§ software

webMethods EntireX

Administration under UNIX

Version 10.8

October 2022

WEBMETHODS

This document applies to webMethods EntireX Version 10.8 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2022 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-ADMIN-108-20220601UNIX

Table of Contents

EntireX Administration under UNIXcccccoiiiiiiiiiiiiii, vii
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Setting up Broker INStancescccoviiiiiiiiiiiiiic 5
Startup Daemon for Broker Administrationccoccoeeiiiiiiiiiiiiiiiinicee 6
Setting up the TCP/IP Communicationccccuevviiiiiiiiiiiiiiiiiiiicccccc e, 6
Starting and Stopping the Default Broker ..o, 7
Running Broker with SSL/TLS Transportcccccoeviviiiiiiiiiiiiiiiiiiiccicciecceee, 7
Starting and Stopping an Additional Brokerc.cccooiiiiiiiiiiiii 8
Uniqueness Test for Broker IDcccccoiiiiiiiiiiiiiiiiiiiccccce e 9
Tracing EntireX Brokerc.coccooiiiiiiiiiiiiic 10
Protecting a Broker against Denial-of-Service Attacksccccccevviiiiiiiiiiniennnenne. 12
3 Configuring the Administration Servicecccccvviiiiiiiiiiiiiiiiiiii 13
4 Broker Atributescccooiiiiiiiiiii 15
Name and Location of Attribute Fileccccccoiiiiiiiiiii 17
Attribute SYNtaXocooieiiiiiii 17
Broker-specific Attributescccoeviiiiiiiiiiiiiii 19
Service-specific Attributes ..o 39
Codepage-specific Attributesc.cccooiviiiiiiiiii 51
Adabas SVC/Entire Net-Work-specific Attributescccccooviiviiiniiiiiiniinnnnnn. 54
Security-specific Attributes ... 57
TCP/IP-specific Attributescccoiviiiiiiiiiiiiiiiiiiccc e, 64
c-tree-specific Attributes ... 67
SSL/TLS-specific AtribULESoovviiiiiiiiiiiiii e 69
DIV-specific Attributesccccoviiiiiiiiiiiiiii 74
Adabas-specific Attributesc.cccoiiiiiiiiiii 76
Application Monitoring-specific Attributescccociiiiiiiiii 78
Authorization Rule-specific Attributesccocoiiiii 79
Variable Definition Filecccccooiiiiiiiiiiiiiii 80
5 Configuring Broker for Internationalizationccoccoviiiiii 81
Configuring ICU CONVersioncccceviiiiiiiiiiiiiiiiiiiiciccecce e 82
Building and Installing ICU Custom Converterscccoeveiiiiiiiiininiiiineninen. 84
Writing Translation User EXitsc.cocooiiiiiiiiii, 86
Configuring Translation User EXitscccoccivviiiiiiniiiiiiiiiiiie, 88
Writing SAGTRPC User EXitsccoooiiiiiiiiiii 89
Configuring SAGTRPC User EXitsccocceiviiiiiiiiiiiiiiiiiiiicicccecccee s 96
6 Managing the Broker Persistent Storecccocooiiiiiiiiii 97
Implementing an Adabas Database as Persistent Storeccocooiii, 98
c-tree Database as Persistent Store ..o 105
Migrating the Persistent Storec.cocoviiiiiiiiii 106
7 Broker Resource AllOCationccccoiiiuiiiiiiiiiiiiiiiiiici 109

Administration under UNIX

General Considerationsc.cccociiiiiiiiiiiiiiiiiiiiii 110
Specifying Global ReSOUICESc.ccoviiiiiiiiiiiiiiiiicicccccc 111
Restricting the Resources of Particular Servicescccccocvvviiiiiiiiiiiiiinnnnn. 111
Specifying Attributes for Privileged Servicescccocoviiiiiiiiiiii 113
Maximum Units of WOTKccoiiiiiiiiiii 114
Calculating Resources Automaticallyc.cocoviiiiiniiiiiiiiii 114
Dynamic Memory Managementcccccooiviiiiiiiiiiiiiiiiiiiiieccieees 116
Dynamic Worker Managementccccooouiiiiiiiiiiiiiiiiiiciiccec e 117
Storage RePOTtc.oooviiiiiiii 119
Maximum TCP/IP Connections per Communicatorcccceveiiiiiiiiininiineennn. 121
8 Administering Broker Stubs ..o 125
Available Stubs ..o 126
Transport Methods for Broker Stubsccoooiiiiiiiii 126
Tracing for Broker Stubsc.ccccooiiiiiiiiiiiiiii 130
Application Stublog Fileccccooiiiiiiiiiiiiiiii 131
UNIX Commands to Set the Environment Variablescccccccooiniiinnnn. 132
Support of Clustering in a High Availability Scenarioccccccovciiviinninnnnn. 132
Configuring the Socket PoOLccoviiiiiiiii 133
9 Broker Command-line Utilitiescccocuiiiiiiiiiiiiiiiii, 135
EEDINTO 1 136
etbemd ..o 145
10 Attach ManaeTccooovviiiiiiiiiiiiiiici e e 153
PrerequiSites ... 154
Setting up the Attach Managerc.ccccevviiiiiiiiiiiiiiic e, 154
Configuration File Syntax ..o 156
Sample Configuration Fileccccoooiiiiiiiiiiiiiiiiiic e 161
Operating the Attach Managerccccovviiiiiiiiiiiiiiii 163
11 Settting up and Administering the EntireX Broker TCP Agentcccccooeeenen. 167
COMMON SCENATIOSeovviiiiiiiiiiiiiiietie et 168
Indirect TCP/IP Connections by the TCP Agent to Avoid Security
RESIICHONS ..ovvviiiiiiciicc 169
Using the TCP AGENtccoiiiiiiiiiiiiiiccceece e 169
Activating Tracing for the TCP Agentcccociiiiiiiiiiiiiiiiiiiiee 170
Architecture of the Broker TCP Agentccccooviiiiiiiiiiiiiiiiiiiciccc, 171
12 Settting up and Administering the EntireX Broker SSL Agentc...coo 173
COMMON SCENATIOSeouviiiiiiiiiiiiiieiie et 174
Using the Broker SSL AGentccooiiiiiiiiiiiccc 174
Activating Tracing for the Broker SSL Agentcccccoocuiiiiiiiiiiiiiiiiiiiiicceeee, 175
Architecture of the Broker SSL Agentccccooviiiiiiiiiniiiiiiiiiii, 175
13 Settting up and Administering the EntireX Broker HTTP(S) Agent 177
HTTP(S) Tunneling with EntireXcccccoooiiiiiiiiiiiiiic, 178
Configuring the Broker HTTP(S) Agentc.ccccooiiiiiiiniiiiic 179
Using Internationalization with the Broker HTTP(S) Agentccccocoeviinnnnnnn. 181
Activating Tracing for the Broker HTTP(S) Agentccocooviiiiiiiiiiiiiiiin 181
14 Tracing webMethods ENtireXcc.ccooiiiiiiiiiiiiiiiiiii e 183

Administration under UNIX

Administration under UNIX

Table Summarizing Tracing for webMethods EntireX Components 184
Tracing EntireX BrokKer ... 185
Tracing Broker Agentccccccoiiiiiiiiiiiiiiiiiiiic 187
Tracing Broker Stubs ... 188
Tracing EntireX Java ACTccccooiiiiiiiiiiiiiii 189
Tracing RPC Server for Javac.cccovieviiiiiiiiiiiiccccce 190
Tracing the RPC RUNEIMEcociiiiiiiiiiiiiiice e 190
Tracing the XML/SOAP Runtimecccceeviiiiiiiiiiiiiiiiiiiiiiiciceccecn 191
Tracing the EntireX RPC-ACI Bridgeccccoooiiiiiiiiiiiii, 196
Enabling Java Trace of SPM PIUg-INscccooviiiiiiiiiiiiiiiiiiiiiiecece 196
15 EntireX Trace UtIlityc.cooooiiiiiiiiiicc e 199
Introduction to the EntireX Trace Utilitycccocceviiiiiiiiiiiiiiiiiiiiieiee, 200
Process Tracec.coouiiiiiiiiiiiiiiccc 200
SROW TIACE ...ooviiiiiiiiiiiii i 208
Using the EntireX Trace Utility in Batch Modeccccooviiiiiiiiiiiiii, 209
USAZE TIPS weiiiiiiiiiiie e 210
16 Broker Shutdown StatiSticsccccciiviiiiiiiiiiiiiiiiii 213
Shutdown Statistics Outputccooiiiiiiiii 214
Table of Shutdown Statisticsccccoviiiiiiiiiiiiiiii, 214
17 Command Logging in EntireXccccccoiiiiiiiiiiiiiiiiiiiien 219
Introduction to Command LOggINgcccooueiiiiiiiiiiiiiiiiicce 220
Command Log Filtering using Command-line Interface etbemd 222
ACI-driven Command Loggingccocveviiiiiiiiiiiiccec 223
Dual Command Log Filescccocoviiiiiiiiiiiiiiiiiiciccccc 224
18 Accounting in EntireX BrokKer ..o 225
EntireX Accounting Data Fieldsc.ccccooiiiiiiiiiiiiiiiicce, 226
Using Accounting under UNIX and Windowscccevviiiiiiiiiiiiiiiiiniinnn, 229
Example Uses of Accounting Datacocoeieiiiiiiiiiiiiiiiiccccc e 230

Administration under UNIX Vv

vi

EntireX Administration under UNIX

Broker Configuration

Broker-related configuration topics.

Broker Add-ons

Broker stubs, command-line utilities, Attach Manager.

Broker Agents

Broker Agents.

RPC Servers and Listeners

RPC servers and listeners under UNIX.

Logging and Tracing EntireX

Logging, tracing and accounting.

Vii

viii

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-

wareag.com.

Administration under UNIX

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

About this Documentation

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

® Browse through our vast knowledge base.

" Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.
® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Administration under UNIX 3

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Setting up Broker Instances

= Startup Daemon for Broker AdminiStrationoooiiiiiiiiiiiie e 6
= Setting up the TCP/IP COMMUNICALIONcciiiiiieiiiiii ettt e e e e e e e eee e 6
= Starting and Stopping the Default BrOKETcoiiiiiiiiii e 7
= Running Broker With SSL/TLS TranSPOItccouuriiiiiiiiie e 7
= Starting and Stopping an Additional BroKETccoiiiiiiiiiii e 8
B Uniqueness TeSt fOr BrOKEE 1Deeiiiieie i ae e e 9
I To T L= G = 0] (- PSPPSR PPPPPPPPPPPPPPPPN 10
= Protecting a Broker against Denial-of-Service AACKSc..ovviiiiiiiiii 12

Setting up Broker Instances

This chapter contains information on setting up the Broker under UNIX. It assumes that you have
successfully installed EntireX using the Software AG Installer.

Startup Daemon for Broker Administration

When installation is complete, the daemon is running and ready to be used by etbsrv script located
in directory <Installation_Dir>/EntireX/bin. This script can be used, for example, to start or stop the
broker.

~ To start the daemon
= Enter the following command:

- {Installation_Dir>/EntireX/bin/sagexx108 start

~ To stop the daemon

= Enter the following command:

- <Installation_Dir>/EntireX/bin/sagexx108 stop

It is also registered to startup at boot time, therefore the installation generates additional scripts
in a location that depends on the operating system:

Operating System |Location |Note

Linux /etc/init.d |Recent Linux versions use systemd instead of init scripts.

Setting up the TCP/IP Communication

The recommended way to set up TCP/IP is to define attribute PORT=nnnn and optionally
HOST=x.x.x.x| hostname in the TCP-specific section of the broker attribute file.

If no port number is specified, the EntireX Broker kernel uses getservbyname to determine the
TCP/IP port on which it will listen for incoming connections. The specified name is the value of
BROKER-ID in the attribute file.

An entry for this value must be made in the local machine's /etc/services file, for example:

6 Administration under UNIX

Setting up Broker Instances

etbnnn yyyyy/tcp # local host

where etbnnn is the BROKER-ID and
yyyyy 1isthe intended port number.

This is the same place that local broker stubs will obtain the port information. If getservbyname
fails, the default port number 1971 is used. This is the same default port number that the stubs
use.

Starting and Stopping the Default Broker

If check box Turn on Autostart for default EntireX Broker is checked during installation, the default
broker ETB001 is started.

> To start the default broker

s Enter command:

{Installation_Dir>/EntireX/bin/defaultbroker start

~ To stop the default broker

s Enter command:

<Installation_Dir>/EntireX/bin/defaultbroker stop

Running Broker with SSL/TLS Transport

The Broker can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. RPC-based clients and servers
as well as AClI clients and servers are always SSL clients. The broker is always the SSL server. For
an introduction see SSL/TLS, HTTP(S), and Certificates with EntireX in the platform-independent
Administration documentation.

Administration under UNIX 7

Setting up Broker Instances

Before starting the Broker, it must be configured to correctly use SSL as a transport mechanism:

~ To set up SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Modify broker-specific attributes.

Append "-SSL" to the TRANSPORT attribute. For example:

DEFAULTS = BROKER
TRANSPORT = TCP-SSL

See also TRANSPORT.
3 Set the SSL attributes, for example:

DEFAULTS = SSL
KEY-STORE = /<Install_Dir>/EntireX/etc/ExxAppCert.pem
KEY-PASSWD-ENCRYPTED = MyAppKey
KEY-FILE = /<Install_Dir>/EntireX/etc/ExxAppKey.pem
VERIFY-CLIENT = N
PORT=1958

where 1958 is the default but can be changed to any port number.

See also SSL/TLS-specific Attributes and SSL/TLS, HTTP(S), and Certificates with EntireX.

4 Make sure the SSL clients connecting to the broker are prepared for SSL connections as well.
See Using SSL/TLS with EntireX Components.

Starting and Stopping an Additional Broker

A default broker is always created during installation. This broker is started automatically by de-
fault.

1. Create a subdirectory called ETBnnnunder $EXXDIR/etb if it does not yet exist, place the attribute
file under ETBnnn and name it etbfile.

Example:

8 Administration under UNIX

Setting up Broker Instances

cd $EXXDIR/etb
mkdir ETB002
cp /tmp/your attribute file ETB0O02/etbfile

2. The broker can be started by executing shell script etbstart in the /<Install_Dir>/EntireX/bin dir-
ectory, using the syntax:

etbstart ETBnnn

where ETBnnn is the assigned Broker ID (for example ETB001).

3. The broker can be stopped by executing the etbcmd utility in the /<Install_Dir>/EntireX/bin dir-
ectory using the syntax:

etbcmd -bbroker-id -dBROKER -cSHUTDOWN

Optional: The broker can also be shut down in any of the following ways:

= etbcmd -blocalhost:port -dBROKER -cSHUTDOWN
= etbcmd -bipaddress:port -dBROKER -cSHUTDOWN

= etbcmd -bmachinename:port -dBROKER -cSHUTDOWN

The port number is needed only when the broker is not running on the standard port.
See also Broker Shutdown Statistics and Setting up TCP/IP Transport.

| Note: The information given here is independent of hardware type and platform.

Uniqueness Test for Broker ID

To guarantee that a broker ID is unique on one machine, a named semaphore is created at initial-
ization. If this semaphore already exists for this broker ID, initialization is terminated with message
ETBEO0168, “This instance of broker already running”. If as a result of an abnormal broker termin-
ation this semaphore cannot be deleted completely, you can force a restart of the Broker with
Broker attribute FORCE=YES.

Administration under UNIX 9

Setting up Broker Instances

Tracing EntireX Broker

This section covers the following topics:

= Broker TRACE-LEVEL Attribute

= Attribute File Trace Setting

m Deferred Tracing

= Dynamically Switching On or Off the EntireX Broker Trace
= Trace File Handling

Broker TRACE-LEVEL Attribute

The Broker TRACE- LEVEL attribute determines the level of tracing to be performed while Broker is
running. The Broker has a master TRACE - LEVEL specified in the Broker section of the attribute file
as well as several individual TRACE - LEVEL settings that are specified in the following sections of
the attribute file.

Individual Settings Specified in Attribute File Section Note
Master trace level DEFAULTS=BROKER 1,2
Persistent store trace level DEFAULTS=ADABAS | CTREE | DIV 1
Conversion trace level DEFAULTS=SERVICE; Trace option of the service-specific broker
attribute CONVERSTON.
Security trace level DEFAULTS=SECURITY 1
Transport trace level DEFAULTS=TCP | SSL 1
Application Monitoring trace level |[DEFAULTS=APPLICATION-MONITORING

] Notes:

1. For temporary changes to the master or individual TRACE - LEVEL without restarting the Broker,
use the Broker command-line utility etbcmd.

2. For temporary changes to the master TRACE - LEVEL without restarting the broker, use Command
Central. See Changing the Trace Level Temporarily.

10 Administration under UNIX

Setting up Broker Instances

Attribute File Trace Setting

Trace Level | Description

0 No tracing. Default value.

1 Traces incoming requests, outgoing replies, and resource usage.
2 All of Trace Level 1, plus all main routines executed.

3 All of Trace Level 2, plus all routines executed.

4 All of Trace Level 3, plus Broker ACI control block displays.

| Note: Tracelevels 2 and above should be used only when requested by Software AG Support.

Deferred Tracing

It is not always convenient to run with TRACE-LEVEL defined, especially when higher trace levels
are involved. Deferred tracing is triggered when a specific condition occurs, such as an ACI response
code or a broker subtask abend. Such conditions cause the contents of the trace buffer to be written,
showing trace information leading up the specified event. If the specified event does not occur,
the Broker trace will contain only startup and shutdown information (equivalent to TRACE - LEVEL=0).
Operating the trace in this mode requires the following additional attributes in the broker section
of the attribute file. Values for TRBUFNUM and TRAP - ERROR are only examples.

Attribute Value |Description

TRBUFNUM |3 Specifies the deferred trace buffer size =3 * 64 K.

TRMODE WRAP |Indicates trace is not written until an event occurs.
TRAP-ERROR|322 |Assigns the event ACI response code 00780322 "PSI: UPDATE failed".

Dynamically Switching On or Off the EntireX Broker Trace

The following methods are available to switch on or off the EntireX Broker trace dynamically. You
do not need to restart the broker for the changes to take effect.

" etbcmd
Run command utility etbcmd with option -¢ TRACE-ON or - ¢ TRACE-OFF. See etbcmd.

® Command Central
Use Command Central. See Updating the Trace Level under Administering the EntireX Broker using
the Command Central GUI | Command Line.

Administration under UNIX 1

Setting up Broker Instances

Trace File Handling

Attributes MAX-TRACE-FILES and TRACE-FILE-SIZE are used to avoid a constantly growing ETB.LOG
file. The trace is written to file ETB.LOG until TRACE-FILE-SIZE has been reached and a new file
is opened. The number of files defined in MAX-TRACE-FILES is kept in addition to the current
ETB.LOG file.

Example: If you define MAX-TRACE-FILES=9 and TRACE-FILE-SIZE=100M, the current ETB.LOG
will be closed after 100 MB have been written. A maximum of nine backup files plus the current
ETB.LOG file are kept.

Protecting a Broker against Denial-of-Service Attacks

An optional feature of EntireX Broker is available to protect a broker running with SECURITY=YES
against denial-of-service attacks. An application that is running with invalid user credentials will
get a security response code. However, if the process is doing this in a processing loop, the whole
system could be affected. If PARTICIPANT-BLACKLIST is set to YES, EntireX Broker maintains a
blacklist to handle such “attacks”. If an application causes ten consecutive security class error
codes within 30 seconds, the blacklist handler puts the participant on the blacklist. All subsequent
requests from this participant are blocked until the BLACKLIST-PENALTY - TIME has elapsed.

Server Shutdown Use Case
Here is a scenario illustrating another use of this feature that is not security-related.

An RPC server is to be shut down immediately, using Broker Command and Information Services
(CIS), and has no active request in the broker. The shutdown results in the LOGOFF of the server.
The next request that the server receives will probably result in message 00020002 "User does not
exist", which will cause the server to reinitialize itself. It was not possible to inform the server that
shutdown was meant to be performed.

With the blacklist, this is now possible. As long as the blacklist is not switched off, when a server
is shut down immediately using CIS and when there is no active request in the broker, a marker
is set in the blacklist. When the next request is received, this marker results in message 00100050
"Shutdown IMMED required", which means that the server is always informed of the shutdown.

12 Administration under UNIX

3 Configuring the Administration Service

The Administration Service allows you to start, stop, and retrieve the status of a local broker.

It is provided in a fully functional state and is started by the installation. It needs access to local
port 57909 with restriction to local users.

The port of the Administration Service can be changed in the configuration file etc/brokeradminwrap-
per.conf. If you change the port you need to restart the administration service. This is the line to
change:

wrapper.java.additional.101=-Dcom.sun.management.jmxremote.port=57909

In most cases you will not need to change the configuration file. The log files provide more inform-
ation about the service and can help you analyze the cause of any error that occurs. The log file is
called wrapper.log and is located in config/etb.

The Administration Service requires SSL certificates to create brokers with SSL ports. These certi-
ficates are for test purposes only and constitute a security risk. If you want to use SSL, replace the
certificates in the efc directory with your own SSL certificates.

When a broker is created, the Administration Service copies the required certificates from the
EntireX efc directory to the working directory of the newly created broker.

If the certificates are to be replaced after the installation, you also need to replace the certificates
in the working directories ETB001 (Default Broker) and in the EntireX directory etc.

13

14

4 Broker Attributes

= Name and Location of AtrDULE Fileooveeiiii e 17
B AADUIE SYNMIAX 1.t 17
® Broker-Specific AtIDUIESooi s 19
B Service-SPECific ARTDULIES ... e 39
B Codepage-Specific AfHDULESiiiiiiii e 51
= Adabas SVC/Entire Net-Work-specific ARFDULESooiiiiiiiiii e 54
B SeCUrity-SPECIfiC AIMDULESvviiiiiie e 57
B TCP/IP-SPECIfiC AIIDULESvvieiiieeeee e e e e e e e e 64
B C-tree-SPECIfiC AHIIDULESeeiiiiee e 67
B SSL/TLS-SPECIfIC ATDULESvvvieiiie e e e 69
B DIV-SPECfic ALIDULES ... e 74
B Adabas-Specific ALHDUIES ... 76
= Application Monitoring-specific AtDULESoooiiiii e 78
= Authorization Rule-Specific AIMDULESuvviiiiiiiiiii e 79
B Variable DEfINIION FlEiiiii e 80

15

Broker Attributes

| Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to

all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, as well as of the Broker itself. You can customize the
Broker environment by modifying the attribute settings.

16 Administration under UNIX

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

Platform |File Name/Location

UNIX |File etbfile in directory <InstD7ir>/EntireX/config/etb/<BrokerName> (default) *

* When starting a broker manually, name and location of the broker attribute file can be overwrit-

ten with the environment variable ETB_ATTR.

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value

The following rules and restrictions apply:

A line can contain multiple entries separated by commas.

Attribute names can be entered in mixed upper and lowercase.
Spaces between attribute names, values and separators are ignored.
Spaces in the attribute names are not allowed.

Commas and equal signs are not allowed in value notations.

Lines starting with an asterisk (*) are treated as comment lines. Within a line, characters following
an * or # sign are also treated as comments.

The CLASS keyword must be the first keyword in a service definition.

Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

Attribute values can contain variables of the form ${variable name} or $variable name:

® Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

® The variable name can contain only alphanumeric characters and the underscore (_) character.

* The first non-alphanumeric or underscore character terminates the variable name.

Administration under UNIX 17

Broker Attributes

® Under UNIX and Windows, the string ${variable name} is replaced with the value of the
corresponding environment variable.

® On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

= If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable name will be used as the variable value.

= If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

18 Administration under UNIX

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section begins with the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem

is corrected.

¢ Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large

values for the broker attributes that define the global resources.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows | BS2000
ABEND-LOOP-DETECTION YES I NO @] z u w b

YES Stop broker if a task terminates abnormally twice, that is, the same abend reason
at the same abend location already occurred. This attribute prevents an infinite

abend loop.
NO Use only if requested by Software AG Support. This setting may make sense if a

known error leads to an abnormal termination, but a hotfix solving the problem
has not yet been provided. Reset to YES when the hotfix has been installed.

ABEND-MEMORY -DUMP

YES I NO ‘ O ‘ z ‘ u ‘ w ’ b

YES Print all data pools of the broker if a task terminates abnormally. This dump is
needed to analyze the abend.

NO If the dump has already been sent to Software AG, you can set to NO to avoid the
extra overhead.

ACCOUNTING

NO 1'128-255 ®) z

NO | YESLSEPARATOR=char] ®) u w b

Determines whether accounting records are created.

NO Do not create accounting records.

nnn The SMF record number to use when writing the accounting records.

YES Create accounting data.
char=separator character(s). Up to seven separator characters can be specified
using the SEPARATOR suboption, for example:

ACCOUNTING = (YES, SEPARATOR=;)
If no separator character is specified, the comma character will be used.

See also Accounting in EntireX Broker in the platform-specific Administration

documentation.

ACCOUNTING-VERSION

112131415 ‘O‘z‘u‘wlb

Administration under UNIX

19

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

Determines whether accounting records are created.

1 Collect accounting information. This value is supported for reasons of compatibility
with EntireX Broker 7.2.1 and below.

2 Collect extended accounting information in addition to that available with option 1.
3 Create accounting records in layout of version 3.
4 Create accounting records in layout of version 4.

5 Create accounting records in layout of version 5.

This parameter applies when ACCOUNTING is activated.

ACI-CONVERSION

YES | NO ‘O‘z‘u‘wlb

Determines the handling of ACI request and response strings of USTATUS.

YES Convert ACI request and response strings with ICU. See ICU Conversion in the
Internationalization documentation.

NO Translate ACI request and response with internal translation table without support
of national characters. See Translation User Exit in the Internationalization
documentation.

Note: This attribute was undocumented in EntireX versions prior to 10.3 and had

default value NO. This meant that a translation user exit was used instead; this is no
longer recommended.

APPLICATION-MONITORING

YES | NO ‘ O ‘ z ‘ u ‘ w ’ b

or Enable application monitoring in EntireX Broker.
APPMON
YES Enable application monitoring.
NO Disable application monitoring.
See the separate Application Monitoring documentation.
AUTOLOGON YES I'NO @) z u w b
YES LOGON occurs automatically during the first SEND or REGISTER.
NO The application has to issue a LOGON call.
AUTOSTART NO | YES | o | | u | ow]
This attribute defines the autostart behavior of a broker.
NO Broker is not started automatically with the next system start.
YES Broker is restarted automatically with the next system start.
20 Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ’ Windows ’ BS2000
Note: Prior to EntireX version 10.5 this was handled by the Broker Administration
Service.
BLACKLIST-PENALTY-TIME [5M | n | nS | nM 1 nH | R | oz | u | w | b

Define the length of time a participant is placed on the PARTICIPANT-BLACKLIST to
prevent a denial-of-service attack.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
Administration documentation.

BROKER-ID

A3?2 ‘R‘z‘u‘w’b

Identifies the broker to which the attribute file applies. The broker ID must be unique
per machine.

Note: The numerical section of the BROKER- ID is no longer used to determine the DBID

in the EntireX Broker kernel with Entire Net-Work transport (NET). To determine the
DBID, use attribute NODE in the DEFAULTS=NET section of the attribute file.

CLIENT-NONACT

15MInltnST nAM 1 nH ‘ R ’ z ’ u ’ w ’ b

Define the non-activity time for clients.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

A client that does not issue a broker request within the specified time limit is treated
as inactive and all resources for the client are freed.

CMDLOG

NO I YES (@) z u w b

NO Command logging will not be available in the broker.

YES Command logging features will be available in the broker.

CMDLOG-FILE-SIZE

1024 1 n ‘O‘z‘u‘wlb

Defines the maximum size of the file that the command log is written to, in kilobytes.
The value must be 1024 or higher. The default value is 1024. When one command log
file grows to this size, broker starts writing to the other file. For more details, see
Command Logging in EntireX.

CONTROL-INTERVAL

60S 1 nlnStnaMl nH ‘ 0 ‘ z ‘ u ‘ w] b

Administration under UNIX

21

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the elapsed
CONTROL-INTERVAL time.

n Same as nS.
nS Interval in seconds (max. 2147483647).
nM Interval in minutes (max. 35791394).

nH Interval in hours (max. 596523).

The minimum value is 16 seconds. We strongly recommend the default value (60
seconds), except for very slow machines.

CONV-DEFAULT

UNLIM | n ‘O‘z‘u‘w‘b

Default number of conversations that are allocated for every service.

UNLIM The number of conversations is restricted only by the number of conversations
globally available. Precludes the use of NUM-CONVERSATION.

n Number of conversations.

This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.

DEFERRED

NO | YES ‘O‘zlulwlb

Disable or enable deferred processing of units of work.

NO Units of work cannot be sent to the service until it is available.

YES Units of work can be sent to a service that is not up and registered. They will be
processed when the service becomes available.

DYNAMIC-MEMORY -
MANAGEMENT

YES I NO (@] z u w b

YES An initial portion of memory is allocated at broker startup based on defined
NUM-* attributes or internal default values if no NUM-* attributes have been
defined. More memory is allocated without broker restart if there is a need to use
more storage. Unused memory is deallocated. The upper limit of memory
consumption can be defined by the attribute MAX-MEMORY. See Dynamic Memory
Management under Broker Resource Allocation in the platform-independent
Administration documentation.

NO All memory is allocated at broker startup based on the calculation from the
defined NUM- * attributes. Size of memory cannot be changed. This was the known
behavior of EntireX 7.3 and earlier.

22

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows| BS2000

If you run your broker with attribute DYNAMIC-MEMORY -MANAGEMENT=YES, the
following attributes are not needed:

= CONV-DEFAULT B NUM-CONV[LERSATION]
= HEAP-SIZE ® NUM-LONG[-BUFFER]

® | ONG-BUFFER-DEFAULT = NUM-SERVER

= SERVER-DEFAULT = NUM-SERVICE-EXTENSION
® SHORT-BUFFER-DEFAULT = NUM-SERVICE

® NUM-CLIENT B NUM-SHORT[-BUFFER]
= NUM-CMDLOG-FILTER = NUM-UQW|MAX-UQOWS|MUOW

= NUM-COMBUF = NUM-WQE

Caution: However, if one of these attributes is defined, it determines the allocation

size of that particular broker resource.

DYNAMIC-WORKER-
MANAGEMENT

NO | YES ‘ (@] ‘ z ‘ u ‘ w ‘ b

NO All worker tasks are started at broker startup. The number of worker tasks is
defined by NUM-WORKER. After this initial step, no further worker tasks can be
started. This is default and simulates the behavior of EntireX version 8.0 and
earlier.

YES Asabove, the initial portion of worker tasks started at broker startup is determined
by NUM-WORKER. However, if there is a need to handle an increased workload,
additional worker tasks can be started at runtime without restarting broker.
Conversely, if a worker task remains unused, it is stopped. The upper and lower
limit of running worker tasks can be defined by the attributes WORKER-MIN and
WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following attributes
are useful to optimize the overall processing:

= WORKER-MAX ®= WORKER-MIN = WORKER-NONACT

® WORKER-QUEUE-DEPTH ® WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number of worker tasks started during
initialization. See Dynamic Worker Management.

ETBCOM

NO I YES @] z u w

YES I'NO @) b

Bundles the output of the various broker tasks in task ETBCOM.

FORCE

NO | YES ‘o‘ ‘u‘ ‘

Administration under UNIX

23

Broker Attributes

opt/ Operating System

Attribute Values Req z/0S ‘ UNIX ’ Windows ’ BS2000

NO Go down with error if IPC resources still exist.

YES Clean up the left-over IPC resources of a previous run.

Note:

1. If broker is started twice, the second instance will kill the first by removing the IPC

resources.

2. For z/OS and BS2000, see separate attribute FORCE under DEFAULTS=NET.

HEAP-SIZE 1024 | n | o | z | u | w | b

Defines the size of the internal heap in KB. Not required if you are using
DYNAMIC-MEMORY -MANAGEMENT. If you are not using dynamic memory management,
we strongly recommend specifying - as a minimum - the default value of 1024 KB.

ICU-CONVERSION

YES I NO ‘ @) ‘ z ‘ u ‘ w | b

Disable or enable ICU conversion.

YES ICU is loaded and available for conversion. It is a prerequisite for
CONVERSION=SAGTCHA and CONVERSION=SAGTRPC.

NO ICU is not loaded and not available for conversion. CONVERSTON=SAGTCHA and
CONVERSION=SAGTRPC cannot be used.

If any of the broker service definitions uses the character conversion approach ICU
Conversion, thatis, CONVERSION=SAGTCHA or CONVERSION=SAGTRPC, ICU-CONVERSION
must be set to YES. If you are using only a user exit (see User Exits under Introduction
in the Internationalization documentation) or CONVERSION=NO as character conversion
approach for all your broker service definitions, ICU-CONVERSION can be set to NO.

ICU requires additional storage to run properly. If ICU conversion is not needed, setting
ICU-CONVERSION to NO will help to avoid unnecessary storage consumption.

ICU-DATA-DIRECTORY

Folder or directory name in @) z u w
quotes.

The location where the broker searches for ICU custom converters. See Building and
Installing ICU Custom Converters in the platform-specific Administration documentation.

I[CU-SET-DATA-DIRECTORY

YES | NO ‘ @] ‘ z ’ u ’ w ’

Disable or enable ICU custom converter usage.

YES The broker tries to locate ICU custom converters with the mechanism defined by
the platform. See Building and Installing ICU Custom Converters in the
platform-specific Administration documentation.

NO Use of ICU custom converters is not possible.

IPV6

YES | NO ‘ O ‘ z ‘ u ‘ w ’ b

24

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

YES Establish SSL and TCP/IP transport in IPv6 and IPv4 networks according to the
TCP/IP stack configuration.

NO Establish SSL and TCP/IP transport in IPv4 network only.

This attribute applies to EntireX version 9.0 and above.

LONG-BUFFER-DEFAULT

UNLIM | n ‘O’z’u’w’b

Number of long buffers to be allocated for each service.

UNLIM The number of long message buffers is restricted only by the number of buffers
globally available. Precludes the use of NUM-LONG-BUFFER.

n Number of buffers.

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the service. A
value of 0 (zero) is invalid.

MAX-MEMORY

QInInKInMInGIUNLIM‘ o ‘ z ‘ u ‘ w ‘ b

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

0, UNLIM No memory limit.

others Defines the maximum limit of allocated memory. If limit is exceeded, error
671 “Requested allocation exceeds MAX-MEMORY” is generated.

MAX-MESSAGE-LENGTH

2147483647 | n ‘ 0 ‘ z ‘ u ‘ w | b

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive number that
can be stored in a four-byte integer.

MAX-MESSAGES-IN-UQW

161 n ‘ (@] ‘ z ‘ u ‘ w | b

Maximum number of messages in a unit of work.

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-TRACE-FILES

41 n (@) u w

Defines the number of backup copies of the trace file ETB.LOG. Minimum number is
1; maximum is 999. A new trace file is allocated when the value for TRACE-FILE-SIZE
is exceeded. These two attributes prevent a constantly growing ETB.LOG file. See Trace
File Handling under UNIX | Windows.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE-LENGTH.

MAX-UOWS

0ln ‘ (@] ‘ z ‘ u ‘ w ‘ b

The maximum number of UOWs that can be concurrently active broker-wide. The
default value is 0 (zero), which means that the broker will process only messages that
are not part of a unit of work. If UOW processing is to be done by any service, a
MAX-UOWS value must be 1 or larger for the broker.

Administration under UNIX

25

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

The MAX - UOWS value for the service will default to the value set for the broker. NUM-UOW
is an alias of this parameter.

MESSAGE-CASE

NONE | UPPER | LOWER ‘ e} ‘ z | u | w | b

Indicates if certain error message texts returned by the broker to its clients or written
by the broker to its log file are to be in mixed case, uppercase, or lowercase.

NONE No changes are made to message case.
UPPER Messages are changed to uppercase.

LOWER Messages are changed to lowercase.

MUOW See NUM-UOW.
NEW-UOW-MESSAGES YES | NO ‘ 0 ‘ z ‘ u ‘ w] b

YES New UOW messages are allowed.

NO New UOW messages are not allowed.

This applies to UOW when using Persistence and should not be used for non-persistent
UOWs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down. You can set
NEW-UOW-MESSAGES to NO to prevent new UOW messages from being added after a
broker restart. This action allows only consumption (not production) of UOWs to occur
after broker restart. After the persistent store capacity has been sufficiently reduced,
the EntireX Broker administrator can issue a CIS command, see ALLOW-NEWUOWMSGS.
This action allows new UOW messages to be sent to the broker. Reset attribute
NEW-UOW-MESSAGES to YES, which permits new UOW messages to be produced in
subsequent broker sessions.

NUM-BLACKLIST-ENTRIES

256 1 n ‘ @] ‘ z ‘ u ‘ w ‘ b

Number of entries in the participant blacklist. Default value is 256 entries. Together
with BLACKLIST-PENALTY-TIME and PARTICIPANT-BLACKLIST, this attribute is used
to protect a broker running with SECURITY=YES against denial-of-service attacks. See
Protecting a Broker against Denial-of-Service Attacks in the platform-specific Administration
documentation.

NUM-CLIENT

n ‘ R ‘ z ‘ u ‘ w ‘ b

Number of clients that can access the broker concurrently. A value of 0 (zero) is invalid.

NUM-CMDLOG-FILTER

i o [2 | uw [w | o

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are being

monitored. Minimum value is 1. A value of zero is invalid when the attribute CMDL0OG
is set to YES. See Command Logging in EntireX in the EntireX Broker documentation for
more information.

26

Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows | BS2000
NUM-COMBUF 102411-999999 R z u w b

Determines the maximum number of communication buffers available for processing
commands arriving in the broker kernel. The size of one communication buffer is
usually 16 KB split into 32 slots of 512 bytes, but it ultimately depends on the hardware
architecture of your CPU. A value of 0 (zero) is invalid.

NUM-CONVERSATION or nl1 AUTO ‘ R ‘ z ‘ u ‘ w ‘ b

NUM-CONV Defines the number of conversations that can be active concurrently. The number

specified should be high enough to account for both conversational and
non-conversational requests. (Non-conversational requests are treated internally as
one-conversation requests.)

n Number of conversations.

AUTO Uses the CONV-DEFAULT and the service-specific CONV - LIMIT values to calculate
the number of conversations.
Do not set the values used in the calculation to UNLIM.

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the service-specific
section of the attribute file, the value of AUTO is invalid.

2. See Wildcard Service Definitions.

NUM- LONG-BUFFER or 4096 | n | AUTO ‘ R ‘ z ‘ u ‘ w | b

NUM-LONG Defines the number of long message containers. Long message containers have a fixed

length of 4096 bytes and are used to store requests that are larger than 2048 bytes.
Storing a request of 8192 bytes, for example, would require two long message containers.

n Number of buffers.

AUTO Uses the LONG-BUFFER-DEFAULT and the service-specific LONG-BUFFER-LIMIT
values to calculate the number of long message buffers.
Do not set the values used in the calculation to UNLIM.

A value of 0 (zero) is invalid.

In non-conversational mode, message containers are released as soon as the client receives
a reply from the server. If no reply is requested, message containers are released as
soon as the server receives the client request.

In conversational mode, the last message received is always kept until a new one is
received.

Note:

Administration under UNIX 27

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

1. If a catch-all service is defined in the service-specific section of the attribute file, the
value of AUTO is invalid.

2. See Wildcard Service Definitions.

NUM-PARTICIPANT-

n ‘ (@] ‘ z ‘ u ‘ w ‘ b

EXTENSION Defines the number of participant extensions to link participants as clients and servers.
n Number of participant extensions.
not specified If this attribute is not set, the default value is calculated based on
NUM-CLIENT and NUM-SERVER.
A value of 0 (zero) is invalid.
NUM- SERVER n 1 AUTO | R | oz | u | w | b

Defines the number of servers that can offer services concurrently using the broker.
This is not the number of services that can be registered to the broker (see NUM-SERVICE).

n Number of servers.

AUTO Uses the SERVER-DEFAULT and the service-specific SERVER-LIMIT values to
calculate the number of servers.
Do not set the values used in the calculation to UNLIM.

Note:

1. Setting this value higher than the number of services allows the starting of server
replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the service-specific
section of the attribute file, the value of AUTO is invalid.

3. See Wildcard Service Definitions.

NUM-SERVICE

: R [2 | w [w | v

Defines the number of services that can be registered to the broker. This is not the
number of servers that can offer the services (see NUM- SERVER). A value of 0 (zero) is
invalid.

NUM-SERVICE-EXTENSION

n | AUTO ‘Olzlulwlb

Defines the number of service extensions to link servers to services.

n Number of service extensions.

AUTO Uses the value specified or calculated for NUM-SERVER + NUM-CLIENT,
plus an extra cushion.

not specified If this attribute is not set, the default value is NUM- SERVER multiplied by
NUM-SERVICE.

28

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

The minimum value is NUM- SERVER.
The maximum value is NUM- SERVER multiplied by NUM-SERVICE.

Caution is recommended with this attribute:
B Set this attribute only if the storage resources allocated for service extensions need

to be restricted.

= Note that the value n allows only the specified number of server instances of 11 to be
used.

= Value AUTO will calculate the number of allowed server instances from NUM-SERVER,
which itself might be set to AUTO. In this case, this also considers the value of
SERVER-DEFAULT and even the individual SERVER-LIMIT for each service definition.

NUM-SHORT-BUFFER or
NUM-SHORT

nl AUTO ‘R‘zlulwlb

Defines the number of short message containers. Short message containers have a fixed
length of 256 bytes and are used to store requests of no more than 2048 bytes. To store
a request of 1024 bytes, for example, would require four short message containers.

n Number of buffers.

AUTO Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short message buffers.
Do not set the values used in the calculation to UNLIM.

Note:

1. In non-conversational mode, message containers are released as soon as the client
receives a reply from the server. If no reply is requested, message containers are
released as soon as the server receives the client request.

2. In conversational mode, the last message received is always kept until a new one is
received.

3. If a wildcard service is defined in the service-specific section of the attribute file, the
value of AUTO is invalid.

4. See Wildcard Service Definitions.

NUM-UQOW

0ln ‘ (@] ‘ z ‘ u ‘ w ‘ b

The maximum number of UOWs that can be concurrently active broker-wide. The
default value is 0 (zero), which means that the broker will process only messages that
are not part of a unit of work. If UOW processing is to be done by any service, a NUM-UOW
value must be 1 or larger for the broker. (MAX-UOWS is an alias for this attribute.)

The NUM-UOW value for the service will default to the value set for the broker.

NUM-WORKER

11 n(max. 64) ‘ R ‘ z ‘ u ‘ w ‘ b

Administration under UNIX

29

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ’ Windows ’ BS2000
Number of worker tasks that the broker can use. The number of worker tasks determines
the number of functions (SEND, RECEIVE, REGISTER, etc.) that can be processed
concurrently. At least one worker task is required; this is the default value.
NUM-WQE 1-32768 ‘ R ‘ z ‘ u ‘ w ‘ b

Maximum number of requests that can be processed by the broker in parallel, over all
transport mechanisms.

Each broker command is assigned a worker queue element, regardless of the transport
mechanism being used. This element is released when the user has received the results
of the command, including the case where the command has timed out.

PARTICIPANT-BLACKLIST

YES | NO ‘R‘z‘u‘w‘b

Determines whether participants attempting a denial-of-service attack on the broker
are to be put on a blacklist.

YES Create a participant blacklist.
NO Do not create a participant blacklist.

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
Administration documentation.

PARTNER-CLUSTER-ADDRESS

A32 ‘R‘zlulwlb

This is the address of the load/unload broker in transport-method-style. Transport
methods TCP and SSL are supported. See Transport-method-style Broker ID for more
details. This attribute is required if the attribute RUN-MODE is specified.

PERCENTAGE-FOR-
CONNECTION-SHORTAGE-
MESSAGE

90 11-100 ‘O‘zlulwlb

Broker will issue a message if the defined percentage value of TCP/IP connections
(available file descriptors) is exceeded. Default is 90 percent of the available file
descriptors.

POLL

YES | NO ‘O‘z‘u‘ |

In earlier EntireX versions, the maximum number of TCP/IP connections per
communicator was limited; see Maximum TCP/IP Connections per Communicator under
Broker Resource Allocation for platform-specific list. With attribute POLL introduced in
EntireX version 9.0, this restriction can be lifted under z/OS and UNIX.

NO This setting is used to run the compatibility mode in Broker. The po11 () system
call is not used. The limitations described under Maximum TCP/IP Connections
per Communicator under Broker Resource Allocation apply.

YES The po11() system call is used to lift the resource restrictions with select () in
multiplexing file descriptor sets.

Note: The maximum number of file descriptors per process is a hard limit that cannot
be exceeded by POLL=YES.

Setting this attribute to YES increases CPU consumption. POLL=YES is only useful if

30

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

= you need more than the maximum number of TCP/IP connections per communicator,
as described under Maximum TCP/IP Connections per Communicator under Broker
Resource Allocation, and

= this maximum number is less than the maximum number of file descriptors per
process

We recommend POLL=NO to reduce CPU consumption.

POSTPONED-QUEUE

YES | NO ‘O‘Z‘u‘wl

Enable or disable the creation of a postponed queue for Broker.

YES Enable creation of a postponed queue. Define your postponed queue with
service-specific attributes POSTPONE-ATTEMPTS and POSTPONE-DELAY.

NO Disable creation of a postponed queue.

See Postponing Units of Work.

PSTORE

NO | HOT | COLD (@) z u w b

Defines the status of the persistent store at broker startup, including the condition of
persistent units of work (UOWSs). With any value other than NO, PSTORE-TYPE must
be set.

NO No persistent store.
HOT Persistent UOWs are restored to their prior state during initialization.

COLD Persistent UOWs are not restored during initialization, and the persistent store
is considered empty.

Note: For a hot or cold start, the persistent store must be available when your broker

is restarted.

PSTORE-REPORT

NO | YES ‘ (@] ‘ z ‘ u ‘ w ‘ b

Determines whether PSTORE report is created.

NO Do not create the PSTORE report file.
YES Create the PSTORE report file.

See also Persistent Store Report.

PSTORE-TYPE

DIV (z/OS) | O z u w b
CTREE (UNIX, Windows) |
ADABAS (all platforms)

Describes the type of persistent store driver required.

DIV Data in Virtual. z/OS only, and default on this platform. See DIV-specific
Attributes below and Implementing a DIV Persistent Store.

Administration under UNIX

31

Broker Attributes

Attribute

Opt/ Operating System
Values Req zI0S ‘ UNIX ’Windows’ BS2000

CTREE c-tree database. UNIX and Windows only. See c-tree-specific Attributes and
c-tree Database as Persistent Store in the UNIX | Windows Administration
documentation.

ADABAS Adabas. All platforms. See also Adabas-specific Attributes (below) and
Managing the Broker Persistent Store in the platform-specific Administration
documentation.

PSTORE-VERSION

5 ‘ (@] ‘ z ‘ u ‘ w | b

Determines the version of the persistent store. PSTORE - VERSION=5 is the only supported
version since EntireX version 10.8.

Note: To change the value of PSTORE-VERSION, the persistent store must be empty
(all units of work must be consumed). If the persistent store is not empty, the start of
the Broker with a changed PSTORE-VERSION may fail with error ETBE0741 or
ETBM0745.

RUN-MODE STANDARD | STANDBY | @) z u w b
PSTORE-LOAD |
PSTORE-UNLOAD
Determines the initial run mode of the broker.
STANDARD Default value. Normal mode.
STANDBY Deprecated. Supported for compatibility reasons.
PSTORE-LOAD Deprecated. Broker will run as load broker to write Persistent Store
data to a new persistent store. See also Migrating the Persistent Store.
PSTORE-UNLOAD Deprecated. Broker will run as unload broker to read an existing
persistent store and pass the data to a broker running in
PSTORE - LOAD mode. See also Migrating the Persistent Store.
Note: RUN-MODE options PSTORE-LOAD and PSTORE-UNLOAD are deprecated and will
not be supported in the next version of EntireX.
SECURITY NO I YES | o | z | u | w | b

Determines whether EntireX Security is activated.

NO EntireX Security is not activated.

YES EntireX Security is activated.

See EntireX Security.

SERVER-DEFAULT

n 1 UNLIM ‘O‘z‘u‘w‘b

Default number of servers that are allowed for every service.

n Number of servers.

32

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

UNLIM The number of servers is restricted only by the number of servers globally
available. Precludes the use of NUM- SERVER=AUTO.

This value can be overridden by specifying a SERVER-LIMIT for the service. A value
of 0 (zero) is invalid.

SERVICE-UPDATES

YES | NO ‘ o ‘ z ‘ u ‘ w ‘ b

Switch on/off the automatic update mode of the broker.

YES The broker reads the attribute file whenever a service registers for the first time.
This allows the broker to honor modifications in the attribute file without a restart.
The attribute file is read only when the first server registers for a particular service;
it is not reread when a second replica is activated.

NO The attribute file is read only once during broker startup. Any changes to the
attribute file will be honored only if the broker is restarted.

SHORT-BUFFER-DEFAULT

UNLIM | n ‘Olzlulwlb

Number of short buffers to be allocated for each service.

UNLIM The number of short message buffers is restricted only by the number of buffers
globally available. Precludes the use of NUM-SHORT-BUFFER=AUTO.

n Number of buffers.

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the service.
A value of 0 (zero) is invalid.

STORAGE-REPORT

NO | YES (@] z u w b

Create a storage report about broker memory usage.

NO Do not create the storage report.

YES Create the storage report.

See Storage Report.

STORE OFF | BROKER ‘ o) ‘ z ‘ u ‘ w | b
Sets the default STORE attribute for all units of work. This attribute can be overridden
by the STORE field in the Broker ACI control block.

OFF Units of work are not persistent.
BROKER Units of work are persistent.
TRACE-DD A255 ‘ o) ‘ z ‘ ‘ ‘

A string containing data set attributes enclosed in quotation marks. These attributes
describe the trace output file and must be defined if you are using using a GDG

Administration under UNIX

33

Broker Attributes

Attribute

Opt/ Operating System
Values Req zI0S ‘ UNIX ’Windows’ BS2000

(generation data group) as output data set. See Flushing Trace Data to a GDG Data Set
under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE - DD value:

= DATACLAS = MGMTCLAS

= DCB including BLKSIZE, DSORG, LRECL, = SPACE
RECFM = STORCLAS

= DISP = UNIT

= DSN

Refer to your JCL Reference Manual for a complete description of the syntax.

Example:

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),

SPACE=(CYL, (100,10)),
STORCLAS=SMS"

Note: If you specify TRACE - DD, you must also specify TRMODE=WRAP and a value for
TRBUFNUM for the setting to take effect.

TRACE-FILE-SIZE

n oK | aM | nG ‘ o)]] u] w]

Defines the size of one trace file in kilobytes, megabytes or gigabytes. If this size is
exceeded, a new trace file is allocated until the maximum number of trace files specified
with MAX-TRACE-FILES is reached. There is no default value. These two parameters
help prevent a constantly growing ETB.LOG file. See Trace File Handling under UNIX |
Windows.

TRACE-LEVEL

0-4 ‘ (@] ‘ z ‘ u ‘ w ‘ b

The level of tracing to be performed while the broker is running.

0 No tracing. Default value.

1 Traces incoming requests, outgoing replies, resource usage and conversion errors.
2 All of trace level 1, plus all main routines executed.

3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus Broker ACI control block displays.

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

34

Administration under UNIX

Broker Attributes

opt/ Operating System

Attribute Values Req z/0S ‘ UNIX ’ Windows ’ BS2000
If you modify the TRACE - LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE - LEVEL without a broker restart, use
Command Central or the EntireX Broker command-line utility ETBCMD.

TRANSPORT TCP-NET | TCP | SSL|NET @) z b
ICP | SSL O u w
The broker transport may be specified as any combination of one or more of the
following methods:

TCP TCP/IP is supported.

SSL SSL/TLS is supported.

NET Entire Net-Work is supported. This value is not supported for a broker under

UNIX or Windows.

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method will be
supported by the broker.

TRANSPORT=TCP-NET specifies that both the TCP/IP and Net-Work transport methods
will be supported by the broker.

TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL/TLS, and Entire Net-Work
transport methods will be supported by the broker.
The parameters for each transport method are described in the respective section: TCP |
SSL | NET.

TRAP- ERROR nnnn | o | z | u | w | b
Where nnnn is the four-digit API error number that triggers the trace handler, for
example 0007 (Service not registered). Leading zeros are not required. There is no
default value.

See Deferred Tracing under z/OS | UNIX | Windows in the platform-specific
Administration documentation.

TRBUFNUM n o | z | w | w | b
Changes the trace to write trace data to internal trace buffers. n is the size of the trace
buffer in 64 KB units. There is no default value.

TRMODE WRAP | o | z | u | w | b
Changes the trace mode. WRAP is the only possible value. This value instructs broker
to write the trace buffer (see TRBUFNUM) if an event occurs. This event is triggered by
a matching TRAP - ERROR during request processing or when an exception occurs.

UMSG See MAX-MESSAGES-IN-UOW.

UOW-DATA-LIFETIME 101 nS 1M1 nH | nD | o | z | u | w | b
Defines the default lifetime for units of work for the service.

Administration under UNIX

35

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

If the UOW is inactive - that is, is not processed within the time limit - it is deleted and
given a status of TIMEQUT. This attribute can be overridden by the UWTIME field in the
Broker ACI control block.

See Timeout Considerations for EntireX Broker.

UOW-MSGS

See MAX-MESSAGES-IN-UOW.

UOW-STATUS-LIFETIME

no va]ueln[S]lannHlnD‘ O | z | u | w | b

The value to be added to the UOW-DATA-LIFETIME (lifetime of associated UOW). If a
value is entered, it must be 1 or greater; a value of 0 will result in an error. If no value

is entered, the lifetime of the UOW status information will be the same as the lifetime
of the UOW itself.

nS Number of seconds the UOW status exists longer than the UOW itself (max.
2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

This attribute is ignored if PSTORE=NO is defined.

The lifetime determines how much additional time the UOW status is retained in the
persistent store and is calculated from the time at which the associated UOW enters
any of the following statuses: PROCESSED, TIMEQUT, BACKEDOUT, CANCELLED,
DISCARDED. The additional lifetime of the UOW status is calculated only when broker
is executing. Value in UOW-STATUS- LIFETIME supersedes the value (if specified) in
attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not have to be
identical to the unit specified for UOW-DATA-LIFETIME.

UWSTAT-LIFETIME

Alias for UOW-STATUS-LIFETIME.

UWSTATP

0ln ‘ (@] ‘ z ‘ u ‘ w ‘ b

Contains a multiplier used to compute the lifetime of a persistent status for the service.
The UWSTATP value is multiplied by the UOW-DATA-LIFETIME value (the lifetime of
the associated UOW) to determine the length of time the status will be retained in the
persistent store.

0 The status is not persistent.

36

Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ’ Windows ’ BS2000
1-254 Multiplied by the value of UOW-DATA-LIFETIME to determine how long a
persistent status will be retained.
Note: This attribute has not been supported since EntireX version 7.3. Use
UOW-STATUS-LIFETIME instead.
UWTIME Alias for UOW-DATA-LIFETIME.

WAIT-FOR-ACTIVE-PSTORE

NO I YES (@] z u w b

Determines whether broker should wait for the Adabas Persistent Store to become
active, or until c-tree PSTORE files become available.

NO If broker should start witha PSTORE-TYPE=ADABAS and the database is not active
or is not accessible, broker will stop.

If broker should start with a PSTORE-TYPE=CTREE and the c-tree files are still
in use, broker will stop.

YES If broker should start witha PSTORE-TYPE=ADABAS and the database is not active
or is not accessible, broker will retry every 10 seconds to initiate communications
with the PSTORE. Broker will reject any user requests until it is able to contact
the Adabas database.

If broker should start with a PSTORE-TYPE=CTREE and the c-tree files are still in
use, broker will retry every 10 seconds to rebuild the persistent data. Broker will
reject any user requests until it is able to rebuild the persistent data.

WORKER-MAX 64 | n (min. 1, max. 64) ‘ O ‘ z ‘ u ‘ w ‘ b
Maximum number of worker tasks the broker can use.
WORKER-MIN 1| 1 (min. 1, max. 64) ‘ 0 | z | u | w | b

Minimum number of worker tasks the broker can use.

WORKER-NONACT

Z0S I nlnSInM 1 nH (@) z u w b

Non-activity time to elapse before a worker tasks is stopped.

n Same as nS.
nS Non-activity time in seconds (default 70, max. 2147483647).
nM Non-activity time in in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

Caution: A value of 0 (zero) is invalid. If you set this value too low, additional overhead

is required for starting and stopping worker tasks. The default and recommended
value is 70S.

WORKER-QUEUE-DEPTH

11 n(min. 1) ‘O‘z‘u‘wlb

Administration under UNIX

37

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ’Windows’ BS2000

Number of unassigned user requests in the input queue before another worker task
gets started. The default and recommended value is 1. A higher value will result in
longer broker response times.

WORKER-START-DELAY

internal-valuel n ‘ (@] ‘ z ‘ u ‘ w ‘ b

n Delay is extended by n seconds.

Delay after a successful worker task invocation before another worker task can be
started to handle current incoming workload. This attribute is used to avoid the risk
of recursive invocation of worker tasks, because starting a worker task itself causes
workload increase.

If no value is specified, an internal value calculated by the broker is used to optimize
dynamic worker management. This calculated value is the maximum time required to
start a worker task.

38

Administration under UNIX

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sections Wildcard Service Definitions and Service
Update Modes below the table.

or
APPMON

Opt/ Operating System
Attribute Values Req | z/OS | UNIX |Windows |[BS2000
APPLICATION-MONITORING |[YES I NO O z u w b

YES Enable application monitoring for the specified services.

NO Disable application monitoring for the specified services.

See the separate Application Monitoring documentation.

APPLICATION-MONITORING-
NAME

or

APPMON-NAME

A100 ‘O|z|u|w|b

Specifies the application monitoring name. Used to set the value of the
ApplicationName KPIL.

If omitted, the default value from the APPLICATION-MONITORING section
is used. If this value is also not specified, the corresponding
CLASS/SERVER/SERVICE names are used.

See the separate Application Monitoring documentation.

CLASS

A3?2 (case-sensitive) ‘ R ‘ z | u ‘ w ‘ b

Part of the name that identifies the service together with the SERVER and
SERVICE attributes. CLASS must be specified first, followed immediately by
SERVER and SERVICE. The following rules apply:

= Classes starting with any of the following are reserved for use by Software
AG. Do not use these in applications you write: BROKER, SAG, ENTIRE,
ETB, RPC, ADABAS, NATURAL.

® Valid characters for class name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore.

® Do not use dollar, percent, period or comma.

See also the restriction for SERVICE attribute names.

CLIENT-RPC-
AUTHORIZATION

NITY ‘o|z| | |b

Determines whether this service is subject to RPC authorization checking.

N No RPC authorization checking is performed.

Administration under UNIX

39

Broker Attributes

Attribute

opt/ Operating System

Values Req | z/0S | UNIX ‘Windows ‘ BS2000

Y RPC library and program name are appended to the authorization check
performed by EntireX Security. Specify YES only to RPC-supported
services.

To allow conformity with Natural Security, the CLIENT-RPC-AUTHORIZATION
parameter can optionally be defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

CONV-LIMIT

UNLIM | n ‘O‘z|u|w‘b

Allocates a number of conversations especially for this service.

UNLIM The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION=AUTO in the Broker section of the attribute file.

n Number of conversations.

A value of 0 (zero) is invalid.

If NUM- CONVERSATION=AUTO is specified in the Broker section of the attribute
file, CONV-LIMIT=UNLIM is not allowed in the service section. A value must
be specified or the CONV-LIMIT attribute must be suppressed entirely for
the service so that the default (CONV-DEFAULT) becomes active.

CONV-NONACT

SMInltnSI|nMI nH ‘R’z|u‘ w ’ b

Non-activity time for connections.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

A value of 0 (zero) is invalid. If a connection is not used for the specified
time, that s, a server or a client does not issue a broker request that references
the connection in any way, the connection is treated as inactive and the
allocated resources are freed.

CONVERSION A255 @) z u w b
(SAGTCHAL, TRACE=n1L[, OPTION=5s] |
SAGTRPCL, TRACE=n1L[, OPTION=s] |
namel, TRACE=n] |
NO)
Defines ICU conversion or SAGTRPC user exit for character conversion. See
Internationalization with EntireX.
SAGTCHA Conversion using ICU Conversion for ACI-based Programming.
40 Administration under UNIX

Broker Attributes

Attribute

opt/ Operating System

Values Req | z/0S | UNIX ‘Windows ‘ BS2000

SAGTRPC @ Conversion using ICU Conversion for RPC-based Components
and Reliable RPC.

name® Name of the SAGTRPC user exit for RPC-based components
and Reliable RPC. See also Configuring SAGTRPC User Exits
under Confiquring Broker for Internationalization in the
platform-specific Administration documentation and Writing
SAGTRPC User Exits under Configuring Broker for
Internationalization in the platform-specific Administration
documentation.

NO If conversion is not to be used, either omit the CONVERSION
attribute or specify CONVERSION=NO, for example for binary
payload.

The CONVERSION attribute overrides the TRANSLATION attribute when defined
for a service. Thatis, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

Note:

1. See also Configuring ICU Conversion under Configuring Broker for
Internationalization in the platform-specific Administration documentation.

2. SAGTRPC is not supported on BS2000. For conversion with single-byte
code pages, use SAGTCHA on BS2000 for RPC-based Components and
Reliable RPC.

3. SAGTRPC user exit is not supported on B52000.
TRACE

If tracing is switched on, the trace output is written to the broker log file.
The following trace levels are available:

0 No tracing

1 STANDARD This level is an "on-error" trace. It provides information on
conversion errors only. For RPC calls this includes the IDL
library, IDL program and the data. Note that if 0PTI0N Values
for Conversion are set, errors are ignored.

2 ADVANCED Tracing of incoming, outgoing parameters and the payload.

3 SUPPORT This trace level is for support diagnostics. Use only when
requested by Software AG Support.

OPTION

See table of possible values under 0PTI0N Values for Conversion.

Administration under UNIX

41

Broker Attributes

opt/ Operating System
Attribute Values Req | z/OS | UNIX |Windows |BS2000
DEFERRED NO I YES @) z u w b

NO Units of work cannot be sent to the service until it is available.

YES Units of work can be sent to a service that is not up and registered. The
units of work will be processed when the service becomes available.

LOAD-BALANCING

YES | NO ‘O’z|u‘w’b

YES When servers that offer a particular service are started, new
conversations will be assigned to these servers in a round-robin fashion.
The first waiting server will get the first new conversation, the second
waiting server will get the second new conversation, and so on.

NO A new conversation is always assigned to the first server in the queue.

LONG-BUFFER-LIMIT

NLIM | n ‘O‘z|u‘w‘b

Allocates a number of long message buffers for the service.

UNLIM The number of long message buffers is restricted only by the number
of buffers globally available. Precludes the use of
NUM-LONG-BUFFER=AUTO in the Broker section of the attribute file.

n Number of long message buffers.

A value of 0 (zero) is invalid. If NUM- LONG-BUFFER=AUTO is specified in the
Broker section of the attribute file, LONG-BUFFER-LIMIT=UNLIM is not
allowed in the service section. A value must be specified or the
LONG-BUFFER-LIMIT attribute must be suppressed entirely for the service
so that the default (LONG-BUFFER-DEFAULT) becomes active.

MAX-MESSAGES-IN-UOW

161n ‘O‘z|u‘w‘b

Maximum number of messages in a UOW.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O’Z|u‘ w] b

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE-LENGTH.

MAX-UOWS

01n ‘O|z|u|w|b

0 The service does not accept units of work, that is, it processes only
messages that are not part of a UOW. Using zero prevents the sending
of UOWs to services that are not intended to process them.

42

Administration under UNIX

Broker Attributes

Attribute

opt/ Operating System
Values Req | z/0S | UNIX ‘Windows‘BSZOOO

n Maximum number of UOWs that can be active concurrently for the service.
If you do not provide a MAX - UOWS value for the service, it defaults to the
MAX-UOWS setting for the broker. If you provide a value that exceeds that
of the broker, the service MAX - UOWS is set to the broker's MAX - UOWS value
and a warning message is issued.

Specify MAX - UOWS=0 for Natural RPC Servers. This restriction will be removed
with a later release.

MUOW

See MAX-UOWS.

NOTIFY-EOC

NO I YES ‘O‘z|u‘w‘b

Specifies whether timed-out conversations are to be stored or discarded.

NO Discard the EOC notifications if the server is not ready to receive.

YES Store the EOC notifications if the server is not ready to receive and
then notify the server if possible.

If a server is not ready to receive an EOC notification, it can be stored or
discarded. If it is stored, the server is notified, if possible, when it is ready
to receive.

Caution: The behavior activated by this parameter can be relied upon only

during a single lifetime of the broker kernel. Specifically, conversations
containing units of work, whose lifetime can span multiple broker kernel
sessions, cannot be assumed to show this behavior, even with
NOTIFY-EOC=YES.

NUM-UOW

Alias for MAX-UOWS.

POSTPONE-ATTEMPTS

0ln ‘O‘Z|U‘W‘

Defines the number of attempts putting a received unit of work (UOW) due
to SYNCPOINT option CANCEL on the postponed queue for later processing.

0 All UOWs rejected by the receiver (SYNCPOINT option CANCEL) will be
cancelled immediately. Attribute POSTPONE-DELAY is ignored.

n Defines the number of postpone attempts that are performed instead of
considering the UOW finished due to SYNCPOINT option CANCEL; the
UOW will be moved to the postponed queue and the UOW status will
be changed to POSTPONED. These UOWs will be delivered to the receiver
when the time specified with POSTPONE-DELAY has elapsed.

Note: Broker-specific attribute POSTPONED - QUEUE must be enabled (default)

for this attribute to take effect. The default value is 0. See Postponing Units of|
Work.

POSTPONE-DELAY

QlnltnStnMInH ‘O‘z|u‘ w ‘

Administration under UNIX

43

Broker Attributes

Attribute

opt/ Operating System

Values Req | z/0S | UNIX ‘Windows ‘ BS2000

The length of time a UOW is kept in status POSTPONED.

0 No postponed queue is created and attribute POSTPONE-ATTEMPTS is
ignored.

nS Number of seconds the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 2147483647).

nM Number of minutes the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 35791394).

nH Number of hours the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 596523).

nD Number of days the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 24855).

The status of the UOW will be changed from POSTPONED to ACCEPTED after
elapsed POSTPONE-DELAY. This delay time does not affect the
UOW-DATA-LIFETIME. The POSTPONE-DELAY must be less than
UOW-STATUS-LIFETIME in order to make the UOW receivable again.

Note: Broker-specific attribute POSTPONED - QUEUE must be enabled (default)

for this attribute to take effect. The default is 0, that is, no postponed queue
is created, but if a value is entered, the minimum delay is 30 seconds. Any
value entered that is less than 30 seconds will be increased to this value. See
Postponing Units of Work.

SERVER

A3?2 (case-sensitive) ‘ R ‘ z | u ‘ w ‘ b

Part of the name that identifies the service together with the CLASS and
SERVICE attributes.

CLASS must be specified first, followed immediately by SERVER and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.

SERVER-DEFAULT

n | UNLIM ‘O’z|u‘w’b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO.

A value of 0 (zero) is invalid.

This value can be overridden by specifyinga SERVER-LIMIT for the service.

SERVER-LIMIT

n | UNLIM ‘O‘z|u‘w‘b

Allows a number of servers especially for this service.

44

Administration under UNIX

Broker Attributes

Attribute

opt/ Operating System

Values Req | z/0S | UNIX ‘Windows ‘ BS2000

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO in the
Broker section of the attribute file.

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the attribute file,
SERVER-LIMIT=UNLIM is not allowed in the service section. A value must
be specified or the SERVER-LIMIT attribute must be suppressed entirely for
the service so that the default (SERVER-DEFAULT) becomes active.

Note: UNIX and Windows: This limit also includes any attach server you

are using. Make sure you increase the number by one for each attach server
you use.

SERVER-NONACT

SMInlnStaMl nH ‘R‘z|u| w ‘ b

Non-activity time for servers. A server that does not issue a broker request
within the specified time limit is treated as inactive and all resources for the
server are freed.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

If a server registers multiple services, the highest value of all the services
registered is taken as non-activity time for the server.

SERVICE

A3?2 (case-sensitive) ‘ R ‘ z | u ‘ w ‘ b

Part of the name that identifies the service together with the CLASS and
SERVER attributes.

CLASS must be specified first, followed immediately by SERVER and SERVICE.

The SERVICE attribute names EXTRACTOR and DEPLOYMENT are reserved for
Software AG internal use and should not be used in customer-written
applications. Valid characters for service name are letters a-z, A-Z, numbers
0-9, hyphen and underscore. Do not use dollar, percent, period or comma.
See also the restriction for CLASS attribute names.

SHORT-BUFFER-LIMIT

UNLIM | n ‘O‘z|u‘w‘b

Allocates a number of short message buffers for the service.

Administration under UNIX

45

Broker Attributes

Attribute

opt/ Operating System

Values Req | z/0S | UNIX ‘Windows ‘ BS2000

UNLIM The number of short message buffers is restricted only by the number
of buffers globally available. Precludes the use of
NUM-SHORT - BUFFER=AUTO in the Broker section of the attribute file.

n Number of short message buffers.

If NUM- SHORT -BUF FER=AUTO is specified in the Broker section of the attribute
file, SHORT-BUFFER-LIMIT=UNLIM is not allowed in the service section. A
value must be specified or the SHORT-BUFFER-LIMIT attribute must be
suppressed entirely for the service so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

STORE

OFF | BROKER ‘O‘z|u‘w‘b

Sets the default STORE attribute for all units of work sent to the service.

OFF Units of work are not persistent.

BROKER Units of work are persistent.

This attribute can be overridden by the STORE field in the Broker ACI control
block.

TRANSLATION

NO | name (A255) ‘O‘z|u‘ w \ b

Activates translation user exit for character conversion.

NO If translation is not to be used - for example for binary payload (broker
messages) - either omit the TRANSLATION attribute or specify
TRANSLATION=NO.

name Name of Translation User Exit. See also Configuring Translation User
Exits under Configuring Broker for Internationalization in the
platform-specific Administration documentation or Writing Translation
User Exits under Configuring Broker for Internationalization in the
platform-specific Administration documentation.

The CONVERSION attribute overrides the TRANSLATION attribute when defined
for a service; thatis, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

UMSG

Alias for MAX-MESSAGES-IN-UOW.

UOW-DATA-LIFETIME

1D 1 nS | AM 1 nH 1 nD ‘O‘z|u‘ w ‘ b

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

46

Administration under UNIX

Broker Attributes

Attribute

opt/ Operating System

Values Req | z/0S | UNIX ‘Windows ‘ BS2000

This attribute is ignored if PSTORE=NO is defined.

If the unit of work (UOW) is inactive, that is, not processed within the time
limit, it is deleted and given a status of TIMEOUT. This attribute can be
overridden by the UWTIME field in the Broker ACI control block.

UOW-MSGS

Alias for MAX-MESSAGES-IN-UOW.

UOW-STATUS-LIFETIME

no value | n[STInMInHInND ‘ @) ‘ z | u ‘ w ‘ b

The value to be added to the UOW-DATA-LIFETIME lifetime of associated
UOW,). If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status information
will be the same as the lifetime of the UOW itself.

nS Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

The lifetime determines how much additional time the UOW status is retained
in the persistent store and is calculated from the time at which the associated
UOW enters any of the following statuses: PROCESSED, TIMEOUT, BACKEDOUT,
CANCELLED, DISCARDED. The additional lifetime of the UOW status is
calculated only when broker is executing. Value in UOW-STATUS- LIFETIME
supersedes the value (if specified) in attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UOW-DATA-LIFETIME.

UWSTATP

0ln ‘O‘z|u‘w‘b

Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UNSTATP value is multiplied by the UOW-STATUS-LIFETIME
value (the lifetime of the associated UOW) to determine the length of time
the status will be retained in the persistent store.

0 The status is not persistent.

1 - 254 Multiplied by the value of UOW-DATA-LIFETIME to determine how
long a persistent status will be retained.

This attribute is ignored if PSTORE=NO is defined.

Note: This attribute has not been supported since EntireX version 7.3.
Use UOW-STATUS-LIFETIME instead.

UWSTAT-LIFETIME

Alias for UOW-STATUS-LIFETIME.

UWTIME

Alias for UOW-DATA-LIFETIME.

Administration under UNIX

47

Broker Attributes

Wildcard Service Definitions

The special names of CLASS = *, SERVER = * and SERVICE = * are allowed in the service-specific
and authorization rule-specific sections of the broker attribute file. These are known as "wildcard"
service definitions. If this name is present in the attribute file, any service that registers with the
broker and does not have its own entry in the attribute file will inherit the attributes that apply to
the first wildcard service definition found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV -
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

* Inservice update mode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

® In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if

* there is a high frequency of REGISTER operations, or
* the attribute file is rather large and results in a high I/O rate for the broker.
The disadvantage to using non-update mode is that if specific attributes are modified, the broker

must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

48 Administration under UNIX

Broker Attributes

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters cannot be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

Situations 1 and 2 above are reported to the broker log file if the TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File
if TRACE Option for
Options Supported for| CONVERSION is set to 1
Bad Input Non-convertible
Characters Characters
(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
SUBSTITUTE Substitutes both YES YES No message. |No message
non-convertible characters
(receiver's codepage) and bad
input characters (sender's
codepage) with a
codepage-dependent default
replacement character.
SUBSTITUTE-NONCONV |If a corresponding code point |YES YES Write detailed |No message.
is not available in the receiver's conversion
codepage, the character cannot error message.
be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.
BLANKOUT Substitutes non-convertible |NO YES No message. |No message.
characters with a
codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

Administration under UNIX 49

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for
OPtions Supported for CONVERSION is setto 1
Bad Input Non-convertible
Characters Characters
(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
STOP Signals an error on detecting a|YES YES Write detailed |Write detailed
non-convertible or bad input conversion conversion
character. This is the default error message. |error message.
behavior if no option is
specified.
50 Administration under UNIX

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize the mapping of locale strings to codepages for character
conversion with ICU conversion and SAGTRPC user exit. See Internationalization with EntireX for
more information.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
DEFAULT_ASCII Any ICU converter @) z u w b
name or alias. See also
Additional Notes
below.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker’s Locale String Defaults. This
value is used instead of the broker's locale string defaults if

® the calling component does not send a locale string itself, and

® the calling component is running on an ASCII platform (UNIX, Windows, etc.)

Example:

DEFAULTS=CODEPAGE
* Broker Locale String Defaults
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker’s Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

DEFAULT_EBCDIC_IBM|Any ICU converter @) z u w b
name or alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker’s Locale String Defaults. This
value is used instead of the broker's locale string defaults if

B the calling component does not send a locale string itself and

B the calling component is running on an IBM mainframe platform

Example:

Administration under UNIX 51

Broker Attributes

Attribute

Opt/ Operating System
Values Req Z/0S | UNIX ‘Windows| BS2000

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker’s Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

DEFAULT_EBCDIC_SNI

Any ICU converter ©) z u w b
name or alias.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker’s Locale String Defaults. This
value is used instead of the locale string defaults if

B the calling component does not send a locale string itself, and

B the calling component is running on a Fujitsu EBCDIC mainframe platform

(BS2000)

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker’s Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

locale-string

Any ICU converter ®) z u w
name or alias. See also
Additional Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker’s Locale String Processing. This is
useful:

= if the broker's locale string processing fails - that is, it leads to no codepage or
to the wrong codepage - you can explicitly assign the codepage which meets
your requirements.

= if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
Administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server) and the value is the codepage that you want to use in place of
that locale string. In the first line of the example below, the client or server
application sends ASCII as a locale string; the broker maps this to the codepage
ISO 8859_1. In the same way EUC_JP_LINUXis mapped to ibm-33722_P12A-1999.
All other locale strings are mapped by the broker's mapping mechanism, see
Broker's Built-in Locale String Mapping. Example:

52

Administration under UNIX

Broker Attributes

Opt/ Operating System
Attribute Values Req zI0S | UNIX ‘Windows| BS2000

DEFAULTS=CODEPAGE
* Broker Locale String Codepage Assignments
ASCII=1S08859
EUC_JP_LINUX=ibm-33722_P12A-1999
* Customer-written ICU converters
CP1140=myebcdic
CP0819=myascii

For more examples, see Bypassing Broker’s Built-in Locale String Mapping and also
Additional Notes below.

Additional Notes

® Locale string matching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

® If ICU is used for character conversion and the style in not known by ICU, e.g. _<cc> etc.,
the name will be mapped to a suitable ICU alias. For more details on the mapping mechanism,
see Broker’s Built-in Locale String Mapping. For more details on ICU and ICU converter name
standards, see ICU Resources.

® If SAGTRPC user exit is used for the character conversion, we recommend assigning the codepage
in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit, see Broker's
Built-in Locale String Mapping.

" See CONVERSION on this page for the character conversion in use.

Administration under UNIX 53

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

The Adabas SVC/Entire Net-Work-specific attribute section begins with the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

| Note: This section applies to mainframe platforms only. It does not apply to UNIX and

Windows.
Opt/ Operating System
Attribute Values Req 208 UNIX | Windows | BS2000
ADASVC nnn R 2

Sets the Adabas SVC number for EntireX Broker access.

The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.

Not supported on BS2000.

EXTENDED-ACB-SUPPORT

NO | YES \o]z] \ ‘b

Determines whether extended features of Adabas version 8 (or above) are
supported.

NO No features of Adabas version 8 or above will be used.

YES Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than
32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

FORCE

NO | YES ‘O‘z‘ \ ‘b

Determines whether DBID table entries can be overwritten.

NO Overwrite of DBID table entries not permitted.

YES Overwrite of DBID table entries permitted. This is required when the DBID
table entry is not deleted after abnormal termination.

Caution: Overwriting an existing entry prevents any further communication

with the overwritten node. Use FORCE=YES only if you are absolutely sure that
no target node with that DBID is active.

IDTNAME

fdtname(AS)lADABASSB‘ 0 ‘ ‘ ‘ ‘ b

If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.

54

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System
Values Req zI0S | UNIX ‘Windowsl BS2000

The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000.

TUBL

8000 I n ‘o‘z‘ ‘ |b

This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. The maximum size of IUBL is the same
as the maximum value of the Adabas parameter LU. See the Adabas Operations
Manual.

IUBL must be large enough to hold the maximum send-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

LOCAL

NO | YES \o]z] \ ‘b

For remote nodes accessed via Entire Net-Work, the attribute LOCAL specifies
whether the target ID defined with the NODE attribute can be accessed only
locally, or also remotely.

NO DBID is global and can be accessed from remote nodes via Entire Net-Work.

YES DBID is local and cannot be accessed from remote nodes via Entire
Net-Work.

MAX-MESSAGE-LENGTH

2147483647 | n ‘ 0 ‘ z ‘ u ‘ w ‘ b

Maximum message size that the broker kernel can process using transport
method NET. The default value represents the highest positive number that can
be stored in a four-byte integer.

NABS 101n o | z | | B
The number of attached buffers to be used (max. 524287).
An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.
The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

NCQE 101n O z b

NCQE defines the number of command queue elements which are available for

processing commands arriving at the broker kernel over Adabas SVC / Net-Work
transport mechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to process multiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the

user (client or server) has received the results of the command, or if the command
is timed out.

Administration under UNIX

95

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ’ UNIX ‘Windowsl BS2000

The number of command queue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanism Adabas SVC / Entire Net-Work. For example, all broker commands
issued by client or server components using this transport mechanism:

NODE

1-65534 ‘ R ’ z ’ ‘ ‘ b

Defines the unique DBID for EntireX Broker.

Used for internode Adabas/Entire Net-Work communication. There is no default;
the value of NODE must be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the same node number
for different installations of EntireX Broker in an Entire Net-Work environment.

TIME

301 n ‘O’z’ \ ‘b

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

TRACE-LEVEL

0-4 ‘O‘z‘ \ ‘b

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

0 No tracing. Default value.

1 Display invalid Adabas commands.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without a broker
restart, use the EntireX Broker command-line utility ETBCMD.

56

Administration under UNIX

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITY as shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is

specified.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
ACCESS-SECURITY- |NO I YES @] b

SERVER

Determines where authentication is checked.

NO Authentication is checked in the broker tasks. This requires broker to be running
under TSOS in order to execute privileged security checks.

YES Authentication is checked in the EntireX Broker Security Server for BS2000. This
does not require broker to be running under TSOS. See EntireX Broker Security
Server for BS2000.

APPLICATION-NAME

A8 |o z

Specifies the name of the application to be checked if FACILITY -CHECK=YES is defined.
In RACE, for example, an application BROKER with read permission for user DOE is
defined with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASSCAPPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY-CHECK for more information.

AUTHORIZATION-
DEFAULT

YES I NO (@) u w

Determines whether access is granted to a specified service if the specified service could
not be found listed in the repository of authorization rules or in section
DEFAULTS=AUTHORIZATION-RULES of the attribute file.

YES Grant access.

NO Deny access.

Applies only when using EntireX Security under UNIX and Windows. Authorization
rules can be stored within a repository. When an authorization call occurs, EntireX

Security uses the values of this parameter to perform an access check for a particular
broker instance against an (authenticated) user ID and list of rules.

See also Authorization Rules.

CHECK-IP-ADDRESS

YES | NO (@] z

Determines whether the TCP/IP address of the caller is subject to a resource check.

Administration under UNIX 57

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
ERRTXT-MODULE NA2MSGO | NAZMSGT | @) V7
NA2MSG2 | ModuleName

Specifies the name of the security error text module. Default is NAZMSGO, English
messages. For instructions on how to customize messages, see Build Language-specific
Messages (Optional) under Installing EntireX Security under z/OS.

FACILITY-CHECK

NO | YES e} z ‘

It is possible to check whether a particular user is at all allowed to use an application
before performing a password check. The advantage of this additional check is that
when the user is not allowed to use this application, the broker returns error 00080013
and does not try to authenticate the user. Failing an authentication check may lead to
the user's password being revoked; this situation is avoided if the facility check is
performed first. See attribute APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed

before each authentication call.

IGNORE-STOKEN

NO | YES (@) z u w b

Determines whether the value of the ACI field SECURITY - TOKEN is verified on each
call.

INCLUDE-CLASS

YES | NO |O‘z‘ ‘ ‘

Determines whether the class name is included in the resource check.

INCLUDE - NAME YES | NO | 0 ‘ z ‘ ‘ ‘
Determines whether the server name is included in the resource check.
INCLUDE-SERVICE [YES I NO | 0 ‘ z ‘ ‘ ‘
Determines whether the service name is included in the resource check.
LDAP- TdapUri | 0 ‘ ‘ u ‘ w ‘
GE[HENTICATION- A ythentication is performed against the LDAP repository specified under /dapUri].
= TCP
Specify repository URL:
LDAP-AUTHENTICATION-URL="1dap://HostName[:PortNumber]"
= SSL/TLS
Specify repository URL with Idaps:
58 Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
LDAP-AUTHENTICATION-URL="T1daps://HostName[:PortNumber]"
If no port number is specified, the default is the standard LDAP port number 389 for
TCP transport. Examples for TCP and SSL/TLS:
LDAP-AUTHENTICATION-URL="1dap://myhost.mydomain.com"
LDAP-AUTHENTICATION-URL="Tdaps://myhost.mydomain.com:636"
LDAP- TdapUrl o u w
SE[HORIZATION- Authorization is performed against the LDAP repository specified under TdapUr].

= TCP
Specify repository URL:

LDAP-AUTHORIZATION-URL="1dap://HostName[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number 389 for
TCP transport.
Example for TCP:

LDAP-AUTHORIZATION-URL="1dap://myhost.mydomain.com:389"

This attribute replaces the parameters host, port and protocol in the xds.ini file of
EntireX version 9.10 and below.

LDAP-AUTH-DN

authDN (@) u w

For authenticated access to the LDAP server. Specifies the DN of the user. Default value:

cn=admin,dc=software-ag,dc=de

This attribute replaces parameter authDN in the xds.ini file of EntireX version 9.10 and
below.

LDAP-AUTH-PASSWD-

authPass

0] u w
ENCRYPTED For authenticated access to the LDAP server. Specifies the encrypted value of the user
password. Use program etbnattr to get the encrypted password:
etbnattr -x clear_text_password -echo_password_only
This writes the encrypted password to standard output.
This attribute replaces parameter authPass in the xds.ini file of EntireX version 9.10
and below.
LDAP- A32 @) u w
AUTHORIZATION-
RULE
Administration under UNIX 99

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S UNIX Windows BS2000

List of authorization rules. Multiple sets of rules can be defined, each set is limited to
32 chars. The maximum number of LDAP-AUTHORIZATION - RULE entries in the attribute
file is 16.

Applies only when using EntireX Security under UNIX or Windows and
SECURITY-SYSTEM=TdapUr]. Authorization rules can be stored in an LDAP repository.
When an authorization call occurs, EntireX Security uses the values of this parameter
and AUTHORIZATION-DEFAULT to perform an access check for a particular broker
instance against an (authenticated) user ID and list of rules.

See also Authorization Rules.

LDAP-BASE-DN

baseDN O u w

Specifies the base distinguished name of the directory object that is the root of all objects
for authorization rules. Default value:

dc=software-ag,dc=de

This attribute replaces parameter baseDN in the xds.ini file of EntireX version 9.10 and
below.

LDAP-PERSON-BASE-
BINDDN

TdapDn O] ‘ ‘ u w

Used with LDAP authentication to specify the distinguished name where authentication
information is stored. This value is prefixed with the user ID field name (see below).
Example:

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

LDAP-REPOSITORY -
TYPE

OpenlDAP | (@] u w
ActiveDirectory |

SunOneDirectory |
Tivolil Novelll
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository
type that most closely matches your actual repository. In the case of Windows Active
Directory, the user ID is typically in the form domainName\userId.

LDAP-SASL-
AUTHENTICATION

NO I YES O w

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perform
the authentication check. In practice, this determines whether or not the password
supplied by the user is passed in plain text between the broker kernel and the LDAP
server. If SASL is activated, this implies that the password is encrypted.

NO Password is sent to LDAP server in plain text.

YES Password is sent to LDAP server encrypted.

LDAP-USERID-FIELD

cn l uidFieldName (@] u w

60

Administration under UNIX

Broker Attributes

Attribute

Opt/ Operating System

Windows BS2000

Values Req z/0S UNIX

Used with LDAP authentication to specify the first field name of a user in the
Distinguished Name, for example:

LDAP-USERID-FIELD=uid

MAX-SAF-PROF-
LENGTH

1-256 @) z

This parameter should be increased if the length of the resource checks - that is, the
length of the profile comprising “<class>.<server>.<service>" - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

PASSWORD-TO-
UPPER-CASE

NO I YES ©) z

Determines whether the password and new password are converted to uppercase
before verification.

PRODUCT

RACF I ACF2 I @) z
TOP-SECRET

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

RACF Security system RACEF is installed. Default.
ACF2 Security system ACEF?2 is installed.
TOP-SECRET Security system CA Top Secret is installed.

The default value is used if an incorrect or no value is specified.

PROPAGATE -
TRUSTED-USERID

YES I NO (@] z

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLIENT-USERID.

SAF-CLASS

NBKSAG | (@] z
SAFCTassName

Specifies the name of the SAF class/type used to hold the EntireX-related resource
profiles.

SAF-CLASS-IP

NBKSAG | (@] z
SAFCTassName

Specifies the name of the SAF class/type used when performing IP address authorization
checks.

SECURITY-LEVEL

AUTHORIZATION | ©) z u w b
AUTHENTICATION

Specifies the mode of operation.

AUTHORIZATION Authorization and authentication (not under BS2000).
AUTHENTICATION Authentication.

Note: In version 8.0, the default value for this parameter was AUTHORIZATION.

Administration under UNIX 61

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
SECURITY-NODE YES | name @) V7

This parameter can be used to specify a prefix that is added to all authorization checks,
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often important
to distinguish between production, test, and development environments.

YES This causes the broker ID to be used as a prefix for all authorization checks.

name This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

Note: By not setting this parameter, no prefix is added to the resource check (the default
behavior).

SECURITY-SYSTEM

0S | LDAP (@) z u w b

0S Authentication is performed against the local operating system. Default if
SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

LDAP Authentication and authorization are performed against the LDAP repository
specified under LDAP-AUTHENTICATION-URL and LDAP-AUTHORIZATION-URL.

TRACE-LEVEL

0-4 (@) z u w b

Trace level for EntireX Security. It overrides the global value of trace level in the attribute
file.

0 No tracing. Default value.
1 Log security violations and access denied/permitted.
2 All of trace level 1, plus internal errors.

3 All of trace level 2, plus function entered/exit messages with argument values and
some progress messages.

4 All of trace level 3, plus some selected data areas for problem analysis.

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE - LEVEL without a broker restart, use the
EntireX Broker command-line utility ETBCMD.

Note: Setting this value also affects tracing for authorization rules.

TRUSTED-USERID

YES | NO |o‘z‘ ‘ ‘

Activates the trusted user ID mechanism for broker requests arriving over the local
Adabas IPC mechanism.

USERID-TO-

NO | YES | e} ‘ z ‘ ‘ ‘

62

Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
UPPER-CASE Determines whether user ID is converted to uppercase before verification.
UNIVERSAL NO | YES | o | =z | | |
Determines whether access to undefined resource profiles is allowed.
WARN-MODE NO I YES | o | z | uw | w | b
Determines whether a resource check failure results in just a warning or an error.
Administration under UNIX

63

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows | BS2000
CERT-AUTHENTICATION|NQ | YES O z

NO Do not use SSL certificates for authentication.

YES Use corresponding port for certificate-based authentication.

See Using SSL Certificates for Authentication in the EntireX Security documentation
for z/OS.

CONNECTION-NONACT |[nl nS | nM I nH ‘ 0 ‘ z] u ‘ w] b

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

n Same as nS.
nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).

nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime under z/OS | UNIX | Windows | z/VSE in the
platform-specific Administering Broker Stubs documentation.

HOST 0.0.0.01 hostname | O z u w b
IP address

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

MAX-MESSAGE- LENGTH [2147483647 | n ‘ 0 ‘ z ‘ u ‘ w ‘ b

64 Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S | UNIX ‘ Windows | BS2000
Maximum message size that the broker kernel can process using transport method
TCP/IP. The default value represents the highest positive number that can be
stored in a four-byte integer.
PORT 1025-65535 o | z | uw | w | b
The TCP/IP port number on which the broker will listen for connection requests.
If not specified, the broker will attempt to find its TCP/IP port number from the
TCP/IP services file, using getservbyname. If it cannot find the number here,
the default value of 1971 is used.
A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.
Example for multiple ports on z/OS:
HOST=localhost,PORT=3930
HOST=0.0.0.0,PORT=3931
= Port 3930 is used for local TCP/IP communication only and is not visible outside
the z/OS host.
® Port 3931 is used for global TCP/IP communication. With IBM's AT-TLS this
port is turned into a TLS port, see Running Broker with SSL/TLS Transport in the
z/OS Administration documentation.
With this configuration you can reach the broker from outside the z/OS host via
the secure TLS connection only (port 3931). The TCP connection (port 3930) can
only be used from inside the z/OS host.
RESTART YES I'NO O z u w b

YES The broker kernel will attempt to restart the TCP/IP communicator.
NO The broker kernel will not try to restart the TCP/IP communicator.

This setting applies to all TCP/IP communicators.

RETRY-LIMIT

&InlUNLIM‘O‘qu‘WIb

Maximum number of attempts to restart the TCP/IP communicator. This setting
applies to all TCP/IP communicators.

RETRY-TIME

3_MIn|nS|nMInH‘ 0 \ z \ u \ w \ b

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

n Same as nS.
nS Wait time in seconds (max. 2147483647).
nM Wait time in minutes (max. 35791394).

Administration under UNIX

65

Broker Attributes

Attribute

Opt/ Operating System
Values Req zI0S | UNIX ‘Windows| BS2000

nH Wait time in hours (max. 596523).

Minimum wait time is 1S.

This setting applies to all TCP/IP communicators.

REUSE-ADDRESS

YES | NO O z u b

YES I NO O w

YES The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

NO The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.

Note:

This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

STACK-NAME

StackName (@) z

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

0-4 ‘ O ‘ z ’ u ‘ w ’ b

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing
€ITor responses.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE- LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without a broker
restart, use the EntireX Broker command-line utility ETBCMD.

66

Administration under UNIX

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS or BS2000.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
COMPATIBILITY|NO I YES O u w
Determines whether the following c-tree parameters are set:
= COMPATIBILITY PREV610A_FLUSH
= COMPATIBILITY FDATASYNC
® SUPPRESS_LOG_FLUSH YES
= PREIMAGE_DUMP YES
See your FairCom documentation for a description of these parameters.
NO The c-tree parameters listed above are not set. Default.
YES The c-tree parameters listed above are set. This provides compatibility with c-tree
behavior prior to EntireX Broker 10.5.
FLUSH-DIR YES I NO @) u w
Controls whether metadata is flushed to disk immediately after creates, renames, and
deletes of transaction log files and transaction-dependent files.
YES Metadata is flushed to disk.
NO Metadata is not flushed to disk. This provides compatibility with c-tree behavior
prior to EntireX Broker version 10.5. See COMPATIBILITY NO_FLUSH_DIR in the
FairCom documentation for a description of this parameter.
MAXSIZE nlnMl nG @) u w
Defines the maximum size of c-tree data files. Broker allocates one data file for control
data and another data file for message data:
n Maximum size in MB.
nM Maximum size in MB.
nG Maximum size in GB.
PAGESIZE nl nK (@) u w

Determines how many bytes are available in each c-tree node. PSTORE COLD start is
required after changing this value.

Administration under UNIX 67

Broker Attributes

Attribute

Opt/ Operating System
Values Req z/0S UNIX Windows BS2000

n Same as nK

nK PAGESIZE in KB.

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOW write processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE
to a new PSTORE with an increased PAGESIZE value. See Migrating the Persistent Store
and define the increased PAGESIZE value for the load broker.

PATH

A255 |o‘ ‘u‘w|

Path name of the target directory for c-tree index and data files.

SYNCIO

NO I YES |o‘ ‘u’w|

Controls the open mode of the c-tree transaction log.

NO c-tree transaction log is not opened in synchronous mode. Default.

YES c-tree transaction log is opened in synchronous mode to improve data security. It
may degrade performance of PSTORE operations, but offers the highest level of
data security. See c-tree Database as Persistent Store in the UNIX | Windows
Administration documentation.

TRACE-LEVEL

0-4 O u w

Trace level for c-tree persistent store. It overrides the global value of trace level in the
attribute file.

0 No tracing. Default value.
1 Log memory allocation failures and errors during close of files.
2 n/a

3 All of trace level 1, plus UOWID in use for the various c-tree requests and function
entered/exit mesages.

4 All of trace level 3, plus returned function values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE- LEVEL without a broker restart, use the
EntireX Broker command-line utility ETBCMD.

68

Administration under UNIX

Broker Attributes

SSL/TLS-specific Attributes

The Broker can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. RPC-based clients and servers,
as well as ACI clients and servers, are always SSL clients. The broker is always the SSL server. For
anintroduction see SSL/TLS, HTTP(S), and Certificates with EntireX. Your operating system determ-
ines whether this section of the attribute file is required:

= z/OS
The SSL-specific attribute section is not used. You can use IBM's Application Transparent
Transport Layer Security (AT-TLS).
See Running Broker with SSL/TLS Transport in the z/OS Administration documentation.

® UNIX and Windows
The SSL-specific attribute section is required, and begins with the keyword DEFAULTS=SSL as
shown in the sample attribute file.
The attributes in this section are needed to execute the SSL communicator of the EntireX Broker
kernel.
See also Running Broker with SSL/TLS Transport under UNIX | Windows.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows | BS2000
CIPHER-SUITE string @) u w b

String that is passed to the underlying SSL/TLS implementation. SSL/TLS is a
standardized protocol that uses different cryptographic functions (hash functions,
symmetric and asymmetric encryption etc.). Some of these must be implemented
in the SSL/TLS stack; others are optional. When an SSL/TLS connection is created,
both parties agree by "handshake" on the cipher suite, that is, the algorithms
and key lengths used. In a default scenario, this information depends on what
both sides are capable of. It can be influenced by setting the attribute
CIPHER-SUITE for the SSL/TLS server side (the broker always implements the
server side). Thus stubs connect to the broker and thereby become the SSL/TLS
clients.

Under UNIX, Windows and BS2000, the OpenSSL implementation is used.

The SSL protocol is obsolete. It is no longer available. The TLS protocol is the
successor of SSL and is readily available in OpenSSL.

The default OpenSSL configuration uses FIPS 140-2 approved cipher suites,
eligible for TLS v1.2, but without anonymous Diffie-Hellman (ADH) and
pre-shared key (PSK) algorithms. The resulting set of cipher suites provides for
authentication and strong encryption:

CIPHER-SUITE=FIPS+TLSv1.Z2:!ADH:!PSK:@STRENGTH

Administration under UNIX 69

Broker Attributes

Attribute

Opt/ Operating System
Values Req zI0S ‘ UNIX ‘Windows‘ BS2000

See https://www.openssl.org/docs/manl.1.1/manl/ciphers.

CONNECTION-NONACT

nltnS1nMIl nH ‘ @] ‘ ‘ u ‘ w ‘ b

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

n Same as nS.
nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).

nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled.

HOST hostname ‘ O ‘ ‘ u ‘ w ‘ b
The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

KEY-FILE filename | R | | uw | w | b
File that contains the broker's private key (if not contained in KEY - STORE). For
test purposes, EntireX delivers certificates for use on various platforms. See
SSL/TLS Sample Certificates Delivered with EntireX.

Example for UNIX and Windows: MyAppKey . pem.
Note: EntireX Broker does not support Java certificates (keystore files of type
jks).

KEY -PASSWD password (A32) ‘ R ‘ ‘ u ‘ w ‘ b

Password used to protect the private key. Unlocks the KEY - FILE, for example
MyAppKey . pem. Deprecated. See KEY-PASSWD-ENCRYTPED below.

KEY-PASSWD-ENCRYPTED

encrypted value R u w b
(A64)

Password used to protect the private key. Unlocks the KEY - FILE, for example
MyAppKey . pem. This attribute replaces KEY -PASSWD to avoid a clear-text
password as attribute value. If KEY-PASSWD and KEY-PASSWD-ENCRYTPED are
both supplied, KEY-PASSWD-ENCRYTPED takes precedence.

Use program etbnattr to get the encrypted password:

70

Administration under UNIX

https://www.openssl.org/docs/man1.1.1/man1/ciphers

Broker Attributes

Oopt/ Operating System
Attribute Values Req z/0S ‘ UNIX ‘ Windows ‘ BS2000
etbnattr -w ssl_key_password --echo_password_only
This writes the encrypted password to standard output.
KEY-STORE filename | R | | uw | w | b

SSL certificate; may contain the private key. For test purposes, EntireX delivers
certificates for use on various platforms. See SSL/TLS Sample Certificates Delivered
with EntireX.

Example for UNIX and Windows: ExxAppCert.pem.

Note: EntireX Broker does not support Java certificates (keystore files of type
jks).

MAX-MESSAGE-LENGTH

2147483647 | n ‘ 0 ‘ ‘ u ‘ w ‘ b

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

PORT

1025-65535 | 0 ‘ | u | w ‘ b

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the sample
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

RESTART

YES I NO ‘ @) ‘ ‘ u ‘ w ‘ b

YES The broker kernel will attempt to restart the SSL communicator (this is
the default value).

NO The broker kernel will not attempt to restart the SSL. communicator.

RETRY-LIMIT

201 n 1 UNLIM ‘ 0 ‘ ‘ u ‘ w ‘ b

Maximum number of attempts to restart the SSL communicator.

RETRY-TIME

3MInlnSI1nMI nH ‘ @) ‘ ‘ u ‘ w ‘ b

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

n Same as nS.

nS Wait time in seconds (max.2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

Minimum: 1S

REUSE-ADDRESS

YES | NO \o\ ‘u‘w‘b

Administration under UNIX

7"

Broker Attributes

Oopt/ Operating System
Attribute Values Req z/0S ‘ UNIX ‘ Windows ‘ BS2000
YES The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).
NO The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.
STACK-NAME name B | ow oW

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

0-4 ‘ O ‘ ‘ u ‘ w ‘ b

The level of tracing to be performed while the broker is running with transport
method SSL/TLS. It overrides the global value of trace level for all SSL/TLS
routines.

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing
eITor responses.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without a broker
restart, use the EntireX Broker command-line utility ETBCMD.

TRUST-STORE

filename | keyring ‘ R ‘ ‘ u ‘ w ‘ b

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

Specify the file name of the CA certificate store. Examples: EXXCACERT . PEM,
C:\Certs\ExxCACert.pem

VERIFY-CLIENT

NO | YES ‘ O ‘ ‘ u ‘ w ‘ b

YES Additional client certificate required.
NO No client certificate required (default).

72

Administration under UNIX

Broker Attributes

Attribute

Values

Opt/
Req

Operating System

z/0S ‘ UNIX ‘Windows‘ BS2000

For more information see SSL/TLS, HTTP(S), and Certificates with EntireX.

Administration under UNIX

73

Broker Attributes

DIV-specific Attributes

These attributes define a persistent store that is implemented as a VSAM linear data set (LDS) ac-
cessed using Data In Virtual (DIV). This DIV persistent store is a container for units of work. The
DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

| Note: All attributes except the deprecated DIV were introduced with EntireX version 9.12.

They replace the Format Parameters of earlier versions, which are deprecated but still sup-
ported for compatibility reasons.

Opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
DIV A511 o) 5

"

The VSAM persistent store parameters, enclosed in double quotes (
span more than one line.

). The value can

Note: Deprecated. This attribute is applicable only if you are supplying the persistent

store parameters using Format Parameters of earlier versions. We recommend you use
the attributes below that were introduced with EntireX 9.12 instead.

DATASPACE-NAME

8 | o | = | | |

Defines the name of the dataspace that will be used to map the persistent store.

Default value is DSPSTORE.

DATASPACE-PAGES

126-524284 ‘ 0 ‘ z | ‘ ‘

Defines the size of the dataspace used to map the persistent store
(size=DATASPACE-PAGES * 4 KB). We recommend using the maximum value.

Default value is 2048.
DDNAME A8 | R [oz] | |
Defines the JCL DDNAME that will be used to access the persistent store.
STORE A8 | R [oz] | |

Defines an internal name that is used to identify the persistent store.

TRACE-LEVEL

04 | o | = | | |

Trace level for DIV. It overrides the global value of trace level in the attribute file.

0 No tracing. Default value.

1 Log selected DIV SAVE calls taking longer than 2 seconds elapsed time.
2 n/a

3 All of trace level 1, plus UOWID in use for the various DIV requests.

4 n/a

74

Administration under UNIX

Broker Attributes

Opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE- LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE - LEVEL without a broker restart, use
the EntireX Broker command-line utility ETBCMD.

Administration under UNIX 75

Broker Attributes

Adabas-specific Attributes

The Adabas-specific attribute section begins with the keyword DEFAULTS = ADABAS. The attributes
in this section are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,
these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
BLKSIZE 126-20000 O z u w b

Optional blocking factor used for message data. If not specified, broker will split the message
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.

For reasons of efficiency, do not specify a BLKSIZE much larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.

The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.

Default value is 2000.

DBID 1-32535 | R | oz | u | w | b
Database ID of Adabas database where the persistent store resides.

FNR 1-32535 | R | oz | u | w | b
File number of broker persistent store file.

FORCE-COLD [N 1Y o | z | u | w | b

Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

MAXSCAN 0ln @) z u w b

Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

OPENRQ NIY | o | z | u | w | b
Determines whether driver for Adabas persistent store is to issue an OPEN command to
Adabas.

svC 200-255 | R | oz] | |

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

76 Administration under UNIX

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
TRACE-LEVEL|0-4 @) z u w b

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

0 No tracing. Default value.
1 Log selected Adabas CB fields (command code, response code, subcode, ISN, additions).
2 n/a

3 All of trace level 1, plus UOWID in use for the various Adabas requests and function
entered/exit mesages.

4 All of trace level 3, plus more Adabas CB fields for successful requests and returned
function values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE - LEVEL without a broker restart, use the EntireX
Broker command-line utility ETBCMD.

Administration under UNIX 77

Broker Attributes

Application Monitoring-specific Attributes

The application monitoring-specific attribute section begins with the keyword
DEFAULTS=APPLICATION-MONITORING. It contains attributes that apply to the application monitoring
functionality. At startup time, the attributes are read if the Broker-specific attribute
APPLICATION-MONITORING=YES is specified. Duplicate or missing values are treated as errors. When

an error occurs, application monitoring is turned off and EntireX Broker continues execution. See
the separate Application Monitoring documentation.

APPMON-NAME

opt/ Operating System
Attribute Values Req z/0S UNIX | Windows | BS2000
APPLICATION-MONITORING|A100 O z u w b
-NAME or

Specifies a default application monitoring name. Used to set the value of the
ApplicationName KPI.

COLLECTOR-BROKER-ID

AG4 | R | 2z | uw | w | b
Identifies the Application Monitoring Data Collector. Has the format
host_name:port_number, where

where host_name isthe host where the Application Monitoring Data
Collector is running, and

port_number isthe port number of the Application Monitoring Data
Collector.

The default port is 57900.

TRACE-LEVEL

0-4 ‘ 0] ‘ z ‘ u | w ‘ b
The level of tracing to be performed while the broker is running with
application monitoring.

0 No tracing. Default value.
1 Display application monitoring errors.
2 All of trace level 1, plus measuring points for application monitoring.

3 All of trace level 2, plus function entered/exit messages with argument
values and monitoring buffers.

4 All of trace level 3, plus returned function values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. TRACE - LEVEL cannot be changed dynamically for
application monitoring.

78

Administration under UNIX

Broker Attributes

Authorization Rule-specific Attributes

The authorization rule-specific attribute section begins with the keyword
DEFAULTS=AUTHORIZATION-RULES. It contains attributes that enhance security-related definitions.
At startup time, the attributes are read if the following conditions are met:

" Broker-specific attribute SECURITY=YES
= Security-specific attributes SECURITY-SYSTEM=0S and SECURITY-LEVEL=AUTHORIZATION

When an error occurs, the EntireX Broker stops. See Authorization Rules.

Opt/ Operating System
Attribute Values Req z/0S UNIX Windows BS2000
RULE-NAME A32 R u w

Specifies a rule name. A rule is a container for a list of services and a list of client and
server user IDs. All users defined in a rule are authorized to use all services defined in
this rule. See example under Rules Stored in Broker Attribute File.

CLASS A32 |R| ‘u|w|
SERVER

These three attributes together identify the service. CLASS must be specified first,

SERVICE followed immediately by SERVER and SERVICE. Wildcard Service Definitions are
allowed.

CLIENT-USER-ID[A32 | R | | ou | ow]
Defines an authorized client user ID.

SERVER-USER-ID|A32 R u w

Defines an authorized server user ID.

Administration under UNIX 79

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

® BROKER-ID (in Broker-specific Attributes)

® NODE (in Adabas SVC/Entire Net-Work-specific Attributes)

® PORT (in SSL/TLS-specific Attributes and TCP/IP-specific Attributes)

How you use the variable definition file will depend upon your particular needs. For instance,

some optional attributes may require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

80 Administration under UNIX

5 Configuring Broker for Internationalization

= Configuring ICU Conversion ..

= Building and Installing ICU Custom CONVEIETScuviiiiiiiiiieeciie e

= Writing Translation User Exits

= Configuring Translation USEr EXItSooiiiiiii e

= Writing SAGTRPC User Exits

m Configuring SAGTRPC USEE EXIISeeeiiiiiiiiiit e

81

Configuring Broker for Internationalization

Software internationalization is the process of designing products and services so that they can
be adapted easily to a variety of different local languages and cultures. Internationalization within
EntireX means internationalization of messages: the incoming and outgoing messages are converted
to the desired codepage of the platform in use. This chapter explains in detail how to configure
the broker for character conversion.

See also Internationalization with EntireX.

Configuring ICU Conversion

~ To configure ICU conversion

1

In the Broker attribute file, set the service-specific attribute CONVERSION. Examples:

® ICU Conversion with SAGTCHA for ACI-based Programming:
CONVERSION=(SAGTCHA,OPTION=SUBSTITUTE)
® ICU Conversion with SAGTRPC for RPC-based Components and Reliable RPC:

CONVERSION=(SAGTRPC,OPTION=STOP)

Optionally configure a CONVERSION OPTION to tune error behavior to meet your requirements;
see OPTION Values for Conversion.

For the Broker attribute, check if ICU conversion is possible, that is, the attribute ICU-CONVER-
SION is either

" not defined, its default is YES

" setto YES

~ To configure locale string defaults (optional)

If the broker's locale string defaults do not match your requirements (see Broker’s Locale String
Defaults), we recommend you assign suitable locale string defaults for your country and region,
see the respective attribute in Codepage-specific Attributes for how to customize the broker's
locale string defaults.

82

Administration under UNIX

Configuring Broker for Internationalization

~ To customize mapping of locale strings (optional)

n If the built-in locale string mapping mechanism does not match your requirements, you can
assign specific codepages to locale strings. See Broker’s Built-in Locale String Mapping and
lTocale-string for information on customizing the mapping of locale strings to codepages.

Administration under UNIX 83

Configuring Broker for Internationalization

Building and Installing ICU Custom Converters

User-written ICU custom-converters can be used for ACI-based Programming, RPC-based Components,
and Reliable RPC. This section covers the following topics:

= Writing a User-written ICU Converter
= Compiling a User-written ICU Converter
= |nstalling a User-written ICU Converter

Writing a User-written ICU Converter

ICU uses algorithmic conversion, non-algorithmic conversion and combinations of both. See ICU
Conversion. Non-algorithmic converters defined by the UCM format are the easiest way to define
user-written ICU converters. See UCM Format.

~ To write a (non-algorithmic) user-written ICU converter

» Define the ICU converter file in UCM format using a text editor to meet your requirements.

] Note: For further explanation of the UCM file format, see ICU Resources.

Writing algorithmic and partially algorithmic converters can be complex. However, they can be
installed into EntireX in the same way as the table-driven, non-algorithmic ones. A description of
how to write algorithmic and partially algorithmic converters is beyond the scope of this docu-
mentation. See the ICU documentation and other sources specified under ICU Resources for more
information.

Compiling a User-written ICU Converter

~ To compile the user-written ICU converter

s Compile the converter source files (extension .ucm) into binary converter files (extension
".cnv") using the ICU tool makeconv. Example:

makeconv -v myebcdic.ucm

| Note: EntireX delivers the ICU tool makeconv in the EntireX bin directory.

This produces a binary converter file named myebcdic.cnv.

) Caution: The binary format "cnv" depends on the endianness (big/little-endian) and
character set family (ASCII/EBCDIC) of the computer where it is produced. For example,

84 Administration under UNIX

Configuring Broker for Internationalization

a binary converter file produced on a machine with big endianes cannot be executed
on a machine with little-endian (and vice versa) or character set family EBCDIC cannot
be executed on a machine with character set family ASCII (and vice versa). It is highly
recommended to compile the converter source file(s) on the same target platform where
the broker runs - otherwise unpredictable result may occur.

Installing a User-written ICU Converter

> To install the user-written ICU converter

1 Define the broker attribute ICU-DATA-DIRECTORY. See Broker-specific Attributes.

Example:
ICU DATA DIRECTORY=".../EntireX/config/etb"

2 Define the subdirectory icudt<icu-version><endianness> within the ICU-DATA-DIRECTORY

where <icu-version> is the ICU version used, for example 54, and

<endianness> is either “b” (big-endian) or “1” (little-endian)

Examples:

.../EntireX/config/etb/icudt541
.../EntireX/config/etb/icudt54b

Notes:

1. The subdirectory and its naming are given by ICU standard. It is not invented by Software
AG.

2. See the Release Notes to determine the ICU version used by the broker you are running
and form the correct directory name - otherwise the user-written ICU converter will not
be located.

3. Take care to use the correct endianness given by the machine the broker is running on,
otherwise the user-written ICU converter will not be located.

4. There are also other approaches supported by ICU to locate converters. These approaches
are (also) ICU version dependent. However, Software AG recommends the mechanism
described above. See the ICU website for more information under ICU Resources.

3 Copy the user-written ICU converter binary file (extension "cnv") to the directory referenced
by ICU-DATA-DIRECTORY and its subdirectory defined under steps 1 and 2 above. Examples:

Administration under UNIX 85

Configuring Broker for Internationalization

.../EntireX/config/etb/icudt541/myebcdic.cnv
.../EntireX/config/etb/icudt541/myascii.cnv

4 If the converter name is not sent as the locale string by your application, customize the mapping
of locale strings by assigning the user-written ICU converter (codepage) to locale strings in
the Broker attribute file, see 1ocale-string for how to customize the mapping of locale strings
to codepages. Example:

DEFAULTS=CODEPAGE

/* Customer-written ICU converter */
CP1140=myebcdic

CP0819=myascii

5 For the Broker attribute, check whether ICU conversion is possible, that is, the attribute I1CU-
CONVERSION is not defined (default=YES) or set to YES.

6 For the Broker attribute, check whether use of ICU custom converters is possible, that is, the
attribute I1CU-SET-DATA-DIRECTORY is not defined (default=YES) or set to YES.

Writing Translation User Exits

This section covers the following topics:

= |ntroduction
= Structure of the TRAP Control Block
= Using the TRAP Fields

Introduction

EntireX Broker provides an interface to enable user-written translation routines in the programming
language C. It contains three parameters:

® The address of the TRAP control block (TRAP = Translation Routine / Area for Parameters).

® The address of a temporary work area. It is aligned to fullword / long integer boundary (divisible
by 4). The work area can only be used for temporary needs and is cleared after return.

® A fullword (long integer) that contains the length of the work area.

| Note: Names for user-written translation routines starting with "SAG" are reserved for
Software AG usage and must not be used, e.g. "SAGTCHA" and "SAGTRPC".

86 Administration under UNIX

Configuring Broker for Internationalization

Structure of the TRAP Control Block

The C structure TR_TRAP covers the layout of the control block.

typedef struct _TR_TRAP /* 1 /0 */
{
unsigned long tr_type; /* TRAP type: TRAP_TYPE inp */
jfdefine TR_TYPE 2 /* TRAP type ETB 121)
long tr_ilen; /* Input buffer Tength inp */
unsigned char *tr_ibuf; /* Ptr to input buffer inp */
long tr_olen; /* Qutput buffer length inp */
unsigned char *tr_obuf; /* Ptr to output buffer inp */
long tr_dlen; /* Len of data returned: out */
/* Minimum of tr_ilen &Y/
/% and tr_olen =
unsigned long tr_shost; /* Senders host inp */
ffdefine TR_LITTLE_ENDIAN O /* Tittle endian &y
Jfdefine TR_BIG_ENDIAN 1 /* big endian */
unsigned long tr_scode; /* Senders character set inp */
#define SEBCIBM ((1L << 5)|(1L << 1)) /* 0x22 EBCDIC (IBM) %
ftdefine SEBCSNI ((1L << 6)| (1L << 1)) /* 0x42 EBCDIC (SNI))
fidefine SA88591 (1L << 7) /* 0x80 ASCII &y
unsigned long tr_rhost; /* Receivers host (see tr_shost) inp */
unsigned long tr_rcode; /* Receivers char set (see tr_scode) inp */
unsigned long tr_bhost; /* BROKER host (see tr_shost) inp */
unsigned long tr_bcode; /* BROKER char set (see tr_scode) inp */
unsigned long tr_senva; /* Senders ENVIRONMENT field set: inp */
fidefine OFF 0 /* ENVIRONMENT field not set */
f#fdefine ON 1 /* ENVIRONMENT field set =
unsigned long tr_renva; /* Receivers ENVIRONMENT field set: inp */
/* see tr_senva =)
Jfdefine S_ENV 32 /* size of ENVIRONMENT field Y/
char tr_senv[S_ENV];/* Senders ENVIRONMENT field inp */
char tr_renv[S_ENV];/* Receivers ENVIRONMENT field inp */
} TR_TRAP;
Using the TRAP Fields

The tr_dlen must be supplied by the user-written translation routine. It tells the Broker the length
of the message of the translation. In our example its value is set to the minimum length of the input
and output buffer.

All other TRAP fields are supplied by the Broker and must not be modified by the user-written
translation routine.

The incoming message is located in a buffer pointed to by tr_ibuf. The length (not to be exceeded)
is supplied in tr_ilen. The character set information from the send buffer can be taken from tr_scode.

The outgoing message must be written to the buffer pointed to by tr_obuf. The length of the output
buffer is given in the field tr_olen. The character set is specified in tr_rcode. If the addresses given

Administration under UNIX 87

Configuring Broker for Internationalization

in tr_ibuf and tr_obuf point to the same location, it is not necessary to copy the data from the input
buffer to the output buffer.

The environment fields tr_senva and tr_renva are provided to handle site-dependent character
set information. For the SEND and/or RECEIVE functions, you can specify data in the ENVIRONMENT
field of the Broker ACI control block. This data is translated into the codepage of the platform
where EntireX Broker is running (see field tr_bcode) and is available to the tr_senv or tr_renv field
in the TRAP control block. tr_senva or tr_renva are set to ON if environmental data is available.
Any values given in the API field ENVIRONMENT must correspond to the values handled in the
translation routine.

Configuring Translation User Exits

~ To configure translation user exits

As a prerequisite, the user-written translation routine shared library/object must be accessible to
the Broker worker threads.

1 Copy the user-written translation routine shared library/object into the EntireX /ib directory.

2 Inthe Broker attribute file, set the service-specific attribute TRANSLATION to the name of the
user-written translation routine. Example:

TRANSLATION=1ibmytrans.slo|1]
or

1. Place the user-written translation routine shared library/object in a directory of your choice.
Spaces in the path name are not allowed.

2. In the Broker attribute file, set the service-specific attribute TRANSLATION to the full path name
of the directory of the user-written translation routine. Example:

TRANSLATION=../mydir/mytrans/1ibmytrans.s[o|1]

88 Administration under UNIX

Configuring Broker for Internationalization

Writing SAGTRPC User Exits

This section covers the following topics:

= |ntroduction

= Structure of the User Exit Control Block
= Using the User Exit Interface Fields

= Character Set and Codepage

Administration under UNIX 89

Configuring Broker for Internationalization

Introduction

EntireX Broker provides an interface to SAGTRPC user exit routines written in the programming
language C. The interface contains three parameters:

® The address of the UE (user exit) control block.

® The address of a temporary work area. It is aligned to a fullword / long-integer boundary (divis-
ible by 4). The work area can only be used temporarily and is cleared after return.

® A fullword (long integer) that contains the length of the work area.

Note: Names for conversion routines starting with "SAG" are reserved for Software AG
usage and must not be used, e.g. "SAGTCHA" and "SAGTRPC".

Structure of the User Exit Control Block
The C structure UECB shows the layout of the user exit control block.

typedef struct _UECB
{

unsigned Tong eVersion;
ffdefine USRTRPC_VERSION_1 1
char * plnputBuffer;
unsigned long ulnputlen;
char * pOutputBuffer;
unsigned long uQutputlen;
unsigned Tong uReturnedLen;
unsigned Tong shost;
ffdefine USRTRPC_LITTLE_ENDIAN O /* little endian &Y/
Jfdefine USRTRPC_BIG_ENDIAN 1 /* big endian */
unsigned long scode;
ftdefine USRTRPC_SEBCIBM ((1L << 5)|(1L << 1)) /* 0x22 EBCDIC (IBM) &y
ffdefine USRTRPC_SEBCSNI ((1L << 6)| (1L << 1)) /* 0x42 EBCDIC (SNI) Y
jfdefine USRTRPC_SA88591 (1L << 7) /> 0x80 ASCII &Y/
unsigned Tong rhost;
/* see shost */
unsigned Tong rcode;
/* see scode */
unsigned Tong bhost;
/* see shost */
unsigned Tong bcode;

/* see scode */

unsigned Tong uCpSender;
unsigned long uCpReceiver;
unsigned Tong uCpBroker;

90 Administration under UNIX

Configuring Broker for Internationalization

char eFunction;
#fdefine USRTRPC_FCT_CONVERT 'C'
J#fdefine USRTRPC_FCT_GETLENGTH "L

char eDirection;
J#fdefine USRTRPC_DIR_SENDER_TO_BROKER "1’

jtdefine USRTRPC_DIR_SENDER_TO_RECEIVER '2'
ftdefine USRTRPC_DIR_BROKER_TO_RECEIVER '3

char sFormatl[2];
Jfdefine ERX_USERDATA "01" /* Userld, Lib, Pgm, etc. from Header
(truncatable) &y
Jfdefine ERX_METADATA "02" /* Header Data (non-truncatable) 2y
Jfdefine ERX_FRMTDATA "03" /* Format Buffer (non-truncatable) oy
ffdefine ERX_SB_ELEMENT "04" /* String Buffer)
Jfdefine ERX_VB_METADATA "05" /* Value Buffer Array Occurrences,
String Length oY/

ffdefine ERX_PREVIEW "99" /* Previewing FB and VB, etc... 2y

/* Convert data lazy. Do not care on Y/

/* length changes and truncation. Y
Jfdefine ERX_FRMT_A "A" /* Data Type A B/
fdefine ERX_FRMT_AV "AV" /* Data Type AV)
J#fdefine ERX_FRMT_B "B " /* Data Type B B/
ffdefine ERX_FRMT_BV "BV" /* Data Type BV *)
J#fdefine ERX_FRMT_D "D " /* Data Type D &Y/
fidefine ERX_FRMT_F4 "F4" /* Data Type F4 w
J#fdefine ERX_FRMT_F8 "F8" /* Data Type F8 &Y/
#fdefine ERX_FRMT_I1 "I1" /* Data Type I1)
Jfdefine ERX_FRMT_I2 "I2" /* Data Type 12 Y/
#fdefine ERX_FRMT_I4 "14" /* Data Type 14 oY/
J#fdefine ERX_FRMT_K K" /* Data Type K Y
#fdefine ERX_FRMT_KV KV /* Data Type KV =/
Jffdefine ERX_FRMT_L "L /* Data Type L)
J#fdefine ERX_FRMT_N "N " /* Data Type N B/
#fdefine ERX_FRMT_P "po /* Data Type P)
J#fdefine ERX_FRMT_T T " /* Data Type T &Y/
ffdefine ERX_FRMT_U "Uu " /* Data Type U)
Jfdefine ERX_FRMT_UV "yv" /* Data Type UV &Y/

char szErrorText[40];

} UECB;

The file usrtrpc.c is an example of the SAGTRPC user exit. It is delivered in the Broker user exit
directory. See Directories as Used in EntireX.

Administration under UNIX 91

Configuring Broker for Internationalization

Using the User Exit Interface Fields

The user exit provides two separate functions, Convert and GetLength. The field eFunction indicates
the function to execute.

Errors

Both functions can send an error, using register 15 in the range 1 to 9999 to SAGTRPC together
with an error text in the field szErrorText.

" A value of 0 returned in register 15 means successful response.

" Error 9999 is reserved for output buffer overflow. See Convert Function.

® When an error occurs, the conversion of the message will be aborted and the error text will be
sent to the receiver (client or server). The error is prefixed with the error class 1011. See Message
Class 1011 - User-definable SAGTRPC Conversion Exit.

Example:

The user exit returns 1 in register 15 and the message “Invalid Function” in szErrorText. The re-
ceiver gets the error message 10110001 Invalid Function.

Convert Function

This function has to be executed when the contents of eFunction match the definition
USRTRPC_FCT_CONVERT.

uReturnedLen must be supplied by SAGTRPC's user-written conversion exit. Its value must be
set to the length of the output buffer.

All other interface fields are supplied by the Broker and must not be modified by SAGTRPC's
user-written conversion exit.

The incoming data is located in a buffer pointed to by pInputBuffer. ulnputLen defines the length.

The outgoing converted message must be written to the buffer pointed to by pOutputBuffer. The
field tr_olen defines the maximum length available.

For variable length data such as AV and KV, an output buffer overflow can occur if the message
size increases after conversion or the receiver's receive buffer is too small. In this case error 9999
“output buffer overflow” must be returned, which calls the GetLength Function for the remaining
fields.

92 Administration under UNIX

Configuring Broker for Internationalization

GetLength Function

The GetLength function evaluates the needed length of the output buffer after conversion. An ac-
tual conversion must not be performed. The length needed must be returned in the field uOutputLen.

The GetLength function is called for remaining fields after the Convert function returned the error
9999 “output buffer overflow”.

The purpose of this function is to evaluate the length needed by the receiver's receive buffer. This
length is returned to the receiver in the ACI field RETURN- LENGTH. The receiver can then use the
Broker ACI function RECEIVE with the option LAST together with a receive buffer large enough to
reread the message.

Character Set and Codepage

The character-set information used is the same as in the user-written translation routine and is
taken from scode (for the sender), rcode (for the receiver) and bcode (for the Broker). The character-
set information depends on the direction information given in the field eDirection. See the fol-
lowing table:

eDirection From Character Set|To Character Set

USRTRPC_DIR_SENDER_TO_BROKER |scode bcode
USRTRPC_DIR_SENDER_TO_RECEIVER|scode rcode
USRTRPC_DIR_BROKER_TO_RECEIVER|bcode rcode

Alternatively, the codepage as derived from the locale string mapping process is provided in
uCpSender (sender codepage), uCpReceiver (receiver codepage) and uCpBroker (Broker codepage),
and can be used to find the correct conversion table. See the following table and also Locale String
Mapping.

eDirection From Codepage | To Codepage
USRTRPC_DIR_SENDER_TO_BROKER |uCpSender |uCpBroker
USRTRPC_DIR_SENDER_TO_RECEIVER|uCpSender |uCpReceiver
USRTRPC_DIR_BROKER_TO_RECEIVER|uCpBroker |uCpReceiver

Administration under UNIX

93

Configuring Broker for Internationalization

Software AG IDL Data Types to Convert

The field sFormat provides the SAGTRPC user-written conversion exit with the information on
the IDL data types to convert. Each data type can be handled independently.

sFormat |pata to be converted Notes
FMTA IDL data type A 1,34
FMTAV |IDL data type AV 4,5

FMTB IDL data type B 1,2,7
FMTBY |IDL data type BV 1,2,7
FMTD IDL data type D 1,2,7
FMTF4 |IDL data type F4 1,2,7
FMTF8 |IDL data type F8 1,2,7
FMTI1 |IDL data type Il 1,2,7
FMTI2 |IDL data type 12 1,2,7
FMTI4 |IDL data type 14 1,2,7
FMTK IDL data type K 1,34
FMTKV |IDL data type KV 4,5

FMTL IDL data type L 1,2,7
FMTN IDL data type N 1,2,7
FMTP IDL data type P 1,2,7
FMTT IDL data type T 1,2,8
FMTU IDL data type U 1,27
FMTUV |IDL data type UV 1,2,7
FMTUSER|RPC user data such as user ID, library, program... |1, 3, 4
FMTMETA |RPC metadata 1,2,7
FMTFB |RPC format buffer 1,2,7
FMTSB |RPC metadata variable length 4,5,7
FMTPRE |Preview data 4,6,7

] Notes:

1. Field length is constant.

2. The field content length must not increase or decrease during conversion. If this happens, the
user exit should produce an error.

3. If the field content length decreases during the conversion, suitable padding characters (normally
blanks) have to be used.
If the field content length increases during conversion and exceeds the field length, the contents
must be truncated or, alternatively, the conversion can be aborted and an error produced.

94 Administration under UNIX

Configuring Broker for Internationalization

4. If the contents are truncated, character boundaries are the responsibility of the user exit. Complete
valid characters after conversion have to be guaranteed. This may be a complex task for code-
pages described under Arabic Shaping, EBCDIC Stateful Codepages or Multibyte or Double-byte
Codepages. For single-byte codepages it is simple because the character boundaries are the same
as the byte boundaries.

5. The field length can decrease or increase during the conversion up to the output buffer length.
The new field length must be returned in uReturnedLen. If the output buffer in the Convert
function is too small, error 9999 must be returned to the caller.

6. The field buffer should continue to be converted until the output buffer is full or the input
buffer has been processed. If the field content length increases or truncations occur, no error
should be produced. If the field content length decreases, there should be no padding. The new
field length should simply be returned to the caller.

7. Codepages used for RPC data streams must meet several requirements. See Codepage Requirements
for RPC Data Stream Conversions. If these are not met, the codepage cannot be used to convert
RPC data streams.

~ To compile and link the SAGTRPC user exit

» See the README.TXT in the Broker User Exit Directory.

Administration under UNIX 95

Configuring Broker for Internationalization

Configuring SAGTRPC User Exits

The user-written SAGTRPC user exit shared library/object must be accessible to the Broker
worker threads.

~ To configure SAGTRPC user exits

1
2

Copy the user-written SAGTRPC user exit shared library/object into the EntireX lib directory.

In the Broker attribute file, set the service-specific attribute CONVERSION to the name of your
SAGTRPC user exit. Example:

CONVERSION=(1ibmytrans.s[o]|11)

or

. Place the user-written translation routine shared library/object in a directory of your choice.

. In the Broker attribute file, set the service-specific attribute CONVERSION to the full path name
of the directory of the SAGTRPC user exit. Example:

CONVERSION=../mydir/mytrans/1ibmytrans.s[o|1]

~ To configure locale string defaults

If the broker's locale string defaults do not match your requirements, we recommend you
assign suitable locale string defaults for your country and region. See the appropriate attribute
under Codepage-specific Attributes for information on customizing broker's locale string defaults,
and also Locale String Mapping.

~ To customize mapping of locale strings

If the broker's built-in locale string mechanism does not match your requirements, you can
assign specific codepages to locale strings. See Broker’s Built-in Locale String Mapping and the
appropriate attribute under Codepage-specific Attributes for information on customizing broker's
locale string defaults.

96

Administration under UNIX

6 Managing the Broker Persistent Store

= |mplementing an Adabas Database as Persistent Store
= c-tree Database as Persistent Store
= Migrating the Persistent Storeccccceeiiinine

97

Managing the Broker Persistent Store

The persistent store is used for storing unit-of-work messages to disk. This means message and
status information can be recovered after a hardware or software failure to the previous commit
point issued by each application component.

Under UNIX, the broker persistent store can be implemented with:

" the Adabas database of Software AG
* the c-tree (C) Copyright database of FairCom Corporation (R)

| Note: If you were previously using the local file system of the machine where the Broker

kernel executes, you will need to migrate to a supported persistent store. This persistent
store option is no longer supported. To migrate your persistent store, see the steps outlined
in Migrating the Persistent Store.

See also Concepts of Persistent Messaging.

Implementing an Adabas Database as Persistent Store

= |ntroduction

= Adabas Persistent Store Parameters

= Configuring and Operating the Adabas Persistent Store
= Adabas DBA Considerations

Introduction

EntireX provides an Adabas persistent driver. This enables Broker unit of work (UOW) messages
and their status to be stored in an Adabas file. It is designed to work with Adabas databases under
z/OS, UNIX, Windows, BS2000 and z/VSE, and can be used where the database resides on a different
machine to Broker kernel. For performance reasons, we recommend using EntireX Broker on the
same machine as the Adabas database.

Adabas Persistent Store Parameters

Parameters are supplied using the Adabas-specific Attributes in the platform-independent Admin-
istration documentation. See excerpt from the attribute file:

DEFAULTS=BROKER

STORE = BROKER

PSTORE-TYPE = ADABAS

PSTORE = COLD
DEFAULTS=ADABAS

DBID = dbid

FNR = fnr

98 Administration under UNIX

Managing the Broker Persistent Store

Configuring and Operating the Adabas Persistent Store

Selecting the Adabas Persistent Store Driver

The Adabas Persistent Store driver module is contained within the regular Broker load library or
binaries directory. The module adapsi is activated by specifying the PSTORE-TYPE parameter as
shown above.

Use the supplied script persistence.fdu in the bin directory to create a persistent store file in your
Adabas database. This script uses the Adabas FDT definition found in file persistence.fdt in the etc
directory.

The script persistence.fdu can be executed like this:

persistence.fdu <dbid> <fnr>

Note: You can customize the supplied script and FDT file in accordance with your site re-

quirements. See the Adabas Utilities manual where necessary, specifically ADAFDU (File
Definition Utility).

~ To run the script file

1 Ensure that you execute the script file on the same machine that the target Adabas is running
on. (The database can be either active or inactive at the time you execute it.)

2 Ensure that Adabas environment variables (such as ACLDIR, ADATOOLS, ADABIN and ADALNK)
are set up. These environment variables are set by sourcing the corresponding environment
scripts. See your Adabas documentation for details.

3 Set your working directory to the one where the fdt file is located.

4 Execute the fdt file, passing it two parameters. (The first one is the DBID, where persistent
store file is to be created; the second is the file number.)

5 Option: If the DBID is less than 3 characters long, include leading zeros. For example:

persistence.fdu 001 19

Result: Creation of file number 19 in database 1.

Administration under UNIX 99

Managing the Broker Persistent Store

Defining an Adabas FDT for EntireX File

ADACMP FNDEF='01,WK,21,A,DE"
ADACMP FNDEF='01,WJ,126,B,MU"
ADACMP FNDEF='01,WI,126,B,DE,NU"
ADACMP FNDEF='01,WL,96,A,DE,NU"
ADACMP FNDEF="01,WP,96,A,DE,NU"

Restrictions

If a HOT start is performed, the Broker kernel must be executed on the same platform on which
also the previous Broker executed. This is because some portions of the persistent data are stored
in the native character set and format of the Broker kernel. It is also necessary to start Broker with
the same Broker ID as the previous Broker executed.

If a COLD start is executed, a check is made to ensure the Broker ID and platform information
found in the persistent store file is consistent with the Broker being started (provided the persistent
store file is not empty). This is done to prevent accidental deletion of data in the persistent store
by a different Broker ID. If you intend to COLD start Broker and to utilize a persistent store file
which has been used previously by a different Broker ID, you must supply the additional PSTORE -
TYPE parameter FORCE-COLD=Y.

Recommendations

® Perform regular backup operations on your Adabas database. The persistent store driver writes
C1 checkpoint records at each start up and shut down of Broker.

® For performance reasons, execute Broker on the same machine as Adabas.
Broker Checkpoints in Adabas

During startup, Broker writes the following C1 checkpoint records to the Adabas database. The
time, date and job name are recorded in the Adabas checkpoint log. This enables Adabas protection
logs to be coordinated with Broker executions. This information can be read from Adabas, using
the ADAREP utility with option CPLIST:

Broker Execution Name | Broker Execution Type |Adabas

ETBC Broker Cold Start |Normal Cold Start

ETBH Broker Hot Start Normal Hot Start

ETBT Broker Termination |Normal Termination

100 Administration under UNIX

Managing the Broker Persistent Store

Adabas DBA Considerations

= BLKSIZE : Adabas Persistent Store Parameter for Broker

= Table of Adabas Parameter Settings

= Estimating the Number of Records to be Stored

= Estimating the Number of Records to be Stored

= Tips on Transports, Platforms and Versions

= Copying the Persistent Store from/to another Adabas File or Database

BLKSIZE : Adabas Persistent Store Parameter for Broker

Caution should be exercised when defining the block size (BLKSIZE) parameter for the Adabas
persistent store. This determines how much UOW message data can be stored within a single
Adabas record. Therefore, do not define a much larger block size than the size of the maximum
unit of work being processed by Broker. (Remember to add 41 bytes for each message in the unit
of work.) The advantage of having a good fit between the unit of work and the block size is that
fewer records are required for each I/O operation.

It is necessary to consider the following Adabas parameters and settings when using Adabas for
the persistent store file:

Table of Adabas Parameter Settings

Topic Description

Allowing Sufficient Adabas UQ |Allow sufficient Adabas user queue (UQ) elements each time you start
Elements Broker. The Broker utilizes a number of user queue elements equal to
the number of worker tasks (NUM-WORKER), plus two. Adabas timeout
parameter (TNAE) determines how long the user queue elements will
remain. This can be important if Broker is restarted after an abnormal
termination, and provision must be made for sufficient user queue
elements in the event of restarting Broker.

Use either the Adabas utility ADAOPR or the Adabas DBA workbench to
clean-up any user queue element belonging to the previous Broker job.

Setting Size of Hold Queue Consideration must be given to the Adabas hold queue parameters

Parameters NISNHQ and NH. These must be sufficiently large to allow Adabas to
add/update/delete the actual number of records within a single unit of
work.

Example: where there are 100 message within a unit of work and the
average message size is 10,000 bytes, the total unit of work size is 1 MB.
If, for example, a 2 KB block size (default BLKSIZE=2000) is utilized by
the Adabas persistent store driver, there will be 500 distinct records
within a single Adabas commit (ET) operation, and provision must be
made for this to occur successfully.

Administration under UNIX 101

Managing the Broker Persistent Store

Topic Description

Setting Adabas TT Parameter Consideration must be given to the Adabas transaction time (TT)
parameter for cases where a large number of records is being updated
within a single unit of work.

Defining LWP Size Sufficient logical work pool (LWP) size must be defined so that the Adabas
persistent store can update and commit the units of work. Adabas must
be able to accommodate this in addition to any other processing for
which it is used.

Executing Broker Kernel and If Broker kernel is executed on a separate machine to the Adabas nucleus,

Adabas Nucleus on Separate with a different architecture and codepage, then we recommend running

Machines the Adabas nucleus with the UEC (universal conversion) option in order
to ensure that Adabas C1 checkpoints are legible within the Adabas
checkpoint log.

Setting INDEXCOMPRESSION=YES |This Adabas option can be applied to the Adabas file to reduce by
approximately 50% the amount of space consumed in the indexes.

4-byte ISNs If you anticipate having more than 16 million records within the
persistent store file, you must use 4-byte ISNs when defining the Adabas
file for EntireX.

Specification of Adabas L.P Caution: This parameter must be specified large enough to allow the

Parameter largest UOW to be stored in Adabas.

If this is not large enough, Broker will detect an error (response 9;
subresponse - 4 bytes - X'0003',C'LP') and Broker will not be able to
write any further UOWs.

See the description of the LP parameter under ADARUN Parameters in
theDBA Reference Summary of the Adabas documentation.

Estimating the Number of Records to be Stored

To calculate the Adabas file size it is necessary to estimate the number of records being stored. As
an approximate guide, there will be one Adabas record (500 bytes) for each unprocessed unit of
work, plus also n records containing the actual message data, which depends on the logical block
size and the size of the unit of work. In addition, there will be one single record (500 bytes) for
each unit of work having a persisted status.

Always allow ample space for the Adabas persistent store file since the continuous operation of
Broker relies of the availability of this file to store and retrieve information.

i Note: If the Adabas file space is exceeded, Broker will automatically terminate, and it will

be necessary either to increase the space available to the file using Adabas utilities or to
perform a Broker HOT start with NEW-UOW-MESSAGES=NO to allow units of work to be con-
sumed before normal operation can continue.

102 Administration under UNIX

Managing the Broker Persistent Store

Estimating the Number of Records to be Stored

In this example there are 100,000 Active UOW records at any one time. Each of these is associated
with two message records containing the message data. UOW records are 500 bytes in length.
Each message record contains 2,000 bytes. In addition, there are 500,000 UOW status records
residing in the persistent store, for which the UOW has already been completely processed. These
are 500 bytes long.

| Note: The actual size of the data stored within the UOW message records is the sum of all

the messages within the UOW, plus a 41-byte header for each message. Therefore, if the
average message length is 59 bytes, the two 2,000 bytes, messages records, could contain n
=4,000 / (59+41), or 40 messages. Adabas is assumed to compress the message data by 50%
in the example (this can vary according to the nature of the message data).

3-byte ISNs and RABNs are assumed in this example. A device type of 8393 is used; therefore, the
ASSO block size is 4,096, and DATA block size is 27,644. Padding factor of 10% is specified.

The following example calculates the space needed for Normal Index (NI), Upper Index (UI),
Address Converter (AC) and Data Storage (DS).

Calculation Factors Required Space

® Number entries for descriptor WK ® =number UOW records: 0.1 + 0.5 million
(21-byte unique key) +number message records: 0.2 million

= NI Space for descriptor WK = =800,000 * (3 +21 +2)

" (3-byte ISN) = =20,800,000 bytes

" (4,092 ASSO block 10% padding) m =5,648 blocks

= UI Space for descriptor WK ®=5648%(21+3+3+1)

" (3-byte ISN + 3-byte RABN) = =158,140 bytes

" (4,092 ASSO block 10% padding) ® =43 blocks

® Number entries for descriptor WI ® =number processed UOW records: 0.5

million

(8-byte unique key)

= NI Space for descriptor WI = =500,000* (3 +8+2)

= (3-byte ISN) = = 6,500,000 bytes

" (4,092 ASSO block 10% padding) = =1,765 blocks

= UI Space for descriptor WI " =17649*(8+3+3+1)

® (3-byte ISN and 3 byte RABN) = =26,475 bytes

" (4,092 ASSO block 10% padding) = =8 blocks

Administration under UNIX 103

Managing the Broker Persistent Store

Calculation Factors Required Space

® Number entries for descriptor WL ® =number UOW records 0.1 + 0.5 million
(96 byte key)

= NI Space for descriptor WL = =600,000* (3 +96 +2)

" (3-byte ISN) = =60,600,000 bytes

" (4,092 ASSO block 10% padding) = =16,455 blocks

= UI Space for descriptor WL " =164,548* (96 +3+3+1)

= (3-byte ISN and 3 byte RABN) = =16,948,517 bytes

" (4,092 ASSO block 10% padding) " =461 blocks

® Address Converter space = =(800,000 + 1) * 3 / 4092

= (4,092 ASSO block) = =587 blocks

= Data storage for message data = 0.2 million * 2000 * 0.5 = 200,000,000 bytes

(2,000-byte records compressed by 50%)

® Data storage for UOW data = 0.6 million * 500 * 0.5 = 150,000,000 byte

(2,000-byte records compressed by 50%)

= Combined space required for data = =14,068 blocks
(27,644 DATA block 10% padding)

Entity Requiring Space Total Required Space

Normal Index (NI) = 23,868 blocks

Upper Index (UI) =512 blocks

Data Storage (DS) = 14,068 blocks

Address Converter (AC) =587 blocks

Tips on Transports, Platforms and Versions

* Entire Net-Work
If you intend to use Adabas persistent store through Entire Net-Work, see the Entire Net-Work
documentation for installation and configuration details.

® Adabas Versions
Adabas persistent store can be used on all Adabas versions currently released and supported
by Software AG.

104 Administration under UNIX

Managing the Broker Persistent Store

® Prerequisite Versions of Entire Net-Work with Adabas
See the Adabas and Entire Net-Work documentation to determine prerequisite versions of Entire
Net-Work to use with Adabas at your site.

Copying the Persistent Store from/to another Adabas File or Database

The DBA can perform an UNLOAD of the Adabas file in which the persistent store is located (this
must be done when Broker is not running). This allows the persistent store to be LOADed into
another Adabas file, in the same or in another Adabas database. Broker can then be restarted
(PSTORE=HOT) with the attributes specifying the new location of the persistent store file. See
Table of Adabas Parameter Settings above. See separate Adabas documentation for details of
Adabas utilities for UNLOAD and LOAD operations.

The persistent store file can only be reloaded into another Adabas database running on the same
platform type as the Adabas database from which it was unloaded.

c-tree Database as Persistent Store

EntireX provides a c-tree© persistent driver based on the c-tree© User API of the FairCom Corpor-
ation®. This driver manages a fast and reliable embedded local database.

In order to operate EntireX using the c-tree persistent store option, you must assign Broker attribute
PSTORE-TYPE=CTREE. No other attributes are required. However, several attributes are supported
to set additional optional attributes for the c-tree store. See c-tree-specific Attributes for details.

Administration under UNIX 105

Managing the Broker Persistent Store

Migrating the Persistent Store

The contents of EntireX Broker's persistent store can be migrated to a new persistent store in order
to change the PSTORE type or to use the same type of PSTORE with increased capacity.

The migration procedure outlined here requires two Broker instances started with a special
RUN-MODE parameter. One Broker unloads the contents of the persistent store and transmits the
data to the other Broker, which loads data into the new PSTORE. Therefore, for the purposes of
this discussion, we will refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link
between two Broker instances. It does not use any conversion facilities, since the migration pro-
cedure is supported for homogeneous platforms only.

= Configuration
= Migration Procedure

Configuration

| Note: RUN-MODE options PSTORE-LOAD and PSTORE-UNLOAD are deprecated and will not be

supported in the next version of EntireX.

The migration procedure requires two Broker instances started with the RUN-MODE parameter. The
unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD
These commands instruct the Broker instances to perform the PSTORE migration.

) Note: The attribute PARTNER-CLUSTER-ADDRESS must be defined in both Broker instances to

specify the transport address of the load Broker. The unload Broker must know the address
of the load broker, and the load Broker must in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on
host HOST?2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to estab-
lish port 1972.

106 Administration under UNIX

Managing the Broker Persistent Store

For ETB001, attribute PARTNER-CLUSTER-ADDRESS=H0ST2:1972:TCP is set, and for ETB002, attribute
PARTNER-CLUSTER-ADDRESS=HOST1:1971:TCPissetto establish the Broker-to-Broker communication
between the two Broker instances.

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE
on the unloader side, you must set the attribute PSTORE=HOT. To load the data into the new PSTORE
on the loader side, you must set the attribute PSTORE=COLD. The load process requires an empty
PSTORE at the beginning of the load process.

| Note: Use caution not to assign PSTORE=COLD to your unload Broker instance, as this startup

process will erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different per-
sistent stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end
of the migration process, a second report can be run on the resulting new persistent store. These
two reports can be compared to ensure that all contents were migrated properly. To run these re-
ports, set the attribute PSTORE-REPORT=YES. See PSTORE for detailed description, especially for the
file assignment.

Migration Procedure

The migration procedure is made up of three steps.
Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to
perform an initial compatibility check. This validation is performed by Broker according to platform
architecture type and Broker version number. The handshake ensures a correctly configured
partner cluster address and ensures that the user did not assign the same PSTORE to both Broker
instances. If a problem is detected, an error message will be issued and both Broker instances will
stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and
transmits the data to the load Broker instance. The load Broker instance writes the unchanged raw
data to the new PSTORE. A report is created if PSTORE-REPORT=YES is specified, and a valid output
file for the report is specified.

Administration under UNIX 107

Managing the Broker Persistent Store

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare
the amount of migrated data. The result of this check is reported by the unload Broker instance
and the load Broker instance before they shut down.

When a Broker instances is started in RUN-MODE=PSTORE - LOAD or RUN-MODE=PSTORE-UNLOAD, the
Broker instances only allow Administration requests. All other user requests are prohibited.

) Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica.
No filtering of unnecessary information will be performed, for example, UOWs in received
state. The master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE
attribute to PSTORE=HOT. Do not start your broker with the new persistence store using
PSTORE=COLD; this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your broker in a normal run-mode, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate
Broker instances; otherwise, applications would receive the same data twice. Once the migration
process is completed satisfactorily, and is validated, the old PSTORE contents should be dis-
carded.

108 Administration under UNIX

7 Broker Resource Allocation

General CONSIABTALIONSuvviiieieee ettt e e e e e e ettt e e e e e e e et e e e e e e e e
SPECIfYiNg GIODAI RESOUICESviiiieiiiiii ettt e e e e
Restricting the Resources of Particular SEIVICESc.uviiiiiiiiiiiiiie e
Specifying Attributes for Privileged SErVICEScoiiiiiiiiiiiiiii e
Maximum UNItS OF WOTKoiiiieiii e
Calculating Resources AULOMALICAILYeviiiiiiiieiii e
Dynamic Memory Man@QEMENTvvveeieiieieieieieieit ettt e st s st s s e e e aneeeeenee e
Dynamic Worker ManagEMENTouuiiieeiiiii ettt
STOrAGE REPOI ...ttt
Maximum TCP/IP Connections per COMMUNICALONcoviviiieiieeee et

109

Broker Resource Allocation

The EntireX Broker is a multithreaded application and communicates among multiple tasks in
memory pools. If you do not need to restrict the memory expansion of EntireX Broker, we strongly
recommend you enable the dynamic memory management in order to handle changing workload
appropriately. See Dynamic Memory Management below. If dynamic memory management is dis-
abled, non-expandable memory is allocated during startup to store all internal control blocks and
the contents of messages.

General Considerations

Resource considerations apply to both the global and service-specific levels:

* Dynamic assignment of global resources to services that need them prevents the return of a
“Resource Shortage” code to an application when resources are available globally. It also enables
the EntireX Broker to run with fewer total resources, although it does not guarantee the availab-
ility of a specific set of resources for a particular service.

® Flow control ensures that individual services do not influence the behavior of other services by
accident, error, or simply overload. This means that you can restrict the resource consumption
of particular services in order to shield the other services.

In order to satisfy both global and service-specific requirements, the EntireX Broker allows you
to allocate resources for each individual service or define global resources which are then allocated
dynamically to any service that needs them.

The resources in question are the number of conversations, number of servers, plus units of work
and the message storage, separated in a long buffer of 4096 bytes and short buffer of 256 bytes.
These resources are typically the bottleneck in a system, especially when you consider that non-
conversational communication is treated as the special case of “conversations with a single message
only” within the EntireX Broker.

Global resources are defined by the parameters in the Broker section of the attribute file. The
number of conversations allocated to each service is defined in the service-specific section of the
attribute file. Because the conversations are shared by all servers that provide the service, a larger
number of conversations should be allocated to services that are provided by more than one
server. The number of conversations required is also affected by the number of clients accessing
the service in parallel.

110 Administration under UNIX

Broker Resource Allocation

Specifying Global Resources

You can specify a set of global resources with no restrictions on which service allocates the resources:

= Specify the global attributes with the desired values.

* Do not specify any additional restrictions. That is, do not provide values for the following Broker-
specific attributes:

LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
CONV-DEFAULT
SERVER-DEFAULT

® Also, do not provide values for the following server-specific attributes:

LONG-BUFFER-LIMIT
SERVER-LIMIT
SHORT-BUFFER-LIMIT
CONV-LIMIT

Example

The following example defines global resources. If no additional definitions are specified, resources
are allocated and assigned to any server that needs them.

NUM-CONVERSATION=1000
NUM-LONG-BUFFER=200
NUM-SHORT-BUFFER=2000
NUM-SERVER=100

Restricting the Resources of Particular Services

You can restrict resource allocation for particular services in advance:

® Use CONV-LIMIT to limit the resource consumption for a specific service.

® Use CONV-DEFAULT to provide a default limit for services for which CONV-LIMIT is not defined.
Example

In the following example, attributes are used to restrict resource allocation:

Administration under UNIX 111

Broker Resource Allocation

DEFAULTS=BROKER
NUM-CONVERSATION=1000
CONV-DEFAULT=200

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, CONV-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Memory for a total of 1000 conversations is allocated (NUM-CONVERSATION=1000).

Service A (CLASS A,SERVER A,SERVICE A) is limited to 100 conversation control blocks used simul-
taneously (CONV- LIMIT=100). The application that wants to start more conversations than specified
by the limit policy will receive a “Resource shortage” return code. This return code should result
in a retry of the desired operation a little later, when the resource situation may have changed.

Service B (CLASS B,SERVER B,SERVICE B) is allowed to try to allocate as many resources as necessary,
provided the resources are available and not occupied by other services. The number of conver-
sations that may be used by this service is unlimited (CONV-LIMIT=UNLIM).

Service C (CLASS C,SERVER C,SERVICE C) has no explicit value for the CONV-LIMIT attribute. The
number of conversation control blocks that it is allowed to use is therefore limited to the default
value which is defined by the CONV-DEFAULT Broker attribute.

The same scheme applies to the allocation of message buffers and servers:

In the following example, long message buffers are allocated using the keywords NUM-LONG-
BUFFER, LONG-BUFFER-DEFAULT and LONG-BUFFER-LIMIT

DEFAULTS=BROKER
NUM-LONG-BUFFER=2000
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, LONG-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

® In the following example, short message buffers are allocated using the keywords NUM- SHORT -

BUFFER, SHORT-BUFFER-DEFAULT and SHORT-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=2000
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, SHORT-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

112 Administration under UNIX

Broker Resource Allocation

* In the following example, servers are allocated using the keywords NUM- SERVER, SERVER-DEFAULT
and SERVER-LIMIT

DEFAULTS=BROKER
NUM-SERVER=2000
SERVER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SERVER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Specifying Attributes for Privileged Services

If privileged services (services with access to unlimited resources) exist, specify UNLIMITED for the
attributes CONV-LIMIT, SERVER-LIMIT, LONG-BUFFER-LIMIT and SHORT-BUFFER-LIMIT in the service-
specific section of the attribute file.

For example:

DEFAULTS=SERVICE
CONV-LIMIT=UNLIM
LONG-BUFFER-LIMIT=UNLIM
SHORT-BUFFER-LIMIT=UNLIM
SERVER-LIMIT=UNLIM

To ensure a resource reservoir for peak load of privileged services, define more resources than
would normally be expected by specifying larger numbers for the Broker attributes that control
global resources:

NUM-SERVER
NUM-CONVERSATION
CONV-DEFAULT
LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
SERVER-DEFAULT

Administration under UNIX 113

Broker Resource Allocation

Maximum Units of Work

The maximum number of units of work (UOWs) that can be active concurrently is specified in the
Broker attribute file. The MAX-UOWS attribute can be specified for the Broker globally as well as for
individual services. It cannot be calculated automatically. If a service is intended to process UOWs,
a MAX-UOWS value must be specified.

If message processing only is to be done, specify MAX-UOWS=0 (zero). The Broker (or the service)
will not accept units of work, that is, it will process only messages that are not part of a UOW.
Zero is used as the default value for MAX-UOWS in order to prevent the sending of UOWs to services
that are not intended to process them.

Calculating Resources Automatically

To ensure that each service runs without impacting other services, allow the EntireX Broker to
calculate resource requirements automatically:

= Ensure that the attributes that define the default total for the Broker and the limit for each service
are not set to UNLIM.

= Specify AUTO for the Broker attribute that defines the total number of the resource.

" Specity a suitable value for the Broker attribute that defines the default number of the resource.

The total number required will be calculated from the number defined for each service. The re-
sources that can be calculated this way are Number of Conversations, Number of Servers, Long
Message Buffers and Short Message Buffers.

Avoid altering the service-specific definitions at runtime. Doing so could corrupt the conversation
consistency. Applications might receive a message such as “NUM-CONVERSATIONS reached” although
the addressed service does not serve as many conversations as defined. The same applies to the
attributes that define the long and short buffer resources.

Automatic resource calculation has the additional advantage of limiting the amount of memory

used to run the EntireX Broker. Over time, you should be able to determine which services need

more resources by noting the occurrence of the return code “resource shortage, please retry”. You
can then increase the resources for these services. To avoid disruption to the user, you could instead
allocate a relatively large set of resources initially and then decrease the values using information
gained from the Administration Monitor application.

Number of Conversations

To calculate the total number of conversations automatically, ensure that the CONV-DEFAULT Broker
attribute and the CONV- LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute

114 Administration under UNIX

Broker Resource Allocation

file. Specify NUM-CONVERSATION=AUTO and an appropriate value for the CONV-DEFAULT Broker attrib-
ute. The total number of conversations will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-CONVERSATION=AUTO
CONV-DEFAULT=200

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A

CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

= Service A and Service C both need 200 conversations (the default value). Service B needs 100
conversations (CONV-LIMIT=100).

B Because NUM-CONVERSATIONS is defined as AUTO, the broker calculates a total of 500 conversations
(200 + 200 + 100).

® NUM-CONVERSATIONS=AUTO allows the number of conversations to be flexible without requiring
additional specifications. It also ensures that the broker is started with enough resources to meet
all the demands of the individual services.

" AUTO and UNLIM are mutually exclusive. If CONV-DEFAULT or a single CONV-LIMIT is defined as
UNLIM, the EntireX Broker cannot determine the number of conversations to use in the calculation,
and the EntireX Broker cannot be started.

Number of Servers

To calculate the number of servers automatically, ensure that the SERVER-DEFAULT Broker attribute
and the SERVER-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute file.
Specify NUM-SERVER=AUTO and an appropriate value for the SERVER-DEFAULT Broker attribute. The
total number of server buffers will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SERVER=AUTO
SERVER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B

CLASS=C, SERVER=C, SERVICE=C

Long Message Buffers

To calculate the number of long message buffers automatically, ensure that the LONG-BUFFER-DE -
FAULT Broker attribute and the LONG-BUFFER-LIMIT service-specific attribute are not set to UNLIM

Administration under UNIX 115

Broker Resource Allocation

anywhere in the attribute file. Specify NUM- LONG-BUFFER=AUTO and an appropriate value for the
LONG-BUFFER-DEFAULT Broker attribute. The total number of long message buffers will be calculated
using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-LONG-BUFFER=AUTO
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B

CLASS=C, SERVER=C, SERVICE=C

Short Message Buffers

To calculate the number of short message buffers automatically, ensure that the SHORT-BUFFER-
DEFAULT Broker attribute and the SHORT-BUFFER- LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM- SHORT-BUFFER=AUTO and an appropriate value for the
SHORT-BUFFER-DEFAULT Broker attribute. The total number of short message buffers will be calcu-
lated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=AUTO
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE

CLASS=A, SERVER=A, SERVICE=A

CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Dynamic Memory Management

Dynamic memory management is a feature to handle changing Broker workload without any restart
of the Broker task. It increases the availability of the Broker by using various memory pools for
various Broker resources and by being able to use a variable number of pools for the resources.

If more memory is needed than currently available, another memory pool is allocated for the
specific type of resource. If a particular memory pool is no longer used, it will be deallocated.

The following Broker attributes can be omitted if DYNAMIC-MEMORY -MANAGEMENT=YES has been
defined:

116 Administration under UNIX

Broker Resource Allocation

= NUM-CLIENT ® NUM-LONG[-BUFFER] ® NUM-SHORT[-BUFFER]
® NUM-CMDLOG-FILTER = NUM-SERVER = NUM-UOW | MAX -UOWS | MUOW
= NUM-COMBUF = NUM-SERVICE = NUM-WQE

NUM-CONV[ERSATION] ® NUM-SERVICE-EXTENSION

If you want statistics on allocation and deallocation operations in Broker, you can configure Broker
to create a storage report with the attribute STORAGE-REPORT. See Storage Report below.

| Note: To ensure a stable environment, some pools of Broker are not deallocated automatically.
The first pools of type COMMUNICATION, CONVERSATION, CONNECTION, HEAP, PARTICIPANT,
PARTICIPANT EXTENSION, SERVICE ATTRIBUTES, SERVICE, SERVICE EXTENSION, TIMEOUT
QUEUE, TRANSLATION, WORK QUEUE are excluded from the automatic deallocation even when
they have not been used for quite some time. Large pools cannot be reallocated under some
circumstances if the level of fragmentation in the address space has been increased in the
meantime.

Dynamic Worker Management

Dynamic worker management is a feature to handle the fluctuating broker workload without re-
starting the Broker task. It adjusts the number of running worker tasks according to current
workload. The initial portion of worker tasks started at Broker startup is still determined by NUM-
WORKER.

If more workers are needed than currently available, another worker task is started. If a worker
task is no longer needed, it will be stopped.

The following Broker attributes are used for the configuration if DYNAMIC-WORKER-MANAGEMENT=YES
has been defined:

" WORKER-MAX

= WORKER-MIN

® WORKER-NONACT

® WORKER-QUEUE-DEPTH

® WORKER-START-DELAY

The following two attributes are very performance-sensitive:

= Attribute WORKER-QUEUE-DEPTH defines the number of unassigned user requests in the input
queue before a new worker task is started.

Administration under UNIX 117

Broker Resource Allocation

= Attribute WORKER-START-DELAY defines the time between the last worker task startup and the
next check for another possible worker task startup. It is needed to consider the time for activ-
ating a worker task.

Both attributes depend on the environment, in particular the underlying operating system and
the hardware. The goal is to achieve high-performance user request processing without starting
too many worker tasks.

A good starting point to achieve high performance is not to change the attributes and to observe
the performance of the application programs after activating the dynamic worker management.

If broker attribute DYNAMIC-WORKER-MANAGEMENT=YES is set, operator commands are available under
z/OS to deactivate and subsequently reactivate dynamic worker management.

The following section illustrates the two different modes of dynamic worker management:

" Scenario 1

DYNAMIC-WORKER-MANAGEMENT=YES
NUM-WORKER = 5

WORKER-MIN 1

WORKER-MAX = 32

Broker is started with 5 worker tasks and then dynamically varies the number of worker tasks
within the range from WORKER-MIN=1 to WORKER-MAX=32 due to DYNAMIC-WORKER-MANAGEMENT=YES.

®= Scenario 2

DYNAMIC-WORKER-MANAGEMENT=NO
NUM-WORKER = 5

WORKER-MIN 1

WORKER-MAX = 32

Broker is started with 5 worker tasks. The WORKER-MIN/MAX attributes are ignored due to DYNAMIC-
WORKER-MANAGEMENT=NO.

118 Administration under UNIX

Broker Resource Allocation

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocate memory pools. This section details how to create the report and provides a sample report.

= Creating a Storage Report
= Platform-specific Rules
= Sample Storage Report

See also Broker-specific attribute STORAGE - REPORT.

Creating a Storage Report

Use Broker's global attribute STORAGE - REPORT with the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument - r, the token following argu-
ment - r will be used as the file name.

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1
Identifier Address Size Total Date Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 12:... Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 12:... Allocated
Header Description

Identifier |[Name of the memory pool.

Address |[Start address of the memory pool.

Size Size of the memory pool.

Total Total size of all obtained memory pools.

Date, Time |Date and time of the action.

Administration under UNIX 119

Broker Resource Allocation

Header Description

Action The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated.
Deallocated: memory pool is deallocated.

120 Administration under UNIX

Broker Resource Allocation

Maximum TCP/IP Connections per Communicator

This table shows the generated maximum number of TCP/IP connections per communicator. See
also:

= Note for UNIX
= Note for Linux

Platform [Maximum Number of TCP/IP Connections per Communicator

BS2000 {2,048
Linux 65,534
Windows |4,096
z/OS 16,384

With the Broker-specific attribute POLL, these restrictions can be lifted under z/OS and UNIX. See
POLL.

The number of communicators multiplied by the maximum number of connections cannot exceed
the maximum number of file descriptors per process.

See alsoMAX-CONNECTIONS under TCP-0BJECT (Struct INFO_TCP) under Broker CIS Data Structures
in the ACI Programming documentation.

Note for UNIX

Under UNIX, you can use the following command to display the maximum number of open files
in the operating system shell.

ulimit -n
This value should be greater than the expected number of TCP/IP connections.
Note for Linux

Under Linux, setting the maximum open file limit depends on your working environment:

® bash

Administration under UNIX 121

Broker Resource Allocation

= systemd
bash

In the bash shell you can display or change the limits with the command ulimit -n. These limits
are used when the Broker (etbnuc) is started from the command line or from a cron job.

The limits can be stored, for example, in the file /etc/security/limits.conf.

= For all users:

* soft nofile 1024
* hard nofile 8192

= For user entirex:

entirex soft nofile 8192
entirex hard nofile 100000

Broker uses the soft limit. When this limit is reached, no more connections are possible. If the hard
limit is higher than the soft limit, you can increase the limit - without having to stop the broker -
using the following command:

#> priimit --pid <pid> --nofile = 4096:8192
The maximum limit in the broker for POLL=NO is 65534. POLL=YES is not subject to any limit and is
dependent only on the soft limit of the system.

systemd

If the broker is controlled by a service that was started by systemd, the limits of systemd apply.
There are various ways of increasing the limits if you need more than 4096 connections:

" Set DefaultLimitNOFILE in the files /etc/systemd/system.conf or /etc/systemd/user.conf.

" Insert LimitNOFILE=<new-1imit> in a service file /usr/lib/systemd/system/sag<n>exx<vers>.
Example:

Copyright (c) 2014-2021 Software AG, Darmstadt, Germany and/or Software AG
USA Inc., Reston, VA, USA, and/or its subsidiaries and/or its affiliates

and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except
as specifically provided for in your License Agreement with Software AG.

do not modify this Tine
[Unit]

122 Administration under UNIX

Broker Resource Allocation

Description=sag/7exx108
After=multi-user.target

[Service]

Type=forking
RemainAfterExit=yes
PrivateTmp=no
KiT1Mode=none
TimeoutStartSec=330
TimeoutStopSec=330
LimitNOFILE=32000
User=rdsadmin
Group=rdstst
ExecStart=/bin/sh -c "/opt/testenv/exx/108/installed/EntireX/bin/sagexx108 start"

ExecStop=/bin/sh

-c "/opt/testenv/exx/108/installed/EntireX/bin/sagexx108 stop"

PIDFile=/opt/testenv/exx/v108/installed/EntireX/bin/sagexx108.pid

[Install]
WantedBy=multi-user.target

You can check the current settings using the proc file system:

#> cat /proc/<etbnuc-pid>/1imits

Limit

Max
Max
Max
Max
Ma x
Max
Ma x
Max
Max
Max
Max
Max
Max
Max
Max
Max

cpu time

file size

data size

stack size

core file size
resident set
processes

open files
locked memory
address space
file locks
pending signals
msgqueue size
nice priority
realtime priority
realtime timeout

Soft Limit
unlimited
unlimited
unlimited
8388608

0
unlimited
15709
32000
65536
unlimited
unlimited
15709
819200

0

0
unlimited

Hard Limit
unlimited
unlimited
unlimited
unlimited
unlimited
unlimited
15709
32000
65536
unlimited
unlimited
15709
819200

0

0
unlimited

Units
seconds
bytes
bytes
bytes
bytes
bytes
processes
files
bytes
bytes
locks
signals
bytes

us

Administration under UNIX

123

124

8 Administering Broker Stubs

B AVAIADIE STUDS ... e e e e e e e aaa e 126
= Transport Methods for BroKEr STUDScooiiuiiiiiiiiii e 126
® Tracing for BroKEr STUDSooiiie e 130
B Application StUDIOG FilE ... e 131
= UNIX Commands to Set the Environment Variablescccooviiiiiiiiii e 132
= Support of Clustering in a High Availability SCENAroccuviiiiiiiiiiii e 132
B Configuring the SOCKEE POOIuiiiiiiiii e 133

125

Administering Broker Stubs

Available Stubs

The following table lists available stubs and gives an overview of available features and supported
transport methods.

Stub Language | Transport Methods | More Information
Jaci Java TCP /SSL See EntireX Java ACL
broker.s[ol1] |C TCP / SSL See below.

Transport Methods for Broker Stubs

The Broker stub can use TCP/IP and SSL. The term “SSL” in this section refers to both SSL (Secure
Sockets Layer) and TLS (Transport Layer Security).

= Using TCP/IP as Transport Method for the Broker Stub
= Using SSL/TLS as Transport Method for the Broker Stub
= Setting the Timeout for the Transport Method

= | imiting the TCP/IP Connection Lifetime

= Modifying the Hosts and Services Tables

Using TCP/IP as Transport Method for the Broker Stub

> To use TCP/IP

1 Optional: set the timeout, see Setting the Timeout for the Transport Method.

2 The Broker stub requires the IP address and the TCP port number (if the Broker's default TCP
port number 1971 cannot be used) for each BROKER-ID. Either add an entry in the Domain
Name System (DNS) or modify your local hosts and services tables. See Modifying the Hosts
and Services Tables.

You can check whether the Broker has already been added to your DNS with the command:

ping <broker-id>

for example: ping ETB0O01. If a message such as “...is alive” or “Reply from ...” is displayed
(the text displayed varies depending on your ping implementation), the name is known to
your DNS and the host where the Broker is running is reachable. However, this does not ne-
cessarily mean that the Broker is active.

126 Administration under UNIX

Administering Broker Stubs

Using SSL/TLS as Transport Method for the Broker Stub

ACl applications can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. ACI-based clients or servers
are always SSL clients. The SSL server can be either the EntireX Broker or the Broker SSL. Agent.

For an introduction see SSL/TLS, HTTP(S), and Certificates with EntireX in the platform-independent
Administration documentation.

With the Broker ACI, the SSL parameters (e.g. certificates) are provided with the function
SETSSLPARMS.

> Touse SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Specify the Broker ID, using one of the following styles:

® URL Style, for example:
ssl://localhost:2010
® Transport-method Style, for example:

ETB024:1609:SSL

If no port number is specified, port 1958 is used as default.

3 Specify SSL parameters in the second parameter, for example:

"broker' etbcb "VERIFY_SERVER=N&TRUST_STORE=c:\\certs\\CaCert.pem"

If the SSL client checks the validity of the SSL server only, this is known as one-way SSL. The
mandatory trust_store parameter specifies the file name of a keystore that must contain the
list of trusted certificate authorities for the certificate of the SSL server. By default a check is
made that the certificate of the SSL server is issued for the hostname specified in the Broker
ID. The common name of the subject entry in the server's certificate is checked against the
hostname. If they do not match, the connection will be refused. You can disable this check
with SSL parameter verify_server=no.

If the SSL server additionally checks the identity of the SSL client, this is known as two-way
SSL. In this case the SSL server requests a client certificate (the parameter verify_client=yes
is defined in the configuration of the SSL server). Two additional SSL parameters must be
specified on the SSL client side: key_store and key_passwd. This keystore must contain the

Administration under UNIX 127

Administering Broker Stubs

private key of the SSL client. The password that protects the private key is specified with
key_passwd.

The ampersand (&) character cannot appear in the password.

SSL parameters are separated by ampersand (&). See also SSL/TLS Parameters for SSL Clients.
4 Make sure the SSL server to which the ACI side connects is prepared for SSL connections as

well. The SSL server can be EntireX Broker or Broker SSL Agent. See:

* Running Broker with SSL/TLS Transport in the platform-specific Administration documentation

® Broker SSL Agent in the platform-specific Administration documentation

Notes

= See table Using SSL/TLS with EntireX Components if SSL is required for other EntireX components.

® The Broker stub requires the IP address and the SSL port number for each BROKER-ID. Either
add an entry to the Domain Name System (DNS) or modify your local hosts and services tables.
See Modifying the Hosts and Services Tables.

If no port number is specified, port 1958 is used as default.

® You can check whether the Broker has already been added to your DNSwithaping <broker-id>
command, for example:

ping ETBOO1

If amessage suchas"...is alive"or"Reply from ..."isdisplayed (the text displayed varies
depending on your ping implementation), the name is known to your DNS and the host where
the Broker is running is reachable. However, this does not necessarily mean that the Broker is
active.

= Take care if trace is switched on:

@ Caution: If stub tracing level is > 1, unencrypted contents of the send/receive buffers are

exposed in the trace.

® Example on running the delivered ACI example:

C:\SoftwareAG\EntireX\examples\ACI\conversational\C\convSvr -blocalhost:1958:SSL
-CACLASS -sASERVER -vASERVICE
-X"VERIFY_SERVER=N&TRUST_STORE=C:\SoftwareAG\EntireX\etc\ExxCACert.pem"

128 Administration under UNIX

Administering Broker Stubs

Setting the Timeout for the Transport Method

The timeout settings of the transport layers are independent of the broker's timeout settings, which
are set by the application in the WAIT field of the broker ACI control block.

If the transport layer is interrupted, communication between the Broker and the stub (i.e. client
or server application) is interrupted as well. To prevent a client from waiting for a Broker reply
indefinitely, set a timeout value for the transport method. The actual timeout for the procedure is

then the Broker timeout (which is set by the application in the WAIT of the broker ACI control
block) plus this value.

~ To set a transport timeout value

m Set the environment variable ETB_TIMEQUT:

Transport Timeout Value Description

0 Infinite wait for the application.

n Transport method waits additional time in seconds. A negative
value is treated as ETB_TIMEOUT=0 (infinite wait).

No environment variable defined | Transport method waits additional 20 seconds.

See also UNIX Commands to Set the Environment Variables.
Limiting the TCP/IP Connection Lifetime

With transport method TCP/IP, the broker stub establishes one or more TCP/IP connections to the
brokers specified with BROKER-ID. These connections can be controlled by the transport-specific
CONNECTION-NONACT attribute on the broker side, but also by the transport-specific environment
variable ETB_NONACT on the stub side. If ETB_NONACT is not 0, it defines the non-activity time (in
seconds) of active TCP/IP connections to any broker. See ETB_NONACT under Environment Variables
in EntireX. Whenever the broker stub is called, it checks for the elapsed non-activity time and
closes connections with a non-activity time greater than the value defined with ETB_NONACT. Stubs
capable of running in SRB mode do not support ETB_NONACT handling.

Transport Non-activity Value |Description

0 Infinite lifetime until application is stopped.

n (seconds) Transport connections with non-activity time greater than n will be closed.
Nothing set Infinite lifetime until application is stopped.

Administration under UNIX 129

Administering Broker Stubs

Modifying the Hosts and Services Tables

The Hosts and Services tables are plain text files in directory /etc.
~ To add an entry to the hosts table

= Add aline similar to the following to the local hosts file:
100.100.1.1 ETB226 # ETB test host name

~ To add an entry to the services table

= Add lines similar to the following to the local services file:

ETB226 18492/tcp # ETB test host name
ETB411 21234/tcp # ETB production host name

Tracing for Broker Stubs

The broker stubs provide an option for writing trace files.

~ To switch on tracing for the broker stub

= Before starting the client application, set the environment variable ETB_STUBLOG:

Trace Level Description

0 NONE No tracing. Switch tracing off.

1 STANDARD|Traces initialization, errors, and all ACI request/reply strings.

2 ADVANCED |Used primarily by system engineers, traces everything from level 1 and provides
additional information, for example the Broker ACI control block, as well as
information from the transports.

3 SUPPORT |This is full tracing through the stub, including detailed traces of control blocks,
message information, etc.

Example:

130 Administration under UNIX

Administering Broker Stubs

ETB_STUBLOG=2

If the trace level is greater than 1, unencrypted contents of the send/receive buffers may be exposed
in the trace.

The trace file is created in the current directory. The name is p7id.etb where pidis the process ID.
If you want to write the trace file to a different location, set environment variable ETB_STUBLOGPATH
to the desired path.

See also UNIX Commands to Set the Environment Variables.

Remember to switch off tracing to prevent trace files from filling up your disk.

~ To switch off tracing for the broker stub

s Set the environment variable ETB_STUBLOG to NONE or delete it.

Application Stublog File

Logging works for both TCP and SSL. Tracing is controlled by the environment variable
ETB_STUBLOG.

csh or tesh users use:

setenv ETB_STUBLOG tracelevel

bsh, ksh or bash users use:
ETB_STUBLOG=tracelevel; export ETB_STUBLOG

Possible values for tracelevel:

Trace Level Description

0 NONE No tracing. Switch tracing off.

1 STANDARD|Traces initialization, errors, and all ACI request/reply strings.

2 ADVANCED |Used primarily by system engineers, traces everything from level 1 and provides additional
information, for example the Broker ACI control block, as well as information from the
transports.

3 SUPPORT |This is full tracing through the stub, including detailed traces of control blocks, message
information, etc.

If you start your application with this environment variable set, a log file is created in the directory
where your application is started. The name of the log file is pid.etb

Administration under UNIX 131

Administering Broker Stubs

csh or tcsh users use:
unsetenv ETB_STUBLOG
bsh, ksh or bash users use:

unset ETB_STUBLOG

UNIX Commands to Set the Environment Variables

Example of ETB_TRANSPORT:

Shell set the environment variable: delete the environment variable:

C Shell setenv ETB_TRANSPORT valuelunsetenv ETB_TRANSPORT

Bourne or Korn Shell |[ETB_TRANSPORT=value unset ETB_TRANSPORT
export ETB_TRANSPORT

Support of Clustering in a High Availability Scenario

EntireX Broker supports clustering in a high-availability scenario, using the environment variable
ETB_SOCKETPOOL. See Environment Variables in EntireX. This section covers the following topics:

= |ntroduction
= Exceptions
= Default

See also High Availability in EntireX.
Introduction

A TCP/IP connection established between stub and broker is not exclusively assigned to a partic-
ular thread. With multithreaded applications, two or more threads may use the same connection.
On the other hand, if a connection is busy, another new one is created to exchange data.

In order to access the same broker instance in a clustering environment, an affinity between ap-
plication thread and TCP/IP connection is needed to always use the same connection within an
application thread. Therefore, an environment variable is evaluated to control the handling of
TCP/IP connections.

If environment variable ETB_SOCKETPOOL is set to "OFF" (ETB_SOCKETPOOL=0FF), an affinity between
threads and TCP/IP connections is established. All requests to one particular broker will use the
same TCP/IP connection. ETB_SOCKETPOOL controls all TCP/IP connections.

132 Administration under UNIX

Administering Broker Stubs

Stubs ARFETB and NATETBZ always establish an affinity between subtask and TCP/IP connection.
Exceptions

Broker attribute CONNECTION-NONACT is used by the broker to close TCP/IP connections after the
elapsed non-activity time. Omit this attribute to keep the TCP/IP connection alive.

Default

ETB_SOCKETPOOL=O0N is the default setting. In this case, an established broker connection can be
used by any thread if the connection is not busy.

Configuring the Socket Pool

Stubs with enabled socket pool (see environment variable ETB_SOCKETP0OOL) can be configured to
limit the size of the socket pool (environment variable ETB_POOLSIZE) and to define the maximum
wait time for a free connection (environment variable ETB_POOLTIMEOUT).

Administration under UNIX 133

134

9 Broker Command-line Utilities

B N0 ot 136
B O D OO oot 145

135

Broker Command-line Utilities

EntireX Broker provides the internal services etbinfo and etbcmd.

These services are implemented internally; nothing has to be started or configured. You can use
these services immediately after starting EntireX Broker.

etbinfo

With this command-line utility you can query the Broker for different types of information, gen-
erating an output text string with basic formatting. This text output can be further processed by

script languages. etbinfo uses data descriptions called profiles to control the type of data that is
returned for a request. etbinfo is useful for monitoring and administering EntireX Broker efficiently,
for example how many users can run concurrently and whether the number of specified message
containers is large enough. You can format your output

" using a profile (recommended)
" using a format string (this may be useful for ad hoc queries)

" by other means external to the broker
This section covers the following topics:

= Running the Command-line Utility

= Command-line Parameters

= Table of Options and Profiles

= Command-line Parameters from File
= Profile

= Format String

= Using SSL/TLS

= Using an Encrypted Password

Running the Command-line Utility
In a UNIX environment, run the command-line utility with etbinfo. If the environment variable

LOGNAME is not set, you must use the -x option (see below) to provide a user ID if the Broker is
running with EntireX Security. etbinfo is located in directory /<Install_Dir>/EntireX/bin.

136 Administration under UNIX

Broker Command-line Utilities

Command-line Parameters

The table below explains the command-line parameters. The format string and profile parameters
are described in detail following the table. All entries in the Option column are case-sensitive.

Command-line Req/
Option Parameter Opt |Explanation
-b brokerid R [Broker identifier, for example 1ocalhost:1971:TCP.
-C class O |Class as selection criterion.
-C O |Create output with comma-separated values, suitable for

input into a spreadsheet or other analysis tool. Any format
string specified by means of format string or profile
command-line parameters is ignored.

-d object R |Defines the information retrieved from broker. If an optional
profile is provided, object and profile must match. See Table
of Options and Profiles.

-e recv class O |Receiver's class name. This selection criterion is valid only
for object PSF.

-f Format String O |Format string how you expect the output. See Profile.

-g recv service O |Receiver's service name. This selection criterion is valid only
for object PSF.

-h help O |Prints help information.

- convid O |Conversation ID as selection criterion. Only valid for object
CONVERSATION.

-1 conv type O |Conversation's type.

-J recv server O [Receiver's server name. This selection criterion is valid only
for object PSF.

-k recv token O |Receiver's token. This selection criterion is valid only for
object PSF.

-1 Tevel O |The amount of information displayed:

FULL All information.

SHORT User-specific information.

-m recv userid O |Receiver's user ID. This selection criterion is valid only for
object PSF.

-n server name O |Server name. This selection criterion is valid only for the
objects SERVER, SERVICE or CONVERSATION.

-p profile O |Here you can specify a profile that defines the layout of the
output. If provided, it must match the object. See Table of
Options and Profiles.

Administration under UNIX 137

Broker Command-line Utilities

Command-line Req/

Option Parameter Opt [Explanation

-q puserid O |Physical user ID. This selection criterion is valid only for
objects CLIENT, SERVER, CONVERSATION.

Note: Must be a hex value.

-r sec O |Refresh information after seconds.

-S service O |Service. This selection criterion is valid only for objects
SERVER, SERVICE or CONVERSATION.

-S "sslparms” O |When using SSL transport for Broker communication. See
Using SSL/TLS.

-t token O |This selection criterion is valid only for objects CLIENT,
SERVER, SERVICE or CONVERSATION.

-u userid O |User ID. This selection criterion is only valid for the display
types CLIENT, SERVER, SERVICE or CONVERSATION.

-V UOW status O |Unit of work status. This selection criterion is valid only for
object PSF.

-w UOW ID O |Unit of work ID. This selection criterion is valid only for
object PSF.

- X userid O |User ID. For security purposes.

-y password O |Password. For security purposes.

-z token O |Used with userid touniquely identify a caller to Command
and Information Services.

--Tongmsg O |Ifanerror occurs, delivers the long text of an error message,
corresponding to Error Messages and Codes. Output is
generated as with the exxmsg utility. See EXXMSG -
Command-line Tool for Displaying Error Messages in the Error
Messages and Codes documentation.

--external O |Reduces the output of SERVICE objects to external services.
Broker-internal services are not displayed.

--internal O |Reduces the output of SERVICE objects to Broker-internal
services. The external user-specific services are not
displayed.

--pingrpc O |Executes an RPC ping to a specified RPC service. The
parameters -c <class_name>, -n <server_name> and
-5 <service> are also required. If the service is running,
return code 0 and a corresponding text are returned. If the
service is not running, a return code other than 0 is given.

--encrypted_password_from_stdin| O |Encrypted password. See Using an Encrypted Password.

138

Administration under UNIX

Broker Command-line Utilities

Table of Options and Profiles

Profiles are provided for a more structured and improved understandable output. If you do not
use the profile option or a format string, your output will be an unformatted list with all columns
of that display type. To display specific columns, specify a profile (you can create your own) that
includes only those columns.

| Note: The deprecated profiles are still delivered for compatibility reasons.

Information Object
Option -d (object) [Option - p (profile)| Option - p (deprecated profile) | (see Information Reply Structures)
BROKER broker? broker BROKER-OBJECT
CLIENT client2 client CLIENT-SERVER-PARTICIPANT-0BJECT
CMDLOG-FILTER |clogflt2 clogflt CMDLOG_FILTER-OBJECT
CONVERSATION |conv? conv CONVERSATION-OBJECT
NET net? net NET-OBJECT
POOL pool2 pool POOL-USAGE-OBJECT
PSF psf2 psf PSF-OBJECT
PSFADA psfada? psfada PSFADA-OBJECT
PSFCTREE psfctre? psfctree PSFCTREE-OBJECT
PSFDIV psfdiv2 psfdiv PSFDIV-0BJECT
RESOURCE resource resource RESOURCE-USAGE-OBJECT
SECURITY securit? security SECURITY-0OBJECT
SERVER server? server CLIENT-SERVER-PARTICIPANT-0BJECT
SERVICE service? service SERVICE-OBJECT
SSL ssl12 SS|] SSL-0BJECT
STATISTICS statist2 statis STATISTICS-OBJECT
TCP tep2 tep TCP-0BJECT
UOW-STATISTICS|uowstat? uowstat UOW-STATISTICS
USER usere user USER-OBJECT
WORKER worker?2 worker WORKER-OBJECT
WORKER-USAGE |wkrusag? wkrusag WORKER-USAGE-OBJECT

Administration under UNIX 139

Broker Command-line Utilities

Command-line Parameters from File

etbinfo supports an alternative method of passing command-line parameters.

If the environment variable INF_ATTR s set, the content is interpreted as a file name. If no command-
line parameters are given, the command etbinfo evaluates the content of the file. Example:

-blocalhost:3930:TCP
-dBROKER

Profile

If you do not use the profile option or a format string, your output will be an unformatted list with
all columns of that display type. We recommend using the profiles described under Table of Options
and Profiles.

On UNIX, the profiles are contained in directory /<Install_Dir>/EntireX/etc and are named broker2.pro,
client2.pro etc.

= Hints for Creating your own Profile
= Example 1 - Default Profile
= Example 2 - Custom Profile

Hints for Creating your own Profile

You can either delete the columns not required or copy the default profile and modify the order
of the columns. Ensure that the column names have a leading “%”. Column names can be written
in one line or on separate lines. The output is always written side by side. With profile parameters
%DATE and %TIME you can provide a timestamp for the command-line query.

Example 1 - Default Profile

This example uses the default profile delivered with EntireX for object BROKER: broker2.pro:

etbinfo -b <brokerid> -d BROKER -p broker2.pro

The following list is displayed:

Broker Identification
Broker Information of BROKER-ID: ETBOO1

on Platform: PC Windows 10 Enterprise
SYSPLEX-NAME :

Process ID (PID): 11056

Thread ID (TID): 2B34

Running on Host: myHost

Version and License information

140 Administration under UNIX

Broker Command-line Utilities

Product Version: EntireX 10.8.0.00

Highest supported API Version: x0D (Hex value)

Highest supported CIS Version: x0C (Hex value)

Active License (LICENSE-FILE): ©
C:\SoftwareAG\SuitelOlI\EntireX\config\license.xm]l

SNMP Licensed: 01 (00: no, 01: yes) ©

Valid until (EXPIRATION): UNLIMITED

Configuration Details

Broker attribute file: ©
C:\SoftwareAG\SuitelOl1\EntireX\config\etb\ETBOOI\ETBOOI.atr
Broker Log File: ©
C:\SoftwareAG\SuitelOl1\EntireX\config\etb\ETBOOI\ETBOOI. Tog
Size of Broker Log File: 20616 BYTES
Security Type: 00

00: No Security

01: EntireX Security
02: Light

03: Other

Example 2 - Custom Profile

This example uses profile my_service.pro you created yourself:

etbinfo -b ETBO0O1 -d SERVICE -p my_service.pro

In this example, profile my_service.pro contains: %4 .4SERVERCLASS %SERVERNAME. The following
list is displayed:

ACLA ASERVER
BCLA BSERVER
CCLA CSERVER

Format String

The format string, if specified, will override the use of a profile. The format string is built like a
printf() in Clanguage. The string must be enclosed in quotation marks. You can specify the
columns by using a “%” and the column name. The column name must contain letters only. Nu-
meric characters are not allowed. You can specify the length of column output by using a format
precision, as in the ANSI-C printf() function. The column name must be followed by a blank.
For example:

Administration under UNIX 141

Broker Command-line Utilities

etbinfo -b ETBO01 -d BROKER -f "%12.12CPLATNAME HNUM-SERVER HNUM-CLIENT"

which produces the following output, for example:

MVS/SP 7.04 30 100

You can also use an arbitrary column separator, which can be any character other than “%”. You
can use \n for a new line in the output and \t for a tabulator in the format string or profile. For
example:

etbinfo -b ETB0O01 -d SERVER -f "UserID: %5.5USER-ID Token: %5.5TOKEN"

which produces:

UserID: HUGO Token: MYTOK
UserID: EGON Token:
UserID: HELMU Token: Helmu

If you want to structure your output a little more, you can operate with the \n or \t character. For
example:

etbinfo -b ETBOOl -d SERVICE -f "Class:%5.5SERVER-CLASS \n\tName:%5.5SERVER-NAME «
\n\tService:%5.5SERVICE"

which produces:

Class:DATAB
Name:DB10
Service:Admin

Class:PRINT
Name:LPT1
Service:PRINT

You can also add a timestamp to the query:

etbinfo -b ETB001 -d BROKER -f "%DATE %ZTIME"

which produces:

2014-08-19 10:00:00.234

142 Administration under UNIX

Broker Command-line Utilities

Using SSL/TLS

> To set up SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Specify the Broker ID, using one of the following styles:
® URL Style, for example:
ssl://Tocalhost:2010

= Transport-method Style, for example:

ETB024:1609:SSL

If no port number is specified, port 1958 is used as default.

3 Specify SSL parameters with the option -s|S (lowercase for etbcmd; uppercase for etbinfo).
See SSL/TLS Parameters for SSL Clients.

4 Make sure the broker is prepared for SSL connections as well. See Running Broker with SSL/TLS
Transport in the platform-specific Administration documentation.

Using an Encrypted Password

You can encrypt a password and store this in a file. Specify this file instead of a cleartext password
when you call a secure broker.

Note: We strongly recommend that your cleartext password is longer than 16 characters.

> To encrypt a password

1 Enter the command:

etbnattr --echo_password_only -w clear_text_password <«

The encrypted password is written to stdout.

2 Copy the password value to an empty file. (Ignore the prefix KEY-PASSWD-ENCRYPTED:.)

~ To specify the encrypted password from stdin

s Enter the command:

Administration under UNIX 143

Broker Command-line Utilities

etbinfo -x uid --encrypted_password_from_stdin < file

Where f7]e is the file containing the encrypted password you created as described above.
Example:

etbinfo -b Tocalhost:1971 -d BROKER -x UID --encrypted_password_from_stdin < myPwd

144 Administration under UNIX

Broker Command-line Utilities

etbcmd

With this command-line utility you can take actions - for example purge a unit of work, stop a
server, shut down a Broker - against EntireX Broker.

= Running the Command-line Utility
= Command-line Parameters

= Command-line Parameters from File

= |ist of Commands and Objects

= Examples

= Using SSL/TLS
= Using an Encrypted Password

Running the Command-line Utility

In a UNIX environment, run the command-line utility with etbcmd. If the environment variable
LOGNAME is not set, you must use the - x option (see below) to provide a user ID if the Broker is
running with EntireX Security. etbcmd is located in the directory /<Install_Dir>/EntireX/bin.

Command-line Parameters

The table below explains the command-line parameters. All entries in the Option column are case-

sensitive.

Command-line Parameter

Parameter

Req/
Opt

Explanation

brokerid

e.g. ETB0O1

R

Broker ID.

command

= ALLOW-NEWUOWMSGS

= APPMON-ON

= APPMON-OFF

® CLEAR-CMDLOG-FILTER
= CONNECT-PSTORE

= DISABLE-ACCOUNTING
= DISABLE-CMDLOG-FILTER
= DISABLE-CMDLOG

= DISABLE-DYN-WORKER
= DISCONNECT-PSTORE

= ENABLE-ACCOUNTING

= ENABLE-CMDLOG-FILTER

R

Command to be performed
See List of Commands and
Objects below.

Administration under UNIX

145

Broker Command-line Utilities

Req/
Command-line Parameter Option |Parameter Opt |Explanation
= ENABLE-CMDLOG
= ENABLE-DYN-WORKER
= FORBID-NEWUOWMSGS
= PING
= PRODUCE-STATISTICS
= PURGE
= RESET-USER
= RESUME
® SET-CMDLOG-FILTER
® SET-COLLECTOR
® SET-UOW-STATUS
= SHUTDOWN
® START
= STATUS
= STOP
= SUSPEND
= SWITCH-CMDLOG
= TRACE-FLUSH
= TRACE-OFF
= TRACE-ON
= TRAP-ERROR
object type -d = BROKER R |The object type to be operated
= CONVERSATION on.?ee ListofCOfmr'lands'and
Objects below. Within EntireX
= PARTICIPANT Broker nomenclature, a
= PSF participant is an application
implicitly or explicitly logged
" SECURITY on to the Broker as a specific
= SERVER user. See Implicit Logon and
= SERVICE Explicit Logon. A participant
could act as client or server.
= TRANSPORT
-D collector brokerid O |For command SET-COLLECTOR
only. If provided, sets the
collector ID to the given
collector broker ID.
-e errornumber O |Error number being trapped.

146

Administration under UNIX

Broker Command-line Utilities

Req/
Command-line Parameter Option |Parameter Opt |Explanation
-E O |Exclude attach servers from
service shutdown.
help -h O |Prints help information.
class/server/service -n class/server/service | O |Service triplet.
option -0 = ACCEPTED O |Command option.
= CANCELLED
= IMMED
= QUIESCE
= | EVELn, where n=1-8
puserid -p puserid O |Physical User ID. For SERVER
and PARTICIPANT objects only.
This must be a hex value.
sslparms -S SSL parameters O |When using SSL transport for
broker communication. See
Using SSL/TLS.
seqno -S sequence number O |Sequence number of
participant.
token -t token O |Token. For PARTICIPANT
object only.
uowid -u uowid O |Unitof work ID. For PSF object
only.
userid -U userid O |User ID. For PARTICIPANT
object only.
secuserid - X userid O |User ID for security purposes.
transportid - X Transport ID O |One of the following:
COM|NET|SSL|Snn|TCP|Tnn.
See table below.
secpassword -y password O |Password for security

purposes.

--encrypted_password_from_stdin

Encrypted password. See
Using an Encrypted
Password.

Transport ID Values

This table explains the possible values for parameter transportid:

Administration under UNIX

147

Broker Command-line Utilities

Transport ID | Explanation

COM all communicators

NET NET transport communicator
SSL all SSL communicators
S00 SSL communicator 1

S01 SSL communicator 2

S02 SSL communicator 3

S03 SSL communicator 4

S04 SSL communicator 5

TCP all TCP/IP communicators
T00 TCP/IP communicator 1
T01 TCP/IP communicator 2
T02 TCP/IP communicator 3
T03 TCP/IP communicator 4
T04 TCP/IP communicator 5

148 Administration under UNIX

Broker Command-line Utilities

Command-line Parameters from File

etbcmd supports an alternative method of passing command-line parameters.

If the environment variable CMD_ATTR s set, the content is interpreted as a file name. If no command-
line parameters are given, the command etbcmd evaluates the content of the file. Example:

-blocalhost:3930:TCP
-cPRODUCE-STATISTICS
-dBROKER

List of Commands and Objects

This table lists the available commands and the objects to which they can be applied.

Command

Object

BROKER

CONVERS-

ATION

PARTICI -

PANT

PSF

SECURITY

SERVER

SERVICE

TRANSPORT

ALLOW-NEWUOWMSGS

APPMON-OFF

APPMON-ON

CLEAR-CMDLOG-FILTER

CONNECT-PSTORE

DISABLE-ACCOUNTING

DISABLE-CMDLOG-FILTER

DISABLE-CMDLOG

DISABLE-DYN-WORKER

DISCONNECT-PSTORE

ENABLE-ACCOUNTING

ENABLE-CMDLOG-FILTER

ENABLE-CMDLOG

ENABLE-DYN-WORKER

FORBID-NEWUOWMSGS

PING

PRODUCE-STATISTICS

PURGE

RESET-USER

RESUME

SET-CMDLOG-FILTER

Administration under UNIX

149

Broker Command-line Utilities

Object
BROKER|CONVERS - |PARTICI-|PSF|SECURITY|SERVER|SERVICE|TRANSPORT

Command ATION PANT
SET-COLLECTOR X
SET-UOW-STATUS X
SHUTDOWN X X X X X
START X
STATUS X
STOP X
SUSPEND X
SWITCH-CMDLOG X
TRACE-FLUSH X
TRACE-OFF X X X
TRACE-ON X X X
TRAP-ERROR X

| Note: Object type TRANSPORT applies to operating system z/OS only.

Examples

Example

Description

etbcmd -b etb001 -h

Displays ETBCMD help text.

etbcmd -b etb001 -d BROKER -c
TRACE-OFF

Turns Broker tracing off.

etbcmd -b etb001 -d BROKER -c TRACE-ON
-0 LEVELZ2

Sets Broker trace level to 2.

etbcmd -b etb001 -d BROKER -c¢ SHUTDOWN

Performs Broker shutdown.

etbcmd -b etb001 -d SERVICE -c
SHUTDOWN -0 IMMED -n
ACLASS/ASERVER/ASERVICE

Shut down service
CLASS=ACLASS,SERVER=ASERVER,SERVICE=ASERVICE.
See also SHUTDOWN SERVICE under Broker Command and
Information Services in the EntireX Broker documentation
for more information on shutdown options.

Create list of servers and shutdown specific server in two
steps (first step uses etbinfo). Seealso SHUTDOWN SERVER.

etbinfo -b etb001 -d SERVER
-f"%USER-ID %ZSEQNO"

-1 FULL

1. Determine a list of all servers with sequence numbers.

etbcmd -b etb001 -d SERVER -c¢ SHUTDOWN
-0 IMMED -S32

2. Shutdown server with sequence number 32.

etbcmd -b etb001 -d BROKER -c PING

Performs an EntireX ping against the Broker.

150

Administration under UNIX

Broker Command-line Utilities

Example

Description

etbcmd -b etb001 -d PSF -c
DISCONNECT-PSTORE

Disconnects the Broker PSTORE.

etbcmd -b etb001 -d PSF -c
CONNECT-PSTORE

Connects the Broker PSTORE.

etbcmd -b etb001 -d PSF -c¢ PURGE -u
100000000U00001A

Purges a unit of work.

etbcmd -b etb001 -d PSF -c
ALLOW-NEWUOWMSGS

Allows new units of work to be stored.

etbcmd -b etb001 -d PSF -c
FORBID-NEWUOWMSGS

Disallows new units of work to be stored.

etbcmd -b etb001 -d PSF -c
SET-UOW-STATUS -o ACCEPTED -n
ACLASS/ASERVER/ASERVICE

Sets the status of UOWSs that reside in the postpone queue
back to ACCEPTED for service ACLASS/ASERVER/ASERVICE.
See also Postponing Units of Work under Using Persistence
and Units of Work in the platform-independent
Administration documentation.

etbcmd -b etb001 -d PSF -c
SET-UOW-STATUS -o CANCELLED -u
0010000000000100

Cancel UOW with UOWID 0010000000000100 that resides
in the postpone queue. See also Postponing Units of Work.

Using SSL/TLS

~ To set up SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security

documentation.

2 Specify the Broker ID, using one of the following styles:

" URL Style, for example:

ssl://localhost:2010

® Transport-method Style, for example:

ETB024:1609:SSL

If no port number is specified, port 1958 is used as default.

Specify SSL parameters with the option -s|S (lowercase for etbcmd; uppercase for etbinfo).
See SSL/TLS Parameters for SSL Clients.

Administration under UNIX 151

Broker Command-line Utilities

4 Make sure the broker is prepared for SSL connections as well. See Running Broker with SSL/TLS
Transport in the platform-specific Administration documentation.

Using an Encrypted Password

You can encrypt a password and store this in a file. Specify this file instead of a cleartext password
when you call a secure broker.

| Note: We strongly recommend that your cleartext password is longer than 16 characters.

~ To encrypt a password

1 Enter the command:

etbnattr --echo_password_only -w clear_text_password <«

The encrypted password is written to stdout.

2 Copy the password value to an empty file. (Ignore the prefix KEY-PASSWD-ENCRYPTED:.)

~ To specify the encrypted password from stdin

s Enter the command:

etbcmd -xuid --encrypted_password_from_stdin < file

Where f7]e is the file containing the encrypted password you created as described above.
Example:

etbcmd -blocalhost:1971 -cPING -dBROKER -xUID --encrypted_password_from_stdin «
< myPwd

152 Administration under UNIX

10 Attach Manager

B PIEIBQUISIEES ...vvviiiiiee et e ettt e e ettt e e e e e ettt e et e e e e et e e e e e e e ettt et e e e e ettt e e e e e e e e e 154
= Setting up the AACh MaNAGETooi i 154
® Configuration File SYNTAXooiiiiiiii s 156
= Sample ConfIQUration Fileeeiiiii e 161
= Operating the AACh MaNAGETuvviiieiiieiie e 163

153

Attach Manager

EntireX includes an Attach Manager (ATM) for UNIX and Windows. This is used to start servers
if a client requests a particular service from the Broker, but a server for that service is not active.
This chapter covers the following topics:

Prerequisites

The Attach Manager needs the following:

" An active task registered at the Broker. As of EntireX 9.9, the ATM task is no longer launched
automatically on each computer where EntireX is installed. See Setting up the Attach Manager
for how to start the Attach Manager automatically or manually.

= A list of services the ATM is responsible for, and information on how to start the corresponding
server for a particular service. The Attach Manager can start only processes that are local to
where it is running, thatis, the process that is attached will be run from the command line. There
is no restriction, however, on what the started command-line process does, including starting
a remote process on another system that will REGISTER as the server that satisfies the attach re-
quest.

" A configuration file that contains the service list the ATM is responsible for, information on how
to start the corresponding server and additional configuration parameter to control the ATM
functionality.

Setting up the Attach Manager

If you do not need the ATM for your own services, you do not need to perform any configuration
for the ATM. For the default configuration EXXATM, a default configuration file EXXATM.cfg
comes with the EntireX installation and contains the necessary configuration to start the EntireX
sample servers. The file is located in directory EntireX/config/service/appl. EXXATM.

] Notes:

1. In the current version of EntireX, the ATM is not launched automatically by default.

2. The command etbsrv uses the default section defined in the configuration file.

~ To launch the Attach Manager automatically

m Activate automatic start after a reboot or after a restart of the Broker Adminstrator Service
with the following command:

154 Administration under UNIX

Attach Manager

etbsrv SERVICE ATTR <configuration name> AUTOSTART=YES

For example:

etbsrv SERVICE ATTR EXXATM AUTOSTART=YES

With the next reboot, ATM is then launched automatically. The working directory is EntireX/con-
fig/servicelappl. EXXATM. All log files are written to this directory. It also contains the config-

uration file EXXATM.cfg of the Attach Manager. See Configuration File Syntax.

~ To deactivate automatic start of the Attach Manager

s Enter command:

etbsrv SERVICE ATTR <configuration name> AUTOSTART=NO

~ To check the status of the Attach Manager
s Enter command:

etbsrv SERVICE STATUS <configuration name>

~ To start and stop the Attach Manager

= Enter one of the following commands:
etbsrv SERVICE START <configuration name>
etbsrv SERVICE RESTART <configuration name>

etbsrv SERVICE STOP <configuration name>

> To show the current status

s Enter command:

Administration under UNIX

155

Attach Manager

etbsrv SERVICE STATUS

The Attach Manager is located in the bin subdirectory under the installed EntireX directory. The
name of the executable is exxatm. exe. If you need to start an ATM manually for any reason, start
it using this executable. Without further command-line arguments, the ATM uses the default
section within the default configuration file. See Operating the Attach Manager for possible
command-line arguments.

If you need multiple ATM instances, we recommend using a separate ATM configuration.
~ To create an Attach Manager configuration

= Enter the following command:

etbsrv SERVICE CREATE <configuration name>

| Note: The created configuration is located in EntireX directory config/service/appl.<con -

figuration name>

Configuration File Syntax

= |ntroduction

= Parameters of the ATM Section

= Parameters of the Service List Section
= Parameters of the Service Section

Introduction

The syntax of the text-based configuration file is simple and is very similar to a Windows INI file.

Syntax Element |Description

Lines beginning with a semicolon are comment lines.

L] Lines that contain text in square brackets are section headers.

Keyword=Value|Lines that are of the form Keyword=Value are keyword lines.

| Note: Any of the values of the keywords in the configuration file can be set as environment
variables.

There are three different types of sections in the configuration file:

® The ATM section to configure a particular ATM instance. The ATM section with the name
"Default" is the default section. If no section with the name "Default" is found, the first ATM

156 Administration under UNIX

Attach Manager

section in the file is the default section. Each ATM section contains the configuration parameters
of the corresponding ATM instance and has one related Service List section, which refers to the
services that this ATM supports. Each ATM section needs exactly one ATM server attaching
the related servers if requested.

= The Service List section contains a list of names of Service sections. The name of the Service List
section is the name of the related ATM section appended by "_Services".

® The Service section configures a service, which consists of the service name and how to start
the corresponding server.

The general structure of the configuration file is the following:

[Default]

; The parameters of the Default ATM
[Default_Services]

SERVICEl=

SERVICE2=

[SERVICEL]

; The parameters for SERVICEL
[SERVICEZ?]

; The parameters for SERVICEL

Parameters of the ATM Section

These sections define the Attach Manager itself and contain the keywords indicated in this table.
There can be up to 16 of these sections.

Keyword Definition and Value Format Example Notes

BrokerID= The Broker that ATM will |A32 BrokerID=
communicate with and serverl:1971:TCP
answer attach requests.

Any valid ACI broker ID
value is allowed.

SSLParms= Secure Sockets Layer A512 SSLParms=
parameters for brokers VERIFY_ SERVER=
that use SSL transport. N&TRUST_STORE=

C:\\Temp
\\ExxCACert.pem

ServerClass= The A32 ServerClass=

ServerName= CLASS/SERVER/SERVICE System

Service= names that can be used by |[for all ServerName=
ATM to send commands |Keywords] |pefaultMain
to ATM. Service=
The Command
CLASS/SERVER/SERVICE
name needs to be defined
in the Broker Attributes.

Administration under UNIX 157

Attach Manager

Keyword

Definition and Value

Format

Example

Notes

UserlID=

The user ID of the ATM.

A32

UserID=atman

Token=

The token of the ATM
(used for unique
identification of the user
ID). There is a special
value of
{GeneratedToken}
which will generate a
unique 32-byte value for
the ATM.

A32

Token=atm
Token={GeneratedToken}

Password=

Password for the user ID.

A32

Password=atman

PwdEncrypted=

Encrypted password for
the user ID.

If keyword
PwdEncryptedis
specified, keyword
Password (containing the
clear text password) can
be omitted.

If both keywords
(PwdEncrypted and
Password) are specified,
the value PwdEncrypted
is used.

A256

PwdEncrypted=1B6C607. ..

You can generate the
encrypted password with
command

etbnattr <
--echo_password_only <
-w clear_text_password

WaitTime=

During the specified time,
the Attach Manager waits
for a response. After
expiration of the time, the
Attach Manager receives
a timeout. This is used as
the WAIT time on the
ATM's RECEIVE call.

A8

WaitTime=5M

Identical to Broker control
block WAIT parameter.
Default=60S.

Recvlength=

Size of the buffer that is
available for receiving
orders.

Recvlength=12000

Identical to Broker control
block RECEIVE-LENGTH
parameter. Default=8000.

HistoryFile=

File name for logging
orders that have been
received for restarting. If
this keyword is not
specified, no file is written.
This can be any valid file
name.

Valid path
name for
dependent
platform.
See example.

HistoryFile=%TEMP%\
Default.his

HistoryFileMode=

When starting the Attach
Manager, you can decide
here whether the current

wor a+t

HistoryFileMode=w

File is newly opened for
writing; the old file is
deleted.

158

Administration under UNIX

Attach Manager

Keyword

Definition and Value

Format

Example

Notes

file is to be overwritten or
not.

HistoryFileMode=a+t

Writing of the old file is
continued.

LogFile=

Log information is logged
here about the current
status of the Attach
Manager. If this keyword
is not specified, no file is
written.

Valid path
name for
dependent
platform. See
example.

LogFile=%TEMP%\
Defaultl.log

DailylLogFile

Split LogFile on a daily
basis.

DailyLogFile=Y

If more than one split mo
is specified, the followin;

MonthlyLogFile

Split LogFile ona
monthly basis.

MonthlylLogFile=Y

logic is used:

1. daily

MaxSizelogFile

Split LogFile based on
the configured file size
(KB/MB/GB/TB/PB).

A32

MaxSizelLogFile=16GB
or
MaxSizelLogFile=10000

2. monthly
3. by size

MaxTraceFiles

Maximum number of

backup files.

I4

MaxTraceFiles=3

Default=0

LogFileMode=

When starting the Attach
Manager, the
administrator can decide
whether the current file is
to be overwritten or not.
The file can get very large.

wora+t

LogFileMode=w

File is newly opened for
writing; the old file is
deleted.

LogFileMode=a+t

Writing of the old file is
continued.

Sleep=

If the Attach Manager
cannot register
successfully during
startup, or if a connection
is broken, the Attach
Manager waits this
specified time in seconds
and then tries again. You
can limit the number of
connection attempts, using
the keyword Retries=n.

STeep=120

Retries=

If registration fails, the
number of subsequent
registration attempts can
be limited. the keyword
S1eep determines the wait
time before a new
registration attempt.
Setting Retries=0
deactivates this
functionality.

Retries=0

Default=0.

Administration under UNIX

159

Attach Manager

Keyword Definition and Value Format Example Notes
ShutdownBy When set to 1, the ATM Values:
UserRequest= can be stopped when a

command is sent to it to 0 Attach Manager restarts.

shut down. If it is set to The configuration file is

zero, it will restart read anew.

automatically. 1 Attach Manager terminates

itself.

Parameters of the Service List Section

This section names the Service sections that will be used to define the services that will be attached.
The prefix of the name of the section must match a specific instance of the AttachManager(n) sec-
tions.

Example: Assume there are three services to be attached. They can be logically defined as follows:

[Default_Services]
payroll=
inventory=
qualitycontrol=

Therefore, there will be three optional sections following: [payrol11], [inventory], and
[qualitycontroll.

Parameters of the Service Section

There can be any number of Service sections attached to an ATM by means of its corresponding
Service List section. The Service sections are used to define the actual commands that will be issued
by ATM to attach servers to respond to Broker requests

The following keywords can be used:

Keyword Definition Format Example
ServerClass= |The CLASS/SERVER/SERVICE |A32 ServerClass=ACLASS
ServerName= |name of the service to be ServerName=ASERVER
Service= attached. Service=ASERVICE
Min= The minimum number of 14 Min=3

servers that should be active.

Valid value: 0 or greater. See

Note below.

160 Administration under UNIX

Attach Manager

Keyword

Definition

Format

Example

Max=

The maximum number of
servers that should be active.
Valid value: At least 1, or equal
to/greater than Min=. See Note
below.

I4

Max=7

Increment=

The number that should be
started when a request is made,
up to the number indicated by
Max=.

Increment=1

Command=

Command-line command to be
issued that will start the service.

Specifies (a) the
fully qualified
path to the
location of the
executable to be
run and (b) the
options for that
executable.

See example.

Command=./server/myserver.exe

| Note: EntireX RPC Servers can provide a more lightweight scalability through their internal

worker model. For this purpose, use the DYNAMIC worker model and configure the minimum
and maximum number of active servers (corresponding to Min= and Max=) directly in the
EntireX RPC Server configuration with parameters entirex.server.minservers and
entirex.server.maxservers respectively. See Worker Models.

Example from table above: If there are no instances of the service ACLASS : ASERVER; ASERVICE
REGISTERED, the command indicated in the Command=keyword will be issued three times.

Sample Configuration File

| Note: Asample configuration file is provided in the /config directory of EntireX. This sample

defines two ATMs: Default and AttachManager2. The default ATM supports only the services
related to Default.

[Default]

; Specify the broker to which the Attach Manager attaches and
; the channel on which the Attach Manager Tistens for command

; requests.

BrokerID=localhost:1971:TCP
ServerClass=System
ServerName=DefaultMain
Service=Command

Administration under UNIX

161

Attach Manager

UserID=%USERNAMEZ%
Token={GeneratedToken}
Password=Hugo
WaitTime=30s
Recvlength=12000

; Activities will be written to the history file (optional)
HistoryFile=%TEMP%\Default.his
HistoryFileMode=a+t

; Log messages will be written to the log file (optional)
LogFile=%TEMP%\Default.log

; Append to an existing file

;:LogFileMode=a+t

; Create a new file

LogFileMode=w

Sleep=10
Retries=0

ShutdownByUserRequest=1

Default's services
[Default_Services]
AServer=

BServer=

[AServer]

ServerClass=ACLASS

ServerName=ASERVER

Service=ASERVICE

Min=2

Max=3

Increment=1

Command=myservera -c<ServerClass> -s<ServerName> -v<Service> -b<BrokerID> -i500

[BServer]

ServerClass=BCLASS

ServerName=BSERVER

Service=BSERVICE

Min=1

Max=1

Increment=1

Command=myserverb -c<ServerClass> -s<ServerName> -v<Service> -b<BrokerID> -i750
[AttachManager?2]

; Specify the broker to which the Attach Manager attaches and
; the channel on which the Attach Manager Tistens for command
; requests.

162 Administration under UNIX

Attach Manager

BrokerID=localhost:1971:TCP
ServerClass=System
ServerName=AttachManager2Main
Service=Command
UserID=%USERNAME%
Token={GeneratedToken}
Password=Hugo

WaitTime=30s

RecvlLength=12000

; Activities will be written to the history file (optional)
HistoryFile=%TEMP%\AttachManager2.his
HistoryFileMode=a+t

Log messages will be written to the log file (optional)
LogFile=%TEMP%Z\AttachManager?2.log
; Append to an existing file
;:LogFileMode=a+t
; Create a new file
LogFileMode=w

Sleep=10

ShutdownByUserRequest=1

; AttachManager?2's services

[AttachManager?2_Services]
CServer=

[CServer]

ServerClass=CCLASS

ServerName=CSERVER

Service=CSERVICE

Min=1

Max=1

Increment=1

Command=myserverc -c<ServerClass> -s<ServerName> -v<Service> -b<BrokerID> -i1000

Operating the Attach Manager

Under normal circumstances, no manual operation is not necessary if the default ATM satisfies
your needs. However, if you need to run multiple ATMs in your environment, this section describes
how to perform the necessary operations.

= Starting the Attach Manager
= Stopping the Attach Manager

Administration under UNIX 163

Attach Manager

= | ogging the Attach Manager
= Attach Manager Processing

Starting the Attach Manager

~ To start an Attach Manager

s Enter command:

etbsrv SERVICE <configuration name>

| Note: etbsrv starts with the default section defined in the configuration file.

Or:

Either from the bin directory of EntireX (or from any directory if the bin directory is in the
PATH), enter the following command:

exxatm -F<full-path of Configuration file> -N<AttachManagerl> -N<AttachManager?2> <«

] Notes:

1. With the -N argument you specify the ATM section for which the Attach Manager is responsible
for. If this argument is omitted the attach manager is responsible for the default section.

2. With the -F argument you specify the location of the configuration file. If this argument is
omitted, the Attach Manager uses the default configuration file. All ATM instances should use
the same configuration file, so we recommend you use the default file for the default ATM.

3. The Attach Manager writes output to stdout. If you start the Attach Manager as a background
process, stdout must be redirected to a file.

Stopping the Attach Manager

~ To stop an Attach Manager

Each attach manager corresponds to an particular broker and registers a command service defined
with the configuration variables ServerClass/ServerName/Service in the ATM section.

m Use the script etbsrv.
Or:

Use the command-line utility etbcmd.

164 Administration under UNIX

Attach Manager

Or:
Press CTRL-C.
Or:

Under UNIX, enter command ki1l process-id.

Logging the Attach Manager

The ATM log file and a history file are defined by the ATM configuration parameters. For each
order to launch a service, the ATM writes a record into the history file. The history record has the
following format:

date and time
the service name as defined in the ATM config file
server name, server class and service

number of active replicates (this number is greater than 0 only if all running replicates are busy
while a new client requests the service

number of server lookups, that is, the number of clients requesting a new replicate of the server;
this is greater than 1 only if two clients request a service in parallel

replicate increment as defined in the ATM config file

number of replicates actually launched; this differs from the increment only if the high watermark
is exceeded

Administration under UNIX 165

Attach Manager

Attach Manager Processing

Client
Application

@ | Server
Application

© Attach Manager registers with Broker, indicating that it will attach named services. These are
called attach-managed services.

@ Client requests a service that is attach-managed. Server may or may not be active. If it is not,
a server will be started (attached).

© Attach request comes from the Broker.
@ Attach Manager issues command to start the server application.

© Server application issues a LOGON to the Broker, then issues REGISTER and RECEIVE. It gets
message from client, processes the message, and responds.

© Response from server is received by the client application.

166 Administration under UNIX

11 Settting up and Administering the EntireX Broker TCP

Agent

B COMMON SCENEAIOS ...ttt ee ettt e e e ettt e et e e e e ettt e e e e e e e e ettt e e e e e e e e ettt e e e e e e e e s ensbaeeaaeeeeas 168
= |ndirect TCP/IP Connections by the TCP Agent to Avoid Security Restrictionsccoccvvviiieeiiiiiiiinieneen. 169
B USING the TCP AGENT ...ttt e e e e 169
= Activating Tracing for the TCP AQENtooiiiiii i 170
= Architecture of the Broker TCP AQENtoiiiiiiiiiccie e 171

167

Settting up and Administering the EntireX Broker TCP Agent

The EntireX Broker TCP Agent is a gateway to the broker whenever direct TCP/IP communication
with the broker is not possible. Under UNIX, use the delivered script /opt/softwareag/En-
tireX/bin/brokeragent.bsh to start the agent.

Common Scenarios

The most common scenarios for using the Broker TCP Agent are where the Java security manager
does not allow direct communication with the Broker. For example, an untrusted Java applet can
only open a TCP/IP connection to a Broker which is running on the same machine as the Web
server.

Although in most cases the Broker TCP Agent will be used from a Broker application written in
Java, the Broker TCP Agent can also be used from any component or application configured with
TCP/IP.

168 Administration under UNIX

Settting up and Administering the EntireX Broker TCP Agent

Indirect TCP/IP Connections by the TCP Agent to Avoid Security Restrictions

The Broker TCP Agent must be used when the Java client cannot open a TCP/IP connection to the
EntireX Broker due to security or firewall settings. The most prominent case is the Java sandbox
model, which permits a Java applet to open only TCP/IP connections to the machine where the
Web server resides. If the EntireX Broker is running on a different machine, a TCP Agent has to
be run on the Web server machine.

Using the TCP Agent

Class Name and Parameters

The Broker TCP Agent is a standalone Java application. The class name which contains the main
method is com.softwareag.entirex.ba.BrokerAgent.

Specify the following parameters in the order given in this table when the TCP Agent listens on
a TCP/IP port:

Parameter Explanation

1. Trace Option | Valid values: ON or OFF. Default: OFF.
A dump of the buffers is written to standard output for diagnostic purposes.

2. Port Number |The port number the TCP Agent uses for incoming requests from Broker applications.
This port number must be specified as part of the Broker ID in the Broker application.

3. Broker Address|The TCP Agent sends all requests to this Broker using any legal Broker ID defined with
URL-style Broker ID. The TCP Agent will use direct TCP/IP communication if the TCP/IP
protocol is used (the address is of the form Hos tname, Hostname : Number or starts with
tepip://).

4. Bind Address |The address of the network interface on which the Broker TCP Agent will listen for
connection requests. The default is that the Broker Agent will listen on any attached

interface adapter of the system. The bind address is the local IP address or host name
to bind to.

Administration under UNIX 169

Settting up and Administering the EntireX Broker TCP Agent

Starting the TCP Agent
Under UNIX, the EntireX distribution kit comes with a shell script to start the Broker TCP Agent.

Change the port number and the Broker address in the script /<Install_Dir>/EntireX/bin/broker-
agent.bsh.

Activating Tracing for the TCP Agent

Set the parameter Trace Option to "ON". See Class Name and Parameters.

170 Administration under UNIX

Settting up and Administering the EntireX Broker TCP Agent

Architecture of the Broker TCP Agent

The architecture of the Broker TCP Agent is shown in the following picture:

ACI or RPC |

‘ TCP/P ‘J
[d

TCPR/IP

TCP/IP or SSL

-

‘ TCP/IP or SSL

EntireX Broker

ACI| or RPC Server

Administration under UNIX 171

172

12 Settting up and Administering the EntireX Broker SSL

Agent

B COMIMON SCENAMOS ...ttt ettt ettt ettt oot e e ekttt e et e e et e e e st e e ettt e e et e e e e 174
B USING the BroKEr SSL AGENTeiiiiiiiiece e 174
= Activating Tracing for the Broker SSL AGENTvviieiiiii e 175
= Architecture of the Broker SSL AGENTviiiiiii e 175

173

Settting up and Administering the EntireX Broker SSL Agent

The EntireX Broker SSL Agent is a gateway to the broker whenever direct SSL/TLS communication
with the broker is not possible. Under UNIX, use the delivered script /opt/softwareag/En-
tireX/bin/sslbrokeragent.bsh to start the agent.

Common Scenarios

The most common scenarios for using the Broker SSL Agent are where direct SSL communication
to the Broker is not possible or it is not required by the network architecture.

Although in most cases the Broker SSL. Agent will be used from a Broker application written in
Java, the Broker SSL Agent can also be used from any component or application configured with
SSL. See Using SSL/TLS with EntireX Components.

Using the Broker SSL Agent

Class Name and Parameters

The Broker SSL Agent is a standalone Java application. The class name is
com.softwareag.entirex.ba.SSLBrokerAgent.

Specity the following parameters in the order given in this table when the Broker SSL Agent listens
on an SSL port:

Parameter Explanation

1. Trace Option | Valid values: ON or OFF. Default: OFF.
A dump of the buffers is written to standard output for diagnostic purposes.

2. Port Number |The port number the Broker TCP Agent uses for incoming requests from Broker
applications. Specify this port number as part of the broker ID in the broker application.

3. SSL Parameters | SSL parameters when the Broker SSL Agent runs as an SSL server. SSL requires a (server)
certificate with a private key. Specify with key_store=filename the file name of a
Java keystore that contains the private key.

SSL client authentication can be requested with the parameter verify_client=yes.
In this case, specify with trust_store=filename the file name of a Java keystore
containing the list of trusted certificate authorities that issued the client's certificate. The
complete list of parameters could be
key_store=keystore&verify_client=yes&trust_store=castore.

Examples:

key_store=ExxJdavaAppCert.jks trust_store=ExxCACert.jks.

See also SSL/TLS Parameters for Broker as SSL Server (One-way SSL).

4. Password The password which protects the private key. If the value -prompt is specified the
password is read from standard input.

174 Administration under UNIX

Settting up and Administering the EntireX Broker SSL Agent

Parameter Explanation

5. Broker Address|The Broker SSL Agent sends all requests to this Broker using any legal Broker ID defined
with URL-style Broker ID. The Broker SSL. Agent will use SSL. communication if the SSL
protocol is used (the address starts with ss1://).

6. Bind Address |The address of the network interface on which the Broker SSL Agent will listen for
connection requests. The default is that the Broker Agent will listen on any attached
interface adapter of the system. The bind address is the local IP address or host name
to bind to.

Starting the Broker SSL Agent
Under UNIX, the EntireX distribution kit comes with a shell script to start the Broker SSL Agent.

Change the port number, the Broker address and the SSL parameters in script /<Install_Dir>/En-
tireX/bin/sslbrokeragent.bsh.

Activating Tracing for the Broker SSL Agent

Set the parameter Trace Option to "ON". See Class Name and Parameters.

Architecture of the Broker SSL Agent

The architecture of the Broker SSL Agent is shown in the following picture:

Administration under UNIX 175

Settting up and Administering the EntireX Broker SSL Agent

ACI or RPC

Entirex Broker

ACI| or RPC Server

176

Administration under UNIX

13 Settting up and Administering the EntireX Broker HTTP(S)

Agent

® HTTP(S) Tunneling With ENLIFEXcoiiiiiee e 178
= Configuring the Broker HTTP(S) AGENTiiiiiiiiiiiiee i 179
= Using Internationalization with the Broker HTTP(S) AGENtooviiiiiiiiiiiiie e 181
= Activating Tracing for the Broker HTTP(S) AGENteoiiiiiiiiiiiiie e 181

177

Settting up and Administering the EntireX Broker HTTP(S) Agent

The EntireX Broker HTTP(S) Agent is a Java-based component that implements a Java servlet for
servlet-enabled Web servers. It builds the bridge between a Web server and EntireX Broker in the
intranet.

HTTP(S) Tunneling with EntireX

Introduction

When communicating with EntireX Broker over the internet, direct access to the EntireX Broker's
TCP/IP port is necessary. This access is often restricted by proxy servers or firewalls. With EntireX,
Java-based communication components can pass communication data via HTTP or HTTPS. This
means a running EntireX Broker in the intranet is made accessible by a Web server without having
the need to open additional TCP/IP ports on your firewall (HTTP tunneling). HTTP or HTTPS
tunneling can also be used for Java RPC.

How the Communication Works

The EntireX Java ACl is able to send and receive data via an HTTP protocol controlled by construct-
or com.softwareag.entirex.aci.Broker.See How to Enable HTTP Support in a Java Component
under Writing Advanced Applications - EntireX Java ACI.

The EntireX Java component com.softwareag.entirex.aci.TunnelServlet.class implements
aJava servlet for servlet-enabled Web servers. It builds the bridge between Web server and EntireX
Broker in the intranet.

178 Administration under UNIX

Settting up and Administering the EntireX Broker HTTP(S) Agent

Java | > Web Server
Client '~ (with Serviet
Engine)
A
Broker
HTTP(S) Agent
> (formerly
Tunnel Serviet)
| . A

EntireXx
EBroker

v

EntireX,
Server

The figure above shows how the communication works. In this scenario, a Java client program

communicates via HTTP and EntireX Broker with an EntireX server. By using a Broker ID starting
with http:// (passing the URL of the installed Broker HTTP(S) Agent) each Broker request is sent
to a Web server, which immediately processes the Broker HTTP(S) Agent, passes the contents to
EntireX Broker, receives the response and sends it back via HTTP. For the two partners (client and

server) it is transparent that they are communicating through the Web. Java server programs can
also communicate via HTTP if necessary.

Configuring the Broker HTTP(S) Agent

To use the Broker HTTP(S) Agent you need a servlet-enabled Web server.

Parameter | Description

broker |The broker you want to address (syntax: as Broker ID in Java).

log Yes | Default. Servlet writes logging information to its standard

output.

No ’No log is created.

Administration under UNIX 179

Settting up and Administering the EntireX Broker HTTP(S) Agent

In the following, “tunnel” is used as the agent name.

~ To adapt the Broker HTTP(S) Agent

The following steps describe the deployment with the Web archive entirex.jar in detail. You can
test the Broker HTTP(S) Agent with http://<host>:<port>/entirex/tunnel, where entirexis
the name of the Web application.

1 Create the new subfolders in the Web application directory of your Web server, e.g. tunnel,
tunnel/WEB-INF, tunnel/ WEB-INF/Iib.

2 Copy the entirex.jar into tunnel/ WEB-INF/lib.
3 Create a file named web.xml in the folder tunnel/WEB-INF with the following content:

<web-app>
<servlet>
<servlet-name>tunnel</servlet-name>
{servlet-class>com.softwareag.entirex.aci.TunnelServiet</servlet-class>
<init-param>
<param-name>broker</param-name>
<param-value>yourbroker</param-value>
</init-param>
<init-param>
<param-name>log</param-name>
<param-value>yes</param-value>
</init-param>
</servlet>
<servlet-mapping>
<servlet-name>tunnel</servlet-name>
<url-pattern>/*</url-pattern>
<{/servlet-mapping>
</web-app>

4 Restart your Web server and test the installation by calling the Broker HTTP(S) Agent in your
Web browser. The URL is: http://<yourhost>/tunnel. If the agent is installed properly, an in-
formation page is displayed.

5 Run either the RPC CALC example or the bcoc/bcos broker verification.

® To run the RPC CALC example, see the relevant section for Natural | COBOL | PL/I and
also EntireX IDL Tester in the Designer documentation.

® To use the bcoc/bcos verification, see Sample Programs for Client (bcoc) and Server (bcos) in
the z/OS | UNIX | Windows | BS2000 installation documentation or Verifying the Installation
of the Broker

180 Administration under UNIX

Settting up and Administering the EntireX Broker HTTP(S) Agent

Using Internationalization with the Broker HTTP(S) Agent

Character conversion is transparent for the Broker HTTP(S) Agent. The client sending the EntireX
ACI request with HTTP over the Web server through the Broker HTTP(S) Agent fully controls its
encoding. No configuration is necessary for the Broker HTTP(S) Agent.

Activating Tracing for the Broker HTTP(S) Agent

~ To switch on tracing for the Broker HTTP(S) Agent

= Set the system property entirex.trace to one of the values 1, 2, or 3. See Tracing.

~ To switch on logging

u Set the Conﬁguration parameter log=yes.

This logs the parameters from the HTTP header, the HTTP messages and error messages to
the logging facility of the Web server.

Administration under UNIX 181

182

14 Tracing webMethods EntireX

= Table Summarizing Tracing for webMethods EntireX CoOmponentscceevviiiiiiiiiiiiiieiieceee 184
B Tracing ENrEX BIOKETooiiii ettt e e e e e 185
B TraciNg BroKEr AGENT ...ttt 187
B Tracing BrOKEr STUDS ..ot 188
B Tracing EntireX Java ACH ... 189
® Tracing RPC SEIVEr fOr JAVAo.uuiiiiiiiii e 190
m Tracing the RPC RUNTIMEcoiiiiiiiiit e e e e e e 190
= Tracing the XML/SOAP RUNEIMEeeiiiiiiiiieeiie et 191
= Tracing the EntireX RPC-ACIBFAGEvoiiiiiiiiie it 196
® Enabling Java Trace of SPM PIUG-INS ...t 196

183

Tracing webMethods EntireX

This chapter describes the various techniques available for troubleshooting, tracing and logging
with EntireX components.

) Note: Trace files can contain sensitive personal data (user ID, IP address, SSL certificates

and payload data). This is particularly relevant if you have activated EntireX Security. EntireX
uses trace files for accounting, diagnostics and error analysis. We recommend you check
the different trace opportunities provided by EntireX and delete trace files if they are no
longer needed. The various EntireX components will not delete these trace files automatically;
this is your responsibility as user. Use the appropriate tools of the respective operating

system.

Table Summarizing Tracing for webMethods EntireX Components

EntireX Component

Use Tracing Technique for

Tracing Technique

Broker ActiveX Transport-related problems Tracing Broker Stubs
Control Requests to, replies from the Broker or Broker Agent
EntireX Broker ACI |Transport-related problems Tracing Broker Stubs

under Windows

Requests to, replies from the Broker or Broker Agent

EntireX Broker Agent

Transport-related problems
Requests to, replies from the Broker or Broker Agent

Tracing Broker Agent

EntireX Broker under |Processing within the Broker Tracing EntireX Broker

UNIX Requests to, replies from clients/server

DCOM Wrapper Transport-related problems Tracing Broker Stubs
Requests to, replies from the Broker or Broker Agent
RPC-related problems on the client side Tracing the RPC Runtime
Requests to, replies from RPC Servers
Requests to, replies from the Broker

EntireX Java ACI Transport-related problems Tracing EntireX Java ACI
Requests to, replies from the Broker or Broker Agent

Java Wrapper Transport-related problems Tracing EntireX Java ACI
Requests to, replies from the Broker or Broker Agent

EntireX RPC Server |Transport-related problems Tracing RPC Server for Java

for Java Requests to, replies from the Broker or Broker Agent

EntireX IDL Tester

.NET Wrapper Transport-related problems Tracing Broker Stubs
Requests to, replies from the Broker or Broker Agent
RPC-related problems on the client side Tracing the RPC Runtime
Requests to, replies from RPC servers
Requests to, replies from the Broker

C Wrapper Transport-related problems Tracing Broker Stubs
Requests to, replies from the Broker or Broker Agent

184 Administration under UNIX

Tracing webMethods EntireX

EntireX Component

Use Tracing Technique for

Tracing Technique

RPC-related problems on the client side
Requests to, replies from RPC servers
Requests to, replies from the Broker

Tracing the RPC Runtime

RPC Server RPC-related problems on the server side Activating Tracing for the RPC
Requests to, replies from RPC clients Server for C | .NET
Requests to, replies from the Broker
Transport-related problems Tracing Broker Stubs
Requests to, replies from the Broker or Broker Agent

EntireX Broker Transport-related problems Tracing EntireX Java ACI

HTTP(S) Agent Requests to, replies from the Broker or Broker Agent

EntireX RPC Server |For RPC Server for XML/SOAP-related problems. |Tracing the XML/SOAP

for XML/SOAP Runtime
Transport-related problems Tracing EntireX Java ACI
Requests to, replies from the Broker or Broker Agent

EntireX XML Tester

EntireX Listener for |For Listener for XML/SOAP-related problems. Tracing the XML/SOAP

XML/SOAP Runtime
Transport-related problems Tracing EntireX Java ACI
Requests to, replies from the Broker or Broker Agent

XML/SOAP Wrapper |For XML/SOAP Wrapper-related problems. Tracing the XML/SOAP

Runtime

Transport-related problems
Requests to, replies from the Broker or Broker Agent

Tracing EntireX Java ACI

EntireX RPC-ACI
Bridge

Tracing the EntireX RPC-ACI
Bridge

Tracing EntireX Broker

= Switching on Tracing

= Switching off Tracing

= Viewing the Trace Log

= Deferred Tracing

= Dynamically Switching On or Off the EntireX Broker Trace

See also EntireX Broker Return Codes.

Administration under UNIX

185

Tracing webMethods EntireX

Switching on Tracing

> To switch on tracing

m Set the attribute TRACE-LEVEL in the broker attribute file

* for minimal trace output to "1"
*® for detailed trace output to "2"

® for full trace output to "3"

Example:

TRACE-LEVEL=2

Switching off Tracing

~ To switch off tracing

m Set the attribute TRACE-LEVEL in the broker attribute file to 0:

TRACE-LEVEL=0
Or:
Omit the TRACE-LEVEL attribute.

Viewing the Trace Log

The trace file, BrokerI0.LOG, is written to the Broker Directory.

~ To view the contents of a log

= Using Command Central, select an environment in the Environments pane, select the Instances
tab, click the name of a product instance, select the Logs tab, click the log alias for a log in the
Alias column.

Or:

Enter the following command in Command Central:

186 Administration under UNIX

Tracing webMethods EntireX

sagcc get diagnostics 1logs

This retrieves log entries from a log file. Log information includes the date, time, and descrip-
tion of events that occurred with a specified runtime component.

See Administering EntireX Components with Command Central in the EntireX documentation or
the separate Command Central documentation and online help for details.

Deferred Tracing

It is not always convenient to run with TRACE-LEVEL defined, especially when higher trace levels
are involved. Deferred tracing is triggered when a specific condition occurs, such as an ACIresponse
code or a broker subtask abend. Such conditions cause the contents of the trace buffer to be written,
showing trace information leading up the specified event. If the specified event does not occur,
the Broker trace will contain only startup and shutdown information (equivalent to TRACE - LEVEL=0).
Operating the trace in this mode requires the following additional attributes in the broker section
of the attribute file. Values for TRBUFNUM and TRAP - ERROR are only examples.

Attribute Value |Description

TRBUFNUM |3 Specifies the deferred trace buffer size =3 * 64 K.

TRMODE WRAP |Indicates trace is not written until an event occurs.

TRAP-ERROR|322 |Assigns the event ACI response code 00780322 "PSI: UPDATE failed".

Dynamically Switching On or Off the EntireX Broker Trace

The following methods are available to switch on or off the EntireX Broker trace dynamically. You
do not need to restart the broker for the changes to take effect.

" etbcmd
Run command utility etbcmd with option -¢ TRACE-ON or - ¢ TRACE-OFF. See etbcmd.

® Command Central
Use Command Central. See Updating the Trace Level under Administering the EntireX Broker using
the Command Central GUI | Command Line.

Tracing Broker Agent

~ To switch on tracing

m Set the parameter Trace Option to ON. For the complete table of parameters, see Using the
Broker SSL Agent and Using the TCP Agent.

Administration under UNIX 187

Tracing webMethods EntireX

~ To switch off tracing

m Set the parameter Trace Option to OFF.

Or:

Omit the parameter Trace Option.

Trace Output

The trace output is written to STDOUT.

Tracing Broker Stubs

The broker stubs provide an option for writing trace files.

~ To switch on tracing for the broker stub

= Before starting the client application, set the environment variable ETB_STUBLOG:

Trace Level Description

0 NONE No tracing. Switch tracing off.

1 STANDARD|Traces initialization, errors, and all ACI request/reply strings.

2 ADVANCED |Used primarily by system engineers, traces everything from level 1 and provides
additional information, for example the Broker ACI control block, as well as
information from the transports.

3 SUPPORT |This is full tracing through the stub, including detailed traces of control blocks,
message information, etc.

Example:

ETB_STUBLOG=2

If the trace level is greater than 1, unencrypted contents of the send/receive buffers may be exposed
in the trace.

The trace file is created in the current directory. The name is pid.etb where pidis the process ID.
If you want to write the trace file to a different location, set environment variable ETB_STUBLOGPATH
to the desired path.

See also UNIX Commands to Set the Environment Variables.

188

Administration under UNIX

Tracing webMethods EntireX

Remember to switch off tracing to prevent trace files from filling up your disk.

~ To switch off tracing for the broker stub

s Set the environment variable ETB_STUBLOG to NONE or delete it.

Tracing EntireX Java ACI

The EntireX Java ACI provides a system property for tracing.

~ To switch on tracing

1 When starting the Java virtual machine, set the Java system property entirex.trace

® for minimal trace output to "1"
* for detailed trace output to "2"

= for full trace output to "3".

2 The programming interface of the EntireX Java ACI allows you to set the trace value by the
Java application using the EntireX Java ACI, see Tracing under Writing Advanced Applications
in the EntireX Java ACI documentation. There may also be other methods to provide the trace
value. See your application documentation.

~ To switch off tracing

m Set the Java system property entirex.trace to 0 when starting the Java virtual machine
Or:

Omit the Java system property entirex.trace when starting the Java virtual machine.
Trace Output

The trace output will be written to STDOUT.

Administration under UNIX 189

Tracing webMethods EntireX

Tracing RPC Server for Java

~ To switch on tracing

s When starting the Java virtual machine, set the Java system property entirex.trace

® for minimal trace output to "1"
= for detailed trace output to "2"

* for full trace output to "3".

See Customizing the RPC Server.

~ To switch off tracing

m Set the Java system property entirex.trace to"0" when starting the Java virtual machine.

Or:
Omit the Java system property entirex.trace when starting the Java virtual machine.
Trace Output

The trace output will be written to STDOUT.

Tracing the RPC Runtime

~ To switch on tracing

» Before starting the client application, set the environment variable ERX_TRACELEVEL to

" STANDARD for minimal trace output
" ADVANCED for detailed trace output
® SUPPORT for full trace output.

> To switch off tracing

m Set the environment variable to NONE or delete it.

190 Administration under UNIX

Tracing webMethods EntireX

Trace Output

By default the trace file, ERXTrace.nnn.log, will be written to the trace directory.

The value nnn can be in the range from 001 to 005.

> To change the trace destination

m Set the environment variable ERX_TRACEFILE to the desired destination, which can consist of

file names, folder names and variables for file names, folder names, process ID, thread ID,
range.

The variables are:

Variable Operating System | Description

%...% Windows environment variable

$(...) UNIX environment variable

@PID UNIX, Win process ID

@TID UNIX, Win thread ID

@RANGE[n,m] UNIX, Win mmust be greater than 1, range is from 0 - 999

@CSIDL_PERSONAL Windows The user's home directory. The variable will be
resolved by Windows shell functions.

@CSIDL_APPDATA Windows The Application Data Directory. The variable will be
resolved by Windows shell functions.

@CSIDL_LOCAL_APPDATA |Windows The Application Data Directory. The variable will be
resolved by Windows shell functions.

Related Information

Environment Variables in EntireX

Tracing the XML/SOAP Runtime

This section provides information on tracing the following components:

= EntireX RPC Server for XML/SOAP
= EntireX Listener for XML/SOAP
* EntireX XML/SOAP Wrapper

The following topics are covered:

Administration under UNIX 191

Tracing webMethods EntireX

2

= Enabling Tracing

= Disabling Tracing

= Configuring a Trace File for the Listener for XML/SOAP

= Configuring a Trace File for the XML/SOAP Wrapper or the RPC Server for XML/SOAP
= Trace Parameters

= Component Names

Note: A trace of the XML/SOAP Runtime will trace the XML/SOAP communication. If you

need to log the communication of the XML Runtime with EntireX Broker, see Tracing EntireX
Java ACL.

Enabling Tracing

There are two ways to switch on tracing mode:

= Using a Property File
= Using Trace Parameters of the Java Virtual Machine

Using a Property File

~ To switch on tracing mode using a property file

1

Copy the trace property file entirex.trace.standard to one of the following locations:

* the working directory of your client application;
* the user's home directory;

® any other location.

Rename the copied file entirex.trace.properties.
Customize entirex.trace.properties as described in Trace Parameters.
If entirex.trace.properties is within the current directory of your client application or your user

home directory, it will be located automatically.

Otherwise, specify the fully qualified or relative file name when starting the Java virtual ma-
chine for your client application using property entirex.sdk.default.trace.propertiesfile,
example:

192

Administration under UNIX

Tracing webMethods EntireX

Java -Dentirex.sdk.default.trace.propertiesfile «
="/MyDirName/entirex.trace.properties” MyClient

Using Trace Parameters of the Java Virtual Machine

~ To switch on tracing mode by specifying the trace parameters of the Java virtual machine

= Submit the trace parameters when you start the Java virtual machine for the application to
be traced. See Trace Parameters. Note that parameter specifications submitted overwrite set-
tings in the property file.

Disabling Tracing

~ To switch off tracing

= Delete or rename the trace property file if it is located in the working directory or in the user's
home directory.

Or:

Specify 1evel=NONE when invoking the Java virtual machine :

java -Dentirex.sdk.default.trace.level = NONE MyClient

Configuring a Trace File for the Listener for XML/SOAP

We recommend to add the following parameter in file conf/axis2.xml located in the Software AG
Common Web Services Stack installation:

<parameter name="exx-trace-propertiesfile">file:////path of trace.properties «
file</parameter>

Example:

{parameter <
name="exx-trace-propertiesfile">MyDirName/entirex.trace.properties</parameter>

Notes:

1. If a relative path is specified, the file is located in directory WEB-INF/conf/ in the Web Services
Stack web application file that contains the property.

2. In the parameter section of the file axis2.xml, the value of the parameter
exx-trace-propertiesfile can contain definitions of operating system variables, for example
location="$EXXDIR/config/entirex.trace.properties”.

Administration under UNIX 193

Tracing webMethods EntireX

Configuring a Trace File for the XML/SOAP Wrapper or the RPC Server for XML/SOAP

See Enabling Tracing.

| Note: If the RPC Server for XML/SOAP is running as a daemon, enable tracing by adding

a Java system property to the start script or by copying file entirex.trace.properties to
the same directory as the start script.

Trace Parameters

The following table provides an overview of trace parameters, their respective values, and how
to submit them as arguments when invoking the Java virtual machine for the component to be

traced.
Parameter Syntax Description
propertiesfile |entirex.sdk.component Provide the location of the entirex.trace.properties file.
name.trace.propertiesfile= Only used when the component is started.
absolute or relative path
including the properties |Note: A sample trace property file named
file entirex.trace.standard with predefined trace settings is
contained in the directory ../EntireX/config. This file is a
model and must be renamed to the valid name when
used.
level entirex.sdk.component You can specify the following trace levels:
name.trace.level = tracelevel
Keyword Level Description
NONE No tracing Tracing is switch off
STANDARD User Trace invocation of a
component.
ADVANCED Expert For support and diagnostics.
Expert knowledge of the
component is required.
SUPPORT Expert Full trace output. Otherwise,
as above.
directory entirex.sdk.component Default is the working directory.
name.trace.directory = absolute
or relative path
filename entirex.sdk.component Specify where tracing data is written to:
name.trace.filename =
FILE|STDOUT|STDERR Keyword Destination
STDOUT Console
(Default)
STDERR Console
194 Administration under UNIX

Tracing webMethods EntireX

Parameter Syntax Description
FILE File name is generated internally:
exx.sdk.component name.threadName.
backupNo.log, where backupNo is in
the range from ".000" to ".009". Note that
the number of files created depends on
maximumsize.If more than 10 files are
required, the oldest backup file is
overwritten.
threadoriented |entirex.sdk.component
name.trace.threadoriented = true Keyword Description
| false YES Thread-oriented: trace data is distributed
over multiple files (one file per thread)
NO (Default) Trace data is written to one file.
rowlength entirex.sdk.component Maximum number of characters per row. If this limit is
name.trace.rowlength = exceeded, the remaining letters are written to a new line.
maximum_characters_per_row
maximumsize |entirex.sdk.component Maximum size of the log file. If this limit is exceeded,
name.trace.maximumsize = the log file is renamed and the remaining data is written
max_file_size to anew log file, see f77ename. Note that this
specification has an effect only if filename is set to
"FILE".
timeframe entirex.sdk.component Time period after which the log file is closed. If this time

name.trace.timeframe= number

of day

limit has exceeded, the log file is renamed and the

remaining data (if any) is written to a new log file. Note
that this specification has an effect only if filename is
set to "FILE". You can specify the following timeframes:

Keyword Description
1-9+H
1-9+D

Number of hours

Number of days

If no time frame is defined, only one log file is used until
tracing is stopped.

Example: If timeframe has been set to 30D, the current
log file is closed and renamed at midnight every thirty
days, and tracing is continued with a new log file.

Administration under UNIX

195

Tracing webMethods EntireX

Component Names

Trace properties given in the trace property file might have to be restricted by componentname.
The following components are available:

EntireX Component componentname |Description

default The trace property is not restricted to a specific EntireX component.

XML/SOAP Runtime |[xml.runtime |The trace property belongs to the EntireX XML/SOAP Runtime only.

Tracing the EntireX RPC-ACI Bridge

> To trace Broker calls

1 Use the system property entirex.trace=[0[1]2|3].

This trace does not separate the calls to the Broker for RPC from those to the Broker for ACL
The trace levels are:

® 0 to switch off tracing.

® 1 to trace Broker calls.

= 2 to trace Broker calls and the payload.

= 3 to trace Broker calls and all buffers including the payload.

2 Redirect the trace to a file with the property entirex.server.logfile. Set this to the file name
of the log file, the default is standard output.

Enabling Java Trace of SPM Plug-ins

In some cases a Java trace of the SPM plug-ins is needed to analyze an issue.

~ To enable Java trace of SPM plug-ins

1 Stop the Platform Manager. On UNIX it runs as a daemon.

2 Edit the file custom_wrapper.conf in <Installation Dir>\profiles\ SPM\ configuration \ custom_wrap-
per.conf. Add the following line:

196 Administration under UNIX

Tracing webMethods EntireX

wrapper.java.additional.<n>=-Dentirex.trace=2

Example:

ffencoding=UTF-8

Configuration files must begin with a Tine specifying the encoding
of the file.

Put here your custom properties.
wrapper.successful_invocation_time=10

wrapper.java.initmemory=32

wrapper.restart.reload_configuration=TRUE
wrapper.java.additional.l0=-Djava.util.Arrays.uselegacyMergeSort=true
wrapper.java.additional.20=-Dentirex.trace=2

In case of issues with SSL, add the line:

wrapper.java.additional.<n>=-Djavax.net.debug=ss]

Example with Java trace and SSL trace:

ffencoding=UTF-8

Configuration files must begin with a Tine specifying the encoding
of the file.

Put here your custom properties.
wrapper.successful_invocation_time=10

wrapper.java.initmemory=32

wrapper.restart.reload_configuration=TRUE
wrapper.java.additional.l0=-Djava.util.Arrays.uselegacyMergeSort=true
wrapper.java.additional.20=-Dentirex.trace=2
wrapper.java.additional.30=-Djavax.net.debug=ssl

3 Restart the Platform Manager.
The Java trace is written to <installation dir>\profiles\ SPM\logs \wrapper.log.

Q Tip: Search for string “EntireX Java Runtime” for the start of the trace.

~ To stop the Java trace of SPM plug-ins

1 Remove the additional lines in <Installation Dir>\profiles\ SPM\ configuration \ custom_wrap-
per.conf.

2 Restart the Platform Manager.

Administration under UNIX 197

198

15 EntireX Trace Utility

= |ntroduction to the EntireX Trace ULIlItYcooiiiiiiiii e 200
B PTOCESS TIACE .ottt e oottt e e oottt et e e e oottt e e e e e e ettt e e e e e et aaeaa s 200
LS00 1= ToT PRSP OPPPS 208
= Using the EntireX Trace Utility in Batch MOGEccoiiiiiiiiii e 209
B USAQE TIDS +rvvvvvueututnentatntaeetaesss s 210

199

EntireX Trace Utility

Introduction to the EntireX Trace Utility

Broker traces, as well as traces produced from applications communicating with the Broker (so-
called "stub traces"), contain a lot of details of the particular Broker calls. However, their layout
is different and not easy to understand. The EntireX Trace Utility reads these Broker kernel as well
as stub traces and produces a file with a common layout, where one line corresponds to a Broker
call. The file layout is a standard CSV file (comma-separated values).

The request (Broker call sent from the stub to the kernel) and the corresponding reply (response
sent back from the kernel to the stub) are merged together and presented as one logical Broker
call in one row of the output file. Line numbers in the trace file and times for the request and reply
are provided. It is also possible to specify filters so only the specified subset of the Broker calls are
extracted. Since the Broker trace file contains all activities from both clients and servers and since
it is possible to filter the calls, an end-to-end analysis of a conversation is simple to analyze.

The EntireX Trace Utility is divided into two separate elements: Process Trace and Show Trace.

Process Trace

Process Trace is used to process the information contained in the Broker trace file, saving the re-
quested output to a simple text file.

= Using the Tool
= Qutput Field Options
= Error Messages

Using the Tool

> To open the EntireX Trace Utility under UNIX

= Run the script traceutility.bsh located under /<Install_Dir>/EntireX/bin.

~ To process the trace information

= Follow the instructions on the following screens:

= File Selection
= QOptions

200 Administration under UNIX

EntireX Trace Utility

= Filters

File Selection

The following window is displayed.

ntirex Trace Utility |Z| |E| E|
File Actions Help
Process Trace

Start Please enter the Trace file to use as input,
- as well as the output file to be written.

File Selection

Input File: brnker.lug Browse...
& Options Output File: |broker.log.csv Browse...
@ Filters
@ FPro inished
| Exit H < Back || Next = || Finish |

The dark gray display section - the wizard window - shows you which step is required. File Selec-
tion has a large green dot, so the input and output files are required.

Options

In the display section, Options is green.

Administration under UNIX 201

EntireX Trace Utility

i EntireX Trace Utility |Z||E|E|
File Actions Help
Process Trace

Start Choose the type of trace file: | Automatic ‘ h |

@ File Selection Select the desired level of output information.
' Full ® Standard ' Overview
Options

. Select the character used to separate the fields
e Filters in the output file.

Separator Character: D

| Exit H < Back || Next = || Finish |

See Output Field Options for information on Full, Standard and Overview.

See Options under Using the EntireX Trace Utility in Batch Mode for information on type of trace
file and error codes not to display.

The defaults of Process Trace are:

" use automatic detection of trace file type
® return the standard amount of output

® save the output fields separated with commas (as this format is needed to be able to view the
output in Show Trace)

= display all errors found in the trace file.

nn

The default separator character is ",", you can change this character.
Filters

For the Standard and Full output options you can set filters to reduce the amount of information
written to the output file.

You can set filters for the Conversation ID (for example: 000000000041596), the Broker Service
(for example: int/catsbeb3/internet), the User (for example: S_94), and the Date for the call (for
example 2016-01-31).

The User filter does not correspond to the User ID or Physical User ID from the trace, but a gener-
ated value from Process Trace. This filter can only be used after already analyzing an output file
and deciding which User to filter for.

202 Administration under UNIX

EntireX Trace Utility

If more than one filter is specified, only those entries that satisfy all conditions will be displayed.

2 EntireX Trace Utility

File Actions Help
Process Trace

Start

& Fil

@& Options

Filters

@ Pror Finizhed

Please enter any filters for
the information that are wanted.

Service: eq: inticatsbeb3/internet
Conversation ID: eq: 0000000000041586
User: eq: 5 84
Date: eq: 2016-01-31
| Exit | ‘ < Back | | Next = | | Finish |

~ To generate the output file

s Choose Finish.

At this point any errors from processing the trace file are shown.

tireX Trace Utility

File Actions Help
Process Trace

@ Options

@ Filters

Pror inished

Finished Successfully

butputﬂle was generated with 251 entries

131 MAFETERFPC 2003-04-29 08:46:08.852 ETBEOOD0 Successiul res
135 MAFETERFC 2009-04-29 08:46:08.852 ETBEOODD Successiul res

| o

2

| Exit H Show H New Process

Administration under UNIX

203

EntireX Trace Utility

~ To display the results from the processing

s Choose Show.

> To leave the program

s Choose Exit.

~ To process another trace file

s Choose Process Trace from the menu bar.

A new processing wizard is started.

Output Field Options

You may select between three levels of output to be written to the output file:

Option Output Fields

Overview |Phys Userid, Userid, Certuid, Token, User, Service

Standard |Thread, Req, Reply, Phys Userid, Userid, Certuid, Token, User, Function, Error, Service, Convid,
Uowid, Uowstatus, Slen, Retl, Cuid

Full Thread, Req, Reply, Phys Userid, Userid, Certuid, Token, User, Function, Error, Service, Convid,
Uowid, Uowstatus, Slen, Retl, Cuid, Timel, Time2, Api, Rlen, Cstat, Charset, SecurityToken,
Security, TimeDiff, ReplyTime, Seqid, AppName, Node, Stub, Library, Program, Brokerid,
AppMon, Date, MessageIDRequest, CorrelationDRequest, MessagelDReply, CorrelationIDReply,
PartnerSeqid, Pid, Tid

Description of the columns in the CSV file (comma-separated values).

| Note: Output which is the result of stub trace files does not contain entries for all columns.

Column Explanation

Thread The name of the Java thread executing the Broker call. Only available for trace files
produced by the EntireX Java Runtime.

Req The line number in the trace file where the request part of the Broker call starts. 0
if the request cannot be found in the trace file.

Reply The line number in the trace file where the reply part of the Broker call starts. 0 if
the reply cannot be found in the trace file.

Phys.User ID The physical user ID (Unique ID) which is displayed as a binary value in the Broker
trace, nicely formatted. In case of a C stub trace file, the real physical user ID is not
available; instead of this the thread ID is used to construct a replacement for the
physical user ID.

204 Administration under UNIX

EntireX Trace Utility

Column Explanation

User ID The user ID of the Broker call.

Certuid The user ID to which the SSL certificate is assigned. Only applicable to RACF under
z/OS.

Token The token of the Broker call.

User An artificial identifier for a user session (using physical user ID, user ID, and token).
This is a unique number prefixed with either - or S- . The latter will be used if the
caller can be identified (using the available data in the trace) as a server application.

Function The Broker function. If an option is specified it is appended to the function name.
If a wait timeout is specified for the send or receive function it is appended.

Error Error class, error number and error text. Error 0000 0000 is not displayed. The text
"Successful response" is not displayed.

Service The service address in the form class/server/service.

Convid The conversation ID prefixed with *. If the conversation ID in the reply is different
from the one in the request, the one from the reply is used.

Uowid The unit of work ID prefixed with *. If the unit of work ID in the reply is different
from the one in the request, the one from the reply is used.

Uowstatus The unit of work status

Slen The send length, i.e. the length of the data sent to the Broker.

Retl The return length, i.e. the length of the data returned from the application.

Cuid The client user ID (only for servers).

Timel The time of the request entry in the trace file.

Time2 The time of the reply entry in the trace file.

Api The API version.

Rlen The (maximum) receive length specified in the send/receive call.

Cstat The conversation status (only for servers).

Charset The character set used by the caller. Typical values are ascii, ebcdic siemens.
If a value for the locale string has been specified, it is added using / as a separator.

SecurityToken An interpretation of the security token of the request part. If the reply also contains
a security token it is added using / as a separator. The interpretation of the prefixes
is as follows:
unknown The security token cannot be identified as a security

token valid for EntireX Security
enc The send/receive data is encrypted.”’
pwd A password is specified in the call
newpwd A new password is specified in the call.
stub The security token has been built by an EntireX stub.
server The security token has been processed by the Broker,
the part which distinguishes security tokens is added.

Administration under UNIX 205

EntireX Trace Utility

Column Explanation

Security Some security-relevant control block fields of the call. If Forcelogon is enabled, "fl:"
is displayed. If send/receive data is encrypted (SecurityToken, see above, is "enc")
either "broker" or "target" is displayed. If a password has been specified an artificial
password is displayed. If in addition a new password has been specified, it is added
using / as a separator. The artificial password is displayed as "pwd" followed by a
number (starting with 0).

TimeDiff The elapsed time between the request and the reply (Time2 - Timel).

ReplyTime Server response time (difference in time between the server receiving a request and
sending the reply).

Seqid The internal sequence ID of the Broker call. Only available for Broker version 7.3 or
higher.

AppName Name of the application communicating with the Broker. Only available if API
version 9 or greater is used.

Node Node name of the application which is communicating with the Broker, e.g. the
TCP/IP hostname. Only available if API version 9 or greater is used.

Stub Stub name and version used by the application communicating with the Broker.
Only available if API version 9 or greater is used.

Library Library name if Broker call is an RPC call. Only available for RPC clients, or for
server version 8.0 or higher.

Program Program name if Broker call is an RPC call. Only available for RPC clients, or for
server version 8.0 or higher.

Brokerid The Broker ID of the Broker call.

AppMon Application Monitoring settings of the Broker call (for request and reply).

Date The date of the request or reply entry in the trace file.

MessagelDRequest |The message ID of the request.

CorrelationIDRequest| The correlation ID of the request.

MessagelDReply The message ID of the reply.

CorrelationIDReply | The correlation ID of the reply.

PartnerSeqid The internal sequence ID of the related Broker call.

Pid The process ID of the request.

Tid The thread ID of the request.

| Notes:

1. Encryption is deprecated. For encrypted transport we strongly recommend using the Secure
Sockets Layer/Transport Layer Security protocol. See SSL/TLS, HTTP(S), and Certificates with
EntireX in the platform-independent Administration documentation.

206 Administration under UNIX

EntireX Trace Utility

Error Messages

The utility will only produce a meaningful result if the trace file is not corrupt. When transferring
a trace from a mainframe, make sure all columns of the trace file are transferred, otherwise the
utility might report errors (e.g. 2, 4 or 9). It is also possible that no errors are reported but the res-
ulting CSV file has columns which contain invalid data.

Number|Message Explanation

1 {0} Text of a Java exception thrown at runtime.

2 Trace has incomplete entry for Will be displayed a maximum of 5 times. Output for Security
Binpart, expected length = {0}, actual |Token, Password, and New Password may be corrupted.
length = {1} Typical reason: columns in the trace file were lost when

copying the trace from the mainframe.
Physical user ID {0} has wrong length | Trace file is corrupt.

4 Trace has incomplete entry for Key or|Will be displayed a maximum of 5 times. Output for any
Reply string value may be corrupted. Typical reason: columns in the trace

file were lost when copying the trace from the mainframe.

5 More then one request per user: {0} |This is an error condition similar to the Broker error 0037

0197.

6 does not include prefix Trace file is corrupt.

7 does not include unique ID Trace file is corrupt.

8 does not include reply or key Trace file is corrupt.

9 Trace output might be incomplete |Output for any value may be corrupt.
and/or erroneous

10 Problem with file {0} Problem with trace or output file.

11 Not enough memory to process trace, | The Java Runtime does not have enough memory to process
try increasing -Xmx or split trace the trace file. Increase the memory or delete unnecessary

sections in the trace file.

12 SeqID "{0}" does not match "{1}" The sequence ID of the request and the reply do not match.

This may happen if the trace file is incomplete or corrupted.
Otherwise contact Software AG Support and provide the
trace file.
13 Found: {0} The text of a Broker error message found in the trace file is
displayed. All non-zero return codes and the result of
KERNELVERSION calls are displayed. This can be configured
using a tool parameter.

Administration under UNIX 207

EntireX Trace Utility

Show Trace

Show Trace enables you to display the values of a CSV file in a table (CSV=comma-separated
values).

The first row of the file is used as the headers for the file.
Sorting the Information

The information in the tables can be sorted by descending or ascending order. The sorting is done
alphabetically, not numerically.

~ To sort the information in a column by ascending order

m Click on the header of the column.

~ To sort the information in a column by descending order

s Use SHIFT and click on the header of the column.
Loading and Saving a CSV File

You can load and save a CSV file using the options located in the File menu.

2 EntireX Trace Utility

File Actions Help
Show Trace
Reqg Reply Phys Userid Iserid Taoken Llzer Function Errar Semvice

182 188 PC30950-.. |5ay Z_0 send w=303 sagietheis/i. "~
195 201 PC30950-.. |5ay Z_0 receive w=._. (0003 0005 .. |sac/etbcisi. [F1=
207 213 PC30950-... |53y Z_0 eOC 00030003 .. |sagletbeisi.. ™
220 226 PC30950-- . |sag c_0 sendw=30% sagletbeishi. ™
233 239 PC30950-- . |sag c_0 receive w=__ (0003 0005 |sagietbeishi. [
245 281 PC30950-- . |sag c_0 BOC 0003 0003 . |sagietbeishi. ™
248 264 PC30950-- . |sag c_0 sendw=30% sagletbeishi. ™
271 277 PC30950-- .. |sag c_0 eoc sagiethoish. ™
24 240 FC30950--. |sag c_0 zend w=30s sagletheisfi. [*
2097 an3 FC30950--. |sag c_0 receive wi=... (0003 0005 . |sagietbcis/i. [*
a0g A FC30950--. |sag c_0 [=lale Q0020003 . |sagfethcisd...|*
322 328 PC30950-- ... |sag 0 sendw=30g saglethoisfi.. ™
335 34 PZ30950-- ... |sag C_0 receive w=_. (0003 0005 .. |sacfetheisfi.. [
347 343 PZ30950-- ... |sag C_0 BOC 0003 0003 .. |saogfetheissi.. [
360 366 PZ30950-- ... |sag C_0 sendw=30g sagfetheisfi.. [
ar3 78 PiZ30950-... |saq z 0 receive w=... 0003 0005 ... |san/etbeisd.. [*]>
1 Il b

208 Administration under UNIX

EntireX Trace Utility

Using the EntireX Trace Utility in Batch Mode

The EntireX Trace Utility is a graphical tool to process and display trace information. If the UNIX

system does not have a graphical display (X-Windows), the EntireX Trace Utility can still be used
as a command-line tool to process trace information.

> To use the EntireX Trace Utility in batch mode

= Enter the following command in the command line:

java -jar exxutil.jar [-option] filename [
output file

]

or

Java -Xms64m -Xmx256m -jar exxutil.jar [-option] filename [
output file

]

This specifies an initial and maximum memory allocation pool for the Java Runtime (the defaults
are 2 MB and 64 MB).

The exxutil.jar file is located in the classes subdirectory of the EntireX installation. £77ename is the
name of the trace file. The output will be written to the file specified with the parameter output
f1le or, if no name is specified there, output will be written to the file filename.csv.

Options

Option Description

-version to display the version information

-short to generate an overview

-long to generate the full output

-sep char the separator character used in the resulting CSV file, default is ","

~type type By default the EntireX Trace Utility tries to infer the type of the trace file from the

contents. If this is not possible (output shows "Processed 0 Broker calls") the type can
be explicitly specified as follows:

java The trace has been written by the EntireX Java Runtime.

cstub The trace has been written by the C-based Broker stub.

Administration under UNIX 209

EntireX Trace Utility

Option Description
broker The trace has been written by the Broker kernel.
directrpc The trace has been written by the Direct RPC

component of webMethods EntireX Adapter for
Integration Server.

-noshow param|The utility displays all Broker errors found in the trace. To prevent this either all errors
or a set of specified errors can be excluded from the display. To prevent the display of
all errors specify "all" as parameter. To prevent the display of specific errors specify the
8 digit error class and number. Multiple errors can be specified separated by ":". Examples:
-noshow 00020002:00070007 or -noshow "0074 0074".

For the default and long display, filters can be specified:

Option Description

-user < user > to get entries for a particular user

-conversation < convid >|for a particular conversation ID

-service for a particular service

-date for a particular date

If more than one filter is specified, only those entries which satisfy all conditions will be displayed.

Example

java -jar exxutil.jar -long -sep ";" trace.txt

will generate all columns in a file trace.txt using ";" as separator character, the result will be in the
file trace.txt.csv.

Usage Tips

Invalid or Incomplete Data in the Resulting CSV File

The utility will only produce a meaningful result if the trace file is not corrupt. When transferring
a trace from a mainframe, make sure that all columns of the trace file are transferred. Otherwise
the utility might report errors, e.g. error 2, 4 or 9. It may also happen that no errors are reported
but the resulting CSV file has columns which contain invalid data.

210 Administration under UNIX

EntireX Trace Utility

Open the CSV File in Microsoft Excel

The CSV file can usually be opened in Microsoft Excel by double-clicking on the file name in the
Windows Explorer. If the data is not displayed correctly, the separator character used by the utility
(defaultis ",") does not match the list separator character used by Windows. Use the -sep option
to specify a different separator character. To check the list separator used by Windows, go to
Control Panel > Regional Options > Numbers.

Alternatively you may use the import functionality of Microsoft Excel. Open a spreadsheet, use
Data > Get External Data > Import Text File. After selecting the file name (change default file
type *.txt) the Text Import Wizard starts, which allows you to specify the delimiter (separator)
character.

Displaying and Analyzing the CSV File in Microsoft Excel

The following are some tips how to use Microsoft Excel as a tool for displaying and analyzing the
CSYV file. They refer to Microsoft Excel 2000.

Formatting the spreadsheet: use CTRL A to select all data, change the font size e.g. to 8, then use
Format > Column > AutoFit Selection to format all columns. Make the first line a "header line":
select the 2nd line, use Window > Freeze Panes. Now, when scrolling through the entries the
header line always stays on top.

Enable filtering: select the 1st line, use Data > Filter > AutoFilter. Now you have a drop-down box
on each header entry that allows you to select a subset of the Broker calls.

Sorting Order

You can sort the entries in the generated CSV file using the Reply column. Thus the ordering cor-
responds to the time when the Broker kernel sends back the reply for the Broker call. Calls where
no reply can be found in the trace appear at the end. If you use the Request column as the sorting
criteria, the Broker calls will be ordered corresponding to the time when the Broker call arrives at
the Broker kernel.

Administration under UNIX 211

212

16 Broker Shutdown Statistics

B Shutdown StatiStiCS OUIPUL ...t e e e a e e e e e 214
m Table of ShUtdOWN STALISTICSuvviiiiiiiiii e 214

213

Broker Shutdown Statistics

Shutdown Statistics Output

After a successful Broker execution, shutdown statistics and related information are produced.
This output is written in the following sequence:

1. The diagnostic message ETBD0444 is written into the Broker trace log.

2. The output - i.e. statistics, internals and user-specified parameters - is written into the end of
the Broker trace log file at shutdown.

Table of Shutdown Statistics

See Legend below for explanation of output type.

Output

Type Display Field Description

U Broker ID Identifies the Broker kernel to which the attribute file applies. See
BROKER-ID.

I Version The version of the Broker kernel currently running.

I Generated platform family The platform family for which this Broker kernel was built.

I Runtime platform The platform on which this Broker kernel is currently running.

I Start time The date and time when this Broker kernel started.

S Restart count The restart count indicates how many times the Broker kernel has
been started with the persistent store. Therefore, after a cold start
(PSTORE=COLD), the restart count will be 1. Then, after subsequent
hot starts (PSTORE=HOT), the restart count will be 2 or greater.

U Trace level The value for the trace setting for this Broker kernel. See
TRACE-LEVEL.

U Worker tasks The number of worker tasks for this Broker kernel. See
NUM-WORKER.

U MAX-MEMORY The value of MAX-MEMORY or 0 if not defined. See MAX-MEMORY.

S Memory allocated Size of the allocated memory, in bytes.

S Memory allocated HWM Highest size of allocated memory in bytes since Broker started.

8) NUM-SERVICE Value of NUM-SERVICE or 0 if not defined. See NUM-SERVICE.

S Services active The number of services currently active for this Broker kernel.

U NUM-CLIENT Value of NUM-CLIENT or 0 if not defined. See NUM-CLIENT.

S Clients active The number of clients currently active for this Broker kernel.

S Clients active HWM The high watermark for the number of clients active for this Broker
kernel.

214 Administration under UNIX

Broker Shutdown Statistics

Output

Type Display Field Description

U NUM-SERVER Value of NUM-SERVER or 0 if not defined. See NUM- SERVER.

S Servers active The number of servers currently active for this Broker kernel.

S Servers active HWM The high watermark for the number of servers active for this
Broker kernel.

U NUM-CONVERSATION Value of NUM-CONVERSATION or 0 if not defined. See
NUM-CONVERSATION.

S Conversations active The number of conversations currently active for this Broker
kernel.

S Conversations active HWM | The high watermark for the number of conversations active for
this Broker kernel.

U NUM-LONG-BUFFER Value of NUM- LONG-BUFFER or 0 if not defined. See
NUM-LONG-BUFFER.

S Long buffers active The number of long message buffers currently in use for this
Broker kernel.

S Long buffers active HWM The high watermark for the number of long message buffers used
for this Broker kernel.

U NUM-SHORT-BUFFER Value of NUM-SHORT-BUFFER or 0 if not defined. See
NUM-SHORT-BUFFER.

S Short buffers active The number of short message buffers currently in use for this
Broker kernel.

S Short buffers active HWM The high watermark for the number of short message buffers used
for this Broker kernel.

U Persistent store type The type of persistent store used by this Broker kernel. See
PSTORE-TYPE.

U UOW persistence Indicates whether units of work are persistent or not in this Broker
kernel. See STORE.

U Persistent store startup Indicates the status of the persistent store at Broker startup. See
PSTORE.

U Persistent status lifetime The multiplier to compute the lifetime of the persistent status. See
UWSTATP.

8) Deferred UOWs allowed Indicates whether or not deferred units of work are allowed. See
DEFERRED.

8) Maximum allowed UOWs The maximum number of units of work that can be active
concurrently for this Broker kernel. See MAX -UOWS.

U Maximum messages per UOW |The maximum number of messages allowed in a unit of work. See
MAX-MESSAGES-IN-UOW.

U UOW lifetime in seconds Indicates the default lifetime for a unit of work. See
UOW-DATA-LIFETIME.

8) Maximum message length Indicates the maximum message size that can be sent. See
MAX-UOW-MESSAGE-LENGTH.

Administration under UNIX 215

Broker Shutdown Statistics

Output
Type Display Field Description
U New UOW messages allowed |Indicates whether or not new units of work are allowed in this
Broker kernel. See NEW-UOW-MESSAGES.
UOWs active The number of units of work currently active in this Broker kernel.
Current UOW The number of the last unit of work in this Broker kernel.
U Accounting Indicates the status of accounting records in this Broker kernel.
See ACCOUNTING.
U SSL port * If applicable, the SSL port number on which this Broker kernel
will listen for connection requests. See SSL-specific attribute PORT.
U TCP port * If applicable, the TCP port number on which this Broker kernel
will listen for connection requests. See TCP-specific attribute PORT.
I Number of function calls Marks the beginning of the section of summary statistics for all
the function calls.
S DEREGISTER The number of Broker DEREGISTER function calls since startup.
S EOC The number of Broker EOC function calls since startup.
S KERNELVERS The number of Broker KERNELVERS function calls since startup.
S LOGOFF The number of Broker LOGOFF function calls since startup.
S LOGON The number of Broker LOGON function calls since startup.
S RECEIVE The number of Broker RECEIVE function calls since startup.
S REGISTER The number of Broker REGISTER function calls since startup.
S SEND The number of Broker SEND function calls since startup.
S SYNCPOINT The number of Broker SYNCPOINT function calls since startup.
S UNDO The number of Broker UNDO function calls since startup.
S REPLY_ERROR The number of Broker REPLY_ERROR function calls since startup.
I Worker task statistics Marks the beginning of the section of summary statistics for all
the worker tasks.
Worker number The identifier of the worker task.
I Status The status of the worker task at shutdown.
S # of calls The number of Broker calls handled by the worker task since
startup.
S Idle time in seconds The number of seconds the worker task has been idle since startup.
* Does not apply to z/OS.

216

Administration under UNIX

Broker Shutdown Statistics

Legend

Output

Type |Description Value Origin of Value

I Internal Information Static |Determined by Software AG EntireX.

S Shutdown Statistic Variable | Determined by Broker activity during execution.

U User-Specified Parameter |Variable |Specified by Broker administrator before or, if allowable,
during execution.

Administration under UNIX 217

218

17 Command Logging in EntireX

= |ntroduction t0 COMMANA LOGGINGveeeiiiiiieeiiiie et 220
= Command Log Filtering using Command-line Interface etbcmdcooviiiiiiiiiiii e 222
= ACI-driven CommMand LOGUINGeeeiuiieieeaiiiie ettt et e et e e e e e 223
= Dual Command LOG FlESooiiiiie i 224

219

Command Logging in EntireX

Command logging is a feature to assist in debugging Broker ACI applications. A command in this
context represents one user request sent to the Broker and the related response of Broker.

Command logging is a feature that writes the user requests and responses to file in a way it is
already known with Broker trace and TRACE-LEVEL=1. But command logging works completely
independent from trace, and data is written to a file only if defined command trace filters detect
a match.

Broker stub applications send commands or requests to the Broker kernel, and the Broker kernel
returns a response to the requesting application. Developers who need to resolve problems in an
application need access to those request and response strings inside the Broker kernel. That's
where command logging comes in. With command logging, request and response strings from or
to an application are written to a file that is separate from the Broker trace file. Command logging
works based on defined filters. Nothing is logged if there are no filters. If filters are defined and
if there is a match, this user request is logged.

| Note: All applied filters are lost after Broker restart and have to be applied again.

Introduction to Command Logging

This section provides an introduction to command logging in EntireX and offers examples of how
command logging is implemented. It covers the following topics:

= Overview

= Command Log Files

= Defining Filters

= Programmatically Turning on Command Logging

Overview

Command logging is similar to a Broker trace that is generated when the Broker attribute TRACE -
LEVEL is set to 1. Broker trace and command logging are independent of each other, and therefore
the configuration of command logging is separate from Broker tracing.

The following Broker attributes are involved in command logging:

Attribute Description

CMDLOG Set this to "N" if command logging is not needed.

CMDLOG-FILE-SIZE |A numeric value indicating the maximum size of command log file in KB.

NUM-CMDLOG- FILTER|The maximum number of filters that can be set.

In addition to CMDLOG=YES, the Broker needs the assignment of the dual command logging files
during startup. If these assighments are missing, Broker will set CMDLOG=NO0. See also Broker Attributes.

220 Administration under UNIX

Command Logging in EntireX

Command Log Files

The Broker keeps a record of commands (request and response strings) in a command log file.

At Broker startup, you will need to supply two command log file names and paths. Only one file
is open at a time, however, and the Broker writes commands (requests and responses) to this file.

Under UNIX and Windows, the startup options -y and -z are evaluated by executable etbnuc.
These options are used to specify the command log file names. Startup script/service assign these
files by default.

When the size of the active command log file reaches the KB limit set by CMDLOG-FILE-SIZE, the
file is closed and the second file is opened and becomes active. When the second file also reaches
the KB limit set by CMDLOG-FILE-SIZE, the first file is opened and second file is closed. Existing
log data in a newly opened file will be lost.

Defining Filters

In command logging, a filter is used to store and identify a class, server, or service, as well as a
user ID.

Use the command-line tool etbcmd to define a filter. During processing, the Broker evaluates the
class, server, service, and user ID associated with each incoming request and compares them with
the same parameters specified in the filters. If there is a match, the request string and response
string of the request is printed out to the command log file.

Programmatically Turning on Command Logging

Applications using ACI version 9 or above have access to the new field L0G-COMMAND in the ACI
control block.

If this field is set, the accompanying request and the Broker's response to this request is logged to
the command log file.

Note: Programmatic command logging ignores any filters set in the kernel.

Administration under UNIX 221

Command Logging in EntireX

Command Log Filtering using Command-line Interface etbcmd

The examples assume that Broker has been started with the attribute CMDLOG=Y.

= Setting Filters
= Deleting Filters
= Disabling and Enabling a Filter

Setting Filters

Filters need to be set before running the stub applications whose commands are to be logged. Filter
for class, server, service may contain fully qualified names (ACLASS/ASERVER/ASERVICE) or asterisk

for any (e.g. ACLASS/*/ASERVICE). Partially qualified filter names (ACLA*/ASERVER/ASERV*) are not
supported.

Command Description

etbcmd -blocalhost:1970:TCP This command sets filters on

-cSET-CMDLOG-FILTER -dBROKER -xuser ACLASS/ASERVER/ASERVICE. All ACI calls issued by

-nACLASS/ASERVER/ASERVICE all users to this service will be logged.

etbcmd -blocalhost:1970:TCP This command set filters on

-cSET-CMDLOG-FILTER -dBROKER -xuser ACLASS/ASERVER/ASERVICE anduserID saguserl.

-nACLASS/ASERVER/ASERVICE -Usaguserl All ACI calls to this service as well as those issued by
saguserl will be logged.

] Note: If more than one service is set as a filter, all ACI calls sent to any of these services will

be logged. Identical filters cannot be set. Attempts to set a second filter that matches an ex-
isting filter will be rejected. Similarly, the maximum number of filters that can be added is
defined in NUM-CMDLOG- FILTER. If the maximum number of filters is already being used,
delete an existing filter to make room for a new filter.

Deleting Filters
The following provides an example of how to delete an existing filter on a service.

> To delete a filter

= Enter the following command.

222 Administration under UNIX

Command Logging in EntireX

etbcmd -d BROKER -b Tocalhost:1970:TCP -c CLEAR-CMDLOG-FILTER «
-nACLASS/ASERVER/ASERVICE -U saguserl

If the filter does not exist, the command will return an error.
Disabling and Enabling a Filter

Filters can be set and still be disabled (made inactive).

~ To disable a filter
= Enter the following command.

etbcmd -blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -dBROKER -xuser <«
-nACLASS/ASERVER/ASERVICE -Usaguserl

| Note: A disabled filter will not bring down the count of filters in use.

> To enable a filter

= Enter the following command to enable the disabled filter.

etbcmd -blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -dBROKER -xuser <«
-nACLASS/ASERVER/ASERVICE -Usaguserl

ACl-driven Command Logging

EntireX components that communicate with Broker can trigger command logging by setting the
field LOG-COMMAND in the ACI control block.

When handling ACI functions with command log turned on, Broker will not evaluate any filters.
Application developers must remember to reset the L0G- COMMAND field if subsequent requests are
not required to be logged.

Administration under UNIX 223

Command Logging in EntireX

Dual Command Log Files

Broker's use of two command log files prevents any one command log file from becoming too
large.

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The sample startup script installed with
the product uses file names CMDLOGI and CMDLOG? as the default command log file names.

At startup, Broker initializes both files and keeps one of them open. Command log statements are
printed to the open file until the size of this file reaches the value specified in the Broker attribute
CMDLOG-FILE-SIZE. This value must be specified in KB.

When the size of the open file exceeds the value specified in the Broker attribute CMDLOG-FILE-
SIZE, Broker closes this file and opens the other, dormant file. Because the Broker closes a log file
only when unable to print out a complete log line, the size of a full file may be smaller than CMDLOG-
FILE-SIZE.

~ To switch log files on demand, using etbcmd

= Anopen command log file can be forcibly closed even before the size limit is reached. Enter
the following command.

etbcmd -blocalhost:1970:TCP -cSWITCH-CMDLOG -dBROKER -xuser

The command above will close the currently open file and open the one that has been dormant.

224 Administration under UNIX

18 Accounting in EntireX Broker

= EntireX Accounting Data FIeldsuvviiiiiiiice e 226
= Using Accounting under UNIX and WINAOWSoooiiiiiiiiiiiiec e 229
= Example Uses 0f ACCOUNTING Datavviiiiiiiiieeec e 230

225

Accounting in EntireX Broker

This chapter describes the accounting records for Broker that can be used for several purposes,
including;:

= application chargeback
for apportioning EntireX resource consumption on the conversation and/or the application level;

® performance measurement
for analyzing application throughput (bytes, messages, etc.) to determine overall performance;

" trend analysis
for using data to determine periods of heavy and/or light resource and/or application usage.

EntireX Accounting Data Fields

In the EntireX Accounting record, there are various types of data available for consumption by
applications that process the accounting data:

Accounting
Field Name Version Type of Field Description
Record Write Time 1 A14 timestamp | The time this record was written to the
accounting file in "YYYYMMDDHHMMSS"
format.
EntireX Broker ID 1 A32 Broker ID from attribute file.
EntireX Version 1 A8 Version information, v.r.s.p
where v =version
r =release
s =service pack
p =patch level
for example 10.8.0.00.
Platform of Operation 1 A32 Platform where EntireX is running.
EntireX Start Time 1 A14 timestamp | The time EntireX was initialized in
"YYYYMMDDHHMMSS" format.
Accounting Record Type 1 Al Itis always C for conversation. Future Types will
have a different value in this field.
Client User ID 1 A32 USER-ID ACI field from the client in the
conversation.
Client Token 1 A32 TOKEN field from the ACI from the client.
Client Physical ID 1 A56 The physical user ID of the client, set by EntireX.
Client Communication Type |1 nn Communication used by client:
1 = Net-Work

226 Administration under UNIX

Accounting in EntireX Broker

Accounting
Field Name Version |Type of Field Description
2 =TCP/IP
3=APPC
4 =IBM® MQ
5=55L
Client Requests Made 1 14 Number of Requests made by client.
Client Sent Bytes 1 14 Number of bytes sent by client.
Client Received Bytes 1 14 Number of bytes received by client.
Client Sent Messages 1 14 Number of messages sent by client.
Client Received Messages |1 14 Number of messages received by client.
Client Sent UOWs 1 14 Number of UOWs sent by client.
Client UOWSs Received 1 14 Number of UOWs received by client.
Client Completion Code 1 14 Completion code client received when
conversation ended.
Server User ID 1 A32 USER-ID AClI field from the server in the
conversation.
Server Token 1 A32 TOKEN field from the ACI from the server.
Server Physical ID 1 A56 The physical user ID of the server, set by EntireX.
Server Communication Type |1 In Communication used by Server:
1 = Entire Net-Work
2 =TCP/IP
3=APPC
4 =IBM® MQ
5=S5SL
Server Requests Made 1 14 Number of requests made by server.
Server Sent Bytes 1 14 Number of bytes sent by server.
Server Received Bytes 1 14 Number of bytes received by server.
Server Sent Messages 1 14 Number of messages sent by server.
Server Received Messages |1 14 Number of messages received by server.
Server Sent UOWs 1 14 Number of UOWs sent by server.
Server Received UOWSs 1 14 Number of UOWs received by server.
Server Completion Code 1 14 Completion code server received when
conversation ended.
Conversation ID 1 Al6 CONV-ID from ACIL.
Server Class 1 A32 SERVER-CLASS from ACI.
Server Name 1 A32 SERVER-NAME from ACIL.
Service Name 1 A32 SERVICE from ACL
CID=NONE Indicator 1 Al Will be N if CONV - ID=NONE is indicated in

application.

Administration under UNIX

227

Accounting in EntireX Broker

Accounting
Field Name Version Type of Field Description
Restarted Indicator 1 Al Will be R if a conversation was restarted after a
Broker shutdown.
Conversation Start Time 1 A14 timestamp | The time the conversation began in

"YYYYMMDDHHMMSS" format.

Conversation End Time 1 A14 timestamp | The time the conversation was cleaned up in
"YYYYMMDDHHMMSS" format.

Conversation CPU Time 1 14 Number of microseconds of CPU time used by
the conversation

Client Security Identity 2 A32 Actual identity of client derived from
authenticated user ID.

Client Application Node 2 A32 Node name of machine where client application
executes.

Client Application Type 2 A8 Stub type used by client application.

Client Application Name 2 Ab4 Name of the executable that called the broker.
Corresponds to the Broker Information Service
field APPLICATION-NAME.

Client Credentials Type 2 In Mechanism by which authentication is performed
for client.

Server Security Identity 2 A32 Actual identity of server derived from
authenticated user ID.

Server Application Node 2 A32 Node name of machine where server application
executes.

Server Application Type 2 A8 Stub type used by server application.

Server Application Name |2 A64 Name of the executable that called the broker.
Corresponds to the Broker Information Service
field APPLICATION-NAME.

Server Credentials Type 2 In Mechanism by which authentication is performed
for server.

Client RPC Library 3 A128 RPC library referenced by client when sending
the only/first request message of the conversation.

Client RPC Program 3 A128 RPC Program referenced by client when sending
the only/first request message of the conversation.

Server RPC Library 3 A128 RPC library referenced by server when sending
the only/first response message of the
conversation.

Server RPC Program 3 A128 RPC Program referenced by server when sending
the only/first response message of the
conversation.

Client IPv4 Address Alb6 IPv4 address of the client.

Server IPv4 Address Ale6 IPv4 address of the server.

228 Administration under UNIX

Accounting in EntireX Broker

Accounting
Field Name Version Type of Field Description
Client Application Version |4 Ale6 Application version of the client.
Server Application Version |4 Alb6 Application version of the server.
Client [IPv6 Address 5 Ad6 IPv6 address of the client.
Server IPv6 Address 5 Ad6 IPv6 address of the server.

| Note: Accounting fields of any version greater than 1 are created only if the attribute AC-

COUNTING-VERSION value is greater than or equal to the corresponding version. For example:
accounting fields of version 2 are visible only if ACCOUNTING- VERSION=2 or higher is specified.

Using Accounting under UNIX and Windows

= Broker Attribute File Settings
= Retrieving Accounting Data

Broker Attribute File Settings

ACCOUNTING =NO | YES | (YES, SEPARATOR=Separator Characters) (Default is NO)

Set this parameter to "NO" (that is, do not create accounting data) or "YES" to create accounting
data. Up to seven separator characters can specified using the SEPARATOR suboption, for example
ACCOUNTING = (YES, SEPARATOR=;). If no separator character is specified, the comma character

will be used.
Retrieving Accounting Data

The accounting file will be located in the Broker's installed directory. The file's name is based on
the ETB_LOG environment variable and the current date and time (for uniqueness). Example: If
ETB_LOG is set to BROKER1.LOG, the accounting data file will be named BROKER1_YYYYMMDDH -
HMMSS.csv. If ETB_LOG is not set, the Broker's ID will be used, with an extension of CSV (e.g.
ETB048_YYYYMMDDHHMMSS.csv). See Environment Variables in EntireX.

Administration under UNIX 229

Accounting in EntireX Broker

Example Uses of Accounting Data

= Chargeback
= Trend Analysis
= Tuning for Application Performance

Chargeback

Customers can use the EntireX accounting data to perform chargeback calculations for resource
utilization in a data center. Suppose EntireX Broker is being used to dispatch messages for three
business departments: Accounts Receivable, Accounts Payable, and Inventory. At the end of each
month, the customer needs to determine how much of the operation and maintenance cost of EntireX
Broker should be assigned to these departments. For a typical month, assume the following is
true:

Department Amount of Data | Percentage | Messages Sent | Percentage |Average Percentage
Accts Payable |50 MB 25 4000 20 225

Accts Receivable |40 MB 20 6000 30 25

Inventory 110 MB 55 10000 50 52.5

The use of Broker resources here is based upon both the amount of traffic sent to the Broker (bytes)
as well as how often the Broker is called (messages). The average of the two percentages is used
to internally bill the departments, so 52.5% of the cost of running EntireX Broker would be paid
by the Inventory Department, 25% by the Accounts Receivable Department, and 22.5% by the
Accounts Payable Department.

Trend Analysis

The Accounting Data can also be used for trend analysis. Suppose a customer has several point-
of-sale systems in several stores throughout the United States that are tied into the corporate in-
ventory database with EntireX. The stubs would be running at the stores, and the sales data would
be transmitted to the Broker, which would hand it off to the appropriate departments in inventory.
If these departments wish to ascertain when the stores are busiest, they can use the accounting
data to monitor store transactions. Assume all of the stores are open every day from 9 AM to 10
PM.

230 Administration under UNIX

Accounting in EntireX Broker

Maximum Weekday
Average: Weekday Transactions in any Average Weekend Maximum Weekend

Local Time | Transactions per Store Store Transactions per Store Transactions in any Store
9 AM 7.3 27 28.2 83

10AM [11.2 31 29.3 102

11AM |14.6 48 37.9 113

12 noon |[56.2 106 34.8 98

1 PM 25.6 65 34.2 95

2 PM 17.2 52 38.5 102

3PM 12.1 23 42.7 99

4 PM 18.3 34 43.2 88

5PM 26.2 47 45.2 93

6 PM 38.2 87 40.6 105

7 PM 29.6 83 39.2 110

8 PM 18.6 78 28.6 85

9 PM 11.2 55 17.5 62

The owner of the stores can examine the data and make decisions based upon the data here. For
example, on weekdays, he or she can see that there is little business until lunchtime, when the
number of transactions increase. It then decreases during lunch hour; then there is another increase
from 5 PM to 8 PM, after people leave work. Based on this data, the owner might investigate
changing the store hours on weekdays to 10 AM to 9 PM. On the weekend the trends are different,
and the store hours could be adjusted as well, although there is a more regular customer flow each
hour on the weekends.

Tuning for Application Performance
Assume that a customer has two applications that perform basic request/response messaging for

similar sized messages. The applications consist of many Windows PC clients and Natural RPC
Servers on UNIX. An analysis of the accounting data shows the following;:

Average Server Messages Average Client Messages
Application Type |Class Server Service Received per Conversation Received per Conversation
Application 1: |CLASS1|SERVER1|SERVICE1|10.30 10.29
Application 2: |CLASS2|SERVER?2 |SERVICE2|10.30 8.98

A further analysis of the accounting data reveals that there are a lot of non-zero response codes
in the records pertaining to Application 2, and that a lot of these non-zero responses indicate
timeouts. With that information, the customer can address the problem by modifying the server
code, or by adjusting the timeout parameters for SERVER?2 so that it can have more time to get a
response from the Service.

Administration under UNIX 231

232

	Administration under UNIX
	Table of Contents
	EntireX Administration under UNIX
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Setting up Broker Instances
	Startup Daemon for Broker Administration
	Setting up the TCP/IP Communication
	Starting and Stopping the Default Broker
	Running Broker with SSL/TLS Transport
	Starting and Stopping an Additional Broker
	Uniqueness Test for Broker ID
	Tracing EntireX Broker
	Broker TRACE-LEVEL Attribute
	Attribute File Trace Setting
	Deferred Tracing
	Dynamically Switching On or Off the EntireX Broker Trace
	Trace File Handling

	Protecting a Broker against Denial-of-Service Attacks

	3 Configuring the Administration Service
	4 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definitions
	Service Update Modes
	OPTION Values for Conversion

	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL/TLS-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Application Monitoring-specific Attributes
	Authorization Rule-specific Attributes
	Variable Definition File

	5 Configuring Broker for Internationalization
	Configuring ICU Conversion
	Building and Installing ICU Custom Converters
	Writing a User-written ICU Converter
	Compiling a User-written ICU Converter
	Installing a User-written ICU Converter

	Writing Translation User Exits
	Introduction
	Structure of the TRAP Control Block
	Using the TRAP Fields

	Configuring Translation User Exits
	Writing SAGTRPC User Exits
	Introduction
	Structure of the User Exit Control Block
	Using the User Exit Interface Fields
	Errors
	Convert Function
	GetLength Function

	Character Set and Codepage
	Software AG IDL Data Types to Convert

	Configuring SAGTRPC User Exits

	6 Managing the Broker Persistent Store
	Implementing an Adabas Database as Persistent Store
	Introduction
	Adabas Persistent Store Parameters
	Configuring and Operating the Adabas Persistent Store
	Selecting the Adabas Persistent Store Driver
	Defining an Adabas FDT for EntireX File
	Restrictions
	Recommendations
	Broker Checkpoints in Adabas

	Adabas DBA Considerations
	BLKSIZE : Adabas Persistent Store Parameter for Broker
	Table of Adabas Parameter Settings
	Estimating the Number of Records to be Stored
	Estimating the Number of Records to be Stored
	Tips on Transports, Platforms and Versions
	Copying the Persistent Store from/to another Adabas File or Database

	c-tree Database as Persistent Store
	Migrating the Persistent Store
	Configuration
	Migration Procedure

	7 Broker Resource Allocation
	General Considerations
	Specifying Global Resources
	Restricting the Resources of Particular Services
	Specifying Attributes for Privileged Services
	Maximum Units of Work
	Calculating Resources Automatically
	Dynamic Memory Management
	Dynamic Worker Management
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Maximum TCP/IP Connections per Communicator
	Note for UNIX
	Note for Linux
	bash
	systemd

	8 Administering Broker Stubs
	Available Stubs
	Transport Methods for Broker Stubs
	Using TCP/IP as Transport Method for the Broker Stub
	Using SSL/TLS as Transport Method for the Broker Stub
	Setting the Timeout for the Transport Method
	Limiting the TCP/IP Connection Lifetime
	Modifying the Hosts and Services Tables

	Tracing for Broker Stubs
	Application Stublog File
	UNIX Commands to Set the Environment Variables
	Support of Clustering in a High Availability Scenario
	Introduction
	Exceptions
	Default

	Configuring the Socket Pool

	9 Broker Command-line Utilities
	etbinfo
	Running the Command-line Utility
	Command-line Parameters
	Table of Options and Profiles
	Command-line Parameters from File
	Profile
	Hints for Creating your own Profile
	Example 1 - Default Profile
	Example 2 - Custom Profile

	Format String
	Using SSL/TLS
	Using an Encrypted Password

	etbcmd
	Running the Command-line Utility
	Command-line Parameters
	Command-line Parameters from File
	List of Commands and Objects
	Examples
	Using SSL/TLS
	Using an Encrypted Password

	10 Attach Manager
	Prerequisites
	Setting up the Attach Manager
	Configuration File Syntax
	Introduction
	Parameters of the ATM Section
	Parameters of the Service List Section
	Parameters of the Service Section

	Sample Configuration File
	Operating the Attach Manager
	Starting the Attach Manager
	Stopping the Attach Manager
	Logging the Attach Manager
	Attach Manager Processing

	11 Settting up and Administering the EntireX Broker TCP Agent
	Common Scenarios
	Indirect TCP/IP Connections by the TCP Agent to Avoid Security Restrictions
	Using the TCP Agent
	Class Name and Parameters
	Starting the TCP Agent

	Activating Tracing for the TCP Agent
	Architecture of the Broker TCP Agent

	12 Settting up and Administering the EntireX Broker SSL Agent
	Common Scenarios
	Using the Broker SSL Agent
	Class Name and Parameters
	Starting the Broker SSL Agent

	Activating Tracing for the Broker SSL Agent
	Architecture of the Broker SSL Agent

	13 Settting up and Administering the EntireX Broker HTTP(S) Agent
	HTTP(S) Tunneling with EntireX
	Introduction
	How the Communication Works

	Configuring the Broker HTTP(S) Agent
	Using Internationalization with the Broker HTTP(S) Agent
	Activating Tracing for the Broker HTTP(S) Agent

	14 Tracing webMethods EntireX
	Table Summarizing Tracing for webMethods EntireX Components
	Tracing EntireX Broker
	Switching on Tracing
	Switching off Tracing
	Viewing the Trace Log
	Deferred Tracing
	Dynamically Switching On or Off the EntireX Broker Trace

	Tracing Broker Agent
	Trace Output

	Tracing Broker Stubs
	Tracing EntireX Java ACI
	Trace Output

	Tracing RPC Server for Java
	Trace Output

	Tracing the RPC Runtime
	Trace Output
	Related Information

	Tracing the XML/SOAP Runtime
	Enabling Tracing
	Using a Property File
	Using Trace Parameters of the Java Virtual Machine

	Disabling Tracing
	Configuring a Trace File for the Listener for XML/SOAP
	Configuring a Trace File for the XML/SOAP Wrapper or the RPC Server for XML/SOAP
	Trace Parameters
	Component Names

	Tracing the EntireX RPC-ACI Bridge
	Enabling Java Trace of SPM Plug-ins

	15 EntireX Trace Utility
	Introduction to the EntireX Trace Utility
	Process Trace
	Using the Tool
	File Selection
	Options
	Filters

	Output Field Options
	Error Messages

	Show Trace
	Sorting the Information
	Loading and Saving a CSV File

	Using the EntireX Trace Utility in Batch Mode
	Options
	Example

	Usage Tips
	Invalid or Incomplete Data in the Resulting CSV File
	Open the CSV File in Microsoft Excel
	Displaying and Analyzing the CSV File in Microsoft Excel
	Sorting Order

	16 Broker Shutdown Statistics
	Shutdown Statistics Output
	Table of Shutdown Statistics

	17 Command Logging in EntireX
	Introduction to Command Logging
	Overview
	Command Log Files
	Defining Filters
	Programmatically Turning on Command Logging

	Command Log Filtering using Command-line Interface etbcmd
	Setting Filters
	Deleting Filters
	Disabling and Enabling a Filter

	ACI-driven Command Logging
	Dual Command Log Files

	18 Accounting in EntireX Broker
	EntireX Accounting Data Fields
	Using Accounting under UNIX and Windows
	Broker Attribute File Settings
	Retrieving Accounting Data

	Example Uses of Accounting Data
	Chargeback
	Trend Analysis
	Tuning for Application Performance

