you should always check them manually.

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from an IMS BMP Standard Call Interface

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type IMSBMPwith standard linkage calling convention, theExtractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

Software AG IDL Extractor for COBOL380

IMS BMP with Standard Linkage Calling Convention

You can set optionally the IMS PSB List. If your COBOL server contains PCB pointers, choose
Browse. Otherwise, the PCB pointers are not detected and cannot be provided by the RPC Server
for IMS to your COBOL server at runtime, and unexpected behavior may occur. For the contents
of the IMS PSB list, see IMS PCB Pointer IDL Rules.

To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. SeeNotes.

2 Continue with COBOL to IDL Mapping.

Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

4. Make sure the PCB pointers are also selected at the correct position.

The user interface of the COBOL Mapping Editor is described below.

381Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

Software AG IDL Extractor for COBOL382

IMS BMP with Standard Linkage Calling Convention

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

383Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL384

IMS BMP with Standard Linkage Calling Convention

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to In | Out | InOut

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant

385Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

Set Multiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap to Binary operation and use the standard map-
ping.

Revert Binary Mapping

Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

Remove fromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Software AG IDL Extractor for COBOL386

IMS BMP with Standard Linkage Calling Convention

Scalar parameter, mapped to In.

Scalar parameter, mapped to InOut.

Scalar parameter, mapped to Out.

Group parameter, here mapped to InOut.

REDEFINE parameter, here mapped to InOut.

Parameter set to Constant.

Mapping Buttons

The following buttons are available:

Map to In | Out | InOut ->
SeeMap to In, Out, InOut. A suppressedCOBOLdata item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

387Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

Software AG IDL Extractor for COBOL388

IMS BMP with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to In, Out, InOut
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With theMap to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

To provide IDL directions

■ Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions
in the IDL interface:

Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

389Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With theMap to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ONClause) visible as an IDL unbounded group (withmaximum). TheODOobject (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use theMap to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item
TABLE):

Software AG IDL Extractor for COBOL390

IMS BMP with Standard Linkage Calling Convention

Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"

391Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

Software AG IDL Extractor for COBOL392

IMS BMP with Standard Linkage Calling Convention

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.

393Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

Software AG IDL Extractor for COBOL394

IMS BMP with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to In,Out or InOut functions available in the context menu of the COBOL inter-
face and asmapping buttons tomake the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

395Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functionsMap to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

Software AG IDL Extractor for COBOL396

IMS BMP with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

397Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionsMap to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology
■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".

Software AG IDL Extractor for COBOL398

IMS BMP with Standard Linkage Calling Convention

88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

399Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

Software AG IDL Extractor for COBOL400

IMS BMP with Standard Linkage Calling Convention

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

401Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).
02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.

Software AG IDL Extractor for COBOL402

IMS BMP with Standard Linkage Calling Convention

02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

403Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL404

IMS BMP with Standard Linkage Calling Convention

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

405Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

4 Create a new MPO group.

Software AG IDL Extractor for COBOL406

IMS BMP with Standard Linkage Calling Convention

5 Set MPO selector values for MPO Structures.

407Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Use the functions to delete and to add MPO selector values:

Software AG IDL Extractor for COBOL408

IMS BMP with Standard Linkage Calling Convention

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).

409Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL410

IMS BMP with Standard Linkage Calling Convention

411Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

412

15 IMS MPP Message Interface (IMS Connect)

■ Introduction .. 414
■ Extracting from an IMS MPP Message Interface Program .. 415
■ Mapping Editor User Interface .. 418
■ Mapping Editor IDL Interface Mapping Functions ... 426

413

Introduction

Depending on the programming style used in the IMS processing program (MPP) and the various
techniques for accessing the IMS input and output messages, finding the relevant COBOL data
structures can be a complex and time-consuming task that may require IMS programming
knowledge.

IMS Message Processing Programs (MPPs) work as follows:

■ IMSmessage processing programs (MPP) are invokedusing an IMS transaction code. Transaction
codes are linked to programs by the IMS system definition.

■ An IMS message processing program (MPP) gets its parameters through an IMS message and
returns the result by sending an output message to IMS. The structure of both messages is
defined in the COBOL source programduring the application design phase. Sender and receiver
of the message must use the same data structure to interpret the message content.

■ The server program accesses input and output messages using the IMS system call CALL
'CBLTDLI' USING <function> IOPCB <message>. The parameters are as follows:

DescriptionParameter

Flag indicating that an input message is to be read. In this case <message> describes the
input message.

GU

Flag indicating that an output message is to be written. In this case <message> describes
the output message.

ISRT

The IO PCB pointer. An IMS-specific section defined in the linkage section of the program
to access the IMS input and output message queue.

IOPCB

The layout of the message. For GU it is the structure of the input message, for ISRT it is the
structure of the output message. The first two fields in every message (input as well as

<message>

output), LL and ZZ, are technical fields, each two bytes long. LL contains the length of the
message. The third field in an inputmessage contains the transaction code and has a variable
length (commonly 8 or 9 bytes). IMS can link one program to various different transaction
codes. For each transaction, the program can apply a separate logic, or even accept a separate
message layout.

Notes:

Software AG IDL Extractor for COBOL414

IMS MPP Message Interface (IMS Connect)

1. Instead of the IOPCB pointer, CALL 'CBLTDLI' statements are also used with database PCB
pointers to access IMS databases.

2. IOPCB, GU and ISRT are defined in the COBOL source (often in a copybook) using COBOL
data items. Names can differ in your program. The value of the COBOL VALUE clauses with
'GU' and 'ISRT' is fixed. In the example below, the IMS system call would be CALL 'CBLTDLI'
USING FCT-GU IO-PCB <message> to read the input message:

WORKING-STORAGE SECTION.
. . .

* DLI Function Codes
77 FCT-GU PIC X(4) VALUE 'GU '.
77 FCT-ISRT PIC X(4) VALUE 'ISRT'.
. . .
LINKAGE SECTION.
. . .
1 IO-PCB.
3 LTERM-NAME PIC X(8).
3 FILLER PIC X(2).
3 IO-STATUS PIC X(2).

. . .

If you have selected an IDL file and opened the COBOLMapping Editor with an existing COBOL
to IDL mapping, continue withMapping Editor User Interface.

Extracting from an IMS MPP Message Interface Program

If you are extracting IDL from aCOBOL source or extending the IDLfile by extracting an additional
COBOL sourcewith interface type IMSMPPmessage interface (IMSConnect), theExtractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and specify how you want the transaction name to be de-
termined.

There are two ways of defining Transaction Name:

415Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

■ Fixed Value
CheckTransactionName and specify a fixed value for the transaction name in extractor settings.
Your IDL interface is free of this technical parameter, and RPC clients do not have to specify it
at runtime.

Specify the length of the transaction field, which is usually the third physical field starting from
offset 5 (bytes) declared in the input message layout within the server program. Example:

1 INPUT-MESSAGE.
2 INPUT-IMS-META.
3 INPUT-LL PIC S9(3) BINARY.
3 INPUT-ZZ PIC S9(3) BINARY.
3 INPUT-TRANSACTION PIC X(10).
2 INPUT-DATA.
3 OPERATION PIC X(1).
3 OPERAND1 PIC S9(9) BINARY.
3 OPERAND2 PIC S9(9) BINARY.

In this example, the length to specify is "10".
■ Dynamically at Runtime
Check Create IDL parameter for Transaction Name.... Your IDL Interfacewill contain an IDL
parameter for the transaction name. RPC clients are responsible for setting the correct transaction
name dynamically at runtime.

To select the COBOL interface data items of your COBOL server

1 Define the IMS MPP (IMS Connect) input message. With toolbar icon Find text in Source ,
enter "CBLTDLI" to look for an IMS system call containing 'CBLTDLI', function GU and the
IOPCB pointer, example:

Software AG IDL Extractor for COBOL416

IMS MPP Message Interface (IMS Connect)

CALL 'CBLTDLI' USING GU IOPCB input_message

Add the relevant COBOLdata items of input_message to InputMessage by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. The relevant
COBOL data items are contained in fields after the technical fields LL (length of message), ZZ
and the COBOL data item containing the transaction code which is mostly the third physical
field starting from offset 5 (bytes) in the input_message. Do not select the fields LL, ZZ and
the transaction code. SeeNotes.

2 Similar to step 1, define the IMS MPP (IMS Connect) output message. Enter "CBLTDLI" in
toolbar icon Find text in Source to look for an IMS system call containing "CBLTDLI",
function ISRT and the IOPCB pointer, example:

CALL 'CBLTDLI' USING ISRT IOPCB <output-message>

Select the corresponding output_message in COBOL Interface. SeeNotes.

Select the relevant COBOL data items of output_message toOutput Message by using the
context menu or toolbar. The relevant COBOL data items are the fields after the technical
fields LL (length of message) and ZZ. Also, do not select LL and ZZ here.

3 Continue with COBOL to IDL Mapping.

Notes:

1. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

417Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

■ COBOL Program Selection
■ COBOL Source View
■ COBOL to IDL Mapping

For COBOL server programs with IMS MPP message interface (IMS Connect), the user interface
of the COBOL Mapping Editor looks like this:

1.

2.

3.

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

Software AG IDL Extractor for COBOL418

IMS MPP Message Interface (IMS Connect)

3. COBOL to IDLMapping. Tree view of your selected COBOL data items andmapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL programwith its mapping by selecting the name in the combo box.

419Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL Source View

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor withModify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.

Add selected COBOL data item to COBOL Interface as Output Message.

Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

Reset COBOL Interface to initial state.

Showdialog tomodify COBOL Source Characteristics. Not available for interface typeCOBOL
Converter.
Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL420

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping

This section covers the following topics:

■ COBOL Interface
■ Mapping Buttons
■ IDL Interface

COBOL Interface

TheCOBOL Interface shows a tree viewof your selectedCOBOLdata itemsdescribing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides
mapping and other functions. On someCOBOLdata items, decision icons indicatewhere particular
attention is needed, including mapping icons to visualize the COBOL data type and your current
mapping.

The COBOLdata itemnames are derived from the COBOL source fromwhich theywere extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

The appearance of the COBOL Interface depends on how the transaction name is specified in the
Extractor Settings:

■ If Transaction Name is checked, a hidden parameter with this fixed value appears:

■ IfCreate IDL parameter for TransactionName... is checked, the IDL parameter "TRANCODE" sets
the transaction name dynamically at runtime.

421Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The contextmenu on COBOL data items provides the followingmapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

A suppressedCOBOLdata item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Map to

Suppress unneeded COBOL data items.Suppress
Set COBOL data items to constant.Set Constant
Map an array to a fixed sized or unbounded array.Set Array Mapping
Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-

SetMultiple Possible Out-
put (MPO) Structures

sible output (MPO) structures and the criteria when a structure
is used.
Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). SeeMap to

Map to Binary

Binary and Revert Binary Mapping underMapping Editor IDL
Interface Mapping Functions.
Undo theMap toBinary operation anduse the standardmapping.Revert Binary Mapping
Remove the data item from the COBOL interface. This also re-
moves themapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

RemovefromCOBOLInter-
face

See alsoMapping Editor IDL Interface Mapping Functions.

Software AG IDL Extractor for COBOL422

IMS MPP Message Interface (IMS Connect)

Toolbar
The toolbar offers the following actions:

Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.
Remove current IDL Interface.

Rename current IDL Interface.

Expand the full tree.

Collapse the full tree.

See alsoMap to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
path for yourmapping to In, Out or InOut using the contextmenu. If youmap a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

Scalar parameter, mapped to In.

Scalar parameter, mapped to Out.

Group parameter, here mapped to In.

REDEFINE parameter, here mapped to Out.

Parameter set to Constant.

423Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Mapping Buttons

The following buttons are available:

Note: In this example, a fixed value for transaction name was specified in the Extractor
Settings.

Map to ->
AsuppressedCOBOLdata itembecomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a contextmenu is also availablewith the following
possibilities:

■ Rename the IDL parameter.
■ Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

The appearance of the IDL Interface depends on how the transaction name is specified in the Ex-
tractor Settings. See Extracting from an IMS MPP Message Interface Program.

Software AG IDL Extractor for COBOL424

IMS MPP Message Interface (IMS Connect)

■ Fixed Value
In the COBOL Interface pane the first parameter shows the value for your transaction name in
square brackets. There is no IDL parameter contained in the IDL Interface for it. Your IDL inter-
face is free of this technical parameter, and RPC clients do not have to specify it at runtime.

■ Dynamically at Runtime
Your IDL Interface contains an IDLparameter for the transaction name ("TRANCODE"). RPC clients
set the name dynamically at runtime.

425Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

■ Map to
■ Map OCCURS DEPENDING ON
■ Map to Multiple IDL Interfaces
■ Select REDEFINE Paths
■ Suppress Unneeded COBOL Data Items
■ Set COBOL Data Items to Constants
■ Set Arrays (Fixed <-> Unbounded)
■ Set Multiple Possible Output (MPO) Structures
■ Map to Binary and Revert Binary Mapping

Map to

With theMap to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the contextmenu of the COBOL interface and asmapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

2 Do the same for the output message of the COBOL interface.

Notes:

Software AG IDL Extractor for COBOL426

IMS MPP Message Interface (IMS Connect)

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOLData Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

With theMap to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ONClause) visible as an IDL unbounded group (withmaximum). TheODOobject (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

To map OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use theMap to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item
TABLE):

Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

427Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

3. IDL directions are described in the direction-attribute in attribute-list under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

. . .

01 OPERATION PIC X(1).
01 OPERAND1 PIC S9(9) BINARY.
01 OPERAND2 PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.
. . .
MOVE 0 TO FUNCTION-RESULT.
EVALUATE OPERATION

WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT

WHEN "-"
SUBTRACT OPERAND2 FROM OPERAND1
GIVING FUNCTION-RESULT

WHEN "*"
MULTIPLY OPERAND1 BY OPERAND2
GIVING FUNCTION-RESULT

WHEN . . .

Software AG IDL Extractor for COBOL428

IMS MPP Message Interface (IMS Connect)

END-EVALUATE.
. . .

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

■ Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

■ Web service
Instead of having aWeb servicewith a single operation generatedwith theWeb ServicesWrapper,
you get a web service with multiple operations, one operation for each COBOL function.

■ DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

To map a COBOL interface to multiple IDL interfaces

1 Select the tabwith COBOL to IDLMapping. For each function, define a separate IDL interface
with the toolbar functions or :

2 Give the IDL interfaces meaningful names with the toolbar function :

429Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

For the delivered Example 1: COBOL Server with Multiple Functions:

■ First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
■ Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY'.
■ Third, for step 3 above: Define the constants '+', '-' and '*' to the parameter OPERATION respectively.
■ Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

Software AG IDL Extractor for COBOL430

IMS MPP Message Interface (IMS Connect)

library 'EXAMPLE' is

program 'ADD' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'SUBTRACT' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' is
define data parameter
1 OPERAND1 (I4) In
1 OPERAND2 (I4) In
1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

DescriptionFunctionIcon

Creates a new IDL interface based on the current COBOL interface.
All IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Create IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Copy current IDL Interface

The default name for the IDL interface is based on theCOBOLprogram
name plus appended number. With this function you can give the IDL
interface a suitable name.

Rename current IDL
Interface

Deletes the current IDL interface.Remove current IDL
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of functionMap toOperation
of EntireX version 9.6 and earlier.

431Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

To select redefine paths

■ Use theMap to function available in the contextmenu of the COBOL interface and asmapping
button to make the COBOL REDEFINE path available in the IDL interface.

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can bemapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINEpaths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL432

IMS MPP Message Interface (IMS Connect)

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

■ for FILLER data items
■ if the consuming RPC client or IS service does not need an Out parameter
■ if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

To suppress unneeded COBOL data items

■ Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

433Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

4. With the inverse functionMap to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
botheredwith IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction withMap to Multiple IDL Interfaces (see above).

To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

2 You are prompted with a window to enter the constant value:

Software AG IDL Extractor for COBOL434

IMS MPP Message Interface (IMS Connect)

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functionMap to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping youmap the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

435Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL436

IMS MPP Message Interface (IMS Connect)

The number of array elements is calculated using one of the following options:

■ IMS Message Length (bytes)
The COBOL server program inspects IMS field LL of the input message for the request and sets
IMS field LL of the output message for the reply. To determine the number of array elements,
the IMSmessage length is subtracted first to calculate the array length. The result is then divided
by the length of one array element. All lengths are in bytes. The followingCOBOL snippet shows
the reply of an IMS message. It assumes OUTPUT-CONTRACTwith fixed array PACKETI is the IMS
output message.

437Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
01 OUTPUT-MESSAGE.
02 OUTPUT-IMS-META.

03 OUTPUT-LL PIC S9(3) BINARY.
03 OUTPUT-ZZ PIC S9(3) BINARY.

02 OUTPUT-CONTRACT.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set IMS output message length depending on number of elements

COMPUTE OUTPUT-LL =
(LENGTH OF P-ID IN OUTPUT-MESSAGE +
LENGTH OF P-TEXT IN OUTPUT-MESSAGE +
LENGTH OF P-NUMBER IN OUTPUT-MESSAGE) * II.

ADD LENGTH OF CONTRACT IN OUTPUT-MESSAGE TO OUTPUT-LL.
ADD LENGTH OF ZONE IN OUTPUT-MESSAGE TO OUTPUT-LL.

CALL "CBLTDLI" USING ISRT, IO-PCB, OUTPUT-MESSAGE.

■ COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

Software AG IDL Extractor for COBOL438

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-ID PIC X(20).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length

COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

■ COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

439Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
77 II PIC S9(4).
77 EPARM PIC 9(2).
77 EPARM2 PIC 9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-ID PIC X(20).
05 Z-NUMBER PIC 9(2).

04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .
* Fill variable output array

MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

■ COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT-DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 II PIC S9(4).

. . .
LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).

04 ZONE.
05 Z-NUMBER PIC 9(2).

Software AG IDL Extractor for COBOL440

IMS MPP Message Interface (IMS Connect)

05 Z-ID PIC X(20).
04 PACKETI OCCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

. . .

* Fill variable output array
MOVE 0 TO II.
PERFORM RANDOMNUM TIMES

ADD 1 TO II
MOVE ... TO P-ID (II)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences

MOVE II TO C-NUM.

PressOK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

■ Multiple Possible Output with REDEFINES
■ Optional Output with Groups
■ Complex MPO Selections
■ MPO Terminology

441Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

■ Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT-DATA in the example below; for this purpose, PAYMENT-DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

. . .
01 INPUT-DATA.

02 ORDER-NUMBER PIC 9(10).

. . .
01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
. . .

02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".
. . .

02 <preceding data items> PIC <clause>.
. . .
02 PAYMENT-DATA PIC X(256).
02 PAYMENT-DATA-VOUCHER REDEFINES PAYMENT-DATA.

04 VOUCHER-ORIGIN PIC X(128).
04 VOUCHER-SERIES PIC X(128).

02 PAYMENT-DATA-CREDITCARD REDEFINES PAYMENT-DATA.
04 CREDITCARD-NUMBER PIC 9(18).
04 CREDITCARD-COMPANY PIC X(128).
04 CREDITCARD-CODE PIC 9(12).
04 CREDITCARD-VALIDITY PIC X(8).

02 PAYMENT-DATA-TRANSFER REDEFINES PAYMENT-DATA.
04 TRANSFER-NAME PIC X(128).
04 TRANSFER-IBAN PIC X(34).
04 TRANSFER-BIC PIC X(11).

02 PAYMENT-DATA-DIRECTDEBIT REDEFINES PAYMENT-DATA.
04 DIRECTDEBIT-IBAN PIC X(34).
04 DIRECTDEBIT-NAME PIC X(128).
04 DIRECTDEBIT-EXPIRES PIC 9(8).
. . .

02 <subsequent data items> PIC <clause>.
. . .

Software AG IDL Extractor for COBOL442

IMS MPP Message Interface (IMS Connect)

. . .

* read order record using ORDER-NUMBER
. . .

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE

ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE

ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

END-IF.
. . .

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER
MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES

WHEN
. . .

END-EVALUATE.
. . .

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT-DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

■ contains an additional COBOLdata item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

443Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

■ always occupiesmemory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

This abstract concept is known asmultiple possible output (MPO) EntireX bundles allMPO structures
into an MPO group. SeeMPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

■ limits the number of possible output structures returned
■ defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTURE1 and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

■ contains an additional COBOLdata item carrying an indicationwhich optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL444

IMS MPP Message Interface (IMS Connect)

■ If the optional output is not present nomemory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed toMultiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1 PIC X(4).
02 <some fields> PIC <clause>.
. . .

01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

. . .

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT PIC X(1).

88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

. . .

01 OPTIONAL-OUTPUT-STRUCTURE1.
02 OPTIONAL-OUTPUT-ITEM11 PIC X(10).
02 OPTIONAL-OUTPUT-ITEM12 PIC X(100).
02 OPTIONAL-OUTPUT-ITEM13 PIC X(20).
. . .

01 OPTIONAL-OUTPUT-STRUCTURE2.
02 OPTIONAL-OUTPUT-ITEM21 PIC X(4).
02 OPTIONAL-OUTPUT-ITEM22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEM23 PIC X(50).
. . .

01 FIX-OUTPUT-STRUCTURE1.
02 FIX-OUTPUT-ITEM11 PIC X(4).
02 FIX-OUTPUT-ITEM12 PIC X(20).

445Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

02 FIX-OUTPUT-ITEM13 PIC X(8).
. . .

01 FIX-OUTPUT-STRUCTURE2.
02 FIX-OUTPUT-ITEM21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).
. . .

IF <some-condition> THEN
SET OPTIONAL-OUTPUT-1 TO TRUE

ELSE IF <some-other-condition> THEN
SET OPTIONAL-OUTPUT-2 TO TRUE

ELSE
SET OPTIONAL-OUTPUT-NONE TO TRUE

END-IF.

. . .

* provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

* provide optional output
EVALUATE TRUE

WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-OUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

WHEN OPTIONAL-OUTPUT-2
STRING OPTIONAL-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET

END-EVALUATE.

* provide data items after optional output
STRING FIX-OUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET.
. . .

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of OPTIONAL-OUTPUT-STRUCTURE1, OPTIONAL-OUTPUT-STRUCTURE2 or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL446

IMS MPP Message Interface (IMS Connect)

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

To map a complex MPO selection

1 Map the complete MPO group to binary. SeeMap to Binary and Revert Binary Mapping.

Note: If an MPO group is already defined, you cannot map it to binary. Decide first
whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.
■ For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

■ For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

■ Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check boxMPO Selector determined from message end in step Create a new
MPO group below.

447Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

MPO selector value
Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use theMap to Out function for this purpose:

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose SetMultiple
Possible Output (MPO) Structures.

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL448

IMS MPP Message Interface (IMS Connect)

4 Create a new MPO group.

449Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL450

IMS MPP Message Interface (IMS Connect)

Use the functions to delete and to add MPO selector values:

451Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Notes:

1. To addmultipleMPO selector values perMPO structure, use the function multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT-DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. EachMPO selector valuemust uniquely identify anMPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL togetherwith a servermapping file. See ServerMapping
Files for COBOL in the Designer documentation.

library 'PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT In
2 ORDER-NUMBER (NU10)

1 OUTPUT Out
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)
4 CREDITCARD-VALIDITY (AV8)

end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL452

IMS MPP Message Interface (IMS Connect)

Themenu entryMap toBinary appears only onCOBOLdata itemswere itmakes sense, for example
in Channel Container interface types it is not allowed tomap the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI
(BV) in this example).

453Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL454

IMS MPP Message Interface (IMS Connect)

16 COBOL Preferences

■ COBOL Wrapper Preferences .. 456
■ Deployment Environments Preferences .. 456
■ IDL Extractor for COBOL Preferences .. 457

455

This page provides links to the following:

COBOL Wrapper Preferences

Use the preferences page COBOL > COBOLWrapper to set the workspace defaults for target
operating system, interface types etc. The settings are used as the defaults for the IDL properties
when a new IDL file is created. See Generation Settings - Preferences in the COBOLWrapper docu-
mentation.

Deployment Environments Preferences

Use the preferences page COBOL > Deployment Environments to define a connection to the
Deployment Service of the RPC server. See Preferences under Server Mapping Deployment Wizard
in the Designer documentation.

Software AG IDL Extractor for COBOL456

COBOL Preferences

IDL Extractor for COBOL Preferences

Use the preferences page COBOL > IDL Extractor for COBOL to perform the following tasks:

■ Manage COBOL Extractor Environments
■ Define Prefixes for IDL Parameter Names

Manage COBOL Extractor Environments

ACOBOLextractor environment provides defaults for the extraction and refers toCOBOLprograms
and copybooks

■ stored locally on the same machine where the Designer is running, a so-called local COBOL
extractor environment, or

■ stored remotely on a host computer, a so-called remote COBOL extractor environment. The
Extractor Service is required to access COBOLprograms and copybooks remotelywith a remote
COBOL extractor environment. The Extractor Service is supported on operating systems z/OS
and BS2000. See Extractor Service in the RPC Server documentation for Batch | IMS | BS2000.

COBOL extractor environments are offered in the IDL Extractor for COBOL wizard to reference
the COBOL programs and copybooks and retrieve defaults for the IDL extraction. To create, edit,
duplicate and remove COBOL extractor environments, open the preferences page COBOL >
IDL Extractor for COBOL and use the buttons on the right.

This section describes how to create the following extractor environments:

■ Creating a New Local Extractor Environment
■ Creating a New Remote Extractor Environment (z/OS)

457Software AG IDL Extractor for COBOL

COBOL Preferences

■ Creating a New Remote Extractor Environment (BS2000)

Creating a New Local Extractor Environment

This section describes the four steps for creating a new local COBOL extractor environment to
extract COBOL programs stored inside Software AG Designer or locally on your PC.

To create a new local extractor environment

1 Define the new local environment. On theNew Environment page you can specifyName
andOperating system.

Define the new environment settings:

■ Enter a uniqueName for the COBOL extractor environment.
■ Select theOperating systemwhere the COBOL source originates from.
■ Select "Local" for Source Location.

2 Define the default settings. TheDefault Settings page provides defaults for Step 4: Define
the Extraction Settings and Start Extraction in Using the IDL Extractor for COBOL - Over-
view. You can set defaults for interface type and COBOL to IDL mapping.

Software AG IDL Extractor for COBOL458

COBOL Preferences

Define the default extraction settings:

■ Select the default Interface Type. See Supported COBOL Interface Types.
■ Depending on the interface type, additional information can be set. For interface type

■ CICS with Channel Container Calling Convention, you can set the channel name.
■ IMSMPPMessage Interface (IMSConnect), you can set defaults for the transaction name.
Possible options are a constant transaction name defined during extraction process or an
IDL parameter to be specified at runtime.

■ IMS BMP with Standard Linkage Calling Convention, you can set the default for IMS
PSB List.

459Software AG IDL Extractor for COBOL

COBOL Preferences

For more information refer to Step 4: Define the Extraction Settings and Start Extraction.
■ Specify a default value for COBOL to IDL Mapping. See COBOL to IDL Mapping.

PressNext.

3 Define the local extractor environment. On the Local Extractor Environment page you can
provide a default directory name for the COBOL programs:

ChooseWorkspace... or File System... to browse for a folder. Continue withNext.

4 Define the local copybook locations. On the Local Copybook Location page you can add
directories that will be used to resolve copybooks. Copybooks and members referenced with
COPY statements, CA Librarian -INC statements and CA Panvalet ++INCLUDE statements will
be searched for in the defined local directories:

Software AG IDL Extractor for COBOL460

COBOL Preferences

The file extensions for copybooks can also be entered. If no extensions are specified, the
IDL Extractor for COBOL wizard will try to locate copybooks without any file extensions.

PressWorkspace... or File System... to browse for a folder.

Press Finish.

461Software AG IDL Extractor for COBOL

COBOL Preferences

Creating a New Remote Extractor Environment (z/OS)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely z/OS COBOL programs stored in partitioned data sets or CA Librarian data sets.

To create a new remote extractor environment

1 Define the new remote environment. >On theNewEnvironment page you can specifyName,
Operating system and the Remote Source Location.

Define the new environment settings:

■ Enter a unique name for the COBOL extractor environment.
■ Select theOperating system.
■ Select "Remote" for Source location.

2 Define the default settings.TheDefault Settings page provides defaults for Step 4: Define the
Extraction Settings and Start Extraction inUsing the IDL Extractor for COBOL - Overview.

You can set defaults for Interface Type and COBOL to IDL Mapping.

Software AG IDL Extractor for COBOL462

COBOL Preferences

Define the default settings. See Define the default settings in section Creating a New Local
Extractor Environment. Continue withNext.

3 Define the remote extractor environment. The connection to the Extractor Service to browse
for COBOL programs is defined on the Remote Extractor Environment page. See Extractor
Service.

463Software AG IDL Extractor for COBOL

COBOL Preferences

Define the remote extractor environment:

■ UnderBroker Parameters, enter the required fieldsBroker ID andServerAddress, usually
"RPC/<servername>/CALLNAT". The timeout value must be in the range 1-9999 seconds
(default is 60).

■ The EntireX Authentication parameters describe the settings for the broker. See Authentic-
ation of User.

■ The RPC Server Authentication parameters describe the settings for the RPC server. See
Administering the RPC server | Administering the RPC Server for IMS.

■ A high-level qualifier is required in theData Set Name or HLQ field. The extractor service
will then offer only data sets with this high-level qualifier.

■ In theMember Name field you can provide a prefix for the partitioned data set or CA
Librarianmembers. The extractor service will then offer onlymembers beginning with this
prefix.

Continue withNext.

4 Define the remote copybook locations. On theRemote Copybook Location page you can add
PDS orCALibrarian data sets thatwill be used to resolve copybooks. Copybooks andmembers

Software AG IDL Extractor for COBOL464

COBOL Preferences

referenced with COPY statements and CA Librarian -INC statements will be searched for in
the defined remote data sets:

Press Insert... to add a new data set entry in the table. UseRemove,Up andDown to manage
the data set list.

Press Finish.

Creating a New Remote Extractor Environment (BS2000)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely BS2000 COBOL programs stored in LMS libraries.

To create a new remote extractor environment

1 Define the new remote environment. On theNew Environment page you can specifyName,
Operating system and the Remote Source Location.

465Software AG IDL Extractor for COBOL

COBOL Preferences

Define the new environment settings:

■ Enter a unique name for the COBOL extractor environment.
■ Select theOperating system
■ Select "Remote" for Source location

2 Define the default settings. TheDefault Settings page provides defaults for Step 4: Define
the Extraction Settings and Start Extraction in Using the IDL Extractor for COBOL - Over-
view.

You can set defaults for Interface Type and COBOL to IDL Mapping.

Software AG IDL Extractor for COBOL466

COBOL Preferences

Define the default extraction settings:

■ Select the default Interface Type. See Supported COBOL Interface Types.
■ Specify the default COBOL to IDL Mapping. See COBOL to IDL Mapping.

Continue withNext.

3 Define the remote extractor environment. The connection to the Extractor Service to browse
for COBOL programs is defined on the Remote Extractor Environment page. See Extractor
Service.

467Software AG IDL Extractor for COBOL

COBOL Preferences

Define the remote extractor environment:

■ UnderBroker Parameters, enter the required fieldsBroker ID andServerAddress, usually
"RPC/<servername>/CALLNAT". The timeout value must be in the range 1-9999 seconds
(default is 60).

■ The EntireX Authentication parameters describe the settings for the broker. See Authentic-
ation of User.

■ The RPC Server Authentication parameters describe the settings for the RPC server. See
Configuring the RPC Server.

■ Ahigh-level qualifier can be entered in the LMS Library Name or HLQ field. The extractor
servicewill then offer only LMS librarieswith this high-level qualifier. You can usewildcard
notation with asterisk to specify a range of values.

■ In the Element Name field you can provide a prefix for LMS library source elements. The
extractor service will then offer only COBOL programs beginning with this prefix.

Continue withNext.

Software AG IDL Extractor for COBOL468

COBOL Preferences

4 Define the remote copybook locations. On theRemote Copybook Location page you can add
directories thatwill be used to resolve copybooks. Copybooks referencedwith COPY statements
will be searched for in the defined remote LMS libraries:

Press Insert... to add a new data set entry in the table. UseRemove,Up andDown to manage
the list of LMS libraries.

Press Finish.

469Software AG IDL Extractor for COBOL

COBOL Preferences

Define Prefixes for IDL Parameter Names

You can also use the preferences page COBOL > IDL Extractor for COBOL to define prefixes for
IDL parameter names.

The defined prefixes are used for FILLERPseudo-Parameter and are valid for all COBOL extractor
environments.

Software AG IDL Extractor for COBOL470

COBOL Preferences

17 COBOL to IDL Mapping

■ COBOL Data Type to Software AG IDL Mapping .. 472
■ User-defined Mapping .. 476
■ DATA DIVISION Mapping .. 483
■ PROCEDURE DIVISION Mapping .. 489
■ Copybooks ... 490

471

This chapter describes how COBOL data items and related syntax are mapped to Software AG
IDL by the IDL Extractor for COBOL using the Extractor Wizard andMapping Editor.

See also IDL Extraction per Interface Type under COBOL Mapping Editor for guidelines on IDL
extraction per interface type.

COBOL Data Type to Software AG IDL Mapping

The IDL Extractor for COBOL maps the following subset of COBOL data types to Software AG
IDL data types.

In the table below, the following metasymbols and informal terms are used for the IDL.

■ The metasymbols "[" and "]" enclose optional lexical entities.
■ The informal term number (or in some cases number1.number2) is a sequence of numeric characters,
for example 123.

NotesSoftware AG IDL Data TypeCOBOL Data Type

1,2AlphanumericAn, AVnPIC A(n)Alphabetic

1,2,3KanjiKn*2, KVn*2PIC G(n)DBCS

1,2,3KanjiKn*2, KVn*2PIC N(n) [USAGE] [IS]
DISPLAY-1

DBCS

1,2,3,9Unicode or KanjiUn, UVn or
Kn*2, KVn*2

PIC N(n)Unicode or DBCS

1,2UnicodeUn, UVnPIC N(n) [USAGE] [IS]
NATIONAL

Unicode

1,2AlphanumericAn, AVnPIC X(n)Alphanumeric

2,4Unpacked decimal
unsigned

NUn[,m]PIC 9(n)[V9(m)]Zoned decimalNumeric

2,4Unpacked decimalNn[,m]PIC S9(n)[V9(m)]Zoned decimal

2,4Packed decimal
unsigned

PUn[,m]PIC 9(n) [V9(m)]
COMP[UTATIONAL]-3

Packed decimal

2,4Packed decimalPn[,m]PIC S9(n) [V9(m)]
COMP[UTATIONAL]-3

Packed decimal

2,4Packed decimal
unsigned

PUn[,m]PIC 9(n) [V9(m)]
PACKED-DECIMAL

Packed decimal

2,4Packed decimalPn[,m]PIC S9(n) [V9(m)]
PACKED-DECIMAL

Packed decimal

2,4,5,6Integer (medium)I2PIC [S]9(n) BINARY
(1<=n<=4)

Binary

Software AG IDL Extractor for COBOL472

COBOL to IDL Mapping

NotesSoftware AG IDL Data TypeCOBOL Data Type

2,4,5,6,7Integer (large)I4PIC [S]9(n) BINARY
(5<=n<=9)

Binary

2,4,11Packed decimal
unsigned

PUnPIC 9(n) COMP[UTATIONAL]Computational

2,4,5,6,12Integer (medium)I2PIC 9(n) COMP[UTATIONAL]
(1<=n=4)

Computational

2,4,5,6,7,12Integer (large)I4PIC 9(n) COMP[UTATIONAL]
(5<=n=9)

Computational

2,4,11Packed decimalPnPIC S9(n)
COMP[UTATIONAL]

Computational

2,4,5,6,12Integer (medium)I2PIC S9(n)
COMP[UTATIONAL] (1<=n=4)

Computational

2,4,5,6,7,12Integer (large)I4PIC S9(n)
COMP[UTATIONAL] (5<=n=9)

Computational

2,4,5,6Integer (medium)I2PIC [S]9(n)
COMP[UTATIONAL][-4]
(1<=n<=4)

Binary

2,4,5,6,7Integer (large)I4PIC [S]9(n)
COMP[UTATIONAL][-4]
(5<=n<=9)

Binary

2,4,6Integer (medium)I2PIC [S]9(n) COMP-5
(1<=n<=4)

Binary

2,4,6,7Integer (medium)I4PIC [S]9(n) COMP-5
(5<=n<=9)

Binary

8Floating point
(small)

F4COMP[UTATIONAL]-1Floating point

8Floating point
(large)

F8COMP[UTATIONAL]-2Floating point

10AlphanumericA(length
of PIC)

Alphanumeric item containing
"0" or "/"

Alphanumeric-edited

10AlphanumericA(length
of PIC)

Numeric item containing "DB",
"CR", "Z", "$", ".", ",", "+", "-",
"*", "B", "O" or "/"

Numeric-edited

Notes:

1. Mapping to fixed-length or variable-length Software AG IDL data type is controlled in the ex-
traction settings of the extraction wizard, see Step 4: Define the Extraction Settings and Start
Extraction.

2. Equivalent alternative forms of the PICTURE clause, e.g. XXX, AAA,NNN, GGG or 999may also be
used.

473Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

3. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes).

4. The character "P[(n)]" stands for a decimal scaling position, this character has no effect on the
length of the generated data type. Only the data fraction will be mapped to the Software AG
IDL:

01 GROUP1.
10 FIELD1 PIC PPP9999.

will be mapped to IDL:

1 GROUP1
2 FIELD1 NU4

5. Behavior depends on the COBOL compiler settings:
■ With COBOL 85 standard, the value range depends on the number of digits in the PICTURE
clause. This differs from the value range of the IDLdata type using the binary field size instead.
If the parameter is of direction "In" your RPC client application has to ensure the integer value
sent is within the allowed range. See Software AG IDL Grammar in the IDL Editor documenta-
tion.

■ With noCOBOL 85 standard, the value range of the COBOLdata type reflects the binary field
size, thus matches the IDL data type exactly. In this case, there are no restrictions regarding
value ranges. For example:
■ with operating system z/OS and IBM compiler, see option TRUNC(BIN) in your COBOL
compiler documentation

6. For unsigned COBOL data types (without "S" in the PICTURE clause) the value range of the IDL
data type differs:
■ IDL allows negative values, COBOL does not.
■ For I2, the maximum is 32767 for IDL instead of 65535 for COBOL.
■ For I4, the maximum is 2147483647 for IDL instead of 4294967294 for COBOL.

7. COBOL binary or computational items with more than 9 digits in the PICTURE clause cannot be
mapped to IDL type I. See the following table:

-9,223,372,036,854,775 thru +9.223,372,036,854,775Binary doubleword (8 bytes)S9(10) thru S9(18)

0 thru 18,446,744,073,709,551Binary doubleword (8 bytes)9(10) thru 9(18)

8. COMPUTATIONAL-1 (4-byte, single precision) and COMPUTATIONAL-2 items (8-byte, double precision)
items are an IBM-specific extension. When floating-point data types are used, rounding errors
can occur, so the values of senders and receivers might differ slightly.

Software AG IDL Extractor for COBOL474

COBOL to IDL Mapping

9. COBOL alphanumeric/numeric edited items will force the generation of IDL data type Awith
an inline comment containing the original COBOL PICTURE clause. The CURRENCY SIGN clause in
the SPECIAL-NAMES and the CURRENCY compiler option is not considered.

10. On platform IBM i, COBOL computational items are mapped by default to packed decimal.

11. On all platform except IBM i, COBOL computational items are mapped by default to IDL type
I.

475Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

User-defined Mapping

Depending on the COBOL syntax and the COBOL server implementation, user interaction may
be required to get correct extraction results. User interaction can also simplify or modernize the
extracted IDL. As a result, the user-definedmapping is contained in a Designer file with extension
.cvm that contains COBOL-specific mapping information. See Server Mapping Files for COBOL in
the Designer documentation. The following is covered:

■ Condition Names - Level-88 Data Items
■ COBOL Data Items
■ FILLER Pseudo-Parameter
■ REDEFINES Clause
■ COBOL Tables with Fixed Size
■ VALUE Clause

Condition Names - Level-88 Data Items

See the following COBOL syntax:

88 condition_name VALUE [IS] 'literal_1'
88 condition_name VALUE [IS] 'literal_1' [THRU | THROUGH] 'literal_2'
88 condition_name VALUES [ARE] 'literal_1' [THRU | THROUGH] 'literal_2'

Semantically, level-88 condition names can be

■ Enumeration Type Values
If your COBOL server requires the level-88 value to be provided on a call-by-call basis, that is,
the value may change with every call, map the level-88 base variable to a simple IDL parameter
with the desired direction In or InOut. RPC clients have to pass correct values, the same as
defined by the level-88 condition names.

■ Single Constant Values
If your COBOL server interface expects for your purpose always a constant value,map the level-
88 condition names to a constant. For more information and COBOL examples, see Mapping
Editor IDL Interface mapping function Set COBOL Data Items to Constants for interface type
DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same as Out, In dif-
ferent to Out) | Channel Container | Batch | IMS BMP | IMS Connect | COBOL Converter (In
same as Out, In different to Out).

■ Function or Operation Codes
If your COBOL server implements verious functions or operations and the level-88 values are
function or operation codes, map the COBOL interface to multiple IDL interfaces. For more in-
formation and COBOL examples see the Mapping Editor IDL Interface mapping functionMap
to Multiple IDL Interfaces for interface type DFHCOMMAREA (In same as Out, In differ-

Software AG IDL Extractor for COBOL476

COBOL to IDL Mapping

ent to Out) | Large Buffer (In same as Out, In different to Out) | Channel Container | Batch |
IMS BMP | IMS Connect | COBOL Converter (In same as Out, In different to Out).

If themapping functionsSet COBOLData Items to Constants orMap toMultiple IDL Interfaces
are used, a server mapping file is required to provide additional information. See Server Mapping
Files for COBOL.

COBOL Data Items

This section covers the following topics:

■ IDL Directions for COBOL Data Items
■ IDL Parameter Names derived from COBOL Names
■ COBOL Data Items Expecting Single Constant Values
■ COBOL Data Items used as Function or Operation Codes
■ Optional COBOL Group Data Items
■ Unneeded COBOL Data Items

IDL Directions for COBOL Data Items

COBOL server programs do not contain parameter direction information (input, output). Therefore
IDL directions (see attribute-list under Software AG IDL Grammar in the IDL Editor document-
ation) need to be added manually in the COBOL Mapping Editor. SeeMap to In, Out, InOut for
interface type DFHCOMMAREA (In same as Out) | Large Buffer (In same as Out) | Batch | IMS
BMP | In same as Out).

IDL Parameter Names derived from COBOL Names

Numbers in the first position of the parameter name are not allowed in Software AG IDL syntax
(see Software AG IDL Grammar in the IDL Editor documentation). Thus COBOL names starting
with a number are prefixed with the character "#" by default. For example:

01 1BSP PIC XXX.

by default will be mapped to Software AG IDL:

01 #1BSP A(3).

If a parameter name is not specified, e.g.

477Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

01 GROUP1.
10 FIELD1 PIC XX.
10 PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.
10 .
20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

see FILLER Pseudo-Parameter above.

You can rename all IDL parameters in the COBOLMapping Editor. See IDL Interface for interface
type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same as Out, In
different to Out) | Channel Container | Batch | IMS BMP | IMS Connect | COBOL Converter
(In same as Out, In different to Out).

COBOL Data Items Expecting Single Constant Values

If your COBOL server interface expects for your purpose always a constant value, use Set COBOL
Data Items to Constants for interface type DFHCOMMAREA (In same as Out, In different to Out) |
Large Buffer (In same as Out, In different to Out) | Channel Container | Batch | IMS BMP |
IMS Connect | COBOL Converter (In same as Out, In different to Out).

COBOL Data Items used as Function or Operation Codes

If your COBOL server implements various functions or operations and the data items represent
function or operation codes,map the COBOL interface tomultiple IDL interfaces. Formore inform-
ation andCOBOLexamples see theMapping Editor IDL Interfacemapping functionMap toMultiple
IDL Interfaces for interface type DFHCOMMAREA (In same as Out, In different to Out) | Large
Buffer (In same asOut, In different toOut) | Channel Container | Batch | IMSBMP| IMSConnect |
COBOL Converter (In same as Out, In different to Out).

Optional COBOL Group Data Items

If your COBOL server interface produces dissimilar shapes of optional output, COBOL group
data items can be mapped to multiple possible output (MPO). Criteria can be added under which
circumstances COBOL groups are part of the returned data or not. This is done with Mapping
Editor IDL Interface mapping function Set Multiple Possible Output (MPO) Structures for interface
type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same as Out, In
different to Out) | Channel Container | IMS Connect | COBOL Converter (In same as Out, In
different to Out).

Software AG IDL Extractor for COBOL478

COBOL to IDL Mapping

Unneeded COBOL Data Items

COBOL data items that are not needed in the IDL Interface but are required by the COBOL server
can be suppressed. See Suppress Unneeded COBOLData Items for interface type DFHCOMMAREA
(In same as Out, In different to Out) | Large Buffer (In same as Out, In different to Out) | Channel
Container | Batch | IMS BMP | IMS Connect | COBOL Converter (In same as Out, In different to
Out)

FILLER Pseudo-Parameter

In the check boxMap FILLER fields to IDL of the COBOL to IDL in the extraction settings of the
wizard (see Step 4: Define the Extraction Settings and Start Extraction) you can define whether
COBOL FILLER pseudo-parameters should be part of the RPC client interface by default or not.
By default they are notmapped to IDL. In theCOBOLMapping Editor you can change themapping
for a FILLER field individually, e.g. mapping required ones to IDL. If FILLER fields are mapped to
IDL, they are made unique by appending a sequence number. You can set the prefix to be used
in the COBOL Preferences.

If the resulting names are not suitable, you can rename IDL field names in the Mapping Editor
with the Rename function of the context menu. See the following example:

01 GROUP1.
10 FIELD1 PIC XX.
10 FILLER PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.

This will be mapped to Software AG IDL:

1 GROUP1
2 FIELD1 (A2)
2 FILLER_1 (A2)
2 FIELD2 (N2.0)
2 FILLER_2 (A2)

If a group is named FILLER and the group has scalar fields, the group is always mapped to IDL,
independent of the check boxMap FILLER fields to IDL. For example:

01 GROUP1.
10 FIELD1 PIC XX.
10 PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.
10 .
20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

This will be mapped to Software AG IDL:

479Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

1 GROUP1
2 FIELD1 (A2)
2 FILLER_1 (A2)
2 FIELD2 (N2.0)
2 FILLER_2 (A2)
2 FILLER_3
3 FIELD3 (I2)
3 FIELD4 (I2)

REDEFINES Clause

A redefinition is a secondparameter layout of the samememory portion. Inmostmodern program-
ming languages, and also the Software AG IDL, this is not directly supported. The following
possibilities are available to map COBOL REDEFINEs:

1. You can select a single redefine path for IDL usage. In this case, the COBOL server requires
predictable input and output structures. The redefine path can be determined at design time
(extraction time). This is supported for all IDL directions that is, In, Out and InOut. For more
information and COBOL examples, see Mapping Editor IDL Interface mapping function Select
REDEFINE Paths for interface type DFHCOMMAREA (In same as Out, In different to Out) |
Large Buffer (In same as Out, In different to Out) | Channel Container | Batch | IMS BMP |
IMS Connect | COBOL Converter (In same as Out, In different to Out).

If a REDEFINE path is selected, the mapping is as follows:

Software AG IDL SyntaxCOBOL Syntax

1 name_11 name_1 REDEFINES name_2

1 FILLER_n1 REDEFINES name_2

1 FILLER_n1 FILLER REDEFINES name_2

2. If the COBOL server supportsmore than one type of input (redefine paths) but uses predictable
output structures, you canmap theCOBOL interface tomultiple IDL interfaces. This is supported
for IDL direction In only. In this case, the redefine path used is selected as described under 1
above. Formore information andCOBOL examples, seeMapping Editor IDL Interfacemapping
functionMap to Multiple IDL Interfaces for interface type DFHCOMMAREA
(In same as Out, In different to Out) | Large Buffer (In same as Out, In different to Out) |
Channel Container | Batch | IMS BMP | IMS Connect | COBOL Converter
(In same as Out, In different to Out).

3. If the COBOL server produces more than one type of output (redefine paths) and implements
the multiple possible output (MPO) concept, you can map the redefine to MPO. In this case the
redefine path used is determined at runtime from a set of predefined redefine paths. The set of
alternate redefine paths is determined during design time (extraction time). This is supported
for IDL direction Out only. For more information and COBOL examples of the MPO concept,
seeMapping Editor IDL Interfacemapping function SetMultiple PossibleOutput (MPO) Structures

Software AG IDL Extractor for COBOL480

COBOL to IDL Mapping

for interface type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In
same as Out, In different to Out) | Channel Container | IMS Connect.

If a REDEFINE is mapped to multiple possible output (MPO), the mapping is as follows:

Software AG IDL SyntaxCOBOL Syntax

1 name_1 (/V1)
2 name_1_1 . .
. . .

1 name_1
2 name_1_1 . .
. . .

1 name_2 (/V1)
2 name_2_1. .
. . .

1 name_2 REDEFINES name_1
2 name_2_1 . .
. . .

1 name_3 (/V1)
2 name_3_1 . .
. . .

1 name_3 REDEFINES name_1
2 name_3_1 . .
. . .

4. If the COBOL server supports more than one type of input (redefine paths) and implements
the multiple possible output (MPO) concept as well, you can combine extraction as described
under 2 and 3 above.

In all cases the, COBOL REDEFINE requires a servermapping file to provide additional information.
See Server Mapping Files for COBOL.

COBOL Tables with Fixed Size

The following possibilities are available to map COBOL tables with fixed size:

■ By default, fixed-size COBOL tables are converted automatically to fixed-size IDL groups (see
group-parameter-definitionunder Software AG IDLGrammar in the IDLEditor documentation)
with fixed-bound-array (see array-definition under Software AG IDL Grammar in the IDL
Editor documentation). This is the usualway and is suitable formost situations. See the following
syntax:

Software AG IDL SyntaxCOBOL Syntax

1 name (/n)
2 name_1 . .
. . .

1 name OCCURS n [TIMES]
2 name_1 . .
. . .

481Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Software AG IDL SyntaxCOBOL Syntax

1 name (/n)
2 name_1 . .
. . .

1 name OCCURS n [TIMES] [ASCENDING | DESCENDING [KEY] [IS] ↩
key_name]
 2 name_1 . .

. . .

1 name (/n)
2 name_1 . .
. . .

1 name OCCURS n [TIMES] [[INDEXED [BY] index_name]
2 name_1 . .
. . .

■ In very rare situations, the COBOL server uses a fixed-size COBOL table in a variable-size
manner. In contrast - as the syntax implies - a variable number of elements is transferred in this
fixed-size array (input only, output only or both directions are possible). Array elements at the
end of the array are unused. The current number of elements can be calculated using different
approaches by the receiver of such an array. This is possible for message-oriented interface
types:DFHCOMMAREA,LargeBuffer, ChannelContainer, IMSConnect. Thefixed-sizedCOBOL
table must be the last parameter in the interface. For more information and COBOL examples
see the Mapping Editor IDL Interface mapping function Set Arrays (Fixed <-> Unbounded) for
interface type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same
as Out, In different to Out) | Channel Container | IMS Connect | COBOL Converter
(In same as Out, In different to Out).

The following rules apply:

■ The combination of phrases ASCENDING and INDEXED BY and phrases DESCENDING and INDEXED
BY is meaningless for EntireX and therefore ignored by the IDL Extractor for COBOL.

■ If themapping function Set Arrays (Fixed <->Unbounded) is used, a servermapping file is required
to provide additional information. See Server Mapping Files for COBOL.

VALUE Clause

The VALUE clause specifies the initial contents of a data item or the value(s) associated with a con-
dition name. For condition names, see Condition Names - Level-88 Data Items above.

COBOL Syntax

1 name <COBOL data type> VALUE [IS] 'literal'

Initial values can be specified on data items in theWorking-Storage Section. As an IBM extension,
in the File and Linkage Sections, the VALUE clause is treated as a comment.

The IDL Extractor for COBOL ignores initial values of data items. The DATA DIVISION is parsed
as without the VALUE clause. If you require the value on input to the COBOL server you specify
to be a constant, see Set COBOL Data Items to Constants for interface type DFHCOMMAREA (In
same as Out, In different to Out) | Large Buffer (In same as Out, In different to Out) | Channel

Software AG IDL Extractor for COBOL482

COBOL to IDL Mapping

Container | Batch | IMS BMP | IMS Connect | COBOL Converter (In same as Out, In different to
Out).

DATA DIVISION Mapping

This section describes the COBOL syntax relevant for extracting the DATA DIVISION. No user de-
cisions in the COBOL Mapping Editor are required or possible here.

■ BLANK WHEN ZERO Clause
■ Continuation Lines
■ DATE FORMAT Clause
■ GLOBAL and EXTERNAL Clause
■ JUSTIFIED Clause
■ OBJECT REFERENCE Phrase
■ POINTER Phrase
■ PROCEDURE-POINTER Phrase
■ RENAMES Clause - LEVEL 66 Data Items
■ SIGN LEADING and TRAILING SEPARATE Clauses
■ SYNCHRONIZED Clause
■ COBOL Tables with Variable Size - DEPENDING ON Clause
■ Unstructured Data Types - LEVEL 77 Data Items
■ USAGE Clause on Group Level
■ USAGE IS INDEX Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces when its value is
zero. The BLANK WHEN ZERO clause is not considered by the IDL Extractor for COBOL. The DATA
DIVISION is parsed as without the BLANK WHEN ZERO clause. Because the BLANK WHEN ZERO clause
only has an impact if the item is displayed, such a program can bemapped to IDL. Theworkaround
for RPC clients is to imitate the BLANK WHEN ZERO clause.

Continuation Lines

Continuation lines, starting with a hyphen in the indicator area, are supported.

483Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

DATE FORMAT Clause

The DATE FORMAT clause is an IBM-specific extension. The DATE FORMAT clause specifies that a data
item is a windowed or expanded date field.

The DATE FORMAT clause is not considered by the IDL Extractor for COBOL. The DATA DIVISION
is parsed as without the DATE FORMAT clause. The semantic given by the DATE FORMAT clause has
to be considered by RPC clients.

GLOBAL and EXTERNAL Clause

The GLOBAL clause

■ specifies that a data-name is available to every program contained within the program that de-
clares it, as long as the contained program does not itself have a declaration for that name.

■ is not considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
GLOBAL clause.

However, program parameters containing the GLOBAL clause can be mapped to IDL, which can
make sense as long as the EXTERNAL DATA clause is used to pass parameters from the calledCOBOL
server to further subprograms called.

The EXTERNAL clause

■ can only be specified on data description entries that are in the Working-Storage section of a
program.

■ is not considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
EXTERNAL clause.

Note: EntireX RPC technology cannot pass data using EXTERNAL linkage from the RPC
server to the COBOL server. However, program parameters containing the EXTERNAL
clause can bemapped to IDL, which canmake sense as long as the EXTERNAL DATA clause
is used to pass parameters from the called COBOL server to further subprograms called.

Software AG IDL Extractor for COBOL484

COBOL to IDL Mapping

JUSTIFIED Clause

The IDL Extractor for COBOL ignores the JUSTIFIED clause. The DATA DIVISION is parsed as
without the JUSTIFIED clause. The workaround for RPC clients is to imitate the JUSTIFIED clause.

OBJECT REFERENCE Phrase

The OBJECT REFERENCE phrase is an IBM-specific extension. A program containing an OBJECT
REFERENCE phrase cannot be mapped to IDL.

POINTER Phrase

The POINTER phrase is an IBM-specific extension.

Software AG IDL SyntaxCOBOL Syntax

none1 name USAGE IS POINTER

none1 name POINTER

The following rules apply:

■ All pointers are mapped to "suppressed" in the Mapping Editor because the Software AG IDL
does not support pointers.

485Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

■ Offsets to following parameters are maintained by a server mapping file. See Server Mapping
Files for COBOL. At runtime, the RPC server passes a null pointer to the COBOL server.

PROCEDURE-POINTER Phrase

The PROCEDURE-POINTER phrase is an IBM-specific extension. A program containing a procedure-
reference phrase cannot be mapped to IDL.

RENAMES Clause - LEVEL 66 Data Items

Level-66 entries are ignored and cannot be used formapping to IDL. The DATA DIVISION is parsed
as without the level-66 entry.

SIGN LEADING and TRAILING SEPARATE Clauses

The SIGN LEADING and TRAILING SEPARATE clauses are supported. Both require a server mapping
file. See Server Mapping Files for COBOL.

SYNCHRONIZED Clause

The synchronized clause aligns COBOL data items at word boundaries. The clause does not have
any relevance for RPC clients and is not written into the IDL file but into the server mapping file.
See Server Mapping Files for COBOL. At runtime, the RPC server aligns the data items accordingly.

COBOL Tables with Variable Size - DEPENDING ON Clause

Variable size COBOL tables are converted to IDL unbounded groups (see
group-parameter-definition under Software AG IDL Grammar in the IDL Editor documentation)
with an unbounded array (see array-definition under Software AG IDL Grammar in the IDL
Editor documentation) and maximum upper bound set. The lower-bound is always set to 1 in the
IDL. See the following example:

01 COUNTER-1 PIC 99.
01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELD1 PIC XX.
02 FIELD2 PIC 99.

The ODO subject (data item TABLE) will be mapped in the IDL to an unbounded group (with
maximum). The ODO object (data item COUNTER-1) is not part of the IDL because the number of
elements is implicitly available with the IDL unbounded group. SeeMap OCCURS DEPENDING ON
for interface type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same
as Out, In different to Out) | Channel Container | Batch | IMS BMP | IMS Connect | COBOL
Converter (In same as Out, In different to Out).

Software AG IDL Extractor for COBOL486

COBOL to IDL Mapping

01 TABLES (/V10)
02 FIELD1 (A2)
02 FIELD2 (NU2.0)

Software AG IDL SyntaxCOBOL Syntax

1 name (/Vm)
2 name_1 . .
. . .

1 name OCCURS n TO m [TIMES] DEPENDING [ON] index
2 name_1 . .
. . .

1 name (/Vm)
2 name_1 . .
. . .

1 name OCCURS n TO m [TIMES] DEPENDING [ON] index [ASCENDING | ↩
DESCENDING [KEY] [IS] key_name]

2 name_1 . .
. . .

1 name (/Vm)
2 name_1 . .
. . .

1 name OCCURS n TO m [TIMES] DEPENDING [ON] index [INDEXED ↩
[BY] index_name]

2 name_1 . .
. . .

The following rules apply:

■ The COBOL fromvalue, n above, is semantically different from the IDL lower bound andmeans
a lower-bound of elements which must not be crossed. It is the duty of the calling RPC client to
take care of this and set the corresponding number of elements correctly. Do not send less than
the COBOL lower bound.

■ The combination of the phrases ASCENDING and INDEXED BY andphrases DESCENDING and INDEXED
BY is meaningless for EntireX and therefore ignored by the IDL Extractor for COBOL.

■ The COBOL clause OCCURS DEPENDING ON requires a server mapping file to provide additional
information. See Server Mapping Files for COBOL.

Unstructured Data Types - LEVEL 77 Data Items

COBOL level-77 data items are handled as COBOL data items on level 1. They are alwaysmapped
to IDL level 1.

USAGE Clause on Group Level

A USAGE clause can be specified on group level, which defines the data type of subsequent groups
or parameters. The USAGE clause on subsequent groups or parameters may not contradict a higher
level definition. Therefore IDL data types may depend on USAGE clauses of parent groups if the
COBOL data structure is defined as explained.

487Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

USAGE IS INDEX Clause

COBOL data items defined with USAGE IS INDEX are parsed as without USAGE IS INDEX. The
USAGE IS INDEX clause is ignored.

Software AG IDL Extractor for COBOL488

COBOL to IDL Mapping

PROCEDURE DIVISION Mapping

This section discusses the syntax relevant for extraction of the PROCEDURE DIVISION:

■ PROCEDURE DIVISION Header
■ BY VALUE Phrase
■ RETURNING Phrase

PROCEDURE DIVISION Header

For Batch and IMS BMP programs, the PROCEDURE DIVISION header is relevant for the COBOL
InOut parameters. The parameters of the header are suggested as default COBOL InOut parameters.

For CICS DFHCOMMAREA programs, the PROCEDURE DIVISION header is of no interest, because
the DFHCOMMAREA is the relevant information to get the COBOL InOut parameters from. If the
DFHCOMMAREA is defined in the linkage section all parameters of the DFHCOMMAREA are suggested as
default COBOL InOut parameters. If there is no DFHCOMMAREA, no suggestion is made.

For CICS Large Buffer, Channel Container and IMS MPP (IMS Connect) programs, parameters
are not suggested; you select the parameters in the Mapping Editor manually.

However, you can always add, change and correct the suggested parameters if they are not the
correct ones in the extraction wizard. See Step 5: Select the COBOL Interface and Map to IDL In-
terface in Using the IDL Extractor for COBOL.

BY VALUE Phrase

The BY VALUE clause is an IBM-specific extension for COBOL batch programs. It is ignored by the
IDL Extractor for COBOL. Directions are added in the Mapping Editor manually.

RETURNING Phrase

The RETURNING phrase is an IBM-specific extension for COBOL batch programs. It is ignored by
the IDL Extractor for COBOL. Handling is as without the phrase. No return value is transferred
during execution time. If the RETURNING phrase is relevant for the interface, the COBOL program
cannot be mapped to IDL.

489Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Copybooks

Copybook Support

COPY statements are supported if nested copy statements do not recursively call the same source
file.

If copybooks cannot be located, the following rules apply:

■ In the case of a remote extraction, the copybook location (data set) is unknown.
■ In the case of a local extraction, either the copybook location (directory) or the copybook extension
is unknown.

■ In both cases, the extractionwizardwill appearwith a dialog to browse for the copybook location
(local directory or remote data set) and allows you to append your copybook extensions. Both
will be saved in the preferences.

You can also predefine the following in the preferences:

■ the copybook locations, seeDefine the remote copybook locations orDefine the local copybook
locations in COBOL Preferences.

■ the copybook extensions for local extractions, seeDefine the local copybook locations inCOBOL
Preferences.

Copybooks with REPLACE Option

COPY statements with the REPLACE option are supported. Beneath the REPLACE option, those
copybooks are worked off like all other copybooks above. Example:

■ a copybook ACPYBK with REPLACE option

01 WS-ZEUGNIS.
:F: WS-AKTIONEN PIC 9(01).

:L: :C:-NEU VALUE 'N'.
:L: :C:-MOD VALUE 'M'.
:L: :C:-INS VALUE 'I'.
:L: :C:-WEG VALUE 'W'.
:L: :C:-SIG VALUE 'S'.

:F: WS-NOTEN PIC X(03).
:L: SEHR-GUT VALUE 100.
:L: GUT VALUE 95 THROUGH 99.
:L: BEFRIEDIGEND VALUE 80 THROUGH 94.
:L: AUSREICHEND VALUE 50 THROUGH 79.
:L: MANGELHAFT VALUE 01 THROUGH 49.
:L: UNGENUEGEND VALUE 0.

Software AG IDL Extractor for COBOL490

COBOL to IDL Mapping

■ referencing the copybook above

COPY ACPYBK
REPLACING
==:F:== BY ==10==,
==:L:== BY ==88==,
==:C:== BY ==CMD==,
95 BY 90,
94 BY 89,
WS-NOTEN BY WS-PROZENT,
==X(03)== BY ==9(03)==,
==9(01)== BY ==X(01)==.

491Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

492

	Software AG IDL Extractor for COBOL
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Introduction to the IDL Extractor for COBOL
	2 Introduction to the IDL Extractor for COBOL
	Introduction
	Extractor Wizard
	Mapping Editor
	Supported COBOL Interface Types
	Supported CICS COBOL Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface

	Batch with Standard Linkage Calling Convention
	IMS MPP Message Interface (IMS Connect)
	IMS BMP with Standard Linkage Calling Convention
	COBOL Converter
	What to do with other Interface Types?
	Compatibility between COBOL Interface Types and RPC Server
	Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

	II Using the IDL Extractor for COBOL - Overview
	Choosing a Scenario
	Before Starting an Extraction
	3 Scenario I: Create New IDL and Server Mapping Files
	Step 1: Start the IDL Extractor for COBOL Wizard
	Step 2: Select a COBOL Extractor Environment or Create a New One
	Step 3: Select the COBOL Source
	Selecting a COBOL Source Stored Locally
	Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)
	Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting an Element (S) from an LMS Library on Remote Host (BS2000)

	Step 4: Define the Extraction Settings and Start Extraction
	Step 4.1a: Copybook Cannot be Found - Local Extraction
	Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction
	Step 4.1c: Copybook Cannot be Found - BS2000 Remote Extraction
	Step 4.2: Copybook Status Summary (Optional)
	Step 4.3: Enter COBOL Program ID (Optional)

	Step 5: Select the COBOL Interface and Map to IDL Interface
	Step 6: Finish the Mapping Editor
	Step 7: Validate the Extraction and Test the IDL File

	4 Scenario II: Append to Existing IDL and Server Mapping Files
	5 Scenario III: Modify Existing IDL and Server Mapping Files

	III COBOL Mapping Editor
	Introduction
	IDL Extraction per Interface Type
	6 CICS with DFHCOMMAREA Calling Convention - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	Programming Techniques
	Example 1: Redefines
	Example 2: Buffer Technique
	Example 3: COBOL SET ADDRESS Statements

	7 CICS with DFHCOMMAREA Calling Convention - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	Programming Techniques
	Example 1: Redefines
	Example 2: Buffer Technique
	Example 3: COBOL SET ADDRESS Statements

	8 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	9 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	10 CICS with Channel Container Calling Convention
	Introduction
	Extracting from a CICS Channel Container Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with Containers
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping
	Map Array of Containers
	Map Optional Containers

	11 COBOL Converter - In same as Out
	Introduction
	Extracting a COBOL Converter
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	12 COBOL Converter - In different to Out
	Introduction
	Extracting a COBOL Converter
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	13 Batch with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	14 IMS BMP with Standard Linkage Calling Convention
	Introduction
	Extracting from an IMS BMP Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	15 IMS MPP Message Interface (IMS Connect)
	Introduction
	Extracting from an IMS MPP Message Interface Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	16 COBOL Preferences
	COBOL Wrapper Preferences
	Deployment Environments Preferences
	IDL Extractor for COBOL Preferences
	Manage COBOL Extractor Environments
	Creating a New Local Extractor Environment
	Creating a New Remote Extractor Environment (z/OS)
	Creating a New Remote Extractor Environment (BS2000)

	Define Prefixes for IDL Parameter Names

	17 COBOL to IDL Mapping
	COBOL Data Type to Software AG IDL Mapping
	User-defined Mapping
	Condition Names - Level-88 Data Items
	COBOL Data Items
	IDL Directions for COBOL Data Items
	IDL Parameter Names derived from COBOL Names
	COBOL Data Items Expecting Single Constant Values
	COBOL Data Items used as Function or Operation Codes
	Optional COBOL Group Data Items
	Unneeded COBOL Data Items

	FILLER Pseudo-Parameter
	REDEFINES Clause
	COBOL Tables with Fixed Size
	VALUE Clause

	DATA DIVISION Mapping
	BLANK WHEN ZERO Clause
	Continuation Lines
	DATE FORMAT Clause
	GLOBAL and EXTERNAL Clause
	JUSTIFIED Clause
	OBJECT REFERENCE Phrase
	POINTER Phrase
	PROCEDURE-POINTER Phrase
	RENAMES Clause - LEVEL 66 Data Items
	SIGN LEADING and TRAILING SEPARATE Clauses
	SYNCHRONIZED Clause
	COBOL Tables with Variable Size - DEPENDING ON Clause
	Unstructured Data Types - LEVEL 77 Data Items
	USAGE Clause on Group Level
	USAGE IS INDEX Clause

	PROCEDURE DIVISION Mapping
	PROCEDURE DIVISION Header
	BY VALUE Phrase
	RETURNING Phrase

	Copybooks
	Copybook Support
	Copybooks with REPLACE Option

