§ software

webMethods EntireX

Software AG IDL Extractor for COBOL

Version 10.8

October 2022

WEBMETHODS

This document applies to webMethods EntireX Version 10.8 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBEXTRACTOR-108-20220601

Table of Contents

1 About this Documentationccccceiiiiiiiiiiiiiiiiii 1
Document CONVENtIONSociiiiiiiiiiiiiiiiiii e 2
Online Information and SUPPOTtc.ccceiiiiiiiiiiiiiiiiiiii e, 2
Data Protectioncoouiiiiiiiiiiiiic 3

I Introduction to the IDL Extractor for COBOLcccccoiiiiiiiiiiiiiiiiiiiccc 5
2 Introduction to the IDL Extractor for COBOLccccooviiiiiiiiiiiiiiiiii, 7

INtroductionccoiiiiiiiiiii 8
Extractor Wizardccccooiiiiiiiiiiii 9
Mapping EditOrc.coooiiiiiiiiiii 10
Supported COBOL Interface TYPescccevvuiiiuiiiiiiiiiiiiiiiiiiiicicciccee e 11

IT Using the IDL Extractor for COBOL - OVerviewcccocueviiiiiiiiniiiiiicccececns 23

3 Scenario I: Create New IDL and Server Mapping Filescccccoeviiiiiiiinnne 27
Step 1: Start the IDL Extractor for COBOL Wizardc.cccccooviiiiiiiiiniinnnns 28
Step 2: Select a COBOL Extractor Environment or Create a New One 29
Step 3: Select the COBOL SOUICEcccuviiuiiiiiiiiiiiiiiiiciiccicciccee e 31
Step 4: Define the Extraction Settings and Start Extraction 38
Step 5: Select the COBOL Interface and Map to IDL Interface 48
Step 6: Finish the Mapping Editorcccoccooiiiiiii 49
Step 7: Validate the Extraction and Test the IDL Filecccccccceeviiininnnnnn. 50

4 Scenario II: Append to Existing IDL and Server Mapping Filesc........... 51

5 Scenario III: Modify Existing IDL and Server Mapping Filesc..c..c..co...... 53

III COBOL Mapping Editorcccoiiiiiiiiiiiiiiiiiiiiiiciccccc e 57

6 CICS with DFHCOMMAREA Calling Convention - In same as Out 61
INtroductioncccooiiiiiiiiiic 62
Extracting from a CICS DFHCOMMAREA Programcccccovviiiiiiniiinnnns 62
Mapping Editor User Interfaceccooeiviiiiiiniiiiiiniiiicicciceecceeeee 64
Mapping Editor IDL Interface Mapping Functionsccccecviviiiiiinnnnnn. 71
Programming Techniquesc..cccooiiiiiiiiiii 99

7 CICS with DFHCOMMAREA Calling Convention - In different to Out 101
INtroductionccoiiiiiiiiiiii 102
Extracting from a CICS DFHCOMMAREA Programccccceceevviiiiiennenne 102
Mapping Editor User Interfaceccccoviiiiiiiiiiiiic, 104
Mapping Editor IDL Interface Mapping Functionsccccceoviiiiiininnnns 111
Programming Techniquescccoccuiviiiiiiiiiiiiiiiiiiiiicc 139

8 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out 141
INtroductioncocoiiiiiiiii 142
Extracting from a CICS DFHCOMMAREA Large Buffer Program 144
Mapping Editor User Interfacecccceeviiiiiiiiiiiiiniiiiiiiicieeccee 145
Mapping Editor IDL Interface Mapping Functionsc.ccccoeiiiiiiinnnnn. 152

9 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out 181
INtroductioncccooiiiiiiii 182
Extracting from a CICS DFHCOMMAREA Large Buffer Program 184
Mapping Editor User Interfaceccccoeoiiiiiiiiiiiiiniiiiiiiiiciciccec 186

Software AG IDL Extractor for COBOL

Mapping Editor IDL Interface Mapping Functionsc.ccccoeiiiiiiiiinnns 193
10 CICS with Channel Container Calling Conventionc.cccocoiiiiiiiiiinnne. 223
INtroductioncocoiiiiiiiii 224
Extracting from a CICS Channel Container Programccccooeviiiiiennnin. 224
Mapping Editor User Interfaceccccooviiiiiiiiiiiiiniiiiiiiiicicicciece 227
Mapping Editor IDL Interface Mapping Functionsc.ccccoeeviiiiiiinnnns 234
11 COBOL Converter - In same as Outc.coccoiviiiiiiiiiiiiiiii, 269
INtroductioncoooiiiiiiii 270
Extracting a COBOL CONVeTterc.ccoeviiiiiiiiiiiiiiicccciec e 270
Mapping Editor User Interfaceccccoeoiiiiiiiiiiiiiniiiiiiiiiiniccie 272
Mapping Editor IDL Interface Mapping Functionsc.cccooieiiiiiiinn, 279
12 COBOL Converter - In different to Outc.ccovviiiiiiiiiiiiiii, 307
INtroductioncciiiiiiiiiiiii 308
Extracting a COBOL CONnverterc.coocuviiiiiiiiiiiiiiiiiicciceccccc s 308
Mapping Editor User Interfacecccccoeoviiiiiiiiiiiiiniiiiiiiiiiiccic 310
Mapping Editor IDL Interface Mapping Functionsc.cccoeiiiiiiiinnnnns 317
13 Batch with Standard Linkage Calling Conventioncccccoeeiiiiiiiiiiniinnninns 345
INtroductionccoiiiiiiiiiiii 346
Extracting from a Standard Call Interfacec.cccocceevviiiiiniiininniiinie. 346
Mapping Editor User Interfacecccccoocuiiiiiiiiiiiiiiiiiiiiiiic 348
Mapping Editor IDL Interface Mapping Functionsc..ccoceeviiiiinnnn, 355
14 IMS BMP with Standard Linkage Calling Conventioncccccceeviiiiiinnnnne 379
INtroductionccooiiiiiiiiii 380
Extracting from an IMS BMP Standard Call Interfacecccccoecveeiiinnnes 380
Mapping Editor User Interfaceccocoovviiiiiiiiiiiiiii, 382
Mapping Editor IDL Interface Mapping Functionsc.cccocceevieiiiininnen. 389
15 IMS MPP Message Interface (IMS Connect)ccccceevvviiiiiiiiiiiiiniiiinininens 413
INtroduction ..o 414
Extracting from an IMS MPP Message Interface Programccc.c....... 415
Mapping Editor User Interfaceccccccooviiiiiiiiiiiiii, 418
Mapping Editor IDL Interface Mapping Functionsc.cccoccceviiiiiininnn. 426
16 COBOL Preferencescccoviiiiiiiiiiiiiiiciiiciiccicec s 455
COBOL Wrapper Preferencescccoccvvviiiiiiiiiiiiiiiiiiiiiiiicciccceic s 456
Deployment Environments Preferencesccccccoooiiiiiiiiiiiiiiiinnninnn, 456
IDL Extractor for COBOL Preferencesccccocvvviiiiiiiiiiiiiiiiniiiciicinee 457
17 COBOL t0 IDL MapPPingccccovuiiiiiiiiiiiiiiiii i 471
COBOL Data Type to Software AG IDL Mappingcccocuveervuieviciinnnennnns 472
User-defined Mappingcccoeveveiiiiiiiiiiiiiiiiieiccieee e 476
DATA DIVISION Mappingcccceevueviiiiiiiieiiiiiiiieiiesie et 483
PROCEDURE DIVISION Mappingcccccceevuiiiiiiiiiiiiiiiiiciieiecic e 489
COPYDOOKS .ottt 490

iv Software AG IDL Extractor for COBOL

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-

wareag.com.

Software AG IDL Extractor for COBOL

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

About this Documentation

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

® Browse through our vast knowledge base.

" Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.
® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Software AG IDL Extractor for COBOL 3

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Introduction to the IDL Extractor for COBOL

2

Introduction to the IDL Extractor for COBOL

LI 1011010 [N o1 [o) 3 ISP PPUR R OTOUPPPPRRR 8
B EXIACIOr WIZAI ...t 9
B MAPPING B0 ... 10
m Supported COBOL INTEIFACE TYPES ...eveeeeeeiiiiiiet ettt e e e e e e e e 11

Introduction to the IDL Extractor for COBOL

Introduction

The Software AG IDL Extractor for COBOL inspects a COBOL source and its copybooks for COBOL
data items to extract. It can also extract directly from copybooks. In a user-driven process supported
by an Extractor Wizard, the interface of a COBOL server is extracted and - with various features
offered by a Mapping Editor - modelled to a client interface.

Wizard

COBOL | L

: > Parameter ' > Mapping
Server - P Settings ; ’1 .
Program 0 |_ ' 9 Selaction E . F'l‘-ﬂ'.l__.e'

Mapping —l- ﬂ Client
Editor Interfacs

@ Start the wizard, select your server program and make COBOL-specific settings.

@ Optional. This step is not always necessary: it is possible that parameters have already been
selected, for example as a result of the COBOL USING clause.

© Optional. If necessary, you can modify the parameter selection from the Mapping Editor.
© Fine-tune the COBOL to IDL mapping.

© Generate an IDL file and a server mapping file. These two related files map the client interface
to the COBOL server program and are described below:

= IDL File
The Software AG IDL file (interface definition language) contains the modelled interface of the
COBOL server. In a follow-up step the IDL file is the starting point for the RPC client-side
wrapping generation tools to generate client interface objects. See EntireX Wrappers in the De-
signer documentation.

® Server Mapping File
A server mapping file to complete the mapping is generated only if it is required by the RPC
server at runtime to call the COBOL server. See Server Mapping Files for COBOL in the Designer
documentation.

8 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Extractor Wizard

The extractor wizard guides you through the extraction process. The wizard supports the following
tasks:

Accessing COBOL source files, either in the local file system where the Designer runs or remotely
from the host computer with the RPC server extractor service. The wizard supports the following:
z/OS partitioned data sets and CA Librarian data sets (including member archive levels) as well
as BS2000 LMS libraries. See Extractor Service in the RPC Server documentation for Batch | IMS |
BS2000. For this purpose, define a local or remote COBOL extractor environment. See COBOL
Preferences.

Resolving of COBOL copybooks. If a relevant copybook from the COBOL DATA DIVISON is
missing, a browse dialog is offered where you can locate the copybook - either a folder (local
extractor environment) or data set (remote extractor environment) - interactively. Copybook
folder or data sets can also be predefined in the COBOL extractor environment. See COBOL
Preferences.

Resolving of COBOL copybooks with the REPLACE option.

CA Librarian (- INC) and CA Panvalet (++INCLUDE) control statements are supported. They are
handled in a similar way to copybooks.

Various COBOL server interface types, such as standard CICS DFHCOMMAREA, CICS with different
structures on input and output, CICS with a large buffer compatible to webMethods WMTLSRVR,
standard batch, and IMS BMP server with PCB pointers. See Supported COBOL Interface Types.

Selecting the COBOL server interface manually within the COBOL Mapping Editor page. This
allows you to extract from a COBOL server where the interface definition is not completely
given by the parameters provided in the PROCEDURE DIVISION Mapping, making it impossible
to detect the parameters automatically.

Defining the default COBOL to IDL mapping in the COBOL Preferences for the following fields:

® COBOL pseudo-parameter FILLER fields. You can define whether they should be part of the
RPC client interface or not. By default, they are not contained in the IDL.

® The name prefix for FILLER and anonymous groups used for IDL parameters.

® COBOL alphanumeric fields (PICTURE X, A, G, N). They can be mapped either to variable-length
or fixed-length strings in the IDL. This option is provided for modern RPC clients that support
variable-length strings, and also for legacy RPC clients that support fixed-length strings only.

The extractor wizard is described in a step-by-step tutorial; see Using the IDL Extractor for CO-
BOL - Overview.

Software AG IDL Extractor for COBOL 9

Introduction to the IDL Extractor for COBOL

Mapping Editor

[IDL Extractor for COBOL BN
IDL Extractor for COBOL - Mapping Editor
Select COBOL data items to be extracted. To redesign the IDL Interface, navigate through the COBOL Interface and select REDEFINEs, Map COBOL data items to IDL directions (In/Qut/InOut),
Suppress the data items, or Set them to Constants, Define multiple IDL Interfaces if the COBOL program provides multiple functions.
~ COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention
CUSTINFO | CUSTREC % a|
36 * MODULE I/C DATA o
37 01 W5-IC-DATR PIC X (454).
a8 @
39 03 CON-DATL. i
40 04 CON-NAME PIC X (060).
41 04 CCN-FIRST PIC X (060).
42 04 CON-TITLE PIC X(012).
13 04 CCN-PHONE PIC X(030). il
. PP nra winsas -
COBOL to IDL Mapping
GetContact | GetAddress L] a'ﬁ ® | =
COBOL Interface IDL Interface
= 01 ws-CMD PIC X(001) [C] [Map to In ->] & WS-KEY (NUS) In
B 01 WS-KEY PIC 9(008) 4 45 WS-CONTACT Out
2| §E 01 WS-10-DATA PIC X(454) = Map to Out -» 4 45 CON-DATA
3 e o & -
R oa COMN-MAME [AVE0)
Map to InOut -=»
4 03 CON-DATA [=Lbieb] 4P CON-FIRST (AVE0)
%04 CON-MNAME PIC X(080) @P COM-TITLE (AV12)
%, 04 CON-FIRST PIC X(060) [e] 4P CON-PHONE (AV30)
%, 04 CON-TITLE PIC X(012) =~ 4P CON-MAIL (AV60)
%, 04 CON-PHOME PIC X(030) Set Constant... &F CON-MSG (Av40)
%5 04 CON-MAL PIC X{080)
(@, 04 COM-MSG PIC X(040)
PIC X(192)
< =
@:l Mest > Finish] [Cancel

The COBOL Mapping Editor is the tool to select and map the COBOL server interface to IDL. This
section gives a short overview of the mapping features provided. These features are described in
more detail in the documentation section for the respective interface type.

Add and remove the parameters of the COBOL server in the top window of the COBOL Mapping
Editor page. The current selection is shown in the bottom window for fine tuning.

Provide IDL directions for parameters of the COBOL server. A COBOL server does not contain
IDL direction information, so you can add this information manually in the Mapping Editor.

Select REDEFINE paths used in the IDL. The Mapping Editor allows you to select a single REDEFINE
path for every REDEFINE unit (all redefine paths addressing the same storage location).

Suppress unneeded fields in the IDL. This keeps the IDL client interface lean and also minimizes
the amount of data transferred during runtime.

Define parameter constants as input for the COBOL server. Constant parameters are not contained
in the IDL file, which means they are invisible for RPC clients. This makes the IDL client interface
easier and safer to use, minimizing improper usage.

1

0 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

® For one COBOL server program, you can create and model multiple interfaces. If the IDL is
processed further with a wrapper of the Designer, the business functions are provided as

" Web service operations if exposed as a Web service instead of a Web service with a single
operation

* methods if wrapped with the Java Wrapper or NET Wrapper instead of a Java class with a
single method

" etc.

See COBOL Mapping Editor for more information.

Supported COBOL Interface Types

The IDL Extractor for COBOL supports as input a COBOL server with various interface types.
This section covers the following topics:

= Supported CICS COBOL Interface Types

= Batch with Standard Linkage Calling Convention

= |[MS MPP Message Interface (IMS Connect)

= |MS BMP with Standard Linkage Calling Convention

= COBOL Converter

= What to do with other Interface Types?

= Compatibility between COBOL Interface Types and RPC Server

= Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

The interface type you are mostly working with can be set in the preferences. See COBOL Prefer-
ences.

Supported CICS COBOL Interface Types

Analyzing the technique used to access the interface with COBOL and CICS statements is the
safest way to determine the interface type. The following CICS COBOL interface types are suppor-
ted:

® CICS with DFHCOMMAREA Calling Convention

® CICS with Channel Container Calling Convention

® CICS with DFHCOMMAREA Large Buffer Interface

There is no clear and easy indication how to identify the interface type of a CICS COBOL server

without COBOL and CICS knowledge. Below are some criteria that might help to determine the
interface type. If you are unsure, consult a CICS COBOL specialist.

® The payload size of the CICS COBOL server is greater than 32 KB:

Software AG IDL Extractor for COBOL 11

Introduction to the IDL Extractor for COBOL

B In this case it is not a DFHCOMMAREA interface, because the DFHCOMMAREA is limited
to 32 KB.

® It could be a large buffer or channel container interface, which are only limited by the storage
(memory) available to them.

® The CICS COBOL server is located in a remote CICS region:

* In this case it is not a large buffer interface, because large buffer programs must reside on the
same CICS region as the caller, that is, the RPC Server for CICS.

" It could be a DFHCOMMAREA or channel container interface, which can reside in a remote
CICS region.

| Note: The most used interface type is the DFHCOMMAREA interface. Large buffer and

channel container interfaces are used much less frequently.
CICS with DFHCOMMAREA Calling Convention

The IDL Extractor for COBOL supports CICS programs using the standard DFHCOMMAREA calling
convention.

CFHCOMMAREA

INOUT CoBOL
A10 | 14 | A100000 | P5 | 14 < S Server

The following illustrates roughly how you can determine whether a COBOL server follows the
DFHCOMMAREA calling convention standard:

LINKAGE SECTION.
01 DFHCOMMAREA.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.

Most DFHCOMMAREA programs have a DFHCOMMAREA data item in their LINKAGE SECTION and may
address this item in the PROCEDURE DIVISION header. If you find this in your COBOL source it's
a clear indication it is a DFHCOMMAREA server program. But even if this is missing, it can be a
DFHCOMMAREA program, because there are alternative programming styles. If you are unsure, consult
a COBOL CICS specialist or see Supported CICS COBOL Interface Types for more information.

12 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

See Step 4: Define the Extraction Settings and Start Extraction and CICS with DFHCOMMAREA
Calling Convention - In same as Out for more information on extracting COBOL servers with this
interface type.

CICS with Channel Container Calling Convention

The IDL Extractor for COBOL supports CICS programs using the channel container calling con-
vention.

Input container

12 | a2s [a1s |14 >

COBOL

Output container Server

. ouT
A0 |14 [A25 [Ps 4«

The following illustrates roughly how you can determine whether a COBOL server follows the
Channel Container standard.

WORKING-STORAGE SECTION.
01 WS-CONTAINER-IN-NAME PIC X(16) VALUE "CALC-IN".
01 WS-CONTAINER-OUT-NAME PIC X(16) VALUE "CALC-0UT".

LINKAGE SECTION.
01 LS-CONTAINER-IN-LAYOUT.

02 OPERATION PIC X(1).

02 OPERANDI PIC S9(9) BINARY.

02 OPERANDZ PIC S9(9) BINARY.
01 LS-CONTAINER-QUT-LAYOUT.

02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.

EXEC CICS GET CONTAINER (WS-CONTAINER-IN-NAME) SET (ADDRESS OF «
LS-CONTAINER-IN-LAYOUT)

EXEC CICS PUT CONTAINER (WS-CONTAINER-OUT-NAME) FROM (ADDRESS OF <«
LS-CONTAINER-OUT-LAYQOUT)

Channel Container programs use EXEC CICS GET CONTAINER in their program body (PROCEDURE
DIVISION) to read their input parameters. Output parameters are written using EXEC CICS PUT

Software AG IDL Extractor for COBOL 13

Introduction to the IDL Extractor for COBOL

CONTAINER. There is no clear indication in the linkage or working storage section to identify a
channel container program. If you are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction and CICS with Channel Container
Calling Convention for more information on extracting COBOL servers with this interface type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data in
CICS. The interface is the same as the webMethods WMTLSRVR interface. This enables webMethods
customers to migrate to EntireX.

DFHCOMMAREA

Large buffer

Technically,

| POINTER

Yy S
A10 | 14 | A100000 | P5 | 14

INCUT
4 >

COBOL
Server

" the DFHCOMMAREA layout contains a structure with a length and a pointer to a large buffer. The
following illustrates this:

LINKAGE SECTION.

01 DFHCOMMAREA.

10
10
10
10
10
10

10

WM-
WM-
WM-
WM-
WM-
WM-
88

WM-

01 INOUT-

PROCEDURE DIVISION USING DFHCOMMAREA.

LCB-
LCB-
LCB-
-QUTPUT-BUFFER
LCB-
LCB-

LCB

MARKER
INPUT-BUFFER
INPUT-BUFFER-SIZE

OQUTPUT-BUFFER-SIZE
FLAGS

WM-LCB-FREE-OUTPUT-BUFFER

LCB-

RESERVED

BUFFER.
02 OPERATION
02 OPERAND-1
02 OPERAND-2
02 FUNCTION-RESULT

PIC

X(4).

POINTER.

PIC

S9(8) BINARY.

POINTER.

PIC
PIC

S9(8) BINARY.
X(1).

VALUE "F"'.

PIC

PIC
PIC
PIC
PIC

X(3).

X(1).

S9(9) BINARY.
S9(9) BINARY.
S9(9) BINARY.

14

Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
* process the INOUT-BUFFER and provide result
EXEC CICS RETURN.

The fields subordinated under DFHCOMMAREA prefixed with WM- LCB describe this structure. The
field names themselves can be different, but the COBOL data types must match exactly.

" data is described by separate structures, here INOUT-BUFFER in the linkage section.

If you find this in your COBOL source, it's a clear indication it is a large buffer program. If you
are unsure, consult a COBOL CICS specialist for clarification.

See Step 4: Define the Extraction Settings and Start Extraction and CICS with DFHCOMMAREA Large
Buffer Interface - In same as Out for more information on extracting COBOL servers with this
interface type.

Software AG IDL Extractor for COBOL 15

Introduction to the IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | | A10/ 14 | A100000 |12 |P5

: K : INOUT BEESL
’ 2] A1S| 14| 14| A100 | 14 4 > Server
Parameter n 4
I4 | A100000 | P2
Technically, the COBOL server contains
" a parameter list: PROCEDURE DIVISION USING PARMI PARM2 ... PARMn

" the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and Batch with Standard Linkage
Calling Convention for more information on extracting COBOL servers with this interface type.

16 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

IMS Message

LL|zz|TCODE 14 | A2s | Aa15 | 14 > COBOL
LLizz A0 14 | A100000 | P5 | 14 < Server

IMS message processing programs (MPP) get their parameters through an IMS message and return
the result by sending an output message to IMS. The IDL Extractor for COBOL enables extractions
from such programs.

The COBOL server contains:

" astructure in the working storage section for the input and the output message.

® an IOPCB in the linkage section used to read input messages and write output messages using
an IMS system call (i.e. CALL "CBLTDLI").

® The message contains also technical fields specific to IMS (see fields LL, 7Z and TRANCODE in the
picture above).

See Step 4: Define the Extraction Settings and Start Extraction and IMS MPP Message Interface
(IMS Connect) for more information on extracting COBOL servers with this interface type.

Software AG IDL Extractor for COBOL 17

Introduction to the IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported. You
have the option to specify a PSB list as input to the extractor to locate PCB parameters.

Farameter 1

A10| 14 |a100000 [12 |P5
Farameter 2
- PCB POINTER
: 2] a15] 14] 14| at00 |14
Parameter n

INOUT COBOL
- Server

14 | A100000 | P2

Technically, the COBOL server contains

" a parameter list: PROCEDURE DIVISION USING PARML1 PCB PARM2 ... PARMn
® IMS-specific PCB pointers within the parameter list
" the parameters in the linkage section as COBOL data items on level 1

See Step 4: Define the Extraction Settings and Start Extraction and IMS BMP with Standard
Linkage Calling Convention for more information on extracting COBOL servers with this interface

type.

COBOL Converter

A file containing valid COBOL data items can be used to extract a COBOL Converter for the EntireX
Adapter. In most cases the COBOL layout during input and output will be same:

Same
INOUT COBOL

A10] 14 | A100000 | P5 | 14 < > in and out
Layouts

See Step 4: Define the Extraction Settings and Start Extraction and COBOL Converter - In same
as Out for more information on extracting COBOL with this interface type.

18 Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

If required, the COBOL layout during input can be different as on output. For example input and
output are described with different REDEFINES clauses.

IN COBOL

)) _ > Input ~oEoL

4 | A25 A15 |14 Layout output

A10 |14 |Aat000000 |P5 |14 g Layout
ouT

See COBOL Conwerter - In different to Out for more information on extracting COBOL with this
interface type.

What to do with other Interface Types?

Other interface types, for example CICS with non-DPL-enabled DFHCOMMAREA, can be supported
by means of a custom wrapper. If you have to extract from such a COBOL server, proceed as follows:

1. Implement a custom wrapper, providing one of the supported interface types above.

2. Extract from this custom wrapper.

Software AG IDL Extractor for COBOL 19

Introduction to the IDL Extractor for COBOL

Compatibility between COBOL Interface Types and RPC Server

To call your server program successfully, the target RPC runtime component used must support
the interface type. The table below gives an overview of possible combinations of an interface type

and RPC server.

Interface Type of your Server Program

zI0S

UNIX/Windows

IBM i |[BS2000

CICS|Batch |IMS|CICS ECI

CICs
Socket
Listener

IMS Connect|AS/400| Batch

CICS with DFHCOMMAREA Calling
Convention

X X

CICS with DFHCOMMAREA Large Buffer
Interface

CICS with Channel Container Calling
Convention

Batch with Standard Linkage Calling
Convention

Convention

IMS BMP with Standard Linkage Calling

IMS MPP Message Interface (IMS Connect)

COBOL Converter

Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

The table below gives an overview of COBOL interface types and EntireX Adapter connection

types.

Interface Type of your Server Program

EntireX Adapter Connection Type

Note

CICS with DFHCOMMAREA Calling
Convention

CICS ECI Connection or
CICS Socket Listener Connection

CICS with DFHCOMMAREA Large Buffer
Interface

CICS Socket Listener Connection

CICS with Channel Container Calling
Convention

CICS Socket Listener Connection

Batch with Standard Linkage Calling
Convention

AS/400 Connection

To call your server program on
a platform other than IBM i, use
an RPC Connection or Direct
RPC Connection to an
appropriate RPC Server for
Batch (z/OS | BS2000).

IMS BMP with Standard Linkage Calling
Convention

RPC Connection or
Direct RPC Connection

Use the RPC Server for IMS as
RPC server.

20

Software AG IDL Extractor for COBOL

Introduction to the IDL Extractor for COBOL

Interface Type of your Server Program EntireX Adapter Connection Type Note
IMS MPP Message Interface (IMS IMS Connect Connection

Connect)

COBOL Converter COBOL Converter Connection

Software AG IDL Extractor for COBOL 21

22

II Using the IDL Extractor for COBOL - Overview

This chapter describes how to extract IDL from a COBOL source, using the IDL Extractor for CO-
BOL, deploy, validate and test the extraction results. IDL extraction is supported by wizards, ed-
itors and generators.

Choosing a Scenario

The following scenarios are supported and are described in separate sections:

® Scenario I: Create New IDL and Server Mapping Files
® Scenario II: Append to Existing IDL and Server Mapping Files
® Scenario I1I: Modify Existing IDL and Server Mapping Files

See also COBOL Mapping Editor.

23

Using the IDL Extractor for COBOL -

Overview

Scenario |:
Create New IDL and
Server-side Mapping File

Select or
Create an
Extractor Environment

|
v

Select COBOL Source

v v v
Local | “708° | Bsz000
l 1]

v

Diefine the Extraction
Settings and
Start Extraction

Scenario Il:
Append to Existing IDL and
Server-side Mapping File

Select or

Create an <

Extractor Environment

I
v

Select COBOL Source

;] y
Yy Y v
Remate Remote

L | 2108 | BS2000

v

Define the Extraction
Settings and
Start Extraction

v

Model the COBOL-to-1DL

> Mapping in the -

COBOL Mapping Editor

b4

Finish
the
Mapping
Editor

_ hd
Deploy Server-side
Mapping File
{optional)

Validate the Extraction
and TestIDL File

Scenario lll:
Maodify Existing I1DL and
Server-side Mapping File

Select the
Mapping

24

Software AG IDL Extractor for COBOL

Using the IDL Extractor for COBOL - Overview

Before Starting an Extraction

Before you start an extraction, we recommend you first clarify the following issues:

* The interface type of your COBOL program, see Supported COBOL Interface Types.
® The input and output parameters of your COBOL server. Note the following;:

® COBOL REDEFINES are used in CICS as well as in batch servers. For all COBOL REDEFINES
you have to clarify which redefine paths are the relevant ones for your extraction.

*® Particularly in CICS, the interface of a COBOL server is in most cases not described by the
parameters given in the PROCEDURE DIVISON header. See PROCEDURE DIVISION Mapping and
see DFHCOMMAREA examples under Programming Techniques.

® We recommend you have a basic understanding of your COBOL server, especially if you can
simplify your IDL with the following:

® Map functions of the COBOL server to IDL programs.
® Suppress unneeded fields.

® Map COBOL data items to constants.
The COBOL sources can contain

" copybook references; see Copybooks under COBOL to IDL Mapping
® CA Librarian (- INC) or CA Panvalet (++INCLUDE) control statements
In section COBOL to IDL Mapping you will find information on how the COBOL syntax is mapped

to Software AG IDL using this wizard and the Mapping Editor. We recommend you read this
document because it describes possibilities and alternatives for handling COBOL syntax constructs.

Make sure the COBOL source

" can be compiled with no errors and no warning

® is written in COBOL fixed format, consisting of sequence number (column 1-6), indicator area
(column?), area A, (column 8-11) and area B (column 12-72) for z/OS, BS2000, z/VSE and IBM i
extractions

Software AG IDL Extractor for COBOL 25

26

3 Scenario |: Create New IDL and Server Mapping Files

= Step 1: Start the IDL Extractor for COBOL Wizardcooooiiiiiiiiiiii e

= Step 2: Select a COBOL Extractor
= Step 3: Select the COBOL Source

Environment or Create a NEW ONecovvveeeiee e

= Step 4: Define the Extraction Settings and Start EXtractioncccoiiiiiiiiic
= Step 5: Select the COBOL Interface and Map t0 IDL INterfacecooovvvviiiiiiiiiiiiiececeeeciie e

= Step 6: Finish the Mapping Editor

= Step 7: Validate the Extraction and Test the IDL Filecoovvvviiiiiiiiii e

27

Scenario |; Create New IDL and Server Mapping Files

Step 1: Start the IDL Extractor for COBOL Wizard

Select a wizard A

—

Extract a new Software &G IDL file From COBOL

Wyizards:

|I:';.-'|:|e Filker text

[= Java

= Plug-in Development

== Software &G

E Web Services Stack Packaging Wizard
=l EntireX

-ﬂ Entirex Wweb Service Project
E! IDL Extractar For COBOL
EF I0L Extractar For Matural
= 100 Extractor For PLIT
P 10U Extractor for WSOL
E! IDL Extractar For ¥ML Docurment
W IDL Extractor For XML Schema
[Software &G I0L File

= User Assistance

|3

|1

®

To continue, press Next and continue with Step 2: Select a COBOL Extractor Environment or
Create a New One.

28 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Step 2: Select a COBOL Extractor Environment or Create a New One

If no COBOL extractor environments are defined, you only have the option to create a new envir-
onment. An IDL Extractor for COBOL environment provides defaults for the extraction and refers
to COBOL programs and copybooks that are

" stored locally on the same machine where the Designer is running: a local COBOL extractor en-
vironment

or

" stored remotely on a host computer: a remote COBOL extractor environment. The extractor service
isrequired to access COBOL programs and copybooks remotely with a remote COBOL extractor
environment. The extractor service is supported on platforms z/OS and BS2000. See Extractor
Service in the RPC Server documentation for Batch | IMS | BS2000.

£ DL Extractor for COBOL =3

Choose Source Location

The COBOL source is extracted as defined in the selecked COBOL extractor enviranment, The source
can be in the local file system or accessed remotely using an extractor service,

I[:} Create a new COBOL extractor environment

E}?Chu:u:use an existing COBOL extractor environment;

;"5,5 My_COBOL_Extractor_CA_Librarian_Environment (REMOTE ibmzZ: 3762@RPCICOBOLCALLMAT) - 2)03
;"&5 My_COBOL_Extractor_PDS_Environment (REMOTE ibm2: 3762@RPC)COBOLICALLMATY - 2/05

EE My _COBOL_Extractor_Local_Environment (LOCALY - 2/05

;‘55 My COBOL_Extractor LM3S_Library _Environment (REMOTE sni:d400@RPCISRY1CALLMAT) - BS2000

[] Modify the selected COBOL extractar environment

Software AG IDL Extractor for COBOL 29

Scenario |; Create New IDL and Server Mapping Files

This page offers the following options:

~ To select an existing local COBOL extractor environment

1 Check radio button Choose an existing COBOL extractor environment and select a local
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

~ To select an existing remote COBOL extractor environment

—_

Check radio button Choose an existing COBOL extractor environment and select a remote
COBOL extractor environment.

2 Continue with Step 3: Select the COBOL Source below.

~ To create a new local COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section under Create New Local Extractor Environment
(z/OS, BS2000, z/VSE and IBM i).

3 Continue with Step 3: Select the COBOL Source below.

> To create a new remote COBOL extractor environment

1 Check radio button Create a new COBOL extractor environment.

2 Follow the instructions in the Preferences section under Create New Remote Extractor Environment
z/OS | BS2000.

3 Continue with Step 3: Select the COBOL Source below.

30 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Step 3: Select the COBOL Source

Selecting the COBOL source is different depending on whether the COBOL source is stored locally
on the same machine where the Software AG Designer is running, or on a remote host computer.

= Selecting a COBOL Source Stored Locally

= Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)

= Selecting a Member from a CA Librarian Data Set on Remote Host (z/0S)

= Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
= Selecting an Element (S) from an LMS Library on Remote Host (BS2000)

Selecting a COBOL Source Stored Locally

In step 2 above you selected or created a local extractor environment for z/OS. If you select a local
COBOL extractor environment, you can browse for the COBOL program in the local file system.
If you selected the COBOL source file before you started the wizard, and do not have a directory
defined in the preferences of your Local Extractor Environment, the file location is already present.
See Create New Local Extractor Environment (z/OS, BS2000, z/VSE and IBM 1i). To browse for the
COBOL source file, choose Browse.

& IDL Extractor for, COBOL

Select a Source from Local File
The Software AG IDL file will be extracted From the selected source.,

File Mame: |1Dem01custinfn-cbl | Browse. ..

7 [< Back]m&xt}

Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Creating a New Remote Extractor Environment (z/OS) under COBOL
Preferences.

Software AG IDL Extractor for COBOL 31

Scenario |; Create New IDL and Server Mapping Files

& IDL Extractor for COBOL

Select a PDS or CA Librarian data set from COBOL extractor environment

The source member to extract the Software &G IDL and 5% files will be located in the selected
PDS or CA Librarian daka set (D3SM). Ik can be a COBOL program or copybook source.

List of data sets:

Mame

ET3. 206, TRAIMIMNG, CMTL
ET5.COB, TRAIMIMG, IMC1

ETS,COB, TRAINIMNG, SRCE

Tokal: 3

@ <Back || mext> | Aoen

Select the partitioned data set from which you want to extract and choose Next. Proceed depending
on the selected data set type. See Selecting a Member from a Partitioned Data Set on Remote Host
(z/08).

The following page offers all members contained in the partitioned data set selected in the previous
step, starting with the member name prefix defined in the Filter Settings of the remote extractor
environment. See Define the remote extractor environment under COBOL Preferences.

32 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

£ DL Extractor for COBOL (=13

Select Member from Data Set

The Software &G IDL and 5%M files will be extracted From COBOL data items (e.g. PICTURE clause)
contained in the selected member, It can be a COBOL program or copybook source.,

List of members from data set ETS.COB, TRAIMNIMNG, SRCE:

Member Creation Time Last Modification
A-TEST 2007-09-20 2003-03-06 10:01
CUSTADD 2007-09-20 2003-03-06 10:01
CUSTCMT 2007-09-20 2003-03-06 10:01
CUSTDEL 2007-09-20 2003-03-06 10:01
CUSTGET 2007-09-20 2003-03-06 10:01
CUSTGETA 2007-11-27 2003-03-06 10:01
CUSTGETC 2007-11-27 2003-03-06 10:01
CLSTIMFO 2005-01-23 2005-03-06 10:01
CUSTOMER 2007-09-20 2003-03-06 10:01
CMO15MPL 2003-02-10 2003-03-06 15:40

Total: 10

(2) < Back, " Mext =]

Select the member from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

Choose Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.
Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)

In step 2 above you selected or created a remote extractor environment. The following page offers
all data sets starting with the high-level qualifier defined in the Filter Settings of the remote ex-
tractor environment. See Creating a New Remote Extractor Environment (z/OS) under COBOL
Preferences.

Software AG IDL Extractor for COBOL 33

Scenario |; Create New IDL and Server Mapping Files

& IDL Extractor for COBOL I
Select a PDS or CA Librarian data set from COBOL extractor environment E

The source member to extract the Software &G IDL and 5% files will be located in the selected
PDS or CA Librarian daka set (D3SM). Ik can be a COBOL program or copybook source.

List of data sets:

Mame

ET3. 206, TRAIMIMNG, CMTL
ET5.COB, TRAIMIMG, IMC1

i, TRAIMNING, SR.CE

Tokal: 3

'ﬁ’:‘ < Back " Mext =]

Select the CA Librarian data set from which you want to extract and choose Next. Proceed depend-
ing on the selected data set type. See Selecting a Member from a CA Librarian Data Set on Remote
Host (z/0S).

The following page offers all members contained in the CA Librarian data set selected in the pre-
vious step, starting with the member name prefix defined in the Filter Settings of the remote ex-
tractor environment. See Define the remote extractor environment under COBOL Preferences.

& IDL Extractor for COBOL X]

Select Member from Data Set

The 3oftware 4G IDL and SYM Files will be extracted from COBOL data items {e.q. PICTURE clause) contained in the selected member, Ik can
be a COBCL program or copybook source,

List of members from data set CALLIBR.MAST:

Mernber Level Version Date Type Description Programmer
A-TEST 00006 090914145331 OB DEMO MEMEER. BMF
CICS007 00005 090811153324 COB DEMO SIMPLE EXAMPLE BMF
CUSTADD 00005 090806132600 COB CUSTOMER. ADD FUNCTION BMF
CUSTCNT 00003 090305133127 OB CUSTOMER COUNT FUMCTION BMF
CUSTDEL 0000z 090805132710 OB CUSTOMER. DELETE FUNCTICN BMF
CUSTGET 00003 090805134512 OB CUSTOMER. GET FUMCTION BMF
CUSTGETA 00006 090916130303 OB CUSTOMER. GETA FUMCTION BMF
CUSTGETC 0190506 134600 OB CUSTOMER, GETC FLUMCTION BMF
CUSTINFD 090916131035 | 0B | CUSTOMER INFO FUNCTION
CUSTOMER 00005 090305132502 COB CUSTOMER APPLICATION BMF
DMO1SMPL 00005 090805134923 OB DEMO SIMPLE EXAMPLE BMF

Tokal: 11

[]5how the archive Levels of the selected member

':':’:' « Back, “ Mexk =

34 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

You can select only one COBOL source. The source can be a COBOL program or a COBOL copy-
book. If you want to extract from

" the latest (current) version of the member, select the member, choose Next and continue with
Step 4: Define the Extraction Settings and Start Extraction below.

" a previous (archived) version of the member, check the box Show the Archive Levels of the
selected member, select the member, choose Next and continue with Selecting a Member Archive
Level from a CA Librarian Data Set on Remote Host (z/OS).

Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)

The following page offers all archive levels of the previously selected member.

& IDL Extractor, for, COBOL

Select Member from Data Set
The Software AG IDL and S¥M files will be extracted from COBOL data items (e.q, PICTURE dause) contained in the selected member, Ik can

be a COBCL program or copybook source,

List of members from data set CAILLIBR.MAST:

Member Lewvel Version Date Type Description Frogrammer
CUSTIMFO 020916131035 CUSTOMER INFO FUNCTION EMF
CISTIMFO Qoooz 090916131027 OB CUSTOMER IMFO FUMCTION BMF
CISTIMFO aooo1 090916131019 COR CUSTOMER IMFO FUMCTION BMF
CISTIMFO ooooo 090916130951 COR CUSTOMER IMFO FUMCTION BMF

Total: 11

() l < Back “ ek =]

Select the member from which you want to extract. You can select only one archive level. Choose
Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.

Selecting an Element (S) from an LMS Library on Remote Host (BS2000)

In step 2 above you selected or created a remote extractor environment.

The following page offers all data sets starting with the high-level qualifier defined in the Filter

Settings of the remote extractor environment. See Creating a New Remote Extractor Environment
(BS2000) under COBOL Preferences .

Software AG IDL Extractor for COBOL 35

Scenario |; Create New IDL and Server Mapping Files

£ IDL Extractor for COBOL =13

Select an LMS Library from COBOL extractor environment

The source element to extract the Software AG IDL and SYM Files will be
located in the selected LMS library. It can be a COBOL program or copybook
zOUrCE,

List of LM3 libr aries:

Mame

(Ex¥$E ETS. COB, TRAINIMNG. CHTL
tExi$EXH, ETS. COB, TRAIMIMG, INC1
EXEIGERE, ETS, COB, TRAINING, SRICE

Tokal: 3

@ | <pack || mewts Finish

The following page offers all elements contained in the LMS library selected in the previous step,
starting with the member name prefix defined in the Filter Settings of the remote extractor envir-
onment. See Define the remote extractor environment under COBOL Preferences.

& IDL Extractor for COBOL

Select Element (S) from LMS Library

The Software &G IDL and 3¥M files will be extracted From COBOL data items {e.g. PICTURE clause)
contained in the selected element. It can be a COBOL program or copybook source,

List of elements Fram LMS library :Exx: $Ex2 ETS. COB. TRAIMING. SRCE:

Type Element Version Last Maodificakion
=) JaTesT |00l | ZO09-08-25
() CUSTADD 0ol 2009-05-25
(=) CILSTCNT 001 2009-03-25
() CISTDEL 0ol 2009-05-25
(=) CISTGET 001 2009-03-25
() CUSTGETA 0ol 2009-05-25
(=) CISTGETC 001 2009-03-25
() CUSTINFO 0ol 2009-05-25
(=) CILISTOMER. 001 2009-03-25
() DMO15MPL 0ol 2009-05-25

Tokal: 10

@ <Back || Hext> Finish

36 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Select the element from which you want to extract. You can select only one COBOL source. The
source can be a COBOL program or a COBOL copybook.

Choose Next and continue with Step 4: Define the Extraction Settings and Start Extraction below.

Software AG IDL Extractor for COBOL 37

Scenario |; Create New IDL and Server Mapping Files

Step 4: Define the Extraction Settings and Start Extraction

In this page you specify the COBOL source and Software AG IDL target options used for IDL ex-

traction.

® Operating System

® Interface Type

® Software AG IDL File

® COBOL to IDL Mapping

-
I8 1DL Extractor for COBOL

Extraction Settings

TheIDL and SVM files will be saved to the selected workspace Container. Please decide Input Message same as Qutput Message or different.

COBOL Source
File Name: CUSTINFO

Operating System: z/0S

Interface Type: ’ CICS with DFHCOMMAREA calling convention

[/] Input Message same as Output Message
IMS MPP message interface (IM5 Connect) IMS BMP with standard linkage calling convention
¥ -
10

@ Transaction Name: *

CICS with Channel Container calling convention

Create IDL parameter for Transaction Name - specification at runtime A
EntireXChannel

Software AG IDL File
File Name: * CUSTINFO
Modify existing File

Library Name: © CUSTINFO

. * g
Container: /Demeo

COBOL te IDL Mapping
Map alphanumeric fields (PICTURE X, A, G, N) to
(@ Strings with variable length (Java, .NET, DCOM, C, Natural, SOAP, XML)
() Strings with fixed length (COBOL, PL/T)

[] Map FILLER fields to IDL

@ <Back | Net> Finish

Browse...

m

Browse...

Cancel

Operating System

The operating system is already defined in the extractor environment in the IDL Extractor for

COBOL preferences, see COBOL Preferences.

38 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Interface Type

The interface type must match the type of your COBOL server program. It is used by the RPC
server and the EntireX Adapter at runtime to correctly call the COBOL server and must be a sup-
ported interface type of the EntireX runtime component used. See Compatibility between COBOL
Interface Types and RPC Server.

Additional information may be required depending on the interface type:

CICS with DFHCOMMAREA Calling Convention

Specify Input Message same as Output Message. If the COBOL server program uses a different
COBOL output data structure compared to its input data structure, that is, the input message

layout is overlaid with another layout on output, you need to uncheck Input Message same as
Output Message. See the following COBOL server examples:

® Example 1: Redefines
® Example 2: Buffer Technique
® Example 3: COBOL SET ADDRESS Statements

If the COBOL server program uses the same COBOL data structure on input as well as on output,
you need to check Input Message same as Output Message. See the following COBOL server
examples:

® Example 1: Redefines
® Example 2: Buffer Technique
® Example 3: COBOL SET ADDRESS Statements

CICS with Channel Container Calling Convention
Optionally, specify a channel name. See Extracting from a CICS Channel Container Program.

CICS with DFHCOMMAREA Large Buffer Calling Convention

Specity Input Message same as Output Message. If the COBOL server program uses a different
COBOL large output buffer data structure compared to its large input buffer data structure,
you need to uncheck Input Message same as Output Message. See CICS with DFHCOMMAREA Large
Buffer Interface (In same as Out, In different to Out).

COBOL Converter

Specity Input Message same as Output Message. If a different COBOL output data structure
compared to its input data structure is used (that is, the input message layout is overlaid with
another layout on output) you need to uncheck Input Message same as Output Message. See
COBOL Converter (In same as Out, In different to Out).

IMS MPP Message Interface (IMS Connect)
Specify how you want the transaction name to be determined. See Extracting from an IMS MPP
Message Interface Program.

Software AG IDL Extractor for COBOL 39

Scenario |; Create New IDL and Server Mapping Files

* IMS BMP with Standard Linkage Calling Convention
You can optionally set the IMS PSB List. See Extracting from an IMS BMP Standard Call Inter-
face.

® Batch with Standard Linkage Convention
No further information is required.

For an introduction to interface types, see Supported COBOL Interface Types.
Software AG IDL File
With the Software AG IDL file target options you specify the IDL file and IDL library names used:

* File name specifies the file name used by the operating system.

® Modify existing file is enabled only when the IDL file already exists. If enabled, check this option
to continue the extraction.

® Library name defines the IDL library name used in the IDL file. The dialog box cannot be edited
when you modify an existing IDL file. If there are multiple libraries, you can select one of these;
if there is only one library, the box is disabled. When you extract the IDL the first time or you
specify the name of an existing IDL file, the box can be edited (like a text widget). If you specified
an existing IDL file, the currently existing library names are available in the box.

® Container specifies the eclipse container used for the IDL file
COBOL to IDL Mapping

With these target options you specify how COBOL data items are mapped to IDL. You can turn
fixed length COBOL data types into variable length data types. This is useful if connecting COBOL
to endpoints with a concept of string types - such as Java, .NET, C, XML, Web services etc. Real
strings without trailing blanks are received. It also reduces the messages size of RPC requests.

* With a mapping to Strings with variable length , the transfer of data in the RPC data stream
depends on the actual length of the data and not the field size, as seen in COBOL. For the COBOL
side, the actual content length of such fields is determined using a trim mechanism.

For PIC X, A and G, all trailing SPACEs are ignored before send. After receive, the content is
padded with trailing SPACEs up to the COBOL field size.

For PIC N @, the Unicode code point U+0020 is used for trimming and padding.

If your application relies on trailing SPACEs or Unicode code points U+0020, you cannot use a
mapping to strings with variable length . Use strings with fixed length @ instead.

= With a mapping to Strings with fixed length *, no trimming takes place. If the mapping in the
calling endpoint calling COBOL is a variable length string data type, in most cases you will receive
trailing SPACEs or trailing Unicode code points U+0020 respectively.

® Check the box Map FILLER fields to IDL if COBOL FILLER pseudo-parameters are to be part
of the RPC client interface. By default they are not mapped to IDL.

40 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

Notes:

1. Technically, a mapping to Strings with variable length forces IDL types AVn, KVn or UVn to be
extracted. See also the notes under IDL Data Types in the IDL Editor documentation.

2. Technically, a mapping to Strings with fixed length the IDL types An, Kn or Un. See also the
notes under IDL Data Types in the IDL Editor documentation.

Choose Next and start the extraction. The wizard now analyzes the COBOL program. During this
process the following situations are possible:

Software AG IDL Extractor for COBOL 41

Scenario |; Create New IDL and Server Mapping Files

-

Analyze
COBOL Program

Any Copybooks
referenced?

All
referenced

OK or Ignore

4.1.x Copybook
cannot be found

|

Copybooks
found?

Yes

4.2 Copybook
Status Summary

MNo

COoBOL
Converter

Yes

4

Program ID No
available? l
Yes 4.3 Enter

COBOL Program ID

OK

¥

" Referenced copybooks cannot be found. In this case the wizard prompts you for every missing
copybook. Continue with optional step Step 4.1x: Copybook Cannot be Found - Local Extraction |
Remote Extraction (z/OS) | Remote Extraction (BS2000) depending on your situation.

= If referenced copybooks are not available, you can choose Ignore or Ignore All, a copybook
status summary page is displayed, see Step 4.2: Copybook Status Summary (Optional).

42

Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

® No COBOL program ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. In this case, the wizard prompts you to enter the COBOL program ID.
Continue with Step 4.3: Enter COBOL Program ID (Optional).

* There is no copybook reference in your COBOL source or all referenced copybooks are found.
Also the COBOL program ID can be located or is not needed as for interface type COBOL
Conwverter. In this case continue with Step 5: Select the COBOL Interface and Map to IDL Interface
under Scenario I: Create New IDL and Server Mapping Files.

Step 4.1a: Copybook Cannot be Found - Local Extraction

This dialog enables you to browse directories where missing copybooks might be found. If there
are any specific copybook file extensions, you can define them here.

& IDL Extractor for COBOL

Complete your COBOL Extractor Environment -
The copybook ACPYEKZ1 cannok be found using the definitions in the COBCL extractor environment, E:>

Copybook Direckory
Browse For the copybook directary in the workspace or file system.

Cireckary Mame: | | Workspace. ..
File Swskem...

Copybook File Extensions

Enter any specific copyvbook extensions.
Use comma o semicolon to separate mulkiple extensions (for example: cob;cbl;txk or cob, b, bxt),

Copybook file extensions: |

":’,' Ignore][Ignore All

The copybook that cannot be found is given in the window, here its name is "ACPYBK21". In the
extractor Preferences, the copybook directory that contains the copybook or the copybook file ex-
tension is not defined.

Continue with one of the following actions:
~ To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

Software AG IDL Extractor for COBOL 43

Scenario |; Create New IDL and Server Mapping Files

~ To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

~ To complete the extractor environment

1 Choose Workspace or File System to browse for the copybook directory.

2 Check the copybook file extensions. Both will be saved in the COBOL extractor preferences
and reused in further extractions.

3 Choose OK and go back to Step 4: Define the Extraction Settings and Start Extraction.

4 Choose Next to start extraction again.

Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction

This dialog enables you to browse remote locations (partitioned or CA Librarian data sets) where
missing copybooks might be found.

& IDL Extractor for COBOL X
Complete your COBOL Extractor Environment
The copyhook CUSTREC cannot be found with the definitions inthe COBOL extractor environmert. Use the extractor service to find the copvbook dataset (DR,
Dataset name: |
® (oo] (iowent]

The copybook that cannot be found is given in the window; here its name is "CUSTREC". In the
extractor preferences, the copybook data set that contains the copybook is not defined.

Continue with one of the following choices:
~ To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

~ To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

44 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

2 Choose Next to start extraction again.

~ To complete the extractor environment

1 Choose Find to browse for the copybook data set. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 Choose OK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 Choose Next to start extraction again.

Step 4.1c: Copybook Cannot be Found - BS2000 Remote Extraction

This dialog enables you to browse remote locations (LMS libraries) where missing copybooks
might be found.

& IDL Extractor for COBOL E3
Complete your COBOL Extractor Environment <3
The copybook XTAE cannok be Found with the definitions in the COBCL extrackor environment, Use the extractor service to find the copybook LMS libraty, E:>

IJse LIS library name or high level qualifier (HLQ) to restrict browsing,
LM5 library name or HLG: | T5.BA |
'l":’:' l lgnore] [Ignore All]

The copybook that cannot be found is given in the window; here its name is "XTAB". In the extractor
preferences, the copybook LMS library that contains the copybook is not defined.

Continue with one of the following choices:
~ To ignore this copybook only

1 Choose Ignore and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

~ To ignore this and all further copybooks

1 Choose Ignore All and go back to Step 4: Define the Extraction Settings and Start Extraction.

2 Choose Next to start extraction again.

Software AG IDL Extractor for COBOL 45

Scenario |; Create New IDL and Server Mapping Files

~ To complete the extractor environment

1 Choose Find to browse for the copybook LMS library. It will be saved in the COBOL extractor
preferences and reused in further extractions.

2 Choose OK and go back to Step 4: Define the Extraction Settings and Start Extraction.

3 Choose Next to start extraction again.
Step 4.2: Copybook Status Summary (Optional)

This summary page lists all COBOL copybooks which were not available during extraction.

7= IDL Extractor for COBOL =3

Warning: Some copybooks referenced by the COBOL program are not used
I I_'j for extraction. See Details For reasons,
If these copybooks do nok contain any COBOL data ikems required For the IDL
exkraction, extraction can conkinue.

ok,]| << Detals |

CUSTDAT: copybook nob used because ignore butkon was pressed by user,
CUSTREC: copybook not used because ignore butbon was pressed by user,

® If any relevant COBOL data item describing the server interface is contained in one of the listed
copybooks, you cannot continue. Terminate the extraction and try to get the missing copybooks.

® If no relevant COBOL data item describing the server interface is contained in the copybooks,
you can continue. Choose OK.

Step 4.3: Enter COBOL Program ID (Optional)

This page is shown whenever the program ID of the COBOL source is missing. Entering a COBOL
program name is compulsory.

46 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

& IDL Extractor for, COBOL

COBOL Program ID
Mo COBOL pragram ID was Found in the selected source. The source could possibly be a copybook, Enter the COBOL

program I0 used to call the COBOL program.

Prograrm ID: | | |

No COBOL program ID can be located if you extract, for example, from a copybook that contains
COBOL data items only. The COBOL program ID

*® is the COBOL program name

" is often the name of the executable or load module

" can be found in the IDENTIFICATION DIVISION (abbreviated to"ID"). Example

ID DIVISION.

PROGRAM-ID. CUSTINFO.
AUTHOR. BMF.
DATE-WRITTEN. 26-11-1996

~ To complete the extraction

1 Enter the COBOL program ID.
2 Choose OK to continue with Step 5: Select the COBOL Interface and Map to IDL Interface.

Software AG IDL Extractor for COBOL 47

Scenario |; Create New IDL and Server Mapping Files

Step 5: Select the COBOL Interface and Map to IDL Interface

A COBOL source program mostly does not contain all the information needed for IDL mapping.
With the Mapping Editor you enter this missing information. In general, mapping the COBOL
data items to IDL with the Mapping Editor is a two-step process:

1. First, select the COBOL data items of the COBOL interface.

2. Then map the COBOL interface to the IDL interface. Define

® which COBOL data items are mapped to IDL (Select REDEFINE paths, Suppress Unneeded
COBOL Data Items)

® the direction of the COBOL data items (Map to [In, Out, InOut])

= field values for COBOL data items that are not sent by clients to the COBOL server (Set
COBOL Data Items to Constant)

® COBOL server with multiple functions (Map to Multiple IDL Interfaces)
= COBOL server output depends on COBOL input (Map to Multiple IDL Interfaces)
® COBOL server with conditional output (Set Multiple Possible Output (MPO) Structures)
® COBOL table usage (Set Array Mapping (fixed <-> unbounded))
® COBOL data items mapped to binary (Map to Binary, Revert Binary Mapping)
" etc.
See the guidelines on IDL Extraction per Interface Type for the COBOL Mapping Editor or by

COBOL syntax in User-defined Mapping under COBOL to IDL Mapping for further information
on this important extraction step.

48 Software AG IDL Extractor for COBOL

Scenario |: Create New IDL and Server Mapping Files

-
[Q 1L Extractor for COBOL -

IDL Extractor for COBOL - Mapping Editor

Select COBOL data items to be extracted. To redesign the IDL Interface, navigate through the COBOL Interface and select REDEFINEs, Map COBOL data items to IDL directions
(In/Out/InOut), Suppress the data items, or Set them to Constants. Define multiple IDL Interfaces if the COBOL program provides multiple functions.

)
|

~ COBOL Program | CUSTINFO -

Interface Type CICS with DFHCOMMAREA calling convention

CUST[NFOI CUSTREC |

ok ab|

61 LINEAGE SECTION. -
62 01 DFHCOMMALRER.
64 02 LS-EEY PIC 9 (008). |_|
B85 02 LS-DATR PIC X (454).
66 = =
687 PROCEDURE DIVISION USING DFHCCOMMAREL.
co W TAT k2
4 3
‘COBOL to IDL Mapping
CUSTINFO FE4LR|EBE
COBOL Interface IDL Interface
%502 L5-CMD PIC X(001) [Map to In ->] 47 L5-CMD (AV1) In Out
502 LS-KEY PIC 9(008) 47 LS-KEY (NUB) Tn Out
TS 02 15-DATA PIC X(454) [Map to Qut ->] 7 LS-DATA (AV454) Tn Out

Mag te InOut -

Suppress]

Set Constant...]

@

weis [Fnish][cancel

The outcome of the Mapping Editor is the IDL file and a server mapping file (optional). See When
is a Server Mapping File Required? under Server Mapping Files for COBOL in the Designer document-
ation. Both files are written with the file name entered for the IDL file in Step 4: Define the Extraction

Settings and Start Extraction.

Step 6: Finish the Mapping Editor

When you choose Save in the Mapping Editor, the IDL file is generated. If required, a server

mapping file (.cvm) is generated, too.

Software AG IDL Extractor for COBOL

49

Scenario |; Create New IDL and Server Mapping Files

Step 7: Validate the Extraction and Test the IDL File

The IDL file is used to build RPC clients using an EntireX Wrapper of your choice, or an IS adapter
service using the Integration Server Wrapper.

If a server mapping file (.cvm) is extracted:

" You need to rebuild all existing RPC clients communicating with this RPC server program and
re-generate the client interface objects.

" For existing IS adapters generated with the EntireX Adapter need to be updated. See Step 3: Create

or Update an Adapter Connection in the Integration Server Wrapper documentation.

@ Caution: Do not edit the IDL file manually or with the IDL Editor, except for changing

parameter names. Otherwise, consistency between the IDL file and the server mapping file
will be lost, resulting in unexpected behavior. For this purpose use the COBOL Mapping
Editor instead and choose Scenario I1I: Modify Existing IDL and Server Mapping Files.

@ Caution: A server mapping file extracted this way must not be re-created by the COBOL

Wrapper. Server mapping specifications of such a file would not be powerful enough to
adequately describe your COBOL server program extracted here.

If you are using the RPC Server for CICS, before calling your extracted RPC server, check if you

need to alter

" CICS settings, for example TWASIZE. See CICS Settings.

® For z/OS additionally IBM LE Runtime Options - for example AMODE?24, how to trap ABENDs
etc.

For a quick validation of your extraction (all interface types except COBOL Converter) you can

" use the IDL Tester to validate the extraction, see EntireX IDL Tester in the Designer documentation.

= generate an XML mapping file (XMM) and use the EntireX XML Tester for verification. See
EntireX XML Tester in the XML/SOAP Wrapper documentation.

50 Software AG IDL Extractor for COBOL

4 Scenario Il: Append to Existing IDL and Server Mapping

Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is a Designer file with extension .cvm. See Server Mapping Files for
COBOL in the Designer documentation.

> To start the IDL Extractor for COBOL

= Open the context menu of an IDL file and choose COBOL > Extract further Interface.

51

Scenario II: Append to Existing IDL and Server Mapping Files

a =% Demo
|X] .project
= CUSTINFO

[CUSTINFOLid

Mew
Cpen
Open With

i Copy
Paste

¥ Delete
Move...

Rename...

Import...
Export...

C. [

Refresh

ﬁﬁ'

Yalidate

Show in Rernote Systems view
Profile As

Debug As

Fun Az

Compare With

Replace With

COBOL
Integration Server
Matural

Web Service
Cther

RS

Generate RPC Client

iGenerate RPC Server

Modify Interface

Extract further Interface
Deploy/Synchronize Server Mapping...

Continue with Step 2: Select a COBOL Extractor Environment or Create a New One as described

under Scenario I: Create New IDL and Server Mapping Files.

52

Software AG IDL Extractor for COBOL

5 Scenario lll: Modify Existing IDL and Server Mapping Files

The IDL Extractor for COBOL can be started from an existing pair of IDL and server mapping
files. A server mapping file is a Designer file with extension .cvm. See Server Mapping Files for
COBOL in the Designer documentation.

~ To start the COBOL Mapping Editor

= Open the context menu of an IDL file and choose COBOL > Modify Interface.

53

Scenario Ill: Modify Existing IDL and Server Mapping Files

= Demao
|%| .project
|=| CUSTIMFO
CUSTI
@:! Mew 3
Open
Open With 2
o=l Copy
Paste
¥ Delete
Mave...
Rename...
gig Import...
7y Export.
& Refresh
Validate
Show in Remote Systemns view
Prafile As 3
Debug As b
Run As 3
Compare With b
Replace With 2
¥E CoBOL C Generate RPC Client
ﬁ Integration Server 3 Generate RPC Server
ﬂ Matural k Modify Interface
ﬁ Web Service 3 Extract further Interface
Other I Deploy/Synchronize Server Mapping...
Or:

Choose Open With > EntireX COBOL Mapping Editor.

54 Software AG IDL Extractor for COBOL

Scenario Ill: Modify Existing IDL and Server Mapping Files

4 = Demo
[= copybog’
|X] .project e
[CUSTING Open
Open With
G5l Copy
Paste
K Delete
Move...
Rename...
g2y Import..
L7 Export..

Dwm B

Entire¥ COBOL Mapping Editor
EntireX IDL Editor
EntireX XML Mapping Editor

Text Editor
Systern Editor
In-Place Editor
Default Editor

Other...

Continue with Step 5: Select the COBOL Interface and Map to IDL Interface as described under
Scenario I: Create New IDL and Server Mapping Files.

Software AG IDL Extractor for COBOL

95

56

I I I COBOL Mapping Editor

See also User-defined Mapping under COBOL to IDL Mapping for guidelines on IDL extraction
by COBOL syntax.

Introduction

A COBOL source program mostly does not contain all the information needed for IDL mapping.
With the Mapping Editor you enter this missing information. In general, mapping the COBOL
data items to IDL with the Mapping Editor is a two-step process:

1. First, select the COBOL data items of the COBOL interface.
2. Then map the COBOL interface to the IDL interface. Define

which COBOL data items are mapped to IDL (Select REDEFINE paths, Suppress Unneeded
COBOL Data Items)

the direction of the COBOL data items (Map to [In, Out, InOut])

field values for COBOL data items that are not sent by clients to the COBOL server (Set
COBOL Data Items to Constant)

COBOL server with multiple functions (Map to Multiple IDL Interfaces)

COBOL server output depends on COBOL input (Map to Multiple IDL Interfaces)
COBOL server with conditional output (Set Multiple Possible Output (MPO) Structures)
COBOL table usage (Set Array Mapping (fixed <-> unbounded))

COBOL data items mapped to binary (Map to Binary, Revert Binary Mapping)

etc.

of

COBOL Mapping Editor

IDL Extraction per Interface Type

The following table provides guidelines on IDL extraction per interface type. See Supported COBOL
Interface Types. For the CICS interface types DFHCOMMAREA and DFHCOMMAREA Large
Buffer, the guidelines distinguish further between

® COBOL server programs overlaying the input data structure with a different output data
structure, and
® COBOL server programs using same structures on input and output.

You already selected this in the checkbox Input Message same as Output Message in Step 4:
Define the Extraction Settings and Start Extraction:

COBOL Source

File WMame: custinfo.chl

Operating Systerm: z/05

Interface Type: IECICS with DFHCOMMAREA calling convention

Input Message same as Qutput Message

Environment Interface Type CICS Message on Input and Output
CICS DFHCOMMAREA © same
different *?
Large Buffer same "
different

Channel Container

webMethods Integration |COBOL Converter (for use by EntireX Adapter)|same

Server different @
Batch Standard Linkage
IMS BMP with Standard Linkage

MPP Message Interface (IMS Connect)

] Notes:

1. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is checked. The COBOL data structure of the input message is the same
as the structure of the output message (applies to CICS or COBOL Converter).

2. Checkbox Input Message same as Output Message in Step 4: Define the Extraction Settings
and Start Extraction is cleared. The COBOL data structure of the input message is different to

58 Software AG IDL Extractor for COBOL

COBOL Mapping Editor

the structure of the output message (that is, the output overlays the input; applies to CICS or
COBOL Converter).

3. Your DFHCOMMAREA COBOL server must be DPL-enabled to be directly supported by EntireX.
The distributed program (DPL) link function enables a CICS client program to call another CICS

program (the server program) in a remote CICS region. Technically, a COBOL server is DPL-
enabled if

® CICS is able to call the COBOL server remotely

" the DFHCOMMAREA layout does not contain pointers.
If your program is not DPL-enabled, see What to do with other Interface Types? in Introduction
to the IDL Extractor for COBOL.

4. See the following COBOL server examples for CICS input message the same as CICS output
message:

® Example 1: Redefines
® Example 2: Buffer Technique
® Example 3: COBOL SET ADDRESS Statements

5. See the following COBOL server examples for CICS input message different to CICS output
message:

® Example 1: Redefines
® Example 2: Buffer Technique
® Example 3: COBOL SET ADDRESS Statements

Software AG IDL Extractor for COBOL 59

60

6 CICS with DFHCOMMAREA Calling Convention - In same

as Out

LI (o 10 oo PSSO UPPPPRRRR 62
= Extracting from a CICS DFHCOMMAREA Programcooiuiiiiieiee ettt 62
= Mapping Editor USEr INTEIFACEevieiiiiiieeee e s 64
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiie e 71
= Programming TECHNIQUESviviiiiiiiiiiis ittt ettt ettt ettt ae et aaaaaaeeeees 99

61

CICS with DFHCOMMAREA Calling Convention - In same as Out

DFHCOMMAREA

Do — INOUT COoBOL
A10 | 14 | A100000 | P5 | 14 - S Server

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Note the following:

® A CICS program does not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISION Mapping.
® The DFHCOMMAEA can be omitted in the linkage section.

= If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, the DFHCOMMAREA on output is not overlaid
with a data structure different to the data structure on input.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and checkbox Input Message same as Output Message is
not cleared.

62 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Source

File Mame: custinfo.cbl

Operating System: z/05

Interface Type: ’ECICS with DFHCOMMAREA calling convention i v

[/] Input Message same as Output Message
Press Next to open the COBOL Mapping Editor.

~ To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the CICS message to COBOL Interface by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to In, Out, InOut.

2. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 63

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface type CICS with DFHCOMMAREA interface, the user interface of the COBOL
Mapping Editor looks like this:

1' = DOEDL Program CUSTIMFD - Imterface Type CICS with DFHCOMMAREA calling corvention
2. custinfo.chl P g W B 4
L 02 L3-CHD PIC X(001}. -
07400 02 LS-KEY PIC 9 ([008).
02 L5-DATHR PIC X[49E5%).
PROCEDURE DIVISION USING DEHCOMMARER.
METH. -
¥
3. COBOL ta IDL Mapping
CUSTINFO +EA X BEE
COBOL Interlace = DL Intertace
T 02 L5-CMD PIC 1) o 1 & L5-CMD (V1) In Ot
T4 02 LSKEY PIC BHD0E) . &
o 02 L5-DATA PIC Mid54) Mlap to Dut-> | & L5-DATA (AVS) Tn Out
| Map to InCut -= | E
SUppress |
Set Constant... |

1. COBOL Program Selection. Currently selected program with interface type
2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

64 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Program Selection

= COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you

can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL

65

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL Source View

= COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention

custinfo.chl i % & | &
63 02 L5-CMD PIC X (001). -
64 007400 02 L5-KEY PIC S(008).
&5 02 L5-DATA PIC X(454). (Tl
:_::_: T R EEEEEE—————————, L]
67 PROCEDURE DIVISTION USING DFHCOMMARER.
RE MATH. ki

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

it Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

66 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CUSTINFO W a‘h + =
COBOL Interface + IDL Interface

% 02 L5-CMD PIC X(001) L5-CMD (AV1) In Qut

% 02 L5-KEY PIC 9(00&) LS-KEY (MUE) In Out

5 02 LS-DATA PIC X(454) Mszp to Out -» LS-DATA (AV454) In Out

Map to InOut -=

Suppress

Set Constant...

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map toIn | Out | InOut A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.

Software AG IDL Extractor for COBOL 67

CICS with DFHCOMMAREA Calling Convention - In same as Out

Set Array Mapping

Set Multiple Possible Out-
put (MPO) Structures

Map to Binary

Revert Binary Mapping

Map an array to a fixed sized or unbounded array.

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple
possible output (MPO) structures and the criteria when a struc-
ture is used.

Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Undo the Map to Binary operation and use the standard map-
ping.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-

face

moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention

is needed:

f-+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

68

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.

5 Scalar parameter, mapped to InOut.

[Scalar parameter, mapped to Out.

& Group parameter, here mapped to InOut.
& REDEFINE parameter, here mapped to InOut.

%% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CUSTINFO W a'h + =
COBOL Interface + IDL Interface

5 02 LS-CMD PIC X001} Map to In -> L5-CMD (AV1) In Out

B 02 LS-KEY PIC 9({008) LS-KEY (NUB) In Out

TS 02 LS-DATA PIC X(454) Map to Out -> LS-DATA (AV454) In Out

Map to InOut -=

Suppress

Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL 69

CICS with DFHCOMMAREA Calling Convention - In same as Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

CUSTINFO . “h q E
COBOL Interface + | IDL Interface

5 02 LS-CMD PIC X(001) &7 L5-CMD (AVL) In Out

% 02 LS-KEY PIC 9(008)

%% 02 LS-DATA PIC X(454) Map to Out -> 4P LS-DATA (AV454) In Out

Map to InOut -=

Suppress

Set Constant...

70 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures
= Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

~ To provide IDL directions

» Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions

in the IDL interface:
MPODIPML
COBOL Interface
ﬁ" 1 _] [Map to In -» l
%02 c Map toIn-=
5 %02 C Map to Qut -> [Map to Out -> l
=
i=02C Map to InOut -=) P
% 02 ¢ : . | Map to InQut ->]
Suppress
Set Constant... [Suppress l
Remove frem COBOL Interface [Set Constant l
[

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

Software AG IDL Extractor for COBOL 71

CICS with DFHCOMMAREA Calling Convention - In same as Out

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11ist under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With the Map to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ON Clause) visible as an IDL unbounded group (with maximum). The ODO object (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~> Tomap 0CCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use the Map to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item

TABLE):
QOCCURS
COBOL Interface IDL Interface
01 COUNTER-1 PIC 99 ‘ [Map to In -] 4 45 TABLEL (/V10) In Out
4 _ 7 FIELDL (AV2)
%02 Map te In -> I Map to Out ->] QPFIELD2 (ML2)
Gt
S0
= m Map to InCut -=

Map to InCut -=

Suppress I Suppress]

Set Constant...
Set Constant...

Remaove frem COBOL Interface

72 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

) Notes:

1. The ODO subject can be mapped to the IDL interface.
2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

QOFERATION = dispatcher

5] (

U U
A '? '||: L B e]
D R | » functions or operations
I

C L

T Y)

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERANDZ
GIVING FUNCTION-RESULT
WHEN "-"

Software AG IDL Extractor for COBOL 73

CICS with DFHCOMMAREA Calling Convention - In same as Out

SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT

WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT

WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

® Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or ' :

COBOL to IDL Mapping
ADD | cALCL + - #{HX|EE
COBOL Interface IDL Interface l i
CEI_ 02 OPERATION PIC X(1) | Map to In -> | ¥ OPERATION (AV1) In
CEI_ 02 OPERANDL PIC 58(9) | * OPERANDL 14 In
CEI_ 02 OPERAND2 PIC 58(9) | Map to Out -> * OPERAND2 14 In

&, 02 FUNCTION-RESULT PIC ¢ [J P FUNCTION-RESULT (4) Out

Map to InOut ->

[Suppress J

[Set Constant... J

2 Give the IDL interfaces meaningful names with the toolbar function «b:

74 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

|
COBOL to IDL Mapping

ADD | CALCL| + 24 K| B E
COBOL Interface IDI Interface
=02 operar] [0 COBOL to IDL Mapping _ =

==
=] 02 OPERANI
Re
%7 02 OPERAN [e
FFHE’ 02 FUNC'I'Iq Rename current IDL Interface Out

Old Mame: CALC1

New Name: | | EIEJLETS)

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT | + 24X EBE
COBOL Interface IDL Interface
Euz OPERATION | PIC X(1) T | A | <" OPERATION (AV1) In L
=l 02 OPERAND1 PIC 589(8) .| [@Q COBOL to IDL Mapping
% 02 OPERAND2 PIC 53(9) | MaptoOut-> | -

%} 02 FUNCTION-RESULT PIC & l] Value Input

Map to InOut -=

Enter alphanumeric data with a maximum length of

’ Suppress] Value:| §

“ Set Constant...]

)

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
= Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY".

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

Software AG IDL Extractor for COBOL 75

CICS with DFHCOMMAREA Calling Convention - In same as Out

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "EXAMPLE' is

program "ADD' is
define data parameter

1
1

OPERANDL (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "SUBTRACT' is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "MULTIPLY'" is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#n |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

76

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

~ To select redefine paths

m Use the Map to In, Out or InOut functions available in the context menu of the COBOL inter-
face and as mapping buttons to make the COBOL REDEFINE path available in the IDL interface.

B
MPODIPIML
COBOL Interface
% 02 CWGSTMO-REQUEST PIC X(2) Map to In ->
% 02 CWGSTMO-CONSTANTL PIC S(8) BINARY
4 502 CWGSTMO-STATEMENT-LINE Map to Out ->
% 04 CWGSTMO-STMT-LTYPE PIC S9(4) BINARY [
- i Map to InQut ->
B a5 04 CWGESTMO-ASTM-LINE PIC X(174) = |
For . 42| 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTM-L[rrl— :
| o B 04 OGS TMO-BD-LINE REDEFINES CWGSTMO-ASTM-—— Maptoln ->
B 04 CWGSTMO-TD-L] STMO-ASTM-L Map to Out ->
5; ; 04 CWGSTMO-TT-LINE REDEFINES CWGSTMO-ASTM-L| [Map to InOut ->
B , 04 CWGESTMO-UNUSED I-LINE REDEFINES CWGSTMO-4
% 02 CWGSTMO-CONSTANT2 PIC X(4) Suppress
% 02 CWGSTMO-LASTDATA PIC X(20) Set Constant...
4 T Remove fram COBOL Interface

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL 77

CICS with DFHCOMMAREA Calling Convention - In same as Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

" for FILLER data items

= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPML
COBOL Interface
T 02 CWGSTMO-REQUEST PIC X{2)
. Zo2cwesTv Mepteln->
T 02 CWGSTMI Map to Out -»

T 02 CWGSTMI

] Notes:

Map to InOut ->

| Suppress |

Set Constant...

Rermowve from COBOL Interface

1D

[Map toIn-= l

[Map te Out -= l

Map to InQut ->

[Suppress l .

[Set Constant... l

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients

or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functions Map to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL

interface again.

78

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML |
COBOL Interface I
% 02 CWGSTMO-REQUEST PIC X(2) ’ Map toIn ->]
. B 02 CWGST Map teIn -> ’ Map to Cut -»]

02 CWGST Map to Out ->

Map to InOut ->
% 02 cWGsT Map to InOut -> :

| Suppress ’

Suppress]
| Set Constant... 1
L

’ Set Constant...]

Remowve from COBOL Interface

2 You are prompted with a window to enter the constant value:

r B
[coBOL to IDL Mappin_ ﬁ

Value Input
Enter numeric data in the range from -2147453648 to 2147483647,

Value:

]

@ | ok || canca |

| — |

Software AG IDL Extractor for COBOL 79

CICS with DFHCOMMAREA Calling Convention - In same as Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functions Map to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

80 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER e
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
% 05 C-PACKETS PIC 59(4) =
% 05 C-ACTION PIC X(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 8(2) —
4 Set Cnnctant
4 505 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
o
= 06 P-TEXT PIC X Map te InOut ->
5 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remowve from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL 81

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping - - .- S

Set Array Mapping
Set the correct array mapping that matches the COBOL server program, so that the number of array
elernents can be deterrnined, Otherwise runtime errors cccur,
(") Fixed Array with 99 Entries (default)
@ Unbounded Array.
Mumber of array elements is calculated from COBOL data item. For the request, the COBOL program

uses the selected method to determine the number of incoming array elemnents. For the reply, the
COBOL program uses the same method so that the number of cutgeing array elernents can be

determined.
I COBOL Data Item
4 CONTRACT-BUFFER
a4 CONTRACT-DATA
4 CONTRACT
C-1D
C-PACKETS
C-ACTION
Z-10
Z-MUMBER

i@ contains array length (bytes)
() contains length of valid data within meszage (bytes)

(") contains number of array elements directly

@' (0] 4] ’ Cancel

The number of array elements is calculated using one of the following options:

® COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

82 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.
01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.

05 C-1ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBERC(II)

END-PERFORM.
* Set table length
COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

® COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

Software AG IDL Extractor for COBOL 83

CICS with DFHCOMMAREA Calling Convention - In same as Out

WORKING-STORAGE SECTION.
77 11
77 EPARM
77 EPARMZ

LINKAGE SECTION.
01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID
05 C-APPDATA
05 C-ACTION
05 Z-1D
05 Z-NUMBER
04 PACKETI
05 P-ITEM.
06 P-ID
06 P-TEXT
06 P-NUMBER

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length
COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

PIC S9(4).
PIC 9(2).
PIC 9(4).

PIC X(8).
PIC S9(4).
PIC X(4).
PIC X(20).
PIC 9(2).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

® COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11

LINKAGE SECTION.
01 DFHCOMMAREA.

03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID
05 C-NUM
05 C-ACTION

04 ZONE.
05 Z-NUMBER

PIC S9(4).

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).

84

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

05 Z-1D PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Qptional Output with Groups

= Complex MPO Selections

= MPO Terminology

Software AG IDL Extractor for COBOL 85

CICS with DFHCOMMAREA Calling Convention - In same as Out

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

86

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL 87

CICS with DFHCOMMAREA Calling Convention - In same as Out

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T !
8] R R {
] E A !
C B M {
H | 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
sUbseq. T ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

" contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

88 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 FIX-INPUT-ITEMI1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.

FIXED-OUTFUT-STRUCTUREZ

OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".
01 OPTIONAL-OUTPUT-STRUCTUREL.
02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).
01 OPTIONAL-OUTPUT-STRUCTUREZ.
02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).
01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

Software AG IDL Extractor for COBOL

89

CICS with DFHCOMMAREA Calling Convention - In same as Out

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

90 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 91

CICS with DFHCOMMAREA Calling Convention - In same as Out

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PM‘MENTl
COBOL Interface

A AE A

. B 01 INPUT

4 “Lo1ouTPuT

Map to In -= l

Map toIn ->

Map to InQut ->

5 02 PAYMENT
#2502 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT

Suppress
Set Constant...

Remove from COBOL Interface

| Map to Qut -> | l

Map to InOut -=

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

R
e

. 2] 02 PAYMENT-DATA-TRANSFER REDEFINES P
. 2] 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

4 LI

Map to InQut ->

Suppress

Set Constant...

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
£ C-O2PAYMENTDATA PICXGS) = pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

92

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 93

CICS with DFHCOMMAREA Calling Convention - In same as Out

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

94 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

-
£ COBOL to IO Mapping e

e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure MPO Selector Values Add Value
PAYMENT-DATA 10 % 20 X aF
PAYMEMT-DATA-YVOUCHER i K o
PAYMEMNT-DATA-CREDITCARD ¢ o7
PAYMENT-DATA-TRANSFER 6
PAYMENT-DATA-DIRECTDEBIT 6

| | | |

N |
@ [ok || Ccancel

L _

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EPA"{MENT-T‘HPE-VDUCHEF‘. Pw
Enable individual input 0

Selector Value:

@ ok || Cancel

i
5 — I R

Software AG IDL Extractor for COBOL

95

CICS with DFHCOMMAREA Calling Convention - In same as Out

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

96 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
4 %02 CONTRACT-BUFFER T
4 %03 CONTRACT-DATA
4 504 CONTRACT Map te Out ->
05 C-ID PIC X(8) T E—
Wiap -
%2 05 C-PACKETS PIC 59(4) cldlebics
05 C-ACTION PIC X(4)
05 Z-1D PIC X(20) Suppress

2 05 Z-NUMBER PIC 9(2)
4
Map toIn-=

4 = 05P-ITEM

5 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X2 Map to InOut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4 2502 CONTRACT-BUFFER Map toIn > 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 504 CONTRACT Map to Out -> < CONTRACT (B38)
05D PIC Xi8) %
% 05 C-PACKETS PIC 59(4) Map to InOut -
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
4 05 Z-NUMBER PIC 9(2) =
4 @5} 04 PACKETI QOCCURS 99 Set Constant...
4 505 p-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%4 06 P-NUMBER PIC 9(2)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL 97

CICS with DFHCOMMAREA Calling Convention - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER | Map to In > | []
4 %03 CONTRACT-DATA
4 %% 04 CONTRACT | Map to Out -» |
[z
205 C-ID PIC X(8)
Map te InOut ->
% 05 C-PACKETS PIC 59(4) | 2g to ntu |
4 05 C-ACTION PIC X(4)
057D PIC X(20) | Suppress |

2 05 Z-NUMBER PIC 9(2)
F I Lo ey I
Map to In -=

4 = 05 P-ITEM

% 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X(3 Map te InQut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Revert Binary Mapping -=

Remowve from COBOL Interface

98 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In same as Out

Programming Techniques

= Example 1: Redefines
= Example 2: Buffer Technique
= Example 3: COBOL SET ADDRESS Statements

Example 1: Redefines

The input and output data is described with a REDEFINE as in the following example. In this case
you need to select REDEFINE path BUFFER2 for the COBOL interface.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 BUFFERL.
03 FIELD-1 PIC X(4).
03 FIELD-2Z PIC X(2).

02 BUFFERZ2 REDEFINES BUFFERI.

03 OPERATION PIC X(1).

03 OPERAND-1 PIC S9(9) BINARY.
03 OPERAND-2 PIC S9(9) BINARY.
03 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
* process BUFFER?
EXEC CICS RETURN.

Often a similar looking technique is used to allow full 32K input and full 32K completely different
output, thus circumventing CICS 32K restrictions somewhat: A REDEFINE is used to describe output
data that overlays the input data, that is, the CICS input message is different to CICS output message.
For more information see Example 1: Redefines in section CICS with DFHCOMMAREA Calling Convention
- In different to Out.

Example 2: Buffer Technique

On entry, the server moves linkage section field(s) - often an entire buffer - into the working storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOL data items are described within the working storage section. You need to select WS-BUFFER
for the COBOL interface.

Software AG IDL Extractor for COBOL 99

CICS with DFHCOMMAREA Calling Convention - In same as Out

WORKING STORAGE SECTION.
01 WS-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION.
01 DFHCOMMAREA.
02 T0O-BUFFER PIC X(9).

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE I0-BUFFER TO WS-BUFFER.

* process the WS-BUFFER and provide result in WS-BUFFER
MOVE WS-BUFFER TO I0-BUFFER.
EXEC CICS RETURN.

A similar looking technique is used to allow full 32K input and full 32K completely different output,
thus circumventing CICS 32K restrictions somewhat: The buffer technique may be used to describe
output data that overlays the input data, that is, the CICS input message is different to CICS output
message. For more information see Example 2: Buffer Technique in section CICS with DFHCOMMAREA
Calling Convention - In different to Out.

Example 3: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used to manipulate the interface of the CICS server. On entry,
the server addresses the data with a (dummy) structure LS-BUFFER defined in the linkage section.
You need to select LS-BUFFER for the COBOL interface.

LINKAGE SECTION.
01 LS-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
SET ADDRESS OF LS-BUFFER TO DFHCOMMAREA.
* process the LS-BUFFER and provide result.
EXEC CICS RETURN.

A similar looking technique is used to allow full 32K input and full 32K completely different output,
thus circumventing CICS 32K restrictions somewhat: COBOL SET ADDRESS statements may be
used to describe output data that overlays the input data, that is, the CICS input message is different
to CICS output message. For more information see Example 3: COBOL SET ADDRESS Statements
in section CICS with DFHCOMMAREA Calling Convention - In different to Out.

100 Software AG IDL Extractor for COBOL

7 CICS with DFHCOMMAREA Calling Convention - In different

to Out

L 121 (oo 1o} o) o PSP PPPPTPRRR 102
= Extracting from a CICS DFHCOMMAREA Programcc.uvviiiiiieiii it 102
= Mapping Editor USer INtErfaceooiiiiiiiiii e 104
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiiiiee e 11
B Programming TECHNIGUESuuuuuuuuueeeieieiiasiettseseeasesaseeesesesesessssssss s ssssnennnnnnes 139

101

CICS with DFHCOMMAREA Calling Convention - In different to Out

DFHCOMMAREA

. ; . I
4 | A25 AlE l4 > COBOL

10| 14 | At00000 | P5 | 14 < Server
ouT

Introduction

Depending on the programming style used in the CICS program and the various different tech-
niques for accessing the CICS DFHCOMMAREA interface, finding the relevant COBOL data structures
can be a complex and time-consuming task that may require CICS COBOL programming know-
ledge. Note the following:

® A CICS program does not require a PROCEDURE DIVISION header, where parameters are normally
defined. See PROCEDURE DIVISION Mapping.
® The DFHCOMMAEA can be omitted in the linkage section.

= If there is no DFHCOMMAREA in the linkage section or no PROCEDURE DIVISION header present in
the PROCEDURE DIVISION, the CICS preprocessor completes the interface of the COBOL server
and adds a DFHCOMMAREA and a PROCEDURE DIVISON header to the CICS program before compil-
ation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS DFHCOMMAREA Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the DFHCOMMAREA on output is overlaid
with a data structure that is different to the data structure on input. See the examples provided
under Programming Techniques.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

102 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Source

File Mame: custinfo.cbl

Operating System: z/05S

Interface Type: ’ CICS with DFHCOMMAREA calling convention -

Dinj:_rut Message same as Qutput Message!

Press Next to open the COBOL Mapping Editor.

~ To select the COBOL interface data items of your COBOL server

1 Addthe COBOL data items of the CICS input message to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. See Notes.

2 Add the COBOL data items of the CICS output message to Output Message by using the
context menu and toolbars available in the COBOL Interface and IDL Interface. See Notes.

3 Continue with COBOL to IDL Mapping.

] Notes:

1. If a DFHCOMMAREA is present, the DFHCOMMAREA COBOL data item itself cannot be selected. In this
case, select the COBOL data items directly subordinated to DFHCOMMAREA and map to IDL. See
Map to.

2. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 103

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas

of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the

user interface of the COBOL Mapping Editor looks like this:

1.
= COBOL Program | CUSTIMNFG - Interface Type CICS with DFHCOMBMAREA calling converibson
2. i = &
custinfo.chi 3 - iy 3
PRULRILE 170 LALS -
01 W5-IO0-DATA PIC X(454) .
03700 01 WS-CONEAGE REDEFIRES WS-I10-DATA.
03 CON-DATA.
04 CON-HRME PIC X(060).
DE CON-FIRSI PIC X [(Ded) . =
1
3. COBOL to IDL Mapping
CUSTINEG AR BE
COBO Interface [0 Imierface
F i
Input Message blap ta -.‘-‘l-I L5-CMD (AVL) In
m— ; #" L5-KEY (NUB) Tn
2 Ls-CMD IC Xl #" L5-DATA [4V54) In
I 02 L5-KEY PIC 5(008) | Suppress » " WS-CONTACT Out
e N
i 02 L5-DATA FIC X[454) a 4F COMBATA
= o COM-MAME (aveD)
o COM-FIRST (AV60)
Output Message & CONCTITLE (VD)
P ,
B i@ owsio-pam PIC X = CON-PHONE [AV30)
i+ 2 3 01 WS-CONTACT REDEFINES WS_I|E @, CON-MALL (Aven]
a % 03 CON-DATA # CON-MSG (AV40)
TE 4 CON-MAME pic = |~
L) m k
Y < Back Finish Cancel
L

1. COBOL Program Selection. Currently selected program with interface type

104

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

~ COBOL Program | CUSTINFO - Interface Type CICS with DFHCOMMAREA calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 105

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL Source View
custinfo.cbl & Iﬁ 5& <:-¢, | Q’:l
36 * MODULE I/fC DATA -
7 01 W5-IC-DATR PIC X (454).

3 03 CON-DATA.
04 CON-NAME FIC X(0&0).
1 04 CON-FIRST FIC X(0&0). &7

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
is Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

<3 Reset COBOL Interface to initial state.

Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

106 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CUSTINFO r a2 + [
COBOL Interface HOO IDL Interface
Input Message LS-CMD (AV1) In
7o LS-KEY (MUS)} In
= 02 L5-CMD PIC X{001) LS-DATA (AV454) 1
02 LS-KEV PIC 9(008) -
. Suppress a WS-CONTACT Out
= 02 L5-DATA PIC X(454) a 58 COMN-DATA

CON-MAME (AVE0)
COM-FIRST (AVB0)
Cutput Message COMN-TITLE (AV12)
@ 01 WS-1O-DATA PIC X4 = COMN-PHONE (AV30)
o CON-MAIL (AVe0)
4 g= 01 WS-CONTACT REDEFIMES WS =] o .
P CIEP 02 CON-DATA CON-MSG (AV40)

%, 04 CON-NAME PIC ~
4 I 3

2

=51
£y

&

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Software AG IDL Extractor for COBOL 107

CICS with DFHCOMMAREA Calling Convention - In different to Out

Suppress
Set Constant
Set Array Mapping

Set Multiple Possible Out-
put (MPO) Structures

Map to Binary

Revert Binary Mapping

Remove from COBOL Inter-
face

Suppress unneeded COBOL data items.
Set COBOL data items to constant.
Map an array to a fixed sized or unbounded array.

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Undo the Map to Binary operation and use the standard mapping.

Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar

The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

«» Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention

is needed:

108

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

‘f-+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
- path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.
[Scalar parameter, mapped to Out.

& Group parameter, here mapped to In.

(=" REDEFINE parameter, here mapped to Out.

%% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CUSTINFO . =% =
COBOL Interface IDL Interface
Input Message Map to -> L5-CMD (AV1) In
% 0> LS-CMD BIC %001 LS-KEY (NUS) In
. Oj LS'EE'_; prug':;ﬁ*- LS-DATA (AV454) In
i - o Suppress s SWS-CONTACT Out
2 02 LS-DATA PIC X(454)

4 4% CON-DATA
CON-NAME (AVEO)
CON-FIRST (AV60)

ON-TITLE [AV12)

IN-PHONE (AV30)

—
L=
0
L

s
0
L
.
L=

Set Constant...

Output Message

fiEl 01 WS-10-DATA PIC X4
B2 a g2 01 WS-CONTACT REDEFIMNES WS
4 7503 CON-DATA

&, 04 CON-NAME PIC ~

3

Fos
. IMN-MAIL (AVE0)
ON-MSG (AV40)

Map to ->
A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL 109

CICS with DFHCOMMAREA Calling Convention - In different to Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

CUSTINFO o 4 X EE
COBOL Interface IDL Interface
Input Message <P 1S-CMD (AVL) In
% 02 Ls-CMD PIC X(001) o LS-KEY (NUS) In
=l - 1!
P) 4F LS-DATA (AV454) In
2 02 LS-KEY PIC 9(00E) Suppress + S Ws-CONTACT Out
% 02 LS-DATA PIC X(454) = + 45 CON-DATA
4P CON-NAME (AVB0)
4" CON-FIRST (AVE0)
Output Message 4" CON-TITLE (AV12)

2P CON-PHONE (AV30)
4P CON-MAIL (AVeD)
#F CON-MSG (aV40)

B¢ & 01 WS-10-DATA PIC X{4
B5| a4 g2y 01 WS-CONTACT REDEFIMES WS
4 5 03 CON-DATA
£, 04 CON-NAME PIC =
-

110 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems
= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures

= Map to Binary and Revert Binary Mapping

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

~ To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu of the COBOL interface and as mapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

Map to -=]

COBOL to IDL Mapping
MPODJPML
COBOL Interface HI O
Input Message
02¢
Foaq | Mepto> | NARY
7=
=l 02 Suppress
o2
Set Constant...
Rermowve from COBOL Interface
Output Messag

Suppress

Set Constant...]

2 Do the same for the output message of the COBOL interface.

J Notes:

. 15 02 CWGSTMO-STATEMENT-LINE
% 02 CWGSTMO-LASTDATA PIC X(20)

IDL

Software AG IDL Extractor for COBOL

M

CICS with DFHCOMMAREA Calling Convention - In different to Out

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You can make the COBOL ODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (see COBOL Tables with Variable Size - DEPENDING ON Clause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDL unbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~ Tomap OCCURS DEPENDING ON

s Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

OCCURS
COBOL Interface =T IDL Interface

Map to -> 4" ORDER-NUMBER (NU10} In
. 4% TABLEL (/V10) Out

Input Message
[02 ORDER-NUMBER PIC 9(10)

’ Suppress]

Set Constant...

Output Message
01 COUNTER-1 PIC 99 ‘

3 P

Map to ->

_ Suppress
4

Set Constant...

Remove from COBOL Interface

j Notes:

1. The ODO subject can be mapped to the IDL interface.

112 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

OPERATION + dispatcher

5] (

L L
'A' E 'll: L B B]
D R | + functions or operations
D& P

C L

T Y

L™ o b o b -

o
o
o

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDI1 PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "*"

Software AG IDL Extractor for COBOL 113

CICS with DFHCOMMAREA Calling Convention - In different to Out

MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

" Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions & or

COBOL to IDL Mapping
ADD CALCL X|EE
COBOL Interface HOOX IDL Interface

 OPERATION (AV1) In
F OPERANDL () In

Input Message Map to ->

E 02 OPERATION PIC X(1) P OPERAND2 () In
2 02 OPERANDL PIC 59(3) BINARY (Suppress | P FUNCTION-RESULT (4) Out
= 02 OPERAND2 PIC S9(3) BINARY
I Set Constant... I
Output Message
%, 02 FUNCTION-RESULT PIC 59(3) BINARY
4 n 3

2 Give the IDL interfaces meaningful names with the toolbar function «b:

114 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mappi
0 apping
ADD| caLct | + 2|4 |
L=
COBOL Interface BHOOX IDL Interface
Input Message Map to -> /" OPERATION (AV1) In
— I <" OPERANDL () In
££] 02 OPERATION L BIC Y i o .
% 02 OPERANDI [COBOL to IDL Mapping =5) Out
% 02 OPERAND2
Rename
Rename current IDL Interface
Qutput Message OldName: _CALCI
% 02 FUNCTION-RESULT s Name.l SUBTRACT i
4 L é
@ [ok][cance |
® % J ¢

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT| + 245X BB
COBOL Interface B OO IDL Interface
Input Message Map to -> J 4" OPERATION (AV1) In l |
=3 i
=] 02 OPERATION PIC X{1) [Q COBOL to IDL Mapping
=] PIC 59(9) BINARY
= @ [Suppress]
=] 02 OPERAND2 PIC 59(9) BINARY Set Value
| [EctGogclapie] | Enter alphanumeric data with a maximum length of 1 character.
Output Message Value:
% 02 FUMNCTION-RESULT PIC 58(3) BIMARY
4 I G
.
® Mext » | Finish Cancel

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY".
® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

Software AG IDL Extractor for COBOL 115

CICS with DFHCOMMAREA Calling Convention - In different to Out

library "EXAMPLE' is

program "ADD' is
define data parameter

1
1

OPERANDL (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "SUBTRACT' is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program 'MULTIPLY' 1is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

116

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

m Use the Map to function available in the context menu of the COBOL interface and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

e e e copepeeerg
MPODIPML
COBOL Interface H OO IDL Interface
Input Message [Map to -» z:z
2 02 CWGSTMO-REQUEST PIC X(2) ' ' pCy
1 02 CWGSTMO-CONSTANTL PIC 58(8) BINARY Suppress)
4
Set Constant...
Output Message
Bl EE 04 CWGSTMO-ASTM-LINE PICX(174) -
B . #2| 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTN™ | .
i - 2] (4 CWGSTMO-ED-LINE REDEFINES CWGS TMO-ASTI Bpte-
& » 42l 04 CWGSTMO-TD-LINE REDEFINES CWGSTMO-AST] e —
] I

&

Set Constant...

Customize MPO (Multiple Possible Output)

Remowve from COBOL Interface

= —_—

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL 117

CICS with DFHCOMMAREA Calling Convention - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPML
COBOL Interface H M D1
Input Message Map to -»
% 02 CWGSTMO-REQUEST PIC X(2))
T 02 CWGSTMO-CONSTANTL PIC 59(8) BINARY [Suppress l
[Set Constant... l '
Output Message
4 & 02 CWGSTMO-STATEMENT-LINE -
75 04 CWGSTMO-STMT-ITVBE PIC Said) RINZ =
o fa 04 CWGSTMO-ASTM- Map to ->
Fi > 04 CWGSTMO-BT-LIN B 1
| « = | |[Suppre=s |
Set Constant...

Remove from COBOL Interface

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

118 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

4. With the inverse function Map to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface

again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is

useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as

mapping button to define a constant value for a COBOL data item:

MPODIPML
COBOL Interface H [)]
Input Message Map to ->
02 CWGSTMO-REQUEST PIC X(2)
Gf%_ 02 CWGSTMO-COMNSTANTL PIC 59(8) BINARY [Suppress
[Set Constant...
Output Message
4 C@ 02 CWGESTMO-STATEMEMT-LINE -
. 04 CWGSTMO-STMT-ITVBF DIC Sard) RINE -
T oo 04 CWGSTMO-ASTM- Map to ->
B > s 04 CWGSTMO-BT-LIN
Bl o« | Tl d Suppress i
Set Constant...
Remuove from COBOL Interface
2 You are prompted with a window to enter the constant value:
Software AG IDL Extractor for COBOL 19

CICS with DFHCOMMAREA Calling Convention - In different to Out

F -
E COBOL tc IDL Mapping B B I&
Value Input
Enter numeric data in the range from -2147453648 to 2147483647,
Value: | TEEN]
@' oK] ’ Cancel

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

120 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER e
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
% 05 C-PACKETS PIC 59(4) =
% 05 C-ACTION PIC X(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 8(2) —
4 Set Cnnctant
4 505 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
o
= 06 P-TEXT PIC X Map te InOut ->
5 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remowve from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL 121

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping - - .- S

Set Array Mapping
Set the correct array mapping that matches the COBOL server program, so that the number of array
elernents can be deterrnined, Otherwise runtime errors cccur,
(") Fixed Array with 99 Entries (default)
@ Unbounded Array.
Mumber of array elements is calculated from COBOL data item. For the request, the COBOL program

uses the selected method to determine the number of incoming array elemnents. For the reply, the
COBOL program uses the same method so that the number of cutgeing array elernents can be

determined.
I COBOL Data Item
4 CONTRACT-BUFFER
a4 CONTRACT-DATA
4 CONTRACT
C-1D
C-PACKETS
C-ACTION
Z-10
Z-MUMBER

i@ contains array length (bytes)
() contains length of valid data within meszage (bytes)

(") contains number of array elements directly

@' (0] 4] ’ Cancel

The number of array elements is calculated using one of the following options:

® COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

122 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.

04 CONTRACT.

05 C-1ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBERC(II)

END-PERFORM.
* Set table length
COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

® COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

Software AG IDL Extractor for COBOL 123

CICS with DFHCOMMAREA Calling Convention - In different to Out

WORKING-STORAGE SECTION.
77 11
77 EPARM
77 EPARMZ

LINKAGE SECTION.
01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID
05 C-APPDATA
05 C-ACTION
05 Z-1D
05 Z-NUMBER
04 PACKETI
05 P-ITEM.
06 P-ID
06 P-TEXT
06 P-NUMBER

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length
COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

PIC S9(4).
PIC 9(2).
PIC 9(4).

PIC X(8).
PIC S9(4).
PIC X(4).
PIC X(20).
PIC 9(2).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

® COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11

LINKAGE SECTION.
01 DFHCOMMAREA.

03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID
05 C-NUM
05 C-ACTION

04 ZONE.
05 Z-NUMBER

PIC S9(4).

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).

124

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

05 Z-1D PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Qptional Output with Groups

= Complex MPO Selections

= MPO Terminology

Software AG IDL Extractor for COBOL 125

CICS with DFHCOMMAREA Calling Convention - In different to Out

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

126

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL 127

CICS with DFHCOMMAREA Calling Convention - In different to Out

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T !
8] R R {
] E A !
C B M {
H | 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
sUbseq. T ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

" contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

128 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 FIX-INPUT-ITEMI1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.

FIXED-OUTFUT-STRUCTUREZ

OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".
01 OPTIONAL-OUTPUT-STRUCTUREL.
02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).
01 OPTIONAL-OUTPUT-STRUCTUREZ.
02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).
01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

Software AG IDL Extractor for COBOL

129

CICS with DFHCOMMAREA Calling Convention - In different to Out

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

130 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 131

CICS with DFHCOMMAREA Calling Convention - In different to Out

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PM‘MENTl
COBOL Interface

A AE A

. B 01 INPUT

4 “Lo1ouTPuT

Map to In -= l

Map toIn ->

Map to InQut ->

5 02 PAYMENT
#2502 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT

Suppress
Set Constant...

Remove from COBOL Interface

| Map to Qut -> | l

Map to InOut -=

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

R
e

. 2] 02 PAYMENT-DATA-TRANSFER REDEFINES P
. 2] 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

4 LI

Map to InQut ->

Suppress

Set Constant...

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
£ C-O2PAYMENTDATA PICXGS) = pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

132

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

-
[(] COBOL to IDL Mapping [|
Set Multiple Possible QOutput (MPO) Structures into MPQO Group
All related ocutput structures will be bundled together in an MPC group.

Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 133

CICS with DFHCOMMAREA Calling Convention - In different to Out

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

134 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

-
£ COBOL to IO Mapping e

e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure MPO Selector Values Add Value
PAYMENT-DATA 10 % 20 X aF
PAYMEMT-DATA-YVOUCHER i K o
PAYMEMNT-DATA-CREDITCARD ¢ o7
PAYMENT-DATA-TRANSFER 6
PAYMENT-DATA-DIRECTDEBIT 6

| | | |

N |
@ [ok || Ccancel

L _

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EPA"{MENT-T‘HPE-VDUCHEF‘. Pw
Enable individual input 0

Selector Value:

@ ok || Cancel

i
5 — I R

Software AG IDL Extractor for COBOL

135

CICS with DFHCOMMAREA Calling Convention - In different to Out

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

136 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
4 %02 CONTRACT-BUFFER T
4 %03 CONTRACT-DATA
4 504 CONTRACT Map te Out ->
05 C-ID PIC X(8) T E—
Wiap -
%2 05 C-PACKETS PIC 59(4) cldlebics
05 C-ACTION PIC X(4)
05 Z-1D PIC X(20) Suppress

2 05 Z-NUMBER PIC 9(2)
4
Map toIn-=

4 = 05P-ITEM

5 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X2 Map to InOut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4 2502 CONTRACT-BUFFER Map toIn > 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 504 CONTRACT Map to Out -> < CONTRACT (B38)
05D PIC Xi8) %
% 05 C-PACKETS PIC 59(4) Map to InOut -
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
4 05 Z-NUMBER PIC 9(2) =
4 @5} 04 PACKETI QOCCURS 99 Set Constant...
4 505 p-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%4 06 P-NUMBER PIC 9(2)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL 137

CICS with DFHCOMMAREA Calling Convention - In different to Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER | Map to In > | []
4 %03 CONTRACT-DATA
4 %% 04 CONTRACT | Map to Out -» |
[z
205 C-ID PIC X(8)
Map te InOut ->
% 05 C-PACKETS PIC 59(4) | 2g to ntu |
4 05 C-ACTION PIC X(4)
057D PIC X(20) | Suppress |

2 05 Z-NUMBER PIC 9(2)
& I Lo ey I
Map to In -=

4 = 05 P-ITEM

% 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X(3 Map te InQut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Revert Binary Mapping -=

Remowve from COBOL Interface

138 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Calling Convention - In different to Out

Programming Techniques

= Example 1: Redefines
= Example 2: Buffer Technique
= Example 3: COBOL SET ADDRESS Statements

Example 1: Redefines

The output data is described with a REDEFINE that overlays the input data as in the following ex-
ample. In this case you need to select IN-BUFFER for the input message and 0UT-BUFFER for the
output message of the COBOL interface. This technique is often used to allow full 32K input and
full 32K completely different output, thus circumventing CICS 32K restrictions somewhat.

LINKAGE SECTION.
01 DFHCOMMAREA.

02 IN-BUFFER.

03 OPERATION PIC X(1).

03 OPERAND-1 PIC S9(9) BINARY.

03 OPERAND-2 PIC S9(9) BINARY.
02 OUT-BUFFER REDEFINES IN-BUFFER.

03 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.
* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

REDEFINEs can also be used to describe a single buffer used for input and output, that is, the CICS
input message is the same as the CICS output message. For more information see Example 1: Re-
defines in the section CICS with DFHCOMMAREA Calling Convention - In same as Out.

Example 2: Buffer Technique

On entry, the server moves linkage section field(s) - often an entire buffer - into the working storage
and processes the input data inside the working storage field(s). Before return, it moves the
working storage field(s) - often an entire buffer - back to the linkage section. In this case, the relevant
COBOL data items are described within the working storage section. You need to select IN-BUFFER
for the input message and 0UT-BUFFER for the output message of the COBOL interface. This tech-
nique can be used to allow full 32K input and full 32K completely different output, thus circum-
venting CICS 32K restrictions somewhat.

Software AG IDL Extractor for COBOL 139

CICS with DFHCOMMAREA Calling Convention - In different to Out

WORKING STORAGE SECTION
01 IN-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.

02 OPERAND-2 PIC S9(9) BINARY.
01 OUT-BUFFER.

02 FUNCTION-RESULT PIC S9(9) BINARY.

LINKAGE SECTION
01 DFHCOMMAREA.
02 T0-BUFFER PIC X(9).

PROCEDURE DIVISION USING DFHCOMMAREA.
MOVE TO-BUFFER TO IN-BUFFER.
* process the IN-BUFFER and provide result in OUT-BUFFER
MOVE OUT-BUFFER TO IO-BUFFER.
EXEC CICS RETURN.

The buffer technique can also be used to describe a single buffer used for input and output, that
is, the CICS input message is the same as the CICS output message. For more information see Ex-
ample 2: Buffer Technique in the section CICS with DFHCOMMAREA Calling Convention - In same as Out.

Example 3: COBOL SET ADDRESS Statements

COBOL SET ADDRESS statements are used to manipulate the interface of the CICS server. On entry,
the server addresses the input data with a (dummy) structure IN-BUFFER defined in the linkage
section. Upon return, the server addresses the output data again with a different (dummy) structure
0UT-BUFFER defined in the linkage section. You need to select IN-BUFFER for the input message
and OUT-BUFFER for the output message of the COBOL interface. This technique can be used to
allow full 32K input and full 32K completely different output, thus circumventing CICS 32K re-
strictions somewhat.

LINKAGE SECTION.
01 IN-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.

02 OPERAND-2 PIC S9(9) BINARY.
01 OUT-BUFFER.

02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION.
SET ADDRESS OF IN-BUFFER TO DFHCOMMAREA.

* process the IN-BUFFER and provide result in OUT-BUFFER
SET ADDRESS OF QUT-BUFFER TO DFHCOMMAREA.
EXEC CICS RETURN.

COBOL SET ADDRESS statements can also be used to describe a single buffer used for input and
output, that is, the CICS input message is the same as the CICS output message. For more inform-
ation see Example 3: COBOL SET ADDRESS Statements in the section CICS with DFHCOMMAREA Calling
Convention - In same as Out.

140 Software AG IDL Extractor for COBOL

8 CICS with DFHCOMMAREA Large Buffer Interface - In same

as Out

L 121 (oo 1o} o) o PSP PPPPTPRRR 142
= Extracting from a CICS DFHCOMMAREA Large Buffer Programccccvvvieiiiiiiiiiiiiccceececiiiiieeeee 144
= Mapping Editor USer INtErfaceooiiiiiiiiii e 145
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiiiiee e 152

141

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

DFHCOMMAREA
' POINTER
Y INOUT COBOL
A10 | 14 | A100000 | P5 | 14 - S Server
Large buffer
Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM- LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.
The COBOL server has one interface layout structure that is used for input as well as output.

LINKAGE SECTION.

01 DFHCOMMAREA.

10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-QUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).
88 WM-LCB-FREE-OUTPUT-BUFFER VALUE "F".
10 WM-LCB-RESERVED PIC X(3).
01 INOUT-BUFFER.
02 OPERATION PIC X(1).
02 OPERAND-1 PIC S9(9) BINARY.
02 OPERAND-2 PIC S9(9) BINARY.
02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.

SET ADDRESS OF INOUT-BUFFER TO WM-LCB-INPUT-BUFFER.
* process the INOUT-BUFFER and provide result

EXEC CICS RETURN.

From a programming point of view, the COBOL server behaves as follows:

142 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Variable

Description

WM-LCB-MARKER

Has eye-catcher "XXXX".

WM-LCB-INPUT-BUFFER

Has pointer to a buffer with COBOL server parameter data. This buffer
is described by a COBOL layout structure.

WM-LCB-INPUT-BUFFER-SIZE

Contains size of COBOL server input parameter data.

WM-LCB-OUTPUT-BUFFER

Same as WM-LCB-INPUT-BUFFER.

WM-LCB-OUTPUT-BUFFER-SIZE

On input, same as WM-LCB-INPUT-BUFFER-SIZE.

On return, the size must match the data length returned in the COBOL
layout structure of the WM-LCB-OUTPUT-BUFFER.

If the called COBOL server returns variable length data, that is, you have
mapped Map O0CCURS DEPENDING ON or Set Arrays (Fixed <->
Unbounded), and depending on your runtime architecture, consider the
following:

= CICS Socket Listener (EntireX Adapter or RPC Server)
Providing a length considering the actual number of occurences instead
of the maximum possible (which was provided on input), reduces
network traffic and may improve performance.

= CICS RPC Server
Because in this architecture the marshalling is on-host, there will be no
impact on network traffic, even if the provided length is set to the
maximum possible number of occurences that was provided on input.

If the called COBOL server returns fixed-length data, there is no need to
Change WM-LCB-QUTPUT-BUFFER-SIZE.

WM-LCB-FLAGS

Onreturn, a value of 'F'in this flag indicates that the called COBOL server
allocated an output buffer that had to be released by EntireX.

WM-LCB-OUTPUT-BUFFER and WM-LCB-FLAGS are normally not changed by the called COBOL server

in this scenario.

If there is a need to return the output data in a different storage, this storage must be allocated by
EXEC CICS GETMAIN. Return the new storage address in WM-LCB-OUTPUT-BUFFER. Indicate with
WM-LCB-FLAGS="F" that the storage is released (EXEC CICS FREEMAIN) by EntireX.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Software AG IDL Extractor for COBOL 143

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, WM-LCB-OUTPUT-BUFFER is set to the same address
as WM-LCB-INPUT-BUFFER (as in the DFHCOMMAREA large buffer example above).

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA large buffer interface, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

COBOL Source
File Mame: LargeBuf

Operating System: z/05

Interface Type: ICICS with DFHCOMMAREA, large buffer interface -

[/ Input Message same as Output Message

Press Next to open the COBOL Mapping Editor.

~ To select the COBOL interface data items of your COBOL server

1 Addthe COBOL data items of the large buffer to COBOL Interface by using the context menu
or toolbar available in the COBOL Source View and COBOL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement and
the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The COBOL data items <x>
and <y> are identical, and this is the large buffer you are looking for. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

144 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface type CICS with DFHCOMMAREA large buffer interface, the user interface
of the COBOL Mapping Editor looks like this:

L. = COBOL Program LasgeBuf - Imterface Type CICS with DFHCOMMAREA Lrge buffer interface
2. LargeBuf Y o g B | 4
1 . 10 WM-LCB-RESERVED PIC X(3). -
01 IROUT-BUFFER.
02 OFERATION FIC X{1}.
07 OFERAND-1 FIC 5%(9) BINARY. #
02 OPERAND-2 PIC 3%(9) BINARY.
02 FUNCTIOH-RESULI FIC 52(3) BIHARY.

3. COBOL to DL Mapping

LargeBuf =i 9 X| H
COBOL Interface IDL Interfsce
o L NOUT-BUFFER ' Maptoln-> | « 4 INOUT-BUFFER In Out
T2 02 OPERATION B¢ : & OPERATION (841)
T35 02 OPERAND-1 FIL] Wap ta Ou -» | " OPERAND-1 (W)
5 02 OPERAND-2 FIC o i & OPERAMND-2 [¥)
T2 02 FUMCTION-RESULT . # FUMCTIOM-RESULT (14
Uppress
'l 11} [

1. COBOL Program Selection. Currently selected program with interface type
2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

Software AG IDL Extractor for COBOL 145

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Program Selection

~ COBOL Program | LargeBuf - Interface Type CICS with DFHCOMMAREA large buffer interface

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

146 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL Source View

LargeBuf ik 3& Q& | &
11 10 WM-LCE-RESERVED PIC X(3). -
12 01 INCUT-BUFFER.

13 02 OPERATICON PIC X(1).

14 02 OPERAND-1 PIC 59(2) BINARY. E
15 02 OPERAND-2 PIC 59(2) BINARY.

16 02 FUNCTION-RESULT PIC S59(9) BINARY.

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

i Remove selected COBOL data item from COBOL Interface.
% Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

&7 Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

4 Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL 147

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

LargeBuf
COBOL Interface
s 501 INOUT-BUFFER Map toIn ->
% 02 OPERATION PIC
% 02 OPERAND-1 PIC Map to Out ->
% 02 OPERAND-2 PIC

% 02 FUNCTION-RESULT

Suppress

IDL Interface

4 5 INOUT-BUFFER In Out
OPERATION (AV1)
OPERAND-1 (14}
OPERAND-2 (M)
FUNCTIOM-RESULT (I4)

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons

provide additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map toIn | Out | InOut A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.
148 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Set Array Mapping

Set Multiple Possible Out-
put (MPO) Structures

Map to Binary

Revert Binary Mapping

Map an array to a fixed sized or unbounded array.

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple
possible output (MPO) structures and the criteria when a struc-
ture is used.

Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Undo the Map to Binary operation and use the standard map-
ping.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-

face

moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar

The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention

is needed:

f-+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Software AG IDL Extractor for COBOL

149

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.

5 Scalar parameter, mapped to InOut.

[Scalar parameter, mapped to Out.

& Group parameter, here mapped to InOut.
& REDEFINE parameter, here mapped to InOut.

%% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

LargeBuf W a'h H =
COBOL Interface IDL Interface
2 ‘75 01 INOUT-BUFFER ’ Map to In ->] 4 5 INOUT-BUFFER In Out
&5 02 OPERATION PIC OPERATION (AV1)
;02 OPERAND-1 PIC [Map to Out -»] OPERAND-1 (4)
&} 02 OPERAND-2 PIC R OPERAND-2 (14)
Wligp to lnlut - =
£} 02 FUNCTION-RESULT L FUNCTIOM-RESULT (14)
’ Suppress l
Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

150 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

LargeBuf w ‘b I
COBOL Interface IDL Interface
4 ‘7% 01 INOUT-BUFFER Map to In -> 4 4% INOUT-BUFFER In Out
%5 02 OPERATION PIC 4P OPERATION (AV1)
&5 02 OPERAND-1 PIC Map to Out -> 4P OPERAND-1 (14)
E4 02 OPERAND-2 PIC +F OPERAND-2 ()
5 02 FUNCTION-RESULT P FUNCTION-RESULT (1)
Suppress
4 F

Software AG IDL Extractor for COBOL 151

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures
= Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

~ To provide IDL directions

» Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions

in the IDL interface:
MPODIPML
COBOL Interface
ﬁ‘ 1 _] [Map to In -» l
%02 c Map toIn-=
5 %02 C Map to Qut -> [Map to Out -> l
=
i=02C Map to InOut -=) P
% 02 ¢ : . | Map to InQut ->]
Suppress
Set Constant... [Suppress l
Remove frem COBOL Interface [Set Constant l
[

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

152 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With the Map to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ON Clause) visible as an IDL unbounded group (with maximum). The ODO object (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~ Tomap 0CCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use the Map to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item

TABLE):
QOCCURS
COBOL Interface IDL Interface
01 COUNTER-1 PIC 99 ‘ [Map to In -] 4 45 TABLEL (/V10) In Out
4 _ 7 FIELDL (AV2)
%02 Map te In -> I Map to Out ->] QPFIELD2 (ML2)
Gt
S0
= m Map to InCut -=

Map to InCut -=

Suppress I Suppress]

Set Constant...
Set Constant...

Remaove frem COBOL Interface

Software AG IDL Extractor for COBOL 153

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

) Notes:

1. The ODO subject can be mapped to the IDL interface.
2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

QOFERATION = dispatcher

5] (

U U
A '? '||: L B e]
D R | » functions or operations
I

C L

T Y)

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERANDZ
GIVING FUNCTION-RESULT
WHEN "-"

154 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT

WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT

WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

® Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or ' :

COBOL to IDL Mapping
ADD | cALCL + - #{HX|EE
COBOL Interface IDL Interface l i
CEI_ 02 OPERATION PIC X(1) | Map to In -> | ¥ OPERATION (AV1) In
CEI_ 02 OPERANDL PIC 58(9) | * OPERANDL 14 In
CEI_ 02 OPERAND2 PIC 58(9) | Map to Out -> * OPERAND2 14 In

&, 02 FUNCTION-RESULT PIC ¢ [J P FUNCTION-RESULT (4) Out

Map to InOut ->

[Suppress J

[Set Constant... J

2 Give the IDL interfaces meaningful names with the toolbar function «b:

Software AG IDL Extractor for COBOL 155

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

|
COBOL to IDL Mapping

ADD | CALCL| + 24 K| B E
COBOL Interface IDI Interface
=02 operar] [0 COBOL to IDL Mapping . =

==
=] 02 OPERANI
Re
%7 02 OPERAN [e
FFHE’ 02 FUNC'I'Iq Rename current IDL Interface Out

Old Mame: CALC1

New Name: | | EIEJLETS)

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT | + 24X EBE
COBOL Interface IDL Interface
E 02 OPERATION | PIC X(1) T | L L___<F OPERATION (AV1) In L
=/ 02 OPERANDL PIC 58(9) .| [@Q COBOL to IDL Mapping
%7 02 OPERAND2 PIC S9(9) | MaptoOut-> |

%} 02 FUNCTION-RESULT PIC & l] Value Input

Map to InOut -=

Enter alphanumeric data with a maximum length of

’ Suppress] Value:| §

“ Set Constant...]

)

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
= Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY".

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

156 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "EXAMPLE' is

program "ADD' is

define data parameter
1 OPERANDI (I4) In

1 OPERAND2 (I4) In

1 FUNCTION-RESULT (I4) Out

end-define

program 'SUBTRACT' is
define data parameter
1 OPERANDI (I4) In
1 OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) Out

end-define

program '"MULTIPLY'" is
define data parameter
1 OPERANDI (I4) In
1 OPERAND2 (I4) In

1 FUNCTION-RESULT (I4) Out

end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#= |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#n |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

Software AG IDL Extractor for COBOL

157

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

~ To select redefine paths

s Use the Map to In, Out or InOut functions available in the context menu of the COBOL inter-
face and as mapping buttons to make the COBOL REDEFINE path available in the IDL interface.

e o aan seepepeeerg
MPODIPML
COBOL Interface
% 02 CWGSTMO-REQUEST PIC X(2) Map to In ->
% 02 CWGSTMO-CONSTANTL PIC 59(8) BINARY
4 502 CWGSTMO-STATEMENT-LINE Map to Out ->
% 04 CWGSTMO-STMT-LTYPE PIC 59(4) BINARY [Man 1o IOt =
B 25 04 CWGSTMO-ASThA-LINE PIC X(174) =] d |

- d2) 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTM-LA e =3
bl CWESTMO-BD-LINE REDEFINES CAGSTMO-ASTM-t|—— Maptoln-»

==
&

23

Map to Qut ->
. Map to InQut ->

==
&

I3

==
&

I3

EFINES CWGSTMO-4

B3

% 02 CWGSTMO-COMNSTANT2 PIC Xid) Suppress
% 02 CWGSTMO-LASTDATA PIC Xi(20) Set Constant...
4 m Remove from COBOL Interface

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

158 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPRIL
COBOL Interface D
% 02 CWGSTMO-REQUEST PIC ¥(2) ‘ [Map toIn -»]
. 02 CWGSTIM Map ton -> [Map to Out -> l
5 02 CWGSTM Map to Out -> ot o
B 02 CWGSTM Map to InOut -> L
Suppress [
=B : [Suppress l
Set Constant... |]
[Set Constant... l
Rermowve from COBOL Interface
] Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functions Map to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

Software AG IDL Extractor for COBOL 159

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML |
COBOL Interface I
% 02 CWGSTMO-REQUEST PIC X(2) ’ Map toIn ->]
. B 02 CWGST Map teIn -> ’ Map to Cut -»]

02 CWGST Map to Out ->

Map to InOut ->
% 02 cWGsT Map to InOut -> :

| Suppress ’

Suppress]
| Set Constant... 1
L

’ Set Constant...]

Remowve from COBOL Interface

2 You are prompted with a window to enter the constant value:

r B
[T COBOL to IDL Mapping "W — |
Value Input

Enter numeric data in the range from -2147453648 to 2147483647, E

Value:

]

@ | ok || canca |

| — |

160 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functions Map to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL 161

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER e
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
% 05 C-PACKETS PIC 59(4) =
% 05 C-ACTION PIC X(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 8(2) —
4 Set Cnnctant
4 505 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
o
= 06 P-TEXT PIC X Map te InOut ->
5 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remowve from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

162 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

i - L
COBOL toIDL Mapping T} S

Set Array Mapping

Set the correct array mapping that matches the COBOL server program, so that the number of array
elements can be determined, Otherwise runtime errors occur,

(") Fixed Array with 99 Entries (default)
@ Unbounded Array.

For the request, the COBOL program uses the selected method to determine the number of incoming
array elements, For the reply, the COBOL program uses the same method so that the number of
outgoing array elements can be determined.

(7 Mumber of array elements is calculated from Large Buffer length (bytes).

@ Mumber of array elements is calculated from COBOL data item
COBOL Data Itern
4 CONTRACT-BUFFER
4 CONTRACT-DATA |
4 CONTRACT

C-ID
C-PACKETS
C-ACTION
Z-10

I Z-MUMBER

@ contains array length (bytes)
i) contains length of valid data within message (bytes)

() contains number of array elements directly

@' 0] 4] ’ Cancel I

The number of array elements is calculated using one of the following options:

® Large Buffer Length (bytes)
The COBOL server program inspects WM- LCB- INPUT-BUFFER-SIZE (large buffer length for input)
for the request and sets WM-LCB-OUTPUT-BUFFER-SIZE (large buffer length for output) for the
reply. To determine the number of array elements, the large buffer length is subtracted first to
calculate the array length. The result is then divided by the length of one array element. All
lengths are in bytes. The following COBOL snippet shows the reply of a large buffer program.
It assumes CONTRACT-BUFFER with fix array PACKETI is the large buffer.

Software AG IDL Extractor for COBOL 163

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

WORKING-STORAGE SECTION.
77 11 PIC S9(4).
LINKAGE SECTION.
01 DFHCOMMAREA.
10 WM-LCB-MARKER PIC X(4).
10 WM-LCB-INPUT-BUFFER POINTER.
10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-OUTPUT-BUFFER POINTER.
10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
10 WM-LCB-FLAGS PIC X(1).
88 WM-LCB-FREE-QUTPUT-BUFFER VALUE "F".
10 WM-LCB-RESERVED PIC X(3).
01 CONTRACT-BUFFER.
04 CONTRACT.
05 C-ID PIC X(8).
05 C-ACTION PIC X(4).
04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ID PIC X(8).
05 P-TEXT PIC X(30).
05 P-NUMBER PIC 9(2).

Fill variable output array

MOVE 0 TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II

MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.

Set large buffer Tength depending on number of elements

COMPUTE WM-LCB-QUTPUT-BUFFER-SIZE

(LENGTH OF P-ID +
LENGTH OF P-TEXT +

LENGTH OF P-NUMBER) * ITI.

ADD LENGTH OF CONTRACT TO WM-LCB-OUTPUT-BUFFER-SIZE.

ADD LENGTH OF ZONE

EXEC CICS RETURN END-EXEC.

TO WM-LCB-OUTPUT-BUFFER-SIZE.

® COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT - DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

164 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.
01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.

05 C-1ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBERC(II)

END-PERFORM.
* Set table length
COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

® COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

Software AG IDL Extractor for COBOL 165

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

WORKING-STORAGE SECTION.
77 11
77 EPARM
77 EPARMZ

LINKAGE SECTION.
01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID
05 C-APPDATA
05 C-ACTION
05 Z-1D
05 Z-NUMBER
04 PACKETI
05 P-ITEM.
06 P-ID
06 P-TEXT
06 P-NUMBER

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length
COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

PIC S9(4).
PIC 9(2).
PIC 9(4).

PIC X(8).
PIC S9(4).
PIC X(4).
PIC X(20).
PIC 9(2).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

® COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11

LINKAGE SECTION.
01 DFHCOMMAREA.

03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID
05 C-NUM
05 C-ACTION

04 ZONE.
05 Z-NUMBER

PIC S9(4).

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).

166

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

05 Z-1D PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Qptional Output with Groups

= Complex MPO Selections

= MPO Terminology

Software AG IDL Extractor for COBOL 167

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

168

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL 169

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T !
8] R R {
] E A !
C B M {
H | 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
sUbseq. T ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

" contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

170 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 FIX-INPUT-ITEMI1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.

FIXED-OUTFUT-STRUCTUREZ

OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".
01 OPTIONAL-OUTPUT-STRUCTUREL.
02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).
01 OPTIONAL-OUTPUT-STRUCTUREZ.
02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).
01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

Software AG IDL Extractor for COBOL

171

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

172 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 173

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PM‘MENTl
COBOL Interface

A AE A

. B 01 INPUT

4 “Lo1ouTPuT

Map to In -= l

Map toIn ->

Map to InQut ->

5 02 PAYMENT
#2502 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT

Suppress
Set Constant...

Remove from COBOL Interface

| Map to Qut -> | l

Map to InOut -=

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

R
e

. 2] 02 PAYMENT-DATA-TRANSFER REDEFINES P
. 2] 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

4 LI

Map to InQut ->

Suppress

Set Constant...

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
£ C-O2PAYMENTDATA PICXGS) = pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

174

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 175

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

176 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

-
£ COBOL to IO Mapping e

e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure MPO Selector Values Add Value
PAYMENT-DATA 10 % 20 X aF
PAYMEMT-DATA-YVOUCHER i K o
PAYMEMNT-DATA-CREDITCARD ¢ o7
PAYMENT-DATA-TRANSFER 6
PAYMENT-DATA-DIRECTDEBIT 6

| | | |

N |
@ [ok || Ccancel

L _

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EPA"{MENT-T‘HPE-VDUCHEF‘. Pw
Enable individual input 0

Selector Value:

@ ok || Cancel

i
5 — I R

Software AG IDL Extractor for COBOL

177

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

178 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
4 %02 CONTRACT-BUFFER T
4 %03 CONTRACT-DATA
4 504 CONTRACT Map te Out ->
05 C-ID PIC X(8) T E—
Wiap -
%2 05 C-PACKETS PIC 59(4) cldlebics
05 C-ACTION PIC X(4)
05 Z-1D PIC X(20) Suppress

2 05 Z-NUMBER PIC 9(2)
4
Map toIn-=

4 = 05P-ITEM

5 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X2 Map to InOut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4 2502 CONTRACT-BUFFER Map toIn > 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 504 CONTRACT Map to Out -> < CONTRACT (B38)
05D PIC Xi8) %
% 05 C-PACKETS PIC 59(4) Map to InOut -
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
4 05 Z-NUMBER PIC 9(2) =
4 @5} 04 PACKETI QOCCURS 99 Set Constant...
4 505 p-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%4 06 P-NUMBER PIC 9(2)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL 179

CICS with DFHCOMMAREA Large Buffer Interface - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER | Map to In > | []
4 %03 CONTRACT-DATA
4 %% 04 CONTRACT | Map to Out -» |
[z
205 C-ID PIC X(8)
Map te InOut ->
% 05 C-PACKETS PIC 59(4) | 2g to ntu |
4 05 C-ACTION PIC X(4)
057D PIC X(20) | Suppress |

2 05 Z-NUMBER PIC 9(2)
& I Lo ey I
Map to In -=

4 = 05 P-ITEM

% 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X(3 Map te InQut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Revert Binary Mapping -=

Remowve from COBOL Interface

180 Software AG IDL Extractor for COBOL

9 CICS with DFHCOMMAREA Large Buffer Interface - In

different to Out

L 121 (oo 1o} o) o PSP PPPPTPRRR 182
= Extracting from a CICS DFHCOMMAREA Large Buffer Programccccvvvieiiiiiiiiiiiiccceececiiiiieeeee 184
= Mapping Editor USer INtErfaceooiiiiiiiiii e 186
= Mapping Editor IDL Interface Mapping FUNCHONSooiiiiiiiiiiee e 193

181

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

DFHCOMMAREA

IN POINTER | OUT POINTER ...

. IN
A0 14 | A25 > COBOL
Server
vy . o ouT
A10 | 14 | a100000 | P5 | 14 «

Large buffer

Introduction

A DFHCOMMAREA Large Buffer Interface has the structure given below in the linkage section. The
field subordinated under DFHCOMMAREA prefixed with WM- LCB describe this structure. The field
names themselves can be different, but the COBOL data types (usage clauses) must match exactly.
The COBOL server has two fixed interface layout structures: one for input, the other for output.

LINKAGE SECTION.
01 DFHCOMMAREA.

10 WM-LCB-MARKER PIC X(4).

10 WM-LCB-INPUT-BUFFER POINTER.

10 WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.

10 WM-LCB-OUTPUT-BUFFER POINTER.

10 WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.

10 WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-QUTPUT-BUFFER VALUE 'F'.

10 WM-LCB-RESERVED PIC X(3).
01 IN-BUFFER.

02 OPERATION PIC X(1).

02 OPERAND-1 PIC S9(9) BINARY.

02 OPERAND-2 PIC S9(9) BINARY.
01 OUT-BUFFER.

02 FUNCTION-RESULT PIC S9(9) BINARY.

PROCEDURE DIVISION USING DFHCOMMAREA.

SET ADDRESS OF IN-BUFFER TO WM-LCB-INPUT-BUFFER.
SET ADDRESS OF QUT-BUFFER TO WM-LCB-QUTPUT-BUFFER.

* process the IN-BUFFER and provide result in OUT-BUFFER
EXEC CICS RETURN.

182 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

From a programming point of view, the COBOL server behaves as follows:

Variable

Description

WM-LCB-MARKER

Has eye-catcher "XXXX".

WM-LCB-INPUT-BUFFER

Has pointer to a buffer with COBOL server input parameter data. This
buffer is described by a COBOL layout structure.

WM-LCB-INPUT-BUFFER-SIZE

Contains size of COBOL server input parameter data.

WM-LCB-OUTPUT-BUFFER

Has pointer to a buffer with length WM-LCB-0UTPUT-BUFFER-SIZE,
where the COBOL server writes its output parameter data. This buffer is
described by a COBOL layout structure.

WM-LCB-OUTPUT-BUFFER-SIZE

On input, size of WM-LCB-0UTPUT-BUFFER.

On return, the size must match the data length returned in the COBOL
layout structure of the WM-LCB-0QUTPUT-BUFFER.

If the called COBOL server returns variable length data, that is, you have
mapped Map 0CCURS DEPENDING ON or Set Arrays (Fixed <->
Unbounded), and depending on your runtime architecture, consider the
following:

= CICS Socket Listener (EntireX Adapter or RPC Server)
Providing a length considering the actual number of occurences instead
of the maximum possible (which was provided on input), reduces
network traffic and may improve performance.

= CICS RPC Server
Because in this architecture the marshalling is on-host, there will be no
impact on network traffic, even if the provided length is set to the
maximum possible number of occurences that was provided on input.

If the called COBOL server returns fixed-length data, there is no need to
change WM-LCB-QUTPUT-BUFFER-SIZE.

WM-LCB-FLAGS

On return, a value of 'F' in this flag indicates that the called COBOL server
allocated an output buffer which had to be released by EntireX

WM-LCB-OUTPUT-BUFFER and WM-LCB-FLAGS are normally not changed by the called COBOL server

in this scenario.

If there is a need to return the output data in a different storage, this storage must be allocated by
EXEC CICS GETMAIN. Return the new storage address in WM-LCB-0UTPUT-BUFFER. Indicate with
WM-LCB-FLAGS="F" that the storage is released (EXEC CICS FREEMAIN)by EntireX.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Software AG IDL Extractor for COBOL 183

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Extracting from a CICS DFHCOMMAREA Large Buffer Program

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the WM-LCB-OUTPUT-BUFFER (as in the large
buffer example above) is set to an address that is different to WM-LCB- INPUT-BUFFER.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with DFHCOMMAREA large buffer, the Extractor Settings
dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

COBOL Source
File Name: LargeBuf

Operating System: z/05

Interface Type: lCICS with DFHCOMMAREA large buffer interface hd

[Input Message same as Output Message:

Press Next to open the COBOL Mapping Editor.

~ To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items of the input large buffer to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. To do this, locate
in the PROCEDURE DIVISION the SET ADDRESS OF <x> TO WM-LCB-INPUT-BUFFER statement.
The COBOL data item <x> is the input large buffer you are looking for. See Notes.

2 Add the COBOL dataitems of the output large buffer to Output Message by using the context
menu and toolbars available in the COBOL Interface and IDL Interface. To do this, locate in
the PROCEDURE DIVISION the SET ADDRESS OF <y> TO WM-LCB-OUTPUT-BUFFER statement. The
COBOL data item <y> is the output large buffer you are looking for. See Notes.

3 Continue with COBOL to IDL Mapping.

] Notes:

1. Do not select the pointers in the DFHCOMMAREA pointing to the large buffers, in the example above,
WM-LCB-INPUT-BUFFER and WM-LCB-OUTPUT-BUFFER.

2. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

184 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

3. If your COBOL interface contains REDEF INEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 185

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

1. w OOBOL Program LargeBuf - Imterface Type CICS with DFHCOMMAREA large buffer interface
2. LargeBuf ir i % & B
G2 OPERAND-1 PIC 25(9) BIHARY. -
D2 OPERAND-Z PIC E9(3) BINARY.
02 FUNCTION=RESTLT FIC 5% (8) BIHARY.
PROCEMIEE DIVISION USING DFHCOMMRRFR. 3
L] [;
3. COBOL to IDL Mapping
LargeBuf . s ,:|1; H F
COBOL Interface — [® IDL Interface

4 4% IN-BUFFER In

BA
Ingut '!:‘j'd*) &F OPERATION (avi)
4 1 01 BN-BUFFER - 4 OPERAMD-1 (W)
T 02 OPERATION k [Suppress 1 & OPERAMD-2 (M)
T8 02 OPERAMD-1 Fy : 4 &F OUT-BUFFER Ouwt
| '] m k] i 1 -’,-IIFUN':“DN'HESUL_)
Dutput Meszage

4 '5h 01 OUT-BUFFER
5, 02 FUMCTION-RESULT

'] m F

1. COBOL Program Selection. Currently selected program with interface type
2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

186 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Program Selection

~ COBOL Program | LargeBuf - Interface Type CICS with DFHCOMMAREA large buffer interface

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 187

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL Source View
LargeBuf {}J I'ﬂ 5& C.t, B | Q’l'
14 02 OPERAND-1 PIC S59(3) BINARY. -
02 OPERAND-2 PIC S9(9) BINARY.

02 FUNCTION-RESULT PIC 53(2%) BINARY.

m

19 PROCEDURE DIVISION TUSING DFHCCHMMARER.

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
is Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

&) Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

188 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

LargeBuf W ah + [
COBOL Interface =N IDL Interface
G
Input Message 4 IN_E{JFFE?‘ I: N
s OPERATION (AV1)
4 7 0L IN-BUFFER - OPERANDL (1)
% 02 OPERATION ; i
e Suppress OPERAND-2 (14}
- 02 CRERAND-L e 4 % OUT-BUFFER Out
4 m 3 FUNCTIOMN-RESULT (14}
Cutput Message
4 %} 01 OUT-BUFFER
C@p 02 FUNCTIOM-RESULT
4 L 3

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

Set Constant Set COBOL data items to constant.

Software AG IDL Extractor for COBOL 189

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Set Array Mapping Map an array to a fixed sized or unbounded array.

Set Multiple Possible Out- Set COBOL data items where the server program decides the

put (MPO) Structures output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map to Binary Map a COBOL data item as IDL parameter of type binary (Bn,

BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Revert Binary Mapping Undo the Map to Binary operation and use the standard mapping.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar

The toolbar offers the following actions:

<= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

& Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention
is needed:

f+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

190

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.

[Scalar parameter, mapped to Out.

& Group parameter, here mapped to In.

(=" REDEFINE parameter, here mapped to Out.

“% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping
LargeBuf W a'h + [
COBOL Interface IDL Interface

a 4% IN-BUFFER In

Input Message Map to ->
o , OPERATION (AV1)
‘ “.EilgjinFEF:F‘nnr . F' OPERAND-1 (14)
S Suppress OPERAND-2 (1)
% 02 OPERAND-1 . i S

a 4% OUT-BUFFER Out
FUNCTION-RESULT (14}

i

- b Set Constant...

Output Message

4 ‘T 01 OUT-BUFFER
& 02 FUNCTION-RESULT

Map to ->
A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL 191

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

LargeBuf w a'b =
COBOL Interface IDL Interface
2 ‘7% 01 INOUT-BUFFER Map to In -> 4 4% INOUT-BUFFER In Out
&4 02 OPERATION PIC 47 OPERATION (aV1)
5 02 OPERAND-1 PIC Map to Out -> 47 OPERAND-1 (14)
&4 02 OPERAND-2 PIC 47 OPERAND-2 (1)
& 02 FUNCTION-RESULT #F FUNCTION-RESULT (1)
Suppress
4 ¥

192 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems
= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures

= Map to Binary and Revert Binary Mapping

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

~ To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu of the COBOL interface and as mapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

Map to -=]

COBOL to IDL Mapping
MPODJPML
COBOL Interface HI O
Input Message
02¢
Foaq | Mepto> | NARY
7=
=l 02 Suppress
o2
Set Constant...
Rermowve from COBOL Interface
Output Messag

Suppress

Set Constant...]

2 Do the same for the output message of the COBOL interface.

J Notes:

. &} 02 CWGSTMO-STATEMENT-LINE
% 02 CWGSTMO-LASTDATA PIC X(20)

IDL

Software AG IDL Extractor for COBOL

193

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You can make the COBOL ODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (see COBOL Tables with Variable Size - DEPENDING ON Clause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDL unbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~ Tomap OCCURS DEPENDING ON

s Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

OCCURS
COBOL Interface =T IDL Interface

Map to -> 4" ORDER-NUMBER (NU10} In
. 4% TABLEL (/V10) Out

Input Message
[02 ORDER-NUMBER PIC 9(10)

’ Suppress]

Set Constant...

Output Message
01 COUNTER-1 PIC 99 ‘

3 P

Map to ->

_ Suppress
4

Set Constant...

Remove from COBOL Interface

j Notes:

1. The ODO subject can be mapped to the IDL interface.

194 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

OPERATION + dispatcher

5] (

L L
'A' E 'll: L B B]
D R | + functions or operations
D& P

C L

T Y

L™ o b o b -

o
o
o

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDI1 PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "*"

Software AG IDL Extractor for COBOL 195

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

" Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions & or

COBOL to IDL Mapping
ADD CALCL X|EE
COBOL Interface HOOX IDL Interface

 OPERATION (AV1) In
F OPERANDL () In

Input Message Map to ->

E 02 OPERATION PIC X(1) P OPERAND2 () In
2 02 OPERANDL PIC 59(3) BINARY (Suppress | P FUNCTION-RESULT (4) Out
= 02 OPERAND2 PIC S9(3) BINARY
I Set Constant... I
Output Message
%, 02 FUNCTION-RESULT PIC 59(3) BINARY
4 n 3

2 Give the IDL interfaces meaningful names with the toolbar function «b:

196 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL to IDL Mappi
0 apping
ADD| caLct | + 2|4 |
L=
COBOL Interface BHOOX IDL Interface
Input Message Map to -> /" OPERATION (AV1) In
— I <" OPERANDL () In
££] 02 OPERATION L BIC Y i o .
% 02 OPERANDI [COBOL to IDL Mapping =5) Out
% 02 OPERAND2
Rename
Rename current IDL Interface
Qutput Message OldName: _CALCI
% 02 FUNCTION-RESULT s Name.l SUBTRACT i
4 L é
@ [ok][cance |
® % J ¢

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT| + 245X BB
COBOL Interface B OO IDL Interface
Input Message Map to -> J 4" OPERATION (AV1) In l |
=3 i
=] 02 OPERATION PIC X{1) [Q COBOL to IDL Mapping
=] PIC 59(9) BINARY
= @ [Suppress]
=] 02 OPERAND2 PIC 59(9) BINARY Set Value
| [EctGogclapie] | Enter alphanumeric data with a maximum length of 1 character.
Output Message Value:
% 02 FUMNCTION-RESULT PIC 58(3) BIMARY
4 I G
.
® Mext » | Finish Cancel

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY".
® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

Software AG IDL Extractor for COBOL 197

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

library "EXAMPLE' is

program "ADD' is
define data parameter

1
1

OPERANDL (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "SUBTRACT' is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program 'MULTIPLY' 1is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

198

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

m Use the Map to function available in the context menu of the COBOL interface and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

e e e copepeeerg
MPODIPML
COBOL Interface H OO IDL Interface
Input Message [Map to -» z:z
2 02 CWGSTMO-REQUEST PIC X(2) ' ' pCy
1 02 CWGSTMO-CONSTANTL PIC 58(8) BINARY Suppress)
4
Set Constant...
Output Message
Bl EE 04 CWGSTMO-ASTM-LINE PICX(174) -
B . #2| 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTN™ | .
i - 2] (4 CWGSTMO-ED-LINE REDEFINES CWGS TMO-ASTI Bpte-
& » 42l 04 CWGSTMO-TD-LINE REDEFINES CWGSTMO-AST] e —
] I

&

Set Constant...

Customize MPO (Multiple Possible Output)

Remowve from COBOL Interface

= —_—

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL 199

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPML
COBOL Interface H M D1
Input Message Map to -»
% 02 CWGSTMO-REQUEST PIC X(2))
T 02 CWGSTMO-CONSTANTL PIC 59(8) BINARY [Suppress l
[Set Constant... l '
Output Message
4 & 02 CWGSTMO-STATEMENT-LINE -
75 04 CWGSTMO-STMT-ITVBE PIC Said) RINZ =
o fa 04 CWGSTMO-ASTM- Map to ->
Fi > 04 CWGSTMO-BT-LIN B 1
| « = | |[Suppre=s |
Set Constant...

Remove from COBOL Interface

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

200 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

4. With the inverse function Map to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML
COBOL Interface H [)]
Input Message Map to ->
ﬁf%' 02 CWGSTMO-REQUEST PIC X(2)
ﬁf%_ 02 CWGSTMO-COMNSTANTL PIC S9(8) BINARY [Suppress]
[Set Constant...]
Output Message
P C@ 02 CWGSTMO-STATEMEMNT-LINE -
.04 CWGSTMO-STMT-ITVRE BIr Sami RINE =
T oo 04 CWGSTMO-ASTM- Map to ->
B > s 04 CWGSTMO-BT-LIN
Bl o« | Tl d Suppress i
Set Constant...
Remuove from COBOL Interface

2 You are prompted with a window to enter the constant value:

Software AG IDL Extractor for COBOL 201

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

F -
E COBOL tc IDL Mapping B B I&
Value Input
Enter numeric data in the range from -2147453648 to 2147483647,
Value: | TEEN]
@' oK] ’ Cancel

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

202 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER e
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
% 05 C-PACKETS PIC 59(4) =
% 05 C-ACTION PIC X(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 8(2) —
4 Set Cnnctant
4 505 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
o
= 06 P-TEXT PIC X Map te InOut ->
5 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remowve from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL 203

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

i - L
COBOL toIDL Mapping T} S

Set Array Mapping

Set the correct array mapping that matches the COBOL server program, so that the number of array
elements can be determined, Otherwise runtime errors occur,

(") Fixed Array with 99 Entries (default)
@ Unbounded Array.

For the request, the COBOL program uses the selected method to determine the number of incoming
array elements, For the reply, the COBOL program uses the same method so that the number of
outgoing array elements can be determined.

(7 Mumber of array elements is calculated from Large Buffer length (bytes).

@ Mumber of array elements is calculated from COBOL data item
COBOL Data Itern
4 CONTRACT-BUFFER
4 CONTRACT-DATA |
4 CONTRACT

C-ID
C-PACKETS
C-ACTION
Z-10

I Z-MUMBER

@ contains array length (bytes)
i) contains length of valid data within message (bytes)

() contains number of array elements directly

@' 0] 4] ’ Cancel I

The number of array elements is calculated using one of the following options:

® Large Buffer Length (bytes)
The COBOL server program inspects WM- LCB- INPUT-BUFFER-SIZE (large buffer length for input)
for the request and sets WM-LCB-OUTPUT-BUFFER-SIZE (large buffer length for output) for the
reply. To determine the number of array elements, the large buffer length is subtracted first to
calculate the array length. The result is then divided by the length of one array element. All
lengths are in bytes. The following COBOL snippet shows the reply of a large buffer program.
It assumes CONTRACT-BUFFER with fix array PACKETI is the large buffer.

204 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

WORKI
77

LINKA
01

10

10

10

10

10

10

10
01

NG-STORAGE SECTION.

IT PIC S9(4).

GE SECTION.

DFHCOMMAREA.

WM-LCB-MARKER PIC X(4).
WM-LCB-INPUT-BUFFER POINTER.
WM-LCB-INPUT-BUFFER-SIZE PIC S9(8) BINARY.
WM-LCB-OUTPUT-BUFFER POINTER.
WM-LCB-OUTPUT-BUFFER-SIZE PIC S9(8) BINARY.
WM-LCB-FLAGS PIC X(1).

88 WM-LCB-FREE-QUTPUT-BUFFER VALUE "F".
WM-LCB-RESERVED PIC X(3).

CONTRACT-BUFFER.
04 CONTRACT.

05 C-ID PIC X(8).
05 C-ACTION PIC X(4).
04 ZONE.

05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ID PIC X(8).
05 P-TEXT PIC X(30).
05 P-NUMBER PIC 9(2).

Fill variable output array

MOVE O TO IT.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (ID)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
Set large buffer Tength depending on number of elements
COMPUTE WM-LCB-OUTPUT-BUFFER-SIZE =

(LENGTH OF P-ID +

LENGTH OF P-TEXT +

LENGTH OF P-NUMBER) * ITI.
ADD LENGTH OF CONTRACT TO WM-LCB-OUTPUT-BUFFER-SIZE.
ADD LENGTH OF ZONE TO WM-LCB-OUTPUT-BUFFER-SIZE.

EXEC CICS RETURN END-EXEC.

® COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data

item are divid
COBOL snipp

ed by the length of one array element. All lengths are in bytes. The following
et shows how the COBOL interface CONTRACT - DATA is filled by the COBOL server

on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

Software AG IDL Extractor for COBOL 205

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

*

WORKING-STORAGE SECTION.

77 11

LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.
05 C-1ID
05 C-BYTES
05 C-ACTION
04 ZONE.
05 Z-NUMBER
05 Z-1ID
04 PACKETI
05 P-ITEM.
06 P-ID
06 P-TEXT
06 P-NUMBER

Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
Set table length
COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

PIC S9(4).

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).
PIC X(20).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

® COBOL data item contains length of valid data within messages (bytes)

The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI

is implicitly contained in COBOL data item C-APPDATA.

206

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

WORKING-STORAGE SECTION.

77 11 PIC S9(4).
77 EPARM PIC 9(2).
77 EPARMZ PIC 9(4).

LINKAGE SECTION.
01 DFHCOMMAREA.
04 CONTRACT.

05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-1D PIC X(20).
05 Z-NUMBER PIC 9(2).
04 PACKETI 0CCURS 99.
05 P-ITEM.

06 P-ID PIC X(8).

06 P-TEXT PIC X(30).

06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length
COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

® COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.

04 CONTRACT.

05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.

05 Z-NUMBER PIC 9(2).

Software AG IDL Extractor for COBOL 207

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

*

05 Z-1D PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-

ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Qptional Output with Groups

= Complex MPO Selections

= MPO Terminology

208

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<{preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

Software AG IDL Extractor for COBOL

209

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

210 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T :
0 R R {
] E A :
C B M {
H I 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
subseq. T, ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
iterm

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

® contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

Software AG IDL Extractor for COBOL 211

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 FIXED-OUTFUT-STRUCTUREZ

B No Gapl
COBOL snippet:
WORKING-STORAGE SECTION.
01 INPUT-AREA.
02 FIX-INPUT-ITEMI1 PIC X(4).
02 <some fields> PIC <clause>.
01 OUTPUT-OFFSET PIC S9(9) BINARY.
01 OUTPUT-AREA PIC X(32000).

01 CONTROL-AREA.

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".

01 OPTIONAL-OUTPUT-STRUCTUREL.

02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).

01 OPTIONAL-OUTPUT-STRUCTUREZ.

02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).

01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

212 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

Software AG IDL Extractor for COBOL 213

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

214 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PM‘MENTl

COBOL Interface

A AE A

. B 01 INPUT

4 “Lo1ouTPuT

Map to In -= l

Map toIn ->

Map to InQut ->

5 02 PAYMENT
#2502 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT

Suppress
Set Constant...

Remove from COBOL Interface

| Map to Qut -> | l

Map to InOut -=

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.
PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4 01 OUTPUT a 5 oUuTRl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> <Fpa
C GLOPAYMENTDATA PICX2S) = PpA
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
A s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Qut ->
& . &2 02 PAYMENT-DATA-TRANSFER REDEFINES P. Map to InOut -»
& s &2 02 PAYMENT-DATA-DIRECTDERIT REDEFINES
Suppress
Set Constant...
Set Multiple Possible Qutput (MPQ) Structures
- o Remaove from COBOL Interface
3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL

215

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

-
[(] COBOL to IDL Mapping [|
Set Multiple Possible QOutput (MPO) Structures into MPQO Group
All related ocutput structures will be bundled together in an MPC group.

Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

216 Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL 217

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

r ™
[0 COBOL to IDL Mapping . . e

Set MPO Selector Values for MPO Structures

An MPO case without any value will be suppressed.

Define one or more selector values for each used output structure (MPO case),

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure MPO Selector Values Add Value
PAYMENT-DATA 10 % 20 X aF
PAYMEMT-DATA-YOUCHER vo &% aF
PAYMEMNT-DATA-CREDITCARD ¢ o7
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT 6

. -

|| | |
@ [0] 4] ’ Cancel

e

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping

——

Set MPO Selector Value

Enter a valid MPO selector value.

Select a MPO Selector Value: [EPAYM EMT-TYPE-VOUCHER

Enable individual input 0

Selector Value:

®

OK

|| Cancel

218

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

Software AG IDL Extractor for COBOL 219

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

COBOL to IDL Mapping

PFZXDMSG

COBOL Interface

4 502 CONTRACT-BUFFER
4 503 CONTRACT-DATA
4 504 CONTRACT

05 C-ID PIC X(8)
05 C-PACKETS PIC 59{4)
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20)

Map toIn-=
Map to Out ->

Map to InQut ->

Suppress

IDL

2 05 Z-NUMBER PIC 8(2)
4 | ﬁ

4 = 05P-ITEM

% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X3
% 06 P-NUMBER PIC

Map toIn-=
Map to Qut ->
Map to InQut ->

Suppress
Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means

the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as

well.
COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4+ 2502 CONTRACT-BUFFER Map toln -> 4 4% CONTRACT-BUFFER In Out
4 7503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 %504 CONTRACT Map to Out -> +F CONTRACT (B38)
05D PIC X(8) _
%8 05 C-PACKETS PIC S9(4) Map to InOut ->
% 05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
%% 05 Z-NUMBER PIC 9(2) —
4 504 PACKETI OCCURS99 Set Constant...
4 B 05P-ITEM
% 06 P-ID PIC X(8)
X 06 P-TEXT PIC X(30)
% 06 P-NUMBER PIC 9(2)

] Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI

(BV) in this example).

220

Software AG IDL Extractor for COBOL

CICS with DFHCOMMAREA Large Buffer Interface - In different to Out

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

COBOL to IDL Mapping

PFZXDMSG |
COBOL Interface IDL

4 7502 CONTRACT-BUFFER
4 503 CONTRACT-DATA

Map to In ->

4 7504 CONTRACT Map to Out -»
(7=
Z05C-D PIC X(8)
Map to InOut -
% 05 C-PACKETS PIC 59(4) o
4 05 C-ACTION PIC Xi4)
(7=
= 05 Z-ID PIC %(20) Suppress
2 05 Z-NUMBER PIC 9(2)
A Tt + 3
2 1505 P-ITEM Map to In ->
% 06 P-ID PIC X(8) Map to Out ->
%Uﬁ P-TEXT PIC X(2 Map to InOut ->
% 06 P-NUMEBER PIC

Suppress
Set Constant...

Revert Binary Mapping -=

Rermowve from COBOL Interface

Software AG IDL Extractor for COBOL 221

222

10 CICS with Channel Container Calling Convention

L 1211 (0o 1o o) PSP PPPPTPRRR 224
= Extracting from a CICS Channel Container Programcccvieiiiiiiioiiiiiie e 224
= Mapping Editor USer INtErfaceooiiiiiiiii e 227
= Mapping Editor IDL Interface Mapping FUNCHONScoouiiiiiiiiiie e 234

223

CICS with Channel Container Calling Convention

Input container

14 | A2s |a1s |14 >

COoBOL

Output container Server

. ouT
A1B|I4|A25 |P5 ||4 -

Introduction

Modern CICS programs may use the CICS channels and containers model. During extraction,
containers are mapped to IDL structures. See structure-parameter-definition (IDL) under
Software AG IDL Grammar in the IDL Editor documentation.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a CICS Channel Container Program

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type CICS with channel container calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and, if required, that the channel name (max. 16 characters)
is provided. If you do not provide a channel name, "EntireXChannel" is used as the default value.

COBOL Source
File Mame: ChanCon

Operating System: /05

Interface Type: ’ECICSwith Channel Container calling convention R 4

Input Message same as Qutput Message

Press Next to open the COBOL Mapping Editor.

224 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

~ To select the COBOL interface data items of your COBOL server

1 Define all the CICS input containers, one after another: in the Source View, use the toolbar

icon Find text in Source 4" and enter "EXEC CICS"to find a GET call containing "EXEC CICS
GET", function "CONTAINER" etc. Example:

EXEC CICS GET
CONTAINER(<container name constant>)
CHANNEL (<channel>)
INTO (<container>)
NOHANDLE
END-EXEC

The COBOL data item <container> is the item you are looking for. Add the COBOL data
item <container> to Input Message by using the context menu or toolbar available in the
COBOL Source View and COBOL Interface. In the Input Message pane, select the correspond-
ing COBOL data item <container>. Enter the container name, found in the value of <container
name constant>. You can select multiple CICS input containers. See Notes.

2 Define all the CICS output containers that are created in any case by your COBOL server using
the steps as above, but look for "EXEC CICS PUT". Example:

EXEC CICS PUT
CONTAINER(<container name constant>)
CHANNEL (<channel>)

FROM (<container>)
FLENGTH (LENGTH OF <container>)
NOHANDLE

END-EXEC

Add the corresponding COBOL data item <container> to Output Message. In the Output
Message pane, select the corresponding COBOL data item <container>. Enter the container
name, found in the value of <container name constant>. You can select multiple CICS output
containers. See Notes.

3 Optional. If your COBOL server creates multiple output containers, all with the same COBOL
layout, map them as an array. See Map Array of Containers.

4 Optional. If your COBOL server creates an output container under certain conditions only,
map this container as an optional container. See Map Optional Containers.

5 Continue with COBOL to IDL Mapping.

] Notes:

1. It is very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

Software AG IDL Extractor for COBOL 225

CICS with Channel Container Calling Convention

2. If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

3. The container name length is restricted to 16 characters by CICS.

The user interface of the COBOL Mapping Editor is described below.

226 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with CICS channel container interface, the user interface of the COBOL
Mapping Editor looks like this:

1. w COBOL Program CCEXAMPLE - Imterface Type CICS with Chanmel Container calling conventian

2. Chanen Hl i g B #
0% HAME. =
05 SORNAHE.
05 ADDBRESS.

0% PHOME.

3. COBOL to DL Mapping

CCERAMPLE 4R @ E
COBOL Interface B[DL Interface
5 n ™
It BAessage FIE i\ful { :Enpul.h-hu-dge, In
— A
1
F] 01 NPUT *
s Name & R
LIS A | Suppress o & OUTPUT [Outputhessage/VS) Dt
(5105 SURNAME . ' 4" ADDRESS
Container Mame ! tant 1:-“ PHOME
nothung sefecind
Qutput Meszage
PR e
05 ADDRESS
T 05 PronE -
Centainer Name Array Kax
Dutputhleszage s 5

Finish | Cancel

¥

1. COBOL Program Selection. Currently selected program with interface type
2. COBOL Source View. Contains all related sources for the currently selected COBOL program

Software AG IDL Extractor for COBOL 227

CICS with Channel Container Calling Convention

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

~ COBOL Program | CCEXAMPLE -~ Interface Type CICS with Channel Container calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

228 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL Source View

= COBOL Program | CCEXAMPLE - Interface Type CICS with Channel Container calling convention

ChanCon ¥ i o < B2 | 7

05 HMNAME. -

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
s Remove selected COBOL data item from COBOL Interface.

% Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

&7 Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

Show dialog to find text in Source.

The same functionality is also available from the context menu.

Software AG IDL Extractor for COBOL 229

CICS with Channel Container Calling Convention

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping
CCEXAMPLE . 2% =
COBOL Interface HO O IDL Interface

4 45 INPUT ('inputhMessage’) In

Input Message C
NAME

& BroimpuT - & SURMNAME

[
505 MNAME Suppress s <R OUTPUT (OutputMessage'/V5) Out
7 05 SURNAME & ADDRESS

Container Name & PHONE

nothing selected

Output Message

4 CIg— s
&, 05 ADDRESS
E, 05 PHONE -

Container Mame Array Maz

OutputMessage Yes 5

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.

230 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Set Constant Set COBOL data items to constant.

Set Array Mapping Map an array to a fixed sized or unbounded array.

Set Multiple Possible Out- Set COBOL data items where the server program decides the

put (MPO) Structures output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map to Binary Map a COBOL data item as IDL parameter of type binary (Bn,

BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Revert Binary Mapping Undo the Map to Binary operation and use the standard mapping.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

4 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Software AG IDL Extractor for COBOL 231

CICS with Channel Container Calling Convention

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.

[Scalar parameter, mapped to Out.

& Group parameter, here mapped to In.

=" REDEFINE parameter, here mapped to Out.

“% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CCEXAMPLE 2 4 il
COBOL Interface IDL Interface
Input Message Map to -» 4 5 INPUT (inputhMessage’) In
. : - & NAME
« E JLINPUT n & SURNAME
. 03 NI””E_ i Suppress 4 <P QUTPUT (‘OutputMessage'/V5) Out
£ 05 SURNAME — & ADDRESS
Container Name Set Lonstant... S pHONE

Output Message
s 7301 OUTPUT P
‘£, 05 ADDRESS
£, 05 PHONE -

Container Name Array Max
OutputMessage Yes 5
Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

232 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

CCEXAMPLE n 4 ==
COBOL Interface IDL Interface
Input Message 4 @gINEPUT ('inputhMessage’) In
T 01 INPUT - o NAME
4) 4% SURNAME
2% “I*”E_ Suppress 4 <P OUTPUT (‘OutputMessage'/Vs) Out
27 05 SURNAME % ADDRESS
Container Name #% PHONE

Output Message

a ‘7401 OUTPUT -
&, 05 ADDRESS
&L 05 PHONE -

Container Name Array Maz

OutputMessage Yes 5

Software AG IDL Extractor for COBOL 233

CICS with Channel Container Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems
= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures

= Map to Binary and Revert Binary Mapping
= Map Array of Containers
= Map Optional Containers

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

~ To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu of the COBOL interface and as mapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

COBOL to IDL Mapping

MPOCIPML

COBOL Interface

Input Message

IDL

Map to -=]

‘4|

E oz
& 02

- nn

4 01 L5-MPO-REQUEST-LAYQUT

REQUEST

Container Mame

Output Message

| Map to -= |

Suppress
Set Constant...

Remove from COBOL Interface

Suppress

Set Constant...]

4 B 01 WS-MPO-REPLY-LAYOUT
. % 02 CWGSTMO-STATEMENT-LINE

%, 02 CWGSTMO-LASTDATA

PIC X{20)

234

Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

2 Do the same for the output message of the COBOL interface.

] Notes:

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You can make the COBOL ODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (see COBOL Tables with Variable Size - DEPENDING ON Clause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDL unbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

- Tomap 0CCURS DEPENDING ON

= Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

Software AG IDL Extractor for COBOL 235

CICS with Channel Container Calling Convention

COBOL to IDL Mapping

OCCURS

COBOL Interface HOO© IDL Interface

Input Message Map to -> » @.SINPUT ('REQUEST') In
a @5 OUTPUT ('REPLY") Qut
- B o1 INPUT G
= a & TABLE1 (/V10)
[Suppress P FIELDL (Av2)

~ 4P FIELD2 (NU2)
Set Constant...

Container Name

nothing selected

Output Message

2 501 0UTPUT
02 COUNTER-1 PIC 99

Gy
5} 03 FIELDL PIC XX

4 | 1

m. | »

Suppress

Container Mame Array Max Set Constant...
REPLY Mo

Remove from COBOL Interface

ﬂ Notes:

1. The ODO subject can be mapped to the IDL interface.

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces

Assume the COBOL server program provides multiple functions or operations, in the following
example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

236 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

-~

OFERATION + dispatcher

5 M |

U U
.lﬁl '? '||: - ea
D R | » functions or operations
D s P

C L

T Y |

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item 0PERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERANDI OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN

END-EVALUATE.
If you have such a situation, a good approach is to expose each COBOL server program function

separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

Software AG IDL Extractor for COBOL 237

CICS with Channel Container Calling Convention

* Integration Server

Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

= Web service

Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET

Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface

with the toolbar functions * or

COBOL to IDL Mapping
ADD| CALCL
COBOL Interface BOE
Input Message
s 01 LS-MULTI-FCT-REQUEST-LAYOUT
% 02 OPERATION PIC X(1)
% 02 OPERANDL PIC 58(9) BINARY
% 02 OPERAND2 PIC 50(9) BINARY

Container Narme

selected

Output Message
> %5 01 WS-MULTI-FCT-REPLY-LAYOUT

Container Name Array Max

REPLY MNe

Map to ->

Suppress

Set Constant...

Fkwrae
IDL Interface

4 4% LS-MULTI-FCT-REQUEST-LAYOUT (‘REQUEST') In
4" OPERATION (AV1)
4" OPERANDL (1)
4" OPERAND2 (1)

. &5 WS-MULTI-FCT-REPLY-LAYOUT ('REPLY) Out

2 Give the IDL interfaces meaningful names with the toolbar function b:

238

Software AG IDL Extractor for COBOL

CICS with Channe

| Container Calling Convention

3

COBOL to IDL Mappis
o lapping
app| caLc | + |4 K
COBOL Interface O [IDL Interface
Input Message Map to -> Fl QS jggé&;ﬂﬁREf\iEsT—mYOUT ('REQUEST) In
4 %—Ul LS-MULTI-FCT-REQUEST-LAYOUT °p OPERANDL El)
%1 02 OPERATION PIC Xi1) s ™
5 02 OPERANDL PIC 59(9) [- [=uniEs l : et p2 04
& @)@ cOBOL to IDL Mapping CT-REPLY-LAYOUT [REPLY') Out
=l 02 OPERANDZ PIC 59(3) -

- Rename
Container Name

REQUEST

Rename current IDL Interface

-
B

Output Message Old Name:

CALL

3 % 01 W5-MULTI-FCT-REPLY-LAYOUT

Container Mame Array Max

nothing selected

New Narne: | SUBTRACT

Cancel

Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT |
COBOL Interface HOMOX IDL Interface
Input Message Map to -> .« @ gﬂsé&;ﬂﬁﬁfésrmv
T ETTE TR (avi)
e 4" OPERAND1 (M)
%] 02 OPERATION PIC X(1) ’ Suppress] <+ OPERAND2 (1)
o] 2 DPERANEL FI- INARY b 45 WS-MULTI-FCT-REPLY-LAYOL
=7 02 OPERAND2 PIC 59(9) BINARY [Set Constant..]

Container Name

REQUEST

-
[Q coBOL to IDL Mapping

=)

Output Message
b B 01 WS-MULTI-FCT-REPLY-LAYON

Set Value

Enter alphanumeric data with a maximum length of 1 character.

Value:

Container Name Array M|

nothing selected

Cancel]

©)

For the delivered Example 1: COBOL Server with Multiple Functions:

MNext =

* First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
® Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY".
® Third, for step 3 above: Define the constants '+','-' and *' to the parameter OPERATION respectively.

Software AG IDL Extractor for COBOL

239

CICS with Channel Container Calling Convention

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "EXAMPLE' is

program "ADD' is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ('REPLY') Out
end-define

struct 'REQUEST' is
define data parameter
1 OPERAND1 (TI4)
1 OPERAND2 (14)
end-define

struct 'REPLY"' is
define data parameter

1 FUNCTION-RESULT (I4)
end-define

program 'SUBTRACT" is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ("REPLY') OQut
end-define

program 'MULTIPLY' 1is
define data parameter
1 INPUT ('REQUEST") In
1 OUTPUT ('REPLY") Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon|Function

Description

<= |Create IDL Interface

Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

240

Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Icon|Function

Description

#, |Rename current IDL
Interface

The default name for the IDL interface is based on the COBOL program
name plus appended number. With this function you can give the IDL
interface a suitable name.

|Remove current IDL
Interface

Deletes the current IDL interface.

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

= Use the Map to function available in the context menu of the COBOL interface and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

COBOL to IDL Mapping
MPOCIPML
COBOL Interface BOON I
Input Message [Map to -»
4+ % 01 15-MPO-REQUEST-LAVOUT
% 02 CWGSTMO-CONSTANTL PIC 53(8) BINARY Suppress
% 02 CWGSTMO-REQUEST PIC X(2)
%7 02 CWGSTMO-CONSTANT2 PIC X(4) Set Constant...
Container Name
othing selected
Output Message
4 T 01 WS-MPO-REPLY-LAYOUT
s %G 02 CWGSTMO-STATEMENT-LINE
% 04 CWGSTMO-STMT-LTVPE PIC 59(4) BINARY
@ 55 04 CWGSTMO-ASTM-LINE PIC X(174) =
@ | > 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTM-LINE | =
B 4 CWGSTMO-BD-LINE REDEFINES CWGSTMO-ASTM-LINE

'f:”‘F:’:'F:

W

=
s

[

SED1

%} 02 CWGSTMO-LASTDATA

Suppress

STM Set Constant...

PIC X(20)

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

(

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

‘J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

Software AG IDL Extractor for COBOL

241

CICS with Channel Container Calling Convention

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
* if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

> To suppress unneeded COBOL data items

m Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

COBOL to IDL Mapping
MPOCIPML
COBOL Interface H OO IDLI
Input Message Map to ->
s Z] 01 L5-MPO-REQUEST-LAYOUT - |
%- Map to -> [Suppress]

— BT

Set Constant...

Container Name

REQUEST Remove from COBOL Interface

Output Message
s ‘5 01 WS-MPO-REPLY-LAYOUT
. % 02 CWGSTMO-STATEMENT-LINE
% 02 CWGSTMO-LASTDATA PIC X(20)

242 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

‘J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse function Map to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD- TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

COBOL to IDL Mapping
MPOCIPML
COBOL Interface HD MO IDL1
Input Message Map to -»
4 01 L5-MPO-REQUEST-LAYQUT - |
CE_ 02 Map to -> [Suppress]
< [s Suppress [fckfnncianis]
Container Name | Set Constant... |
REQUEST Remaove from COBOL Interface
Output Message

4 B 01 WS-MPO-REPLY-LAYOUT
. B 02 CWGSTMO-STATEMENT-LIME
%, 02 CWGSTMO-LASTDATA PIC X{20)

Container Mame Array Max

nrthina colortod

2 You are prompted with a window to enter the constant value:

Software AG IDL Extractor for COBOL 243

CICS with Channel Container Calling Convention

F -
E COBOL tc IDL Mapping B B I&
Value Input
Enter numeric data in the range from -2147453648 to 2147483647,
Value: | TEEN]
@' oK] ’ Cancel

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

244 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

COBOL to IDL Mapping

PF2XDMSG

COBOL Interface

IDL

4 502 CONTRACT-BUFFER
4 503 CONTRACT-DATA
4 704 CONTRACT

05 C-ID PIC X(8)

T 05 C-PACKETS PIC S9(4)
T 05 C-ACTION PIC Xi4)
05 7-ID PIC X(20)

Map to In -=
Map to Qut ->

Map to InOut -=

Suppress

Set Cnnctant

2 05 Z-NUMBER PIC 8(2)
4 |ﬁ

4 05 P-ITEM

06 P-ID PIC X(8)
06 P-TEXT PIC X
4 06 P-NUMBER PIC

Map to In -=
Map to Out -=
Map to InOut -=

Suppress
Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remowve from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL

245

CICS with Channel Container Calling Convention

i |
() COBOL to IDL Mappin - . - —
PpIng &

Set Array Mapping
Set the correct array mapping that matches the COBOL server program, so that the number of array
elements can be determined. Otherwise runtime errors cceur,
(7 Fixed Array with 99 Entries (default)
@ Unbounded Array. |

For the request, the COBOL program uses the selected method to determine the number of incoming
array elements. For the reply, the COBOL program uses the same method so that the number of
outgoing array elements can be determined.

(") Mumber of array elements is calculated from Container length (bytes),

@ Mumber of array elements is calculated from COBOL data item
COBOL Drata Item
4 CONTRACT-BUFFER
4 CONTRACT-DATA
4 CONTRACT
C-1D
C-PACKETS
C-ACTION
Z-1D
Z-MUMBER

@ contains array length (bytes)
() contains length of valid data within message (bytes)

() contains number of array elements directly

@' QK] ’ Cancel

The number of array elements is calculated using one of the following options:

® Container Length (bytes)
The COBOL server program inspects CICS GET CONTAINER parameter FLENGTH (container length
for input) of the input container for the request and sets CICS PUT CONTAINER parameter FLENGTH
(container length for output) of the output container for the reply. To determine the number of
array elements, the container length is subtracted first to calculate the array length. The result
is then divided by the length of one array element. All lengths are in bytes. The following COBOL

246 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

snippet shows the reply of a CICS container. It assumes LS-CONTRACT-BUFFER-LAYOUT with fixed
array PACKETI is the CICS container.

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.
01 LS-CONTRACT-BUFFER-LAYOUT.
03 CONTRACT.

04 C-ID PIC X(8).

04 C-ACTION PIC X(4).

03 ZONE.

04 Z-NUMBER PIC 9(2).

04 Z-1D PIC X(20).
03 PACKETI 0CCURS 99.
04 P-ID PIC X(8).

04 P-TEXT PIC X(30).
04 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set container Tength depending on number of elements
COMPUTE WS-LENGTH =
(LENGTH OF P-ID +
LENGTH OF P-TEXT +
LENGTH OF P-NUMBER) * ITI.
ADD LENGTH OF CONTRACT TO WS-LENGTH.
ADD LENGTH OF ZONE TO WS-LENGTH.

* Reply CICS container
EXEC CICS PUT
CONTAINER (WS-CONTRACT-BUFFER-NAME)

FROM (LS-CONTRACT-BUFFER-LAYOUT)
FLENGTH (WS-LENGTH)
RESP (WS-RESP)
RESP2
END-EXEC.

® COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following

Software AG IDL Extractor for COBOL 247

CICS with Channel Container Calling Convention

COBOL snippet shows how the COBOL interface CONTRACT - DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.

04 CONTRACT.

05 C-1ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-1ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE 0 TO IT.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set table length
COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

® COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

248 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

WORKING-STORAGE SECTION.

77 11 PIC S9(4).
77 EPARM PIC 9(2).
77 EPARMZ PIC 9(4).

LINKAGE SECTION.
01 DFHCOMMAREA.
04 CONTRACT.

05 C-ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-1D PIC X(20).
05 Z-NUMBER PIC 9(2).
04 PACKETI 0CCURS 99.
05 P-ITEM.

06 P-ID PIC X(8).

06 P-TEXT PIC X(30).

06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length
COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

® COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.

04 CONTRACT.

05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.

05 Z-NUMBER PIC 9(2).

Software AG IDL Extractor for COBOL

249

CICS with Channel Container Calling Convention

05 Z-1D PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-1ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

1. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

2. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

3. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with Containers

= Multiple Possible Output with REDEFINES
= QOptional Output with Groups

= Complex MPO Selections

= MPO Terminology

250 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

= Steps
Multiple Possible Output with Containers

Containers can be used to describe the possible output structures. The COBOL server program
decides at runtime which container is created and returned. In this way the output varies.

Containers are ideal for mapping MPO cases. The MPO selector and its value are contained in a
different container, this is created by your COBOL server in any case. In this way, the caller of
your COBOL server can investigate the MPO selector first to find out which MPO container was
returned.

v C T
0 R R
u E A
PAYMENT . C ()] M
TYPE } MPO Selector H 1 S
E T F
R C E
A R
R
— (1]
k__‘__.i
Container with MPO Selector ¥ ’

MPO Container

~ To map MPO with containers

1 Map the container with the MPO selector as a simple output container. See Extracting from
a CICS Channel Container Program.

2 Map all MPO containers as optional containers, see Map Optional Containers.
Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

Software AG IDL Extractor for COBOL 251

CICS with Channel Container Calling Convention

01 INPUT-DATA.
02 ORDER-NUMBER

*

*

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

read order record using ORDER-NUMBER

set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE

SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

252

Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

END-IF.

& set fields (MPO case) depending on type of reply

INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER
MOVE . . TO VOUCHER-ORIGIN
MOVE . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD

MOVE . . TO CREDITCARD-NUMBER
MOVE . . TO CREDITCARD-CODE
MOVE . . TO CREDITCARD-VALIDITY

WHEN PAYMENT-TYPE-TRANSFER

MOVE . . TO TRANSFER-NAME
MOVE . . TO TRANSFER-IBAN
MOVE . . TO TRANSFER-BIC

WHEN PAYMENT-TYPE-DIRECTDEBIT

MOVE . . TO DIRECTDEBIT-IBAN

MOVE . . TO DIRECTDEBIT-NAME

MOVE . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT -DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

Software AG IDL Extractor for COBOL

253

CICS with Channel Container Calling Convention

-

PAYMENT

* MPO Selector
TYPE | _MPO Group
VO cC TR = MPO Selector Value
v c T
0 E E {
] E A :
AN
I -
E T F ! MPO St MPO Case
R C E | - ructure
A R
R :
B |
1
| |
™ ’, ’,
subseq. | N
data Gap if CREDITCARD or TRANSFER returned

item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

limits the number of possible output structures returned

defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTUREZ. These are the MPO structures.

contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

254 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1
CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.

01 INPUT-AREA.
02 FIX-INPUT-ITEM1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.
02 OPTIONAL-OUTPUT
88 OPTIONAL-OUTPUT-1
88 OPTIONAL-OUTPUT-2
88 OPTIONAL-QUTPUT-NONE

01 OPTIONAL-OUTPUT-STRUCTUREL.

02 OPTIONAL-OUTPUT-ITEMI1
02 OPTIONAL-OUTPUT-ITEMI1Z
02 OPTIONAL-OUTPUT-ITEMI13

01 OPTIONAL-OUTPUT-STRUCTUREZ.

02 OPTIONAL-OUTPUT-ITEMZ1
02 OPTIONAL-OUTPUT-ITEMZ22
02 OPTIONAL-OUTPUT-ITEMZ23

01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI11
02 FIX-OUTPUT-ITEMI12
02 FIX-OUTPUT-ITEM13

01 FIX-OUTPUT-STRUCTUREZ.

FIXED-OUTPUT-STRUCTUREZ

OPTIONAL-OUTPUT-STRUCTURE L FIXED-OUTPUT-STRUCTUREZ2

OPTIONAL-OUTPUT-STRUCTURE 2 FIX%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

PIC X(1).
VALUE "1".
VALUE "2".
VALUE "N".

PIC X(10).
PIC X(100).
PIC X(20).

PIC X(4).
PIC X(50).
PIC X(50).

PIC X(4).
PIC X(20).
PIC X(8).

Software AG IDL Extractor for COBOL

255

CICS with Channel Container Calling Convention

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

o3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QOUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional outputis one of OPTIONAL-OUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

256 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 257

CICS with Channel Container Calling Convention

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

This section is for multiple possible output (MPO) with REEFINES or groups only. For multiple
possible output (MPO) with containers, see Multiple Possible Output with Containers.

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PM‘MENTl

COBOL Interface

A AE A

. B 01 INPUT

Map to In -= l

+ ‘Z{o1ouTeuT
5 02 PAYMENT
#2502 PAYMENT

s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT

Map toIn ->

Map to InQut ->

Suppress
Set Constant...

Remove from COBOL Interface

| Map to Qut -> | l

Map to InOut -=

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.
PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
© G.OPAYMENTDATA PICXES) °pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->
B > 2 02 PAYMENT-DATA-TRANSFER REDEFINES P, Map to InOut ->
B > 2 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES
Suppress
Set Constant...
Set Multiple Possible Qutput (MPQ) Structures
- o Remove fram COBOL Interface
258 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

iy
[(] COBOL to IDL Mapping e S|

Set Multiple Possible Output (MPO) Structures into MPO Group E

All related ocutput structures will be bundled together in an MPO group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO groupi

Select an gxisting MPO Group

?\ [0] 4] [Cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 259

CICS with Channel Container Calling Convention

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

260 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

r ™
[0 COROL to IDL Mapping . s e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure PPC Selector Values Add Value
PAYMENT-DATA 10 & 20 X af
PAYMENT-DATA-VOUCHER vo ¥ =

| PAVYMENT-DATA-CREDITCARD ¢ X = :
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT o
| | | |
N |

@ | ok || canc

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EP.M‘M EMT-TYPE-VOUCHER | =

Enable individual input 0

!l Selector Yalue:

| @ | ok || Cancel

5 — . R

Software AG IDL Extractor for COBOL 261

CICS with Channel Container Calling Convention

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter
1 INPUT ('REQUEST') In
1 OUTPUT ('REPLY') Out
end-define

struct 'REQUEST' is
define data parameter

1 ORDER-NUMBER (NU10)
end-define

struct 'REPLY' is
define data parameter

1 PAYMENT-TYPE (AV2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

262 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface

4 7502 CONTRACT-BUFFER
4 7503 CONTRACT-DATA
4+ 7504 CONTRACT
% 05 C-ID
05 C-PACKETS
% 05 C-ACTION
05 Z-ID

4 3505 P-ITEM
% 06 P-ID
% 06 P-TEXT
% 06 P-NUMBER

% 05 Z-NUMEBER PIC 9(2)

PIC Xi8)

PIC 58(4)
PIC X(4)

PIC X(20)

Map to In ->
Map to Out ->

Map to InQut ->

Suppress

IDL

PIC X(8)
PIC X(3
PIC

Map toIn ->
Map to Qut ->
Map to InQut ->

Suppress
Set Constant...

Map to Binary -

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary;,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means

the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as

well.

Software AG IDL Extractor for COBOL

263

CICS with Channel Container Calling Convention

COBOL to IDL Mapping
PFZXDMSG
COBOL Interface IDL Interface
4 502 CONTRACT-BUFFER Map toIn -> 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 5 CONTRACT-DATA
4 E5 04 CONTRACT Map to Out -> «F CONTRACT (B38)
(7= o
205 C-ID PIC X(8)
Map to InOut -
4 05 C-PACKETS PIC 59(4) 2ptolntut->
& 05 C-ACTION PIC Xi4)
EoszD PIC X(20) P—
(7= 2
£ 05 Z-NUMBER PIC 9(2)
4 04 PACKETI OCCURS 99 Set Constant...
4 B 05P-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%, 06 P-NUMBER PIC 8(2)

| Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI

(BV) in this example).

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

COBOL to IDL Mapping

PF2XDMSG |

COBOL Interface

DL

4 7502 CONTRACT-BUFFER
4 7503 CONTRACT-DATA
4 504 CONTRACT

Map to In ->

Map to Qut ->

(7=
& 05C-1D PIC X(8)
Map to InOut -
%X 05 C-PACKETS PIC 59(4) o
% 05 C-ACTION PIC Xi4)
(7=
= 05 Z-ID PIC X(20) Suppress
2 05 Z-NUMBER PIC 9{2)
‘ O T 4 3
PN 05 P-ITEM MEFI toln->
% 06 P-ID PIC X(8) Map to Out ->
%Uﬁ P-TEXT PIC (3 Map to InOut ->
% 06 P-NUMBER PIC

Suppress
Set Constant...

Revert Binary Mapping -=

Rermowve from COBOL Interface

264

Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

Map Array of Containers

If your COBOL server program creates a series of output containers, you can map them to an array
of containers if the COBOL layout used is the same for each container and the container names
are formed using a prefix.

In the example below, each container layout is described with COBOL data item
WS-EMPLOYEE-RECORDS-LAYOUT, "EMPLOYEE" is the prefix used for each container name and 0 to 999
containers may be created.

DATA DIVISION.

WORKING-STORAGE-SECTION.

* Direction OUT Container Names
01 WS-EMPLOYEE-RECORDS-NAME PIC X(16) VALUE "EMPLOYEEOQO".
01 REDEFINES WS-EMPLOYEE-RECORDS-NAME.
02 WS-EMPLOYEE-RECORDS-PRE PIC X(8).
02 WS-EMPLOYEE-RECORDS-NUM PIC 3.
02 FILLER PIC X(5).

01 WS-EMPLOYEE-RECORDS-LAYOUT.
02 EMPLOYEE-NAME PIC X(32).
02 EMPLOYEE-BIRTH PIC 9(8).

PROCEDURE DIVISION.
MAIN SECTION.

PERFORM 0 ... 999 TIMES
PERFORM 9100-REPLY-EMPLOYEE-RECORDS
END-PERFORM.

9100-REPLY-EMPLOYEE-RECORDS.
IF (WS-EMPLOYEE-RECORDS-NUM IS >= 999) THEN
* Qverflow
EXEC CICS ABEND
ABCODE (ABEND-CONTAINER-OVF)

END-EXEC
END-IF.
ADD 1 to WS-EMPLOYEE-RECORDS-NUM.
EXEC CICS PUT

CONTAINER (WS-EMPLOYEE-RECORDS-NAME)

FROM (WS-EMPLOYEE-RECORDS-LAYOUT)
FLENGTH (LENGTH OF WS-EMPLOYEE-RECORDS-LAYQUT)
RESP (WS-RESP)
RESP2 (WS-RESP2)
END-EXEC.

IF (WS-RESP NOT = DFHRESP(NORMAL)) THEN
EXEC CICS ABEND
ABCODE (ABEND-CONTAINER-MOV)
END-EXEC
END-IF.

Software AG IDL Extractor for COBOL 265

CICS with Channel Container Calling Convention

~ To map an array of containers

COBOL to IDL Mapping
getEmp
COBOL Interface =N

Input Message Map to ->

~] 01 LS-REQUEST
Gﬁﬂ 02 WS-ID PIC X[%)
Gﬁﬂ 02 WS-CATEGORY PIC X(9)
??j 02 W5-1G5 PIC 59(2) 5et Constant...
?‘?ﬂ 02 WS-YEAR PIC Xid)

Suppress i

Container Mame

nothing selected

Cutput Message

v & 01 WS-EMPLOYEE-RECORD-LAYQUT
&, 02 EMPLOYEE-NAME PIC X(32)
&, 02 EMPLOYEE-BIRTH PIC X(8)

Container Mame Array Max

EMPLOYEE Yes 999

1 Locate the container layout and container name as described under Extracting from a CICS
Channel Container Program.

2 Add the container layout to the Output Message.

3 Enter the prefix as the container name, set the column Array in the wizard to "Yes" and enter
the maximum number of occurrences for the container in the Max column.

J Notes:

1. The container name length is restricted to 16 characters by CICS.

2. Make sure all containers related to this array created by your COBOL server program can be
uniquely identified by its prefix and the number of created containers fit into the array bound-
aries. Set the Max column accordingly.

3. The easiest way is to use numbers as the suffix as in the COBOL program example above. If
you do so, your COBOL program builds a container name using the prefix and enlarges it with
the suffix. In the example, the COBOL server creates a maximum of 999 containers, resulting
in container names EMPLOYEEOOL - EMPLOYEE999. In the Max column, 999 is set to be able to hold
all possibly created containers.

266 Software AG IDL Extractor for COBOL

CICS with Channel Container Calling Convention

4. Containers are delivered in the array in lexicographical order of their names. Because each
container name has the same prefix, the lexicographical order of the suffix is relevant for it.

5. As a minimum, 2 can be specified in the Max column. If you enter 1, "Optional" will be forced
in the column Array. Technically, an optional container is the same as an array of containers
with upper limit 1. See Map Optional Containers.

Map Optional Containers

If your COBOL server program creates an output container under certain conditions only, map it
as an optional container.

~ To map an optional container

Output Message

v 75 01 WS-EMPLOYEE-RECORD-LAYOUT
%, 02 EMPLOYEE-NAME PIC X(32)
%1 02 EMPLOYEE-BIRTH PIC X(8)

Container Mame Array Max
EMPLOYEE Optional + 1
No
Yes

1 Locate the container layout and container name as described under Extracting from a CICS
Channel Container Program.

2 Add the container layout to the Output Message.

3 Enter the container name and set the column Array in the wizard to "Optional". This will force
the maximum number of occurrences for container in the Max column to 1.

J Notes:

1. Make sure your COBOL server program either creates the container with the name defined or
does not create it.

2. Technically, an optional container is the same as an array of containers with 1 as upper limit (1
set in the Max column).

3. At runtime, the container array with upper limit 1 either contains the container if created by
your COBOL server, or is empty (no item) if it not created.

Software AG IDL Extractor for COBOL 267

268

11 COBOL Converter -In same as Out

L 1211 (0o 1o o) PSP PPPPTPRRR 270
B EXtracting @ COBOL CONVEMETvviieeiiiiie ettt e et e e et e e e e e e e et ee e e e 270
= Mapping Editor USer INtErfaceooiiiiiiiii e 272
= Mapping Editor IDL Interface Mapping FUNCHONScoouiiiiiiiiiie e 279

269

COBOL Converter - In same as Out

Same
INOUT COBOL

A10| 14 | a1o0000 | P5 | 14 < > in and out
Layouts

Introduction

A file containing valid COBOL data items describing the COBOL payload can be used to extract
a COBOL converter for the EntireX Adapter. If you have selected an IDL file and opened the COBOL
Mapping Editor with an existing COBOL to IDL mapping, continue with Mapping Editor User
Interface.

Extracting a COBOL Converter

This section assumes Input Message same as Output Message is checked. COBOL output and
COBOL input parameters are the same, that is, the output is not overlaid with a data structure
different to the data structure on input.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type COBOL Converter, the Extractor Settings dialog appears (see
also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and checkbox Input Message same as Output Message is
not cleared.

COBOL Source

File Mame: custinfo.cbl

Operating System: z/0S

Interface Type: ’ COBOL Converter (for use by webMethods EntireX Adapter) -

[/] Input Message same as Output Message

Press Next to open the COBOL Mapping Editor.

270 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

~ To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface by using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 271

COBOL Converter - In same as Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface type COBOL Converter, the user interface of the COBOL Mapping Editor
looks like this:

1. [+ COBOLProgram CUSTINFO ~ | Interface Type COBOL Convester ffor use by webMethods EntieX Adapter) |

2, custinfouchl i g G a
L 02 L3-CHD PIC X [001). -
074040 02 LS-KEY PIC S[008).
02 L5-DATA PIC X [495%}.

FROCEDEE DIVISION USING DIHCCMMARER.
METH.

3. COBOL ta 101 Mapping
CUSTIMFO B4 X BE
COBOL Interlace = JDL Interface
T 02 L5-CMD PIC X/001) P o LS-CMD (&v1) In Qut
EX 02 L5-KEY PIC GHO0E) . ¢
& 02 L5-DATA PIC Xid54) Mapto Out - | & LS-DATA (AVS4) Tn Out
| MagtolnDut-> ||
Suppress |
Set Comstant.. |

1. COBOL Program Selection. Currently selected program with interface type
2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

272 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

COBOL Program Selection

~ COBOL Program | CUSTINFO - Interface Type COBOL Converter (for use by webMethods EntireX Adapter)

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 273

COBOL Converter - In same as Out

COBOL Source View
custinfo.chbl ik & <A | &
63 02 L5-CMD PIC X(001). -
S |oo7400 02 LS-KEY PIC 9(008).
65 02 L5-DATR PIC X(454). (7
66 e = e
&7 PROCEDURE DIVISION USING DFHCCOMMARER.
A7 MATH. =

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

#: Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

274 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CUSTINFO W a'h + =
COBOL Interface + IDL Interface

% 02 L5-CMD PIC X(001) L5-CMD (AV1) In Out

% 02 LS-KEY PIC 9(008) LS-KEY (NUEB) In QOut

% 02 L5-DATA PIC X(454) Map to Out -> LS-DATA (AV454) In Out

Map to InOut -=

Suppress

Set Constant...

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map toIn | Out | InOut A suppressed COBOL data item becomes visible in the IDL in-
terface. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.

Software AG IDL Extractor for COBOL 275

COBOL Converter - In same as Out

Set Array Mapping

Set Multiple Possible Out-
put (MPO) Structures

Map to Binary

Revert Binary Mapping

Map an array to a fixed sized or unbounded array.

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple
possible output (MPO) structures and the criteria when a struc-
ture is used.

Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Undo the Map to Binary operation and use the standard map-
ping.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-

face

moves the mapped IDL parameter from all IDL interfaces for
the current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention

is needed:

f-+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
~ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

276

Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.

5 Scalar parameter, mapped to InOut.

[Scalar parameter, mapped to Out.

& Group parameter, here mapped to InOut.
& REDEFINE parameter, here mapped to InOut.

%% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping
CUSTINFO

o d;h + —|
COBOL Interface + IDL Interface
g 02 L5-CMD PIC X001} Maptoln -» L5-CMD (AV1) Tn Out
B 02 LS-KEY PIC 9(D08) LS-KEY (NUB) In Out
TS 02 LS-DATA PIC X(454) Map to Out -> LS-DATA (AV454) In Out

Map to InOut -=

Suppress

Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL 277

COBOL Converter - In same as Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

CUSTINFO W ==
COBOL Interface + | IDL Interface

5 02 LS-CMD PIC X(001) &7 L5-CMD (AVL) In Out

% 02 LS-KEY PIC 9(008)

%% 02 LS-DATA PIC X(454) Map to Out -> 4P LS-DATA (AV454) In Out

Map to InOut -=

Suppress

Set Constant...

278 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures
= Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

~ To provide IDL directions

» Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions

in the IDL interface:
MPODIPML
COBOL Interface
ﬁ" 1 _] [Map to In -» l
%02 c Map toIn-=
5 %02 C Map to Qut -> [Map to Out -> l
=
i=02C Map to InOut -=) P
% 02 ¢ : . | Map to InQut ->]
Suppress
Set Constant... [Suppress l
Remove frem COBOL Interface [Set Constant l
[

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

Software AG IDL Extractor for COBOL 279

COBOL Converter - In same as Out

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11ist under Software AG
IDL Grammar in the IDL Editor documentation.

Map OCCURS DEPENDING ON

With the Map to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ON Clause) visible as an IDL unbounded group (with maximum). The ODO object (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~> Tomap 0CCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use the Map to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item

TABLE):
OCCURS
COBOL Interface IDL Interface
01 COUNTER-1 PIC 99 ‘ [Map to In -] 4 ¢S TABLEL (/V10) In Out
4 "% 01 TABIF1 OCEIIRS 1 T 10 NEDENINING (N €O INTE <F FIELDL (AV2)
GE'.GE Map te In -> I Map to Out ->] @pF[ELD2 (ML2)
L=
S0
= m Map to InCut -=
Map to InCut -=
Suppress I Suppress]
Set Constant...
Set Constant...
Remaove frem COBOL Interface
1
] Notes:

280 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

1. The ODO subject can be mapped to the IDL interface.
2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

QOFERATION = dispatcher

5] (

U U
A '? '||: L B e]
D R | » functions or operations
I

C L

T Y

L. Ah, Ah, A

o
o
o

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDI1 PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT

Software AG IDL Extractor for COBOL 281

COBOL Converter - In same as Out

WHEN "=*"
MULTIPLY OPERANDL BY OPERANDZ
GIVING FUNCTION-RESULT

WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

" Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or

COBOL to IDL Mapping
ADD | cALCL + - #{HX|EE
COBOL Interface IDL Interface l i
CEI_ 02 OPERATION PIC X(1) | Map to In -> | ¥ OPERATION (AV1) In
CEI_ 02 OPERANDL PIC 58(9) | * OPERANDL 14 In
CEI_ 02 OPERAND2 PIC 58(9) | Map to Out -> * OPERAND2 14 In

&, 02 FUNCTION-RESULT PIC ¢ [J P FUNCTION-RESULT (4) Out

Map to InOut ->

[Suppress J

[Set Constant... J

2 Give the IDL interfaces meaningful names with the toolbar function b:

282 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

|
COBOL to IDL Mapping

ADD | CALCL| + 24 K| B E
COBOL Interface IDI Interface
=02 operar] [0 COBOL to IDL Mapping _ =

==
=] 02 OPERANI
Re
%7 02 OPERAN [e
FFHE’ 02 FUNC'I'Iq Rename current IDL Interface Out

Old Mame: CALC1

New Name: | | EIEJLETS)

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT | + 24X EBE
COBOL Interface IDL Interface
Euz OPERATION | PIC X(1) T | A | <" OPERATION (AV1) In L
=l 02 OPERAND1 PIC 589(8) .| [@Q COBOL to IDL Mapping
% 02 OPERAND2 PIC 53(9) | MaptoOut-> | -

%} 02 FUNCTION-RESULT PIC & l] Value Input

Map to InOut -=

Enter alphanumeric data with a maximum length of

’ Suppress] Value:| §

“ Set Constant...]

)

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
= Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY".

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

Software AG IDL Extractor for COBOL 283

COBOL Converter - In same as Out

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "EXAMPLE' is

program "ADD' is

define data parameter
1 OPERANDI (I4) In

1 OPERAND2 (I4) In

1 FUNCTION-RESULT (I4) Out

end-define

program 'SUBTRACT' is
define data parameter
1 OPERANDI (I4) In
1 OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) Out

end-define

program "MULTIPLY'" is
define data parameter
1 OPERANDI (I4) In
1 OPERAND2 (I4) In

1 FUNCTION-RESULT (I4) Out

end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#n |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

284

Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

~ To select redefine paths

m Use the Map to In, Out or InOut functions available in the context menu of the COBOL inter-
face and as mapping buttons to make the COBOL REDEFINE path available in the IDL interface.

e o aan seepepeeerg
MPODIPML
COBOL Interface
% 02 CWGSTMO-REQUEST PIC X(2) Map to In ->
% 02 CWGSTMO-CONSTANTL PIC 59(8) BINARY
4 502 CWGSTMO-STATEMENT-LINE Map to Out ->
% 04 CWGSTMO-STMT-LTYPE PIC 59(4) BINARY [Man 1o IOt =
Bl 04 CWGSTMO-ASTh-LINE PIC X(174) =] d |
B . j2| 04 CWGESTMO-BT-LINE REDEFINES CWGSTMO-ASTM-L[*r = — :
| o B 04 OGS TMO-BD-LINE REDEFINES CWGSTMO-ASTM-—— Maptoln ->
B , 04 CWGSTMO-TD-LINE REDEFINES CWGSTMO-ASTM-L Map to Qut -»
B , 04 CWGSTMO-TT-LINE REDEFINES CWGSTMO-ASTM-L| [Map to InOut ->
B , 04 CWGSTMO-UNUSEDI-LINE REDEFINES CWGSTMO-4
% 02 CWGSTMO-CONSTANT2 PIC X(4) Suppress
% 02 CWGSTMO-LASTDATA PIC X(20) Set Constant...
4 T Remove fram COBOL Interface

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL 285

COBOL Converter - In same as Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

" for FILLER data items

= if the consuming RPC client or IS service does not need an Out parameter

if the COBOL data item is an In parameter and a low value can be provided

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPML
COBOL Interface D
% 02 CWGSTMO-REQUEST PIC X(2) ‘ [Map toIn ->]
. ZoacwesTvg Mepteln-> [Map to Out -> |
& 02 CWGSTM Map to Out ->

T 02 CWGSTMI

Map to InOut ->

Map to InQut ->

| Suppress | [Suppress l

Set Constant...

Set Constant... l

Rermowve from COBOL Interface [

] Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functions Map to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

286 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML |
COBOL Interface I
% 02 CWGSTMO-REQUEST PIC X(2) ’ Map toIn ->]
. B 02 CWGST Map teIn -> ’ Map to Cut -»]

02 CWGST Map to Out ->

Map to InOut ->
% 02 cWGsT Map to InOut -> :

| Suppress ’

Suppress]
l Set Constant... 1

’ Set Constant...]

Remowve from COBOL Interface

2 You are prompted with a window to enter the constant value:

r B
[T COBOL to IDL Mapping "W — [

Value Input
Enter numeric data in the range from -2147453648 to 2147483647,

Value:

]

@ | ok || canca |

Software AG IDL Extractor for COBOL 287

COBOL Converter - In same as Out

Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functions Map to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

288 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
s ‘2502 CONTRACT-BUFFER Map to In ->
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
%% 05 C-PACKETS PIC 59(4) o
% 05 C-ACTION PIC x(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 9(2) —
4 Set Cnnctant
4 705 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
[
= 06 P-TEXT PIC X Map te InOut ->
% 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remove from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL 289

COBOL Converter - In same as Out

& |
COBOL to IDL Mapping | 25|

Set Array Mapping
Set the correct array mapping that matches the COBOL interface, so that the number of array
elernents can be deterrnined, Otherwise runtime errors cccur,
(") Fixed Array with 99 Entries (default)
|-@- Unbounded Arra}r.|

For input, the COBOL Converter uses the selected method to determine the number of incoming array
elernents. For output, the COBOL Converter uses the same method to determine the number of
| outgoing array elements.

(") Mumber of array elements is calculated from COBOL Converter byte array length (bytes),

@ Mumber of array elements is calculated from COBOL data item
COBOL Data ltem

a4 DFHCOMMAREA
C-PACKETS-11
C-MNUMBER-11
C-ID-11
4 CONTRACT-BUFFER
4 CONTRACT-DATA
4 CONTRACT
C-1D —
C-PACKETS
C-ACTION
Z-10
Z-MUMBER
4 PACKET!
4 P-ITEM

L3

m

i@ contains array length (bytes)
(") contains length of valid data within message (bytes)

() contains number of array elements directly

? 0] 4] [Cancel

The number of array elements is calculated using one of the following options:

® COBOL Converter length (bytes)
For input, the COBOL Converter uses the length of byte array cobolInput as COBOL Converter
length. For output, the length of byte array cobol0utput has to be used accordingly. To determine
the number of array elements, the length of the byte array is subtracted first to calculate the array
length. The result is then divided by the length of one array element. All lengths are in bytes.
The following COBOL snippet shows the layout of a COBOL interface with fixed-size array
PACKETI used in this manner:

290 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

01 CONTRACT-DATA.

04 CONTRACT.
05 C-1ID
05 C-BYTES
05 C-ACTION
04 ZONE.
05 Z-NUMBER
05 Z-1D
04 PACKETI
05 P-ITEM.
06 P-1ID
06 P-TEXT
06 P-NUMBER

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).
PIC X(20).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

Assume the array PACKETI is filled with 15 occurrences. The length of byte array cobolInput is
calculated then as follows: (LENGTH OF ZONE)+ (LENGTH OF CONTRACT)+ (LENGTH OF P-ITEM)*

15.

The number of array elements of the fixed-size array PACKETI is implicitly contained in the

COBOL converter length.

® COBOL data item contains array length (bytes)

For input, The COBOL Converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobolOutput. This COBOL data item contains the
array length. To determine the number of array elements, the contents of the COBOL data item
are divided by the length of one array element. All lengths are in bytes. The following COBOL
snippet shows the layout of a COBOL interface with fixed-size array PACKETI and C-BYTES as

the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID
05 C-BYTES
05 C-ACTION
04 ZONE.
05 Z-NUMBER
05 Z-1D
04 PACKETI
05 P-ITEM.
06 P-1ID
06 P-TEXT
06 P-NUMBER

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).
PIC X(20).
OCCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

Assume the array PACKETI is filled with 7 occurrences. The contents of COBOL data item C-BYTES

are calculated as follows: (LENGTH OF P-ITEM) * 7.

The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL

data item C-BYTES.

Software AG IDL Extractor for COBOL

291

COBOL Converter - In same as Out

COBOL data item contains length of valid data within messages (bytes)

For input, The COBOL converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobol0utput. To determine the number of array
elements, the contents of the COBOL data item are subtracted first to calculate the array length.
The result is then divided by the length of one array element. The length of the transferred ap-
plication data within the message can be shorter than COBOL converter length. All lengths are
in bytes. The following COBOL snippet shows the layout of a COBOL interface with fixed-size
array PACKETI and C-APPDATA as the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.

05 C-1ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-1ID PIC X(20).
05 Z-NUMBER PIC 9(2).
04 PACKETI 0CCURS 99.
05 P-ITEM.

06 P-ID PIC X(8).

06 P-TEXT PIC X(30).

06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filled with 31 occurrences. The contents of COBOL data item
C-APPDATA are calculated as follows: (LENGTH OF CONTRACT) + (LENGTH OF P-ITEM) * 31.
The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL
data item C-APPDATA.

COBOL data item contains number of array elements directly

The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.
01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.

05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.

05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.

292 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

06 P-1ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= QOptional Output with Groups

= Complex MPO Selections

= MPO Terminology

Software AG IDL Extractor for COBOL 293

COBOL Converter - In same as Out

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

294

Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL 295

COBOL Converter - In same as Out

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T !
8] R R {
] E A !
C B M {
H | 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
sUbseq. T ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

" contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

296 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 FIX-INPUT-ITEMI1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.

FIXED-OUTFUT-STRUCTUREZ

OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".
01 OPTIONAL-OUTPUT-STRUCTUREL.
02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).
01 OPTIONAL-OUTPUT-STRUCTUREZ.
02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).
01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

Software AG IDL Extractor for COBOL

297

COBOL Converter - In same as Out

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

298 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 299

COBOL Converter - In same as Out

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PAYMENT |
COBOL Interface
. Z 01 INPUT | [Map to In -> |
% 02 PAYMENT Map toIn -» | MaptoOut-> |]
& R 02 PAYMENT FE—
= Wap -=
@ b 2 02PAYMEN] MaptolnOut-> D
A > g2l 02 PAYMENT
o > g2l 02 PAYMENT SR Suppress |
< s g2l 02 PAYMENT Set Constant...
Set Constant...

Remove from COBOL Interface

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

'

4

= 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

LI

Map to InQut ->

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
S GLOPAYMENTDATA PICX2SE) °pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->
B > 2 02 PAYMENT-DATA-TRANSFER REDEFINES P,
>

Suppress
Set Constant...

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

300

Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 301

COBOL Converter - In same as Out

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ ok || Cancel

5 Set MPO selector values for MPO Structures.

302 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

r ™
[0 COROL to IDL Mapping . s e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure PPC Selector Values Add Value
PAYMENT-DATA 10 & 20 X af
PAYMENT-DATA-VOUCHER vo ¥ =

| PAVYMENT-DATA-CREDITCARD ¢ X = :
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT o
| | | |
N |

@ | ok || canc

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EP.M‘M EMT-TYPE-VOUCHER | =

Enable individual input 0

!l Selector Yalue:

| @ | ok || Cancel

5 — . R

Software AG IDL Extractor for COBOL 303

COBOL Converter - In same as Out

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

304 Software AG IDL Extractor for COBOL

COBOL Converter - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
4 %02 CONTRACT-BUFFER T
4 %03 CONTRACT-DATA
4 504 CONTRACT Map te Out ->
05 C-ID PIC X(8) T E—
Wiap -
%2 05 C-PACKETS PIC 59(4) cldlebics
05 C-ACTION PIC X(4)
05 Z-1D PIC X(20) Suppress

2 05 Z-NUMBER PIC 9(2)
4
Map toIn-=

4 = 05P-ITEM

5 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X2 Map to InOut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4 2502 CONTRACT-BUFFER Map toIn > 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 504 CONTRACT Map to Out -> < CONTRACT (B38)
05D PIC Xi8) %
% 05 C-PACKETS PIC 59(4) Map to InOut -
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
4 05 Z-NUMBER PIC 9(2) =
4 @5} 04 PACKETI QOCCURS 99 Set Constant...
4 505 p-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%4 06 P-NUMBER PIC 9(2)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

Software AG IDL Extractor for COBOL 305

COBOL Converter - In same as Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER | Map to In > | []
4 7203 CONTRACT-DATA
4 %% 04 CONTRACT | Map to Out -» |

05 C-ID

% 05 C-PACKETS
% 05 C-ACTION
05 7-ID

2 05 Z-NUMBER PIC 8(2)
4 |§

4 505 P-ITEM
%5 06 p-ID
5 06 P-TEXT
L=
% 06 P-NUMBER

PIC X(8)
PIC 58(4)
PIC X(4)
PIC X(20)

| Map to InOut -= |

| Suppress |

I Lo ey I

PIC X(8)
PIC X(3
PIC

Map to In -=
Map to Out -=
Map to InOut -=

Suppress
Set Constant...

Revert Binary Mapping -=

Remowve from COBOL Interface

306

Software AG IDL Extractor for COBOL

12 COBOL Converter - In different to Out

L 1211 (0o 1o o) PSP PPPPTPRRR 308
B EXtracting @ COBOL CONVEMETvviieeiiiiie ettt e et e e et e e e e e e e et ee e e e 308
= Mapping Editor USer INtErfaceooiiiiiiiii e 310
= Mapping Editor IDL Interface Mapping FUNCHONScoouiiiiiiiiiie e 317

307

COBOL Converter - In different to Out

IN COBOL

)) _ > Input ~oEoL

4 | A25 A15 |14 Layout output

A10 |14 | A1000000 |P5 |14 - Layout
ouT

Introduction

A file containing valid COBOL data items describing the COBOL payload can be used to extract
a COBOL converter for the EntireX Adapter. If you have selected an IDL file and opened the COBOL
Mapping Editor with an existing COBOL to IDL mapping, continue with Mapping Editor User
Interface.

Extracting a COBOL Converter

This section assumes Input Message same as Output Message is not checked. COBOL output
and COBOL input parameters are different, that is, the output is overlaid with a data structure
that is different to the data structure on input.

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type COBOL Converter, the Extractor Settings dialog appears (see
also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and check box Input Message same as Output Message is
cleared.

COBOL Source

File Mame: custinfo.chl

Operating System: z/05

Interface Type: [COBOL Converter (for use by webMethods EntireX Adapter) -

[“]iinput Message same as Output Message;

Press Next to open the COBOL Mapping Editor.

308 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

~ To select the COBOL interface data items of your COBOL server

1 Addthe COBOL data items of the input message to Input Message by using the context menu
or toolbar available in the COBOL Source View and COBOL Interface. See Notes.

2 Add the COBOL data items of the output message to Output Message by using the context
menu and toolbars available in the COBOL Interface and IDL Interface. See Notes.

3 Continue with COBOL to IDL Mapping.

) Notes:

1. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

2. If your COBOL interface contains REDEFINEs, the first REDEFINE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 309

COBOL Converter - In different to Out

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas

of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL interface types where COBOL input and COBOL output parameters are different, the
user interface of the COBOL Mapping Editor looks like this:

1. [+ cOBOLProgram CUSTINFO -

Interface Type COBOL Comwverter (for use by webMethods Entire) Adapter) |

gustindo,chl

01 W5-I0-DATIR

PIC X[(454).

DET00 01 WES-CONTACY REDEFTHES WS-T0-DRTH.
03 COH-DATA.
04 CON-HRME
04 CON-FIRST

PIC R(DE0) .
PIC X (D&3) .

COBOL 1o IDL Mapping

CUSTINFO
COR. Interface
Input Message
T 02 LS-CMD PIC X0
T 07 LS-KEY FIC 2i008)
T 02 LS-DATA FIC X[454)
Cutput Message
i+ B O ws-o-DATA PIC Xid =
i+ & G5 01 WS-CONTACT REDEFINES WS |5
4 1503 COM-DATA
EE 04 CON-MAME P - |
Fl T k

0L Imierface

Suppress ' &

+EALAX|BE

& L5-CMD (avl) Tn
4" LS-KEY (MUE) In
& L5-DATA [AV454) In

4 4 COM-DATA
& CON-MAME (AVED]
& CON-FIRST [AVSD)
&7 COM-TITLE (&V12)
o COMNPHOME (Av30)
& CON-MAIL (AVED)
& COM-MSG (AW40)

Finish | Cancel

1. COBOL Program Selection. Currently selected program with interface type

310

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

» COBOL Program | CUSTINFO - Interface Type COBOL Converter (for use by webMethods EntireX Adapter)

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 311

COBOL Converter - In different to Out

COBOL Source View
custinfo.chbl ik 3& <A | &

63 02 L5-CMD PIC X(001). -
S |oo7400 02 LS-KEY PIC 9(008).

65 02 L5-DATR PIC X(454). (7
66 e = e
&7 PROCEDURE DIVISION USING DFHCCOMMARER.

A7 MATH. =

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
ih Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Conuverter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

312 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CUSTINFO r a2 + [
COBOL Interface HOO IDL Interface
Input Message LS-CMD (AV1) In
7o LS-KEY (MUS)} In
= 02 L5-CMD PIC X{001) LS-DATA (AV454) 1
02 LS-KEV PIC 9(008) -
. Suppress a WS-CONTACT Out
= 02 L5-DATA PIC X(454) a 58 COMN-DATA

CON-MAME (AVE0)
COM-FIRST (AVB0)
Cutput Message COMN-TITLE (AV12)
@ 01 WS-1O-DATA PIC X4 = COMN-PHONE (AV30)
o CON-MAIL (AVe0)
4 g= 01 WS-CONTACT REDEFIMES WS =] o .
P CIEP 02 CON-DATA CON-MSG (AV40)

%, 04 CON-NAME PIC ~
4 I 3

2

=51
£y

&

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Software AG IDL Extractor for COBOL 313

COBOL Converter - In different to Out

Suppress
Set Constant
Set Array Mapping

Set Multiple Possible Out-
put (MPO) Structures

Map to Binary

Revert Binary Mapping

Remove from COBOL Inter-
face

Suppress unneeded COBOL data items.
Set COBOL data items to constant.
Map an array to a fixed sized or unbounded array.

Set COBOL data items where the server program decides the
output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Undo the Map to Binary operation and use the standard mapping.

Remove the data item from the COBOL interface. This also re-
moves the mapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar

The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.

«» Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons

The decision icons in the first column are set on COBOL data items where particular attention

is needed:

314

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

‘f-+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
- path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

5. Scalar parameter, mapped to In.
[Scalar parameter, mapped to Out.

& Group parameter, here mapped to In.

(=" REDEFINE parameter, here mapped to Out.

%% Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CUSTINFO . =% =
COBOL Interface IDL Interface
Input Message Map to -> L5-CMD (AV1) In
% 0> LS-CMD BIC %001 LS-KEY (NUS) In
. Oj LS'EE'_; prug':;ﬁ*- LS-DATA (AV454) In
i - o Suppress s SWS-CONTACT Out
2 02 LS-DATA PIC X(454)

4 4% CON-DATA
CON-NAME (AVEO)
CON-FIRST (AV60)

ON-TITLE [AV12)

IN-PHONE (AV30)

—
L=
0
L

s
0
L
.
L=

Set Constant...

Output Message

fiEl 01 WS-10-DATA PIC X4
B2 a g2 01 WS-CONTACT REDEFIMNES WS
4 7503 CON-DATA

&, 04 CON-NAME PIC ~

3

Fos
. IMN-MAIL (AVE0)
ON-MSG (AV40)

Map to ->
A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL 315

COBOL Converter - In different to Out

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

CUSTINFO
COBOL Interface

Input Message
T 02 Ls-CMD PIC X(001)
Sumisomn oo S
Output Message
B¢ & 01 WS-10-DATA PIC X{4
B*| a4 i 01 WS-CONTACT REDEFINES WS

4 5 03 CON-DATA
£, 04 CON-NAME PIC =
-

IDL Interface

4P Ls-CMD (AV1) In

#F LS-KEY [NUS) In

2P LS-DATA (AV454) In

s SWS-CONTACT Out

4 4% CON-DATA
4P CON-NAME (AVB0)
4" CON-FIRST (AVE0)
+F CON-TITLE (AV12)
2P CON-PHONE (AV30)
4P CON-MAIL (AVeD)
#F CON-MSG (aV40)

316

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems
= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures

= Map to Binary and Revert Binary Mapping

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

~ To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu of the COBOL interface and as mapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

Map to -=]

COBOL to IDL Mapping
MPODJPML
COBOL Interface HI O
Input Message
02¢
Foaq | Mepto> | NARY
7=
=l 02 Suppress
o2
Set Constant...
Rermowve from COBOL Interface
Output Messag

Suppress

Set Constant...]

2 Do the same for the output message of the COBOL interface.

J Notes:

. 15 02 CWGSTMO-STATEMENT-LINE
% 02 CWGSTMO-LASTDATA PIC X(20)

IDL

Software AG IDL Extractor for COBOL

317

COBOL Converter - In different to Out

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

You can make the COBOL ODO subject (here COBOL data item TABLE) of a variable-sized COBOL
table (see COBOL Tables with Variable Size - DEPENDING ON Clause) visible as an IDL unbounded
group (with maximum). The ODO object (here COBOL data item COUNTER-1) is suppressed and
therefore not part of the IDL interface. This is because the number of elements of the IDL unbounded
group is already implicitly available. See the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~ Tomap OCCURS DEPENDING ON

s Add the COBOL subject (here data item TABLE) and ODO object (here data item COUNTER-1)
to the input message or to the output message, wherever they belong. It is important both
data items are always together per message direction (input or output).

OCCURS
COBOL Interface =T IDL Interface

Map to -> 4" ORDER-NUMBER (NU10} In
. 4% TABLEL (/V10) Out

Input Message
[02 ORDER-NUMBER PIC 9(10)

’ Suppress]

Set Constant...

Output Message
01 COUNTER-1 PIC 99 ‘

3 P

Map to ->

_ Suppress
4

Set Constant...

Remove from COBOL Interface

j Notes:

1. The ODO subject can be mapped to the IDL interface.

318 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

2. The ODO object is always suppressed, but is required to be part of the same message direction
(Input Message or Output Message) of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

OPERATION + dispatcher

5] (

L L
'A' E 'll: L B B]
D R | + functions or operations
D& P

C L

T Y

L™ o b o b -

o
o
o

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDI1 PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "*"

Software AG IDL Extractor for COBOL 319

COBOL Converter - In different to Out

MULTIPLY OPERANDI BY OPERANDZ

GIVING FUNCTION-RESULT

WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server

Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

= Web service

Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET

Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions & or

COBOL to IDL Mapping
ADD | CALCT

COBOL Interface HOOX
Input Message

% 02 OPERATION PIC X(1)

% 02 OPERANDL PIC 58(3) BINARY

% 02 OPERAND2 PIC 58(3) BINARY
Output Message

%, 02 FUNCTION-RESULT PIC 53(9) BINARY

Map to ->

I Suppress

I Set Constant...

IDL Interface

 OPERATION (AV1) In

F OPERANDL () In

P OPERAND2 (M) In

P FUNCTION-RESULT (W) Out

2 Give the IDL interfaces meaningful names with the toolbar function «b:

320

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

COBOL to IDL Mapping

— —
ADD| caLct | % % x|
COBOL Interface BHOOX IDL Interface

Input Message Map to -> " OPERATION (AV1) In

%] 02 OPERATION —_oicwm Ll Sadiiam

o ; [S=X)
5 02 OPERANDL [Q cOoBOL to IDL Mapping — (1) Out
] 02 OPERAND2

Rename
Rename current IDL Interface

Old Name: CALC1
NewName:l SUBTRACT i

Output Message
%, 02 FUNCTION-RESULT

4 I é

@ [ok][cance |
@ %' D

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT| + 245X BB
COBOL Interface B OO IDL Interface
Input Message Map to -> J 4" OPERATION (AV1) In l |
=3 i
=] 02 OPERATION PIC X{1) [Q COBOL to IDL Mapping
=] PIC 59(9) BINARY
= @ [Suppress]
=] 02 OPERAND2 PIC 59(9) BINARY Set Value
| [EctGogclapie] | Enter alphanumeric data with a maximum length of 1 character.
Output Message Value:
% 02 FUMNCTION-RESULT PIC 58(3) BIMARY
4 I G
.
® Mext » | Finish Cancel

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY".
® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

Software AG IDL Extractor for COBOL 321

COBOL Converter - In different to Out

library "EXAMPLE' is
program "ADD' is
define data parameter
1 OPERANDI (I4) In
1 OPERANDZ (I4) In
1 FUNCTION-RESULT (I4) Out

end-define

program 'SUBTRACT'" is
define data parameter

1 OPERANDI (I4) In

1 OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) Out
end-define

program 'MULTIPLY' 1is
define data parameter

1 OPERANDI (I4) In

1 OPERAND2 (I4) In

1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-

ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description

<= |Create IDL Interface

Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface

Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Rename current IDL
Interface
interface a suitable name.

The default name for the IDL interface is based on the COBOL program
name plus appended number. With this function you can give the IDL

|Remove current IDL Deletes the current IDL interface.

Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation

of EntireX version 9.6 and earlier.

322

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

2

Use the Map to function available in the context menu of the COBOL interface and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

IDL Interface

&F
F
a 450
4

4

S —
MPODIPML
COBOL Interface H OO
Input Message [Map to ->
@é- 02 CWGSTMO-REQUEST PIC X(2)
%[02 CWGSTMO-CONSTANTL PIC 59(8) BINARY Suppress
Set Constant...
Output Message
@ 25 04 CWGSTMO-ASTM-LINE PICX(174) _ ~
B > 04 CWGSTMO-ET-LINE REDEFINES CWGSTMO-ASTI Map to ->
& - o2 04 CWGETMO-ED-LINE REDEFINES CWGS TMO-AST] .
& b B 04CWGSTMO-TD-LINE REDEFINES CWGSTMO-AST| Suppress
i
i " Set Constant...

=

Customize MPO (Multiple Possible Output)

Remowve from COBOL Interface

—

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

Notes:

. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL

323

COBOL Converter - In different to Out

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

" for FILLER data items

= if the consuming RPC client or IS service does not need an Out parameter

if the COBOL data item is an In parameter and a low value can be provided

~ To suppress unneeded COBOL data items

Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPML
COBOL Interface H M D1
Input Message Map to -»
% 02 CWGSTMO-REQUEST PIC X(2))
T 02 CWGSTMO-CONSTANTL PIC 59(8) BINARY [Suppress l
[Set Constant... l '
Output Message
4 & 02 CWGSTMO-STATEMENT-LINE -
75 04 CWGSTMO-STMT-ITVBE PIC Said) RINZ =
o fa 04 CWGSTMO-ASTM- Map to ->
Fi > 04 CWGSTMO-BT-LINY - ¢ B 1
| « = | |[Suppre=s |
Set Constant...

Remove from COBOL Interface

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse function Map to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface
again.

324 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is

useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as

mapping button to define a constant value for a COBOL data item:

MPODJPRAL
COBOL Interface H [[i[b]]
Input Message Map to ->
E@' 02 CWGESTMO-REQUEST PIC X(2)
E@' 02 CWGESTMO-COMSTANTL PIC 59(8) BINARY [Suppress
[Set Constant...
Cutput Message
a E@ 02 CWGESTMO-STATEMEMT-LIME -
7,04 CWGSTMO-STMT-ITVBF BT SOdy RINL =
B fim 04 CWGSTMO-ASTM- Map to ->
A s d2 04 CWGSTMO-BT-LIN .
i 1 | SUppres -
Set Constant...
Remowve from COBOL Interface
2 You are prompted with a window to enter the constant value:
Software AG IDL Extractor for COBOL 325

COBOL Converter - In different to Out

F -
E COBOL tc IDL Mapping B B I&
Value Input
Enter numeric data in the range from -2147453648 to 2147483647,
Value: | TEEN]
@' oK] ’ Cancel

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

326 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
s ‘2502 CONTRACT-BUFFER Map to In ->
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
%% 05 C-PACKETS PIC 59(4) o
% 05 C-ACTION PIC x(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 9(2) —
4 Set Cnnctant
4 705 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
[
= 06 P-TEXT PIC X Map te InOut ->
% 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remove from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

Software AG IDL Extractor for COBOL 327

COBOL Converter - In different to Out

& |
COBOL to IDL Mapping | 25|

Set Array Mapping
Set the correct array mapping that matches the COBOL interface, so that the number of array
elernents can be deterrnined, Otherwise runtime errors cccur,
(") Fixed Array with 99 Entries (default)
|-@- Unbounded Arra}r.|

For input, the COBOL Converter uses the selected method to determine the number of incoming array
elernents. For output, the COBOL Converter uses the same method to determine the number of
| outgoing array elements.

(") Mumber of array elements is calculated from COBOL Converter byte array length (bytes),

@ Mumber of array elements is calculated from COBOL data item
COBOL Data ltem

a4 DFHCOMMAREA
C-PACKETS-11
C-MNUMBER-11
C-ID-11
4 CONTRACT-BUFFER
4 CONTRACT-DATA
4 CONTRACT
C-1D —
C-PACKETS
C-ACTION
Z-10
Z-MUMBER
4 PACKET!
4 P-ITEM

L3

m

i@ contains array length (bytes)
(") contains length of valid data within message (bytes)

() contains number of array elements directly

? 0] 4] [Cancel

The number of array elements is calculated using one of the following options:

® COBOL Converter length (bytes)
For input, the COBOL Converter uses the length of byte array cobolInput as COBOL Converter
length. For output, the length of byte array cobol0utput has to be used accordingly. To determine
the number of array elements, the length of the byte array is subtracted first to calculate the array
length. The result is then divided by the length of one array element. All lengths are in bytes.
The following COBOL snippet shows the layout of a COBOL interface with fixed-size array
PACKETI used in this manner:

328 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

01 CONTRACT-DATA.

04 CONTRACT.
05 C-1ID
05 C-BYTES
05 C-ACTION
04 ZONE.
05 Z-NUMBER
05 Z-1D
04 PACKETI
05 P-ITEM.
06 P-1ID
06 P-TEXT
06 P-NUMBER

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).
PIC X(20).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

Assume the array PACKETI is filled with 15 occurrences. The length of byte array cobolInput is
calculated then as follows: (LENGTH OF ZONE)+ (LENGTH OF CONTRACT)+ (LENGTH OF P-ITEM)*

15.

The number of array elements of the fixed-size array PACKETI is implicitly contained in the

COBOL converter length.

® COBOL data item contains array length (bytes)

For input, The COBOL Converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobolOutput. This COBOL data item contains the
array length. To determine the number of array elements, the contents of the COBOL data item
are divided by the length of one array element. All lengths are in bytes. The following COBOL
snippet shows the layout of a COBOL interface with fixed-size array PACKETI and C-BYTES as

the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.
05 C-ID
05 C-BYTES
05 C-ACTION
04 ZONE.
05 Z-NUMBER
05 Z-1D
04 PACKETI
05 P-ITEM.
06 P-1ID
06 P-TEXT
06 P-NUMBER

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).
PIC X(20).
OCCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

Assume the array PACKETI is filled with 7 occurrences. The contents of COBOL data item C-BYTES

are calculated as follows: (LENGTH OF P-ITEM) * 7.

The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL

data item C-BYTES.

Software AG IDL Extractor for COBOL

329

COBOL Converter - In different to Out

® COBOL data item contains length of valid data within messages (bytes)

For input, The COBOL converter inspects the COBOL data item in byte array cobolInput and
sets it accordingly for output in byte array cobol0utput. To determine the number of array
elements, the contents of the COBOL data item are subtracted first to calculate the array length.
The result is then divided by the length of one array element. The length of the transferred ap-
plication data within the message can be shorter than COBOL converter length. All lengths are
in bytes. The following COBOL snippet shows the layout of a COBOL interface with fixed-size
array PACKETI and C-APPDATA as the COBOL data item used in this manner:

01 CONTRACT-DATA.
04 CONTRACT.

05 C-1ID PIC X(8).
05 C-APPDATA PIC S9(4).
05 C-ACTION PIC X(4).
05 Z-1ID PIC X(20).
05 Z-NUMBER PIC 9(2).
04 PACKETI 0CCURS 99.
05 P-ITEM.

06 P-ID PIC X(8).

06 P-TEXT PIC X(30).

06 P-NUMBER PIC 9(2).

Assume the array PACKETI is filled with 31 occurrences. The contents of COBOL data item
C-APPDATA are calculated as follows: (LENGTH OF CONTRACT) + (LENGTH OF P-ITEM) * 31.
The number of array elements of the fixed-size array PACKETI is implicitly contained in COBOL
data item C-APPDATA.

" COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.
01 DFHCOMMAREA.
03 CONTRACT-DATA.
04 CONTRACT.

05 C-ID PIC X(8).
05 C-NUM PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.

05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.

330 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

06 P-1ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= QOptional Output with Groups

= Complex MPO Selections

= MPO Terminology

Software AG IDL Extractor for COBOL 331

COBOL Converter - In different to Out

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

332

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL 333

COBOL Converter - In different to Out

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T !
8] R R {
] E A !
C B M {
H | 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
sUbseq. T ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

" contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

334 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 FIX-INPUT-ITEMI1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.

FIXED-OUTFUT-STRUCTUREZ

OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".
01 OPTIONAL-OUTPUT-STRUCTUREL.
02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).
01 OPTIONAL-OUTPUT-STRUCTUREZ.
02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).
01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

Software AG IDL Extractor for COBOL

335

COBOL Converter - In different to Out

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

336 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 337

COBOL Converter - In different to Out

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PAYMENT |
COBOL Interface
. Z 01 INPUT | [Map to In -> |
% 02 PAYMENT Map toIn -» | MaptoOut-> |]
& R 02 PAYMENT FE—
= Wap -=
@ b 2 02PAYMEN] MaptolnOut-> D
A > g2l 02 PAYMENT
o > g2l 02 PAYMENT SR Suppress |
< s g2l 02 PAYMENT Set Constant...
Set Constant...

Remove from COBOL Interface

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

'

4

= 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

LI

Map to InQut ->

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
S GLOPAYMENTDATA PICX2SE) °pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->
B > 2 02 PAYMENT-DATA-TRANSFER REDEFINES P,
>

Suppress
Set Constant...

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

338

Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 339

COBOL Converter - In different to Out

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ ok || Cancel

5 Set MPO selector values for MPO Structures.

340 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

r ™
[0 COROL to IDL Mapping . s e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure PPC Selector Values Add Value
PAYMENT-DATA 10 & 20 X af
PAYMENT-DATA-VOUCHER vo ¥ =

| PAVYMENT-DATA-CREDITCARD ¢ X = :
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT o
| | | |
N |

@ | ok || canc

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EP.M‘M EMT-TYPE-VOUCHER | =

Enable individual input 0

!l Selector Yalue:

| @ | ok || Cancel

5 — . R

Software AG IDL Extractor for COBOL 341

COBOL Converter - In different to Out

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

342 Software AG IDL Extractor for COBOL

COBOL Converter - In different to Out

COBOL to IDL Mapping

PFZXDMSG

COBOL Interface

4 502 CONTRACT-BUFFER
4 503 CONTRACT-DATA
4 504 CONTRACT
05 C-ID
05 C-PACKETS
05 C-ACTION
05 Z-1D

2 05 Z-NUMBER PIC 8(2)
4 | ﬁ

4 2505 P-ITEM
% 06 P-ID
% 06 P-TEXT

% 06 P-NUMBER

PIC X(8)
PIC 58(4)
PIC X(4)
PIC X(20)

Map toIn-=
Map to Out ->

Map to InQut ->

IDL

Suppress

PIC X(8)
PIC X(3
PIC

Map toIn-=
Map to Qut ->
Map to InQut ->

Suppress
Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as

well.

COBOL to IDL Mapping

2

PF2XDMSG

COBOL Interface

4+ 502 CONTRACT-BUFFER
4 75502 CONTRACT-DATA
4 %504 CONTRACT

05D PIC X(8)
% 05 C-PACKETS PIC 59(4)
% 05 C-ACTION PIC X(4)
05 Z-ID PIC X(20)
%% 05 Z-NUMBER PIC 9(2)
4 504 PACKETI OCCURS99
4 B 05P-ITEM
% 06 P-ID PIC X(8)
X 06 P-TEXT PIC X(30)
% 06 P-NUMBER PIC 9(2)

Map to In -»
Map to Out ->

Map to InOut -=

IDL Interface

4 45 CONTRACT-BUFFER In Out
4 4% CONTRACT-DATA
+F CONTRACT (B38)

Suppress

Set Constant...

Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI

(BV) in this example).

Software AG IDL Extractor for COBOL

343

COBOL Converter - In different to Out

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

COBOL to IDL Mapping
PF2XDMSG |
COBOL Interface IDL

4 7502 CONTRACT-BUFFER
4 503 CONTRACT-DATA

Map to In ->

2 504 CONTRACT Map to Out ->
(7=
& 05C-1D PIC X(8)
Map to InOut -
%X 05 C-PACKETS PIC 59(4) o
% 05 C-ACTION PIC Xi4)
(7=
= 05 Z-ID PIC X(20) Suppress
2 05 Z-NUMBER PIC 9{2)
‘ O T 4 3
4 E‘.US B-TTEM MEFI toln->
% 06 P-ID PIC X(8) Map to Out ->
%Uﬁ P-TEXT PIC (3 Map to InOut ->
% 06 P-NUMBER PIC

Suppress
Set Constant...

Revert Binary Mapping -=

Rermowve from COBOL Interface

344 Software AG IDL Extractor for COBOL

13 Batch with Standard Linkage Calling Convention

L 1211 (0o 1o o) PSP PPPPTPRRR 346
= Extracting from a Standard Call INterfacec..ooeiiiiiiiiii e 346
= Mapping Editor USer INtErfaceooiiiiiiiii e 348
= Mapping Editor IDL Interface Mapping FUNCHONScoouiiiiiiiiiie e 355

345

Batch with Standard Linkage Calling Convention

Farameter 1

Parameter2 | | A10/ 14 | A100000 |12 |P5

: A : INOUT CoBOL
' 12| a15] 14] 14| A100 | 14 P > Server

Farameter n .

14 | At00000 | P2

Introduction

Because COBOL servers with a standard call interface always contain a PROCEDURE DIVISION
header (see PROCEDURE DIVISION Mapping) with all parameters, the COBOL data items of the in-
terface can be evaluated by the IDL Extractor for COBOL and are already offered by the wizard.
In most cases the offered COBOL data items will be correct, but you should always check them
manually.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from a Standard Call Interface

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type Batch with standard linkage calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

COBOL Source
File Mame: batipc.chl

Operating System: z/05

Interface Type: [BATCH with standard linkage calling convention hd

Input Message same as Output Message

Press Next to open the COBOL Mapping Editor.

346 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

~ To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface, using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

] Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 347

Batch with Standard Linkage Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas

of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL

Mapping Editor looks like this:

L. ~ DOBEOL Program BATIPC - Interface Type BATCH with standard Iinlr.;-gi n;.gllin-g converit=am
2. batipc.chl i g ¥
LINHAGE SECTION.
02 IC=IH.
03 CELLAR PIC X(01). -
¥
3.

EATIPC
COBOL bvterlace

T

2 oI
4 03 CELLAR
= 03 COVER-DETAILS
%% 03 USED-AREA

T 03RISK-ID
T 02 1C-0UT

i m

FIC X[o1)

FIC }
PIC 33{]

2 03 COD-PAYMENT-MANMER
P AR8)

Mag to In -

Suppness

: Map to Cut -

= IDL Interlace
4 & ICALEID Tn Out

a 10N
" CELLAR {AW1)
Y COVER-DETALS (ANE]

g

=

USED-AREA [M12.2)

¢ COD-PAVMENT-MANNER (i
o' RISK-ID (AVES)

&= IC-0UT

&

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons

with which you can map these items to your IDL interface

348

Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL Program Selection

~ COBOL Program | BATIPC - Interface Type BATCH with standard linkage calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 349

Batch with Standard Linkage Calling Convention

COBOL Source View

batipc.chl I'ﬁ 5& s | &

= & -

31 LINFAGE SECTION.

32 003210 01 ICALCIC.
33 02 IC-IN.
34 03 CELLAR PIC X (01). -

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

ih Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

¢ Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Conuverter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

350 Software AG IDL Extractor for COBOL

Batch with

Standard Linkage Calling Convention

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

BATIPC
COBOL Interface
4 B021C-IN
03 CELLAR PIC X(01)
% 03 COVER-DETAILS PIC 3
03 USED-AREA PIC S8(1
4 03 COD-PAYMENT-MANMEF
% 03 RISK-ID PIC X(08)
. B oz2ic-out
4 L1 [3

* IDL Interface

Map to In -> 4
4

Map to Out ->»

Suppress

S ICALCIO In Out

E1c-IN
CELLAR (AV1)
COVER-DETAILS (AVE)
USED-AREA (N12.2)
COD-PAYMENT-MAMNNER (£

A RISK-ID (AVE/15)
S 10Ut

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons

provide additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to In | Out | InOut

A suppressed COBOL data item becomes visible in the IDL inter-

face. Used also to select another REDEFINE path.

Suppress
Set Constant

Suppress unneeded COBOL data items.
Set COBOL data items to constant.

Software AG IDL Extractor for COBOL

351

Batch with Standard Linkage Calling Convention

Set Multiple Possible Out- Set COBOL data items where the server program decides the

put (MPO) Structures output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map to Binary Map a COBOL data item as IDL parameter of type binary (Bn,

BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Revert Binary Mapping Undo the Map to Binary operation and use the standard map-

ping.
Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for the

current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

& Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

f+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

352 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

5. Scalar parameter, mapped to In.

= Scalar parameter, mapped to Out.

=t Scalar parameter, mapped to InOut.

%, Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping
BATIPC
COBOL Interface

4 ITICALED
a B 021C-IN

% 03 CELLAR PIC X(01)
%% 03 COVER-DETAILS PIC ¥
%2 03 USED-AREA PIC 58(1
% 03 COD-PAYMENT-MAMNER
% 03 RISK-ID PIC X(08)

02 1C-0UT

Map to In | Out | InOut ->

&+ Group parameter, here mapped to InOut.

=+ REDEFINE parameter, here mapped to InOut.

Map to Out -»

Map to InOut -»

Set Constant...

IDL Interface

4 #8ICALCIO In Out
a 45IC-IN
CELLAR (AV1)
COVER-DETAILS (AVS)
USED-AREA (N12.2)
COD-PAYMENT-MAMNNER (£
A RISK-ID (AVE/L5)
E1c-ouT

See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.
Used also to select another REDEFINE path.

Suppress

See Suppress Unneeded COBOL Data Items.

Set Constant...

See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL

353

Batch with Standard Linkage Calling Convention

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

BATIPC A ==
COBOL Interface + | IDL Interface
s 5 01ICALCIO T——— 4 #%ICALCIO In Out
a Bo2IcIN 4 45IC-IN
% 03 CELLAR PIC X(01) Map to Qut -» 47 CELLAR (aV1)
% 03 COVER-DETAILS PIC J : 4P COVER-DETAILS (AVE)
03 USED-AREA PIC 591 4P USED-AREA (N12.2)
03 COD-PAYMENT-MANMER 4F COD-PAYMENT-MAMNER (£
&5 03 RISK-ID PIC X(08) Suppress 4 RISK-ID (AV8/15)
T 02 1C-0UT . 45 Ic-ouT
R . i « | ITi] | 3

354 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants

= Set Multiple Possible Output (MPO) Structures
= Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

~ To provide IDL directions

n Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions

in the IDL interface:
MPODIPML
COBOL Interface
'ﬁ" 1 1 Map toIn -=
%02 C Map toIn -> [l
. Bozc Map to Qut -» [Map to Out -= l
G
i=02C Map to InOut -> _ P
%02 | Map to InCut ->]
Suppress
Set Constant... [Suppress l
Remove fram COBOL Interface [Set Constant l
[

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

Software AG IDL Extractor for COBOL 355

Batch with Standard Linkage Calling Convention

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11ist under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With the Map to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ON Clause) visible as an IDL unbounded group (with maximum). The ODO object (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~> Tomap 0CCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use the Map to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item

TABLE):
QOCCURS
COBOL Interface IDL Interface
01 COUNTER-1 PIC 99 ‘ [Map to In -] 4 45 TABLEL (/V10) In Out
4 _ 7 FIELDL (AV2)
%02 Map te In -> I Map to Out ->] QPFIELD2 (ML2)
Gt
S0
= m Map to InCut -=

Map to InCut -=

Suppress I Suppress]

Set Constant...
Set Constant...

Remaove frem COBOL Interface

356 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

) Notes:

1. The ODO subject can be mapped to the IDL interface.
2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

QOFERATION = dispatcher

5] (

U U
A '? '||: L B e]
D R | » functions or operations
I

C L

T Y)

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERANDZ
GIVING FUNCTION-RESULT
WHEN "-"

Software AG IDL Extractor for COBOL 357

Batch with Standard Linkage Calling Convention

SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT

WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT

WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

® Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or ' :

COBOL to IDL Mapping
ADD | cALCL + - #{HX|EE
COBOL Interface IDL Interface l i
CEI_ 02 OPERATION PIC X(1) | Map to In -> | ¥ OPERATION (AV1) In
CEI_ 02 OPERANDL PIC 58(9) | * OPERANDL 14 In
CEI_ 02 OPERAND2 PIC 58(9) | Map to Out -> * OPERAND2 14 In

&, 02 FUNCTION-RESULT PIC ¢ [J P FUNCTION-RESULT (4) Out

Map to InOut ->

[Suppress J

[Set Constant... J

2 Give the IDL interfaces meaningful names with the toolbar function «b:

358 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

|
COBOL to IDL Mapping

ADD | CALCL| + 24 K| B E
COBOL Interface IDI Interface
=02 operar] [0 COBOL to IDL Mapping _ =

==
=] 02 OPERANI
Re
%7 02 OPERAN [e
FFHE’ 02 FUNC'I'Iq Rename current IDL Interface Out

Old Mame: CALC1

New Name: | | EIEJLETS)

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT | + 24X EBE
COBOL Interface IDL Interface
Euz OPERATION | PIC X(1) T | A | <" OPERATION (AV1) In L
=l 02 OPERAND1 PIC 589(8) .| [@Q COBOL to IDL Mapping
% 02 OPERAND2 PIC 53(9) | MaptoOut-> | -

%} 02 FUNCTION-RESULT PIC & l] Value Input

Map to InOut -=

Enter alphanumeric data with a maximum length of

’ Suppress] Value:| §

“ Set Constant...]

)

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
= Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY".

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

Software AG IDL Extractor for COBOL 359

Batch with Standard Linkage Calling Convention

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "EXAMPLE' is

program "ADD' is
define data parameter

1
1

OPERANDL (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "SUBTRACT' is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "MULTIPLY'" is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#n |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

360

Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

~ To select redefine paths

m Use the Map to In, Out or InOut functions available in the context menu of the COBOL inter-
face and as mapping buttons to make the COBOL REDEFINE path available in the IDL interface.

B
MPODIPIML
COBOL Interface
% 02 CWGSTMO-REQUEST PIC X(2) Map to In ->
% 02 CWGSTMO-CONSTANTL PIC S(8) BINARY
4 502 CWGSTMO-STATEMENT-LINE Map to Out ->
% 04 CWGSTMO-STMT-LTYPE PIC S9(4) BINARY [
- i Map to InQut ->
B a5 04 CWGESTMO-ASTM-LINE PIC X(174) = |
For . 42| 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTM-L[rrl— :
| o B 04 OGS TMO-BD-LINE REDEFINES CWGSTMO-ASTM-—— Maptoln ->
B 04 CWGSTMO-TD-L] STMO-ASTM-L Map to Out ->
5; ; 04 CWGSTMO-TT-LINE REDEFINES CWGSTMO-ASTM-L| [Map to InOut ->
B , 04 CWGESTMO-UNUSED I-LINE REDEFINES CWGSTMO-4
% 02 CWGSTMO-CONSTANT2 PIC X(4) Suppress
% 02 CWGSTMO-LASTDATA PIC X(20) Set Constant...
4 T Remove fram COBOL Interface

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL 361

Batch with Standard Linkage Calling Convention

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPRIL
COBOL Interface D
% 02 CWGSTMO-REQUEST PIC ¥(2) ‘ [Map toIn -»]
. 02 CWGSTIM Map ton -> [Map to Out -> l
5 02 CWGSTM Map to Out -> ot o
B 02 CWGSTM Map to InOut -> L
Suppress [
=B : [Suppress l
Set Constant... |]
[Set Constant... l
Rermowve from COBOL Interface
] Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functions Map to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

362 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML |
COBOL Interface I
% 02 CWGSTMO-REQUEST PIC X(2) ’ Map to In >]
. B 02 CWGST Map teIn -> ’ Map to Cut -»]

02 CWGST Map to Out ->

Map to InOut ->
% 02 cWGsT Map to InOut -> :

| Suppress ’

Suppress]
| Set Constant... 1
L

’ Set Constant...]

Remowve from COBOL Interface

2 You are prompted with a window to enter the constant value:

r B
[coBOL to IDL Mappin_ ﬁ

Value Input
Enter numeric data in the range from -2147453648 to 2147483647,

Value:

]

@ | ok || canca |

| — |

Software AG IDL Extractor for COBOL 363

Batch with Standard Linkage Calling Convention

) Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functions Map to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Optional Output with Groups

= Complex MPO Selections

= MPO Terminology

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER PIC 9(10).

01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VvVO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".

364 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

02

02
02

02

02

02

02

88 PAYMENT-TYPE-DIRECTDEBIT

<{preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<subsequent data items>

PIC <clause>.

PIC X(256).

REDEFINES PAYMENT-DATA.

PIC X(128).
PIC X(128).

REDEFINES PAYMENT-DATA.
PIC 9(18).

PIC X(128).

PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.

PIC X(128).

PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).

PIC X(128).

PIC 9(8).

PIC <clause>.

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE

SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

VALUE "DB".

END-IF.

set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

Software AG IDL Extractor for COBOL 365

Batch with Standard Linkage Calling Convention

WHEN PAYMENT-TYPE-TRANSFER

MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT -DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

" contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

* always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

366 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

-

PAYMENT
* MPO Selector
TYPE | _MPO Group
VO cC TR = MPO Selector Value
v c T
0 E E {
] E A :
AN
I -
E T F ! MPO St MPO Case
R C E | - ructure
A R
R :
B |
1
| |
™ ’, ’,
subseq. | N
data Gap if CREDITCARD or TRANSFER returned

item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

limits the number of possible output structures returned

defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTUREZ. These are the MPO structures.

contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

Software AG IDL Extractor for COBOL 367

Batch with Standard Linkage Calling Convention

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA

CONTROL-AREA

CONTROL-AREA

FIXED-QUTPUT-STRUCTURE1

FIXED-QUTPUT-STRUCTURE1

FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.

01

01
01

01

01

01

01

01

INPUT-AREA.
02 FIX-INPUT-ITEM1
02 <some fields>

QUTPUT-OFFSET
QUTPUT -AREA

CONTROL-AREA.
02 OPTIONAL-OUTPUT
88 OPTIONAL-OUTPUT-1
88 OPTIONAL-OUTPUT-2
88 OPTIONAL-QUTPUT-NONE

OPTIONAL-OUTPUT-STRUCTUREL.

02 OPTIONAL-OUTPUT-ITEMI1
02 OPTIONAL-OUTPUT-ITEMI1Z
02 OPTIONAL-OUTPUT-ITEMI13

OPTIONAL-OUTPUT-STRUCTUREZ.

02 OPTIONAL-OUTPUT-ITEMZ21
02 OPTIONAL-OUTPUT-ITEMZ22
02 OPTIONAL-OUTPUT-ITEMZ23

FIX-QUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI11
02 FIX-OUTPUT-ITEMI12
02 FIX-OUTPUT-ITEM13

FIX-OQUTPUT-STRUCTUREZ.

OPTIONAL-OUTPUT-STRUCTURE L

OPTIONAL-OUTPUT-STRUCTURE 2

FIXED-OUTPUT-STRUCTUREZ

PIC X(4).

FIXED-OUTPUT-STRUCTUREZ2

FIX%D—OUTPTJT—STRUCTUREQ

PIC <clause>.

PIC

S9(9) BINARY.

PIC X(32000).

PIC X(1).

VALUE "1".
VALUE "2".
VALUE "N".

PIC
PIC
PIC

PIC
PIC
PIC

X(4).

PIC
PIC
PIC

X(4).

X(8).

X(10).
X(100).
X(20).

X(50).
X(50).

X(20).

368

Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

o3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QOUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional outputis one of OPTIONAL-OUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL 369

Batch with Standard Linkage Calling Convention

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

370 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PAYMENT |
COBOL Interface
. B 01 INPUT | [Map to In -> |
% 02 PAYMENT Map toIn -» | MaptoOut-> |]
@ RS ozPAYMENT Map to InOt
= Wap -
B > d2l 02 PAYMENT Map to InOut -> D

<Rir¥
<Rir¥

¥

¥

¥

2l 02 PAYMENT
2l 02 PAYMENT Suppress
2 02 PAYMENT Set Constant...

Remove from COBOL Interface

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

'

4

= 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

LI

Map to InQut ->

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
S GLOPAYMENTDATA PICX2SE) °pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->
B > 2 02 PAYMENT-DATA-TRANSFER REDEFINES P,
>

Suppress
Set Constant...

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL

371

Batch with Standard Linkage Calling Convention

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

372 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL 373

Batch with Standard Linkage Calling Convention

r ™
[0 COROL to IDL Mapping . s e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure PPC Selector Values Add Value
PAYMENT-DATA 10 & 20 X af
PAYMENT-DATA-VOUCHER vo ¥ =

| PAVYMENT-DATA-CREDITCARD ¢ X = :
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT o
| | | |
N |

@ | ok || canc

Use the functions ¥ to delete and = to add MPO selector values:
"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EPA‘*‘MENT-WPE-VDUCHEF‘. Pw
Enable individual input 0

!l Selector Yalue:

| @ | ok || Cancel

374 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).

Software AG IDL Extractor for COBOL 375

Batch with Standard Linkage Calling Convention

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
4 %02 CONTRACT-BUFFER T
4 %03 CONTRACT-DATA
4 504 CONTRACT Map te Out ->
05 C-ID PIC X(8) T E—
Wiap -
%2 05 C-PACKETS PIC 59(4) cldlebics
05 C-ACTION PIC X(4)
05 Z-1D PIC X(20) Suppress

2 05 Z-NUMBER PIC 9(2)
4
Map toIn-=

4 = 05P-ITEM

5 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X2 Map to InOut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4 2502 CONTRACT-BUFFER Map toIn > 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 504 CONTRACT Map to Out -> < CONTRACT (B38)
05D PIC Xi8)
% 05 C-PACKETS PIC 59(4) Map to InOut -
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
4 05 Z-NUMBER PIC 9(2) =
4 @5} 04 PACKETI QOCCURS 99 Set Constant...
4 505 p-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%4 06 P-NUMBER PIC 9(2)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

376 Software AG IDL Extractor for COBOL

Batch with Standard Linkage Calling Convention

COBOL to IDL Mapping

PF2ZXDMSG

COBOL Interface

4 502 CONTRACT-BUFFER
4 7503 CONTRACT-DATA
4 704 CONTRACT
05 C-ID
% 05 C-PACKETS
% 05 C-ACTION
05 7-ID

4 505 P-ITEM
%5 06 p-ID
5 06 P-TEXT
L=
% 06 P-NUMBER

2 05 Z-NUMBER PIC 8(2)
4 |§

PIC X(8)
PIC 58(4)
PIC X(4)
PIC X(20)

| Map to In -=

| Map to Qut ->

| Map to InOut -=

| Suppress

I Lo ey

DL

PIC X(8)
PIC X(3
PIC

Map to In -=
Map to Out -=
Map to InOut -=

Suppress
Set Constant...

Revert Binary Mapping -=

Remowve from COBOL Interface

Software AG IDL Extractor for COBOL

377

378

14 IMS BMP with Standard Linkage Calling Convention

L 1211 (0o 1o o) PSP PPPPTPRRR 380
= Extracting from an IMS BMP Standard Call INterfacec..oveeiiiiiiiiiiiiie e 380
= Mapping Editor USer INtErfaceooiiiiiiiii e 382
= Mapping Editor IDL Interface Mapping FUNCHONScoouiiiiiiiiiie e 389

379

IMS BMP with Standard Linkage Calling Convention

Farameter 1
A10] 14 | A100000 |12 [Ps
Farameter 2
-~ | PCB POINTER
: | —— : INOUT CoBOL
. 1z| a15] 14| 14| A100 | 14 < > Server
Parameter n .
14 | At00000 | P2
Introduction

If your IMS BMP program contains PCB pointers, you have assigned the IMS PSB list in the previous
step Step 4: Define the Extraction Settings and Start Extraction. If a required IMS PSB list is not
assigned, the PCB pointers are not detected; go back to Step 4: Define the Extraction Settings and
Start Extraction and assign the IMS PSB list first.

If the IMS PSB list is correctly assigned, the COBOL data items (including the PCB pointers) can
be evaluated by the extractor because this type of COBOL server contains a PROCEDURE DIVISION
header (see PROCEDURE DIVISION Mapping) with all parameters. In most cases the offered COBOL
data items will be correct, but you should always check them manually.

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from an IMS BMP Standard Call Interface

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type IMS BMP with standard linkage calling convention, the Extractor
Settings dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct.

380 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL Source
File Mame: CALC

Operating System: z/05

Interface Type: IMS BMP with standard linkage calling convention -
Input Message same as Qutput Message
IM5 MPP message interface (IMS Connect) IMS BMP with standard linkage calling convention
*10 : IMS PSE List: C:\Demo\IMSBMP\MYPSBLST

Transaction Name: &
- B CICS with Channel Container calling convention

Create IDL parameter for Transaction N - specification at runti i
reate IDL parameter for Transaction Name - specification at runtime EntireXChannel

You can set optionally the IMS PSB List. If your COBOL server contains PCB pointers, choose
Browse. Otherwise, the PCB pointers are not detected and cannot be provided by the RPC Server
for IMS to your COBOL server at runtime, and unexpected behavior may occur. For the contents
of the IMS PSB list, see IMS PCB Pointer IDL Rules.

~ To select the COBOL interface data items of your COBOL server

1 Add the COBOL data items to the COBOL Interface using the context menu or toolbar
available in the COBOL Source View and COBOL Interface. See Notes.

2 Continue with COBOL to IDL Mapping.

) Notes:

1. If there is a PROCEDURE DIVISION header available, the parameters listed define exactly the
COBOL interface. These COBOL data items are within the LINKAGE SECTION and are already
selected to the COBOL interface in initial state when you enter the COBOL Mapping Editor.
The PROCEDURE DIVISION header might not be available if you are extracting from a copybook
or part of the COBOL source.

2. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

3. If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

4. Make sure the PCB pointers are also selected at the correct position.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 381

IMS BMP with Standard Linkage Calling Convention

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with standard call interface types, the user interface of the COBOL
Mapping Editor looks like this:

1. I ~ DOBOL Program CALC - Interface Type IMS BMP with standard linkage calling convention I

CaLc
% LINKAGE SECTION.

3 LTERM-HAME

PIC X{8).
3 FILLER PIC X(2).
3 I0-S5TATUS FIC X([2) -
3 FILLER. =
COBOL 1o DL Magping
CALC d 4 X | B E
COBROI Interface I0¥L Imteriace
5 X 110-PCH | Map to fn - 4 4F10-PCE In Out
T2 3 LTERR-MAKE PIC () & LTERM-MAME [AVE)
@ 3FLLER PIC X2 | Map to Out -= & 10-STATUS (8V2)
T 310-5TATUS PIC XiT) = 45 FILLER, 2
T IFILLER & MOD-MAME [AVE)
T 3 MOD-MAME PIC X(5) & USERID [AAE)
& 3 USERID PIC %08 | —
i) Emish Cancel

1. COBOL Program Selection. Currently selected program with interface type

2. COBOL Source View. Contains all related sources for the currently selected COBOL program

382

Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

+ COBOL Program | CALC v Interface Type IMS5 BMP with standard linkage calling convention

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 383

IMS BMP with Standard Linkage Calling Convention

COBOL Source View
caLC Bk A S
T4 LINFEAGE SECTION. -
77 3 LTERM-MNAME PIC X(8).
78 3 FILLER PIC Xi2).
T 3 IO-5TATUS PIC X(2).
g8 3 FILLER. s

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface.

ih Remove selected COBOL data item from COBOL Interface.
Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

¢ Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Conuverter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

384 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

COBOL to IDL Mapping

CALC i A R
COBOL Interface IDL Interface
4 T5110-PCB Map to In -> 4 4510-PCB InOut
% 3 LTERM-NAME PIC X(8) LTERM-MNAME (AVS)
IFILLER PIC X(2) Map to Qut -> I0-5TATUS (AV2)
L 310-STATUS PIC X(2) S FILLER 2
. B 3FALLER MOD-NAME (AVE)
% 3 MOD-NAME PIC X(8) USERID (AVS)
% 3 USERID PIC X(8) —

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons
provide additional information.

Context Menu
The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to In | Out | InOut A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Suppress Suppress unneeded COBOL data items.
Set Constant Set COBOL data items to constant.

Software AG IDL Extractor for COBOL 385

IMS BMP with Standard Linkage Calling Convention

Set Multiple Possible Out- Set COBOL data items where the server program decides the

put (MPO) Structures output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map to Binary Map a COBOL data item as IDL parameter of type binary (Bn,

BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Revert Binary Mapping Undo the Map to Binary operation and use the standard map-

ping.
Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-
face moves the mapped IDL parameter from all IDL interfaces for the

current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

Toolbar
The toolbar offers the following actions:

4= Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

& Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

f+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

386 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

5. Scalar parameter, mapped to In.

& Scalar parameter, mapped to InOut.

£ Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to InOut.

(& REDEFINE parameter, here mapped to InOut.

%, Parameter set to Constant.

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

CALC 2 4 T B
COBOL Interface IDL Interface
s+ B110-PCB [Map to In ->] 4 4510-PCB InOut
T 3 LTERM-NAME PIC X(8) LTERM-MAME (AV8)
B 3FILLER PIC X(2 [Map to Qut ->] I0-STATUS (AV2)
& 310-STATUS PIC X(2) I S FILLER 2
L IFALLER e MOD-NAME (AV8)
& 3 MOD-NAME PIC X(8) USERID (AV8)
& 3 USERID PIC X(8) [T |
Set Constant...

Map to In | Out | InOut ->
See Map to In, Out, InOut. A suppressed COBOL data item becomes visible in the IDL interface.

Used also to select another REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

Software AG IDL Extractor for COBOL 387

IMS BMP with Standard Linkage Calling Convention

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.

® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

COBOL to IDL Mapping

CALC o 4, T B
COBOL Interface IDL Interface
s B110-PCB Map toIn -> 4 #%10-PCB In Out
&5 3 LTERM-NAME PIC X(8) 4F LTERM-NAME (AVE)
Bl 2 FILLER PIC X{2 Map to Out -> <P 10-STATUS (AVZ2)
B 310-5TATUS PIC X(2) . ¢S FILLER 2
& 3FILLER 47 MOD-NAME (AVE)
1 3 MOD-NAME PIC (8] #F USERID (AvE)
5 3 USERID PIC X(8) T—

388 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to In, Out, InOut

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants

= Set Multiple Possible Output (MPO) Structures
= Map to Binary and Revert Binary Mapping

Map to In, Out, InOut

With the Map to In, Out, InOut functions you make a COBOL data item visible as an IDL para-
meter in the IDL interface. With correct IDL directions you design the IDL interface by defining
input and output parameters. COBOL programs have no parameter directions, so you need to set
IDL directions manually.

~ To provide IDL directions

n Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to In, Out and InOut functions available in the context menu of the COBOL interface
and as mapping buttons to make the COBOL data items visible and provide IDL directions

in the IDL interface:
MPODIPML
COBOL Interface
'ﬁ" 1 1 Map toIn -=
%02 C Map toIn -> [l
. Bozc Map to Qut -» [Map to Out -= l
G
i=02C Map to InOut -> _ P
%02 | Map to InCut ->]
Suppress
Set Constant... [Suppress l
Remove fram COBOL Interface [Set Constant l
[

J Notes:

1. If a top-level COBOL group is mapped, the IDL direction is inherited by all subordinate COBOL
data items and thus to the related IDL parameters in the IDL interface.

Software AG IDL Extractor for COBOL 389

IMS BMP with Standard Linkage Calling Convention

2. Subordinate COBOL data items can only be mapped to the same IDL direction as their top-level
COBOL group data item.

3. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

4. IDL directions are described in the direction-attribute in attribute-11ist under Software AG
IDL Grammar in the IDL Editor documentation.

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is reduced with correct IDL directions.

Map OCCURS DEPENDING ON

With the Map to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ON Clause) visible as an IDL unbounded group (with maximum). The ODO object (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

~> Tomap 0CCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use the Map to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item

TABLE):
QOCCURS
COBOL Interface IDL Interface
01 COUNTER-1 PIC 99 ‘ [Map to In -] 4 45 TABLEL (/V10) In Out
4 _ 7 FIELDL (AV2)
%02 Map te In -> I Map to Out ->] QPFIELD2 (ML2)
Gt
S0
= m Map to InCut -=

Map to InCut -=

Suppress I Suppress]

Set Constant...
Set Constant...

Remaove frem COBOL Interface

390 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

) Notes:

1. The ODO subject can be mapped to the IDL interface.
2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

QOFERATION = dispatcher

5] (

U U
A '? '||: L B e]
D R | » functions or operations
I

C L

T Y)

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDIL PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERANDZ
GIVING FUNCTION-RESULT
WHEN "-"

Software AG IDL Extractor for COBOL 391

IMS BMP with Standard Linkage Calling Convention

SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT

WHEN "=*"
MULTIPLY OPERANDI BY OPERANDZ
GIVING FUNCTION-RESULT

WHEN

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-
amples, depending on your target endpoint:

* Integration Server
Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

® Web service
Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET
Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions % or ' :

COBOL to IDL Mapping
ADD | cALCL + - #{HX|EE
COBOL Interface IDL Interface l i
CEI_ 02 OPERATION PIC X(1) | Map to In -> | ¥ OPERATION (AV1) In
CEI_ 02 OPERANDL PIC 58(9) | * OPERANDL 14 In
CEI_ 02 OPERAND2 PIC 58(9) | Map to Out -> * OPERAND2 14 In

&, 02 FUNCTION-RESULT PIC ¢ [J P FUNCTION-RESULT (4) Out

Map to InOut ->

[Suppress J

[Set Constant... J

2 Give the IDL interfaces meaningful names with the toolbar function «b:

392 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

|
COBOL to IDL Mapping

ADD | CALCL| + 24 K| B E
COBOL Interface IDI Interface
=02 operar] [0 COBOL to IDL Mapping _ =

==
=] 02 OPERANI
Re
%7 02 OPERAN [e
FFHE’ 02 FUNC'I'Iq Rename current IDL Interface Out

Old Mame: CALC1

New Name: | | EIEJLETS)

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT | + 24X EBE
COBOL Interface IDL Interface
Euz OPERATION | PIC X(1) T | A | <" OPERATION (AV1) In L
=l 02 OPERAND1 PIC 589(8) .| [@Q COBOL to IDL Mapping
% 02 OPERAND2 PIC 53(9) | MaptoOut-> | -

%} 02 FUNCTION-RESULT PIC & l] Value Input

Map to InOut -=

Enter alphanumeric data with a maximum length of

’ Suppress] Value:| §

“ Set Constant...]

)

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
= Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', 'MULTIPLY".

® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

Software AG IDL Extractor for COBOL 393

IMS BMP with Standard Linkage Calling Convention

® Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "EXAMPLE' is

program "ADD' is
define data parameter

1
1

OPERANDL (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "SUBTRACT' is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "MULTIPLY'" is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#n |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

394

Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

~ To select redefine paths

m Use the Map to In, Out or InOut functions available in the context menu of the COBOL inter-
face and as mapping buttons to make the COBOL REDEFINE path available in the IDL interface.

B
MPODIPIML
COBOL Interface
% 02 CWGSTMO-REQUEST PIC X(2) Map to In ->
% 02 CWGSTMO-CONSTANTL PIC S(8) BINARY
4 502 CWGSTMO-STATEMENT-LINE Map to Out ->
% 04 CWGSTMO-STMT-LTYPE PIC S9(4) BINARY [
- i Map to InQut ->
B a5 04 CWGESTMO-ASTM-LINE PIC X(174) = |
For . 42| 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTM-L[rrl— :
| o B 04 OGS TMO-BD-LINE REDEFINES CWGSTMO-ASTM-—— Maptoln ->
B 04 CWGSTMO-TD-L] STMO-ASTM-L Map to Out ->
5; ; 04 CWGSTMO-TT-LINE REDEFINES CWGSTMO-ASTM-L| [Map to InOut ->
B , 04 CWGESTMO-UNUSED I-LINE REDEFINES CWGSTMO-4
% 02 CWGSTMO-CONSTANT2 PIC X(4) Suppress
% 02 CWGSTMO-LASTDATA PIC X(20) Set Constant...
4 T Remove fram COBOL Interface

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

Software AG IDL Extractor for COBOL 395

IMS BMP with Standard Linkage Calling Convention

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPRIL
COBOL Interface D
% 02 CWGSTMO-REQUEST PIC ¥(2) ‘ [Map toIn -»]
. 02 CWGSTIM Map ton -> [Map to Out -> l
5 02 CWGSTM Map to Out -> ot o
B 02 CWGSTM Map to InOut -> L
| Suppress | [= l
u ress
Set Constant... | PR]
[Set Constant... l
Rermowve from COBOL Interface
] Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

4. With the inverse functions Map to In, Out or InOut (see above) available in the context menu
of the COBOL interface and as mapping buttons, a COBOL data item is made visible in the IDL
interface again.

396 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML |
COBOL Interface I
% 02 CWGSTMO-REQUEST PIC X(2) ’ Map to In >]
. B 02 CWGST Map teIn -> ’ Map to Cut -»]

02 CWGST Map to Out ->

Map to InOut ->
% 02 cWGsT Map to InOut -> :

| Suppress ’

Suppress]
| Set Constant... 1
L

’ Set Constant...]

Remowve from COBOL Interface

2 You are prompted with a window to enter the constant value:

r B
[coBOL to IDL Mappin_ ﬁ

Value Input
Enter numeric data in the range from -2147453648 to 2147483647,

Value:

]

@ | ok || canca |

| — |

Software AG IDL Extractor for COBOL 397

IMS BMP with Standard Linkage Calling Convention

) Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the functions Map to In, Out, InOut (see above) available in the context menu of the
COBOL interface and as mapping buttons, a COBOL data item can be made visible in the IDL
interface again.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Optional Output with Groups

= Complex MPO Selections

= MPO Terminology

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER PIC 9(10).

01 OUTPUT-DATA.

02 <some fields> PIC <clause>.
02 PAYMENT-TYPE PIC X(2).
88 PAYMENT-TYPE-VOUCHER VALUE "VvVO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".

398 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

02

02
02

02

02

02

02

88 PAYMENT-TYPE-DIRECTDEBIT

<{preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<subsequent data items>

PIC <clause>.

PIC X(256).

REDEFINES PAYMENT-DATA.

PIC X(128).
PIC X(128).

REDEFINES PAYMENT-DATA.
PIC 9(18).

PIC X(128).

PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.

PIC X(128).

PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).

PIC X(128).

PIC 9(8).

PIC <clause>.

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE

ELSE

SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE

VALUE "DB".

END-IF.

set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE

WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES

WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY

Software AG IDL Extractor for COBOL 399

IMS BMP with Standard Linkage Calling Convention

WHEN PAYMENT-TYPE-TRANSFER

MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT -DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT-DATA-TRANSFER. These are the MPO structures.

" contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT-TYPE. This item is the MPO selector.

* always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

400 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

-

PAYMENT
* MPO Selector
TYPE | _MPO Group
VO cC TR = MPO Selector Value
v c T
0 E E {
] E A :
AN
I -
E T F ! MPO St MPO Case
R C E | - ructure
A R
R :
B |
1
| |
™ ’, ’,
subseq. | N
data Gap if CREDITCARD or TRANSFER returned

item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

limits the number of possible output structures returned

defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTUREZ. These are the MPO structures.

contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

Software AG IDL Extractor for COBOL 401

IMS BMP with Standard Linkage Calling Convention

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA

CONTROL-AREA

CONTROL-AREA

FIXED-QUTPUT-STRUCTURE1

FIXED-QUTPUT-STRUCTURE1

FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.

01

01
01

01

01

01

01

01

INPUT-AREA.
02 FIX-INPUT-ITEM1
02 <some fields>

QUTPUT-OFFSET
QUTPUT -AREA

CONTROL-AREA.
02 OPTIONAL-OUTPUT
88 OPTIONAL-OUTPUT-1
88 OPTIONAL-OUTPUT-2
88 OPTIONAL-QUTPUT-NONE

OPTIONAL-OUTPUT-STRUCTUREL.

02 OPTIONAL-OUTPUT-ITEMI1
02 OPTIONAL-OUTPUT-ITEMI1Z
02 OPTIONAL-OUTPUT-ITEMI13

OPTIONAL-OUTPUT-STRUCTUREZ.

02 OPTIONAL-OUTPUT-ITEMZ21
02 OPTIONAL-OUTPUT-ITEMZ22
02 OPTIONAL-OUTPUT-ITEMZ23

FIX-QUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI11
02 FIX-OUTPUT-ITEMI12
02 FIX-OUTPUT-ITEM13

FIX-OQUTPUT-STRUCTUREZ.

OPTIONAL-OUTPUT-STRUCTURE L

OPTIONAL-OUTPUT-STRUCTURE 2

FIXED-OUTPUT-STRUCTUREZ

PIC X(4).

FIXED-OUTPUT-STRUCTUREZ2

FIX%D—OUTPTJT—STRUCTUREQ

PIC <clause>.

PIC

S9(9) BINARY.

PIC X(32000).

PIC X(1).

VALUE "1".
VALUE "2".
VALUE "N".

PIC
PIC
PIC

PIC
PIC
PIC

X(4).

PIC
PIC
PIC

X(4).

X(8).

X(10).
X(100).
X(20).

X(50).
X(50).

X(20).

402

Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

o3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QOUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional outputis one of OPTIONAL-OUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL-AREA.

Software AG IDL Extractor for COBOL 403

IMS BMP with Standard Linkage Calling Convention

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

404 Software AG IDL Extractor for COBOL

IMS

BMP with Standard Linkage Calling Convention

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PM‘MENTl

COBOL Interface

A AE A

. B 01 INPUT

4 “Lo1ouTPuT

Map to In -= l

Map toIn ->

Map to InQut ->

5 02 PAYMENT
#2502 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT
s g2l 02 PAYMENT

Suppress
Set Constant...

Remove from COBOL Interface

| Map to Qut -> | l

Map to InOut -=

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

R
e

. 2] 02 PAYMENT-DATA-TRANSFER REDEFINES P
. 2] 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

4 LI

Map to InQut ->

Suppress

Set Constant...

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
£ C-O2PAYMENTDATA PICXGS) = pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

Software AG IDL Extractor for COBOL

405

IMS BMP with Standard Linkage Calling Convention

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

406 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

Software AG IDL Extractor for COBOL 407

IMS BMP with Standard Linkage Calling Convention

r ™
[0 COROL to IDL Mapping . s s e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure PPC Selector Values Add Value
PAYMENT-DATA 10 & 20 X af
PAYMENT-DATA-VOUCHER vo ¥ =

| PAVYMENT-DATA-CREDITCARD ¢ X = :
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT o
| | | |
N |

@ | ok || canc

Use the functions ¥ to delete and = to add MPO selector values:
"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EPA"{MENT-T‘HPE-VDUCHEF‘. Pw
Enable individual input 0

Selector Value:

: @ 0K || cancel

408 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).

Software AG IDL Extractor for COBOL 409

IMS BMP with Standard Linkage Calling Convention

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
4 %02 CONTRACT-BUFFER T
4 %03 CONTRACT-DATA
4 504 CONTRACT Map te Out ->
05 C-ID PIC X(8) T E—
Wiap -
%2 05 C-PACKETS PIC 59(4) cldlebics
05 C-ACTION PIC X(4)
05 Z-1D PIC X(20) Suppress

2 05 Z-NUMBER PIC 9(2)
4
Map toIn-=

4 = 05P-ITEM

5 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X2 Map to InOut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means
the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as
well.

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4 2502 CONTRACT-BUFFER Map toIn > 4 4% CONTRACT-BUFFER In Out
4 503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 504 CONTRACT Map to Out -> < CONTRACT (B38)
05D PIC Xi8)
% 05 C-PACKETS PIC 59(4) Map to InOut -
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
4 05 Z-NUMBER PIC 9(2) =
4 @5} 04 PACKETI QOCCURS 99 Set Constant...
4 505 p-ITEM
% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X(30)
%4 06 P-NUMBER PIC 9(2)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

410 Software AG IDL Extractor for COBOL

IMS BMP with Standard Linkage Calling Convention

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface DL
4 502 CONTRACT-BUFFER | Map to In > | []
4 7303 CONTRACT-DATA
4 %% 04 CONTRACT | Map to Out -» |
L=
2 05 C-ID PIC X(8)
Map te InOut ->
% 05 C-PACKETS PIC 59(4) | 2p o ntu |
% 05 C-ACTION PIC X(4)
052D PIC X(20) | Suppress |

2 05 Z-NUMBER PIC 9(2)
& I Lo ey I
Map to In -=

4 = 05 P-ITEM

% 06 P-ID PIC X(8) Map to Out ->
% 06 P-TEXT PIC X(3 Map te InQut ->
% 06 P-NUMBER PIC

Suppress

Set Constant...

Revert Binary Mapping -=

Remowve from COBOL Interface

Software AG IDL Extractor for COBOL 411

412

15 IMS MPP Message Interface (IMS Connect)

L 1211 (0o 1o o) PSP PPPPTPRRR 414
= Extracting from an IMS MPP Message Interface Programcoccuvveoiiiiiieiiiiiie e 415
= Mapping Editor USer INtErfaceooiiiiiiiii e 418
= Mapping Editor IDL Interface Mapping FUNCHONScoouiiiiiiiiiie e 426

413

IMS MPP Message Interface (IMS Connect)

IMS Message

LL|zz|TcoDE 14| a25 | A15 | 14 > COBOL
LLzz A10] 14 | At00000 | P5 | 14 < Server

Introduction

Depending on the programming style used in the IMS processing program (MPP) and the various
techniques for accessing the IMS input and output messages, finding the relevant COBOL data
structures can be a complex and time-consuming task that may require IMS programming
knowledge.

IMS Message Processing Programs (MPPs) work as follows:

® IMS message processing programs (MPP) are invoked using an IMS transaction code. Transaction
codes are linked to programs by the IMS system definition.

® An IMS message processing program (MPP) gets its parameters through an IMS message and
returns the result by sending an output message to IMS. The structure of both messages is
defined in the COBOL source program during the application design phase. Sender and receiver
of the message must use the same data structure to interpret the message content.

® The server program accesses input and output messages using the IMS system call CALL
"CBLTDLI" USING <function> IOPCB <message>. The parameters are as follows:

Parameter |Description

GU Flag indicating that an input message is to be read. In this case <message> describes the
input message.

ISRT Flag indicating that an output message is to be written. In this case <message> describes
the output message.

I0PCB The IO PCB pointer. An IMS-specific section defined in the linkage section of the program
to access the IMS input and output message queue.

<message>|The layout of the message. For GU it is the structure of the input message, for I SRT it is the
structure of the output message. The first two fields in every message (input as well as
output), LL and 7/, are technical fields, each two bytes long. LL contains the length of the
message. The third field in an input message contains the transaction code and has a variable
length (commonly 8 or 9 bytes). IMS can link one program to various different transaction
codes. For each transaction, the program can apply a separate logic, or even accept a separate
message layout.

] Notes:

414 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

1. Instead of the IOPCB pointer, CALL 'CBLTDLI" statements are also used with database PCB

pointers to access IMS databases.

2. 1I0PCB, GU and ISRT are defined in the COBOL source (often in a copybook) using COBOL
data items. Names can differ in your program. The value of the COBOL VALUE clauses with
'GU" and 'ISRT'is fixed. In the example below, the IMS system call would be CALL 'CBLTDLI'
USING FCT-GU I0-PCB <message> to read the input message:

WORKING-STORAGE SECTION.

* DLI Function Codes
77 FCT-GU
77 FCT-ISRT

LINKAGE SECTION.

1 I0-PCB.
3 LTERM-NAME
3 FILLER
3 I0-STATUS

PIC
PIC

PIC
PIC
PIC

X(4) VALUE 'GU '.
X(4) VALUE "ISRT'.

X(8).
X(2).
X(2).

If you have selected an IDL file and opened the COBOL Mapping Editor with an existing COBOL
to IDL mapping, continue with Mapping Editor User Interface.

Extracting from an IMS MPP Message Interface Program

If you are extracting IDL from a COBOL source or extending the IDL file by extracting an additional
COBOL source with interface type IMS MPP message interface (IMS Connect), the Extractor Settings

dialog appears (see also Step 4: Define the Extraction Settings and Start Extraction).

Make sure the interface type is correct and specify how you want the transaction name to be de-

termined.

COBOL Source
File Mame: CALC

Operating System: z/05

Interface Type: |IMS MPP message interface (IMS Connect)

Input Message same as Output Message

There are two ways of defining Transaction Name:

Software AG IDL Extractor for COBOL

415

IMS MPP Message Interface (IMS Connect)

* Fixed Value
Check Transaction Name and specify a fixed value for the transaction name in extractor settings.
Your IDL interface is free of this technical parameter, and RPC clients do not have to specity it
at runtime.

IM5 MPP message interface (IMS Connect)
Transaction field length in COBOL source: ¥ 10 =

@ Transaction MName: MllE A MPLE]

Create IDL parameter for Transaction Mame - specification at runtime

Specify the length of the transaction field, which is usually the third physical field starting from
offset 5 (bytes) declared in the input message layout within the server program. Example:

1 INPUT-MESSAGE.
2 INPUT-IMS-META.

3 INPUT-LL PIC S9(3) BINARY.
3 INPUT-ZZ PIC S9(3) BINARY.
3 INPUT-TRANSACTION PIC X(10).

2 INPUT-DATA.

3 OPERATION PIC X(1).

3 OPERANDI PIC S9(9) BINARY.
3 OPERANDZ PIC S9(9) BINARY.

In this example, the length to specify is "10".

* Dynamically at Runtime
Check Create IDL parameter for Transaction Name.... Your IDL Interface will contain an IDL
parameter for the transaction name. RPC clients are responsible for setting the correct transaction
name dynamically at runtime.

IMS MPP message interface (IMS Connect)
Transaction field length in COBOL source: ¥ 10 =

E +
Tranzaction Marme:

@ Create IDL parameter for Transaction Name - specification at runtime

~ To select the COBOL interface data items of your COBOL server

1 Define the IMS MPP (IMS Connect) input message. With toolbar icon Find text in Source +,
enter "CBLTDLI" to look for an IMS system call containing 'CBLTDLI ', function GU and the
[0PCB pointer, example:

416 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

J

CALL '"CBLTDLI'" USING GU IOPCB input_message

Add the relevant COBOL data items of input_message to Input Message by using the context
menu or toolbar available in the COBOL Source View and COBOL Interface. The relevant
COBOL data items are contained in fields after the technical fields LL (length of message), 77
and the COBOL data item containing the transaction code which is mostly the third physical
field starting from offset 5 (bytes) in the input_message. Do not select the fields LL, 77 and
the transaction code. See Notes.

Similar to step 1, define the IMS MPP (IMS Connect) output message. Enter "CBLTDLI" in

toolbar icon Find text in Source 4" to look for an IMS system call containing "CBLTDLI",
function ISRT and the I0PCB pointer, example:

CALL 'CBLTDLI" USING ISRT IOPCB <output-message>
Select the corresponding output_message in COBOL Interface. See Notes.

Select the relevant COBOL data items of output_message to Output Message by using the
context menu or toolbar. The relevant COBOL data items are the fields after the technical
fields LL (length of message) and 7Z. Also, do not select LL and Z7 here.

Continue with COBOL to IDL Mapping.

Notes:

. Itis very important to select the right COBOL data items describing the COBOL interface cor-
rectly. This means the COBOL data items used as parameters must match in number and in
sequence of formats (COBOL usage clause).

If your COBOL interface contains REDEF INEs, the first REDEF INE path is offered by default. Check
manually whether this is the one you want. If not, correct it. You can select any other REDEFINE
path.

The user interface of the COBOL Mapping Editor is described below.

Software AG IDL Extractor for COBOL 417

IMS MPP Message Interface (IMS Connect)

Mapping Editor User Interface

This section assumes you have set the extraction settings as described above. The following areas
of the COBOL Mapping Editor user interface are described here:

= COBOL Program Selection
= COBOL Source View
= COBOL to IDL Mapping

For COBOL server programs with IMS MPP message interface (IMS Connect), the user interface
of the COBOL Mapping Editor looks like this:

1. w COBOL Program CALC - Interface Type M5 MPP message interface (IM5 Connect)

2. CALC s ==

3 GPERAMDA PIC 58(5) BINARY.
4 1 CPERRMDZ PIC 59(%) BIMARY.
4 . -
L] [}
3. COBOL to IDL Mapping
MYTA e #4 X| BB
COBOL Interface B | IDL Imterface
Input Message a 4" OUTPUT-DATA Out
%5 01 TRANCODE VA " FUNCTION-RESULT (W)
fﬁi'hpﬁ{él?;" A = o 45 INPUT-DATA In
4 _ = Suppress o' OPERATION (aV1)
UICPERATION PICKD) ' : b
o DPERANDL (M)
e -
T 3 CIPFRAMII PIC” 5% Rl | setConstant.. o+ OPERAND2 ()

£l m]

Output Mescage

4 5 20UTPUT-DATA
T4 3 FUMCTION-RESULT PIC 33(9) E

| «Bacx Einith | cance

1. COBOL Program Selection. Currently selected program with interface type
2. COBOL Source View. Contains all related sources for the currently selected COBOL program

418 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

3. COBOL to IDL Mapping. Tree view of your selected COBOL data items and mapping buttons
with which you can map these items to your IDL interface

COBOL Program Selection

* COBOL Program | CALC - Interface Type IMS MPP message interface (IMS Connect)

The COBOL Program Selection displays the current selected COBOL program with its interface
type. If you have extracted more than one COBOL program within the associated IDL file, you
can switch to another COBOL program with its mapping by selecting the name in the combo box.

Software AG IDL Extractor for COBOL 419

IMS MPP Message Interface (IMS Connect)

COBOL Source View

= COBOL Program | CALC - Interface Type IMS MPP message interface (IM5 Connect)

cALC H % Q| &
42 # IDL Interface - IN parameters (IMS input message)

‘‘ |
44 2 INFUT-DATA.

45 5 OPERATICH PIC X(1).
46 3 OPERZND1 PIC 52(9) BINARY.
47 3 OPERLND2 PIC 52 (9) BINARY.

All COBOL data items contained in the LINKAGE and WORKING-STORAGE SECTION are offered in a
text view for selection. The text view contains all related sources (including copybooks) for the
currently selected COBOL program. It is used for selecting data items and retrieving information
from the original COBOL sources. The light green bar indicates that the data item is already con-
tained in the COBOL Interface; a dark green bar indicates the data item is selectable and can be
added to the COBOL Interface. This section can be collapsed. If you open the Editor with Modify
Interface it is collapsed by default. The toolbar provides the following actions:

Add selected COBOL data item to COBOL Interface as Input Message.
Add selected COBOL data item to COBOL Interface as Output Message.
i Remove selected COBOL data item from COBOL Interface.

Remove all COBOL data items from COBOL Interface.

< Reset COBOL Interface to initial state.

Show dialog to modify COBOL Source Characteristics. Not available for interface type COBOL
Converter.

4" Show dialog to find text in Source.

The same functionality is also available from the context menu.

420 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping

This section covers the following topics:

= COBOL Interface
= Mapping Buttons
= |DL Interface

COBOL Interface

The COBOL Interface shows a tree view of your selected COBOL data items describing the interface
of the COBOL server. A context menu is available for the COBOL data items, which provides

mapping and other functions. On some COBOL data items, decision icons indicate where particular
attention is needed, including mapping icons to visualize the COBOL data type and your current

mapping.

The COBOL data item names are derived from the COBOL source from which they were extracted.
If your COBOL interface contains parameters without a name (for example, the keyword FILLER
is used) those COBOL data items are shown as [FILLER]. See FILLER Pseudo-Parameter.

The appearance of the COBOL Interface depends on how the transaction name is specified in the
Extractor Settings:

® If Transaction Name is checked, a hidden parameter with this fixed value appears:

COBOL to IDL Mapping
MYTA : 4 7 E
COBOL Interface BN IDL Interface
s 4% OUTPUT-DATA Out
FUNCTION-RESULT (14)
s <5 INPUT-DATA In

Input Message
%, 01 TRANCODE [MYTA]
2 B 2INPUT-DATA

L | »

Suppress OPERATION (AV1)
5_ 3 OPFRAMNM PIC S8 BT ™ Set C OPERANDL ()
= et Constant... . . - .
O o ; = OPERAND2 (4)
Output Message
s 2 0UTPUT-DATA
%, 3 FUNCTION-RESULT PIC 59(9) E

= If Create IDL parameter for Transaction Name... is checked, the IDL parameter "TRANCODE" sets
the transaction name dynamically at runtime.

Software AG IDL Extractor for COBOL 421

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping

CALC

#h = =

COBOL Interface

Input Message

H |I| E IDL Interface
TRANCODE (A10) In
4 <SINPUT-DATA In

%7 01 TRANCODE
4 T 2INPUT-DATA
2 3 OPERATION
]
“ 3 OPERAND2

PIC X(1)

PIC 59(9) BINA

OPERATION (AV1)
OPERANDL (14)
OPERANDZ (14)

4 5 OUTPUT-DATA Out
FUNCTION-RESULT (14}

Suppress

Set Constant...

« | 1

"

Output Message

4 T 2 OUTPUT-DATA
%, 3 FUNCTION-RESULT

PIC 59(9) E

You can modify the COBOL interface using context menu or toolbar; decision and mapping icons

provide additional information.

Context Menu

The context menu on COBOL data items provides the following mapping and other functions,
depending on the data item type, the COBOL level and the current mapping.

Map to

Suppress
Set Constant
Set Array Mapping

A suppressed COBOL data item becomes visible in the IDL inter-
face. Used also to select another REDEFINE path.

Suppress unneeded COBOL data items.
Set COBOL data items to constant.

Map an array to a fixed sized or unbounded array.

Set Multiple Possible Out- Set COBOL data items where the server program decides the

put (MPO) Structures

Map to Binary

Revert Binary Mapping

output structure used on return. Specify the set of multiple pos-
sible output (MPO) structures and the criteria when a structure
is used.

Map a COBOL data item as IDL parameter of type binary (Bn,
BV) to exchange binary data (for example images). See Map to
Binary and Revert Binary Mapping under Mapping Editor IDL
Interface Mapping Functions.

Undo the Map to Binary operation and use the standard mapping.

Remove from COBOL Inter- Remove the data item from the COBOL interface. This also re-

face

moves the mapped IDL parameter from all IDL interfaces for the
current COBOL program. See COBOL Program Selection.

See also Mapping Editor IDL Interface Mapping Functions.

422

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Toolbar
The toolbar offers the following actions:

4 Create IDL Interface. Creates a new IDL interface based on the current COBOL interface:
all IDL parameters are of IDL direction InOut; no IDL parameters are set to constant; for
COBOL REDEFINE, the first REDEFINE path is mapped to IDL; FILLERs are suppressed ac-
cording to your selection, see Step 4: Define the Extraction Settings and Start Extraction.

Copy current IDL Interface. Creates a duplicate of the current IDL interface: all modifica-
tions such as IDL directions, suppress, selection of REDEFINE paths etc. are kept.

Remove current IDL Interface.
#, Rename current IDL Interface.

7 Expand the full tree.

Collapse the full tree.

See also Map to Multiple IDL Interfaces.

Decision Icons
The decision icons in the first column are set on COBOL data items where particular attention
is needed:

g+ This icon visualizes a COBOL REDEFINE. It is essential that you map the correct redefine
“ path for your mapping to In, Out or InOut using the context menu. If you map a REDEFINE
path, all other sibling REDEFINE paths are automatically set to "Suppress".

Mapping Icons
The following mapping icons on the COBOL data items indicate your current IDL mapping:

. Scalar parameter, mapped to In.

£ Scalar parameter, mapped to Out.

&+ Group parameter, here mapped to In.

(= REDEFINE parameter, here mapped to Out.

%, Parameter set to Constant.

Software AG IDL Extractor for COBOL 423

IMS MPP Message Interface (IMS Connect)

Mapping Buttons

The following buttons are available:

COBOL to IDL Mapping

MYTA 2 A T E
COBOL Interface IDL Interface
G e
Input Message Map to -» 4 OUTPUT-DATA Out
T - FUNCTION-RESULT (14}
& 0 -I— CODE [MYTA] o 2 4% INPUT-DATA In
4 © 2INPUT-DATA ' [Suppress] OPERATION (AV1)
T 3 OPERATION PIC X(1) OPERANDI (14)
% 3 OPFRANDI PIC 5991 AT T [Set Constant...] .

OPERAND2 (1)

4 2

Output Message
a T3 2 0UTPUT-DATA
= 3 FUNCTION-RESULT PIC S9(9) E

] Note: In this example, a fixed value for transaction name was specified in the Extractor
Settings.
Map to ->

A suppressed COBOL data item becomes visible in the IDL interface. Used also to select another
REDEFINE path.

Suppress
See Suppress Unneeded COBOL Data Items.

Set Constant...
See Set COBOL Data Items to Constants.

IDL Interface

If you have mapped the COBOL interface to multiple IDL interfaces, select the IDL interface by
choosing the tabs. In the IDL Interface tree view, a context menu is also available with the following
possibilities:

® Rename the IDL parameter.
® Remove from COBOL Interface. This also removes the mapped IDL parameter from all IDL in-
terfaces for the current COBOL program. See COBOL Program Selection above.

The appearance of the IDL Interface depends on how the transaction name is specified in the Ex-
tractor Settings. See Extracting from an IMS MPP Message Interface Program.

424 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

* Fixed Value
In the COBOL Interface pane the first parameter shows the value for your transaction name in
square brackets. There is no IDL parameter contained in the IDL Interface for it. Your IDL inter-
face is free of this technical parameter, and RPC clients do not have to specify it at runtime.

COBOL to IDL Mapping

MYTA 'y - rRE
COBOL Interface IDL Interface
Input Message a4 4% OUTPUT-DATA Out
— — 4" FUNCTION-RESULT (1)
ger T ARANLULE JRVIA i 4 4% INPUT-DATA In
4 & 2INPUT-DATA 2 | Suppress | <P OPERATION (AVL)
¥ 3 OPERATION PIC X(1) <P OPERANDL (4)
S A 5 s
. 1 2 OPFRANDT PIC 5910 :41 | Set Constant... | +” OPERANDZ (1)
Output Message
4 ' 2 OUTPUT-DATA
%, 3 FUNCTION-RESULT PIC 59(9) E
o 3

* Dynamically at Runtime
Your IDL Interface contains an IDL parameter for the transaction name ("TRANCODE"). RPC clients
set the name dynamically at runtime.

COBOL to IDL Mapping

CALC + [b 3 B
COBOL Interface IDL Interface
Input Message @ETMNCODE (A10) In
S o1 TRANCODE a4 @5 INPUT-DATA In
Ou*zINpUJT - P OPERATION (V1)
IJ(‘_ -DATA | Suppress | QPOPERANDI (14)
3 OPERATION PIC X(1) & OPERAND2 ()
4 3 OPERANDL PIC 53(9) BINA | Set Constant | G
= ; ; = =E 4 5 QUTPUT-DATA Out
2 3 OPERAND2 PIC 59(9) BINA & FUNCTION-RESULT (4)
p -
Output Message
4 2 OUTPUT-DATA
%, 3 FUNCTION-RESULT PIC 59(9) E
4 [

Software AG IDL Extractor for COBOL 425

IMS MPP Message Interface (IMS Connect)

Mapping Editor IDL Interface Mapping Functions

This section covers the following topics:

= Map to

= Map OCCURS DEPENDING ON

= Map to Multiple IDL Interfaces

= Select REDEFINE Paths

= Suppress Unneeded COBOL Data ltems

= Set COBOL Data Items to Constants

= Set Arrays (Fixed <-> Unbounded)

= Set Multiple Possible Output (MPO) Structures
= Map to Binary and Revert Binary Mapping

Map to

With the Map to functions you make a COBOL data item visible as an IDL parameter in the IDL
interface, that is, you design the IDL interface by defining input and output parameters.

~ To map COBOL data items to IDL interface

1 Go step-by-step through all top-level COBOL data items in the COBOL interface and use the
Map to function available in the context menu of the COBOL interface and as mapping button
to make a COBOL data item visible as an IDL parameter in the IDL interface:

COBOL to IDL Mapping
MPODJPML
COBOL Interface HI O IDL
Input Message ’ Map to -»]
02¢
=02 | Mepto-> | NARY N
e Suppress
=l 02 Suppress
& 02 > [Set Constant |
= Set Constant... onstant..
Remowve from COBOL Interface
Output Messag
. 15 02 CWGSTMO-STATEMENT-LINE
% 02 CWGSTMO-LASTDATA PIC X(20)

2 Do the same for the output message of the COBOL interface.

J Notes:

426 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

1. If a COBOL group is mapped, all subordinate COBOL data items are also made visible in the
IDL interface.

2. With the inverse function Suppress Unneeded COBOL Data Items (see below) available in the
context menu of the COBOL interface and as mapping button, a COBOL data item can be re-
moved from the IDL interface.

Map OCCURS DEPENDING ON

With the Map to In, Out, InOut functions you can make the COBOL ODO subject (here COBOL
data item TABLE) of a variable-sized COBOL table (see COBOL Tables with Variable Size -
DEPENDING ON Clause) visible as an IDL unbounded group (with maximum). The ODO object (here
COBOL data item COUNTER-1) is suppressed and therefore not part of the IDL interface. This is
because the number of elements of the IDL unbounded group is already implicitly available. See
the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ2 PIC 99.

~> Tomap OCCURS DEPENDING ON

1 Add the COBOL ODO subject (here data item TABLE) and ODO object (here data item
COUNTER-1) to the COBOL interface. It is important both data items are in the COBOL interface.

2 Use the Map to In, Out and InOut functions available in the context menu of the COBOL
interface and as mapping buttons and apply IDL directions for the ODO subject (data item

TABLE):
OCCURS
COBOL Interface IDL Interface
01 COUNTER-1 PIC 99 ‘ [Map to In -» | 4 ¢STABLEL (/V10) In Out
4 "% 01 TABIF1 OCCUIRS 1 T 10 NEDENINING (N €O INTE «P FIELDL (AV2)
02 Map to In -> [Map to Out ->] 4P FIELD2 (NU2)
G
S0
= m Map to InCut -»
Map to InCut -=
Suppress [Suppress]
Set Constant...
Set Constant...
Remaove frem COBOL Interface
1
| Notes:

1. The ODO subject can be mapped to the IDL interface.
2. The ODO object is always suppressed, but is required to be part of the COBOL interface.

Software AG IDL Extractor for COBOL 427

IMS MPP Message Interface (IMS Connect)

3. IDL directions are described in the direction-attribute in attribute-11st under Software AG
IDL Grammar in the IDL Editor documentation.

Map to Multiple IDL Interfaces
Assume the COBOL server program provides multiple functions or operations, in the following

example ADD, SUBRACT, MULTIPLY. Some dispatcher front-end code executes the correct function,
for example, depending on a function-code or operation-code parameter:

-

QOFERATION = dispatcher

5] (

U U
A '? '||: L B e]
D R | » functions or operations
I

C L

T Y)

operation 1
operation 1
operation 1

COBOL snippet: The execution of the different functions ADD, SUBTRACT, MULTIPLY is controlled
by the COBOL data item OPERATION. The contents of this decide on the function executed:

01 OPERATION PIC X(1).

01 OPERANDI PIC S9(9) BINARY.
01 OPERANDZ PIC S9(9) BINARY.
01 FUNCTION-RESULT PIC S9(9) BINARY.

MOVE O TO FUNCTION-RESULT.
EVALUATE OPERATION
WHEN "+"
ADD OPERAND1 OPERAND2
GIVING FUNCTION-RESULT
WHEN "-"
SUBTRACT OPERAND2 FROM OPERANDI1
GIVING FUNCTION-RESULT
WHEN "*"
MULTIPLY OPERANDL BY OPERANDZ
GIVING FUNCTION-RESULT
WHEN

428 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

END-EVALUATE.

If you have such a situation, a good approach is to expose each COBOL server program function
separately as an IDL program. This gives advantages in further processing. See the following ex-

amples, depending on your target endpoint:

* Integration Server

Instead of having a single adapter service for the EntireX Adapter generated with the Integration
Server Wrapper, you have separate adapter services, one for each COBOL function.

= Web service

Instead of having a Web service with a single operation generated with the Web Services Wrapper,
you get a web service with multiple operations, one operation for each COBOL function.

" DCOM, Java or .NET

Instead having a class with a single method generated with the respective wrapper (DCOM |
Java | .NET) you get a class with multiple methods, one method for each COBOL function.

~ To map a COBOL interface to multiple IDL interfaces

1 Select the tab with COBOL to IDL Mapping. For each function, define a separate IDL interface
with the toolbar functions + or

COBOL to IDL Mapping
ADD | CALCL

Map to -=

Suppress

Set Constant...

COBOL Interface =R
Input Message

% 02 OPERATION PIC X(1)

% 02 OPERANDL PIC 53(9) BINARY

% 02 OPERAND2 PIC 58(3) BINARY
Output Message

%, 02 FUNCTION-RESULT PIC 53(3) BINARY

IDL Interface

P OPERATION (AV1) In

¥ OPERANDL () In

P OPERANDZ () In

¥ FUNCTION-RESULT () Out

2 Give the IDL interfaces meaningful names with the toolbar function «b:

Software AG IDL Extractor for COBOL

429

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mappii
o IDL Mapping
ADD| caLct | + 4 K]
| S—
COBOL Interface BHOOX IDL Interface
Input Message Map to -> " OPERATION (AV1) In

%] 02 OPERATION —_oicwm Ll Sadiiam

,
o= :
] 02 OPERANDL [Q cOBOL to IDL Mapping — o (M) Out

Rename
Rename current IDL Interface

Old Name: CALC1
MNew Mame: | SUBTRACT

% 02 OPERAND2

Output Message
%, 02 FUNCTION-RESULT

@ [ok][cance |
@ %' D

3 Define the required constant values to the function-code or operation-code parameter, see Set
COBOL Data Items to Constants above:

COBOL to IDL Mapping
ADD | SUBTRACT| + 245X BB
COBOL Interface B OO IDL Interface
Input Message Map to -> J 4" OPERATION (AV1) In l |
=3 i
=] 02 OPERATION PIC X{1) [Q COBOL to IDL Mapping
=] PIC 59(9) BINARY
= @ [Suppress]
=] 02 OPERAND2 PIC 59(9) BINARY Set Value
| [EctGogclapie] | Enter alphanumeric data with a maximum length of 1 character.
Output Message Value:
% 02 FUMNCTION-RESULT PIC 58(3) BIMARY
4 I G
.
® Mext » | Finish Cancel

For the delivered Example 1: COBOL Server with Multiple Functions:

= First, for step 1 above: Extract and define 3 separate IDL programs ADD, SUBTRACT, MULTIPLY.
" Second, for step 2 above: Rename them to suitabable names, e.g. 'ADD', 'SUBTRACT', MULTIPLY".
® Third, for step 3 above: Define the constants '+, '-' and *' to the parameter OPERATION respectively.

" Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

430 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

library "EXAMPLE' is

program "ADD' is
define data parameter

1
1

OPERANDL (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program "SUBTRACT' is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) OQut
end-define

program 'MULTIPLY' 1is
define data parameter

1
1

OPERANDI (I4) In
OPERANDZ (I4) In

1 FUNCTION-RESULT (I4) Out
end-define

Notes:

1. The following functions are offered to create further mappings from the COBOL interface, res-
ulting in multiple IDL interfaces (IDL programs).

Icon |Function Description
#» |Create IDL Interface Creates a new IDL interface based on the current COBOL interface.
Al IDL parameters are of IDL direction InOut; no IDL parameters are
set to constant; for COBOL REDEFINE, the first REDEFINE path is
mapped to IDL; FILLERs are suppressed according to your selection,
see Step 4: Define the Extraction Settings and Start Extraction.
Copy current IDL Interface |Creates a duplicate of current IDL interface. All modifications such as
IDL directions, suppress, selection of REDEFINE paths etc. are kept.
#4 |Rename current IDL The default name for the IDL interface is based on the COBOL program
Interface name plus appended number. With this function you can give the IDL
interface a suitable name.
|Remove current IDL Deletes the current IDL interface.
Interface

2. With the steps 1 thru 3 described here you can emulate the behavior of function Map to Operation
of EntireX version 9.6 and earlier.

Software AG IDL Extractor for COBOL

431

IMS MPP Message Interface (IMS Connect)

Select REDEFINE Paths

For COBOL server programs containing COBOL REDEFINEs, the correct REDEFINE path needs to
be chosen for the IDL interface.

> To select redefine paths

» Use the Map to function available in the context menu of the COBOL interface and as mapping
button to make the COBOL REDEFINE path available in the IDL interface.

e e e copepeeerg
MPODIPML
COBOL Interface H OO IDL Interface
Input Message [Map to -» z:z
2 02 CWGSTMO-REQUEST PIC X(2) ' ' pCy
1 02 CWGSTMO-CONSTANTL PIC 58(8) BINARY Suppress)
4
Set Constant...
Output Message
Bl EE 04 CWGSTMO-ASTM-LINE PICX(174) -
B . #2| 04 CWGSTMO-BT-LINE REDEFINES CWGSTMO-ASTN™ | .
i - 2] (4 CWGSTMO-ED-LINE REDEFINES CWGS TMO-ASTI Bpte-
& » 42l 04 CWGSTMO-TD-LINE REDEFINES CWGSTMO-AST] e —
] I

&

Set Constant...

Customize MPO (Multiple Possible Output)

Remowve from COBOL Interface

= —_—

Begin with the COBOL REDEFINE defined at the highest level first. Work through all inner
COBOL REDEFINE data items, going from higher levels to lower levels.

J Notes:

1. Only one REDEFINE path of a COBOL REDEFINE can be mapped to the IDL interface. All COBOL
REDEFINE siblings are suppressed.

2. If a REDEFINE path is actively mapped to the IDL interface, all COBOL REDEFINE siblings are
suppressed.

3. You can suppress all REDEFINE paths of a COBOL REDEFINE. Simply suppress the active REDEFINE
path, see Suppress Unneeded COBOL Data Items above.

432 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Suppress Unneeded COBOL Data Items

COBOL data items without any relevant information can be made invisible in the IDL interface.
The IDL interface is simplified - it becomes shorter and tidier. This is useful, for example

® for FILLER data items
= if the consuming RPC client or IS service does not need an Out parameter

* if the COBOL data item is an In parameter and a low value can be provided

If you are using an RPC server such as the z/OS (CICS | Batch) or BS2000 RPC server, the amount
of data to be transferred to/from the RPC client is also reduced.

~ To suppress unneeded COBOL data items

» Use the Suppress function available in the context menu of the COBOL interface and as
mapping button to make the COBOL data item invisible in the IDL interface:

MPODIPML
COBOL Interface H M D1
Input Message Map to -»
% 02 CWGSTMO-REQUEST PIC X(2))
T 02 CWGSTMO-CONSTANTL PIC 59(8) BINARY [Suppress l
[Set Constant... l '
Output Message
4 & 02 CWGSTMO-STATEMENT-LINE -
75 04 CWGSTMO-STMT-ITVBE PIC Said) RINZ =
o fa 04 CWGSTMO-ASTM- Map to ->
Fi > 04 CWGSTMO-BT-LIN B 1
| « = | |[Suppre=s |
Set Constant...

Remove from COBOL Interface

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the COBOL data item to your COBOL server with
low value, managing the offset to the next COBOL data item.

3. If a COBOL group is suppressed, all subordinate COBOL data items are suppressed as well.

Software AG IDL Extractor for COBOL 433

IMS MPP Message Interface (IMS Connect)

4. With the inverse function Map to (see above) available in the context menu of the COBOL in-
terface and as a mapping button, a COBOL data item can be made visible in the IDL interface

again.
Set COBOL Data Items to Constants

COBOL data items that always require fixed constant values on input to the COBOL interface can
be made invisible in the IDL interface and initialized with the required constant values. This is
useful for keeping the IDL interface short and tidy. Consuming RPC clients or IS services are not
bothered with IDL parameters that always contain constants, such as RECORD-TYPES. This function
is often used in conjunction with Map to Multiple IDL Interfaces (see above).

> To set COBOL data items to constants

1 Use the Set Constant function available in the context menu of the COBOL interface and as
mapping button to define a constant value for a COBOL data item:

MPODJPML
COBOL Interface H [)]
Input Message Map to ->
ﬁf%' 02 CWGSTMO-REQUEST PIC X(2)
ﬁf%_ 02 CWGSTMO-COMNSTANTL PIC S9(8) BINARY [Suppress]
[Set Constant...]
Output Message
P C@ 02 CWGSTMO-STATEMEMNT-LINE -
.04 CWGSTMO-STMT-ITVRE BIr Sami RINE =
T oo 04 CWGSTMO-ASTM- Map to ->
B > s 04 CWGSTMO-BT-LIN
Bl o« | Tl d Suppress i
Set Constant...
Remuove from COBOL Interface

2 You are prompted with a window to enter the constant value:

434 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

F -
E COBOL tc IDL Mapping B B I&
Value Input
Enter numeric data in the range from -2147453648 to 2147483647,
Value: | TEEN]
@' oK] ’ Cancel

J Notes:

1. The COBOL data item is not part of the IDL interface. It is invisible for consuming RPC clients
or IS services.

2. The RPC server or EntireX Adapter provides the defined constant in the COBOL data item to
your COBOL server.

3. With the function Map to (see above) available in the context menu of the COBOL interface
and as a mapping button, a COBOL data item can be made visible in the IDL interface again.

Set Arrays (Fixed <-> Unbounded)

A COBOL server defines in its interface as the last parameter a COBOL Tables with Fixed Size
(fixed-size array). In contrast - as the syntax implies - a variable number of elements is transferred
in this fixed-size array (input only, output only or both directions are possible). Array elements
at the end of the array are unused. Their content is undefined. The current number of elements is
transferred directly or implicitly outside the array. There are multiple options to specify how the
receiver calculates the number of array elements.

With this mapping you map the fixed-size array of the COBOL interface with the usage described
above to an IDL unbounded array in the IDL interface. A consuming RPC client or IS service can
use it then as any other IDL unbounded array.

~ To set arrays from fixed to unbounded or vice versa

1 Select the COBOL table and use the function Set Array Mapping (fixed<->unbounded)
available in the context menu. The following window is displayed:

Software AG IDL Extractor for COBOL 435

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL
s ‘2502 CONTRACT-BUFFER Map to In ->
4 % 03 CONTRACT-DATA
4 504 CONTRACT Map to Out ->
o
= 05 C-ID PIC X(8)
Map to InOut -=
%% 05 C-PACKETS PIC 59(4) o
% 05 C-ACTION PIC x(4)
05 7-ID PIC X(20) Suppress
% 05 Z-NUMBER PIC 9(2) —
4 Set Cnnctant
4 705 P-ITEM Map toIn ->
% 06 P-ID PIC X(8) Map te Out ->
[
= 06 P-TEXT PIC X Map te InOut ->
% 06 P-NUMBER PIC
Suppress
Set Constant...
Map to Binary -=
Set Array Mapping (fixed<->unbounded)...
Remove from COBOL Interface

2 Select Unbounded Array and the technique for determining the number of elements.

436 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping (=

Set Array Mapping
Set the correct array mapping that matches the COBOL server program, so that the number of array
elernents can be determined, Otherwise runtime errars oceur,
(7 Fixed Array with 99 Entries (default)
@ Unbounded Arra}r.|

For the request, the COBOL program uses the selected method to determine the number of incoming
array elements, For the reply, the COBOL program uses the same method so that the number of
outgoing array elements can be determined,

() Mumber of array elements is calculated from IMS Message length (bytes),

@ Mumber of array elements is calculated from COBOL data item
COBOL Data Itern

TRANCODE
4 CONTRACT-BUFFER
4 CONTRACT-DATA
4 CONTRACT
C-iD
C-PACKETS
C-ACTION
Z-1D
Z-MUMBER

@ contains array length (bytes)
() contains length of valid data within message (bytes)

() contains number of array elements directly

@' 0] 4] [Cancel

The number of array elements is calculated using one of the following options:

= IMS Message Length (bytes)
The COBOL server program inspects IMS field LL of the input message for the request and sets
IMS field LL of the output message for the reply. To determine the number of array elements,
the IMS message length is subtracted first to calculate the array length. The result is then divided
by the length of one array element. All lengths are in bytes. The following COBOL snippet shows
the reply of an IMS message. It assumes OUTPUT - CONTRACT with fixed array PACKETI is the IMS

output message.

Software AG IDL Extractor for COBOL 437

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

01 OUTPUT-MESSAGE.
02 OUTPUT-IMS-META.
03 OUTPUT-LL PIC S9(3) BINARY.
03 OUTPUT-ZZ PIC S9(3) BINARY.
02 OUTPUT-CONTRACT.
04 CONTRACT.

05 C-1ID PIC X(8).
05 C-ACTION PIC X(4).
04 ZONE.

05 Z-1ID PIC X(20).
05 Z-NUMBER PIC 9(2).
04 PACKETI 0CCURS 99.

05 P-ITEM.

06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set IMS output message length depending on number of elements
COMPUTE OUTPUT-LL =
(LENGTH OF P-ID IN OUTPUT-MESSAGE +
LENGTH OF P-TEXT IN OUTPUT-MESSAGE +
LENGTH OF P-NUMBER IN OUTPUT-MESSAGE) * II.

ADD LENGTH OF CONTRACT IN OUTPUT-MESSAGE TO OUTPUT-LL.
ADD LENGTH OF ZONE IN OUTPUT-MESSAGE TO OUTPUT-LL.

CALL "CBLTDLI" USING ISRT, I0-PCB, OUTPUT-MESSAGE.

® COBOL data item contains array length (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. This COBOL data item contains
the array length. To determine the number of array elements, the contents of the COBOL data
item are divided by the length of one array element. All lengths are in bytes. The following
COBOL snippet shows how the COBOL interface CONTRACT-DATA is filled by the COBOL server
on reply. The length of the fixed-size array PACKETI is contained in COBOL data item C-BYTES.

438 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
77 11 PIC S9(4).

LINKAGE SECTION.

01 DFHCOMMAREA.
03 CONTRACT-DATA.

04 CONTRACT.

05 C-1ID PIC X(8).
05 C-BYTES PIC S9(4).
05 C-ACTION PIC X(4).
04 ZONE.
05 Z-NUMBER PIC 9(2).
05 Z-1ID PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO II.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBERC(II)

END-PERFORM.
* Set table length
COMPUTE C-BYTES = (LENGTH OF P-ITEM) * II.

® COBOL data item contains length of valid data within messages (bytes)
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. To determine the number of
array elements, the contents of the COBOL data item are subtracted first to calculate the array
length. The result is then divided by the length of one array element. The length of the transferred
application data within the message can be shorter than the respective message length. All
lengths are in bytes. The following COBOL snippet shows how the COBOL interface CONTRACT
is filled by the COBOL server on reply. COBOL data item C-APPDATA contains the length of the
valid data of the reply message. The number of array elements of the fixed-size array PACKETI
is implicitly contained in COBOL data item C-APPDATA.

Software AG IDL Extractor for COBOL 439

IMS MPP Message Interface (IMS Connect)

WORKING-STORAGE SECTION.
77 11
77 EPARM
77 EPARMZ

LINKAGE SECTION.
01 DFHCOMMAREA.
04 CONTRACT.
05 C-ID
05 C-APPDATA
05 C-ACTION
05 Z-1D
05 Z-NUMBER
04 PACKETI
05 P-ITEM.
06 P-ID
06 P-TEXT
06 P-NUMBER

* Fill variable output array
MOVE O TO ITI.
PERFORM RANDOMNUM TIMES

ADD 1 TO II

MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set length

COMPUTE C-APPDATA = (LENGTH OF P-ITEM) * II
+ LENGTH OF CONTRACT.

PIC S9(4).
PIC 9(2).
PIC 9(4).

PIC X(8).
PIC S9(4).
PIC X(4).
PIC X(20).
PIC 9(2).
0CCURS 99.

PIC X(8).
PIC X(30).
PIC 9(2).

® COBOL data item contains number of array elements directly
The COBOL server program inspects a numeric COBOL data item (ZONED, PACKED or BINARY
COBOL type) for the request and sets it accordingly for the reply. The content of the COBOL data
item is the number of array elements. The following COBOL snippet shows how the COBOL
interface CONTRACT - DATA is filled by the COBOL server on reply. The number of array elements
of the fixed-size array PACKETI is directly contained in COBOL data item C-NUM.

WORKING-STORAGE SECTION.
77 11

LINKAGE SECTION.
01 DFHCOMMAREA.

03 CONTRACT-DATA.
04 CONTRACT.
05 C-ID
05 C-NUM
05 C-ACTION

04 ZONE.
05 Z-NUMBER

PIC S9(4).

PIC X(8).
PIC S9(4).
PIC X(4).

PIC 9(2).

440

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

05 Z-1D PIC X(20).
04 PACKETI 0CCURS 99.
05 P-ITEM.
06 P-ID PIC X(8).
06 P-TEXT PIC X(30).
06 P-NUMBER PIC 9(2).

* Fill variable output array

MOVE O TO ITI.

PERFORM RANDOMNUM TIMES
ADD 1 TO II
MOVE ... TO P-ID (IT)
MOVE ... TO P-TEXT (II)
MOVE ... TO P-NUMBER(II)

END-PERFORM.
* Set occurrences
MOVE II TO C-NUM.

Press OK to change the IDL array parameter from fixed array /number to an unbounded ar-
ray /Vnumber. See array-definition under Software AG IDL Grammar in the IDL Editor docu-
mentation. If a COBOL data item is used, it will be set to suppressed because it is superfluous
for RPC clients.

See Suppress Unneeded COBOL Data Items.

] Notes:

. This option should be used carefully and requires knowledge of the COBOL interface. Be aware
that an incorrect mapping results in runtime errors.

. The COBOL table used in this manner must be the last parameter of the COBOL interface; it
must not be a subparameter of any other COBOL table and must not contain any DEPENDING
ON clause (see COBOL Tables with Variable Size - DEPENDING ON Clause).

. If a COBOL data item is used, it must be physically located before the COBOL table. The IDL
directions must also match.

Set Multiple Possible Output (MPO) Structures

A COBOL server program produces more than one type of output. The layout of the output can
therefore take two or more dissimilar shapes. The COBOL server program decides at runtime the
output structure returned, that is, the COBOL layout on output varies.

= Multiple Possible Output with REDEFINES
= Qptional Output with Groups

= Complex MPO Selections

= MPO Terminology

Software AG IDL Extractor for COBOL 441

IMS MPP Message Interface (IMS Connect)

= Steps

Multiple Possible Output with REDEFINES

A COBOL REDEFINES Clause is often used to describe the possible output structures. In COBOL
this is the standard way to describe multiple possible output:

Similar to COBOL data item PAYMENT - DATA in the example below; for this purpose, PAYMENT - DATA
is redefined; each redefinition represents an output structure (MPO case); on return exactly one
output structure is used; by inspecting COBOL data item PAYMENT-TYPE (MPO selector) first, a
caller can determine the returned output structure; the caller then uses the correct redefinition to
access the data.

01 INPUT-DATA.
02 ORDER-NUMBER

01 OUTPUT-DATA.

02

02

02

02
02

02

02

02

02

<some fields>

PIC 9(10).

PIC <clause>.

PAYMENT-TYPE PIC X(2).

88 PAYMENT-TYPE-VOUCHER VALUE "VO".
88 PAYMENT-TYPE-CREDITCARD VALUE "CC".
88 PAYMENT-TYPE-TRANSFER VALUE "TR".
88 PAYMENT-TYPE-DIRECTDEBIT VALUE "DB".

<preceding data items>

PAYMENT-DATA
PAYMENT-DATA-VOUCHER

04 VOUCHER-ORIGIN

04 VOUCHER-SERIES
PAYMENT-DATA-CREDITCARD
04 CREDITCARD-NUMBER

04 CREDITCARD-COMPANY
04 CREDITCARD-CODE

04 CREDITCARD-VALIDITY
PAYMENT-DATA-TRANSFER
04 TRANSFER-NAME

04 TRANSFER-IBAN

04 TRANSFER-BIC
PAYMENT-DATA-DIRECTDEBIT
04 DIRECTDEBIT-IBAN

04 DIRECTDEBIT-NAME

04 DIRECTDEBIT-EXPIRES

<{subsequent data items>

PIC <clause>.

PIC X(256).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(128).
REDEFINES PAYMENT-DATA.
PIC 9(18).
PIC X(128).
PIC 9(12).
PIC X(8).
REDEFINES PAYMENT-DATA.
PIC X(128).
PIC X(34).
PIC X(11).
REDEFINES PAYMENT-DATA.
PIC X(34).
PIC X(128).
PIC 9(8).

PIC <clause>.

442

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

& read order record using ORDER-NUMBER

* set value indicating type of reply (MPO selector)
IF <some-condition> THEN
SET PAYMENT-TYPE-VOUCHER TO TRUE
ELSE IF <some-other-condition> THEN
SET PAYMENT-TYPE-CREDITCARD TO TRUE
ELSE IF <some-further-condition> THEN
SET PAYMENT-TYPE-TRANSFER TO TRUE
ELSE
SET PAYMENT-TYPE-DIRECTDEBIT TO TRUE
END-IF.

* set fields (MPO case) depending on type of reply
INITIALIZE PAYMENT-DATA.
EVALUATE TRUE
WHEN PAYMENT-TYPE-VOUCHER

MOVE . . . TO VOUCHER-ORIGIN
MOVE . . . TO VOUCHER-SERIES
WHEN PAYMENT-TYPE-CREDITCARD
MOVE . . . TO CREDITCARD-NUMBER
MOVE . . . TO CREDITCARD-CODE
MOVE . . . TO CREDITCARD-VALIDITY
WHEN PAYMENT-TYPE-TRANSFER
MOVE . . . TO TRANSFER-NAME
MOVE . . . TO TRANSFER-IBAN
MOVE . . . TO TRANSFER-BIC
WHEN PAYMENT-TYPE-DIRECTDEBIT
MOVE . . . TO DIRECTDEBIT-IBAN
MOVE . . . TO DIRECTDEBIT-NAME
MOVE . . . TO DIRECTDEBIT-EXPIRES
WHEN

END-EVALUATE.

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all possible output structures, that is, they are known during extraction. In the example
these are the structures PAYMENT-DATA-VOUCHER, PAYMENT -DATA-CREDITCARD and
PAYMENT - DATA-TRANSFER. These are the MPO structures.

® contains an additional COBOL data item carrying a value related to the returned output structure.
By inspecting this data item first, the appropriate output structure can be selected to address
the data correctly. In the example it is PAYMENT - TYPE. This item is the MPO selector.

Software AG IDL Extractor for COBOL 443

IMS MPP Message Interface (IMS Connect)

® always occupies memory to be able to transfer the longest output structure. If the actual returned
output structure is shorter than the longest possible output structure, there is a gap (space)
between the multiple possible output and the subsequent data item.

-

PAYMENT
* MPO Selector
Ul 3 | _MPO Group
VO CC TR = MPO Selector Value
W C T !
8] R R {
] E A !
C B M {
H | 5 |
E - e : PO S = MPO Case
R C E | o tructure
A R
R :
B {
1
sUbseq. T ’ ’
F'L:"a Gap if CREDITCARD or TRANSFER returned
item

This abstract concept is known as multiple possible output (MPO) EntireX bundles all MPO structures
into an MPO group. See MPO Terminology below.

Optional Output with Groups

COBOL group data items can be used to describe optional output structures. The contents of a
COBOL data item define under which circumstances COBOL groups are part of the returned data
or not. Optional output with group data items are a variant of multiple possible output (MPO).

In addition, the COBOL interface

* limits the number of possible output structures returned

® defines all optional output structures, that is, they are known during extraction. In the COBOL
snippet below these are the structures OPTIONAL-OUTPUT-STRUCTUREL and
OPTIONAL-OUTPUT-STRUCTURE2. These are the MPO structures.

" contains an additional COBOL data item carrying an indication which optional output is present.
By inspecting this data item first, the appropriate optional output structure can be selected to
address the data correctly. If its value does not match, the optional output is not present. In the
COBOL snippet it is COBOL data item OPTIONAL-OUTPUT. This item is the MPO selector.

444 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

= If the optional output is not present no memory is occupied. There is no gap between the optional
output and the subsequent data item, as opposed to Multiple Possible Output with REDEFINES
above.

In the COBOL snippet below there are three different shapes of output:

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1 OFTIORAL-QUTPFUT-STRUCTURE L FIXED-OUTFUT-STRUCTUREZ

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

CONTROL-AREA FIXED-QUTPUT-STRUCTURE1

COBOL snippet:

WORKING-STORAGE SECTION.
01 INPUT-AREA.

02 FIX-INPUT-ITEMI1
02 <some fields>

01 OUTPUT-OFFSET
01 OUTPUT-AREA

01 CONTROL-AREA.

FIXED-OUTFUT-STRUCTUREZ

OFTIORAL-QUTPFUT-STRUCTURE 2 FH%D—OUTPUT—STRUCTUREE

PIC X(4).
PIC <clause>.

PIC S9(9) BINARY.
PIC X(32000).

02 OPTIONAL-OUTPUT PIC X(1).
88 OPTIONAL-OUTPUT-1 VALUE "1".
88 OPTIONAL-OUTPUT-2 VALUE "2".
88 OPTIONAL-OUTPUT-NONE VALUE "N".
01 OPTIONAL-OUTPUT-STRUCTUREL.
02 OPTIONAL-OUTPUT-ITEMII PIC X(10).
02 OPTIONAL-OUTPUT-ITEMI1Z PIC X(100).
02 OPTIONAL-OUTPUT-ITEMI13 PIC X(20).
01 OPTIONAL-OUTPUT-STRUCTUREZ.
02 OPTIONAL-OUTPUT-ITEMZ1 PIC X(4).
02 OPTIONAL-OUTPUT-ITEMZ22 PIC X(50).
02 OPTIONAL-OUTPUT-ITEMZ23 PIC X(50).
01 FIX-OUTPUT-STRUCTUREL.
02 FIX-OUTPUT-ITEMI1 PIC X(4).
02 FIX-OUTPUT-ITEMI12 PIC X(20).

Software AG IDL Extractor for COBOL

445

IMS MPP Message Interface (IMS Connect)

02 FIX-OUTPUT-ITEMI3 PIC X(8).

01 FIX-OUTPUT-STRUCTUREZ.

02 FIX-OUTPUT-ITEMZ21 PIC X(2).
02 FIX-OUTPUT-ITEM22 PIC X(10).
02 FIX-OUTPUT-ITEM23 PIC X(10).

IF <some-condition> THEN

SET OPTIONAL-OUTPUT-1 TO TRUE
ELSE IF <some-other-condition> THEN

SET OPTIONAL-OUTPUT-2 TO TRUE
ELSE

SET OPTIONAL-OUTPUT-NONE TO TRUE
END-IF.

& provide control area for optional output
MOVE 1 TO OUTPUT-OFFSET.
STRING CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

w3 provide data items before optional output
STRING FIX CONTROL-AREA DELIMITED BY SIZE
INTO QUTPUT-AREA WITH POINTER OUTPUT-OFFSET.

o3 provide optional output
EVALUATE TRUE
WHEN OPTIONAL-OUTPUT-1
STRING OPTIONAL-QUTPUT-STRUCTURE1 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OQUTPUT-OFFSET
WHEN OPTIONAL-QUTPUT-2
STRING OPTIONAL-QUTPUT-STRUCTURE2 DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER OUTPUT-OFFSET
END-EVALUATE.

& provide data items after optional output
STRING FIX-QOUTPUT-STRUCTUREZ DELIMITED BY SIZE
INTO OUTPUT-AREA WITH POINTER QUTPUT-OFFSET.

The returned data is built by copying the necessary COBOL structures into an output area. The
optional output is one of 0PTIONAL-QUTPUT-STRUCTUREL, OPTIONAL-OUTPUT-STRUCTUREZ or nothing.
The presence of the optional output is controlled by a structure named CONTROL - AREA.

446 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

Complex MPO Selections

If the MPO case detection is complicated and cannot be defined by available Extractor features
(for example the MPO selector and its values), perform the following steps:

~ To map a complex MPO selection

1 Map the complete MPO group to binary. See Map to Binary and Revert Binary Mapping.

| Note: If an MPO group is already defined, you cannot map it to binary. Decide first

whether MPO case detection is covered by available extractor features.

2 Implement MPO case detection in your RPC client, using the binary mapping from step 1.

3 Implement MPO case parsing in your RPC client, using the binary mapping from step 1. For
the EntireX Adapter, use the COBOL Converter for this purpose. See Converting IS Data
Structures with the COBOL Converter in the EntireX Adapter documentation.

MPO Terminology

The following terminology is used with MPOs:

MPO structure
A COBOL group describing the output layout used in an MPO case. All alternative layouts in
an MPO group are often described with COBOL REDEFINEs.

MPO group
Bundles together all MPO structures that can be used alternatively. A COBOL interface can
contain more than one MPO group.

MPO case
An MPO structure together with its MPO selector values (one or more).

MPO selector
A COBOL data item containing a specific value (MPO selector value) where the actual MPO
case can be determined.

® For MPOs based on REDEFINEs, the MPO selector can be placed before, inside or after the
MPO group.

® For optional output with groups, the MPO selector precedes the MPO group and is located
outside the MPO group.

® Only for MPP Message Interface (IMS Connect): Instead of determining the position of the
MPO selector from beginning of the message, you can calculate the position using a fixed
offset starting from the end of the message. This alternative is limited to one MPO group per
program. See check box MPO Selector determined from message end in step Create a new
MPO group below.

Software AG IDL Extractor for COBOL 447

IMS MPP Message Interface (IMS Connect)

MPO selector value

Each value indicates exactly one output structure. An output structure can be indicated by
further values.

Steps

~ To set multiple possible output (MPO) structures with REDEFINES or groups

Use the Set Multiple Possible Output (MPO) Structures function available in the context menu
of the COBOL interface to create new or modify existing MPO groups.

1 Set the top-level COBOL data item where the MPO structures are contained to IDL direction
Out. Use the Map to Out function for this purpose:

PAYMENT |
COBOL Interface
. B 01 INPUT | [Map to In -> |
% 02 PAYMENT Map toIn -» | MaptoOut-> |]
@ "5 02 PAYMENT e
= Wap -
B > d2l 02 PAYMENT Map to InOut -> D

<Rir¥
<Rir¥

¥

¥

¥

2l 02 PAYMENT
2l 02 PAYMENT Suppress
2 02 PAYMENT Set Constant...

Remove from COBOL Interface

Suppress l

Set Constant...

2 From the context menu of the COBOL interface of the COBOL REDEFINE, choose Set Multiple
Possible Output (MPO) Structures.

'

4

= 02 PAYMENT-DATA-DIRECTDEBIT REDEFINES

LI

Map to InQut ->

PAYMENT
COBOL Interface IDL Interface
. % 01 INPUT Map toIn -> . 5 INPUT
4+ 01 ouTPUT 4 45 ouTpl
%, 02 PAYMENT-TYPE PIC X(2) Map to Out -> +F pa
S GLOPAYMENTDATA PICX2SE) °pa
& s 42 02 PAYMENT-DATA-VOUCHER REDEFINES P. Map to In ->
B s (2] 02 PAYMENT-DATA-CREDITCARD REDEFINES Map to Out ->
B > 2 02 PAYMENT-DATA-TRANSFER REDEFINES P,
>

Suppress
Set Constant...

Set Multiple Possible Qutput (MPQ) Structures

Remove from COBOL Interface

3 Set Multiple Possible Output (MPO) Structures into MPO Group.

448

Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

.
[(] COBOL to IDL Mapping [|

Set Multiple Possible QOutput (MPO) Structures into MPQO Group

All related ocutput structures will be bundled together in an MPC group.
Select or create an MPO Group for your selected cutput structure,

(@ iCreate a new MPO group

Select an gxisting MPO Group

@ [ok |[cancel

4 Create anew MPO group.

Software AG IDL Extractor for COBOL 449

IMS MPP Message Interface (IMS Connect)

i ™
= COBOL to IDL Mapping —

Create a new MPO Group

Define a name for the MPO group. Select the COBOL data item (MPO Selector) the
output structure depends on.

MPO Group: PAYMENT-DATA-MPO
This group is marked in the generated IDL file with the attribute Choice.

|| MPO Selecton

I | « outpuT

[« PAYMENT-TYPE |
PAYMENT-TYPE-VOUCHER
PAYMENT-TYPE-CREDITCARD
PAYMENT-TYPE-TRANSFER
PAYMENT-TYPE-DIRECTDEBIT

MPO Selector determined from message end

Instead of determining the position of the MPO Selector from the beginning of the
message, calculate the position using a fixed offset starting from the end of the message.

@ [ok][cance

5 Set MPO selector values for MPO Structures.

450 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

r ™
[0 COROL to IDL Mapping . s e

Set MPO Selector Values for MPO Structures

Define one or more selector values for each used output structure (MPO case),
An MPO case without any value will be suppressed.

MPO Group: PAYMENT-DATA-MPC

MPO Selector: PAYMENT-TYPE

MPCO Cases:

MP O Structure PPC Selector Values Add Value
PAYMENT-DATA 10 & 20 X af
PAYMENT-DATA-VOUCHER vo ¥ =

| PAVYMENT-DATA-CREDITCARD ¢ X = :
PAYMENT-DATA-TRANSFER o
PAYMENT-DATA-DIRECTDEBIT o
| | | |
N |

@ | ok || canc

Use the functions ¥ to delete and = to add MPO selector values:

"[0J COBOL to IDL Mapping o

Set MPO Selector Value
Enter a valid MPO selector value.

Select a MPO Selector Value: [EP.M‘M EMT-TYPE-VOUCHER | =

Enable individual input 0

!l Selector Yalue:

| @ | ok || Cancel

5 — . R

Software AG IDL Extractor for COBOL 451

IMS MPP Message Interface (IMS Connect)

Notes:

1. To add multiple MPO selector values per MPO structure, use the function % multiple times
for the same MPO structure (see value 10 and 20 for structure PAYMENT - DATA).

2. MPO structures without any MPO selector value are unused and suppressed in the IDL
interface value (e.g. see structure PAYMENT-DATA-TRANSFER).

3. Each MPO selector value must uniquely identify an MPO structure. The same value cannot
be used more than once for different MPO structures.

4. If no defined MPO selector value matches at runtime, an empty MPO group is delivered
to the RPC client, that is, none of the MPO cases contain any data. No runtime error is
produced.

6 Press Finish to create the following IDL together with a server mapping file. See Server Mapping
Files for COBOL in the Designer documentation.

library "PAYMENT' is

program 'PAYMENT' is
define data parameter

1 INPUT In
2 ORDER-NUMBER (NU10)
1 OUTPUT OQut
2 PAYMENT-TYPE (A2)
2 PAYMENT-DATA-MPO Choice
3 PAYMENT-DATA (/V1)
4 PAYMENT-DATA (AV256)
3 PAYMENT-DATA-VOUCHER (/V1)
4 VOUCHER-ORIGIN (AV128)
4 VOUCHER-SERIES (AV128)
3 PAYMENT-DATA-CREDITCARD (/V1)
4 CREDITCARD-NUMBER (NU18)
4 CREDITCARD-CODE (NU12)

4 CREDITCARD-VALIDITY (AV8)
end-define

Map to Binary and Revert Binary Mapping

With such a mapping you allow the COBOL server to deal with binary data (for example images).
You can also manage Complex MPO Selections.

452 Software AG IDL Extractor for COBOL

IMS MPP Message Interface (IMS Connect)

COBOL to IDL Mapping

PFZXDMSG

COBOL Interface

4 502 CONTRACT-BUFFER
4 503 CONTRACT-DATA
4 504 CONTRACT

05 C-ID PIC X(8)
05 C-PACKETS PIC 59{4)
05 C-ACTION PIC X(4)
05 Z-ID PIC X(20)

Map toIn-=
Map to Out ->

Map to InQut ->

Suppress

2 05 Z-NUMBER PIC 8(2)
4 | ﬁ

4 = 05P-ITEM

% 06 P-ID PIC X(8)
% 06 P-TEXT PIC X3
% 06 P-NUMBER PIC

Map toIn-=
Map to Qut ->
Map to InQut ->

Suppress
Set Constant...

Map to Binary -=

Set Array Mapping (fixed<->unbounded)...

Remove from COBOL Interface

The menu entry Map to Binary appears only on COBOL data items were it makes sense, for example
in Channel Container interface types it is not allowed to map the container reference itself as binary,
but inner items can be mapped as binary. Redefine groups will be handled as a block, that means

the largest redefine path or redefine base defines the binary length.

When the binary IDL parameter is selected, all corresponding COBOL data items are selected as

well.
COBOL to IDL Mapping
PF2XDMSG
COBOL Interface IDL Interface
4+ 2502 CONTRACT-BUFFER Map toln -> 4 4% CONTRACT-BUFFER In Out
4 7503 CONTRACT-DATA 4 4% CONTRACT-DATA
4 %504 CONTRACT Map to Out -> +F CONTRACT (B38)
E 05 I PIC X(8) _
%8 05 C-PACKETS PIC S9(4) Map to InOut ->
% 05 C-ACTION PIC X(4)
05 Z-ID PIC X(20) Suppress
%% 05 Z-NUMBER PIC 9(2) —
4 504 PACKETI OCCURS99 Set Constant...
4 B 05P-ITEM
% 06 P-ID PIC X(8)
X 06 P-TEXT PIC X(30)
% 06 P-NUMBER PIC 9(2)

] Note: The last COBOL data items are mapped to IDL data type BV instead of Bn (PACKETI

(BV) in this example).

Software AG IDL Extractor for COBOL

453

IMS MPP Message Interface (IMS Connect)

To undo the binary mapping, select the root COBOL data item (the first of the selection group)
and from the context menu choose Revert Binary Mapping.

COBOL to IDL Mapping

PF2XDMSG |
COBOL Interface IDL

4 7502 CONTRACT-BUFFER
4 503 CONTRACT-DATA

Map to In ->

2 504 CONTRACT Map to Out ->
(7=
& 05C-1D PIC X(8)
Map to InOut -
%X 05 C-PACKETS PIC 59(4) o
% 05 C-ACTION PIC Xi4)
(7=
= 05 Z-ID PIC X(20) Suppress
2 05 Z-NUMBER PIC 9{2)
‘ O T 4 3
4 E‘.US B-TTEM MEFI toln->
% 06 P-ID PIC X(8) Map to Out ->
%Uﬁ P-TEXT PIC (3 Map to InOut ->
% 06 P-NUMBER PIC

Suppress
Set Constant...

Revert Binary Mapping -=

Rermowve from COBOL Interface

454 Software AG IDL Extractor for COBOL

16 COBOL Preferences

B COBOL Wrapper PrefErENCES ... uvvveiiieeiie ittt et e e et e e e e e e et aaeee e 456
= Deployment Environments PreferenCesooiiviiieiiiiii e 456
= |DL Extractor for COBOL PrefEreNCESccoiiiiiiiiii ettt aa e 457

455

COBOL Preferences

& Preferences I. (=] i:h]

type filter text COBOL - * -

4 Software AG -
Ajax Developer

See 'COBOL Wrapper' for settings to generate COBOL code for client or server.
See 'Deployment Environments' to manage deployment environments.
See IDL Extractor for COBOL' for settings to extract IDL files from COBOL sources.

. Business Services

. Code Generation
. Construct
Document Expansic

4 EntireX =
- | COBOL
Integration Serve
> Matural
. = - [F‘.estore Qefaults] [Apply]
':?3' '::::" [Ok] l Cancel]

This page provides links to the following;:

COBOL Wrapper Preferences

Use the preferences page COBOL > COBOL Wrapper to set the workspace defaults for target
operating system, interface types etc. The settings are used as the defaults for the IDL properties
when a new IDL file is created. See Generation Settings - Preferences in the COBOL Wrapper docu-
mentation.

Deployment Environments Preferences

Use the preferences page COBOL > Deployment Environments to define a connection to the
Deployment Service of the RPC server. See Preferences under Server Mapping Deployment Wizard
in the Designer documentation.

456 Software AG IDL Extractor for COBOL

COBOL Preferences

IDL Extractor for COBOL Preferences

Use the preferences page COBOL > IDL Extractor for COBOL to perform the following tasks:

= Manage COBOL Extractor Environments
= Define Prefixes for IDL Parameter Names

Manage COBOL Extractor Environments

A COBOL extractor environment provides defaults for the extraction and refers to COBOL programs
and copybooks

= stored locally on the same machine where the Designer is running, a so-called local COBOL
extractor environment, or

® stored remotely on a host computer, a so-called remote COBOL extractor environment. The
Extractor Service is required to access COBOL programs and copybooks remotely with a remote
COBOL extractor environment. The Extractor Service is supported on operating systems z/OS
and BS2000. See Extractor Service in the RPC Server documentation for Batch | IMS | BS2000.

COBOL extractor environments are offered in the IDL Extractor for COBOL wizard to reference
the COBOL programs and copybooks and retrieve defaults for the IDL extraction. To create, edit,
duplicate and remove COBOL extractor environments, open the preferences page COBOL >
IDL Extractor for COBOL and use the buttons on the right.

& Preferences B =
type filter text IDL Extractor for COBOL Pror
“ Sof't\c\f'areAG i Manage COBOL Extractor Environments
> Ajax Developer . .
APL-Portal Table of defined COBOL Extractor Environments:
> Business Services MName : Extractor Environment Operating System Insert...
> Code Generation [My_COBOL_Extractor_Environment /05
» Construct _ A My_COBOL_Extractor_Environment (2) 2/VSE
Document Expansion [My_COBOL_Extractor_Environment (3) IBM i
4 EntireX [E3My_COBOL Extractor Environment (4) BS2000
a4 COBOL Rernove
COBOL Wrapper
Deployment Environments
IDL Extractor for COBOL
Integration Servers
> Matural
. PL 3
> Web Services

This section describes how to create the following extractor environments:

= Creating a New Local Extractor Environment
= Creating a New Remote Extractor Environment (z/OS)

Software AG IDL Extractor for COBOL 457

COBOL Preferences

= Creating a New Remote Extractor Environment (BS2000)
Creating a New Local Extractor Environment

This section describes the four steps for creating a new local COBOL extractor environment to
extract COBOL programs stored inside Software AG Designer or locally on your PC.

> To create a new local extractor environment

1 Define the new local environment. On the New Environment page you can specify Name
and Operating system.

£ IDL Extractor for COBOL M=1E3

New Environment

Define 3 new COBOL extractor environmenk,

COBOL Extrackor Environment

Marne: | Wy COBOL Extrackor Emvironment

Qperating Syskem; | z/05 w |

Source Locakion

() Local) Remote

(2 < Back, [Mext = H Einish H Cancel

Define the new environment settings:

* Enter a unique Name for the COBOL extractor environment.
= Select the Operating system where the COBOL source originates from.

® Select "Local" for Source Location.

2 Define the default settings. The Default Settings page provides defaults for Step 4: Define
the Extraction Settings and Start Extraction in Using the IDL Extractor for COBOL - Over-
view. You can set defaults for interface type and COBOL to IDL mapping.

458 Software AG IDL Extractor for COBOL

COBOL Preferences

7= IDL Extractor for COBOL

Default Settings

Define the defaulk settings For the COBOL extrackar environment.

COBOL Exkrackor Enviranment

Mame:

COBCL Source Charackeristics

Operating Svskem:

Interface Tvpe: |CICS with DFHCOMMAREA caling convention A |

IMS MPP message interface (IMS Connect)

*‘I |

IMS BMP with skandard linkage calling convention

I3 with Channel Container calling conwvention

COBCOL ko IDL Mapping
Map alphanumeric figlds (PICTURE ¥, &, G, M) to
{#) Strings with wariable length (Jawa, JMET, DCOM, C, Matural, SOAR, ¥ML)

() strings with fixed langth (COBOL, PLIT)

[]Map FILLEF: fields ko IDL

| I Einish] l Cancel

Define the default extraction settings:

= Select the default Interface Type. See Supported COBOL Interface Types.
* Depending on the interface type, additional information can be set. For interface type
® CICS with Channel Container Calling Convention, you can set the channel name.

= IMS MPP Message Interface (IMS Connect), you can set defaults for the transaction name.
Possible options are a constant transaction name defined during extraction process or an
IDL parameter to be specified at runtime.

® IMS BMP with Standard Linkage Calling Convention, you can set the default for IMS
PSB List.

Software AG IDL Extractor for COBOL 459

COBOL Preferences

For more information refer to Step 4: Define the Extraction Settings and Start Extraction.

= Specify a default value for COBOL to IDL Mapping. See COBOL to IDL Mapping.

Press Next.

3 Define the local extractor environment. On the Local Extractor Environment page you can
provide a default directory name for the COBOL programs:

& IDL Extractor, for COBOL M=
Local Extractor Environment
Define a root direckory to extrack COBOL sources From,

Dwrinng exkraction wou can browse For COBOL sources in this root directory and its
subdirectaries anly.

Roat Direckary Mame: | Workspace. ..
File Systerm. ..

(2 [# Back.] Mesxt = |[Firish H Cancel]

Choose Workspace... or File System... to browse for a folder. Continue with Next.

4 Define the local copybook locations. On the Local Copybook Location page you can add
directories that will be used to resolve copybooks. Copybooks and members referenced with
COPY statements, CA Librarian - INC statements and CA Panvalet ++INCLUDE statements will
be searched for in the defined local directories:

460 Software AG IDL Extractor for COBOL

COBOL Preferences

& IDL Extractor for, COBOL

Local Copybook Locations

++IMCLUDE skatements), using the defined file extensions.

Directary List
List of directaries:

Define local directories where the extractor will search For copybooks {COPY skatements) and include components {-IMC,

Enter any specific copybook extensions.,
IUse comma or semicolon bo separate mulkiple extensions (For example: cobjchl;cpy; bt or cob,chl, cpey, Bxb).

Workspace. ..
File System. ..

Copybook file extensions:

® (o

H Cancel]

The file extensions for copybooks can also be entered. If no extensions are specified, the
IDL Extractor for COBOL wizard will try to locate copybooks without any file extensions.

Press Workspace... or File System... to browse for a folder.

Press Finish.

Software AG IDL Extractor for COBOL

461

COBOL Preferences

Creating a New Remote Extractor Environment (z/OS)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely z/OS COBOL programs stored in partitioned data sets or CA Librarian data sets.

> To create a new remote extractor environment

1

Define the new remote environment. >On the New Environment page you can specify Name,
Operating system and the Remote Source Location.

& IDL Extractor for COBOL

New Environment

Define a new COBOL extractor environment,

COBOL Extractar Environnmenk

_OBOL Extractor Environmmenkt

Marne: | Ly

Cperating Syskem: | el L w |

Source Locakion

() Local (%) Remote

®

Define the new environment settings:

® Enter a unique name for the COBOL extractor environment.
" Select the Operating system.

" Select "Remote" for Source location.

Define the default settings.The Default Settings page provides defaults for Step 4: Define the
Extraction Settings and Start Extraction in Using the IDL Extractor for COBOL - Overview.

You can set defaults for Interface Type and COBOL to IDL Mapping.

462

Software AG IDL Extractor for COBOL

COBOL Preferences

7= IDL Extractor for COBOL

Default Settings

Define the defaulk settings For the COBOL extrackar environment.

COBOL Exkrackor Enviranment

Mame:

COBCL Source Charackeristics

Operating Svskem:

Interface Tvpe: |CICS with DFHCOMMAREA caling convention A |

IMS MPP message interface (IMS Connect)

*‘I |

IMS BMP with skandard linkage calling convention

I3 with Channel Container calling conwvention

COBCOL ko IDL Mapping
Map alphanumeric figlds (PICTURE ¥, &, G, M) to
{#) Strings with wariable length (Jawa, JMET, DCOM, C, Matural, SOAR, ¥ML)

() strings with fixed langth (COBOL, PLIT)

[]Map FILLEF: fields ko IDL

|I Einish H Cancel]

Define the default settings. See Define the default settings in section Creating a New Local
Extractor Environment. Continue with Next.

3 Define the remote extractor environment. The connection to the Extractor Service to browse
for COBOL programs is defined on the Remote Extractor Environment page. See Extractor
Service.

Software AG IDL Extractor for COBOL 463

COBOL Preferences

& IDL Extractor, for COBOL

Remote Extractor Environment
Define an extractor service to extract remote COBOL sources From PDS or CA-Librarian datasets, Specify broker

parameters and filker settings.

Broker Parameters
Broker I *| |

Server Address *| | Edit...

Timeouk (Seconds): | &0 |

Entire¥ Authentication RPC Server Authentication
UserIDv | | RPCUserID: | |
Password: | | RPC Password: | |

Filter Settings
Use filter settings to restrick browsing with a dataset name (D3N}, or high level qualifier (HLQ), Optionally, give member name.

Dataset Mame or HLC: +‘l |

Member Mame: | |

@

Define the remote extractor environment:

® Under Broker Parameters, enter the required fields Broker ID and Server Address, usually
"RPC/<servername>/CALLNAT". The timeout value must be in the range 1-9999 seconds
(default is 60).

* The EntireX Authentication parameters describe the settings for the broker. See Authentic-
ation of User.

* The RPC Server Authentication parameters describe the settings for the RPC server. See
Administering the RPC server | Administering the RPC Server for IMS.

® Ahigh-level qualifier is required in the Data Set Name or HLQ field. The extractor service
will then offer only data sets with this high-level qualifier.

® In the Member Name field you can provide a prefix for the partitioned data set or CA
Librarian members. The extractor service will then offer only members beginning with this
prefix.

Continue with Next.

4 Define the remote copybook locations. On the Remote Copybook Location page you can add
PDS or CA Librarian data sets that will be used to resolve copybooks. Copybooks and members

464 Software AG IDL Extractor for COBOL

COBOL Preferences

referenced with COPY statements and CA Librarian - INC statements will be searched for in
the defined remote data sets:

& IDL Extractor for, COBOL

Remote Copybook Locations
Define remoke POS or CA Librarian daka sets where the extrackar service will search For copyboaks (COPY statements)

and include components {-INC skatements),

[aka Sets
List of PDS or CA Librarian daka set names (DSMs):

Insett. ..

[Finish ” Cancel]

Press Insert... to add a new data set entry in the table. Use Remove, Up and Down to manage
the data set list.

Press Finish.
Creating a New Remote Extractor Environment (BS$2000)

This section describes the four steps for creating a new remote COBOL extractor environment to
extract remotely BS2000 COBOL programs stored in LMS libraries.

~ To create a new remote extractor environment

1 Define the new remote environment. On the New Environment page you can specify Name,
Operating system and the Remote Source Location.

Software AG IDL Extractor for COBOL 465

COBOL Preferences

& IDL Extractor, for COBOL

New Environment
Define a new COBCL extractor environment,

COBOL Extractar Environment

Mame;: | My _COBOL_Extractor_Environment |

Operating System: | B52000 v|

Source Location

" Local (&) Remote!

Define the new environment settings:

® Enter a unique name for the COBOL extractor environment.
" Select the Operating system

= Select "Remote" for Source location

2 Define the default settings. The Default Settings page provides defaults for Step 4: Define
the Extraction Settings and Start Extraction in Using the IDL Extractor for COBOL - Over-
view.

You can set defaults for Interface Type and COBOL to IDL Mapping.

466 Software AG IDL Extractor for COBOL

COBOL Preferences

£ DL Extractor for COBOL M=

Default Settings
Define the defadlt settings For the COBOL extractor environment,

COBOL Extractar Environment

Mame;: |

COBCL Source Characteristics
Operating Syskem:

Interface Tvpe: |B.ﬁ.TCH with standard linkage calling convention w

ZOBOL ko IDL Mapping
Map alphanumeric Figlds (PICTIURE ¥, &, G, M) ko
() Strings with variable length (Java, \MET, DCOM, C, Matural, SOAP, ¥ML)

(T 5trings with Fized length (COBOL, PLT

[IMap FILLER fields to IDL

(7 < Back]l Mext > H Finish H Cancel

Define the default extraction settings:

= Select the default Interface Type. See Supported COBOL Interface Types.
* Specify the default COBOL to IDL Mapping. See COBOL to IDL Mapping.

Continue with Next.

3 Define the remote extractor environment. The connection to the Extractor Service to browse
for COBOL programs is defined on the Remote Extractor Environment page. See Extractor
Service.

Software AG IDL Extractor for COBOL 467

COBOL Preferences

& IDL Extractor, for COBOL

Remote Extractor Environment
Define an extractor service to extrack remote COBOL sources From LMS libraries. Specify broker parameters and Filker

setkings.

Broker Parameters
Broker I *| |

Server Address *| | Edit...

Timeouk (Seconds): | &0 |

Entire¥ Authentication RPC Server Authentication
UserIDv | | RPCUserID: | |
Password: | | RPC Password: | |

Filter Settings

Use filter settings to restrict brovesing with a LMS library name, or high level qualifier (HLOY, Optionally, give element {3
name.

LMS Library Mame or HLO: +‘| |

Element {5} Mame: | |

@

Define the remote extractor environment:

® Under Broker Parameters, enter the required fields Broker ID and Server Address, usually
"RPC/<servername>/CALLNAT". The timeout value must be in the range 1-9999 seconds
(default is 60).

* The EntireX Authentication parameters describe the settings for the broker. See Authentic-
ation of User.

* The RPC Server Authentication parameters describe the settings for the RPC server. See
Configuring the RPC Server.

® Ahigh-level qualifier can be entered in the LMS Library Name or HLQ field. The extractor
service will then offer only LMS libraries with this high-level qualifier. You can use wildcard
notation with asterisk to specify a range of values.

* In the Element Name field you can provide a prefix for LMS library source elements. The
extractor service will then offer only COBOL programs beginning with this prefix.

Continue with Next.

468

Software AG IDL Extractor for COBOL

COBOL Preferences

4 Define the remote copybook locations. On the Remote Copybook Location page you can add
directories that will be used to resolve copybooks. Copybooks referenced with COPY statements
will be searched for in the defined remote LMS libraries:

& IDL Extractor for, COBOL

Remote Copybook Locations
Define remoke LMS libraries where the extractor service will search for copybooks (COPY staterments).

LM3= Libraries
List of LMS library names:

Insert. ..

[Finish H Cancel]

Press Insert... to add a new data set entry in the table. Use Remove, Up and Down to manage
the list of LMS libraries.

Press Finish.

Software AG IDL Extractor for COBOL 469

COBOL Preferences

Define Prefixes for IDL Parameter Names

You can also use the preferences page COBOL > IDL Extractor for COBOL to define prefixes for
IDL parameter names.

a COBOL
COBOL Wrapper

Deployment Environments - -
IDL Extractor for COBOL b Define prefixes for IDL parameter names
FILLER: FILLER

Integration Servers
> Matural
> PLI
> Web Services

Anonymous Group: FILLER
To avoid duplicates, prefixes are appended by '_n' (e.g. FILLER results in FILLER_1, FILLER_2 etc.).

> Wrappers
External Tools IR o] ’ poer]
Integration Servers - estore Defaults pply

See 'COBOL' for setting type of COBOL mapping.

The defined prefixes are used for FILLER Pseudo-Parameter and are valid for all COBOL extractor
environments.

470 Software AG IDL Extractor for COBOL

17 COBOL to IDL Mapping

= COBOL Data Type to Software AG IDL MaPPINGvveeeeeiiiiiiiiii e e e 472
B USEr-defined MaPPINGvvviieiiiie et s 476
B DATA DIVISION MaPPING ...ttt e et e e e e e are e e e 483
® PROCEDURE DIVISION MaPPING +.ttttttteeeiitite ettt e et e et e et e et e e et a e et e e e e st e e e e enneeeas 489
B COPYD00KS .t a e e e e e 490

471

COBOL to IDL Mapping

This chapter describes how COBOL data items and related syntax are mapped to Software AG
IDL by the IDL Extractor for COBOL using the Extractor Wizard and Mapping Editor.

See also IDL Extraction per Interface Type under COBOL Mapping Editor for guidelines on IDL
extraction per interface type.

COBOL Data Type to Software AG IDL Mapping

The IDL Extractor for COBOL maps the following subset of COBOL data types to Software AG
IDL data types.

In the table below, the following metasymbols and informal terms are used for the IDL.

® The metasymbols "[" and "]" enclose optional lexical entities.

* The informal term number (or in some cases numberl.number?)is a sequence of numeric characters,
for example 123.

COBOL Data Type Software AG IDL Data Type Notes
Alphabetic PIC ACm) An, AVn Alphanumeric 1,2
DBCS PIC G(n) Kn*2, KVn*2 |Kanji 1,2,3
DBCS PIC N(n) [USAGE] [IS] Kn*2, KVn*2 |Kanji 1,2,3
DISPLAY-1
Unicode or DBCS PIC N(n) Un, UVn or Unicode or Kanji |1,2,3,9
Kn*2, KVn*2
Unicode PIC N(n) [USAGE] [IS] Un, UVn Unicode 1,2
NATIONAL
Alphanumeric PIC X(n) An, AV n Alphanumeric 1,2
Numeric |[Zoned decimal |[PIC 9(n)[V9(m)] NUnL, m] Unpacked decimal |2,4
unsigned
Zoned decimal [PIC S9(n)LV9(m)] Nnl, m] Unpacked decimal |2,4
Packed decimal [PIC 9(n) [V9(m)] PUnL,m] Packed decimal 2,4
COMPLUTATIONALI-3 unsigned
Packed decimal [PIC S9(n) [V9(m)] Pnl,m] Packed decimal 2,4
COMPLUTATIONAL]-3
Packed decimal [PIC 9(n) [V9(m)] PUnL,m] Packed decimal 2,4
PACKED-DECIMAL unsigned
Packed decimal [PIC S9(n) [V9(m)] Pnl,m] Packed decimal 2,4
PACKED-DECIMAL
Binary PIC [S]9(n) BINARY 12 Integer (medium) (2,4,5,6
(1<=n<=4)

472 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

COBOL Data Type Software AG IDL Data Type Notes
Binary PIC [S19(n) BINARY 14 Integer (large) 2,45,6,7
(5<=n<=9)
Computational |PIC 9(n) COMPLUTATIONALI|PUn Packed decimal 2,411
unsigned
Computational |PIC 9(n) COMPLUTATIONALI|IZ Integer (medium) |2,4,5,6,12
(1<=n=4)
Computational [PIC 9(n) COMPLUTATIONALI|I4 Integer (large) 2,4,5,6,7,12
(5<=n=9)
Computational [PIC S9(n) Pn Packed decimal 2,4,11
COMPLUTATIONAL]
Computational [PIC S9(n) 12 Integer (medium) |2,4,5,6,12
COMPLUTATIONAL] (1<=n=4)
Computational [PIC S9(n) 14 Integer (large) 2,4,5,6,7,12
COMPLUTATIONAL] (5<=n=9)
Binary PIC [S]19(n) 12 Integer (medium) |2,4,5,6
COMPLUTATIONALI[-4]
(1<=n<=4)
Binary PIC [S]9(m) 14 Integer (large) 2,45,6,7
COMPLUTATIONALI[-41]
(5<=n<=9)
Binary PIC [S19(n) COMP-5 12 Integer (medium) |2,4,6
(1<=n<=4)
Binary PIC [S19(n) COMP-5 14 Integer (medium) |2,4,6,7
(5<=n<=9)
Floating point |[COMPLUTATIONAL]-1 F4 Floating point 8
(small)
Floating point |[COMP[UTATIONAL]-2 F8 Floating point 8
(large)
Alphanumeric-edited Alphanumeric item containing |A(7ength |Alphanumeric 10
"0"or"/" of PIC)
Numeric-edited Numeric item containing "DB",|A(Tength |Alphanumeric 10
HC RH, lYZH, H$H, ”‘ H, " ’H, lY+H, "’”, Of PIC)

Myett npn AN "non
*" "B" "0"or "/

Notes:

1. Mapping to fixed-length or variable-length Software AG IDL data type is controlled in the ex-
traction settings of the extraction wizard, see Step 4: Define the Extraction Settings and Start

Extraction.

2. Equivalent alternative forms of the PICTURE clause, e.g. XXX, AAA,NNN, GGG or 999 may also be

used.

Software AG IDL Extractor for COBOL

473

COBOL to IDL Mapping

3. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes).

4. The character "P[(n)]" stands for a decimal scaling position, this character has no effect on the
length of the generated data type. Only the data fraction will be mapped to the Software AG
IDL:

01 GROUPI.
10 FIELDI PIC PPP9999.

will be mapped to IDL:

1 GROUP1
2 FIELDI NU4

5. Behavior depends on the COBOL compiler settings:

= With COBOL 85 standard, the value range depends on the number of digits in the PICTURE
clause. This differs from the value range of the IDL data type using the binary field size instead.
If the parameter is of direction "In" your RPC client application has to ensure the integer value
sent is within the allowed range. See Software AG IDL Grammar in the IDL Editor documenta-
tion.

® With no COBOL 85 standard, the value range of the COBOL data type reflects the binary field
size, thus matches the IDL data type exactly. In this case, there are no restrictions regarding
value ranges. For example:

® with operating system z/OS and IBM compiler, see option TRUNC(BIN) in your COBOL
compiler documentation

6. For unsigned COBOL data types (without "S" in the PICTURE clause) the value range of the IDL
data type differs:

® IDL allows negative values, COBOL does not.
" For 12, the maximum is 32767 for IDL instead of 65535 for COBOL.
® For I4, the maximum is 2147483647 for IDL instead of 4294967294 for COBOL.

7. COBOL binary or computational items with more than 9 digits in the PICTURE clause cannot be
mapped to IDL type L. See the following table:

S9(10) thru S9(18) |Binary doubleword (8 bytes)|-9,223,372,036,854,775 thru +9.223,372,036,854,775
9(10) thru9(18) Binary doubleword (8 bytes) |0 thru 18,446,744,073,709,551

8. COMPUTATIONAL-1 (4-byte, single precision) and COMPUTATIONAL - 2 items (8-byte, double precision)
items are an IBM-specific extension. When floating-point data types are used, rounding errors
can occut, so the values of senders and receivers might differ slightly.

474 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

9. COBOL alphanumeric/numeric edited items will force the generation of IDL data type A with
an inline comment containing the original COBOL PICTURE clause. The CURRENCY SIGN clause in
the SPECIAL-NAMES and the CURRENCY compiler option is not considered.

10. On platform IBM i, COBOL computational items are mapped by default to packed decimal.

11. On all platform except IBM i, COBOL computational items are mapped by default to IDL type
L

Software AG IDL Extractor for COBOL 475

COBOL to IDL Mapping

User-defined Mapping

Depending on the COBOL syntax and the COBOL server implementation, user interaction may
be required to get correct extraction results. User interaction can also simplify or modernize the
extracted IDL. As a result, the user-defined mapping is contained in a Designer file with extension
.cvm that contains COBOL-specific mapping information. See Server Mapping Files for COBOL in
the Designer documentation. The following is covered:

= Condition Names - Level-88 Data ltems
= COBOL Data ltems

® F|LLER Pseudo-Parameter

= REDEFINES Clause

= COBOL Tables with Fixed Size

= VALUE Clause

Condition Names - Level-88 Data Items
See the following COBOL syntax:

88 condition_name VALUE [IS] 'Titeral_I'
88 condition_name VALUE [IS] 'Titeral_I' [THRU | THROUGH] 'Titeral_2'
88 condition_name VALUES [ARE] 'Titeral_1' [THRU | THROUGH] 'Titeral_2'

Semantically, level-88 condition names can be

® Enumeration Type Values
If your COBOL server requires the level-88 value to be provided on a call-by-call basis, that is,
the value may change with every call, map the level-88 base variable to a simple IDL parameter
with the desired direction In or InOut. RPC clients have to pass correct values, the same as
defined by the level-88 condition names.

= Single Constant Values
If your COBOL server interface expects for your purpose always a constant value, map the level-
88 condition names to a constant. For more information and COBOL examples, see Mapping
Editor IDL Interface mapping function Set COBOL Data Items to Constants for interface type
DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same as Out, In dif-
ferent to Out) | Channel Container | Batch | IMS BMP | IMS Connect | COBOL Converter (In
same as Out, In different to Out).

* Function or Operation Codes
If your COBOL server implements verious functions or operations and the level-88 values are
function or operation codes, map the COBOL interface to multiple IDL interfaces. For more in-
formation and COBOL examples see the Mapping Editor IDL Interface mapping function Map
to Multiple IDL Interfaces for interface type DFHCOMMAREA (In same as Out, In differ-

476 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

ent to Out) | Large Buffer (In same as Out, In different to Out) | Channel Container | Batch |
IMS BMP | IMS Connect | COBOL Converter (In same as Out, In different to Out).

If the mapping functions Set COBOL Data Items to Constants or Map to Multiple IDL Interfaces
are used, a server mapping file is required to provide additional information. See Server Mapping
Files for COBOL.

COBOL Data Items

This section covers the following topics:

= |DL Directions for COBOL Data ltems

= |DL Parameter Names derived from COBOL Names

= COBOL Data Items Expecting Single Constant Values

= COBOL Data Items used as Function or Operation Codes
= Qptional COBOL Group Data ltems

= Unneeded COBOL Data Items

IDL Directions for COBOL Data Items

COBOL server programs do not contain parameter direction information (input, output). Therefore
IDL directions (see attribute-11st under Software AG IDL Grammar in the IDL Editor document-
ation) need to be added manually in the COBOL Mapping Editor. See Map to In, Out, InOut for
interface type DFHCOMMAREA (In same as Out) | Large Buffer (In same as Out) | Batch | IMS
BMP | In same as Out).

IDL Parameter Names derived from COBOL Names
Numbers in the first position of the parameter name are not allowed in Software AG IDL syntax

(see Software AG IDL Grammar in the IDL Editor documentation). Thus COBOL names starting
with a number are prefixed with the character "#" by default. For example:

01 1BSP PIC XXX.

by default will be mapped to Software AG IDL:

01 #f1BSP A(3).

If a parameter name is not specified, e.g.

Software AG IDL Extractor for COBOL 477

COBOL to IDL Mapping

01 GROUPI.
10 FIELD1 PIC XX.
10 PIC XX.

10 FIELD2 PIC S99.

10 FILLER PIC XX.

10 .

20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

see FILLER Pseudo-Parameter above.

You can rename all IDL parameters in the COBOL Mapping Editor. See IDL Interface for interface
type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same as Out, In
different to Out) | Channel Container | Batch | IMS BMP | IMS Connect | COBOL Converter
(In same as Out, In different to Out).

COBOL Data Items Expecting Single Constant Values

If your COBOL server interface expects for your purpose always a constant value, use Set COBOL
Data Items to Constants for interface type DFHCOMMAREA (In same as Out, In different to Out) |
Large Buffer (In same as Out, In different to Out) | Channel Container | Batch | IMS BMP |

IMS Connect | COBOL Converter (In same as Out, In different to Out).

COBOL Data Items used as Function or Operation Codes

If your COBOL server implements various functions or operations and the data items represent
function or operation codes, map the COBOL interface to multiple IDL interfaces. For more inform-
ation and COBOL examples see the Mapping Editor IDL Interface mapping function Map to Multiple
IDL Interfaces for interface type DFHCOMMAREA (In same as Out, In different to Out) | Large
Buffer (In same as Out, In different to Out) | Channel Container | Batch | IMS BMP | IMS Connect |
COBOL Converter (In same as Out, In different to Out).

Optional COBOL Group Data Items

If your COBOL server interface produces dissimilar shapes of optional output, COBOL group
data items can be mapped to multiple possible output (MPO). Criteria can be added under which
circumstances COBOL groups are part of the returned data or not. This is done with Mapping
Editor IDL Interface mapping function Set Multiple Possible Output (MPO) Structures for interface
type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same as Out, In
different to Out) | Channel Container | IMS Connect | COBOL Converter (In same as Out, In
different to Out).

478 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Unneeded COBOL Data Items

COBOL data items that are not needed in the IDL Interface but are required by the COBOL server
can be suppressed. See Suppress Unneeded COBOL Data Items for interface type DFHCOMMAREA
(In same as Out, In different to Out) | Large Buffer (In same as Out, In different to Out) | Channel
Container | Batch | IMS BMP | IMS Connect | COBOL Converter (In same as Out, In different to
Out)

FILLER Pseudo-Parameter

In the check box Map FILLER fields to IDL of the COBOL to IDL in the extraction settings of the
wizard (see Step 4: Define the Extraction Settings and Start Extraction) you can define whether
COBOL FILLER pseudo-parameters should be part of the RPC client interface by default or not.
By default they are not mapped to IDL. In the COBOL Mapping Editor you can change the mapping
for a FILLER field individually, e.g. mapping required ones to IDL. If FILLER fields are mapped to
IDL, they are made unique by appending a sequence number. You can set the prefix to be used
in the COBOL Preferences.

If the resulting names are not suitable, you can rename IDL field names in the Mapping Editor
with the Rename function of the context menu. See the following example:

01 GROUPI.
10 FIELDI PIC XX.
10 FILLER PIC XX.
10 FIELD2 PIC S99.
10 FILLER PIC XX.

This will be mapped to Software AG IDL:

1 GROUP1
2 FIELDI (A2)
2 FILLER_1 (A2)
2 FIELDZ (N2.0)
2 FILLER_2 (A2)

If a group is named FILLER and the group has scalar fields, the group is always mapped to IDL,
independent of the check box Map FILLER fields to IDL. For example:

01 GROUPI.
10 FIELD1 PIC XX.
10 PIC XX.

10 FIELD2 PIC S99.

10 FILLER PIC XX.

10 .

20 FIELD3 PIC S9(4) BINARY.
20 FIELD4 PIC S9(4) BINARY.

This will be mapped to Software AG IDL:

Software AG IDL Extractor for COBOL 479

COBOL to IDL Mapping

1 GROUP1

FIELDI (A2)
FILLER_1 (A2)
FIELD2 (N2.0)
FILLER_2 (A2)
FILLER_3

3 FIELD3 (I2)

3 FIELD4 (I2)

N NN NN

REDEFINES Clause

A redefinition is a second parameter layout of the same memory portion. In most modern program-
ming languages, and also the Software AG IDL, this is not directly supported. The following
possibilities are available to map COBOL REDEFINEs:

1. You can select a single redefine path for IDL usage. In this case, the COBOL server requires
predictable input and output structures. The redefine path can be determined at design time
(extraction time). This is supported for all IDL directions that is, In, Out and InOut. For more
information and COBOL examples, see Mapping Editor IDL Interface mapping function Select
REDEFINE Paths for interface type DFHCOMMAREA (In same as Out, In different to Out) |
Large Buffer (In same as Out, In different to Out) | Channel Container | Batch | IMS BMP |
IMS Connect | COBOL Converter (In same as Out, In different to Out).

If a REDEFINE path is selected, the mapping is as follows:

COBOL Syntax Software AG IDL Syntax

1 name_1 REDEFINES name_2|1 name_1I
1 REDEFINES name_2 1 FILLER_n
1 FILLER REDEFINES name_2|1 FILLER_n

2. If the COBOL server supports more than one type of input (redefine paths) but uses predictable
output structures, you can map the COBOL interface to multiple IDL interfaces. This is supported
for IDL direction In only. In this case, the redefine path used is selected as described under 1
above. For more information and COBOL examples, see Mapping Editor IDL Interface mapping
function Map to Multiple IDL Interfaces for interface type DFHCOMMAREA
(In same as Out, In different to Out) | Large Buffer (In same as Out, In different to Out) |
Channel Container | Batch | IMS BMP | IMS Connect | COBOL Converter
(In same as Out, In different to Out).

3. If the COBOL server produces more than one type of output (redefine paths) and implements
the multiple possible output (MPO) concept, you can map the redefine to MPO. In this case the
redefine path used is determined at runtime from a set of predefined redefine paths. The set of
alternate redefine paths is determined during design time (extraction time). This is supported
for IDL direction Out only. For more information and COBOL examples of the MPO concept,
see Mapping Editor IDL Interface mapping function Set Multiple Possible Output (MPO) Structures

480 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

for interface type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In
same as Out, In different to Out) | Channel Container | IMS Connect.

If a REDEFINE is mapped to multiple possible output (MPO), the mapping is as follows:

COBOL Syntax Software AG IDL Syntax
1 name_1 1 name_1 (/VI1)
2 name_1_1 . . 2 name_1_1 .

1 name_2 REDEFINES name_1|{1 name_2 (/VI)
2 name_Z2_1 . . 2 name_Z2_1.

1 name_3 REDEFINES name_1|1 name_3 (/V1)
2 name_3_1 . . 2 name_3_1 .

4. If the COBOL server supports more than one type of input (redefine paths) and implements

the multiple possible output (MPO) concept as well, you can combine extraction as described
under 2 and 3 above.

In all cases the, COBOL REDEFINE requires a server mapping file to provide additional information.
See Server Mapping Files for COBOL.

COBOL Tables with Fixed Size

The following possibilities are available to map COBOL tables with fixed size:

® By default, fixed-size COBOL tables are converted automatically to fixed-size IDL groups (see
group-parameter-definitionunder Software AG IDL Grammar in the IDL Editor documentation)
with fixed-bound-array (see array-definition under Software AG IDL Grammar in the IDL

Editor documentation). This is the usual way and is suitable for most situations. See the following
syntax:

COBOL Syntax Software AG IDL Syntax

1 name OCCURS n [TIMES]

1 name (/n)
2 name_1 .

2 name_1 .

Software AG IDL Extractor for COBOL 481

COBOL to IDL Mapping

COBOL Syntax Software AG IDL Syntax
1 name OCCURS n [TIMES] [ASCENDING | DESCENDING [KEY] [IS] < |1 name (/n)
key_name] 2 name_1 .

2 name_1 .
1 name OCCURS n [TIMES] [[INDEXED [BY] index_namel 1 name (/n)

2 name_1 . . 2 name_1 .

® In very rare situations, the COBOL server uses a fixed-size COBOL table in a variable-size
manner. In contrast - as the syntax implies - a variable number of elements is transferred in this
fixed-size array (input only, output only or both directions are possible). Array elements at the
end of the array are unused. The current number of elements can be calculated using different
approaches by the receiver of such an array. This is possible for message-oriented interface
types: DFHCOMMAREA, Large Buffer, Channel Container, IMS Connect. The fixed-sized COBOL
table must be the last parameter in the interface. For more information and COBOL examples
see the Mapping Editor IDL Interface mapping function Set Arrays (Fixed <-> Unbounded) for
interface type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same
as Out, In different to Out) | Channel Container | IMS Connect | COBOL Converter
(In same as Out, In different to Out).

The following rules apply:

® The combination of phrases ASCENDING and INDEXED BY and phrases DESCENDING and INDEXED
BY is meaningless for EntireX and therefore ignored by the IDL Extractor for COBOL.

= If the mapping function Set Arrays (Fixed <-> Unbounded) is used, a server mapping file is required
to provide additional information. See Server Mapping Files for COBOL.

VALUE Clause

The VALUE clause specifies the initial contents of a data item or the value(s) associated with a con-
dition name. For condition names, see Condition Names - Level-88 Data Items above.

COBOL Syntax

1 name <COBOL data type> VALUE [IS] 'literal’

Initial values can be specified on data items in the Working-Storage Section. As an IBM extension,
in the File and Linkage Sections, the VALUE clause is treated as a comment.

The IDL Extractor for COBOL ignores initial values of data items. The DATA DIVISION is parsed
as without the VALUE clause. If you require the value on input to the COBOL server you specify
to be a constant, see Set COBOL Data Items to Constants for interface type DFHCOMMAREA (In
same as Out, In different to Out) | Large Buffer (In same as Out, In different to Out) | Channel

482 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Container | Batch | IMS BMP | IMS Connect | COBOL Converter (In same as Out, In different to
Out).

DATA DIVISION Mapping

This section describes the COBOL syntax relevant for extracting the DATA DIVISION. No user de-
cisions in the COBOL Mapping Editor are required or possible here.

= BLANK WHEN ZERO Clause

= Continuation Lines

= DATE FORMAT Clause

= GLOBAL and EXTERNAL Clause

= JUSTIFIED Clause

= OBJECT REFERENCE Phrase

= POINTER Phrase

= PROCEDURE-POINTER Phrase

= RENAMES Clause - LEVEL 66 Data ltems

= SIGN LEADING and TRAILING SEPARATE Clauses
= SYNCHRONIZED Clause

= COBOL Tables with Variable Size - DEPENDING ON Clause
= Unstructured Data Types - LEVEL 77 Data ltems

= JSAGE Clause on Group Level

= USAGE IS INDEX Clause

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item contains nothing but spaces when its value is
zero. The BLANK WHEN ZERO clause is not considered by the IDL Extractor for COBOL. The DATA
DIVISION is parsed as without the BLANK WHEN ZERO clause. Because the BLANK WHEN ZERO clause
only has an impact if the item is displayed, such a program can be mapped to IDL. The workaround
for RPC clients is to imitate the BLANK WHEN ZERO clause.

Continuation Lines

Continuation lines, starting with a hyphen in the indicator area, are supported.

Software AG IDL Extractor for COBOL 483

COBOL to IDL Mapping

DATE FORMAT Clause

The DATE FORMAT clause is an IBM-specific extension. The DATE FORMAT clause specifies that a data
item is a windowed or expanded date field.

The DATE FORMAT clause is not considered by the IDL Extractor for COBOL. The DATA DIVISION
is parsed as without the DATE FORMAT clause. The semantic given by the DATE FORMAT clause has
to be considered by RPC clients.

GLOBAL and EXTERNAL Clause

The GLOBAL clause

" specifies that a data-name is available to every program contained within the program that de-
clares it, as long as the contained program does not itself have a declaration for that name.

" is not considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
GLOBAL clause.

However, program parameters containing the GLOBAL clause can be mapped to IDL, which can
make sense as long as the EXTERNAL DATA clause is used to pass parameters from the called COBOL
server to further subprograms called.

The EXTERNAL clause

*® can only be specified on data description entries that are in the Working-Storage section of a
program.

" isnot considered by the IDL Extractor for COBOL. The DATA DIVISION is parsed as without the
EXTERNAL clause.

| Note: EntireX RPC technology cannot pass data using EXTERNAL linkage from the RPC

server to the COBOL server. However, program parameters containing the EXTERNAL
clause can be mapped to IDL, which can make sense as long as the EXTERNAL DATA clause
is used to pass parameters from the called COBOL server to further subprograms called.

484 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

Passing external
data Is
possible here

/
L

JUSTIFIED Clause

The IDL Extractor for COBOL ignores the JUSTIFIED clause. The DATA DIVISION is parsed as
without the JUSTIFIED clause. The workaround for RPC clients is to imitate the JUSTIFIED clause.

OBJECT REFERENCE Phrase

The 0BJECT REFERENCE phrase is an IBM-specific extension. A program containing an 0BJECT
REFERENCE phrase cannot be mapped to IDL.

POINTER Phrase

The POINTER phrase is an IBM-specific extension.

COBOL Syntax Software AG IDL Syntax
1 name USAGE IS POINTER|none
1 name POINTER none

The following rules apply:

® All pointers are mapped to "suppressed" in the Mapping Editor because the Software AG IDL
does not support pointers.

Software AG IDL Extractor for COBOL 485

COBOL to IDL Mapping

" Offsets to following parameters are maintained by a server mapping file. See Server Mapping
Files for COBOL. At runtime, the RPC server passes a null pointer to the COBOL server.

PROCEDURE-POINTER Phrase

The PROCEDURE-POINTER phrase is an IBM-specific extension. A program containing a procedure-
reference phrase cannot be mapped to IDL.

RENAMES Clause - LEVEL 66 Data Items

Level-66 entries are ignored and cannot be used for mapping to IDL. The DATA DIVISION is parsed
as without the level-66 entry.

SIGN LEADING and TRAILING SEPARATE Clauses

The SIGN LEADING and TRAILING SEPARATE clauses are supported. Both require a server mapping
file. See Server Mapping Files for COBOL.

SYNCHRONIZED Clause

The synchronized clause aligns COBOL data items at word boundaries. The clause does not have
any relevance for RPC clients and is not written into the IDL file but into the server mapping file.
See Server Mapping Files for COBOL. At runtime, the RPC server aligns the data items accordingly.

COBOL Tables with Variable Size - DEPENDING ON Clause

Variable size COBOL tables are converted to IDL unbounded groups (see
group-parameter-definitionunder Software AG IDL Grammar in the IDL Editor documentation)
with an unbounded array (see array-definition under Software AG IDL Grammar in the IDL
Editor documentation) and maximum upper bound set. The lower-bound is always set to 1 in the
IDL. See the following example:

01 COUNTER-1 PIC 99.

01 TABLE OCCURS 1 TO 10 DEPENDING ON COUNTER-1
02 FIELDI PIC XX.

02 FIELDZ PIC 99.

The ODO subject (data item TABLE) will be mapped in the IDL to an unbounded group (with
maximum). The ODO object (data item COUNTER-1) is not part of the IDL because the number of
elements is implicitly available with the IDL unbounded group. See Map 0CCURS DEPENDING ON
for interface type DFHCOMMAREA (In same as Out, In different to Out) | Large Buffer (In same
as Out, In different to Out) | Channel Container | Batch | IMS BMP | IMS Connect | COBOL
Converter (In same as Out, In different to Out).

486 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

01 TABLES (/V10)
02 FIELDI (A2)
02 FIELDZ (NU2.0)

COBOL Syntax Software AG IDL Syntax
1 name OCCURS n TO m [TIMES] DEPENDING [ON] index 1 name (/Vm)
2 name_1 . . 2 name_1 .

1 name OCCURS n TO m [TIMES] DEPENDING [ON] 7ndex [ASCENDING | «|1 name (/Vm)
DESCENDING [KEY] [IS] key_name] 2 name_1 .
2 name_1 .

1 name OCCURS n TO m [TIMES] DEPENDING [ON] index [INDEXED « 1 name (/Vm)
[BY] index_name] 2 name_1 .
2 name_1 .

The following rules apply:

® The COBOL from value, n above, is semantically different from the IDL lower bound and means
a lower-bound of elements which must not be crossed. It is the duty of the calling RPC client to
take care of this and set the corresponding number of elements correctly. Do not send less than
the COBOL lower bound.

® The combination of the phrases ASCENDING and INDEXED BY and phrases DESCENDING and INDEXED
BY is meaningless for EntireX and therefore ignored by the IDL Extractor for COBOL.

® The COBOL clause 0CCURS DEPENDING ON requires a server mapping file to provide additional
information. See Server Mapping Files for COBOL.

Unstructured Data Types - LEVEL 77 Data ltems

COBOL level-77 data items are handled as COBOL data items on level 1. They are always mapped
to IDL level 1.

USAGE Clause on Group Level

A USAGE clause can be specified on group level, which defines the data type of subsequent groups
or parameters. The USAGE clause on subsequent groups or parameters may not contradict a higher
level definition. Therefore IDL data types may depend on USAGE clauses of parent groups if the
COBOL data structure is defined as explained.

Software AG IDL Extractor for COBOL 487

COBOL to IDL Mapping

USAGE IS INDEX Clause

COBOL data items defined with USAGE IS INDEX are parsed as without USAGE IS INDEX. The
USAGE IS INDEX clause isignored.

488 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

PROCEDURE DIVISION Mapping

This section discusses the syntax relevant for extraction of the PROCEDURE DIVISION:

= PROCEDURE DIVISION Header
= BY VALUE Phrase
= RETURNING Phrase

PROCEDURE DIVISION Header

For Batch and IMS BMP programs, the PROCEDURE DIVISION header is relevant for the COBOL
InOut parameters. The parameters of the header are suggested as default COBOL InOut parameters.

For CICS DFHCOMMAREA programs, the PROCEDURE DIVISION header is of no interest, because
the DFHCOMMAREA is the relevant information to get the COBOL InOut parameters from. If the
DFHCOMMAREA is defined in the linkage section all parameters of the DFHCOMMAREA are suggested as
default COBOL InOut parameters. If there is no DFHCOMMAREA, no suggestion is made.

For CICS Large Buffer, Channel Container and IMS MPP (IMS Connect) programs, parameters
are not suggested; you select the parameters in the Mapping Editor manually.

However, you can always add, change and correct the suggested parameters if they are not the
correct ones in the extraction wizard. See Step 5: Select the COBOL Interface and Map to IDL In-
terface in Using the IDL Extractor for COBOL.

BY VALUE Phrase

The BY VALUE clause is an IBM-specific extension for COBOL batch programes. It is ignored by the
IDL Extractor for COBOL. Directions are added in the Mapping Editor manually.

RETURNING Phrase

The RETURNING phrase is an IBM-specific extension for COBOL batch programs. It is ignored by
the IDL Extractor for COBOL. Handling is as without the phrase. No return value is transferred
during execution time. If the RETURNING phrase is relevant for the interface, the COBOL program
cannot be mapped to IDL.

Software AG IDL Extractor for COBOL 489

COBOL to IDL Mapping

Copybooks

Copybook Support

COPY statements are supported if nested copy statements do not recursively call the same source
file.

If copybooks cannot be located, the following rules apply:

* In the case of a remote extraction, the copybook location (data set) is unknown.

* Inthe case of a local extraction, either the copybook location (directory) or the copybook extension
is unknown.

* Inboth cases, the extraction wizard will appear with a dialog to browse for the copybook location
(local directory or remote data set) and allows you to append your copybook extensions. Both
will be saved in the preferences.

You can also predefine the following in the preferences:

* the copybook locations, see Define the remote copybook locations or Define the local copybook
locations in COBOL Preferences.

* the copybook extensions for local extractions, see Define the local copybook locationsin COBOL
Preferences.

Copybooks with REPLACE Option

COPY statements with the REPLACE option are supported. Beneath the REPLACE option, those
copybooks are worked off like all other copybooks above. Example:

® a copybook ACPYBK with REPLACE option

01 WS-ZEUGNIS.

:F: WS-AKTIONEN PIC 9(01).
slbg 2Cs=NEU VALUE "N'.
:L: :C:-MOD VALUE 'M'.
:L: :C:-INS VALUE 'I°'.
:L: :C:-WEG VALUE '"W'.
:L: :C:-SIG VALUE 'S"'.

:F: WS-NOTEN PIC X(03).
:L: SEHR-GUT VALUE 100.
:L: GUT VALUE 95 THROUGH 99.
:L: BEFRIEDIGEND VALUE 80 THROUGH 94.
:L: AUSREICHEND VALUE 50 THROUGH 79.
:L: MANGELHAFT VALUE 01 THROUGH 49.
:L: UNGENUEGEND VALUE 0.

490 Software AG IDL Extractor for COBOL

COBOL to IDL Mapping

* referencing the copybook above

COPY ACPYBK

REPLACING
—=:F:== BY ==10==,
==:l:== BY ==88==,
==:C:== BY ==CMD==,
95 BY 90,

94 BY 89,

WS-NOTEN BY WS-PROZENT,
==X(03)== BY ==9(03)==,
==9(01)== BY ==X(01)=-.

Software AG IDL Extractor for COBOL 491

492

	Software AG IDL Extractor for COBOL
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Introduction to the IDL Extractor for COBOL
	2 Introduction to the IDL Extractor for COBOL
	Introduction
	Extractor Wizard
	Mapping Editor
	Supported COBOL Interface Types
	Supported CICS COBOL Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface

	Batch with Standard Linkage Calling Convention
	IMS MPP Message Interface (IMS Connect)
	IMS BMP with Standard Linkage Calling Convention
	COBOL Converter
	What to do with other Interface Types?
	Compatibility between COBOL Interface Types and RPC Server
	Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

	II Using the IDL Extractor for COBOL - Overview
	Choosing a Scenario
	Before Starting an Extraction
	3 Scenario I: Create New IDL and Server Mapping Files
	Step 1: Start the IDL Extractor for COBOL Wizard
	Step 2: Select a COBOL Extractor Environment or Create a New One
	Step 3: Select the COBOL Source
	Selecting a COBOL Source Stored Locally
	Selecting a Member from a Partitioned Data Set on Remote Host (z/OS)
	Selecting a Member from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting a Member Archive Level from a CA Librarian Data Set on Remote Host (z/OS)
	Selecting an Element (S) from an LMS Library on Remote Host (BS2000)

	Step 4: Define the Extraction Settings and Start Extraction
	Step 4.1a: Copybook Cannot be Found - Local Extraction
	Step 4.1b: Copybook Cannot be Found - z/OS Remote Extraction
	Step 4.1c: Copybook Cannot be Found - BS2000 Remote Extraction
	Step 4.2: Copybook Status Summary (Optional)
	Step 4.3: Enter COBOL Program ID (Optional)

	Step 5: Select the COBOL Interface and Map to IDL Interface
	Step 6: Finish the Mapping Editor
	Step 7: Validate the Extraction and Test the IDL File

	4 Scenario II: Append to Existing IDL and Server Mapping Files
	5 Scenario III: Modify Existing IDL and Server Mapping Files

	III COBOL Mapping Editor
	Introduction
	IDL Extraction per Interface Type
	6 CICS with DFHCOMMAREA Calling Convention - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	Programming Techniques
	Example 1: Redefines
	Example 2: Buffer Technique
	Example 3: COBOL SET ADDRESS Statements

	7 CICS with DFHCOMMAREA Calling Convention - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	Programming Techniques
	Example 1: Redefines
	Example 2: Buffer Technique
	Example 3: COBOL SET ADDRESS Statements

	8 CICS with DFHCOMMAREA Large Buffer Interface - In same as Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	9 CICS with DFHCOMMAREA Large Buffer Interface - In different to Out
	Introduction
	Extracting from a CICS DFHCOMMAREA Large Buffer Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	10 CICS with Channel Container Calling Convention
	Introduction
	Extracting from a CICS Channel Container Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with Containers
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping
	Map Array of Containers
	Map Optional Containers

	11 COBOL Converter - In same as Out
	Introduction
	Extracting a COBOL Converter
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	12 COBOL Converter - In different to Out
	Introduction
	Extracting a COBOL Converter
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	13 Batch with Standard Linkage Calling Convention
	Introduction
	Extracting from a Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	14 IMS BMP with Standard Linkage Calling Convention
	Introduction
	Extracting from an IMS BMP Standard Call Interface
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to In, Out, InOut
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	15 IMS MPP Message Interface (IMS Connect)
	Introduction
	Extracting from an IMS MPP Message Interface Program
	Mapping Editor User Interface
	COBOL Program Selection
	COBOL Source View
	COBOL to IDL Mapping
	COBOL Interface
	Mapping Buttons
	IDL Interface

	Mapping Editor IDL Interface Mapping Functions
	Map to
	Map OCCURS DEPENDING ON
	Map to Multiple IDL Interfaces
	Select REDEFINE Paths
	Suppress Unneeded COBOL Data Items
	Set COBOL Data Items to Constants
	Set Arrays (Fixed <-> Unbounded)
	Set Multiple Possible Output (MPO) Structures
	Multiple Possible Output with REDEFINES
	Optional Output with Groups
	Complex MPO Selections
	MPO Terminology
	Steps

	Map to Binary and Revert Binary Mapping

	16 COBOL Preferences
	COBOL Wrapper Preferences
	Deployment Environments Preferences
	IDL Extractor for COBOL Preferences
	Manage COBOL Extractor Environments
	Creating a New Local Extractor Environment
	Creating a New Remote Extractor Environment (z/OS)
	Creating a New Remote Extractor Environment (BS2000)

	Define Prefixes for IDL Parameter Names

	17 COBOL to IDL Mapping
	COBOL Data Type to Software AG IDL Mapping
	User-defined Mapping
	Condition Names - Level-88 Data Items
	COBOL Data Items
	IDL Directions for COBOL Data Items
	IDL Parameter Names derived from COBOL Names
	COBOL Data Items Expecting Single Constant Values
	COBOL Data Items used as Function or Operation Codes
	Optional COBOL Group Data Items
	Unneeded COBOL Data Items

	FILLER Pseudo-Parameter
	REDEFINES Clause
	COBOL Tables with Fixed Size
	VALUE Clause

	DATA DIVISION Mapping
	BLANK WHEN ZERO Clause
	Continuation Lines
	DATE FORMAT Clause
	GLOBAL and EXTERNAL Clause
	JUSTIFIED Clause
	OBJECT REFERENCE Phrase
	POINTER Phrase
	PROCEDURE-POINTER Phrase
	RENAMES Clause - LEVEL 66 Data Items
	SIGN LEADING and TRAILING SEPARATE Clauses
	SYNCHRONIZED Clause
	COBOL Tables with Variable Size - DEPENDING ON Clause
	Unstructured Data Types - LEVEL 77 Data Items
	USAGE Clause on Group Level
	USAGE IS INDEX Clause

	PROCEDURE DIVISION Mapping
	PROCEDURE DIVISION Header
	BY VALUE Phrase
	RETURNING Phrase

	Copybooks
	Copybook Support
	Copybooks with REPLACE Option

