
webMethods EntireX

Administration

Version 10.7

October 2020

This document applies to webMethods EntireX Version 10.7 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-ADMIN-107-20220422GENERAL

Table of Contents

1 About this Documentation .. 1
Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Environment Variables in EntireX ... 5
Table of Environment Variables ... 6
Using Environment Variables under z/OS ... 11
Using Environment Variables under UNIX ... 11
Using Environment Variables under Windows ... 11
Using Environment Variables under BS2000 (Batch, Dialog) 12
Using Environment Variables under z/VSE ... 12

3 Directories as Used in EntireX ... 13
Application Data Directory .. 14
Broker Directory ... 14
Broker User Exit Directory ... 15
Local Application Data Directory .. 15
Trace Directory ... 15
User's Home Directory ... 16
Working Directory .. 16
EntireX Directory etc .. 16

4 Broker Resource Allocation ... 17
General Considerations .. 18
Specifying Global Resources .. 19
Restricting the Resources of Particular Services .. 19
Specifying Attributes for Privileged Services .. 21
Maximum Units of Work ... 22
Calculating Resources Automatically .. 22
Dynamic Memory Management .. 24
Dynamic Worker Management .. 25
Storage Report .. 27
Maximum TCP/IP Connections per Communicator .. 29

5 Broker Attributes ... 33
Name and Location of Attribute File ... 35
Attribute Syntax ... 35
Broker-specific Attributes .. 37
Service-specific Attributes .. 58
Codepage-specific Attributes ... 70
Adabas SVC/Entire Net-Work-specific Attributes ... 73
Security-specific Attributes .. 76
TCP/IP-specific Attributes .. 83
c-tree-specific Attributes .. 86
SSL/TLS-specific Attributes .. 88
DIV-specific Attributes ... 93

iii

Adabas-specific Attributes ... 95
Application Monitoring-specific Attributes ... 97
Authorization Rule-specific Attributes .. 98
Variable Definition File .. 99

6 Concepts of Persistent Messaging ... 101
Client Server Model: Persistent Messaging .. 102
Definitions of Persistent Messaging Terms .. 104
Availability of Persistent Store ... 106
Migrating the Persistent Store .. 107
Persistent Store Report ... 111

7 Using Persistence and Units of Work .. 115
Implementation Issues ... 116
Using Units of Work ... 121
Using Persistence .. 125
Using Persistent Status ... 131
Recovery Processing ... 132

8 Broker UOW Status Transition .. 135
Initial UOW Status: NULL | Received ... 136
Initial UOW Status: Accepted | Delivered | Postponed .. 137
Initial UOW Status: Processed | Timedout .. 138
Initial UOW Status: Cancelled | Discarded | Backedout 139
Legend for UOW Status Transition Table .. 140
Table of Column Abbreviations ... 140

9 Accounting in EntireX Broker ... 141
EntireX Accounting Data Fields ... 142
Using Accounting under UNIX and Windows .. 146
Using Accounting under z/OS ... 146
Example Uses of Accounting Data ... 148

10 Monitoring EntireX Applications and Components ... 151
Application Monitoring ... 152
Monitoring EntireX with Command Central ... 153
Monitoring from the Command-line ... 154
webMethods EntireX Adapter for Integration Server .. 155
Watching the Default Broker View in Designer/Eclipse .. 155

11 SSL/TLS, HTTP(S), and Certificates with EntireX ... 157
Introduction .. 159
Random Number Generator .. 162
SSL/TLS Sample Certificates Delivered with EntireX .. 162
SSL/TLS Parameters for Broker as SSL Server (One-way SSL) 164
SSL/TLS Parameters for SSL Clients ... 165
Using SSL/TLS with EntireX Components ... 166
SSL/TLS Certificate Creation and Handling .. 167
Managing One-way and Two-way SSL .. 172

12 Authorization Rules ... 173
Introduction .. 174

Administrationiv

Administration

Rules Stored in Broker Attribute File ... 174
Rules Stored in LDAP Repository .. 175

13 Data Compression in EntireX Broker .. 183
Introduction .. 184
zlib .. 184
Implementation .. 185
Sequencing Summary ... 186
Sample Programs ... 186

14 Timeout Considerations for EntireX Broker .. 189
Timeout Units ... 190
Timeout Settings ... 190
Relationship between Timeout Values ... 192
Timeout-related Error Messages .. 195

15 EXXMSG - Command-line Tool for Displaying Error Messages 197
Running the EXXMSG Command-line Utility ... 198

16 Introduction to EntireX Mainframe Broker Monitoring using Command
Central .. 199

Scope ... 200
Monitoring EntireX Broker KPIs .. 201
Supported Configuration Types ... 202

17 EntireX Mainframe Broker Monitoring using the Command Central GUI 203
Logging in to Command Central ... 204
Creating an EntireX Mainframe Broker Connection .. 205
Viewing the Runtime Status ... 207
Configuring an EntireX Mainframe Broker Connection .. 208
Configuring the Monitoring KPIs .. 209
Inspecting the Log Files .. 210
Displaying the Statistics ... 211
Displaying Services and Servers .. 213
Deleting an EntireX Mainframe Broker Connection .. 216
Security Considerations ... 216

18 EntireX Mainframe Broker Monitoring using the Command Central Command
Line ... 219

Creating an EntireX Mainframe Broker Connection .. 220
Displaying the EntireX Mainframe Broker Connection ... 221
Viewing the Runtime Status ... 222
Configuring the EntireX Mainframe Broker .. 222
Inspecting the Log Files .. 225
Displaying the Statistics ... 226
Monitoring Services .. 229
Deleting an EntireX Mainframe Broker Connection .. 230

19 Introduction toAdministering EntireXRPCServers usingCommandCentral (UNIX
and Windows) .. 233

Scope ... 234
Monitoring EntireX RPC Server KPIs .. 235

vAdministration

Administration

Supported Configuration Types ... 235

Administrationvi

Administration

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Administration2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Administration

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Environment Variables in EntireX

■ Table of Environment Variables .. 6
■ Using Environment Variables under z/OS ... 11
■ Using Environment Variables under UNIX ... 11
■ Using Environment Variables under Windows ... 11
■ Using Environment Variables under BS2000 (Batch, Dialog) .. 12
■ Using Environment Variables under z/VSE ... 12

5

This chapter gives an overview of environment variables in EntireX and how they are used.

Table of Environment Variables

The table below provides an overview of environment variables used on the various platforms
supported by EntireX.

More InformationDescription
Opt/
Req

Platform

Environment Variable

Top level directory for EntireX.RxEXXDIR

Version level directory of the
EntireX. Deprecated. Kept for

RxEXXVERS

reasons of compatibilitywith earlier
versions.

See Shell Environment Settings.System variable. Additional
program directories required by

RxPATH

EntireX are added to this variable
by the EntireX environment script.

See Shell Environment Settings.System variable. Additional shared
library directories required by

RxLD_LIBRARY_PATH

EntireX are added to this variable
by the EntireX environment script.

See Shell Environment Settings.SameasLD_LIBRARY_PATHonAIX.RxLIBPATH

Systemvariable. Additional JARfile
path entries required by EntireX are

RxxCLASSPATH

added to this variable by the
EntireX environment script (UNIX)
or during installation (Windows).

See Broker Attributes.Value of Broker attribute file. Set
automatically by the Broker startup
shell script.

OxxETB_ATTR

See Accounting in EntireX Broker.Accounting file.OxxETB_LOG

Stub-to-broker connection non-activity
time in seconds. If not 0, connectionswith

Limits the TCP/IP connection
lifetime.

OxxxxETB_NONACT
NONACT

a non-activity time greater than
ETB_NONACTwill be closed. See Limiting
the TCP/IP Connection Lifetime under
z/OS | UNIX | Windows | z/VSE in the
platform-specific Administering Broker
Stubs documentation.

Administration6

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform

Environment Variable

See Configuring the Socket Pool under
UNIX |Windows in the platform-specific
AdministeringBroker Stubsdocumentation.

Values: 0 (default) for an unlimited
number, or greater than 0 to limit
the number of active TCP/IP

OxxETB_POOLSIZE

connections. Takes effect only if
ETB_SOCKETPOOL is set to ON
(default).

See Configuring the Socket Pool under
UNIX |Windows in the platform-specific
AdministeringBroker Stubsdocumentation.

Values: 300 (default) to set the
number of seconds towait for a free
TCP/IP connection if the maximum

OxxETB_POOLTIMEOUT

number of active connections has
been reached. Takes effect only if
ETB_SOCKETPOOL is set to ON
(default).

See Support of Clustering in a High
Availability Scenario under z/OS |UNIX |

TCP/IP:OxxxETB_SOCKETPOOL

Windows in the platform-specific
AdministeringBroker Stubsdocumentation.

Default. Establish an affinity
between threads and TCP/IP

ON

connections in a DVIPA
environment.

Do not establish an affinity.OFF

See Using SSL Certificates for
Authentication in the EntireX Security
documentation for z/OS.

SSL/TLS:

Socket pooling is ignored for
SSL transport. The behavior

OFF

is like
ETB_SOCKETPOOL=OFF. This
was introduced in EntireX
version 10.7 to make sure
each SSL participant (thread)
presents a valid certificate for
authentication using SSL
Client Certificates.

See Tracing for Broker Stubs in the
platform-specific Administration
documentation.

Trace level for the EntireX Broker
API.

OxxxxETB_STUBLOG
STUBLOG

Under UNIX and Windows, the
directory where the log file is
created if ETB_STUBLOG is used.

OxxETB_STUBLOGPATH

See Setting the Timeout for the Transport
Method under z/OS | UNIX |Windows |

Stub transport timeout.OxxxxETB_TIMEOUT
TIMEOUT

7Administration

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform

Environment Variable

BS2000 | z/VSE in the platform-specific
Administration documentation.

Tracing for various EntireX components
such as DCOMWrapper, .NET Wrapper

Sets the trace level for EntireX RPC
Runtime.

OxxERX_TRACELEVEL

and C Wrapper. See Tracing webMethods
EntireX under UNIX | Windows |
BS2000 | z/VSE in the platform-specific
Administration documentation.

See Transport Methods for Broker Stubs
under z/OS | UNIX | Windows |

Sets the default transport method
for Broker stubs.

OxxxxETB_TRANSPORT
TRANSPORT

BS2000 | z/VSE in the platform-specific
Administration documentation.

SeeManaging the Broker Persistent Store in
the platform-specific Administration
documentation.

The Adabas module that is needed
by the Broker kernel to access the
Adabas persistent store.

OxxADALNK

See Broker Stubs.Identifies the absolute path to the
broker stubs library if EntireX
Broker has been installed.

RxETBLNK

Tracing for various EntireX components
such as DCOMWrapper, .NET Wrapper

Sets the name of the trace file for
EntireX RPC Runtime.

OxxERX_TRACEFILE

and C Wrapper. See Tracing webMethods
EntireX under UNIX | Windows |
BS2000 | z/VSE in the platform-specific
Administration documentation.

EntireX components such as DCOM
Wrapper, .NETWrapper and CWrapper

Determines the Broker API version
to use.

OxxERX_ETBAPIVERS

and the EntireX Broker are able to detect
automatically the best API version to use
(if no environment variable is defined or
the value 0 is assigned). However, for
backward compatibility to EntireX
Broker, it might be necessary to set a
preferred API Version for the Broker.

For more information see Using
Internationalizationwith the CWrapper |
DCOMWrapper | .NET Wrapper.

Override or set a code page
identifier used for ICU conversion
for RPC clients generated with the

OxxERX_CODEPAGE

CWrapper, DCOMWrapper and
.NET Wrapper.

Administration8

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform

Environment Variable

The default output is written to
<drive>:\Users\user_id\documents\
SoftwareAG\EntireX\out_monitor_broker
.csv. SeeMonitoring Broker under EntireX
Monitoring Scripts.

Specifies an alternative output file
for EntireX command-line
monitoring script
monitor_broker_to_csv_file
.bat.

OxMONITOR_BROKER_
OUTFILE

The default output is written to
<drive>:\Users\user_id\documents\
SoftwareAG\EntireX\out_monitor_clients
.csv. SeeMonitoring Clients.

Specifies an alternative output file
for EntireX command-line
monitoring script
monitor_client_to_csv_file
.bat.

OxMONITOR_CLIENT_
OUTFILE

The default output is written to
<drive>:\Users\user_id\documents\
SoftwareAG\EntireX\out_monitor_service
.csv. SeeMonitoring Services.

Specifies an alternative output file
for EntireX command-line
monitoring script
monitor_service_to_csv_file
.bat.

OxMONITOR_SERVICE_
OUTFILE

If MONITOR_VERIFY=YES, an
EntireX monitoring script that

OxMONITOR_VERIFY

writes to a CSV file pauses on first
execution so you can confirm that
the correct parameters are being
used.
If MONITOR_VERIFY=NO, the
monitoring script writes to CSV file
without waiting for your
confirmation.

Security exit debug level. Used for
protecting the Broker kernel on

OxxNA2_BKDBGS

UNIXandWindows to leverage the
local security system.

See Setting up EntireX Security for Broker
Kernel under UNIX | Windows in the

Security exit debug file. Used for
protecting the Broker kernel on

OxxNA2_BKDBGF

UNIX | Windows Installation
documentation.

UNIX andWindows to leverage the
local security system.

Security exit diagnostics. Use only
if requested by Software AG
Support.

OxxNA2_BKDIAG

See Setting up EntireX Security for Broker
Kernel under UNIX | Windows in the

Security exit setting.OxxNA2_BKPRIV

UNIX | Windows Installation
documentation.

9Administration

Environment Variables in EntireX

More InformationDescription
Opt/
Req

Platform

Environment Variable

RGS repository for Software AG
BaseTechnology components under
UNIX.

RxREGFILE

Administration10

Environment Variables in EntireX

Using Environment Variables under z/OS

Under CICS, Batch and IMS, use the SAGTOKENUtility to set and delete environment variables. See
SAGTOKEN Utility under Administering Broker Stubs in the z/OS Administration documentation.

In Com-plete, use the EXAENV environment store to set and delete environment variables. See EX-
AENV Environment Store underAdministering Broker Stubs in the z/OS Administration documenta-
tion.

Using Environment Variables under UNIX

The following table shows how to use environment variables with the C, Bourne and Korn shells.
For other shells, see your UNIX documentation.

C Shell

ExampleSyntaxAction

setenv ERX_TRACELEVEL ADVANCEDsetenv variable valueSet environment variable

unsetenv ERX_TRACELEVELunsetenv variableDelete environment variable

Bourne and Korn Shells

ExampleSyntaxAction

ERX_TRACELEVEL=ADVANCED
export ERX_TRACELEVEL

variable = value
export variable

Set environment variable

unset ERX_TRACELEVELunset variableDelete environment variable

Using Environment Variables under Windows

The following table shows how to use environment variables under Windows:

ExamplesSyntaxAction

SET ERX_TRACELEVEL=ADVANCED
SET ETB_STUBLOG=NONE

SET variable = valueSet environment variable

SET ERX_TRACELEVEL=SET variable =Delete environment variable

11Administration

Environment Variables in EntireX

Using Environment Variables under BS2000 (Batch, Dialog)

Environment variables are emulated with SDF variables or, failing that, with job variables.

Replace all underscores in the variable names by hyphens. For example, variable ETB_STUBLOG is
called ETB-STUBLOG under BS2000.

The following table shows how to use job variables under BS2000:

ExampleSyntaxAction

/CATJV ETB-STUBLOG/CATJV variableSet environment variable

/SETJV ETB-STUBLOG,C'1'/SETJV variable,C'value'

/ERAJV ETB-STUBLOG/ERAJV variableDelete environment variable

Using Environment Variables under z/VSE

ExamplesSyntaxAction

//SETPARM STUBLOG=2//SETPARM variable = valueSet environment variable

/* /SETPARM STUBLOG=2Remove SETPARM statementDelete environment variable

Administration12

Environment Variables in EntireX

3 Directories as Used in EntireX

■ Application Data Directory ... 14
■ Broker Directory .. 14
■ Broker User Exit Directory ... 15
■ Local Application Data Directory ... 15
■ Trace Directory ... 15
■ User's Home Directory ... 16
■ Working Directory .. 16
■ EntireX Directory etc .. 16

13

Application Data Directory

Windows

Under Windows, the application data directory is the folder that serves as a common repository
for application-specific data.

Example: C:\Documents and Settings\username\Application Data

Broker Directory

UNIX

This directory is a subdirectory of the EntireX main directory /<Install_Dir>/EntireX/con-
fig/etb/<brokerid>.

Example: /<Install_Dir>/EntireX/config/etb/ETB001

Windows

This directory is a subfolder of the EntireX config directory <drive>:\SoftwareAG\EntireX\con-
fig\etb\<brokerid>.

Example: <drive>:\SoftwareAG\EntireX\config\etb\ETB001

Administration14

Directories as Used in EntireX

Broker User Exit Directory

UNIX

This directory is a subdirectory of the EntireX main directory /<Install_Dir>/EntireX/security_exit.

Windows

This directory is a subfolder of the EntireXmain directory, for example:C:\SoftwareAG\EntireX\se-
curity_exit.

Local Application Data Directory

Windows

The local application data directory is a folder that serves as a common repository for (non-
roaming) application-specific data.

Example: C:\Documents and Settings\username\Application Data

Trace Directory

Windows

Traces arewritten into the ..\MyDocuments\Software AG\EntireX folder. The location of the folder
MyDocuments can be specified by the user. By default it is a subdirectory of the user's Profile folder
referenced by the %USERPROFILE% environment variable.

Example: C:\Documents And Settings\username\My Documents\Software AG\EntireX

15Administration

Directories as Used in EntireX

User's Home Directory

Windows

This folder is also known as theMy Documents folder. The location of the folderMy Documents
can be specified by the user. By default it is a subdirectory of the Profile folder referenced by the
%USERPROFILE% environment variable.

Example: C:\Documents And Settings\username\My Documents

Working Directory

Windows

This is the directory your application is running in.

Example: C:\Temp

EntireX Directory etc

UNIX

This directory is a subdirectory of the EntireX main directory /<Install_Dir>/EntireX/etc.

Windows

This directory is a subfolder of the EntireX main directory <drive>:\SoftwareAG\EntireX\etc.

Example: C:\<drive>:\SoftwareAG\EntireX\etc

Administration16

Directories as Used in EntireX

4 Broker Resource Allocation

■ General Considerations .. 18
■ Specifying Global Resources ... 19
■ Restricting the Resources of Particular Services .. 19
■ Specifying Attributes for Privileged Services ... 21
■ Maximum Units of Work .. 22
■ Calculating Resources Automatically ... 22
■ Dynamic Memory Management .. 24
■ Dynamic Worker Management ... 25
■ Storage Report ... 27
■ Maximum TCP/IP Connections per Communicator ... 29

17

The EntireX Broker is a multithreaded application and communicates among multiple tasks in
memory pools. If you do not need to restrict thememory expansion of EntireX Broker, we strongly
recommend you enable the dynamicmemorymanagement in order to handle changingworkload
appropriately. See Dynamic Memory Management below. If dynamic memory management is
disabled, non-expandable memory is allocated during startup to store all internal control blocks
and the contents of messages.

General Considerations

Resource considerations apply to both the global and service-specific levels:

■ Dynamic assignment of global resources to services that need them prevents the return of a
“Resource Shortage” code to an applicationwhen resources are available globally. It also enables
the EntireX Broker to runwith fewer total resources, although it does not guarantee the availab-
ility of a specific set of resources for a particular service.

■ Flow control ensures that individual services do not influence the behavior of other services by
accident, error, or simply overload. This means that you can restrict the resource consumption
of particular services in order to shield the other services.

In order to satisfy both global and service-specific requirements, the EntireX Broker allows you
to allocate resources for each individual service or define global resourceswhich are then allocated
dynamically to any service that needs them.

The resources in question are the number of conversations, number of servers, plus units of work
and the message storage, separated in a long buffer of 4096 bytes and short buffer of 256 bytes.
These resources are typically the bottleneck in a system, especially when you consider that non-
conversational communication is treated as the special case of “conversationswith a singlemessage
only” within the EntireX Broker.

Global resources are defined by the parameters in the Broker section of the attribute file. The
number of conversations allocated to each service is defined in the service-specific section of the
attribute file. Because the conversations are shared by all servers that provide the service, a larger
number of conversations should be allocated to services that are provided by more than one
server. The number of conversations required is also affected by the number of clients accessing
the service in parallel.

Administration18

Broker Resource Allocation

Specifying Global Resources

You can specify a set of global resourceswith no restrictions onwhich service allocates the resources:

■ Specify the global attributes with the desired values.
■ Donot specify any additional restrictions. That is, do not provide values for the following Broker-
specific attributes:

LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
CONV-DEFAULT
SERVER-DEFAULT

■ Also, do not provide values for the following server-specific attributes:

LONG-BUFFER-LIMIT
SERVER-LIMIT
SHORT-BUFFER-LIMIT
CONV-LIMIT

Example

The following example defines global resources. If no additional definitions are specified, resources
are allocated and assigned to any server that needs them.

NUM-CONVERSATION=1000
NUM-LONG-BUFFER=200
NUM-SHORT-BUFFER=2000
NUM-SERVER=100

Restricting the Resources of Particular Services

You can restrict resource allocation for particular services in advance:

■ Use CONV-LIMIT to limit the resource consumption for a specific service.
■ Use CONV-DEFAULT to provide a default limit for services for which CONV-LIMIT is not defined.

Example

In the following example, attributes are used to restrict resource allocation:

19Administration

Broker Resource Allocation

DEFAULTS=BROKER
NUM-CONVERSATION=1000
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, CONV-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ Memory for a total of 1000 conversations is allocated (NUM-CONVERSATION=1000).
■ Service A (CLASS A,SERVER A,SERVICE A) is limited to 100 conversation control blocks used simul-
taneously (CONV-LIMIT=100). The application thatwants to startmore conversations than specified
by the limit policywill receive a “Resource shortage” return code. This return code should result
in a retry of the desired operation a little later, when the resource situation may have changed.

■ Service B (CLASS B,SERVER B,SERVICE B) is allowed to try to allocate asmany resources as necessary,
provided the resources are available and not occupied by other services. The number of conver-
sations that may be used by this service is unlimited (CONV-LIMIT=UNLIM).

■ Service C (CLASS C,SERVER C,SERVICE C) has no explicit value for the CONV-LIMIT attribute. The
number of conversation control blocks that it is allowed to use is therefore limited to the default
value which is defined by the CONV-DEFAULT Broker attribute.

The same scheme applies to the allocation of message buffers and servers:

■ In the following example, long message buffers are allocated using the keywords NUM-LONG-
BUFFER, LONG-BUFFER-DEFAULT and LONG-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-LONG-BUFFER=2000
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, LONG-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

■ In the following example, short message buffers are allocated using the keywords NUM-SHORT-
BUFFER, SHORT-BUFFER-DEFAULT and SHORT-BUFFER-LIMIT:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=2000
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SHORT-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Administration20

Broker Resource Allocation

■ In the following example, servers are allocated using the keywords NUM-SERVER, SERVER-DEFAULT
and SERVER-LIMIT:

DEFAULTS=BROKER
NUM-SERVER=2000
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B, SERVER-LIMIT=UNLIM
CLASS=C, SERVER=C, SERVICE=C

Specifying Attributes for Privileged Services

If privileged services (services with access to unlimited resources) exist, specify UNLIMITED for the
attributes CONV-LIMIT, SERVER-LIMIT, LONG-BUFFER-LIMIT and SHORT-BUFFER-LIMIT in the service-
specific section of the attribute file.

For example:

DEFAULTS=SERVICE
CONV-LIMIT=UNLIM
LONG-BUFFER-LIMIT=UNLIM
SHORT-BUFFER-LIMIT=UNLIM
SERVER-LIMIT=UNLIM

To ensure a resource reservoir for peak load of privileged services, define more resources than
would normally be expected by specifying larger numbers for the Broker attributes that control
global resources:

NUM-SERVER
NUM-CONVERSATION
CONV-DEFAULT
LONG-BUFFER-DEFAULT
SHORT-BUFFER-DEFAULT
SERVER-DEFAULT

21Administration

Broker Resource Allocation

Maximum Units of Work

The maximum number of units of work (UOWs) that can be active concurrently is specified in the
Broker attribute file. The MAX-UOWS attribute can be specified for the Broker globally as well as for
individual services. It cannot be calculated automatically. If a service is intended to process UOWs,
a MAX-UOWS value must be specified.

If message processing only is to be done, specify MAX-UOWS=0 (zero). The Broker (or the service)
will not accept units of work, that is, it will process only messages that are not part of a UOW.
Zero is used as the default value for MAX-UOWS in order to prevent the sending of UOWs to services
that are not intended to process them.

Calculating Resources Automatically

To ensure that each service runs without impacting other services, allow the EntireX Broker to
calculate resource requirements automatically:

■ Ensure that the attributes that define the default total for the Broker and the limit for each service
are not set to UNLIM.

■ Specify AUTO for the Broker attribute that defines the total number of the resource.
■ Specify a suitable value for the Broker attribute that defines the default number of the resource.

The total number required will be calculated from the number defined for each service. The re-
sources that can be calculated this way are Number of Conversations, Number of Servers, Long
Message Buffers and Short Message Buffers.

Avoid altering the service-specific definitions at runtime. Doing so could corrupt the conversation
consistency. Applicationsmight receive amessage such as “NUM-CONVERSATIONS reached” although
the addressed service does not serve as many conversations as defined. The same applies to the
attributes that define the long and short buffer resources.

Automatic resource calculation has the additional advantage of limiting the amount of memory
used to run the EntireX Broker. Over time, you should be able to determine which services need
more resources by noting the occurrence of the return code “resource shortage, please retry”. You
can then increase the resources for these services. To avoid disruption to the user, you could instead
allocate a relatively large set of resources initially and then decrease the values using information
gained from the Administration Monitor application.

Number of Conversations

To calculate the total number of conversations automatically, ensure that the CONV-DEFAULT Broker
attribute and the CONV-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute

Administration22

Broker Resource Allocation

file. Specify NUM-CONVERSATION=AUTO and an appropriate value for the CONV-DEFAULT Broker attrib-
ute. The total number of conversationswill be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-CONVERSATION=AUTO
CONV-DEFAULT=200

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, CONV-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

■ Service A and Service C both need 200 conversations (the default value). Service B needs 100
conversations (CONV-LIMIT=100).

■ Because NUM-CONVERSATIONS is defined as AUTO, the broker calculates a total of 500 conversations
(200 + 200 + 100).

■ NUM-CONVERSATIONS=AUTO allows the number of conversations to be flexible without requiring
additional specifications. It also ensures that the broker is startedwith enough resources tomeet
all the demands of the individual services.

■ AUTO and UNLIM are mutually exclusive. If CONV-DEFAULT or a single CONV-LIMIT is defined as
UNLIM, the EntireX Broker cannot determine the number of conversations to use in the calculation,
and the EntireX Broker cannot be started.

Number of Servers

To calculate the number of servers automatically, ensure that the SERVER-DEFAULT Broker attribute
and the SERVER-LIMIT service-specific attribute are not set to UNLIM anywhere in the attribute file.
Specify NUM-SERVER=AUTO and an appropriate value for the SERVER-DEFAULT Broker attribute. The
total number of server buffers will be calculated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SERVER=AUTO
SERVER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, SERVER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Long Message Buffers

To calculate the number of long message buffers automatically, ensure that the LONG-BUFFER-DE-
FAULT Broker attribute and the LONG-BUFFER-LIMIT service-specific attribute are not set to UNLIM

23Administration

Broker Resource Allocation

anywhere in the attribute file. Specify NUM-LONG-BUFFER=AUTO and an appropriate value for the
LONG-BUFFER-DEFAULTBroker attribute. The total number of longmessage bufferswill be calculated
using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-LONG-BUFFER=AUTO
LONG-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A, LONG-BUFFER-LIMIT=100
CLASS=B, SERVER=B, SERVICE=B
CLASS=C, SERVER=C, SERVICE=C

Short Message Buffers

To calculate the number of short message buffers automatically, ensure that the SHORT-BUFFER-
DEFAULTBroker attribute and the SHORT-BUFFER-LIMIT service-specific attribute are not set to UNLIM
anywhere in the attribute file. Specify NUM-SHORT-BUFFER=AUTO and an appropriate value for the
SHORT-BUFFER-DEFAULT Broker attribute. The total number of short message buffers will be calcu-
lated using the value specified for each service.

For example:

DEFAULTS=BROKER
NUM-SHORT-BUFFER=AUTO
SHORT-BUFFER-DEFAULT=250

DEFAULTS=SERVICE
CLASS=A, SERVER=A, SERVICE=A
CLASS=B, SERVER=B, SERVICE=B, SHORT-BUFFER-LIMIT=100
CLASS=C, SERVER=C, SERVICE=C

Dynamic Memory Management

Dynamicmemorymanagement is a feature to handle changingBrokerworkloadwithout any restart
of the Broker task. It increases the availability of the Broker by using various memory pools for
various Broker resources and by being able to use a variable number of pools for the resources.

If more memory is needed than currently available, another memory pool is allocated for the
specific type of resource. If a particular memory pool is no longer used, it will be deallocated.

The following Broker attributes can be omitted if DYNAMIC-MEMORY-MANAGEMENT=YES has been
defined:

Administration24

Broker Resource Allocation

■ NUM-SHORT[-BUFFER]■ NUM-LONG[-BUFFER]■ NUM-CLIENT

■ NUM-CMDLOG-FILTER ■ NUM-UOW|MAX-UOWS|MUOW■ NUM-SERVER

■ NUM-SERVICE■ NUM-COMBUF ■ NUM-WQE

■■ NUM-SERVICE-EXTENSIONNUM-CONV[ERSATION]

If youwant statistics on allocation anddeallocation operations in Broker, you can configure Broker
to create a storage report with the attribute STORAGE-REPORT. See Storage Report below.

Note: To ensure a stable environment, somepools of Broker are not deallocated automatically.
The first pools of type COMMUNICATION, CONVERSATION, CONNECTION, HEAP, PARTICIPANT,
PARTICIPANT EXTENSION, SERVICE ATTRIBUTES, SERVICE, SERVICE EXTENSION, TIMEOUT
QUEUE, TRANSLATION, WORK QUEUE are excluded from the automatic deallocation even when
they have not been used for quite some time. Large pools cannot be reallocated under some
circumstances if the level of fragmentation in the address space has been increased in the
meantime.

Dynamic Worker Management

Dynamic worker management is a feature to handle the fluctuating broker workload without re-
starting the Broker task. It adjusts the number of running worker tasks according to current
workload. The initial portion of worker tasks started at Broker startup is still determined by NUM-
WORKER.

If more workers are needed than currently available, another worker task is started. If a worker
task is no longer needed, it will be stopped.

The following Broker attributes are used for the configuration if DYNAMIC-WORKER-MANAGEMENT=YES
has been defined:

■ WORKER-MAX

■ WORKER-MIN

■ WORKER-NONACT

■ WORKER-QUEUE-DEPTH

■ WORKER-START-DELAY

The following two attributes are very performance-sensitive:

■ Attribute WORKER-QUEUE-DEPTH defines the number of unassigned user requests in the input
queue before a new worker task is started.

25Administration

Broker Resource Allocation

■ Attribute WORKER-START-DELAY defines the time between the last worker task startup and the
next check for another possible worker task startup. It is needed to consider the time for activ-
ating a worker task.

Both attributes depend on the environment, in particular the underlying operating system and
the hardware. The goal is to achieve high-performance user request processing without starting
too many worker tasks.

A good starting point to achieve high performance is not to change the attributes and to observe
the performance of the application programs after activating the dynamic worker management.

If broker attribute DYNAMIC-WORKER-MANAGEMENT=YES is set, operator commands are available under
z/OS to deactivate and subsequently reactivate dynamic worker management.

The following section illustrates the two different modes of dynamic worker management:

■ Scenario 1

DYNAMIC-WORKER-MANAGEMENT=YES
NUM-WORKER = 5
WORKER-MIN = 1
WORKER-MAX = 32

Broker is started with 5 worker tasks and then dynamically varies the number of worker tasks
within the range from WORKER-MIN=1 to WORKER-MAX=32due to DYNAMIC-WORKER-MANAGEMENT=YES.

■ Scenario 2

DYNAMIC-WORKER-MANAGEMENT=NO
NUM-WORKER = 5
WORKER-MIN = 1
WORKER-MAX = 32

Broker is startedwith 5worker tasks. The WORKER-MIN/MAX attributes are ignored due to DYNAMIC-
WORKER-MANAGEMENT=NO.

Administration26

Broker Resource Allocation

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocatememory pools. This section details how to create the report and provides a sample report.

■ Creating a Storage Report
■ Platform-specific Rules
■ Sample Storage Report

See also Broker-specific attribute STORAGE-REPORT.

Creating a Storage Report

Use Broker's global attribute STORAGE-REPORTwith the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

z/OS

DDNAME ETBSREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

UNIX and Windows

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument -r, the token following argu-
ment -rwill be used as the file name.

BS2000

LINK-NAME ETBSREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

z/VSE

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD-FORMAT=FB,
RECORD-LENGTH=121 is used.

27Administration

Broker Resource Allocation

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1

Identifier Address Size Total Date Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 12:... Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 12:... Allocated
...

DescriptionHeader

Name of the memory pool.Identifier

Start address of the memory pool.Address

Size of the memory pool.Size

Total size of all obtained memory pools.Total

Date and time of the action.Date, Time

The action of Broker. The following actions are currently supported:
Allocated: memory pool is allocated.
Deallocated: memory pool is deallocated.

Action

Administration28

Broker Resource Allocation

Maximum TCP/IP Connections per Communicator

This table shows the generated maximum number of TCP/IP connections per communicator. See
also:

■ Note for z/OS
■ Note for UNIX
■ Note for Linux

Maximum Number of TCP/IP Connections per CommunicatorPlatform

2,048AIX

2,048BS2000

65,534Linux

65,356Solaris

4,096Windows

16,384z/OS

With the Broker-specific attribute POLL, these restrictions can be lifted under z/OS and UNIX. See
POLL.

The number of communicatorsmultiplied by themaximumnumber of connections cannot exceed
the maximum number of file descriptors per process.

See also MAX-CONNECTIONS under TCP-OBJECT (Struct INFO_TCP) underBroker CISData Structures
in the ACI Programming documentation.

Note for z/OS

Under z/OS, the following message may appear in the broker log:

ETBD0286 Diagnostic Values:
accept: 124, EDC5124I Too many open files.errno2: 84607302 050B0146

The most common reason for this TCP/IP Communicator diagnostic message is the limitation of
open files per user. The value of MAXFILEPROC in the BPXPRM00 parmlib member should be greater
than the expected number of TCP/IP connections.

29Administration

Broker Resource Allocation

Note for UNIX

Under UNIX, you can use the following command to display the maximum number of open files
in the operating system shell.

ulimit -n

This value should be greater than the expected number of TCP/IP connections.

Note for Linux

Under Linux, setting the maximum open file limit depends on your working environment:

■ bash
■ systemd

bash

In the bash shell you can display or change the limits with the command ulimit -n. These limits
are used when the Broker (etbnuc) is started from the command line or from a cron job.

The limits can be stored, for example, in the file /etc/security/limits.conf.

■ For all users:

* soft nofile 1024
* hard nofile 8192

■ For user entirex:

entirex soft nofile 8192
entirex hard nofile 100000

Broker uses the soft limit. When this limit is reached, nomore connections are possible. If the hard
limit is higher than the soft limit, you can increase the limit - without having to stop the broker -
using the following command:

#> prlimit --pid <pid> --nofile = 4096:8192

The maximum limit in the broker for POLL=NO is 65534. POLL=YES is not subject to any limit and is
dependent only on the soft limit of the system.

Administration30

Broker Resource Allocation

systemd

If the broker is controlled by a service that was started by systemd, the limits of systemd apply.

There are various ways of increasing the limits if you need more than 4096 connections:

■ Set DefaultLimitNOFILE in the files /etc/systemd/system.conf or /etc/systemd/user.conf.
■ Insert LimitNOFILE=<new-limit> in a service file /usr/lib/systemd/system/sag<n>exx<vers>.
Example:

Copyright (c) 2014-2020 Software AG, Darmstadt, Germany and/or Software AG
USA Inc., Reston, VA, USA, and/or its subsidiaries and/or its affiliates
and/or their licensors.
Use, reproduction, transfer, publication or disclosure is prohibited except
as specifically provided for in your License Agreement with Software AG.

do not modify this line
[Unit]
Description=sag7exx107
After=multi-user.target

[Service]
Type=forking
RemainAfterExit=yes
PrivateTmp=no
KillMode=none
TimeoutStartSec=330
TimeoutStopSec=330
LimitNOFILE=32000
User=rdsadmin
Group=rdstst
ExecStart=/bin/sh -c "/opt/testenv/exx/107/installed/EntireX/bin/sagexx107 start"
ExecStop=/bin/sh -c "/opt/testenv/exx/107/installed/EntireX/bin/sagexx107 stop"
PIDFile=/opt/testenv/exx/v107/installed/EntireX/bin/sagexx107.pid

[Install]
WantedBy=multi-user.target

You can check the current settings using the proc file system:

#> cat /proc/<etbnuc-pid>/limits

Limit Soft Limit Hard Limit Units
Max cpu time unlimited unlimited seconds
Max file size unlimited unlimited bytes
Max data size unlimited unlimited bytes
Max stack size 8388608 unlimited bytes

31Administration

Broker Resource Allocation

Max core file size 0 unlimited bytes
Max resident set unlimited unlimited bytes
Max processes 15709 15709 processes
Max open files 32000 32000 files
Max locked memory 65536 65536 bytes
Max address space unlimited unlimited bytes
Max file locks unlimited unlimited locks
Max pending signals 15709 15709 signals
Max msgqueue size 819200 819200 bytes
Max nice priority 0 0
Max realtime priority 0 0
Max realtime timeout unlimited unlimited us

Administration32

Broker Resource Allocation

5 Broker Attributes

■ Name and Location of Attribute File .. 35
■ Attribute Syntax .. 35
■ Broker-specific Attributes .. 37
■ Service-specific Attributes ... 58
■ Codepage-specific Attributes ... 70
■ Adabas SVC/Entire Net-Work-specific Attributes .. 73
■ Security-specific Attributes .. 76
■ TCP/IP-specific Attributes ... 83
■ c-tree-specific Attributes ... 86
■ SSL/TLS-specific Attributes ... 88
■ DIV-specific Attributes .. 93
■ Adabas-specific Attributes ... 95
■ Application Monitoring-specific Attributes ... 97
■ Authorization Rule-specific Attributes .. 98
■ Variable Definition File .. 99

33

Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to
all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, as well as of the Broker itself. You can customize the
Broker environment by modifying the attribute settings.

Administration34

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

File Name/LocationPlatform

Member EXBATTR in the EntireX Broker source library.z/OS

File etbfile in directory <InstDir>/EntireX/config/etb/<BrokerName> (default) *UNIX

File <BrokerName>.atr in directory <InstDir>\EntireX\config\etb\<BrokerName> (default) *Windows

File ETB-ATTR in library EXX103.JOBS.BS2000

When starting a brokermanually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

*

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value

The following rules and restrictions apply:

■ A line can contain multiple entries separated by commas.
■ Attribute names can be entered in mixed upper and lowercase.
■ Spaces between attribute names, values and separators are ignored.
■ Spaces in the attribute names are not allowed.
■ Commas and equal signs are not allowed in value notations.
■ Lines startingwith an asterisk (*) are treated as comment lines.Within a line, characters following
an * or # sign are also treated as comments.

■ The CLASS keyword must be the first keyword in a service definition.
■ Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

■ Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

■ Attribute values can contain variables of the form ${variable name} or $variable name:
■ Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

35Administration

Broker Attributes

■ The variable name can contain only alphanumeric characters and the underscore (_) character.
■ The first non-alphanumeric or underscore character terminates the variable name.
■ Under UNIX and Windows, the string ${variable name} is replaced with the value of the
corresponding environment variable.

■ On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

■ If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable namewill be used as the variable value.

■ If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

Administration36

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section beginswith the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem
is corrected.

Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large
values for the broker attributes that define the global resources.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzOYES | NOABEND-LOOP-DETECTION

Stop broker if a task terminates abnormally twice, that is, the same abend
reason at the same abend location already occurred. This attribute prevents
an infinite abend loop.

YES

Use only if requested by Software AG Support. This settingmaymake sense
if a known error leads to an abnormal termination, but a hotfix solving the

NO

problem has not yet been provided. Reset to YESwhen the hotfix has been
installed.

bwuzOYES | NOABEND-MEMORY-DUMP

Print all data pools of the broker if a task terminates abnormally. This dump
is needed to analyze the abend.

YES

If the dump has already been sent to Software AG, you can set to NO to avoid
the extra overhead.

NO

zONO | 128-255ACCOUNTING

bwuONO | YES[SEPARATOR=char]

Determines whether accounting records are created.

Do not create accounting records.NO

The SMF record number to use when writing the accounting records.nnn

Create accounting data.
char= separator character(s). Up to seven separator characters can be
specified using the SEPARATOR suboption, for example:
ACCOUNTING = (YES, SEPARATOR=;)
If no separator character is specified, the comma character will be used.

YES

See also Accounting in EntireX Broker in the platform-specific Administration
documentation.

37Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzO1 | 2 | 3 | 4 | 5ACCOUNTING-VERSION

Determines whether accounting records are created.

Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

1

Collect extended accounting information in addition to that available with
option 1.

2

Create accounting records in layout of version 3.3

Create accounting records in layout of version 4.4

Create accounting records in layout of version 5.5

This parameter applies when ACCOUNTING is activated.

bwuzOYES | NOACI-CONVERSION

Determines the handling of ACI request and response strings of USTATUS.

Convert ACI request and response strings with ICU. See ICU Conversion in
the Internationalization documentation.

YES

Translate ACI request and response with internal translation table without
support of national characters. See Translation User Exit in the
Internationalization documentation.

NO

Note: This attribute was undocumented in EntireX versions prior to 10.3 and had
default value NO. This meant that a translation user exit was used instead; this is
no longer recommended.

bwuzOYES | NOAPPLICATION-MONITORING
or
APPMON

Enable application monitoring in EntireX Broker.

Enable application monitoring.YES

Disable application monitoring.NO

See the separate Application Monitoring documentation.

bwuzOYES | NOAUTOLOGON

LOGON occurs automatically during the first SEND or REGISTER.YES

The application has to issue a LOGON call.NO

wuONO | YESAUTOSTART

This attribute defines the autostart behavior of a broker.

Broker is not started automatically with the next system start.NO

Broker is restarted automatically with the next system start.YES

Administration38

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Note: Prior to EntireX version 10.5 this was handled by the Broker Administration
Service.

bwuzR5M | n | nS | nM | nHBLACKLIST-PENALTY-TIME

Define the length of time a participant is placed on the PARTICIPANT-BLACKLIST
to prevent a denial-of-service attack.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
Administration documentation.

bwuzRA32BROKER-ID

Identifies the broker to which the attribute file applies. The broker ID must be
unique per machine.

Note: The numerical section of the BROKER-ID is no longer used to determine the
DBID in the EntireX Broker kernel with Entire Net-Work transport (NET). To
determine the DBID, use attribute NODE in the DEFAULTS=NET section of the
attribute file.

bwuzR15M | n | nS | nM | nHCLIENT-NONACT

Define the non-activity time for clients.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A client that does not issue a broker request within the specified time limit is
treated as inactive and all resources for the client are freed.

bwuzONO | YESCMDLOG

Command logging will not be available in the broker.NO

Command logging features will be available in the broker.YES

bwuzO1024 | nCMDLOG-FILE-SIZE

Defines the maximum size of the file that the command log is written to, in
kilobytes. The value must be 1024 or higher. The default value is 1024. When one
command log file grows to this size, broker starts writing to the other file. Formore
details, see Command Logging in EntireX.

39Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzO60S | n | nS | nM | nHCONTROL-INTERVAL

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby brokerwill check the status of the standard broker after the elapsed
CONTROL-INTERVAL time.

Same as nS.n

Interval in seconds (max. 2147483647).nS

Interval in minutes (max. 35791394).nM

Interval in hours (max. 596523).nH

The minimum value is 16 seconds. We strongly recommend the default value (60
seconds), except for very slow machines.

bwuzOUNLIM | nCONV-DEFAULT

Default number of conversations that are allocated for every service.

The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of NUM-CONVERSATION.

UNLIM

Number of conversations.n

This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.

bwuzONO | YESDEFERRED

Disable or enable deferred processing of units of work.

Units of work cannot be sent to the service until it is available.NO

Units of work can be sent to a service that is not up and registered. They will
be processed when the service becomes available.

YES

bwuzOYES | NODYNAMIC-MEMORY-
MANAGEMENT

An initial portion of memory is allocated at broker startup based on defined
NUM-* attributes or internal default values if no NUM-* attributes have been

YES

defined. More memory is allocated without broker restart if there is a need
to use more storage. Unused memory is deallocated. The upper limit of
memory consumption can be defined by the attribute MAX-MEMORY. See
Dynamic Memory Management under Broker Resource Allocation in the
platform-independent Administration documentation.

All memory is allocated at broker startup based on the calculation from the
defined NUM-* attributes. Size of memory cannot be changed. This was the
known behavior of EntireX 7.3 and earlier.

NO

Administration40

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

If you run your broker with attribute DYNAMIC-MEMORY-MANAGEMENT=YES, the
following attributes are not needed:

■ NUM-CONV[ERSATION]■ CONV-DEFAULT

■ HEAP-SIZE ■ NUM-LONG[-BUFFER]

■ NUM-SERVER■ LONG-BUFFER-DEFAULT

■ SERVER-DEFAULT ■ NUM-SERVICE-EXTENSION

■ NUM-SERVICE■ SHORT-BUFFER-DEFAULT

■ NUM-CLIENT ■ NUM-SHORT[-BUFFER]

■ NUM-UOW|MAX-UOWS|MUOW■ NUM-CMDLOG-FILTER

■ ■NUM-COMBUF NUM-WQE

Caution: However, if one of these attributes is defined, it determines the allocation
size of that particular broker resource.

bwuzONO | YESDYNAMIC-WORKER-
MANAGEMENT

All worker tasks are started at broker startup. The number of worker tasks
is defined by NUM-WORKER. After this initial step, no further worker tasks

NO

can be started. This is default and simulates the behavior of EntireX version
8.0 and earlier.

As above, the initial portion of worker tasks started at broker startup is
determined by NUM-WORKER. However, if there is a need to handle an

YES

increasedworkload, additionalworker tasks can be started at runtimewithout
restarting broker. Conversely, if a worker task remains unused, it is stopped.
The upper and lower limit of running worker tasks can be defined by the
attributes WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC-WORKER-MANAGEMENT=YES, the following
attributes are useful to optimize the overall processing:

■ WORKER-QUEUE-DEPTH■ WORKER-MAX

■ WORKER-MIN ■ WORKER-START-DELAY

■ WORKER-NONACT

The attribute NUM-WORKERdefines the initial number ofworker tasks started during
initialization. See Dynamic Worker Management.

bOYES | NOETBCOM

Bundles the output of the various broker tasks in task ETBCOM.

uONO | YESFORCE

41Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Go down with error if IPC resources still exist.NO

Clean up the left-over IPC resources of a previous run.YES

Note:

1. If broker is started twice, the second instance will kill the first by removing the
IPC resources.

2. For z/OS and BS2000, see separate attribute FORCE under DEFAULTS=NET.

bwuzO1024 | nHEAP-SIZE

Defines the size of the internal heap in KB. Not required if you are using
DYNAMIC-MEMORY-MANAGEMENT. If you are not using dynamic memory
management, we strongly recommend specifying - as a minimum - the default
value of 1024 KB.

bwuzOYES | NOICU-CONVERSION

Disable or enable ICU conversion.

ICU is loaded and available for conversion. It is a prerequisite for
CONVERSION=SAGTCHA and CONVERSION=SAGTRPC.

YES

ICU is not loaded and not available for conversion. CONVERSION=SAGTCHA
and CONVERSION=SAGTRPC cannot be used.

NO

If any of the broker service definitions uses the character conversion approach ICU
Conversion, that is, CONVERSION=SAGTCHA or CONVERSION=SAGTRPC,
ICU-CONVERSIONmust be set to YES. If you are using only a user exit (see User
Exits under Introduction in the Internationalization documentation) or
CONVERSION=NO as character conversion approach for all your broker service
definitions, ICU-CONVERSION can be set to NO.

ICU requires additional storage to run properly. If ICU conversion is not needed,
settingICU-CONVERSION toNOwill help to avoidunnecessary storage consumption.

wuzOFolder or directory name in
quotes.

ICU-DATA-DIRECTORY

The location where the broker searches for ICU custom converters. See Building
and Installing ICU Custom Converters in the platform-specific Administration
documentation.

wuzOYES | NOICU-SET-DATA-DIRECTORY

Disable or enable ICU custom converter usage.

The broker tries to locate ICU custom converterswith themechanismdefined
by the platform. See Building and Installing ICU Custom Converters in the
platform-specific Administration documentation.

YES

Administration42

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Use of ICU custom converters is not possible.NO

bwuzOYES | NOIPV6

Establish SSL and TCP/IP transport in IPv6 and IPv4 networks according to
the TCP/IP stack configuration.

YES

Establish SSL and TCP/IP transport in IPv4 network only.NO

This attribute applies to EntireX version 9.0 and above.

bwuzOUNLIM | nLONG-BUFFER-DEFAULT

Number of long buffers to be allocated for each service.

The number of long message buffers is restricted only by the number of
buffers globally available. Precludes the use of NUM-LONG-BUFFER.

UNLIM

Number of buffers.n

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the service.
A value of 0 (zero) is invalid.

bwuzO0 | n | nK | nM | nG | UNLIMMAX-MEMORY

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY-MANAGEMENT=YES has been defined.

No memory limit.0, UNLIM

Defines the maximum limit of allocated memory. If limit is exceeded,
error 671 “Requested allocation exceedsMAX-MEMORY” is generated.

others

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive number
that can be stored in a four-byte integer.

bwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a unit of work.

See MAX-MESSAGE-LENGTH.MAX-MSG

wuO4 | nMAX-TRACE-FILES

Defines the number of backup copies of the trace file ETB.LOG.Minimumnumber
is 1; maximum is 999. A new trace file is allocated when the value for
TRACE-FILE-SIZE is exceeded. These two attributes prevent a constantly growing
ETB.LOG file. See Trace File Handling under UNIX | Windows.

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bwuzO0 | nMAX-UOWS

43Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Themaximumnumber of UOWs that can be concurrently active broker-wide. The
default value is 0 (zero), which means that the broker will process only messages
that are not part of a unit of work. If UOWprocessing is to be done by any service,
a MAX-UOWS value must be 1 or larger for the broker.

The MAX-UOWS value for the service will default to the value set for the broker.
NUM-UOW is an alias of this parameter.

bwuzONONE | UPPER | LOWERMESSAGE-CASE

Indicates if certain error message texts returned by the broker to its clients or
written by the broker to its log file are to be inmixed case, uppercase, or lowercase.

No changes are made to message case.NONE

Messages are changed to uppercase.UPPER

Messages are changed to lowercase.LOWER

See NUM-UOW.MUOW

bwuzOYES | NONEW-UOW-MESSAGES

New UOWmessages are allowed.YES

New UOWmessages are not allowed.NO

This applies to UOWwhen using Persistence and should not be used for
non-persistent UOWs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down. You can
set NEW-UOW-MESSAGES to NO to prevent new UOWmessages from being added
after a broker restart. This action allows only consumption (not production) of
UOWs to occur after broker restart. After the persistent store capacity has been
sufficiently reduced, the EntireX Broker administrator can issue a CIS command,
see ALLOW-NEWUOWMSGS. This action allows new UOWmessages to be sent to the
broker. Reset attribute NEW-UOW-MESSAGES to YES, which permits new UOW
messages to be produced in subsequent broker sessions.

bwuzO256 | nNUM-BLACKLIST-ENTRIES

Number of entries in the participant blacklist. Default value is 256 entries. Together
with BLACKLIST-PENALTY-TIME and PARTICIPANT-BLACKLIST, this attribute
is used to protect a broker running with SECURITY=YES against denial-of-service
attacks. See Protecting a Broker against Denial-of-Service Attacks in the
platform-specific Administration documentation.

bwuzRnNUM-CLIENT

Number of clients that can access the broker concurrently. A value of 0 (zero) is
invalid.

bwuzO1 | nNUM-CMDLOG-FILTER

Maximum number of filters that can be specified simultaneously.

Administration44

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Tip: We recommend you limit this value to the number of services that are being
monitored. Minimum value is 1. A value of zero is invalid when the attribute
CMDLOG is set to YES. See Command Logging in EntireX in the EntireX Broker
documentation for more information.

bwuzR1024 | 1-999999NUM-COMBUF

Determines the maximum number of communication buffers available for
processing commands arriving in the broker kernel. The size of one communication
buffer is usually 16 KB split into 32 slots of 512 bytes, but it ultimately depends
on the hardware architecture of your CPU. A value of 0 (zero) is invalid.

bwuzRn | AUTONUM-CONVERSATION or
NUM-CONV Defines the number of conversations that can be active concurrently. The number

specified should be high enough to account for both conversational and
non-conversational requests. (Non-conversational requests are treated internally
as one-conversation requests.)

Number of conversations.n

Uses the CONV-DEFAULT and the service-specific CONV-LIMIT values to
calculate the number of conversations.
Do not set the values used in the calculation to UNLIM.

AUTO

Note:

1. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

2. SeeWildcard Service Definitions.

bwuzR4096 | n | AUTONUM-LONG-BUFFER or
NUM-LONG Defines the number of long message containers. Long message containers have a

fixed length of 4096 bytes and are used to store requests that are larger than 2048
bytes. Storing a request of 8192 bytes, for example,would require two longmessage
containers.

Number of buffers.n

Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long message
buffers.
Do not set the values used in the calculation to UNLIM.

AUTO

A value of 0 (zero) is invalid.

In non-conversationalmode, message containers are released as soon as the client
receives a reply from the server. If no reply is requested, message containers are
released as soon as the server receives the client request.

45Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

In conversationalmode, the last message received is always kept until a new one
is received.

Note:

1. If a catch-all service is defined in the service-specific section of the attribute file,
the value of AUTO is invalid.

2. SeeWildcard Service Definitions.

bwuzOnNUM-PARTICIPANT-
EXTENSION Defines the number of participant extensions to link participants as clients and

servers.

Number of participant extensions.n

If this attribute is not set, the default value is calculated based on
NUM-CLIENT and NUM-SERVER.

not specified

A value of 0 (zero) is invalid.

bwuzRn | AUTONUM-SERVER

Defines the number of servers that can offer services concurrently using the broker.
This is not the number of services that can be registered to the broker (see
NUM-SERVICE).

Number of servers.n

Uses the SERVER-DEFAULT and the service-specific SERVER-LIMIT values
to calculate the number of servers.
Do not set the values used in the calculation to UNLIM.

AUTO

Note:

1. Setting this value higher than the number of services allows the starting of server
replicas that provide the same service.

2. A value of 0 (zero) is invalid. If a wildcard service is defined in the
service-specific section of the attribute file, the value of AUTO is invalid.

3. SeeWildcard Service Definitions.

bwuzRnNUM-SERVICE

Defines the number of services that can be registered to the broker. This is not the
number of servers that can offer the services (see NUM-SERVER). A value of 0 (zero)
is invalid.

bwuzOn | AUTONUM-SERVICE-EXTENSION

Defines the number of service extensions to link servers to services.

Administration46

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Number of service extensions.n

Uses the value specified or calculated for NUM-SERVER + NUM-CLIENT,
plus an extra cushion.

AUTO

If this attribute is not set, the default value is NUM-SERVERmultiplied
by NUM-SERVICE.

not specified

The minimum value is NUM-SERVER.
The maximum value is NUM-SERVERmultiplied by NUM-SERVICE.

Caution is recommended with this attribute:

■ Set this attribute only if the storage resources allocated for service extensions
need to be restricted.

■ Note that the value n allows only the specified number of server instances of n
to be used.

■ Value AUTOwill calculate the number of allowed server instances from
NUM-SERVER, which itself might be set to AUTO. In this case, this also considers
the value of SERVER-DEFAULT and even the individual SERVER-LIMIT for each
service definition.

bwuzRn | AUTONUM-SHORT-BUFFER or
NUM-SHORT Defines the number of short message containers. Short message containers have

a fixed length of 256 bytes and are used to store requests of no more than 2048
bytes. To store a request of 1024 bytes, for example, would require four short
message containers.

Number of buffers.n

Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short message
buffers.
Do not set the values used in the calculation to UNLIM.

AUTO

Note:

1. In non-conversationalmode,message containers are released as soon as the client
receives a reply from the server. If no reply is requested, message containers
are released as soon as the server receives the client request.

2. In conversationalmode, the last message received is always kept until a new one
is received.

3. If a wildcard service is defined in the service-specific section of the attribute
file, the value of AUTO is invalid.

4. SeeWildcard Service Definitions.

47Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzO0 | nNUM-UOW

Themaximumnumber of UOWs that can be concurrently active broker-wide. The
default value is 0 (zero), which means that the broker will process only messages
that are not part of a unit of work. If UOWprocessing is to be done by any service,
a NUM-UOW value must be 1 or larger for the broker. (MAX-UOWS is an alias for this
attribute.)

The NUM-UOW value for the service will default to the value set for the broker.

bwuzR1 | n (max. 10)NUM-WORKER

Number of worker tasks that the broker can use. The number of worker tasks
determines the number of functions (SEND, RECEIVE, REGISTER, etc.) that can be
processed concurrently. At least one worker task is required; this is the default
value.

bwuzR1-32768NUM-WQE

Maximumnumber of requests that can be processed by the broker in parallel, over
all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of the
transport mechanism being used. This element is released when the user has
received the results of the command, including the case where the command has
timed out.

bwuzRYES | NOPARTICIPANT-BLACKLIST

Determines whether participants attempting a denial-of-service attack on the
broker are to be put on a blacklist.

Create a participant blacklist.YES

Do not create a participant blacklist.NO

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
Administration documentation.

bwuzRA32PARTNER-CLUSTER-ADDRESS

This is the address of the load/unload broker in transport-method-style. Transport
methods TCP and SSL are supported. See Transport-method-style Broker ID formore
details. This attribute is required if the attribute RUN-MODE is specified.

bwuzO90 | 1-100PERCENTAGE-FOR-
CONNECTION-SHORTAGE-
MESSAGE

Broker will issue a message if the defined percentage value of TCP/IP connections
(available file descriptors) is exceeded. Default is 90 percent of the available file
descriptors.

uzOYES | NOPOLL

In earlier EntireX versions, the maximum number of TCP/IP connections per
communicatorwas limited; seeMaximumTCP/IPConnections per Communicator

Administration48

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

for platform-specific list. With attribute POLL introduced in EntireX version 9.0,
this restriction can be lifted under z/OS and UNIX.

This setting is used to run the compatibility mode in Broker. The poll()
system call is not used. The limitations described underMaximum TCP/IP
Connections per Communicator apply.

NO

The poll() system call is used to lift the resource restrictionswith select()
in multiplexing file descriptor sets.

YES

Note: The maximum number of file descriptors per process is a hard limit that
cannot be exceeded by POLL=YES.

Setting this attribute to YES increases CPU consumption. POLL=YES is only useful
if

■ you need more than the maximum number of TCP/IP connections per
communicator, as described underMaximum TCP/IP Connections per
Communicator, and

■ this maximum number is less than the maximum number of file descriptors per
process

We recommend POLL=NO to reduce CPU consumption.

wuzOYES | NOPOSTPONED-QUEUE

Enable or disable the creation of a postponed queue for Broker.

Enable creation of a postponed queue. Define your postponed queue with
service-specific attributes POSTPONE-ATTEMPTS and POSTPONE-DELAY.

YES

Disable creation of a postponed queue.NO

See Postponing Units of Work.

bwuzONO | HOT | COLDPSTORE

Defines the status of the persistent store at broker startup, including the condition
of persistent units of work (UOWs). With any value other than NO, PSTORE-TYPE
must be set.

No persistent store.NO

Persistent UOWs are restored to their prior state during initialization.HOT

Persistent UOWs are not restored during initialization, and the persistent
store is considered empty.

COLD

Note: For a hot or cold start, the persistent store must be available when your
broker is restarted.

bwuzONO | YESPSTORE-REPORT

49Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Determines whether PSTORE report is created.

Do not create the PSTORE report file.NO

Create the PSTORE report file.YES

See also Persistent Store Report.

bwuzODIV (z/OS) |
CTREE (UNIX, Windows) |

PSTORE-TYPE

ADABAS (all platforms) | FILE
(UNIX, Windows)

Describes the type of persistent store driver required.

Data in Virtual. z/OS only, and default on this platform. SeeDIV-specific
Attributes below and Implementing a DIV Persistent Store.

DIV

c-tree database. UNIX andWindows only. See c-tree-specific Attributes
and c-tree Database as Persistent Store under UNIX | Windows in the
UNIX | Windows Administration documentation.

CTREE

Adabas. All platforms. See also Adabas-specific Attributes (below) and
Managing the Broker Persistent Store in the platform-specificAdministration
documentation.

ADABAS

B-Tree database. UNIX and Windows only. No longer supported.FILE

bwuzO2 | 3 | 4 | 5PSTORE-VERSION

Determines the version of the persistent store. PSTORE=COLD is not needed to
upgrade the PSTORE to version 3. Any broker restart with PSTORE-VERSION=3
will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support.

The DIV PSTORE requires PSTORE-VERSION=4.

PSTORE-VERSION=5was added in EntireX version 10.1 to support 64-bit time
values on z/OS, and unique message IDs on all platforms. See Unique Message ID.
PSTORE-VERSION=5 significantly improvement Adabas PSTOREperformance on
all platforms. We strongly recommend you use this version.

Caution:

■ If you go back to PSTORE-VERSION=2 after upgrading to PSTORE-VERSION=3,
the broker will only process data previously created with version 2. No version
3 data will be accessible.

■ If you change the DIV PSTORE from version 3 to 4, perform a COLD restart for
the change to take effect, or run PSTORE UNLOAD/LOAD first.

■ If you change to PSTORE-VERSION=5, perform a COLD restart for the change
to take effect.

Administration50

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Note: Persistent Stores with PSTORE-VERSION less than 5 will no longer be
supported after EntireX version 10.7.

bwuzOSTANDARD | STANDBY |
PSTORE-LOAD |
PSTORE-UNLOAD

RUN-MODE

Determines the initial run mode of the broker.

Default value. Normal mode.STANDARD

Deprecated. Supported for compatibility reasons.STANDBY

Deprecated. Broker will run as load broker to write Persistent
Store data to a new persistent store. See alsoMigrating the
Persistent Store.

PSTORE-LOAD

Deprecated. Brokerwill run as unload broker to read an existing
persistent store and pass the data to a broker running in
PSTORE-LOADmode. See alsoMigrating the Persistent Store.

PSTORE-UNLOAD

Note: RUN-MODE options PSTORE-LOAD and PSTORE-UNLOAD are deprecated and
will not be supported in the next version of EntireX.

bwuzONO | YESSECURITY

Determines whether EntireX Security is activated.

EntireX Security is not activated.NO

EntireX Security is activated.YES

See EntireX Security.

bwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number of servers globally
available. Precludes the use of NUM-SERVER=AUTO.

UNLIM

This value can be overridden by specifying a SERVER-LIMIT for the service. A
value of 0 (zero) is invalid.

bwuzOYES | NOSERVICE-UPDATES

Switch on/off the automatic update mode of the broker.

The broker reads the attribute file whenever a service registers for the first
time. This allows the broker to honormodifications in the attribute filewithout

YES

a restart. The attribute file is read only when the first server registers for a
particular service; it is not reread when a second replica is activated.

51Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

The attribute file is read only once during broker startup. Any changes to
the attribute file will be honored only if the broker is restarted.

NO

bwuzOUNLIM | nSHORT-BUFFER-DEFAULT

Number of short buffers to be allocated for each service.

The number of short message buffers is restricted only by the number of
buffers globally available. Precludes the use of NUM-SHORT-BUFFER=AUTO.

UNLIM

Number of buffers.n

This value can be overridden by specifying a SHORT-BUFFER-LIMIT for the service.
A value of 0 (zero) is invalid.

bwuzONO | YESSTORAGE-REPORT

Create a storage report about broker memory usage.

Do not create the storage report.NO

Create the storage report.YES

See Storage Report.

bwuzOOFF | BROKERSTORE

Sets the default STORE attribute for all units of work. This attribute can be
overridden by the STORE field in the Broker ACI control block.

Units of work are not persistent.OFF

Units of work are persistent.BROKER

zOA255TRACE-DD

Astring containing data set attributes enclosed in quotationmarks. These attributes
describe the trace output file and must be defined if you are using using a GDG
(generation data group) as output data set. See Flushing Trace Data to a GDG Data
Set under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE-DD value:

■■ MGMTCLASDATACLAS

■ ■DCB including BLKSIZE, DSORG, LRECL,
RECFM

SPACE

■ STORCLAS
■ DISP ■ UNIT
■ DSN

Refer to your JCL Reference Manual for a complete description of the syntax.

Administration52

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Example:

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),
SPACE=(CYL,(100,10)),
STORCLAS=SMS"

Note: If you specify TRACE-DD, you must also specify TRMODE=WRAP and a value
for TRBUFNUM for the setting to take effect.

wuOn | nK | nM | nGTRACE-FILE-SIZE

Defines the size of one trace file in kilobytes, megabytes or gigabytes. If this size
is exceeded, a new trace file is allocated until the maximum number of trace files
specifiedwith MAX-TRACE-FILES is reached. There is no default value. These two
parameters help prevent a constantly growing ETB.LOGfile. SeeTrace File Handling
under UNIX | Windows.

bwuzO0-4TRACE-LEVEL

The level of tracing to be performed while the broker is running.

No tracing. Default value.0

Traces incoming requests, outgoing replies, resource usage and conversion
errors.

1

All of trace level 1, plus all main routines executed.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus Broker ACI control block displays.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout a broker
restart, use CommandCentral or the EntireX Broker command-line utility ETBCMD.

bzOTCP-NET|TCP|SSL|NETTRANSPORT

wuOTCP | SSL

The broker transport may be specified as any combination of one or more of the
following methods:

TCP/IP is supported.TCP

SSL/TLS is supported.SSL

EntireNet-Work is supported. This value is not supported for a broker under
UNIX or Windows.

NET

53Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method will
be supported by the broker.

TRANSPORT=TCP-NET specifies that both the TCP/IP and Net-Work transport
methods will be supported by the broker.

TRANSPORT=TCP-SSL-NET specifies that theTCP/IP, SSL/TLS, andEntireNet-Work
transport methods will be supported by the broker.

The parameters for each transport method are described in the respective section:
TCP | SSL | NET.

bwuzOnnnnTRAP-ERROR

Where nnnn is the four-digit API error number that triggers the trace handler, for
example 0007 (Service not registered). Leading zeros are not required. There is no
default value.

See Deferred Tracing under z/OS | UNIX | Windows in the platform-specific
Administration documentation.

bwuzOnTRBUFNUM

Changes the trace to write trace data to internal trace buffers. n is the size of the
trace buffer in 64 KB units. There is no default value.

bwuzOWRAPTRMODE

Changes the tracemode. WRAP is the only possible value. This value instructs broker
to write the trace buffer (see TRBUFNUM) if an event occurs. This event is triggered
by amatchingTRAP-ERRORduring request processing orwhen an exception occurs.

See MAX-MESSAGES-IN-UOW.UMSG

bwuzO1D | nS | nM | nH | nDUOW-DATA-LIFETIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

If the UOW is inactive - that is, is not processed within the time limit - it is deleted
and given a status of TIMEOUT. This attribute can be overridden by the UWTIME
field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker.

See MAX-MESSAGES-IN-UOW.UOW-MSGS

bwuzOno value |n[S]|nM|nH|nDUOW-STATUS-LIFETIME

Administration54

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

The value to be added to the UOW-DATA-LIFETIME (lifetime of associated UOW).
If a value is entered, it must be 1 or greater; a value of 0 will result in an error. If
no value is entered, the lifetime of the UOW status information will be the same
as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the UOW itself (max.
2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

This attribute is ignored if PSTORE=NO is defined.

The lifetime determines how much additional time the UOW status is retained in
the persistent store and is calculated from the time at which the associated UOW
enters any of the following statuses:PROCESSED,TIMEOUT,BACKEDOUT,CANCELLED,
DISCARDED. The additional lifetime of the UOW status is calculated only when
broker is executing. Value in UOW-STATUS-LIFETIME supersedes the value (if
specified) in attribute UWSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not have to
be identical to the unit specified for UOW-DATA-LIFETIME.

Alias for UOW-STATUS-LIFETIME.UWSTAT-LIFETIME

bwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent status for the
service. The UWSTATP value is multiplied by the UOW-DATA-LIFETIME value (the
lifetime of the associated UOW) to determine the length of time the status will be
retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UOW-DATA-LIFETIME to determine how long
a persistent status will be retained.

1-254

Note: This attribute has not been supported since EntireX version 7.3. Use
UOW-STATUS-LIFETIME instead.

Alias for UOW-DATA-LIFETIME.UWTIME

bwuzONO | YESWAIT-FOR-ACTIVE-PSTORE

Determineswhether broker shouldwait for the Adabas Persistent Store to become
active, or until c-tree PSTORE files become available.

55Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

If broker should start with a PSTORE-TYPE=ADABAS and the database is not
active or is not accessible, broker will stop.

If broker should start with a PSTORE-TYPE=CTREE and the c-tree files are
still in use, broker will stop.

NO

If broker should start with a PSTORE-TYPE=ADABAS and the database is not
active or is not accessible, broker will retry every 10 seconds to initiate

YES

communicationswith the PSTORE. Broker will reject any user requests until
it is able to contact the Adabas database.

If broker should start with a PSTORE-TYPE=CTREE and the c-tree files are
still in use, broker will retry every 10 seconds to rebuild the persistent data.
Broker will reject any user requests until it is able to rebuild the persistent
data.

bwuzO32 | n (min. 1, max. 32)WORKER-MAX

Maximum number of worker tasks the broker can use.

bwuzO1 | n (min. 1, max. 32)WORKER-MIN

Minimum number of worker tasks the broker can use.

bwuzO70S | n | nS | nM | nHWORKER-NONACT

Non-activity time to elapse before a worker tasks is stopped.

Same as nS.n

Non-activity time in seconds (default 70, max. 2147483647).nS

Non-activity time in in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

Caution: A value of 0 (zero) is invalid. If you set this value too low, additional
overhead is required for starting and stopping worker tasks. The default and
recommended value is 70S.

bwuzO1 | n (min. 1)WORKER-QUEUE-DEPTH

Number of unassigned user requests in the input queue before another worker
task gets started. The default and recommended value is 1. A higher value will
result in longer broker response times.

bwuzOinternal-value | nWORKER-START-DELAY

Delay is extended by n seconds.n

Delay after a successful worker task invocation before another worker task can be
started to handle current incoming workload. This attribute is used to avoid the
risk of recursive invocation of worker tasks, because starting a worker task itself
causes workload increase.

Administration56

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

If no value is specified, an internal value calculated by the broker is used to optimize
dynamicworkermanagement. This calculated value is themaximum time required
to start a worker task.

57Administration

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sectionsWildcard Service Definitions and Service
Update Modes below the table.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzOYES | NOAPPLICATION-MONITORING
or
APPMON Enable application monitoring for the specified services.YES

Disable application monitoring for the specified services.NO

See the separate Application Monitoring documentation.

bwuzOA100APPLICATION-MONITORING-
NAME
or
APPMON-NAME

Specifies the application monitoring name. Used to set the value of the
ApplicationName KPI.

If omitted, the default value from the APPLICATION-MONITORING section
is used. If this value is also not specified, the corresponding
CLASS/SERVER/SERVICE names are used.

See the separate Application Monitoring documentation.

bwuzRA32 (case-sensitive)CLASS

Part of the name that identifies the service together with the SERVER and
SERVICE attributes. CLASSmust be specified first, followed immediately by
SERVER and SERVICE. The following rules apply:

■ Classes startingwith any of the following are reserved for use by Software
AG. Do not use these in applications you write: BROKER, SAG, ENTIRE,
ETB, RPC, ADABAS, NATURAL.

■ Valid characters for class name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore.

■ Do not use dollar, percent, period or comma.

See also the restriction for SERVICE attribute names.

bzON | YCLIENT-RPC-
AUTHORIZATION Determines whether this service is subject to RPC authorization checking.

No RPC authorization checking is performed.N

Administration58

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

RPC library and program name are appended to the authorization check
performed by EntireX Security. Specify YES only to RPC-supported
services.

Y

To allowconformitywithNatural Security, theCLIENT-RPC-AUTHORIZATION
parameter can optionally be defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).

bwuzOUNLIM | nCONV-LIMIT

Allocates a number of conversations especially for this service.

The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION=AUTO in the Broker section of the attribute file.

UNLIM

Number of conversations.n

A value of 0 (zero) is invalid.
If NUM-CONVERSATION=AUTO is specified in the Broker section of the attribute
file, CONV-LIMIT=UNLIM is not allowed in the service section. A value must
be specified or the CONV-LIMIT attribute must be suppressed entirely for
the service so that the default (CONV-DEFAULT) becomes active.

bwuzR5M | n | nS | nM | nHCONV-NONACT

Non-activity time for connections.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

A value of 0 (zero) is invalid. If a connection is not used for the specified
time, that is, a server or a client does not issue a broker request that references
the connection in any way, the connection is treated as inactive and the
allocated resources are freed.

bwuzOA255

(SAGTCHA[,TRACE=n][,OPTION=s]|
SAGTRPC[,TRACE=n][,OPTION=s]|
name[,TRACE=n]|
NO)

CONVERSION

Defines ICU conversion or SAGTRPC user exit for character conversion. See
Internationalization with EntireX.

Conversion using ICU Conversion for ACI-based Programming.SAGTCHA (1)

59Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Conversion using ICU Conversion for RPC-based Components
and Reliable RPC.

SAGTRPC (2)

Name of the SAGTRPC user exit for RPC-based components
and Reliable RPC. See also Configuring SAGTRPC User Exits

name (3)

under Configuring Broker for Internationalization in the
platform-specific Administration documentation andWriting
SAGTRPC User Exits under Configuring Broker for
Internationalization in the platform-specific Administration
documentation.

If conversion is not to be used, either omit the CONVERSION
attribute or specify CONVERSION=NO, for example for binary
payload.

NO

TheCONVERSION attribute overrides theTRANSLATION attributewhendefined
for a service. That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

Note:

1. See also Configuring ICU Conversion under Configuring Broker for
Internationalization in the platform-specificAdministration documentation.

2. SAGTRPC is not supported on BS2000. For conversion with single-byte
code pages, use SAGTCHA on BS2000 for RPC-based Components and
Reliable RPC.

3. SAGTRPC user exit is not supported on BS2000.

TRACE

If tracing is switched on, the trace output is written to the broker log file.
The following trace levels are available:

No tracing0

This level is an "on-error" trace. It provides information on
conversion errors only. For RPC calls this includes the IDL

STANDARD1

library, IDL program and the data. Note that if OPTIONValues
for Conversion are set, errors are ignored.

Tracing of incoming, outgoing parameters and the payload.ADVANCED2

This trace level is for support diagnostics. Use only when
requested by Software AG Support.

SUPPORT3

OPTION

See table of possible values under OPTION Values for Conversion.

Administration60

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzONO | YESDEFERRED

Units of work cannot be sent to the service until it is available.NO

Units of work can be sent to a service that is not up and registered. The
units of work will be processed when the service becomes available.

YES

bwuzOYES | NOLOAD-BALANCING

When servers that offer a particular service are started, new
conversationswill be assigned to these servers in a round-robin fashion.

YES

The first waiting server will get the first new conversation, the second
waiting server will get the second new conversation, and so on.

A new conversation is always assigned to the first server in the queue.NO

bwuzOUNLIM | nLONG-BUFFER-LIMIT

Allocates a number of long message buffers for the service.

The number of longmessage buffers is restricted only by the number
of buffers globally available. Precludes the use of
NUM-LONG-BUFFER=AUTO in the Broker section of the attribute file.

UNLIM

Number of long message buffers.n

A value of 0 (zero) is invalid. If NUM-LONG-BUFFER=AUTO is specified in the
Broker section of the attribute file, LONG-BUFFER-LIMIT=UNLIM is not
allowed in the service section. A value must be specified or the
LONG-BUFFER-LIMIT attribute must be suppressed entirely for the service
so that the default (LONG-BUFFER-DEFAULT) becomes active.

bwuzO16 | nMAX-MESSAGES-IN-UOW

Maximum number of messages in a UOW.

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

See MAX-MESSAGE-LENGTH.MAX-MSG

See MAX-MESSAGE-LENGTH.MAX-UOW-MESSAGE-LENGTH

bwuzO0 | nMAX-UOWS

The service does not accept units of work, that is, it processes only
messages that are not part of a UOW. Using zero prevents the sending
of UOWs to services that are not intended to process them.

0

61Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Maximumnumber ofUOWs that can be active concurrently for the service.
If you do not provide a MAX-UOWS value for the service, it defaults to the

n

MAX-UOWS setting for the broker. If you provide a value that exceeds that
of the broker, the service MAX-UOWS is set to the broker's MAX-UOWS value
and a warning message is issued.

SpecifyMAX-UOWS=0 forNatural RPCServers. This restrictionwill be removed
with a later release.

See MAX-UOWS.MUOW

bwuzONO | YESNOTIFY-EOC

Specifies whether timed-out conversations are to be stored or discarded.

Discard the EOC notifications if the server is not ready to receive.NO

Store the EOC notifications if the server is not ready to receive and
then notify the server if possible.

YES

If a server is not ready to receive an EOC notification, it can be stored or
discarded. If it is stored, the server is notified, if possible, when it is ready
to receive.

Caution: The behavior activated by this parameter can be relied upon only
during a single lifetime of the broker kernel. Specifically, conversations
containing units of work, whose lifetime can span multiple broker kernel
sessions, cannot be assumed to show this behavior, even with
NOTIFY-EOC=YES.

Alias for MAX-UOWS.NUM-UOW

wuzO0 | nPOSTPONE-ATTEMPTS

Defines the number of attempts putting a received unit of work (UOW) due
to SYNCPOINT option CANCEL on the postponed queue for later processing.

All UOWs rejected by the receiver (SYNCPOINT option CANCEL) will be
cancelled immediately. Attribute POSTPONE-DELAY is ignored.

0

Defines the number of postpone attempts that are performed instead of
considering the UOW finished due to SYNCPOINT option CANCEL; the

n

UOWwill be moved to the postponed queue and the UOW status will
be changed to POSTPONED. These UOWswill be delivered to the receiver
when the time specified with POSTPONE-DELAY has elapsed.

Note: Broker-specific attribute POSTPONED-QUEUEmust be enabled (default)
for this attribute to take effect. The default value is 0. See Postponing Units of
Work.

wuzO0 | n | nS | nM | nHPOSTPONE-DELAY

Administration62

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

The length of time a UOW is kept in status POSTPONED.

No postponed queue is created and attribute POSTPONE-ATTEMPTS is
ignored.

0

Number of seconds the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 2147483647).

nS

Number of minutes the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 35791394).

nM

Number of hours the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 596523).

nH

Number of days the UOW stays unreadable in the postponed queue
with status POSTPONED (max. 24855).

nD

The status of the UOWwill be changed from POSTPONED to ACCEPTED after
elapsed POSTPONE-DELAY. This delay time does not affect the
UOW-DATA-LIFETIME. The POSTPONE-DELAYmust be less than
UOW-STATUS-LIFETIME in order to make the UOW receivable again.

Note: Broker-specific attribute POSTPONED-QUEUEmust be enabled (default)
for this attribute to take effect. The default is 0, that is, no postponed queue
is created, but if a value is entered, the minimum delay is 30 seconds. Any
value entered that is less than 30 seconds will be increased to this value. See
Postponing Units of Work.

bwuzRA32 (case-sensitive)SERVER

Part of the name that identifies the service together with the CLASS and
SERVICE attributes.

CLASSmust be specifiedfirst, followed immediately bySERVER andSERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9, hyphen
and underscore. Do not use dollar, percent, period or comma.

bwuzOn | UNLIMSERVER-DEFAULT

Default number of servers that are allowed for every service.

Number of servers.n

The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO.

UNLIM

A value of 0 (zero) is invalid.

This value can be overridden by specifying a SERVER-LIMIT for the service.

bwuzOn | UNLIMSERVER-LIMIT

Allows a number of servers especially for this service.

63Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Number of servers.n

The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO in the
Broker section of the attribute file.

UNLIM

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the attribute file,
SERVER-LIMIT=UNLIM is not allowed in the service section. A value must
be specified or the SERVER-LIMIT attribute must be suppressed entirely for
the service so that the default (SERVER-DEFAULT) becomes active.

Note: UNIX and Windows: This limit also includes any attach server you
are using. Make sure you increase the number by one for each attach server
you use.

bwuzR5M | n | nS | nM | nHSERVER-NONACT

Non-activity time for servers. A server that does not issue a broker request
within the specified time limit is treated as inactive and all resources for the
server are freed.

Same as nS.n

Non-activity time in seconds (max. 2147483647).nS

Non-activity time in minutes (max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If a server registers multiple services, the highest value of all the services
registered is taken as non-activity time for the server.

bwuzRA32 (case-sensitive)SERVICE

Part of the name that identifies the service together with the CLASS and
SERVER attributes.

CLASSmust be specifiedfirst, followed immediately bySERVER andSERVICE.

The SERVICE attribute names EXTRACTOR and DEPLOYMENT are reserved for
Software AG internal use and should not be used in customer-written
applications. Valid characters for service name are letters a-z, A-Z, numbers
0-9, hyphen and underscore. Do not use dollar, percent, period or comma.
See also the restriction for CLASS attribute names.

bwuzOUNLIM | nSHORT-BUFFER-LIMIT

Allocates a number of short message buffers for the service.

Administration64

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

The number of shortmessage buffers is restricted only by the number
of buffers globally available. Precludes the use of
NUM-SHORT-BUFFER=AUTO in the Broker section of the attribute file.

UNLIM

Number of short message buffers.n

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of the attribute
file, SHORT-BUFFER-LIMIT=UNLIM is not allowed in the service section. A
value must be specified or the SHORT-BUFFER-LIMIT attribute must be
suppressed entirely for the service so that the default
(SHORT-BUFFER-DEFAULT) becomes active.

bwuzOOFF | BROKERSTORE

Sets the default STORE attribute for all units of work sent to the service.

Units of work are not persistent.OFF

Units of work are persistent.BROKER

This attribute can be overridden by the STOREfield in the BrokerACI control
block.

bwuzONO | name (A255)TRANSLATION

Activates translation user exit for character conversion.

If translation is not to be used - for example for binary payload (broker
messages) - either omit the TRANSLATION attribute or specify
TRANSLATION=NO.

NO

Name of Translation User Exit. See also Configuring Translation User
Exits under Configuring Broker for Internationalization in the

name

platform-specificAdministrationdocumentation orWriting Translation
User Exits under Configuring Broker for Internationalization in the
platform-specific Administration documentation.

TheCONVERSION attribute overrides theTRANSLATION attributewhendefined
for a service; that is, when TRANSLATION and CONVERSION are both defined,
TRANSLATIONwill be ignored.

Alias for MAX-MESSAGES-IN-UOW.UMSG

bwuzO1D | nS | nM | nH | nDUOW-DATA-LIFETIME

Defines the default lifetime for units of work for the service.

Number of seconds the UOW can exist (max. 2147483647).nS

Number of minutes the UOW can exist (max. 35791394).nM

Number of hours the UOW can exist (max. 596523).nH

Number of days the UOW can exist (max. 24855).nD

65Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

This attribute is ignored if PSTORE=NO is defined.

If the unit of work (UOW) is inactive, that is, not processed within the time
limit, it is deleted and given a status of TIMEOUT. This attribute can be
overridden by the UWTIME field in the Broker ACI control block.

Alias for MAX-MESSAGES-IN-UOW.UOW-MSGS

bwuzOno value | n[S]|nM|nH|nDUOW-STATUS-LIFETIME

The value to be added to the UOW-DATA-LIFETIME lifetime of associated
UOW). If a value is entered, it must be 1 or greater; a value of 0 will result
in an error. If no value is entered, the lifetime of the UOW status information
will be the same as the lifetime of the UOW itself.

Number of seconds the UOW status exists longer than the UOW itself
(max. 2147483647).

nS

Number of minutes (max. 35791394).nM

Number of hours (max. 596523).nH

Number of days (max. 24855).nD

The lifetimedetermines howmuch additional time theUOWstatus is retained
in the persistent store and is calculated from the time atwhich the associated
UOWenters any of the following statuses:PROCESSED,TIMEOUT,BACKEDOUT,
CANCELLED, DISCARDED. The additional lifetime of the UOW status is
calculated only when broker is executing. Value in UOW-STATUS-LIFETIME
supersedes the value (if specified) in attribute UWSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not
have to be identical to the unit specified for UOW-DATA-LIFETIME.

bwuzO0 | nUWSTATP

Contains a multiplier used to compute the lifetime of a persistent status for
the service. The UWSTATP value ismultiplied by the UOW-STATUS-LIFETIME
value (the lifetime of the associated UOW) to determine the length of time
the status will be retained in the persistent store.

The status is not persistent.0

Multiplied by the value of UOW-DATA-LIFETIME to determine how
long a persistent status will be retained.

1 - 254

This attribute is ignored if PSTORE=NO is defined.

Note: This attribute has not been supported since EntireX version 7.3.
Use UOW-STATUS-LIFETIME instead.

Alias for UOW-STATUS-LIFETIME.UWSTAT-LIFETIME

Alias for UOW-DATA-LIFETIME.UWTIME

Administration66

Broker Attributes

Wildcard Service Definitions

The special names of CLASS = *, SERVER = * and SERVICE = * are allowed in the service-specific
and authorization rule-specific sections of the broker attribute file. These are known as "wildcard"
service definitions. If this name is present in the attribute file, any service that registers with the
broker and does not have its own entry in the attribute file will inherit the attributes that apply to
the first wildcard service definition found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily
complete):

CLASS = *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS = ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV-
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

■ In service updatemode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

■ In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if
■ there is a high frequency of REGISTER operations, or
■ the attribute file is rather large and results in a high I/O rate for the broker.

The disadvantage to using non-updatemode is that if specific attributes aremodified, the broker
must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

67Administration

Broker Attributes

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters cannot be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

Situations 1 and 2 above are reported to the broker log file if the TRACE option for CONVERSION is
set to level 1.

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

No messageNo message.YESYESSubstitutes both
non-convertible characters

SUBSTITUTE

(receiver's codepage) and bad
input characters (sender's
codepage) with a
codepage-dependent default
replacement character.

No message.Write detailed
conversion
errormessage.

YESYESIf a corresponding code point
is not available in the receiver's
codepage, the character cannot

SUBSTITUTE-NONCONV

be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

No message.No message.YESNOSubstitutes non-convertible
characters with a

BLANKOUT

codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

Administration68

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for

CONVERSION is set to 1Options Supported for

DescriptionValue

Non-convertible
Characters
(Receiver's
Codepage)

Bad Input
Characters
(Sender's
Codepage)SAGTRPCSAGTCHA

Write detailed
conversion
errormessage.

Write detailed
conversion
errormessage.

YESYESSignals an error on detecting a
non-convertible or bad input
character. This is the default

STOP

behavior if no option is
specified.

69Administration

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize the mapping of locale strings to codepages for character
conversion with ICU conversion and SAGTRPC user exit. See Internationalization with EntireX for
more information.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzOAny ICU converter
name or alias. See also

DEFAULT_ASCII

Additional Notes
below.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker's Locale String Defaults. This
value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on an ASCII platform (UNIX, Windows, etc.)

Example:

DEFAULTS=CODEPAGE
* Broker Locale String Defaults
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker's Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

bwuzOAny ICU converter
name or alias

DEFAULT_EBCDIC_IBM

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker's Locale String Defaults. This
value is used instead of the broker's locale string defaults if

■ the calling component does not send a locale string itself and
■ the calling component is running on an IBM mainframe platform

Example:

Administration70

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker's Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

bwuzOAny ICU converter
name or alias.

DEFAULT_EBCDIC_SNI

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker's Locale String Defaults. This
value is used instead of the locale string defaults if

■ the calling component does not send a locale string itself, and
■ the calling component is running on a Fujitsu EBCDIC mainframe platform
(BS2000)

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker's Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

wuzOAny ICU converter
name or alias. See also
Additional Notes
below.

locale-string

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker's Locale String Processing. This is
useful:

■ if the broker's locale string processing fails - that is, it leads to no codepage or
to the wrong codepage - you can explicitly assign the codepage which meets
your requirements.

■ if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
Administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server) and the value is the codepage that you want to use in place of
that locale string. In the first line of the example below, the client or server
application sends ASCII as a locale string; the broker maps this to the codepage
ISO 8859_1. In the sameway EUC_JP_LINUX ismapped to ibm-33722_P12A-1999.
All other locale strings are mapped by the broker's mapping mechanism, see
Broker's Built-in Locale String Mapping. Example:

71Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

DEFAULTS=CODEPAGE
* Broker Locale String Codepage Assignments
ASCII=ISO8859
EUC_JP_LINUX=ibm-33722_P12A-1999
* Customer-written ICU converters
CP1140=myebcdic
CP0819=myascii

For more examples, see Bypassing Broker's Built-in Locale String Mapping and also
Additional Notes below.

Additional Notes

■ Locale stringmatching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

■ If ICU is used for character conversion and the style in not known by ICU, e.g. <ll>_<cc> etc.,
the name will be mapped to a suitable ICU alias. For more details on the mapping mechanism,
see Broker's Built-in Locale String Mapping. For more details on ICU and ICU converter name
standards, see ICU Resources.

■ If SAGTRPCuser exit is used for the character conversion,we recommend assigning the codepage
in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit, see Broker's
Built-in Locale String Mapping.

■ See CONVERSION on this page for the character conversion in use.

Administration72

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

TheAdabas SVC/EntireNet-Work-specific attribute section beginswith the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

Note: This section applies to mainframe platforms only. It does not apply to UNIX and
Windows.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

zRnnnADASVC

Sets the Adabas SVC number for EntireX Broker access.

The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.

Not supported on BS2000.

bzONO | YESEXTENDED-ACB-SUPPORT

Determines whether extended features of Adabas version 8 (or above) are
supported.

No features of Adabas version 8 or above will be used.NO

Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than

YES

32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

bzONO | YESFORCE

Determines whether DBID table entries can be overwritten.

Overwrite of DBID table entries not permitted.NO

Overwrite of DBID table entries permitted. This is requiredwhen theDBID
table entry is not deleted after abnormal termination.

YES

Caution: Overwriting an existing entry prevents any further communication
with the overwritten node. Use FORCE=YES only if you are absolutely sure that
no target node with that DBID is active.

bOidtname(A8)|ADABAS5BIDTNAME

If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.

73Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000.

bzO8000 | nIUBL

This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. Themaximum size of IUBL is the same
as the maximum value of the Adabas parameter LU. See the Adabas Operations
Manual.

IUBLmust be large enough to hold themaximumsend-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

bzONO | YESLOCAL

For remote nodes accessed via Entire Net-Work, the attribute LOCAL specifies
whether the target ID defined with the NODE attribute can be accessed only
locally, or also remotely.

DBID is global and can be accessed from remote nodes via EntireNet-Work.NO

DBID is local and cannot be accessed from remote nodes via Entire
Net-Work.

YES

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
methodNET. The default value represents the highest positive number that can
be stored in a four-byte integer.

bzO10 | nNABS

The number of attached buffers to be used (max. 524287).

An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.

The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

bzO10 | nNCQE

NCQE defines the number of command queue elements which are available for
processing commands arriving at the broker kernel overAdabas SVC /Net-Work
transportmechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to processmultiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the
user (client or server) has received the results of the command, or if the command
is timed out.

Administration74

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Thenumber of commandqueue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanismAdabas SVC / Entire Net-Work. For example, all broker commands
issued by client or server components using this transport mechanism:

bzR1-65534NODE

Defines the unique DBID for EntireX Broker.

Used for internodeAdabas/EntireNet-Work communication. There is no default;
the value of NODEmust be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the samenode number
for different installations of EntireX Broker in an EntireNet-Work environment.

bzO30 | nTIME

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

bzO0-4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

No tracing. Default value.0

Display invalid Adabas commands.1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout a broker
restart, use the EntireX Broker command-line utility ETBCMD.

75Administration

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITY as shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is
specified.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bONO | YESACCESS-SECURITY-
SERVER Determines where authentication is checked.

Authentication is checked in the broker tasks. This requires broker to be running
under TSOS in order to execute privileged security checks.

NO

Authentication is checked in the EntireX Broker Security Server for BS2000. This
does not require broker to be running under TSOS. See EntireX Broker Security
Server for BS2000.

YES

zOA8APPLICATION-NAME

Specifies the name of the application to be checked if FACILITY-CHECK=YES is defined.
In RACF, for example, an application BROKERwith read permission for user DOE is
defined with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(APPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY-CHECK for more information.

wuOYES | NOAUTHORIZATION-
DEFAULT Determineswhether access is granted to a specified service if the specified service could

not be found listed in the repository of authorization rules or in section
DEFAULTS=AUTHORIZATION-RULES of the attribute file.

Grant access.YES

Deny access.NO

Applies only when using EntireX Security under UNIX and Windows. Authorization
rules can be stored within a repository. When an authorization call occurs, EntireX
Security uses the values of this parameter to perform an access check for a particular
broker instance against an (authenticated) user ID and list of rules.

See also Authorization Rules.

zOYES | NOCHECK-IP-ADDRESS

Determines whether the TCP/IP address of the caller is subject to a resource check.

Administration76

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

zONA2MSG0 | NA2MSG1 |
NA2MSG2 |ModuleName

ERRTXT-MODULE

Specifies the name of the security error text module. Default is NA2MSG0, English
messages. For instructions on how to customize messages, see Build Language-specific
Messages (Optional) under Installing EntireX Security under z/OS.

zONO | YESFACILITY-CHECK

It is possible to check whether a particular user is at all allowed to use an application
before performing a password check. The advantage of this additional check is that
when the user is not allowed to use this application, the broker returns error 00080013
and does not try to authenticate the user. Failing an authentication check may lead to
the user's password being revoked; this situation is avoided if the facility check is
performed first. See attribute APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed
before each authentication call.

bwuzONO | YESIGNORE-STOKEN

Determines whether the value of the ACI field SECURITY-TOKEN is verified on each
call.

zOYES | NOINCLUDE-CLASS

Determines whether the class name is included in the resource check.

zOYES | NOINCLUDE-NAME

Determines whether the server name is included in the resource check.

zOYES | NOINCLUDE-SERVICE

Determines whether the service name is included in the resource check.

wuOldapUrlLDAP-
AUTHENTICATION-
URL

Authentication is performed against the LDAP repository specified under ldapUrl.

■ TCP
Specify repository URL:

LDAP-AUTHENTICATION-URL="ldap://HostName[:PortNumber]"

■ SSL/TLS
Specify repository URL with ldaps:

77Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

LDAP-AUTHENTICATION-URL="ldaps://HostName[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number 389 for
TCP transport. Examples for TCP and SSL/TLS:

LDAP-AUTHENTICATION-URL="ldap://myhost.mydomain.com"
LDAP-AUTHENTICATION-URL="ldaps://myhost.mydomain.com:636"

wuOldapUrlLDAP-
AUTHORIZATION-
URL

Authorization is performed against the LDAP repository specified under ldapUrl.

■ TCP
Specify repository URL:

LDAP-AUTHORIZATION-URL="ldap://HostName[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number 389 for
TCP transport.
Example for TCP:

LDAP-AUTHORIZATION-URL="ldap://myhost.mydomain.com:389"

This attribute replaces the parameters host, port and protocol in the xds.ini file of
EntireX version 9.10 and below.

wuOauthDNLDAP-AUTH-DN

For authenticated access to the LDAP server. Specifies theDNof the user. Default value:

cn=admin,dc=software-ag,dc=de

This attribute replaces parameter authDN in the xds.ini file of EntireX version 9.10 and
below.

wuOauthPassLDAP-AUTH-PASSWD-
ENCRYPTED For authenticated access to the LDAP server. Specifies the encrypted value of the user

password. Use program etbnattr to get the encrypted password:

etbnattr –x clear_text_password –echo_password_only

This writes the encrypted password to standard output.

This attribute replaces parameter authPass in the xds.ini file of EntireX version 9.10
and below.

wuOA32LDAP-
AUTHORIZATION-
RULE

Administration78

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

List of authorization rules. Multiple sets of rules can be defined, each set is limited to
32 chars. Themaximumnumber of LDAP-AUTHORIZATION-RULE entries in the attribute
file is 16.

Applies only when using EntireX Security under UNIX or Windows and
SECURITY-SYSTEM=ldapUrl. Authorization rules can be stored in an LDAP repository.
When an authorization call occurs, EntireX Security uses the values of this parameter
and AUTHORIZATION-DEFAULT to perform an access check for a particular broker
instance against an (authenticated) user ID and list of rules.

See also Authorization Rules.

wuObaseDNLDAP-BASE-DN

Specifies the base distinguished name of the directory object that is the root of all objects
for authorization rules. Default value:

dc=software-ag,dc=de

This attribute replaces parameter baseDN in the xds.ini file of EntireX version 9.10 and
below.

wuOldapDnLDAP-PERSON-BASE-
BINDDN Usedwith LDAPauthentication to specify the distinguished namewhere authentication

information is stored. This value is prefixed with the user ID field name (see below).
Example:

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

wuOOpenLDAP|
ActiveDirectory|

LDAP-REPOSITORY-
TYPE

SunOneDirectory|
Tivoli| Novell|
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository
type that most closely matches your actual repository. In the case of Windows Active
Directory, the user ID is typically in the form domainName\userId.

wONO | YESLDAP-SASL-
AUTHENTICATION Specifieswhether or not SimpleAuthentication and Security Layer (SASL) is to perform

the authentication check. In practice, this determines whether or not the password
supplied by the user is passed in plain text between the broker kernel and the LDAP
server. If SASL is activated, this implies that the password is encrypted.

Password is sent to LDAP server in plain text.NO

Password is sent to LDAP server encrypted.YES

wuOcn | uidFieldNameLDAP-USERID-FIELD

79Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Used with LDAP authentication to specify the first field name of a user in the
Distinguished Name, for example:

LDAP-USERID-FIELD=uid

zO1-256MAX-SAF-PROF-
LENGTH This parameter should be increased if the length of the resource checks - that is, the

length of the profile comprising “<class>.<server>.<service>” - is greater than 80 bytes.

This parameter defaults to 80 if a value is not specified.

zONO | YESPASSWORD-TO-
UPPER-CASE Determines whether the password and new password are converted to uppercase

before verification.

zORACF|ACF2|
TOP-SECRET

PRODUCT

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

Security system ACF2 is installed.ACF2

Security system RACF is installed. Default.RACF

Security system TOP-SECRET is installed.TOP-SECRET

The default value is used if an incorrect or no value is specified.

zOYES | NOPROPAGATE-
TRUSTED-USERID Determineswhether a client user IDobtained bymeans of the trusteduser IDmechanism

is propagated to a server using the ACI field CLIENT-USERID.

zONBKSAG|
SAFClassName

SAF-CLASS

Specifies the name of the SAF class/type used to hold the EntireX-related resource
profiles.

zONBKSAG|
SAFClassName

SAF-CLASS-IP

Specifies the name of the SAF class/type usedwhenperforming IP address authorization
checks.

bwuzOAUTHORIZATION|
AUTHENTICATION

SECURITY-LEVEL

Specifies the mode of operation.

Authorization and authentication (not under BS2000).AUTHORIZATION

Authentication.AUTHENTICATION

Note: In version 8.0, the default value for this parameter was AUTHORIZATION.

Administration80

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

zOYES | nameSECURITY-NODE

This parameter can be used to specify a prefix that is added to all authorization checks,
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often important
to distinguish between production, test, and development environments.

This causes the broker ID to be used as a prefix for all authorization checks.YES

This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

name

Note: By not setting this parameter, no prefix is added to the resource check (the default
behavior).

bwuzOOS | LDAPSECURITY-SYSTEM

Authentication is performed against the local operating system. Default if
SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from
the attribute file.

OS

Authentication and authorization are performed against the LDAP repository
specifiedunder LDAP-AUTHENTICATION-URL and LDAP-AUTHORIZATION-URL.

LDAP

bwuzO0-4TRACE-LEVEL

Trace level for EntireX Security. It overrides the global value of trace level in the attribute
file.

No tracing. Default value.0

Log security violations and access denied/permitted.1

All of trace level 1, plus internal errors.2

All of trace level 2, plus function entered/exit messages with argument values and
some progress messages.

3

All of trace level 3, plus some selected data areas for problem analysis.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE-LEVELwithout a broker restart, use the
EntireX Broker command-line utility ETBCMD.

Note: Setting this value also affects tracing for authorization rules.

zOYES | NOTRUSTED-USERID

Activates the trusted user ID mechanism for broker requests arriving over the local
Adabas IPC mechanism.

zONO | YESUSERID-TO-

81Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

UPPER-CASE Determines whether user ID is converted to uppercase before verification.

zONO | YESUNIVERSAL

Determines whether access to undefined resource profiles is allowed.

bwuzONO | YESWARN-MODE

Determines whether a resource check failure results in just a warning or an error.

Administration82

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

zONO | YESCERT-AUTHENTICATION

Do not use SSL certificates for authentication.NO

Use corresponding port for certificate-based authentication.YES

SeeUsing SSL Certificates for Authentication in the EntireX Security documentation
for z/OS.

bwuzOn | nS | nM | nHCONNECTION-NONACT

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime under z/OS | UNIX | Windows | z/VSE in the
platform-specific Administering Broker Stubs documentation.

bwuzO0.0.0.0 | hostname |
IP address

HOST

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

bwuzO2147483647 | nMAX-MESSAGE-LENGTH

83Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Maximummessage size that the broker kernel can process using transportmethod
TCP/IP. The default value represents the highest positive number that can be
stored in a four-byte integer.

bwuzO1025-65535PORT

The TCP/IP port number on which the broker will listen for connection requests.

If not specified, the broker will attempt to find its TCP/IP port number from the
TCP/IP services file, using getservbyname. If it cannot find the number here,
the default value of 1971 is used.

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

Example for multiple ports on z/OS:

HOST=localhost,PORT=3930
HOST=0.0.0.0,PORT=3931

■ Port 3930 is used for local TCP/IP communication only and is not visible outside
the z/OS host.

■ Port 3931 is used for global TCP/IP communication. With IBM's AT-TLS this
port is turned into a TLS port, see Running Broker with SSL/TLS Transport in the
z/OS Administration documentation.

With this configuration you can reach the broker from outside the z/OS host via
the secure TLS connection only (port 3931). The TCP connection (port 3930) can
only be used from inside the z/OS host.

bwuzOYES | NORESTART

The broker kernel will attempt to restart the TCP/IP communicator.YES

The broker kernel will not try to restart the TCP/IP communicator.NO

This setting applies to all TCP/IP communicators.

bwuzO20 | n | UNLIMRETRY-LIMIT

Maximum number of attempts to restart the TCP/IP communicator. This setting
applies to all TCP/IP communicators.

bwuzO3M | n | nS | nM | nHRETRY-TIME

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

Same as nS.n

Wait time in seconds (max. 2147483647).nS

Wait time in minutes (max. 35791394).nM

Administration84

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Wait time in hours (max. 596523).nH

Minimum wait time is 1S.

This setting applies to all TCP/IP communicators.

buzOYES | NOREUSE-ADDRESS

wOYES | NO

The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

YES

The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting onWindows, andwe strongly
advise you do not change this value on this platform.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

NO

zOStackNameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuzO0-4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing
error responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout a broker
restart, use the EntireX Broker command-line utility ETBCMD.

85Administration

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS or BS2000.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

wuONO | YESCOMPATIBILITY

Determines whether the following c-tree parameters are set:

■ COMPATIBILITY PREV610A_FLUSH

■ COMPATIBILITY FDATASYNC

■ SUPPRESS_LOG_FLUSH YES

■ PREIMAGE_DUMP YES

See your FairCom documentation for a description of these parameters.

The c-tree parameters listed above are not set. Default.NO

The c-tree parameters listed above are set. This provides compatibility with c-tree
behavior prior to EntireX Broker 10.5.

YES

wuOYES | NOFLUSH-DIR

Controls whether metadata is flushed to disk immediately after creates, renames, and
deletes of transaction log files and transaction-dependent files.

Metadata is flushed to disk.YES

Metadata is not flushed to disk. This provides compatibility with c-tree behavior
prior to EntireX Broker version 10.5. See COMPATIBILITY NO_FLUSH_DIR in the
FairCom documentation for a description of this parameter.

NO

wuOn | nM | nGMAXSIZE

Defines the maximum size of c-tree data files. Broker allocates one data file for control
data and another data file for message data:

Maximum size in MB.n

Maximum size in MB.nM

Maximum size in GB.nG

wuOn | nKPAGESIZE

Determines how many bytes are available in each c-tree node. PSTORE COLD start is
required after changing this value.

Administration86

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Same as nKn

PAGESIZE in KB.nK

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOWwrite processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE
to a new PSTORE with an increased PAGESIZE value. SeeMigrating the Persistent Store
and define the increased PAGESIZE value for the load broker.

wuOA255PATH

Path name of the target directory for c-tree index and data files.

wuONO | YESSYNCIO

Controls the open mode of the c-tree transaction log.

c-tree transaction log is not opened in synchronous mode. Default.NO

c-tree transaction log is opened in synchronous mode to improve data security. It
may degrade performance of PSTORE operations, but offers the highest level of

YES

data security. See c-tree Database as Persistent Store under UNIX | Windows in the
UNIX | Windows Administration documentation.

wuO0-4TRACE-LEVEL

Trace level for c-tree persistent store. It overrides the global value of trace level in the
attribute file.

No tracing. Default value.0

Log memory allocation failures and errors during close of files.1

n/a2

All of trace level 1, plus UOWID in use for the various ctree requests and function
entered/exit mesages.

3

All of trace level 3, plus returned function values.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE-LEVELwithout a broker restart, use the
EntireX Broker command-line utility ETBCMD.

87Administration

Broker Attributes

SSL/TLS-specific Attributes

The Broker can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. RPC-based clients and servers,
as well as ACI clients and servers, are always SSL clients. The broker is always the SSL server. For
an introduction see SSL/TLS,HTTP(S), and Certificates with EntireX. Your operating systemdeterm-
ines whether this section of the attribute file is required:

■ z/OS
The SSL-specific attribute section is not used. You can use IBM's Application Transparent
Transport Layer Security (AT-TLS).
See Running Broker with SSL/TLS Transport in the z/OS Administration documentation.

■ UNIX and Windows
The SSL-specific attribute section is required, and begins with the keyword DEFAULTS=SSL as
shown in the sample attribute file.
The attributes in this section are needed to execute the SSL communicator of the EntireX Broker
kernel.
See also Running Broker with SSL/TLS Transport under UNIX | Windows.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuOstringCIPHER-SUITE

String that is passed to the underlying SSL/TLS implementation. SSL/TLS is a
standardizedprotocol that uses different cryptographic functions (hash functions,
symmetric and asymmetric encryption etc.). Some of thesemust be implemented
in the SSL/TLS stack; others are optional.When an SSL/TLS connection is created,
both parties agree by "handshake" on the cipher suite, that is, the algorithms
and key lengths used. In a default scenario, this information depends on what
both sides are capable of. It can be influenced by setting the attribute
CIPHER-SUITE for the SSL/TLS server side (the broker always implements the
server side). Thus stubs connect to the broker and thereby become the SSL/TLS
clients.

Under UNIX, Windows and BS2000, the OpenSSL implementation is used.

The SSL protocol is obsolete. It is no longer available. The TLS protocol is the
successor of SSL and is readily available in OpenSSL.

The default OpenSSL configuration uses FIPS 140-2 approved cipher suites,
eligible for TLS v1.2, but without anonymous Diffie-Hellman (ADH) and
pre-shared key (PSK) algorithms. The resulting set of cipher suites provides for
authentication and strong encryption:

CIPHER-SUITE=FIPS+TLSv1.2:!ADH:!PSK:@STRENGTH

Administration88

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

See https://www.openssl.org/docs/man1.1.1/man1/ciphers.

bwuOn | nS | nM | nHCONNECTION-NONACT

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

Same as nS.n

Non-activity time in seconds (min. 600, max. 2147483647).nS

Non-activity time in minutes (min. 10, max. 35791394).nM

Non-activity time in hours (max. 596523).nH

If not specified, the connection non-activity test is disabled.

bwuOhostnameHOST

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

Amaximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

bwuRfilenameKEY-FILE

File that contains the broker's private key (if not contained in KEY-STORE). For
test purposes, EntireX delivers certificates for use on various platforms. See
SSL/TLS Sample Certificates Delivered with EntireX.

Example for UNIX and Windows: MyAppKey.pem.

Note: EntireX Broker does not support Java certificates (keystore files of type
.jks).

bwuRpassword (A32)KEY-PASSWD

Password used to protect the private key. Unlocks the KEY-FILE, for example
MyAppKey.pem. Deprecated. See KEY-PASSWD-ENCRYTPED below.

bwuRencrypted value
(A64)

KEY-PASSWD-ENCRYPTED

Password used to protect the private key. Unlocks the KEY-FILE, for example
MyAppKey.pem. This attribute replaces KEY-PASSWD to avoid a clear-text
password as attribute value. If KEY-PASSWD and KEY-PASSWD-ENCRYTPED are
both supplied, KEY-PASSWD-ENCRYTPED takes precedence.

Use program etbnattr to get the encrypted password:

89Administration

Broker Attributes

https://www.openssl.org/docs/man1.1.1/man1/ciphers

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

etbnattr -w ssl_key_password --echo_password_only

This writes the encrypted password to standard output.

bwuRfilenameKEY-STORE

SSL certificate; may contain the private key. For test purposes, EntireX delivers
certificates for use on various platforms. See SSL/TLS Sample Certificates Delivered
with EntireX.

Example for UNIX and Windows: ExxAppCert.pem.

Note: EntireX Broker does not support Java certificates (keystore files of type
.jks).

bwuO2147483647 | nMAX-MESSAGE-LENGTH

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

bwuO1025-65535PORT

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the sample
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

bwuOYES | NORESTART

The broker kernel will attempt to restart the SSL communicator (this is
the default value).

YES

The broker kernel will not attempt to restart the SSL communicator.NO

bwuO20 | n | UNLIMRETRY-LIMIT

Maximum number of attempts to restart the SSL communicator.

bwuO3M | n | nS | nM | nHRETRY-TIME

Wait time between suspending SSL communication due to unrecoverable error
and the next attempt to restart it.

Same as nS.n

Wait time in seconds (max.2147483647).nS

Wait time in minutes (max. 35791394).nM

Wait time in hours (max. 596523).nH

Minimum: 1S

bwuOYES | NOREUSE-ADDRESS

Administration90

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

YES

The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

NO

wuOnameSTACK-NAME

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

bwuO0-4TRACE-LEVEL

The level of tracing to be performed while the broker is running with transport
method SSL/TLS. It overrides the global value of trace level for all SSL/TLS
routines.

No tracing. Default value.0

Display IP address of incoming request, display error number of outgoing
error responses.

1

All of trace level 1, plus errors if request entries could not be allocated.2

All of trace level 2, plus all routines executed.3

All of trace level 3, plus function arguments and return values.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE-LEVELwithout a broker
restart, use the EntireX Broker command-line utility ETBCMD.

bwuRfilename|keyringTRUST-STORE

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

Specify the file name of the CA certificate store. Examples: EXXCACERT.PEM,
C:\Certs\ExxCACert.pem

bwuONO | YESVERIFY-CLIENT

Additional client certificate required.YES

No client certificate required (default).NO

91Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

For more information see SSL/TLS, HTTP(S), and Certificates with EntireX.

Administration92

Broker Attributes

DIV-specific Attributes

These attributes define a persistent store that is implemented as a VSAM linear data set (LDS) ac-
cessed using Data In Virtual (DIV). This DIV persistent store is a container for units of work. The
DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

Note: All attributes except the deprecated DIVwere introduced with EntireX version 9.12.
They replace the Format Parameters of earlier versions, which are deprecated but still sup-
ported for compatibility reasons.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

zOA511DIV

The VSAM persistent store parameters, enclosed in double quotes (""). The value can
span more than one line.

Note: Deprecated. This attribute is applicable only if you are supplying the persistent
store parameters using Format Parameters of earlier versions. We recommend you use
the attributes below that were introduced with EntireX 9.12 instead.

zOA8DATASPACE-NAME

Defines the name of the dataspace that will be used to map the persistent store.

Default value is DSPSTORE.

zO126-524284DATASPACE-PAGES

Defines the size of the dataspace used to map the persistent store
(size=DATASPACE-PAGES * 4 KB). We recommend using the maximum value.

Default value is 2048.

zRA8DDNAME

Defines the JCL DDNAME that will be used to access the persistent store.

zRA8STORE

Defines an internal name that is used to identify the persistent store.

zO0-4TRACE-LEVEL

Trace level for DIV. It overrides the global value of trace level in the attribute file.

No tracing. Default value.0

Log selected DIV SAVE calls taking longer than 2 seconds elapsed time.1

n/a2

All of trace level 1, plus UOWID in use for the various DIV requests.3

n/a4

93Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE-LEVELwithout a broker restart, use
the EntireX Broker command-line utility ETBCMD.

Administration94

Broker Attributes

Adabas-specific Attributes

TheAdabas-specific attribute section beginswith the keyword DEFAULTS = ADABAS. The attributes
in this section are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,
these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-
tribute.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzO126-20000BLKSIZE

Optional blocking factor used formessage data. If not specified, brokerwill split themessage
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.

For reasons of efficiency, do not specify a BLKSIZEmuch larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.

The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.

Default value is 2000.

bwuzR1-32535DBID

Database ID of Adabas database where the persistent store resides.

bwuzR1-32535FNR

File number of broker persistent store file.

bwuzON | YFORCE-COLD

Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

bwuzO0 | nMAXSCAN

Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

bwuzON | YOPENRQ

Determines whether driver for Adabas persistent store is to issue an OPEN command to
Adabas.

zR200-255SVC

Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

95Administration

Broker Attributes

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzO0-4TRACE-LEVEL

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

No tracing. Default value.0

Log selectedAdabas CB fields (command code, response code, subcode, ISN, additions).1

n/a2

All of trace level 1, plus UOWID in use for the various Adabas requests and function
entered/exit mesages.

3

All of trace level 3, plus more Adabas CB fields for successful requests and returned
function values.

4

Trace levels 2, 3 and 4 should be used only when requested by Software AG Support.

If you modify the TRACE-LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE-LEVELwithout a broker restart, use the EntireX
Broker command-line utility ETBCMD.

Administration96

Broker Attributes

Application Monitoring-specific Attributes

The application monitoring-specific attribute section begins with the keyword
DEFAULTS=APPLICATION-MONITORING. It contains attributes that apply to the applicationmonitoring
functionality. At startup time, the attributes are read if the Broker-specific attribute
APPLICATION-MONITORING=YES is specified. Duplicate ormissing values are treated as errors.When
an error occurs, application monitoring is turned off and EntireX Broker continues execution. See
the separate Application Monitoring documentation.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

bwuzOA100APPLICATION-MONITORING
-NAME or
APPMON-NAME

Specifies a default application monitoring name. Used to set the value of the
ApplicationName KPI.

bwuzRA64COLLECTOR-BROKER-ID

Identifies the Application Monitoring Data Collector. Has the format
host_name:port_number, where

is the host where the Application Monitoring Data
Collector is running, and

host_namewhere

is the port number of theApplicationMonitoringData
Collector.

port_number

The default port is 57900.

bwuzO0-4TRACE-LEVEL

The level of tracing to be performed while the broker is running with
application monitoring.

No tracing. Default value.0

Display application monitoring errors.1

All of trace level 1, plus measuring points for application monitoring.2

All of trace level 2, plus function entered/exit messages with argument
values and monitoring buffers.

3

All of trace level 3, plus returned function values.4

Trace levels 2, 3 and 4 should be used only when requested by Software AG
Support.

If youmodify the TRACE-LEVEL attribute, youmust restart the broker for the
change to take effect. TRACE-LEVEL cannot be changed dynamically for
application monitoring.

97Administration

Broker Attributes

Authorization Rule-specific Attributes

The authorization rule-specific attribute section begins with the keyword
DEFAULTS=AUTHORIZATION-RULES. It contains attributes that enhance security-related definitions.
At startup time, the attributes are read if the following conditions are met:

■ Broker-specific attribute SECURITY=YES
■ Security-specific attributes SECURITY-SYSTEM=OS and SECURITY-LEVEL=AUTHORIZATION

When an error occurs, the EntireX Broker stops. See Authorization Rules.

Operating SystemOpt/
ReqValuesAttribute BS2000WindowsUNIXz/OS

wuRA32RULE-NAME

Specifies a rule name. A rule is a container for a list of services and a list of client and
server user IDs. All users defined in a rule are authorized to use all services defined in
this rule. See example under Rules Stored in Broker Attribute File.

wuRA32CLASS
SERVER
SERVICE

These three attributes together identify the service. CLASSmust be specified first,
followed immediately by SERVER and SERVICE.Wildcard Service Definitions are
allowed.

wuRA32CLIENT-USER-ID

Defines an authorized client user ID.

wuRA32SERVER-USER-ID

Defines an authorized server user ID.

Administration98

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

■ BROKER-ID (in Broker-specific Attributes)
■ NODE (in Adabas SVC/Entire Net-Work-specific Attributes)
■ PORT (in SSL/TLS-specific Attributes and TCP/IP-specific Attributes)

How you use the variable definition file will depend upon your particular needs. For instance,
some optional attributesmay require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

99Administration

Broker Attributes

100

6 Concepts of Persistent Messaging

■ Client Server Model: Persistent Messaging ... 102
■ Definitions of Persistent Messaging Terms .. 104
■ Availability of Persistent Store .. 106
■ Migrating the Persistent Store .. 107
■ Persistent Store Report ... 111

101

This chapter provides a brief introduction to the concepts of the persistent store and its role in
EntireX for providing persistent messaging within the client/server model. It covers the following
topics:

The table Persistent Store Drivers lists the implementation choices available to each operating system
for accessing the physical persistent store. See alsoUsing Persistence and Units ofWork, Broker UOW
Status Transition andManaging the Broker Persistent Store in the platform-specific Administration
documentation.

Client Server Model: Persistent Messaging

EntireX provides persistent messaging within the client/server model. This is achieved by storing
all persistent messages on disk so that if a system failure occurs, messages will automatically be
recovered allowing applications to be restartedwithout any loss of data. The sectionUsing Persist-
ence and Units of Work describes implementation issues and how to use persistence and units of
work in EntireX Broker. Units of work can also be used without persistence; units of work which
are the vehicle for persistent messaging.

The following figure illustrates the concept of persistent messages.

Persistence in an EntireX Broker's unit of work (a group of logically related messages) has the
following four variations:

■ Both the unit of work and its status have persistence.
■ The unit of work does not have persistence, but its status does.
■ The unit of work has persistence, but its status does not.

Administration102

Concepts of Persistent Messaging

■ Neither the unit of work nor its status has persistence.

The status of amessage is information about themessage rather than the actualmessage data itself.
This enables the sender to determine the progress of the message and determine if it has been re-
ceived by the partner andwhether processingwas successfully completed. This gives applications
the option of having the Broker kernel store only the message status and not the message itself,
provided the application has beenwritten to resend data from a knownpoint in the event of system
failure. This option can afford significant performance benefits over storing the whole message
data.

To support transaction control in a coordinated operation of distributed systems, EntireX can
group logically related messages into “units of work” that are committed to the EntireX Broker
for further transmissionwhen complete. In case of failure on the server side, the receiving program
can backout the whole unit of work; this makes it available for processing later or by another
server.

103Administration

Concepts of Persistent Messaging

Definitions of Persistent Messaging Terms

■ UOW
■ Persistent Store
■ Persistent Store Drivers
■ UOW Lifetime
■ Persistent UOW
■ Persistent Status

UOW

A unit of work (UOW) is a set of one or more messages that are processed as a single unit. The
sender of aUOWaddsmessages to theUOWand then indicates that theUOW is complete (COMMIT).
TheUOWand itsmessages are not visible to the receiver until the sender has committed theUOW.
Once the UOW is committed, the receiver can receive the messages, and can indicate when the
UOW is complete (COMMIT).

Persistent Store

The persistent store is used for storing unit-of-work messages to disk. This means message and
status information can be recovered after a hardware or software failure to the previous commit
point issued by each application component.

Persistent Store Drivers

Apersistent store driver is an executable, or a loadmodule, that implements access to the physical
persistent store. There is one persistent store driver for each persistent store type. The following
table shows the persistent store options:

NotesOperating SystemDescription
Persistent
Store Type

Adabas, Software AG's ADAptable
dataBASe, is a high-performance,

UNIX, Windows,
z/OS, BS2000, z/VSE

Uses Adabas database.Adabas

multithreaded, database management
system.

This persistent store option is
implemented as a VSAM linear data set.

z/OSUses IBM Data In Virtual
facility on z/OS.

DIV

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

UNIX and Windowsc-tree© is an embedded local
database that can be used as
your persistent store.

CTREE

See alsoManaging the Broker Persistent Store in the platform-specificAdministration documentation
and also PSTORE-TYPE under Broker-specific Broker Attributes.

Administration104

Concepts of Persistent Messaging

UOW Lifetime

EachUOWhas a lifetime value associatedwith it. This is the period of time that theUOW is allowed
to exist without being completed. This time starts when the UOW is initially created and runs
until the UOW is completed. A UOW is completed when it is successfully:

■ cancelled or backed out by its sender, or
■ cancelled or committed by its receiver.

If the UOW is in ACCEPTED status when this lifetime expires, the UOW is placed into a TIMEOUT
status. Lifetime timeouts will not occur when the UOW is in either RECEIVED or DELIVERED status.

A special “pseudo-clock” is maintained for UOW lifetimes. This clock is implemented in such a
way that it only runs when the Broker is active. This prevents a UOW lifetime from expiring while
the Broker is down or otherwise unavailable.

Persistent UOW

Persistence is an attribute of a UOW (unit of work). If a UOW is persistent, its messages are saved
in the persistent store when the sender COMMITs the UOW and they are retained until the receiver
COMMITs or CANCELs the UOW, or until its lifetime expires. If the Broker or system should fail after
the UOW is committed by the sender, the UOW (and its conversation) will be restored to their
last, stable status when the Broker restarts.

Persistent Status

Persistent status is an attribute of a UOW (unit of work). If a UOWhas persistent status, the status
of the UOW is maintained in the persistent store, and is updated whenever the status changes.
The persistent status remains in the persistent store after the UOW is completed, until its status
lifetime has expired.

A persistent status value represents a multiple of the UOW lifetime value. Thus if a UOW has a
lifetime of 5M (whereby M stands for minutes) and a persistent status value of 4, the status of the
UOWwould be deleted 20M (5M*4) after the UOWwas completed.

105Administration

Concepts of Persistent Messaging

Availability of Persistent Store

Caution: The persistent store must be available before you attempt to start or restart the
Broker; otherwise your Broker will not initialize.

■ Introduction
■ Disconnect the Persistent Store
■ Connect the Persistent Store

Introduction

The PSTOREmust be available for the Broker to start. Subsequently, Brokerwill continue to function
even if the PSTORE becomes unavailable and applications issuing non-persistent commands will
continue without interruption. However, Broker will not be able to process commands relating
to persistence until the PSTORE becomes available again.

Users issuing commands involving persistence - for example units of work with persistence - are
notified of the unavailability of the PSTORE through an ACI return code. In addition, persistent
commands being processed at the point of unavailability are backed out, and details of the PSTORE
problem are written to the Broker log file.

There are several reasons for the PSTORE becoming unavailable. Examples:

■ unavailability of the PSTORE file(s)
■ capacity of PSTORE file being exceeded
■ in the case of Adabas, termination of the database

Disconnect the Persistent Store

You can remove the state “No new Units of Work” - that is, no new persistent data - using CIS. If
the PSTORE capacity is exceeded, an error message is written to the Broker log file. You must use
Command and Information Services (CIS) to ensure that users cannot issue further commands
creating new units of work.

During the time the PSTORE is unavailable, there is no timeout processing for unit-of-work records
kept in the PSTORE. In addition, some in-memory resources relating to persistent items, such as
conversation control blocks, are also retained until the PSTORE becomes available again and normal
processing is resumed for all commands.

See executable command request DISCONNECT-PSTORE under ETBCMD: Executable Command Requests.

Administration106

Concepts of Persistent Messaging

Connect the Persistent Store

Subsequently, you can use CIS to make the PSTORE available again, allowing users only to issue
commands consuming records from the PSTORE rather than producing new ones. After a period
of operation in this state, the contents of the PSTOREwill be reduced sufficiently, and you can remove
the state “No new Units of Work” through CIS.

See executable command request CONNECT-PSTORE under ETBCMD: Executable Command Requests.

Migrating the Persistent Store

■ Introduction
■ Configuration
■ Migration Procedure

Note: RUN-MODE options PSTORE-LOAD and PSTORE-UNLOAD are deprecated and will not be
supported in the next version of EntireX.

Introduction

The contents of EntireX Broker's persistent store can bemigrated to a new persistent store in order
to change the PSTORE type or to use the same type of PSTOREwith increased capacity.

The migration procedure outlined here requires two Broker instances started with a special RUN-
MODE parameter. One Broker unloads the contents of the persistent store and transmits the data to
the other Broker, which loads data into the new PSTORE. Therefore, for the purposes of this discus-
sion, we shall refer to an unload Broker and a load Broker.

This procedure is based on Broker-to-Broker communication to establish a communication link
between two Broker instances. It does not use any conversion facilities, since the migration pro-
cedure is supported for homogeneous platforms only.

107Administration

Concepts of Persistent Messaging

Configuration

The migration procedure requires two Broker instances, each started with the RUN-MODE attribute.
The unload Broker should be started with the following attribute:

RUN-MODE=PSTORE-UNLOAD

The load Broker should be started with the following attribute:

RUN-MODE=PSTORE-LOAD

These commands instruct the Broker instances to perform the PSTOREmigration.

Note: The attribute PARTNER-CLUSTER-ADDRESSmust be defined in both Broker instances to
specify the transport address of the load Broker. The unload Broker must know the address
of the load broker, and the load Brokermust in turn know the address of the unload Broker.

Example:

Broker ETB001 performs the unload on host HOST1, and Broker ETB002 performs the load on
host HOST2. The transmission is based on TCP/IP. Therefore, Broker ETB001 starts the TCP/IP
communicator to establish port 1971, and Broker ETB002 starts the TCP/IP communicator to estab-
lish port 1972.

Administration108

Concepts of Persistent Messaging

For ETB001, attribute PARTNER-CLUSTER-ADDRESS = HOST2:1972:TCP is set, and for ETB002, attribute
PARTNER-CLUSTER-ADDRESS = HOST1:1971:TCP is set to establish the Broker-to-Broker communication
between the two Broker instances.

In addition to attributes RUN-MODE and PARTNER-CLUSTER-ADDRESS, a fully functioning Broker
configuration is required when starting the two Broker instances. To access an existing PSTORE on
the unloader side, you must set the attribute PSTORE = HOT. To load the data into the new PSTORE
on the loader side, you must set the attribute PSTORE=COLD. The load process requires an empty
PSTORE at the beginning of the load process.

Note: Use caution not to assign PSTORE = COLD to your unload Broker instance, as this startup
process will erase all data currently in the PSTORE.

For the migration process, the unload Broker and the load Broker must be assigned different per-
sistent stores.

A report can be generated to detail all of the contents of the existing persistent store. At the end
of the migration process, a second report can be run on the resulting new persistent store. These
two reports can be compared to ensure that all contents were migrated properly. To run these re-
ports, set the attribute PSTORE-REPORT = YES. See PSTORE under Broker-specific Broker Attributes for
a detailed description, especially for the file assignment.

Migration Procedure

The migration procedure is made up of three steps.

Step 1

The unload Broker and the load Broker instances can be started independently of each other. Each
instance will wait for the other to become available before starting the unload/load procedure.

The unload Broker instance sends a handshake request to the load Broker instance in order to
perform an initial compatibility check. This validation is performed by Broker according to platform
architecture type and Broker version number. The handshake ensures a correctly configured
partner cluster address and ensures that the user did not assign the same PSTORE to both Broker
instances. If a problem is detected, an error message will be issued and both Broker instances will
stop.

Step 2

The unload Broker instance reads all PSTORE data in a special non-destructive raw mode and
transmits the data to the load Broker instance. The load Broker instance writes the unchanged raw
data to the new PSTORE. A report is created if PSTORE-REPORT=YES is specified, and a valid output
file for the report is specified.

109Administration

Concepts of Persistent Messaging

Step 3

The unload Broker instance requests a summary report from the load Broker instance to compare
the amount of migrated data. The result of this check is reported by the unload Broker instance
and the load Broker instance before they shut down.

When a Broker instances is started in RUN-MODE=PSTORE-LOAD or RUN-MODE=PSTORE-UNLOAD, the
Broker instances only allow administration requests. All other user requests are prohibited.

Notes:

1. The contents of the persistent store are copied to the new persistent store as an exact replica.
No filtering of unnecessary information will be performed - for example, UOWs in received
state. The master records will not be updated.

2. Before restarting your Broker with the new persistent store, be sure to change your PSTORE at-
tribute to PSTORE=HOT.Do not start your brokerwith the newpersistent store using PSTORE=COLD;
this startup process will erase all of the data in your persistent store.

3. After completing the migration process and restarting your Broker in a normal RUN-MODE, it is
important not to bring both the new PSTORE and the old PSTORE back online using separate
Broker instances; otherwise, applicationswould receive the same data twice. Once themigration
process is completed satisfactorily, and is validated, the old PSTORE contents should be discarded.

Administration110

Concepts of Persistent Messaging

Persistent Store Report

You can create an optional report file that provides details about all records added to or deleted
from the persistent store. This section details how to create the report and provides a sample report.

■ Configuration
■ Sample Report

Configuration

To create a persistent store report, use Broker's global attribute PSTORE-REPORTwith the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported
if the output mechanism is available.

If the value NO is specified, no report will be created.

The report file is created using the following rules:

BS2000

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file
name PSTORE.REPORT.LOADwill be used if Broker is started with RUN-MODE=PSTORE-LOAD.

The file name PSTORE.LOAD.UNLOADwill be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

Note: RUN-MODE options PSTORE-LOAD and PSTORE-UNLOAD are deprecated and will not be
supported in the next version of EntireX.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the envir-
onment variable will be used.

If Broker receives the command-line argument -p, the token following argument -pwill be used
as the file name.

Windows

Same as UNIX.

111Administration

Concepts of Persistent Messaging

z/OS

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.

z/VSE

Logical unit SYS003 and logical file name ETBPREP are used. Format RECORD-FORMAT=FB, RECORD-
LENGTH=121 is used.

Sample Report

The following is an excerpt from a sample PSTORE report.

EntireX 10.7 PSTORE Report 2016-10-18 10:46:18 Page 1

Identifier Elements Total length Record Type Date Action
0000000000000000 1 760 Master 2016-10-18... Created
0010000000000001 1 5022 Conversation 2016-10-18... Created
0010000000000002 1 5022 Conversation 2016-10-18... Created
0010000000000003 1 5022 Conversation 2016-10-18... Created
0010000000000001 Conversation 2016-10-18... Postponed
0010000000000001 Conversation 2016-10-18... Accepted
0010000000000002 Conversation 2016-10-18... Postponed
0010000000000002 Conversation 2016-10-18... Accepted
0010000000000003 Conversation 2016-10-18... Postponed
0010000000000003 Conversation 2016-10-18... Accepted
0010000000000003 Conversation 2016-10-18... Postponed
0010000000000003 Conversation 2016-10-18... Accepted
0010000000000001 Conversation 2016-10-18... Deleted
0010000000000002 Conversation 2016-10-18... Deleted
0010000000000003 Conversation 2016-10-18... Deleted

The following fields are provided in the report:

■ Identifier provides the UOWID (record ID).
■ Elements gives the number of messages per UOWwhen creating or loading records.
■ Total Length gives the size of the raw record when creating or loading records.
■ Record Type describes the type of the data. Following types are currently supported:

■ Cluster: a special record for synchronization purposes
■ Conversation: a unit of work as part of a conversation
■ Master: a special record to manage the persistent store

■ Date and time of the action
■ Action describes the action of Broker. The following actions are currently supported:

■ Accepted: UOW status was changed from POSTPONED to ACCEPTED

Administration112

Concepts of Persistent Messaging

■ Created: record is created
■ Deleted: record is deleted
■ Postponed: UOW status was changed from DELIVERED to POSTPONED

■ Loaded: record is loaded (Broker instance with RUN-MODE = PSTORE-LOAD)
■ Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE-UNLOAD)

Note: RUN-MODE options PSTORE-LOAD and PSTORE-UNLOAD are deprecated and will not be
supported in the next version of EntireX.

■ Remaining postpone attempts.

113Administration

Concepts of Persistent Messaging

114

7 Using Persistence and Units of Work

■ Implementation Issues .. 116
■ Using Units of Work ... 121
■ Using Persistence .. 125
■ Using Persistent Status ... 131
■ Recovery Processing .. 132

115

This chapter describes implementation issues and how to use persistence and units of work in
EntireX Broker. It assumes you are familiar with EntireX Broker from both an administrative and
an application perspective, and with the ACI programming in particular. See also EntireX Broker
and EntireX Broker ACI Programming.

Implementation Issues

■ Table of Persistent Store Drivers
■ Changes are Required
■ Attributes used for Units of Work
■ ACI Fields used for Units of Work
■ ACI Function SYNCPOINT used for Units of Work
■ Options used for UOW Operations

Table of Persistent Store Drivers

A persistent store driver is an executable, or a loadmodule that implements access to the physical
persistent store. There is one persistent store driver for each persistent store type. The following
table shows the persistent store options:

NotesOperating SystemDescription
Persistent
Store Type

Adabas, Software AG's ADAptable
dataBASe, is a high-performance,

UNIX, Windows,
z/OS, BS2000, z/VSE

Uses Adabas database.Adabas

multithreaded, database management
system.

This persistent store option is
implemented as a VSAM linear data set.

z/OSUses IBM Data In Virtual
facility on z/OS.

DIV

c-tree© is the fast and reliable embedded
database of FairCom Corporation®.

UNIX and Windowsc-tree© is an embedded local
database that can be used as
your persistent store.

CTREE

Changes are Required

It is important to note that some level of both application and system changes are necessary to
utilize UOWs. Existing message-based Broker applications will continue to operate as before.

Administration116

Using Persistence and Units of Work

Attributes used for Units of Work

The following table represents the keyword parameters that can be used in the Broker attribute
file for UOWs. A short form of the keyword is given if applicable. Default values are underlined.

DescriptionValueKeyword

Broker: sets default STORE attribute for all units of work.

Service: sets default STORE attribute for units of work sent
to the service.

OFF | BROKERSTORE

Broker: maximum number of active UOWs. If 0 is specified,
then the Broker will not support any UOW operations.

Service: maximum number of active UOWs for a service.

0 | nMAX-UOWS or
MUOW

Broker: maximum number of messages in a UOW.

Service: maximum number of messages in a UOW for the
service.

16 | nMAX-MESSAGES-IN-UOW or
UMSG

Broker only. Startup value for persistent store.NO | HOT |
COLD |
WARM

PSTORE

No persistent store.NO

Persistent UOWs are restored to prior state during
initialization.

HOT

PersistentUOWs are not restoredduring initialization,
and the persistent store is considered empty.

COLD

(Internal Use Only) persistent UOWs are not restored
during initialization, but the persistent store remains
intact.

WARM

Broker: persistent status is maintained either for persistent
or non-persistent UOWs.

Service: persistent status is maintained either for persistent
or non-persistent UOWs for a service.

0 - 254UWSTATP

Broker: defines the lifetime of a UOW in seconds, minutes,
hours or days. This value is the time that it can remain in the

1D | nS | nM |
nH | nD

UOW-DATA-LIFETIME

system without being completed. If the UOW is not
completed within this time, it is deleted with a status of
TIMEOUT

Service: defines the lifetime of a UOW for a service.

Broker: defines the default maximum message size that can
be sent.

Service: defines the maximummessage size that can be sent
to a service.

n | 31647MAX-UOW-MESSAGE-LENGTH

117Administration

Using Persistence and Units of Work

DescriptionValueKeyword

Broker: sets the default DEFERRED attribute for all services.
UOWs can be sent to a deferred service even if the service is
not registered.

Service: sets the DEFERRED attribute for a service.

NO | YESDEFERRED

ACI Fields used for Units of Work

The following fields have been added to the broker ACI control block. Note that the actual field
names may differ slightly depending on the programming language being used.

DescriptionKeyword

Indicates whether the specified UOW is persistent or not:STORE

The sender accepts the persistence option specified by the service or Broker (this is the
default value).

OFF

The sender wants persistence.BROKER

The sender does notwant persistence, even if the service or Broker default is persistence.NO

Also returned with RECEIVE to indicate if the UOW being received is persistent or not.

The amount of time that the UOW can remain incomplete without being timed out. This is also
referred to as the UOW lifetime.

UWTIME

The current status of aUOW.The status is returned on SEND, RECEIVE, and SYNCPOINT operations.
Applicable values are as follows:

STATUS

One or more messages have been sent as part of a UOW but the UOW is not yet
committed.

RECEIVED

The UOW has been committed by the sender.ACCEPTED

The UOW is currently being received.DELIVERED

The UOWwas postponed by the receiver for later processing.POSTPONED

The UOWwas backed out prior to being committed by the sender.BACKEDOUT *

the receiver of the UOW has committed it.PROCESSED *

the receiver of the UOW has cancelled it.CANCELLED *

the UOWwas not processed within the specified time.TIMEOUT *

The UOWwas not persistent and its data was discarded over a restart.DISCARDED *

* The status values marked with an asterisk are persistent, and will only exist for UOWs with
persistent status.

In addition, the following status values are returned on a RECEIVE operation to indicate if the
message being received is part of a UOW or not, and if so, which part:

Administration118

Using Persistence and Units of Work

DescriptionKeyword

The message is not part of a UOW.RECV_NONE

The message is the first message in a UOW.RECV_FIRST

The message is not the first or last message in a UOW.RECV_MIDDLE

The message is the last message in a UOW.RECV_LAST

The message is the only message in a UOW.RECV_ONLY

All RECV_ values except RECV_NONE reflect an actual UOW status of DELIVERED.

A user-defined status associated with a UOW. It can be specified as part of a SEND, RECEIVE, or
SYNCPOINT operation and will be returned whenever the status of a UOW is queried. See Using
User Status below for more information.

USTATUS

A unique identifier for a unit of work. This value is returned on SEND and RECEIVE operations
and may be provided on SYNCPOINT operations that are querying status of UOWs.

UOWID

A numeric value indicating the lifetime value for persistent status. This value is a multiplier
against the UWTIME value. Applicable values are:

UWSTATP

Use the default specified for the service or broker.0

Use 1 to 254 times the UWTIME value as the status lifetime.1-254

The sender does not want persistent status, even if the service or broker default is
persistent status.

255

ACI Function SYNCPOINT used for Units of Work

The SYNCPOINT function deals exclusively with UOWs. The following table lists the OPTION values
that can be usedwith the SYNCPOINT function, and the associated behavior and restrictions of each
one.

Note: In many cases, the behavior will be different depending on whether the issuer is the
sender or the receiver of the UOW.

Behavior and RestrictionsCallerOption

If the specified UOW is in RECEIVED status, it will be put into BACKEDOUT status.
If persistent status is not specified, no trace of the UOWwill remain.

SenderBACKOUT

If the specified UOW is in DELIVERED status, it will be put back into ACCEPTED
status and its attempted delivery count will be incremented.

Receiver

If the specified UOW is in ACCEPTED status, it will be put into CANCELLED status.
If persistent status is not specified, no trace of the UOWwill remain.

SenderCANCEL

If the specified UOW is in DELIVERED status, it will be put into CANCELLED status.
If persistent status is not specified, no trace of the UOWwill remain.
If attributes POSTPONE-ATTEMPTS and POSTPONE-DELAY have been defined for
the service, the UOWwill bemoved to the postpone queue instead of being deleted.

Receiver

119Administration

Using Persistence and Units of Work

Behavior and RestrictionsCallerOption

If the specified UOW is in RECEIVED status, it will be put into ACCEPTED status. It
is now available to be received by the other partner.

SenderCOMMIT

If the specified UOW is in DELIVERED status, it will be put into PROCESSED status.
If persistent status is not specified, no trace of the UOWwill remain.

Receiver

This is a special case of the COMMIT option, where the caller specifies UOWID=BOTH
in the request. This allows the caller to commit two UOWs, one being received and
one being sent, in a single atomic operation.

Both

Deletes the persistent status of the specified UOW. The UOWmust be complete
and must have been created by the caller. After this request, no trace of the UOW
will remain.

SenderDELETE

Commits the UOW and sets an EOC indication on the associated conversation. See
COMMIT for additional information and restrictions.

SenderEOC

Commits the UOW and sets an EOC-CANCEL indication on the associated
conversation. See COMMIT for additional information and restrictions.

SenderEOCCANCEL

Returns the status of the last UOW sent by the caller. In addition,
CLASS/SERVER/SERVICE details of the associated server are also returned. The
CONV-ID can be included to qualify the request.

SenderLAST

With UOWID=n, returns the status of the specified UOW. In addition,
CLASS/SERVER/SERVICE details of the associated server are also returned.

SenderQUERY

Updates the user status field of the specifiedUOW. TheUOWmust be in RECEIVED,
ACCEPTED, or DELIVERED status.

BothSETUSTATUS

Options used for UOW Operations

This table lists option values used to support UOW operations:

Behavior and RestrictionsFunctionOption

This option indicates that the data being sent is part of a UOW. The UOW is created on
the first send, and subsequent sends will add messages to the UOW.

SENDSYNC

This option indicates that the RECEIVE can be satisfied only with a message in a UOW.RECEIVESYNC

This option indicates that the RECEIVE can be satisfied only with non-UOWmessages.RECEIVEMSG

This option indicates that the RECEIVE can be satisfied by either a non-UOW or a UOW
message. It is up to the receiver to determine which, based on the UOWSTATUS field that
is returned.

RECEIVEANY

This option combines a SEND and a SYNCPOINT, OPTION=COMMIT into a single operation.
It allows the sender to create and commit a UOW in a single operation.

SENDCOMMIT

Administration120

Using Persistence and Units of Work

Using Units of Work

■ UOW vs non-UOW Conversations
■ Use of LOGON and TOKEN
■ User Identification for Units of Work
■ Which Applications should use UOWs?
■ Understanding UOW Status
■ UOW Status on RECEIVE
■ Using User Status
■ Resource and Performance Considerations

UOW vs non-UOW Conversations

A Broker conversation will support either UOWs or messages, but not both. At the time the con-
versation is created, the Broker will determine which is to be supported.

Sequencing of Messages across Conversations

The order of delivery of new conversations to receivers is determined by the COMMIT time of the
first UOWwithin its conversation. The conversation delivered to the receiver first is the one con-
taining the first UOW for which the sender issues a SEND,OPTION=COMMIT or SYNCPOINT,OP-
TION=COMMIT.

If there is more than one UOW in a conversation, the COMMIT time of the first UOW determines
the age of that conversation. Also, multiple UOWs within a conversation are picked up by the re-
ceiver, in the same sequence as they were committed by the sender.

Scenario: A server starts to receiveUOWs (CONVID=NEW) and receives UOWT1 first, since this UOW
is committed first. If the server issues another receive (CONVID=NEW), it receivesUOWT3. If, however,
the UOWs are not combined in conversations (that is, every UOW is in a separate conversation),
the server receives (CONVID=NEW) UOW T1 first, then UOW T2, UOW T3, etc.

121Administration

Using Persistence and Units of Work

The COMMITTIME field in the Broker control block shows COMMITTIME of the first UOW in a conver-
sation.

Use of LOGON and TOKEN

An explicit LOGON function must be used before a program can use any of the UOW functions. In
order to enable client and server programs to recover the status of their UOWs in the event of a
failure (Broker, system, or application), these programs must specify a TOKEN value at the time of
logon.

User Identification for Units of Work

EntireX Broker identifies participants by ACI fields USER-ID and TOKEN if TOKEN is supplied or by
USER-ID and internal ID (so-called physical user ID) if TOKEN is not supplied. However, the imple-
mentation of persistent units of work is based on the user identification USER-ID and TOKEN.

Caution: In order to avoid unpredictable inconsistencies, all applications using persistent
units of workmust use this user identification to run correctly. TheACI verification routines
do not restrict usage of UOWs to USER-ID and TOKEN yet. Modify your application accord-
ingly.

Which Applications should use UOWs?

Applications that should consider using UOWs fit into a couple of different categories.

■ Applications that currently use multiple messages to communicate a single request are good
candidates for UOWs. Grouping these messages within a UOW can give the application addi-
tional control over how its data is processed.

■ Applications that intend to utilize deferred services, persistence, or persistent status must use
UOWs, since these facilities are not available to message-based applications.

Understanding UOW Status

In order to use UOWs effectively, you need to understand

■ the meaning of the various UOW status values;
■ how they change based on events within the system;

and
■ how these changes are influenced by both persistence and persistent status.

The diagram below represents the normal status values as a UOWprogresses through the system.
These statuses and the transitions between them are not affected by either persistence or persistent
status. The status values are indicated in ovals.

Administration122

Using Persistence and Units of Work

Normal Status Values as a UOW progresses through System

Note: The UOW is available to be received when it is first committed. The status values
BACKEDOUT, CANCELLED and PROCESSED are valid only if there is persistent status.

UOW Status on RECEIVE

When a RECEIVE is issued for a message within a UOW, you might expect that the UOW status
returned would be DELIVERED, since this is the actual status of the UOW. This is not the case,
however. On a RECEIVE, the Broker returns a special UOWstatus that reflects additional information
about the message and the UOW. These statuses are:

■ RECV_FIRST= the message is the first message in a UOW.
■ RECV_MIDDLE= the message is not the first or last message in a UOW.
■ RECV_LAST= the message is the last message in a UOW.

123Administration

Using Persistence and Units of Work

■ RECV_ONLY= the message is the only message in a UOW.
■ RECV_NONE= themessage is not part of a UOW. This status is particularly useful if the application
is receiving both messages and UOWs.

If you receive a status of either RECV_LAST or RECV_ONLY and then issue another RECEIVE for the
same UOW, you will get an error 00740301 Conversation found: end of unit of work indic-
ating the end of the UOW.

Using User Status

The user status field of the UOW allows additional, application-specific information to be carried
with the UOW. It can be used to maintain status or indicate error information. It can also provide
a form of “out-of-band” data communication between the sender and the receiver of a UOW.

For example, if a server is processing a long-running UOW, it can periodically update the user
status of the UOW (using SYNCPOINT, OPTION=SETUSTATUS) to indicate its progress. The client can
periodically get the user status (using SYNCPOINT, OPTION=QUERY) and report the progress back
to the end-user.

As another example, the sender of a long-running UOW can update the user status to indicate
that processing of the UOW should be abandoned by the server. The server can periodically get
the user status while processing and react accordingly.

Resource and Performance Considerations

Each active UOW consumesmemory resources (approximately 140 bytes per UOW) in a prealloc-
ated pool, not including the size of the message itself.

Also, additional memory resources such as the conversation and participant control blocks for the
UOW, together withmessages associatedwith them, will remain inmemory for a deferred service
when persistence is used. This can become significant when UOWs are being sent to a deferred
service. However, the message itself does not remain in memory if sent to a service which is not
currently registered - the whole purpose of deferred services. If the service is currently registered,
the message remains in memory.

Messages that are sent to any (registered or unregistered) service can be “paged out” by Broker
if storage is required. This feature considerably easesmemory consumptionwhenusing persistence.

Administration124

Using Persistence and Units of Work

Using Persistence

■ When do Persistent UOWs Make Sense?
■ Adding Persistence to a UOW
■ Resource and Performance Considerations
■ Which Information is Saved with the UOW?
■ What happens when Broker Restarts?
■ UOWs and Replicated Servers
■ Postponing Units of Work

When do Persistent UOWs Make Sense?

A UOW should be made persistent if the sender wants the Broker to assure that the UOWwill be
deliverable, even if there is a system or Broker failure. Assured delivery assumes that the intended
receiver of the UOW is active, or becomes active within the specified lifetime of the UOW.

Since most existing Broker applications are interactive, they are probably not good candidates for
persistent UOWs. New applicationmodels can now be implemented, using persistent UOWs. For
example, a service that collects information from other services, such as accounting, inventory,
logging, etc., would be a good fit for persistent UOWs. Another example could be a client sending
a long-running request to a service (one that may be inactive or busy), disconnecting, and coming
back some time later to retrieve the results. The reliability of assured delivery makes this model
practical.

Persistent UOWs do not require persistent status.

Adding Persistence to a UOW

A UOW can be made persistent:

■ by specifying STORE=BROKER in the ACI request that creates the UOW;
■ by specifying STORE=BROKER in service definition or service defaults portion of the Broker attribute
file, making all UOWs for that service persistent; or

■ by specifying STORE=BROKER in the Broker defaults section of the Broker attribute files, making
all UOWs in the system persistent.

In addition, specifying STORE=NO in the ACI request that creates the UOWwill explicitly make the
UOW non-persistent, overriding any Broker or service default.

125Administration

Using Persistence and Units of Work

Resource and Performance Considerations

A persistent UOW consumes resources in two areas.

■ When the UOW is committed by the sender, all of the messages are written to the persistent
store. This will generate multiple I/O operations, depending on the number and size of the
messages.

■ Space used to store the UOW and its messages will be allocated in the persistent store and will
remain until the UOW is completed.

Performance of certain specific functions (e.g. SYNCPOINT OPTION=COMMIT by the sender of a UOW)
will be affected by the additional time required to perform the I/O operations associated with
writing theUOWandmessage(s) to the persistent store. These operations are performed synchron-
ously because the Broker must ensure that the UOW, once committed, can be recovered in the
event of a system or Broker failure.

Which Information is Saved with the UOW?

When the UOW is initially created in the persistent store, the following information is written:

■ Unit-of-work ID
■ Conversation ID
■ UOW Sender information, including:

■ User ID
■ Token
■ Server/service/class *

■ UOW receiver information, including:
■ User ID **
■ Token **
■ Server/service/class *

■ Creation timestamp
■ UOW lifetime value
■ Persistence and persistent status values

The following pieces of information will be included when the UOW is initially written to the
persistent store and will be updated, as needed, during the life of the UOW:

■ UOW status
■ UOW user status
■ Attempted delivery count

Administration126

Using Persistence and Units of Work

■ Number of messages in UOW
■ Total message size in UOW
■ Persistent status lifetime value
■ Conversation state and EOC reason code

* Server/service/class information is only saved if the sender or receiver is a registered service.

** The receiver's user ID and token are only saved if the receiver is a service that has already ac-
quired the conversation associatedwith this UOW.When there are multiple instances of a service,
this means that a new conversation can be restarted by any instance of the service, but an existing
conversation is bound to a specific instance of the service.

What happens when Broker Restarts?

■ Restart Behavior of UOW
■ Re-creation of Internal Control Blocks
■ Behavior of Conversation at Broker Restart

Note: “Restored” is an activeUOWwhich has been returned to ACCEPTED status; “Discarded”
is a UOWwhich has not been returned to ACCEPTED status. “Discarded” does not imply the
status of DISCARDED.

Caution: The persistent store must be available before you attempt to restart your Broker;
otherwise your Broker will not restart.

Restart Behavior of UOW

■ Restart Table 1
The behavior during restart of the following states depends on the previous settings of the options
Persistent UOW and Persistent Status.

UOW Status
after Restart *

Behavior of UOW
and Status

Persistent Status:

YES | NO

Persistent UOW:

YES | NO

UOW Status
before Restart

BACKEDOUTUOW not restored;
Status is restored

YESYESRECEIVED

---UOW not restored;
Status not restored

NOYESRECEIVED

DISCARDEDUOW not restored;
Status is restored

YESNORECEIVED

---UOW not restored;
Status not restored

NONORECEIVED

ACCEPTEDUOW is restored;
Status is restored

YESYESACCEPTED

127Administration

Using Persistence and Units of Work

UOW Status
after Restart *

Behavior of UOW
and Status

Persistent Status:

YES | NO

Persistent UOW:

YES | NO

UOW Status
before Restart

ACCEPTEDUOW is restored;
Status is restored

NOYESACCEPTED

DISCARDEDUOW not restored;
Status is restored

YESNOACCEPTED

---UOW not restored;
Status not restored

NONOACCEPTED

ACCEPTEDUOW is restored;
Status is restored

YESYESDELIVERED

ACCEPTEDUOW is restored;
Status is restored

NOYESDELIVERED

DISCARDEDUOW not restored;
Status is restored

YESNODELIVERED

---UOW not restored;
Status not restored

NONODELIVERED

ACCEPTEDUOW is restored;
Status is restored

YESYESPOSTPONED

ACCEPTEDUOW is restored;
Status is restored

NOYESPOSTPONED

DISCARDEDUOW is not restored;
Status is restored

YESNOPOSTPONED

---UOW is not restored;
Status is not restored

NONOPOSTPONED

PROCESSEDStatus is restoredYESYESPROCESSED **

---Status is not restoredNOYESPROCESSED **

PROCESSEDStatus is restoredYESNOPROCESSED **

---Status not restoredNONOPROCESSED **

* If either UOW or its status is restored.

** In this state, the UOW information has already been deleted upon reaching PROCESSED status.

■ Restart Table 2
The behavior during restart of the following states does not depend on the settings of Persistent
UOW; in these cases only the Persistent Status exists and does not change after a restart. There
is no UOW to be restored.

Administration128

Using Persistence and Units of Work

UOW Status after RestartBehavior of StatusUOW Status before Restart

CANCELLEDStatus is restoredCANCELLED

DISCARDEDStatus is restoredDISCARDED

BACKEDOUTStatus is restoredBACKEDOUT

TIMEDOUTStatus is restoredTIMEDOUT

Re-creation of Internal Control Blocks

To restore a UOW, the Broker re-creates all internal control blocks necessary to represent the UOW
when it was accepted. The table displays the targets of each control block type:

NotesAssociation: Sender | ReceiverControl Block Type

PCB = Participant CBSender; Receiver (optional)PCB

SCB = Service CBSender; ReceiverSCB

CCB = Conversation CB

Two CCBs represent the conversation.

Sender; ReceiverCCB

UOW = unit of work CBReceiverUOW

Note: Themessages associatedwith the UOW are not re-created inmemory until a RECEIVE
is actually issued for the UOW.

Behavior of Conversation at Broker Restart

Broker sets any units ofwork (UOWs) that are in DELIVERED status to ACCEPTED status during restart
processing. If this is the first unit of work within a conversation sent by a client to a server, the
assignment of the conversation to a particular server is dropped and the conversation is again
available for all servers offering the same service.

If there ismore than one unit ofwork in a single conversation and the first UOW is already received
and committed by the server, the link to the server will kept even after this (non-first) UOW has
reverted from DELIVERED to ACCEPTED status during restart processing. The server can retrieve
units of work after restart with function RECEIVE OPTION=SYNC,CONVID=ANY and will get all old
conversations containing UOWs first and then new conversations containing UOWs.

Servers performing a RECEIVE OPTION=SYNC, CONVID=NEWwill retrieve only conversations not
already assigned to this server. We strongly recommend that you implement
RECEIVE OPTION=SYNC,CONVID=ANY or CONVID=OLD to retrieve already assigned conversations.

129Administration

Using Persistence and Units of Work

UOWs and Replicated Servers

Special consideration must be given when restarts occur, and there are persistent UOWs that are
being sent to replicated servers, e.g. whenmore than one copy of a server is active. This is because
a UOW is not associated with a server instance until the UOW's conversation is actually received
by a server. From an application perspective, this means that a conversation that has not yet been
received by its target server will be restored so that any instance of the server can process it.
However, once the conversation has been received, any subsequentUOWs sent on the conversation
will be restored so that only the specific instance, based on USER-ID and TOKEN, can receive them.
The reasoning behind this is that a broker restart can occur without the servers being restarted,
and the servers could be maintaining context information based on the conversation.

It is important to note that this can cause problems if the server instances are started as a result of
load and the same load conditions are not present after the restart. For example, a UOW could be
bound to the fifth instance of a server, but after a restart there is only enough load to start three
instances. For this reason, we recommend that replicated servers using persistent UOWs not
maintain any conversations with multiple UOWs.

Postponing Units of Work

A received unit of work has to be committed to indicate successful completion. However, if pro-
cessing of the UOW is temporarily not possible, the receiver issues a SYNCPOINT,OPTION=BACKOUT
function to set it to ACCEPTED state again, or issues SYNCPOINT,OPTION=CANCEL to delete the UOW.
The receiver will get the UOW again due to BACKOUT, or the UOW is deleted due to CANCEL.

If such a temporary outage occurs for certain services, you can configure a postponement of units
of work in the Broker attribute file. Define your postpone queue with service-specific attributes
POSTPONE-ATTEMPTS and POSTPONE-DELAY. The receiver still issues SYNCPOINT,OPTION=CANCEL. In
this case, CANCELmoves the UOW to the postpone queue instead of deleting it. The UOW gets
status POSTPONED and is no longer accessible until the time defined with POSTPONE-DELAY has
elapsed.

When the POSTPONE-DELAY has elapsed, the UOW gets status ACCEPTED again and is moved back
to the queue of available UOWs. The receiver can now process the UOW, but if the outage or the
lack of resources could not be fixed in the meantime, the UOW can be postponed again with
SYNCPOINT,OPTION=CANCEL. The value for attribute POSTPONE-ATTEMPTS defines the maximum
number of possible postpone attempts.

This postpone handling will not change the lifetime of the UOW, which means that the
POSTPONE-DELAYmultiplied by the number of POSTPONE-ATTEMPTS should be lower than UOW-DATA-
LIFETIME.

The sequence of UOWs (commit time of the producer in ascending order) cannot be guaranteed
when UOWs have been postponed and brought back to ACCEPTED state. This applies also to oper-
ations with ETBCMD to modify the status of UOWs. See SET-UOW-STATUS in command-line utility
ETBCMD (z/OS | UNIX | Windows).

Administration130

Using Persistence and Units of Work

Using Persistent Status

■ When does Persistent Status Make Sense?
■ Adding Persistent Status to a UOW
■ Resource and Performance Considerations

When does Persistent Status Make Sense?

Persistent status should be considered for applications inwhich the sender needs to know if UOWs
were actually processed successfully. In cases where the data associatedwith a UOW can be easily
re-created in the event of a failure, persistent status may be a more desirable and lower-overhead
alternative to a persistent UOW.

Persistent status does not require a persistent UOW.

Adding Persistent Status to a UOW

A UOW's status can be made persistent:

■ by specifying a UWSTATP value between 1 and 254 in the ACI request that creates the UOW;
■ by specifying a UWSTATP value between 1 and 254 in service definition or service defaults portion
of the Broker attribute file, making the status of all UOWs for that service persistent; or

■ by specifying a UWSTATP value between 1 and 254 in the Broker defaults section of the Broker
attribute files, making the status of all UOWs in the system persistent.

Specifying UWSTATP=255 in the ACI request that creates the UOWwill explicitly make the UOW
status non-persistent, overriding any broker or service default.

Resource and Performance Considerations

Using persistent status consumes resources in two areas.

■ The persistent store is updated each time the UOW is modified, by either the sender or the re-
ceiver. These modifications occur whenever a SEND or RECEIVE function is issued for the UOW,
or whenever its status is changed, such as by SYNCPOINT OPTION=COMMIT. Depending on the
implementation, this will generate one or more I/O operations.

■ The space used for the UOW (but not its messages) in the persistent store remains allocated for
some period of time after the UOW has been completed.

The performance of individual requests will generally be affected by the additional time required
to perform the I/O operations associated with maintaining persistent status. At this time, all oper-
ations are performed synchronously, although that may change in future releases.

131Administration

Using Persistence and Units of Work

Recovery Processing

■ Introduction
■ Determining the Status of a UOW
■ A Real-world Example: Chess-by-Mail

Introduction

UOWs and persistence provide functionality for the application program (either client or server)
to recover from failures (system, broker or application). In addition, this functionality allow new
types of applications to be built, including ones not requiring concurrent execution of the client
and server.

There are no standard rules for recovery, because each applicationmodelwill use this functionality
differently andwill have different requirements for recovery. But the considerations in the following
section should be kept in mind.

Determining the Status of a UOW

The most useful function for recovery is the SYNCPOINT, OPTION=LAST. This function will return
the UOWID, CID, and status of the last UOW created by the caller, based on the USER-ID and
TOKEN. This function can be usedwhen an application starts orwhen it detects a failure to determine
howmuch processing has been completed on aUOW. This information can then be used to decide
how to recover from the failure.

Administration132

Using Persistence and Units of Work

A Real-world Example: Chess-by-Mail

Chess-by-mail is a sample of an application that takes advantage of UOWs, persistence, and per-
sistent status. In generic terms, this application involves a client and a server exchangingmessages
on a single conversation. The conversation is long-running, and there is no requirement that the
client and the server be active at the same time.

Although chess-by-mail was conceived as a single application, it is perhaps easier to describe its
operation separately for the client and the server side. By convention, the white player is the client
and the black player is the server. For simplicity, any user interaction has been left out of the de-
scription. Also for simplicity, only one chess-by-mail game is assumed to be running at any one
time.

■ Client Behavior
■ Server Behavior

Client Behavior

The behavior of the chess-by-mail client is as follows:

1. Logon, specifying a USER-ID and TOKEN, which allow recovery of prior UOWs.

2. Issue SYNCPOINT, OPTION=LAST to determine the status of the last UOW created.

3. If the return code is 00780305 - UOW not found, then there is no game in progress. So send
the first white move to the server with: SEND OPTION=COMMIT,CID=NEW. If the send is successful,
logoff and exit.

4. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

5. If the status is ACCEPTED, then the server has not yet received the last move, so logoff and exit.

6. If the status is DELIVERED, then the server is currently processing the last move, so logoff and
exit.

7. If the status is TIMEOUT, then the server did not receive the last move before its lifetime expired,
so logoff and exit.

8. If the status is PROCESSED, then the server has received the last move and committed the UOW.
Our application model has the client sending a move in response and committing both UOWs
at the same time. So we need to receive the new move and send a reply to it.

9. Get the server's move with RECEIVE,OPTION=SYNC,CID=n, where n is the CID returned from
SYNCPOINT OPTION=LAST.

10. Send the response move back using SEND OPTION=SYNC,CID=n.

11. Commit both the received and sent UOWs with a single call
SYNCPOINT OPTION=COMMIT,UOWID=BOTH.

12. Logoff and exit.

133Administration

Using Persistence and Units of Work

Server Behavior

The behavior of the chess-by-mail server is as follows:

1. Logon, specifying a Userid and Token, which allow recovery of prior UOWs.

2. Register as the chess-by-mail server.

3. Issue SYNCPOINT OPTION=LAST to determine the status of the last UOW created.

4. If the return code is 00780305 - UOW not found, then there is no game in progress. Sowe receive
first white move from the client with: RECEIVE OPTION=SYNC,CID=NEW. When the RECEIVE has
been completed, continue at step 11.

5. If the return code from SYNCPOINT is 0, then there is a last UOW and therefore a game is in
progress. The UOW status value is examined to decide how to proceed.

6. If the status is ACCEPTED, then the client has not yet received the last move, so deregister, logoff
and exit.

7. If the status is DELIVERED, then the client is currently processing the last move, so deregister,
logoff and exit.

8. If the status is TIMEOUT, then the client did not receive the last move before its lifetime expired,
so deregister, logoff and exit.

9. If the status is PROCESSED, then the client has received the last move and committed the UOW.
Our application model has the server sending a move in response and committing both UOWs
at the same time. So we need to receive the new move and send a reply to it.

10. Get the client's move with RECEIVE,OPTION=SYNC,CID=n, where n is the CID returned from

SYNCPOINT,OPTION=LAST.

11. Send the response move back using SEND,OPTION=SYNC,CID=n.

12. Commit both the received and sent UOWs with a single call:

SYNCPOINT,OPTION=COMMIT,UOWID=BOTH.

13. Deregister, logoff and exit.

Administration134

Using Persistence and Units of Work

8 Broker UOW Status Transition

■ Initial UOW Status: NULL | Received ... 136
■ Initial UOW Status: Accepted | Delivered | Postponed ... 137
■ Initial UOW Status: Processed | Timedout ... 138
■ Initial UOW Status: Cancelled | Discarded | Backedout .. 139
■ Legend for UOW Status Transition Table .. 140
■ Table of Column Abbreviations ... 140

135

This chapter contains the UOWstatus transition tables for EntireX Broker and covers the following
topics:

See also Broker ACI Fields | Broker ACI Functions | Error Messages and Codes.

Initial UOW Status: NULL | Received

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

ReceivedReceivedReceivedReceivedSendReceived

AcceptedAcceptedAcceptedAcceptedCommitReceived

NULLDiscardedNULLBackedOutReStartReceived

NULLBackedOutNULLBackedOutBackOutReceived

R6: This action can only be a
conversation timeout since a

NULLBackedOutNULLBackedOutTimeOutReceived

UOW only exists once it is
committed.

ReceivedReceivedReceivedReceivedDeleteReceived

ReceivedReceivedReceivedReceivedCancelReceived

ReceivedReceivedReceivedReceivedReceiveReceived

Administration136

Broker UOW Status Transition

Initial UOW Status: Accepted | Delivered | Postponed

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

DeliveredDeliveredDeliveredDeliveredReceiveAccepted

NULLTimedoutNULLTimedoutTimeoutAccepted

NULLDiscardedAcceptedAcceptedRestartAccepted

NULLCancelledNULLCancelledCancelAccepted

AcceptedAcceptedAcceptedAcceptedDeleteAccepted

AcceptedAcceptedAcceptedAcceptedBackOutAccepted

AcceptedAcceptedAcceptedAcceptedSendAccepted

AcceptedAcceptedAcceptedAcceptedCommitAccepted

DeliveredDeliveredDeliveredDeliveredReceiveDelivered

NULLProcessedNULLProcessedCommitDelivered

R20: Cancel can only be issued
by receiver of the UOW.

NULLCancelledNULLCancelledCancelDelivered

AcceptedAcceptedAcceptedAcceptedBackOutDelivered

NULLNULLNULLTimedoutTimeOutDelivered

NULLDiscardedAcceptedAcceptedRestartDelivered

DeliveredDeliveredDeliveredDeliveredDeleteDelivered

DeliveredDeliveredDeliveredDeliveredSendDelivered

Receive cannot be issued by
any user

N/AN/AN/AN/AReceivePostponed

Commit cannot be issued by
any user.

N/AN/AN/AN/ACommitPostponed

Cancel can only be issued by
the sender of the UOW.

NULLCancelledNULLCancelledCancelPostponed

BackOut cannot be issued by
any user.

N/AN/AN/AN/ABackOutPostponed

NULLNULLNULLTimedoutTimeOutPostponed

NULLDiscardedAcceptedAcceptedRestartPostponed

Delete cannot be issued by any
user.

N/AN/AN/AN/ADeletePostponed

Send cannot be issued by any
user.

N/AN/AN/AN/ASendPostponed

137Administration

Broker UOW Status Transition

Initial UOW Status: Processed | Timedout

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

Processed is a STABLE UOW status:N/ANULLN/ANULLDeleteProcessed

All actions and transitions refer to
the status of a UOW.

N/ANULLNULLNULLTimeoutProcessed

N/AProcessedN/AProcessedRestartProcessed

N/AProcessedN/AProcessedBackoutProcessed

N/AProcessedN/AProcessedCancelProcessed

N/AProcessedN/AProcessedCommitProcessed

N/AProcessedN/AProcessedReceiveProcessed

N/AProcessedN/AProcessedSendProcessed

Timedout is a STABLE UOW status:N/ATimeoutN/ATimeoutRestartTimedout

All actions and transitions refer to
the status of a UOW.

N/ANULLN/ANULLDeleteTimedout

N/ANULLN/ANULLTimeoutTimedout

N/ATimedoutN/ATimedoutSendTimedout

N/ATimedoutN/ATimedoutReceiveTimedout

N/ATimedoutN/ATimedoutCommitTimedout

N/ATimedoutN/ATimedoutBackoutTimedout

N/ATimedoutN/ATimedoutCancelTimedout

Administration138

Broker UOW Status Transition

Initial UOW Status: Cancelled | Discarded | Backedout

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

Cancelled is a STABLE UOW
status:

N/ANULLN/ANULLDeleteCancelled

All actions and transitions refer
to the status of a UOW.

N/ACancelledN/ACancelledRestartCancelled

N/ANULLN/ANULLTimeOutCancelled

N/ACancelledN/ACancelledSendCancelled

N/ACancelledN/ACancelledReceiveCancelled

N/ACancelledN/ACancelledCommitCancelled

N/ACancelledN/ACancelledBackoutCancelled

N/ACancelledN/ACancelledCancelCancelled

Discarded is a STABLE UOW
status:

N/ANULLN/AN/ADeleteDiscarded

All actions and transitions refer
to the status of a UOW.

N/ANULLN/AN/ATimeOutDiscarded

N/ADiscardedN/AN/ARestartDiscarded

N/ADiscardedN/AN/ACancelDiscarded

N/ADiscardedN/AN/ASendDiscarded

N/ADiscardedN/AN/AReceiveDiscarded

N/ADiscardedN/AN/ACommitDiscarded

N/ADiscardedN/AN/ABackoutDiscarded

BackedOut is a STABLE UOW
status:

N/ANULLN/ANULLTimeOutBackedOut

All actions and transitions refer
to the status of a UOW

N/ABackedOutN/ABackedOutCancelBackedOut

N/ABackedOutN/ABackedOutRestartBackedOut

N/ABackedOutN/ABackedOutSendBackedOut

N/ABackedOutN/ABackedOutReceiveBackedOut

N/ABackedOutN/ABackedOutCommitBackedOut

N/ANULLN/ANULLDeleteBackedOut

N/ABackedOutN/ABackedOutBackoutBackedOut

139Administration

Broker UOW Status Transition

Legend for UOW Status Transition Table

Resulting UOW StatusAbbreviation

Not applicableN/A

Error condition, message issued, no changeUOW Status

Table of Column Abbreviations

UOW StatusAbbreviation

Persistent unit of workPU

Persistent statusPS

Non-persistent unit of workNPU

Non-persistent statusNPS

Administration140

Broker UOW Status Transition

9 Accounting in EntireX Broker

■ EntireX Accounting Data Fields .. 142
■ Using Accounting under UNIX and Windows ... 146
■ Using Accounting under z/OS .. 146
■ Example Uses of Accounting Data .. 148

141

This chapter describes the accounting records for Broker that can be used for several purposes,
including:

■ application chargeback
for apportioning EntireX resource consumption on the conversation and/or the application level;

■ performance measurement
for analyzing application throughput (bytes, messages, etc.) to determine overall performance;

■ trend analysis
for using data to determine periods of heavy and/or light resource and/or application usage.

EntireX Accounting Data Fields

In the EntireX Accounting record, there are various types of data available for consumption by
applications that process the accounting data:

DescriptionType of Field
Accounting
VersionField Name

z/OS only. Type of SMF record.1-byte unsigned
integer

1SMF Record Type

z/OS: SMF timestamp in format I4I4 (time in
hundredths of seconds followed by date in format
X'0CYYDDDF' (packed decimal number)).
Other platforms: The time this recordwaswritten
to the accountingfile in "YYYYMMDDHHMMSS"
format.

z/OS: I4I4
timestamp
Otherplatforms:
A14 timestamp

1Record Write Time

z/OS only. ID of the SMF system.4-byte string1SMF system ID

z/OS only. ID of the SMF subsystem.4-byte string1SMF subsystem ID

Broker ID from attribute file.A321EntireX Broker ID

Version information, v.r.s.pA81EntireX Version

=versionvwhere

=releaser

=service packs

=patch levelp

for example 10.7.0.00.

Platform where EntireX is running.A32 (A8 under
z/OS)

1Platform of Operation

Administration142

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

z/OS: The time EntireX was initialized in format
I4I4 (time in hundredths of seconds followed by

z/OS: I4I4
timestamp
Otherplatforms:
A14 timestamp

1EntireX Start Time

date in format X'0CYYDDDF' (packed decimal
number)).
Other platforms: The time EntireXwas initialized
in "YYYYMMDDHHMMSS" format.

It is always C for conversation. Future Types will
have a different value in this field.

A11Accounting Record Type

USER-ID ACI field from the client in the
conversation.

A321Client User ID

TOKEN field from the ACI from the client.A321Client Token

The physical user ID of the client, set by EntireX.A561Client Physical ID

Communication used by client:I11ClientCommunicationType

1 = Net-Work
2 = TCP/IP
3 = APPC
4 = IBM®MQ
5 = SSL

Number of Requests made by client.I41Client Requests Made

Number of bytes sent by client.I41Client Sent Bytes

Number of bytes received by client.I41Client Received Bytes

Number of messages sent by client.I41Client Sent Messages

Number of messages received by client.I41Client Received Messages

Number of UOWs sent by client.I41Client Sent UOWs

Number of UOWs received by client.I41Client UOWs Received

Completion code client received when
conversation ended.

I41Client Completion Code

USER-ID ACI field from the server in the
conversation.

A321Server User ID

TOKEN field from the ACI from the server.A321Server Token

The physical user ID of the server, set by EntireX.A561Server Physical ID

Communication used by Server:I11Server Communication
Type

1 = Entire Net-Work
2 = TCP/IP
3 = APPC
4 = IBM®MQ
5 = SSL

Number of requests made by server.I41Server Requests Made

Number of bytes sent by server.I41Server Sent Bytes

143Administration

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Number of bytes received by server.I41Server Received Bytes

Number of messages sent by server.I41Server Sent Messages

Number of messages received by server.I41Server Received Messages

Number of UOWs sent by server.I41Server Sent UOWs

Number of UOWs received by server.I41Server Received UOWs

Completion code server received when
conversation ended.

I41Server Completion Code

CONV-ID from ACI.A161Conversation ID

SERVER-CLASS from ACI.A321Server Class

SERVER-NAME from ACI.A321Server Name

SERVICE from ACI.A321Service Name

Will be N if CONV-ID=NONE is indicated in
application.

A11CID=NONE Indicator

Will be R if a conversation was restarted after a
Broker shutdown.

A11Restarted Indicator

z/OS: The time the conversation began in format
I4I4 (time in hundredths of seconds followed by

z/OS: I4I4
timestamp
Otherplatforms:
A14 timestamp

1Conversation Start Time

date in format X'0CYYDDDF' (packed decimal
number)).
Other platforms: The time the conversation began
in "YYYYMMDDHHMMSS" format.

z/OS: The time the conversation was cleaned up
in format I4I4 (time in hundredths of seconds

z/OS: I4I4
timestamp
Otherplatforms:
A14 timestamp

1Conversation End Time

followedbydate in formatX'0CYYDDDF' (packed
decimal number)).
Other platforms: The time the conversation was
cleaned up in "YYYYMMDDHHMMSS" format.

Number of microseconds of CPU time used by
the conversation

I41Conversation CPU Time

Actual identity of client derived from
authenticated user ID.

A322Client Security Identity

Node name of machine where client application
executes.

A322Client Application Node

Stub type used by client application.A82Client Application Type

Name of the executable that called the broker.
Corresponds to the Broker Information Service
field APPLICATION-NAME.

A642Client Application Name

Mechanismbywhich authentication is performed
for client.

I12Client Credentials Type

Administration144

Accounting in EntireX Broker

DescriptionType of Field
Accounting
VersionField Name

Actual identity of server derived from
authenticated user ID.

A322Server Security Identity

Node name of machine where server application
executes.

A322Server Application Node

Stub type used by server application.A82Server Application Type

Name of the executable that called the broker.
Corresponds to the Broker Information Service
field APPLICATION-NAME.

A642Server Application Name

Mechanismbywhich authentication is performed
for server.

I12Server Credentials Type

RPC library referenced by client when sending
the only/first requestmessage of the conversation.

A1283Client RPC Library

RPC Program referenced by client when sending
the only/first requestmessage of the conversation.

A1283Client RPC Program

RPC library referenced by server when sending
the only/first response message of the
conversation.

A1283Server RPC Library

RPCProgram referenced by serverwhen sending
the only/first response message of the
conversation.

A1283Server RPC Program

IPv4 address of the client.A164Client IPv4 Address

IPv4 address of the server.A164Server IPv4 Address

Application version of the client.A164Client Application Version

Application version of the server.A164Server Application Version

IPv6 address of the client.A465Client IPv6 Address

IPv6 address of the server.A465Server IPv6 Address

Note: Accounting fields of any version greater than 1 are created only if the attribute AC-
COUNTING-VERSION value is greater than or equal to the corresponding version. For example:
accounting fields of version 2 are visible only if ACCOUNTING-VERSION=2 or higher is specified.

145Administration

Accounting in EntireX Broker

Using Accounting under UNIX and Windows

■ Broker Attribute File Settings
■ Retrieving Accounting Data

Broker Attribute File Settings

ACCOUNTING = NO | YES | (YES, SEPARATOR=Separator Characters) (Default is NO)

Set this parameter to "NO" (that is, do not create accounting data) or "YES" to create accounting
data. Up to seven separator characters can specified using the SEPARATOR suboption, for example
ACCOUNTING= (YES, SEPARATOR=;). If no separator character is specified, the comma character
will be used.

Retrieving Accounting Data

The accounting file will be located in the Broker's installed directory. The file's name is based on
the ETB_LOG environment variable and the current date and time (for uniqueness). Example: If
ETB_LOG is set to BROKER1.LOG, the accounting data file will be named BROKER1_YYYYMMDDH-
HMMSS.csv. If ETB_LOG is not set, the Broker's ID will be used, with an extension of CSV (e.g.
ETB048_YYYYMMDDHHMMSS.csv). See Environment Variables in EntireX.

Using Accounting under z/OS

The ACCOUNTING attribute indicates if accounting records will be generated. Accounting records
arewritten upon successful completion of a conversation. A conversation ending in an application
error (such as a timeout) is considered to be a successful conversation.

■ Attribute File
■ Retrieving Accounting Records
■ Accounting Record Layouts

Administration146

Accounting in EntireX Broker

■ Notes

Attribute File

ACCOUNTING={NO|128-255}

Set this parameter to "NO" (that is, do not create accounting records) or to a number between 128
and 255, which specifies the SMF record type to usewhenwriting the accounting records. In order
to avoid conflicts with other applications that also produce SMF records, check with your z/OS
systems programmer for an appropriate number. In addition, check with your z/OS systems pro-
grammer to ensure that the selected SMF record number is set up to be written.

Default value: NO

Retrieving Accounting Records

The standard IBM IFASMFDP utility program may be used to selectively offload Broker SMF re-
cords. Analysis and report routines - either user-written or those available from IBM or various
software vendors - may subsequently be used to process the offloaded records.

//* Copies selected records from the "live" SMF data sets
//*
//* Replace nnn (OUTDD parameter) with a valid SMF record type
//*
//* Note: the "DISPLAY SMF" operator command will show the names of the
//* SMF data sets
//*
//IFASMFDP EXEC PGM=IFASMFDP
//SYSPRINT DD SYSOUT=*
//MAN1 DD DISP=SHR,DSN=SYS1.MAN1
//MAN2 DD DISP=SHR,DSN=SYS1.MAN2
//MAN3 DD DISP=SHR,DSN=SYS1.MAN3
//OUTPUT DD DISP=(MOD,CATLG),
// UNIT=SYSDA,SPACE=(TRK,(15,15),RLSE),
// DCB=(RECFM=VBS,LRECL=32760,BLKSIZE=0),
// DSN=EXX.SMF.RECORDS
//SYSIN DD *
DATE(2002001,2099366)
START(0000)
END(2359)
INDD(MAN1,OPTIONS(DUMP))
INDD(MAN2,OPTIONS(DUMP))
INDD(MAN3,OPTIONS(DUMP))
OUTDD(OUTPUT,TYPE(nnn))
//*

Note: The IBM publicationMVS System Management Facilities (SMF) provides complete in-
formation on SMF.

147Administration

Accounting in EntireX Broker

Accounting Record Layouts

EntireX provides three mappings for its accounting records in the following members, all located
in the EXX107.SRCE data set:

■ EXXCACT - A C language include file that maps the accounting record;
■ EXXACTR - An Assembler language MACRO that will generate a DSECT of the accounting re-
cord;

■ EXXSACT - An SAS DATA step that will read in a file with the appropriate field names.

Notes

■ Since there is no server for Broker Command and Information Services, no server data is gener-
ated in the SMF records for Command and Information Services conversations.

■ The unit for CPUTIME is expressed in microseconds.

Example Uses of Accounting Data

■ Chargeback
■ Trend Analysis
■ Tuning for Application Performance

Chargeback

Customers can use the EntireX accounting data to perform chargeback calculations for resource
utilization in a data center. Suppose EntireX Broker is being used to dispatch messages for three
business departments: Accounts Receivable, Accounts Payable, and Inventory. At the end of each
month, the customer needs to determine howmuchof the operation andmaintenance cost of EntireX
Broker should be assigned to these departments. For a typical month, assume the following is
true:

Average PercentagePercentageMessages SentPercentageAmount of DataDepartment

22.52040002550 MBAccts Payable

253060002040 MBAccts Receivable

52.5501000055110 MBInventory

The use of Broker resources here is based upon both the amount of traffic sent to the Broker (bytes)
as well as how often the Broker is called (messages). The average of the two percentages is used
to internally bill the departments, so 52.5% of the cost of running EntireX Broker would be paid
by the Inventory Department, 25% by the Accounts Receivable Department, and 22.5% by the
Accounts Payable Department.

Administration148

Accounting in EntireX Broker

Trend Analysis

The Accounting Data can also be used for trend analysis. Suppose a customer has several point-
of-sale systems in several stores throughout the United States that are tied into the corporate in-
ventory databasewith EntireX. The stubswould be running at the stores, and the sales datawould
be transmitted to the Broker, whichwould hand it off to the appropriate departments in inventory.
If these departments wish to ascertain when the stores are busiest, they can use the accounting
data to monitor store transactions. Assume all of the stores are open every day from 9 AM to 10
PM.

Maximum Weekend
Transactions in any Store

Average Weekend
Transactions per Store

Maximum Weekday
Transactions in any
Store

Average: Weekday
Transactions per StoreLocal Time

8328.2277.39 AM

10229.33111.210 AM

11337.94814.611 AM

9834.810656.212 noon

9534.26525.61 PM

10238.55217.22 PM

9942.72312.13 PM

8843.23418.34 PM

9345.24726.25 PM

10540.68738.26 PM

11039.28329.67 PM

8528.67818.68 PM

6217.55511.29 PM

The owner of the stores can examine the data and make decisions based upon the data here. For
example, on weekdays, he or she can see that there is little business until lunchtime, when the
number of transactions increase. It then decreases during lunch hour; then there is another increase
from 5 PM to 8 PM, after people leave work. Based on this data, the owner might investigate
changing the store hours onweekdays to 10 AM to 9 PM. On the weekend the trends are different,
and the store hours could be adjusted aswell, although there is amore regular customer flow each
hour on the weekends.

149Administration

Accounting in EntireX Broker

Tuning for Application Performance

Assume that a customer has two applications that perform basic request/response messaging for
similar sized messages. The applications consist of many Windows PC clients and Natural RPC
Servers on UNIX. An analysis of the accounting data shows the following:

Average Client Messages
Received per Conversation

Average Server Messages
Received per ConversationServiceServerClassApplication Type

10.2910.30SERVICE1SERVER1CLASS1Application 1:

8.9810.30SERVICE2SERVER2CLASS2Application 2:

A further analysis of the accounting data reveals that there are a lot of non-zero response codes
in the records pertaining to Application 2, and that a lot of these non-zero responses indicate
timeouts. With that information, the customer can address the problem by modifying the server
code, or by adjusting the timeout parameters for SERVER2 so that it can have more time to get a
response from the Service.

Administration150

Accounting in EntireX Broker

10 Monitoring EntireX Applications and Components

■ Application Monitoring .. 152
■ Monitoring EntireX with Command Central .. 153
■ Monitoring from the Command-line .. 154
■ webMethods EntireX Adapter for Integration Server .. 155
■ Watching the Default Broker View in Designer/Eclipse ... 155

151

The following difference is significant:

■ The first approach, Application Monitoring, monitors an EntireX application along its message
path - back and forth - measuring response times at multiple measuring points.

■ The other approachesmonitor EntireX on an infrastructure component level, for exampe EntireX
Broker or EntireX RPC servers.

This chapter will help you decide on the right approach for your organization. The approaches
are described briefly and links are provided to the relevant sections of the documentation for
further reading.

Application Monitoring

Application Monitoring is an EntireX feature that enables you to monitor the response times in
your distributed applications, and it also enables you tomonitor certain error situations. The heart
of Application Monitoring is the EntireX Application Monitoring Data Collector, which collects
the response time data of each involved software component of selected synchronous EntireXRPC
services. TheApplicationMonitoringDataCollector stores theKPI values inCSV (comma-separated
values) files. The files can be processed by any third-party tool that supports CSV files, for example
Microsoft Excel. Alternatively, you can hook in your ownmonitoring back end, using the callback
user exit of the Data Collector.

■ Third-party Tool
Use this method if you want to have a quick look at the results, using any tool that supports
CSV files (for example Microsoft Excel).

■ Callback User Exit
Use the callback user exit of the Data Collector to hook in your ownmonitoring back end.Write
a Java class that implements the DataCollectorCallback interface and make it known to the
Data Collector. Use this method if you want to feed arbitrary monitoring back ends in real time.
See Callback User Exit under Setting up the External Application Monitoring Data Collector in the
Application Monitoring documentation.

See the the separate Application Monitoring documentation documentation for more details.

Administration152

Monitoring EntireX Applications and Components

Monitoring EntireX with Command Central

Software AG Command Central is a tool you can use to perform administrative tasks remotely
from a single location. It can assist with configuration, management and monitoring tasks. As an
operator you can monitor server status and health, as well as start and stop servers from a single
location. You can also configure alerts to be sent in case of unplanned outages.

For each registered instance, you can see up to three KPIs in CommandCentral's instance overview.
Command Central is the tool of choice if you need to get a quick overview of your instance land-
scape.

The core Command Central documentation is provided separately and is also available under
Guides for Tools Shared by Software AG Products on the Software AG documentation website.
See the following sections for EntireX-specific information:

■ EntireX Broker (UNIX and Windows)
■ Introduction to Administering EntireX Broker with Command Central (UNIX and Windows)
■ Administering EntireX Broker using the Command Central GUI
■ Administering EntireX Broker using the Command Central Command Line

■ EntireX Broker (Mainframe)
■ Introduction to EntireX Mainframe Broker Monitoring using Command Central
■ EntireX Mainframe Broker Monitoring using the Command Central GUI
■ EntireX Mainframe Broker Monitoring using the Command Central Command Line

■ RPC Servers
■ Introduction to Administering EntireX RPC Servers using Command Central (UNIX and
Windows)

■ Administering the EntireX RPC Server for C | CICS Socket Listener | .NET | IMS Connect |
Java | IBMMQ | XML/SOAP using the Command Central GUI

■ Administering the EntireX RPC Server for C | CICS Socket Listener | .NET | IMS Connect |
Java | IBMMQ | XML/SOAP using the Command Central Command Line

153Administration

Monitoring EntireX Applications and Components

Monitoring from the Command-line

There are three different ways of monitoring EntireX from the command line:

■ Command Central
■ ETBINFO
■ EntireX Monitoring Scripts

Command Central

Software AG Command Central is a tool that enables you to manage your Software AG products
remotely from one location. Command Central offers a browser-based user interface, but you can
also automate tasks by using commands to remotely execute actions from a terminal or custom
script (for example CI servers such as Jenkins, or generic configuration management tools such
as Puppet or Chef). You can monitor the following EntireX components using the Command
Central command line.

■ Administering EntireX Broker using the Command Central Command Line (UNIX and Windows)
■ EntireXMainframe BrokerMonitoring using the CommandCentral Command Line (z/OS andBS2000)
■ Administering the EntireX RPC Server for C | CICS Socket Listener | .NET | IMS Connect | Java |
IBMMQ | XML/SOAP using the Command Central Command Line

SeeMonitoring EntireXwith CommandCentral in this section formore information onmonitoring
EntireX components with Command Central (GUI and command-line).

ETBINFO

The command-line utility ETBINFO queries the Broker for different types of information, generating
an output text string with basic formatting. This text output can be further processed by script
languages. ETBINFO uses data descriptions called profiles to control the type of data that is returned
for a request. ETBINFO is useful for monitoring and administering EntireX Broker efficiently - for
example, how many users are to run concurrently and whether the number of specified message
containers is large enough.

For more information see ETBINFO under Broker Command-line Utilities in the platform-specific
Administration documentation.

Administration154

Monitoring EntireX Applications and Components

EntireX Monitoring Scripts

EntireX provides a set of command-line scripts as a solution to the following scenarios:

■ “I want a quick overview of my standard broker and a list of active external services that are
running.”

■ “I want to monitor an EntireX component (broker, service, client) over time.”
■ “I want to monitor my environment and check that all components (broker, RPC servers) are
up and running.”

You can select the scripts from the EntireX Monitoring Scripts Menu or call the individual scripts
from the command-line.

Note: You can use these scripts with local or remote brokers. The scripts were introduced
with version 9.7, but can be used with brokers of any supported version.

See EntireX Monitoring Scripts.

webMethods EntireX Adapter for Integration Server

For monitoring the webMethods EntireX Adapter for Integration Server (IS), your best choice is
the IS Administration Console, which provides basic information as well as statistical values of
connections, services and listeners. You can also reset the statistical values from the IS Adminis-
tration Console.

See also Settings and Information in the EntireX Adapter documentation.

Watching the Default Broker View in Designer/Eclipse

The EntireXDefault Broker View is part of theDesigner. It displays the status of the EntireXDefault
Broker and the active RPC Services registered to it. Use the Default Broker View of Designer if
you need to know whether your local default broker is running, or whether relevant RPC servers
are connected to it. You can perform basic administration tasks on the local default broker and
also shut down connected server instances or services.

See EntireX Default Broker View for more information.

155Administration

Monitoring EntireX Applications and Components

156

11 SSL/TLS, HTTP(S), and Certificates with EntireX

■ Introduction .. 159
■ Random Number Generator ... 162
■ SSL/TLS Sample Certificates Delivered with EntireX ... 162
■ SSL/TLS Parameters for Broker as SSL Server (One-way SSL) .. 164
■ SSL/TLS Parameters for SSL Clients ... 165
■ Using SSL/TLS with EntireX Components ... 166
■ SSL/TLS Certificate Creation and Handling ... 167
■ Managing One-way and Two-way SSL ... 172

157

Transport Layer Security (TLS), and its predecessor, Secure Sockets Layer (SSL) are cryptographic
protocols. They provide communications security in computer networks. TLS and SSL use the
public-and-private key encryption system from RSA, which also includes the use of digital certi-
ficates.

This chapter describes Secure Sockets Layer/Transport Layer Security (SSL/TLS) and Certificates
within an EntireX context. The term “SSL” in this chapter refers to both SSL and TLS.

Related Information

■ Running Broker with SSL/TLS Transport in the platform-specific Administration documentation
■ Using SSL/TLS with the RPC Server under z/OS (CICS, Batch, IMS) | Java | C | .NET |
XML/SOAP | CICS ECI | CICS Socket Listener | AS/400 | IMS Connect | IBMMQ

■ Using SSL/TLSwith RPC-ACI Bridge | Listener for IBMMQ
■ Broker HTTP(S) Agent in the UNIX | Windows Administration documentation
■ Transport: Broker Stubs and APIs

Administration158

SSL/TLS, HTTP(S), and Certificates with EntireX

Introduction

One of the major components when using SSL is the certificate. One of the tasks of certificates is
to ensure that communication,which runs atopTCP/IP, adheres to an industrial-strength encryption.

Certificates can be described as electronic passports. They contain information about someone (or
a machine or location), generally called the Subject. The authenticity of the subject's information
is digitally signed by a trustworthy instance, called the Issuer. With certificates, this issuer is also
known as a Certificate Authority (CA).

In addition to the above, a certificate also contains a random number that is called the subject's
public key. Together with this public key, the subject must also be in possession of a private key.
As their names suggest, the public key can be viewed by anyone, whereas the private key must
be strictly secured. The public and the private keys together always form a key pair, i.e. they are
always created together and complement each other.

The terms SSL/TLS client and SSL/TLS server specify communication endpoints:

■ an SSL/TLS server provides a listen port as secure target endpoint
■ an SSL/TLS client uses a secure endpoint to connect to the SSL/TLS server

The SSL/TLS connection can be established in two different ways:

■ With one-way SSL, the SSL/TLS client validates the SSL/TLS server. The server sends the public
certificate to the client, and the client validates the certificate through a certification authority
(CA).

■ With two-way SSL, client and server authenticate each other. The client validates the public
server certificate through a CA. If it was successful, the client will send its public certificate to
the server. The server verifies the client certificate through a CA as well.

Here are some typical scenarios using SSL/TLS:

159Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

Encryption

In the image above, a public key has been used to encrypt a document. Only the owner of the
private key is able to decrypt this text.

Administration160

SSL/TLS, HTTP(S), and Certificates with EntireX

Authentication

To verify that the instance that presented a certificate is really who they claim to be (authentic), I
can choose a random string, encrypt it with their public key, send it to the subject, have it decrypted
with their private key and sent back. I then compare it with my original random string. Only the
owner of the appropriate private key is able to perform this operation.

161Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

Random Number Generator

Another of the major components with SSL is called the Random Number Generator (RNG). To
ensure genuinely randomkeyswith each new session, SSL uses its own randomnumber generator.

This requires a “seed”, which should be unique for each installation.

■ On UNIX systems, make sure you have defined the environment variable RANDFILE, which
refers to a file that contains at least 2048 bytes of random data. As humans are rather limited in
their ability to “generate” random data, we suggest using the OpenSSL tool for this task (see
Creating Certificates with OpenSSL (z/OS, UNIX, Windows) below).

■ OnWindows systems, the seed is automatically taken.

SSL/TLS Sample Certificates Delivered with EntireX

Certificates play an important role with SSL. The term “SSL” in this section refers to both SSL and
TLS. In order to use SSL as the transportmethod for EntireX, you need to have certificates available
at various locations and for various purposes. The sample certificates come as two types: a trust
store (containing a public key), and a keystore (containing a private key). EntireX provides the
following default certificates for preliminary test purposes:

■ Default Certificates for z/OS
■ Default Certificates for UNIX and Windows
■ Default Certificates for Java

We strongly recommended you create your own certificates. See below for how to create your
own certificates withOpenSSL and keytool.

Default Certificates for z/OS

After the installation process, you will find certificates in the data set EXX107.CERT ready to use
for preliminary testing of the SSL transport:

NotesDescriptionCertificate

1No keys can be stored directly in RACF. The pkcs12 formatmember APPP12was generated
as a container for the necessary keys and the APPCERTmember. The password to unlock
this private key is ExxAppPkcs12.

APPP12

2The CA certificate. This certificate can be used to verify the application certificate. SeeUsing
SSL/TLS with EntireX Components.

CACERT

Administration162

SSL/TLS, HTTP(S), and Certificates with EntireX

NotesDescriptionCertificate

The private key of the CA certificate above. The password to unlock this private key is
ExxCAKey. You will need this password only if you want to sign more certificates with
this CA (not recommended).

CAKEY

To be used as the SSL server certificate. If your SSL server is EntireX Broker, see SSL-specific
broker attribute KEY-STORE. This certificate is signed with the private key within CAKEY.

APPCERT

The private key of the application certificate. The password to unlock the key is ExxAppKey.
If your SSL server is EntireX Broker see SSL-specific broker attributes KEY-FILE and
KEY-PASSWD-ENCRYPTED.

APPKEY

Notes:

1. See also the READMEwith step-by-step description for setting up an environment that enables
an SSL-secured communication with a mainframe Broker and certificates stored in RACF.

2. To allow for multiple CAs, import multiple times the various CA certificates into the keystore.

Default Certificates for UNIX and Windows

After the installation process, youwill find certificates in directory etc ready to use for preliminary
testing of the SSL transport.

NotesDescriptionCertificate

1The CA certificate. This certificate can be used to verify the application certificate.
Use the SSL parameter trust_store. SeeUsing SSL/TLSwith EntireXComponents.

ExxCACert.pem

The private key of the CA certificate above. The password to unlock this private
key is ExxCAKey. You will need this password only if you want to sign more
certificates with this CA (not recommended).

ExxCAKey.pem

To be used as the SSL server certificate. If your SSL server is EntireX Broker, see
SSL-specific broker attribute KEY-STORE. This certificate is signedwith the private
key within ExxCAKey.pem

ExxAppCert.pem

The private key of the application certificate. The password to unlock the key is
ExxAppKey. If your SSL server is EntireX Broker see SSL-specific broker attributes
KEY-FILE and KEY-PASSWD-ENCRYPTED.

ExxAppKey.pem

Notes:

1. To allow for multiple CAs, concatenate all of the CAs' .pem files into a single new .pem file.

163Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

Default Certificates for Java

After the installation process, you will find certificates in etc directory for preliminary testing of
the SSL transport:

NotesExplanationCertificate

1The truststore containing the default CA certificate. Use SSL parameter
trust_store. See Using SSL/TLS with EntireX Components.

ExxCACert.jks

The keystore containing the application certificate. The password to unlock
this container is ExxJavaAppCert (use SSL parameters key_store and
key_passwd for Java).

ExxJavaAppCert.jks

Notes:

1. To allow for multiple CAs, import multiple times the various CA certificates into the keystore.

SSL/TLS Parameters for Broker as SSL Server (One-way SSL)

The term “SSL” in this section refers to both SSL and TLS. EntireX clients and servers are always
SSL clients. The SSL server can be either the EntireX Broker, EntireX Broker SSL Agent or direct
RPC in webMethods Integration Server (IS inbound).

SSL usually requires a certificate on the SSL server side of a communication. In order to validate
the certificate, the SSL client needs to accept the issuer of the server certificate, that is, it needs to
trust the same instance that the certificate has signed. (Customs do not trust your passport - which
could be forged - but instead verify its authenticity electronically!) If you are using EntireX Broker
as your SSL server, use the following SSL-specific broker attributes:

DescriptionBroker Attribute

The server certificate is specified using the broker attribute KEY-STORE.KEY-STORE

The appropriate private key is found using the broker attribute KEY-FILE.KEY-FILE

Generally, the private key is not stored in the open, it is further encrypted with
a password, which - because it is often more than a single word - is sometimes

KEY-PASSWD-ENCRYPTED

also called passphrase. To use the private key properly, the application must be
able to re-create the original private key. Therefore you have to provide the
appropriate password with the broker attribute KEY-PASSWD-ENCRYPTED.

The SSL client must now present the CA (i.e. its certificate, which includes the public key), so that
SSL can determine whether to accept a server certificate or not. For this purpose, specify SSL
parameter trust-store (see below) with the EntireX client or server. Checking the SSL server
certificate by an SSL client is also known as one-way SSL.

Administration164

SSL/TLS, HTTP(S), and Certificates with EntireX

SSL/TLS Parameters for SSL Clients

DescriptionSSL Parameter

fips_mode=yes enables FIPS-140 compliant SSL communication.Default is no. Available
for:

fips_mode

■ EntireX RPC Server for CICS ECI | CICS Socket Listener | IBMMQ | IMS Connect |
Java | XML/SOAP | AS/400

■ RPC-ACI Bridge
■ Listener for IBMMQ | Listener for XML/SOAP
■ EntireX Java clients.

The private key of the application certificate.key_file

Password to unlock the private key of the application certificate.key_passwd

Application certificate.key_store

CA certificate. The trust_store parameter is mandatory. It specifies the file name of a
keystore that must contain the list of trusted certificate authorities for the certificate of

trust_store

the SSL server. By default a check is made that the certificate of the SSL server is issued
for the hostname specified in the Broker ID. The common name of the subject entry in
the server's certificate is checked against the hostname. If they do notmatch, the connection
will be refused. This check can be disabled by specifying SSL subparameter
verify_server=no.

Possible values:verify_server

Default. The common name of the server certificate (the field CN of the subject)
must be equal to the Broker ID (excluding port number and transport). Example:

yes

broker_id="pc001.my-company.com:1958:ssl"

and Broker kernel certificate (see broker attribute KEY-STORE):

Subject, CN=pc001.my-company.com

Accept any common name (CN) in the server certificate, but still check that the
certificate is signed by a trusted CA (see broker attribute TRUST-STORE).

no

The default application certificate (see SSL/TLS Sample Certificates Delivered with
EntireX) is issued to "localhost". This enables you to use a Broker ID of "localhost"
together with verify_server=y.

How you provide SSL parameters depends on the EntireX component in use. See table Using
SSL/TLS with EntireX Components below for platform and language-specific information. SSL
parameters are separated by ampersand (&).

165Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

If the SSL server requests a client certificate (known as two-way SSL; verify_client=yes is defined
in the configuration of the SSL server) the following additional parameters have to be specified:

■ key_file

■ key_store

■ key_passwd

The password that protects the private key is specified with key_passwd. The ampersand (&)
character cannot appear in the password.

Using SSL/TLS with EntireX Components

This table provides references to available SSL documentation. Select the RPC or ACI components
in use from column SSL Client and the communication partner such as EntireX Broker, Direct
RPC, etc. from column SSL Server:

SSL ServerSSL Client

In an SSL context, SSL servers areIn an SSL context, SSL clients are

■ EntireX Broker■ RPC clients and RPC servers
■ EntireX Adapter service and EntireX Adapter
listener

■ EntireX Broker SSL Agent
■ Direct RPC in the EntireX Adapter
documentation■ Bridge components

■ ACI clients and ACI servers

RPC-based
Components

■ Running Broker with SSL/TLS
Transport in the platform-specific
Administration documentation

■ For RPC clients generated by a wrapper, see
Using SSL/TLS (C | COBOL | .NET | Java |
Natural | PL/I).

■ For webMethods Integration Server, see Support
for SSL/TLS in the EntireX Adapter
documentation.

■ Broker SSL Agent in the UNIX |
Windows Administration
documentation

■■ For RPC servers, seeUsing SSL/TLS with the RPC
Server under z/OS (CICS, Batch, IMS) | Java |

ConfiguringDirect RPC in the EntireX
Adapter documentation

C | .NET | XML/SOAP | CICS ECI |
CICS Socket Listener | AS/400 | IMS Connect |
IBMMQ.

■ For Bridge components, seeUsing SSL/TLSwith
RPC-ACI Bridge | Listener for IBMMQ.

ACI-based
Programming

■ Running Broker with SSL/TLS
Transport in the platform-specific
Administration documentation

■ For ACI clients and ACI servers, see Using the
Broker ACI with SSL/TLS (Assembler | C |

Administration166

SSL/TLS, HTTP(S), and Certificates with EntireX

SSL ServerSSL Client

COBOL | Java | Natural | PL/I) of the
programming language in use

■ Broker SSL Agent in the UNIX |
Windows Administration
documentation■ For webMethods Integration Server, see Support

for SSL/TLS

Running Broker with SSL/TLS Transport
in the platform-specificAdministration
documentation

Administration ■ For ETBCMD, see Using SSL/TLS under Broker
Command-line Utilities under z/OS | UNIX |
Windows

■ For ETBINFO, see Using SSL/TLS under Broker
Command-line Utilities under z/OS | UNIX |
Windows

SSL/TLS Certificate Creation and Handling

This section covers the following topics:

■ Creating Certificates with OpenSSL (z/OS, UNIX, Windows)
■ Creating Certificates with keytool (Java)
■ Importing Certificates into RACF (z/OS)
■ Additional Considerations for PKI (Public Key Infrastructure)
■ Support of Self-signed Certificates

Creating Certificates with OpenSSL (z/OS, UNIX, Windows)

This section contains step-by-step instructions on how to create your own certificates. TheOpenSSL
tool is installed together with EntireX and can be found in directory <install_root>/common/secur-
ity/openssl/bin.

To set up all necessary paths when working with the OpenSSL tool

■ Call the installed tlsenv script, which is provided in the following locations:

■ Under UNIX: <install_root>/common/security/openssl/extras/tlsenv.sh. Source this once with
the dot command in the POSIX shell (bash, ksh, etc.) where the OpenSSL tool will be used.

■ Under Windows: <install_root>\common\security\openssl\extras\tlsenv.bat. Call this once
in the command line interpreter window (cmd.exe) where the OpenSSL tool will be used.

Note: Certificates adhere to a standard format and can also be created with other tools;
OpenSSL is installed with EntireX and can be used as an example.

167Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

To create your own certificates

1 Create a new directory in which the new certificates will be created andwhere all of the other
required files will be stored.

2 In your new directory create a file named genca.cnfwith a text editor and cut and paste the
contents of the file gencacnf.html (delivered with this documentation) to your new file.

3 Create an empty directory newcerts in your new directory.

4 Create an empty directory certs in your new directory.

5 Create an empty file index.txt in the current directory.

6 Create a file serial in the current directory and enter a number in column 1, line 1, for example:
1000. This serial number will be incremented for each certificate that you create.

7 Now edit the file genca.cnf that you cut and pasted into your new directory in step 2, above.
Read the comments carefully. There are a few defaults that you will probably want to adapt
to your own environment. Take care not to mix filename separators: Always use the UNIX-
style forward slash “/”, even on Windows.

Below is a list of the important variables that should be checked:

■ Set the variable database to point to the index.txt file.
■ Set the variable serial to point to the serial file.
■ Set the variable new_certs to point to the newcerts directory.
■ Set the variable certs_dir to point to the certs directory.
■ Set the variable certificate to point to the CA certificate file (see NewCACert.pem in the
example below).

■ Set the variable private_key to point to the CA certificate's private key file (see New-
CAKey.pem in the example below).

■ Review the req_distinguished_name section and fill in the *_default variables, if sensible.
Empty defaults will be prompted for.

8 Save the configuration file.

You can now start creating certificates.

First, you need to define a Certificate Authority (CA); create a key pair and a self-signed certificate
to represent this CA.

Enter the following command in a shell and follow the instructions (be patient, loading the screen
state takes several seconds)

Administration168

SSL/TLS, HTTP(S), and Certificates with EntireX

openssl req -config genca.cnf -newkey rsa:4096 -x509 -keyout <NewCAKey.pem> -out ↩
<NewCACert.pem> -days 365

Do not forget the passphrase for the key file! You will need it whenever a new certificate is gener-
ated.

Now you have a CA certificate and a CA key file.

Next, create a certificate that can be used by various products (for example the Broker kernel) to
start an SSL server session.

With the CA cert and key files described above you can create any number of certificates. We will
sign all of them with the same CA (used from the genca.cnf file).

Create a certificate request:

openssl req -config genca.cnf -newkey rsa:2048 -out <ExxAppCertReq.pem> -keyout ↩
<ExxAppKey.pem> -days 365

You will be prompted for a new passphrase. Again, this will be the passphrase to lock the
MyAppKey.pem file. Remember it well.

You must then sign this certificate request with your CA to create a proper certificate:

openssl ca -config genca.cnf -policy policy_anything -out <ExxAppCert.pem> -infiles ↩
<ExxAppCertReq.pem>

Note: The passphrase you are prompted with is the one used to unlock the CA key.

Creating Certificates with keytool (Java)

A certificate management tool is also supplied with the standard JDK kit, i.e. it is part of J2SE kit,
not the JSSE kit. Certificate requests can be generated and keystores and truststores can be built
with this tool. The steps for building keystores and truststores are outlined below.

To create a keystore

1 Create a keystore containing a self-signed certificate and key (example yourkeystore).

The following command will prompt you for identification information.

169Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

 keytool -genkey -v -alias yourJavaApp -keyalg RSA -validity 900 -keypass ↩
yourkeypsw -keystore yourkeystore -storepass yourkeypsw

2 Import any CA certificates of CAs which will sign the certificate generated above.

keytool -import -v -alias yourcacert -file yourcacert.pem -keystore yourkeystore ↩
-storepass yourkeypsw

3 (Optional) List certificate chain present in keystore.

keytool -list -v -keystore yourkeystore -storepass yourkeypsw

4 Extract certificate for signing by a CA.

keytool -certreq -v -alias yourJavaApp -file yourJavaAppreq -keypass yourkeypsw ↩
-keystore yourkeystore -storepass yourkeypsw

5 Sign Java certificate request with OpenSSL tool.

openssl ca -config yourca.cnf -policy policy_anything -out yourjavaapp.pem ↩
-notext -days 365 -infiles yourJavaAppreq

Note: The -notext parameter is required. Without it, the import of a signed certificate
to keystore will fail. The error will be either a Not an X.509 certificate or a Tag
sequence error. The reason for the error is that the OpenSSL signing tool will write
both a text version and an encoded version of the signed certificate to the output file
if the -notext parameter is not specified.

6 Import signed certificate.

keytool -import -v -alias yourJavaApp -file yourjavaapp.pem -keypass yourkeypsw ↩
-keystore yourkeystore -storepass yourkeypsw

Notes:

1. yourjavaapp.pem is the signed certificate returned by the CA.

2. Import will only work if a signed CA certificate is already present in the keystore.

To create a truststore

■ Import the CA certificates that were used to sign the client and server certificates.

■ Import signed CA certificates.

Administration170

SSL/TLS, HTTP(S), and Certificates with EntireX

keytool -import -v -alias yourcacert -file yourcacert.pem -keystore ↩
yourtruststore -storepass yourstorepsw

■ (Optional) List truststore.

keytool -list -v -keystore yourtruststore -storepass yourstorepsw

Importing Certificates into RACF (z/OS)

This section applies to operating system z/OS only.

To import certificates into RACF

1 Create a certificatewithOpenSSL. SeeCreatingCertificateswithOpenSSL (z/OS,UNIX,Windows).

2 Create the PKCS#12 import format for RACF. Enter the following command to create a file
containing the application certificate and application key files for import into RACF:

openssl pkcs12 -export -inkey <EXXAppKey.pem> -in <EXXAppCert.pem> -certfile ↩
<EXXCACert.pem> -out <EXXPkcs12.p12>

You will be prompted for the passphrase of the private key and for an export password. The
output file is created in PKCS#12 format. You can use FTP to transfer the output file in binary
mode to the IBM host.

3 Import certificates and private keys with RACDCERT into RACF. See readme file
EXX107.CERT(README) in the product distribution for detailed instructions.

Additional Considerations for PKI (Public Key Infrastructure)

When using a PKI, there are usually more than two certificates involved. Typically, there is one
(self-signed) root certificate, one ormoreCA certificates, and several application certificates, usually
one for every server.

For the SSL server side (Broker) you need a suitable application certificate.

To check the certificate

■ Execute the command:

171Administration

SSL/TLS, HTTP(S), and Certificates with EntireX

openssl x509 -in <YourSSLCert.pem> -text

This will display relevant information about the certificate such as key extensions with key
usage and basic constraints. (For example, the Basic Contraint CA should be "FALSE".)

Given a specific server certificate, it is also possible to verify the certificate chain.

To verify the certificate chain

■ Execute the command:

openssl verify -CAfile <YourCaCert.pem> -purpose sslserver <YourSSLCert.pem>

If you receive an OK, then <YourSSLCert.pem> should work on the SSL server side together
with the <YourCaCert.pem> on the SSL client side.

Note: If there is a chain of CA certificates defined, copy the contents of the appropriate
CAxxx.pem files into one new file and use this as the <YourCaCert.pem> on the client side
to verify the SSL server certificate against.

Support of Self-signed Certificates

To support self-signed certificates it is probably necessary to modify the LDAP settings. For ex-
ample, to allow use of a self-signed certificate in OpenLDAP, the client needs access to the CA's
certificate. Add the following line to file /etc/openldap/ldap.conf:

TLS_CACERT <YourCaCert.pem>

Managing One-way and Two-way SSL

■ One-way SSL
One-way SSL is always active in EntireX, that is, the public SSL server certificate is always
checked by the client.

■ Two-way SSL
■ EntireX Adapter requires parameter verify_client=yes in the configuration of the SSL
server.

■ EntireX Broker on z/OS requires HandshakeRole ServerWithClientAuth in the AT-TLS con-
figuration.

■ EntireXBroker on all other platforms requires SSL-specificBroker attribute VERIFY-CLIENT=YES.

Administration172

SSL/TLS, HTTP(S), and Certificates with EntireX

12 Authorization Rules

■ Introduction .. 174
■ Rules Stored in Broker Attribute File .. 174
■ Rules Stored in LDAP Repository ... 175

173

An authorization rule is used to perform access checks for authenticated user IDs against lists of
services defined within the rule. This feature is available on UNIX and Windows using EntireX
Security on these platforms. Authorization rules can be stored in the Broker attribute file or in an
LDAP repository.

Introduction

The value of SECURITY-SYSTEM in the DEFAULTS=SECURITY section of the Broker attribute file de-
termines the location of the authorization rules:

■ Broker Attribute File
Set SECURITY-SYSTEM=OS.
Rules are defined under DEFAULTS=AUTHORIZATION-RULES of the broker attribute file.

■ LDAP Repository
Set SECURITY-SYSTEM=LDAP.
Rules are stored in an LDAP repository. Security-specific attributes LDAP-AUTHENTICATION-URL
and LDAP-AUTHORIZATION-URL define the parameters for the access of the LDAP client side, and
LDAP-AUTHORIZATION-RULE defines applicable rule names.

Whenever an authorization call occurs, the Broker security exit performs checks based on the value
of the security-specific attribute AUTHORIZATION-DEFAULT. Examples of these two approaches are
provided below.

Rules Stored in Broker Attribute File

Set SECURITY-SYSTEM=OS in the SECURITY-SYSTEM section of the broker attribute file and define
the individual rules under DEFAULTS=AUTHORIZATION-RULES. A rule is a container for a list of services
and a list of client and server user IDs. All users defined in a rule are authorized to use all services
defined in this rule.

Sample Attribute File Settings

DEFAULTS=SECURITY
SECURITY-SYSTEM = OS
SECURITY-LEVEL = AUTHORIZATION
AUTHORIZATION-DEFAULT = NO

DEFAULTS = AUTHORIZATION-RULES
RULE-NAME = rule1

CLASS = class1, SERVER = server1, SERVICE = service1
CLIENT-USER-ID = user1
CLIENT-USER-ID = user2

Administration174

Authorization Rules

SERVER-USER-ID = user3
SERVER-USER-ID = user4

RULE-NAME = rule2
CLASS = class2, SERVER = server2, SERVICE = service2
CLASS = class3, SERVER = server3, SERVICE = service3
CLIENT-USER-ID = user1
CLIENT-USER-ID = user5
CLIENT-USER-ID = user6
SERVER-USER-ID = user7

This example results in the following permissions:

■ user1may send requests to all three services.
■ user2may send requests to service1 only.
■ user5 and user6may send requests to service2 and service3, but not service1.
■ user3 and user4may run as servers of service1.
■ user7may run as server of service2 and service3.

Attributes are described in more detail under Security-specific Attributes and Authorization Rule-
specific Attributes.

Rules Stored in LDAP Repository

This section covers the following topics:

■ Sample Attribute File Settings
■ Configuring your LDAP Repository
■ Authorization Rule Data
■ Hints for Microsoft Active Directory

Sample Attribute File Settings

Specify theURLof your LDAP server under LDAP-AUTHENTICATION-URL and LDAP-AUTHORIZATION-
URL in the DEFAULTS=SECURITY section of the broker attribute file, and specify up to 16 rules with
LDAP-AUTHORIZATION-RULE as shown in the example below:

DEFAULTS=SECURITY
SECURITY-SYSTEM = LDAP
SECURITY-LEVEL = AUTHORIZATION
LDAP-AUTHENTICATION-URL = "ldap://myhost.mydomain.com"
LDAP-AUTHORIZATION-URL = "ldap://myhost.mydomain.com"
LDAP-AUTHORIZATION-RULE = rule1
LDAP-AUTHORIZATION-RULE = rule2
...
LDAP-AUTHORIZATION-RULE = rule16

175Administration

Authorization Rules

LDAP-PERSON-BASE-BINDDN = "cn=users,dc=software-ag,dc=de"
LDAP-SASL-AUTHENTICATION = YES

Note: Weassume you can change authorization rules (add/modify/delete) in LDAPdirectly.
Add/delete authorization rule names in Broker attribute file accordingly.

Attributes are described in more detail under Security-specific Attributes.

Configuring your LDAP Repository

An LDAP server is a prerequisite (based on LDAPv3); it is not installed with EntireX.

For the installation of the LDAP server, see the respective product documentation. All servers
have to support the attribute types sag-key, sag-value and the objectClass sag-xds. They are
defined in the following schema.

attributetypes:
(1.2.276.0.12.2.1.1
NAME 'sag-key'
DESC 'User Defined Attribute'
SYNTAX '1.3.6.1.4.1.1466.115.121.1.26')

attributetypes:
(1.2.276.0.12.2.1.2
NAME 'sag-value'
DESC 'User Defined Attribute'
SYNTAX '1.3.6.1.4.1.1466.115.121.1.5')

objectclasses:
(1.2.276.0.12.2.3.1
NAME 'sag-xds'
DESC 'User Defined ObjectClass'
SUP 'top'
MUST (objectclass $ sag-key)
MAY (aci $ sag-value))

We recommend setting up a separate branch in the directory for authorization rules. The distin-
guished name of this branch is the value of the configuration setting specifiedwith attribute LDAP-
BASE-DN in section Security-specific Attributes in the platform-independent Administration docu-
mentation.

Administration176

Authorization Rules

Authorization Rule Data

The following example describes the required data in LDAP to define the authorization rule RULE1
restricting service SC1:SN1:SV1 (CLASS=SC1, SERVER=SN1,SERVICE=SV1) to authorized client
CLIENT1 and authorized server SERVER1. It assumes attribute LDAP-BASE-DNwas set to
"dc=software-ag,dc=de".

Define the authorization rule:

sag-key=RULE1,sag-key=100,sag-key=AuthRules,sag-key=EntireX,sag-key=Software ↩
AG,dc=software-ag,dc=de

Define the service for the authorization rule:

sag-key=SC1:SN1:SV1,sag-key=RULE1,sag-key=100,sag-key=AuthRules,sag-key=EntireX,sag-key=Software ↩
AG,dc=software-ag,dc=de

Define a client user ID for the service:

sag-key=CLIENT1 ↩
[C,sag-key=SC1:SN1:SV1,sag-key=RULE1,sag-key=100,sag-key=AuthRules,sag-key=EntireX,sag-key=Software ↩
AG,dc=software-ag,dc=de

Define a server user ID for the service:

sag-key=SERVER1 ↩
[S,sag-key=SC1:SN1:SV1,sag-key=RULE1,sag-key=100,sag-key=AuthRules,sag-key=EntireX,sag-key=Software ↩
AG,dc=software-ag,dc=de

The part "sag-key=100,sag-key=AuthRules,sag-key=EntireX,sag-key=Software AG" identifies
authorization rules in general. All values are fixed and must not be changed. Preceeding
"sag-key=RULE1" defines the name of an authorization rule. This rule namemust have been defined
with attribute LDAP-AUTHORIZATION-RULE in the Broker attribute file.

The definition of services requires "sag-key=SC1:SN1:SV1" in front of the complete rule data.

User ID values contain the user ID plus blank, open square bracket and uppercase C for clients or
S for servers.

Following table lists attribute type and value. All entries belong to objectClass sag-xds.

177Administration

Authorization Rules

ValueAttribute Type

Software AGsag-key

EntireXsag-key

AuthRulessag-key

100sag-key

RULE1sag-key

SC1:SN1:SV1sag-key

CLIENT [Csag-key

SERVER [Ssag-key

Hints for Microsoft Active Directory

Note: To deploy the sagxds schema onMicrosoft Active Directory, do not use the Microsoft
Active Directory tools for editing the schema. Use the following step-by-step instructions:

To deploy the sagxds schema

1 Make a backup of the system state. Changes to the schema of Microsoft Active Directory are
irreversible without a backup of the system state.

2 You must enable UPDATE schema.

1. To make the Schema Master available, enter the following at a command prompt:

regsvr32.exe schmmgmt.dll

2. Enter MMC.

3. From Console menu item, select: Add/remove snap-in.

4. Choose Add.

5. Choose Active Directory Schema from Actionmenu item of Active Directory Schema,
selectOperations Master.

6. Choose “The schema may be modified on this domain controller”.

3 Copy the following text to the file sagxds.ldif

Administration178

Authorization Rules

Add sag-value attribute

dn: CN=sag-value,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: add
adminDisplayName: sag-value
attributeID: 1.2.276.0.12.2.1.2
attributeSyntax: 2.5.5.10
cn: sag-value
isSingleValued: FALSE
lDAPDisplayName: sag-value
distinguishedName: CN=sag-value,CN=Schema,CN=Configuration,DC=<your domains name>
objectCategory:
 CN=Attribute-Schema,CN=Schema,CN=Configuration,DC=<your domains name>
objectClass: attributeSchema
oMSyntax: 4
name: sag-value

Add sag-key attribute
Active Directory requires the naming attribute(RDN) to be a syntax of ↩
DirectoryString

dn: CN=sag-key,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: add
adminDisplayName: sag-key
attributeID: 1.2.276.0.12.2.1.1
attributeSyntax: 2.5.5.12
cn: sag-key
isMemberOfPartialAttributeSet: TRUE
isSingleValued: TRUE
lDAPDisplayName: sag-key
distinguishedName: CN=sag-key,CN=Schema,CN=Configuration,DC=<your domains name>
objectCategory:
 CN=Attribute-Schema,CN=Schema,CN=Configuration,DC=<your domains name>
objectClass: attributeSchema
oMSyntax: 64
name: sag-key
searchFlags: 1

Update the schema

DN:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

Add sag-xds class

dn: CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: add
adminDescription: sag-xds
adminDisplayName: sag-xds

179Administration

Authorization Rules

cn: sag-xds
defaultObjectCategory:
 CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
governsID: 1.2.276.0.12.2.3.1
lDAPDisplayName: sag-xds
mayContain: sag-value
mustContain: sag-key
distinguishedName: CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
objectCategory: CN=Class-Schema,CN=Schema,CN=Configuration,DC=<your domains name>
objectClass: classSchema
objectClassCategory: 1
possSuperiors: container
name: sag-xds
rDNAttID: sag-key
subClassOf: top

Update the schema

DN:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

Modify sag-xds class
make sag-xds a possSuperior. This means a sag-xds class can contain other ↩
sag-xds classes.

dn: CN=sag-xds,CN=Schema,CN=Configuration,DC=<your domains name>
changetype: modify
add: possSuperiors
possSuperiors: sag-xds
-

Update the schema

DN:
changetype: modify
add: schemaUpdateNow
schemaUpdateNow: 1
-

4 Replace all instances of dc= <your domain name>with your domain name, for example
dc=myunit,dc=mycompany,dc=com.

5 Run it with the command:

Administration180

Authorization Rules

ldifde -s <your server> -b <account> <domain> <password> -i -f sagxds.ldif

6 Add containers that represent the base DN of the authorization rules. These containers de-
termine the value of attribute LDAP-BASE-DN under Security-specific Broker Attributes. Example
(for two containers):

dn: CN=<your container 1>,DC=<your domain name>
changetype: add
cn: <your container 1>
objectclass: container

dn: CN=<your container2>,<your container 1>,DC= <your domain name>
changetype: add
cn: <your container 2>
objectclass: container

7 With the utilities for Microsoft Active Directory, set the permissions to read and to modify
the containers.

181Administration

Authorization Rules

182

13 Data Compression in EntireX Broker

■ Introduction .. 184
■ zlib ... 184
■ Implementation ... 185
■ Sequencing Summary .. 186
■ Sample Programs .. 186

183

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
clients and servers. This helps to reduce response time during transmissions as well as improve
the overall network throughput, especially with low-bandwidth connections.

This chapter gives an overview of data compression in EntireX Broker.

See also: COMPRESSLEVEL under Broker ACI Fields | Data Compression underWriting Client and
Server Applications in the ACI Programming documentation.

Introduction

Compression is performed only on the SEND and RECEIVE buffers. The client or server application
has the option of setting the level of compression/decompression for data transmission. The
compression level can be set to achieve either no compression or a range of compression/decom-
pression. If during a data transmission the data buffer does not compress, a logged warning
message 00200450 indicates that the data has not been compressed during transmission.

Note: The compression level is used to control compression only between the application
and the Broker kernel.

zlib

zlib is a general-purpose software implementing data compression across a variety of platforms.
Version 1.1.4 of zlib is implemented starting with EntireX Broker version 7. The functions used
within EntireX Broker represent a subset of those available within the zlib software.

The compression algorithms are implemented through the open source software zlib.

Administration184

Data Compression in EntireX Broker

http://www.zlib.net/

Implementation

Compression of the data is implemented by the following components of EntireX:

DescriptionComponents

Broker control
block

The Broker control block (ETBCB) contains a field that is used to set the compression
level. This field determines for any SEND/RECEIVE transmission whether the data
buffer will be compressed/decompressed. Possible values:

0 = no compression, 9 = maximum
compression/decompression

0 - 9

Default. No compression.N

Compression level 6Y

If the data buffer does not compress, the kernel or stub generates a logged warning
message 00200450 indicating that the transmitted data is not compressed.

Note: See also ACI control block field COMPRESSLEVEL.

The behavior of the Broker stub and Java stub is identical with respect to compression.

The logic of a client or server application sets the compress level of the Broker control
block when it issues the SEND or RECEIVE command. If the application issues a SEND,

Stubs: Broker stub
and Java stub

the stub compresses the data buffer before transmission of the data. If the application
issues a RECEIVE, the stub decompresses the data buffer after reception of the data.

Note: The compression level is used to control compression only between the application
and the Broker kernel.

When a client or server application SENDs the data to the Broker kernel, the application
specifies the level at which the kernel is to decompress the data.

When the client or server application issues the RECEIVE command, the Broker kernel
compresses the data before returning it to the application. The application specifies the
level at which the kernel is to compress the data.

Broker kernel

185Administration

Data Compression in EntireX Broker

Sequencing Summary

The following graphic shows the sequencing of data compression within EntireX Broker:

Sample Programs

Using the -rn option will cause compression to be used at level n.

■ bcoc can be instructed to use compression/decompression by specifying, for example:

bcoc -r2

This will cause a compression/decompression level of 2 to be used on all transmissions between
the client and the broker.

■ bcos can be instructed to use compression/decompression by specifying, for example:

Administration186

Data Compression in EntireX Broker

bcos -r4

This will cause a compression/decompression level of 4 to be used on all transmissions between
the server and the broker.

To test howwell various types of data will compress, you can use the option -gfilename. You can
use, for example, the following syntax to specify that input is to be from a pre-existing file, using
the following arguments:

■ bcoc -r2 -gmyfile1.txt

This will read in myfile1.txt and send it to a registered server. If bcos is the server, bcoswill re-
verse the data sequence and return the data.

■ bcos -r4 -gmyfile2.txt

This will write in myfile2.txt the data sent from the client.

187Administration

Data Compression in EntireX Broker

188

14 Timeout Considerations for EntireX Broker

■ Timeout Units ... 190
■ Timeout Settings ... 190
■ Relationship between Timeout Values .. 192
■ Timeout-related Error Messages ... 195

189

This chapter describes the timeout settings for EntireX Broker.

Timeout Units

The timeout duration can be specified in seconds (S), minutes (M) or hours (H), for example 100M.
If no unit is specified, the default is seconds.

Timeout Settings

DescriptionTimeout Setting

Any broker stub application that issues a LOGON but does not issue a REGISTER is a client.
During logon, broker allocates resources to each client and keeps them available to the

Client
Non-activity
Timeout client until the client application issues a LOGOFF. A client is considered inactive when

it is not issuing a broker request. A typical example of a broker request by a client is the
SEND function.

The CLIENT-NONACT value defines the maximum period of time a client can remain
inactive. See CLIENT-NONACT underBroker-specific Broker Attributes. If the client continues
to be inactive beyond this period of time, Broker releases all the resources allocated to
this client. This time is a global attribute, applicable to all clients of the Broker.

Any broker stub application that issues a LOGON and also issues a REGISTER is a server.
During logon and registration, broker allocates resources to each server, and keeps them

Server
Non-activity
Timeout available to the server until the server issues a DEREGISTER and LOGOFF. A server is

considered inactivewhen it is not issuing a broker request. A typical example of a Broker
request by a server is the RECEIVE function.

The SERVER-NONACT value defines the maximum period of time a server can remain
inactive. SeeSERVER-NONACTunder Service-specific Broker Attributes. If the server continues
to be inactive beyond this period of time, Broker releases all the resources allocated to
this server. This time is a per-service attribute, and can vary from one service definition
to another. All servers, registered to the same service, inherit the same SERVER-NONACT
time. If a server registers to more than one service, the highest SERVER-NONACT value is
taken as the non-activity time period.

A conversation begins when a client successfully sends a message addressed to a server.
The Broker allocates a unique conversation, even before the server receives thismessage.

Conversation
Non-activity
Timeout Broker also allocates resources to manage each conversation. A conversation remains

active as long as messages are being exchanged with this conversation ID. The
conversation remains inactive as long as neither a client nor a server makes a Broker
request, referencing this conversation ID. The resources allocated to a conversation are
freed when either a client or a server issues EOC.

Administration190

Timeout Considerations for EntireX Broker

DescriptionTimeout Setting

The CONV-NONACT value defines themaximumperiod of time a conversation can remain
inactive. If the conversation continues to be inactive beyond this period of time, Broker
releases all the resources allocated to this conversation.

Each UOWhas a lifetime value associatedwith it. This is the time that a UOW is allowed
to exist without being completed. A UOW is completed when it is successfully

UOW Lifetime
(UWTIME)

■ either cancelled or backed out by its sender
■ or cancelled or committed by its receiver.

If a UOW is in ACCEPTED status when this lifetime expires, the UOW is placed into a
timeout status. Lifetime timeouts will not occur when the UOW is in either RECEIVED
or DELIVERED status. See CONV-NONACT description in Relationship between Timeout
Values.

If EntireNet-Work is used to transmit a Broker request, the setting of the EntireNet-Work
NODE statement parameter REPLYTIMmay influence the behavior of the application (see

Transport
Timeouts

your EntireNet-Work documentation for details). All non-activity timeouts in the Broker
configuration shouldbe consideredwhendetermining themaximumtime. Thismaximum
time should be less than the value defined for REPLYTIM in the Entire Net-Work
configuration.

191Administration

Timeout Considerations for EntireX Broker

Relationship between Timeout Values

The interdependency between different timeouts is described as follows:

■ UOW Messages

Administration192

Timeout Considerations for EntireX Broker

■ Non-UOW Messages

UOW Messages

■ A server or a client engaged in a conversation will not be timed out until the UOW that they
are handling times out. CLIENT-NONACT (or SERV-NONACT) has no effect if it is shorter than UWTIME.

■ A conversation may time out earlier than either the client or the server. When an existing con-
versation times out, the participating server and client can start a new conversation. We recom-
mend you set the CONV-NONACT shorter than CLIENT-NONACT (or SERV-NONACT).

■ If either the client or server times out before the conversation does, the conversation does not
continue, that is, it reaches end of conversation (EOC). Nevertheless, the surviving participant
(client or server) can continue and receive any unread messages.

■ When a conversation times out, Broker checks for the status of all UOWs in this conversation.
Any UOWwith status RECEIVED or DELIVERED is backed out and enters into ACCEPTED status.
"Accepted" means that the UOW can be received by anyone (with CONV-ID=NEW), and that the
conversation has lost the link to the consumer of the UOW.

Note: The link to the consumer is lost only for the first UOW in a conversation when the
status changes to ACCEPTED; with subsequent UOWs, the link is not lost.

■ A common relationship between these three timeout values is as follows, although this may not
be the optimum combination in all situations:

UWTIME > SERV-NONACT > CLIENT-NONACT > CONV-NONACT

In common situations, this combination will achieve optimal resource consumption without
recourse to repeatedly restarting applications.

193Administration

Timeout Considerations for EntireX Broker

Non-UOW Messages

Timeout behavior remains the same as in UOWmessages, except that UWTIME (UOW lifetime at-
tribute) is not applicable here. The optimal hierarchy between the three timeout values is shown
below:

SERV-NONACT > CLIENT-NONACT > CONV-NONACT

Administration194

Timeout Considerations for EntireX Broker

Timeout-related Error Messages

When any client or server or conversation times out, the Broker does not immediately notify the
application. The application receives notification when it makes its next Broker request. The fol-
lowing are the errormessages commonly associatedwith the respective timeouts. The errors listed
below can occur in the case of blocked and non-blocked ACI calls. A blocked call is one in which
the ACI field WAIT is set to either "YES" or a non-zero numeric value.

See message 00740074.

■ CLIENT-NONACT
■ SERV-NONACT
■ CONV-NONACT
■ Special Case for UOW Messages

CLIENT-NONACT

In the following errors, it is assumed that client only has timed out, while the server and conver-
sation are active.

ExplanationError TextError Number

When the timed out client tries to make a Broker request.User does not exist00020002

The surviving partner (server) receives this error when
attempting to receive on a conversation which is closed because

EOC due to LOGOFF of
partner

00030012

the client has timed out. If there are any unread messages, the
server successfully receives them.

SERV-NONACT

In the following errors, it is assumed that only the server has timed out, while the client and con-
versation are active.

ExplanationError TextError Number

When the timed out client tries to make a Broker request.User does not exist00020002

The surviving partner (client) receives this error when attempting
to send on a conversation which is closed because the server timed
out.

Partner timeout occurred00030067

195Administration

Timeout Considerations for EntireX Broker

CONV-NONACT

It is assumed that server and client are active.

ExplanationError TextError Number

When either a server or a client attempts a newBroker request
affecting this timed out conversation.

No matching conversation
found

00030003

When both client and server are already engaged in a
conversation, and the conversation time out without the
partner issuing any Broker request.

Conversation timeout occurred00030073

Special Case for UOW Messages

UOWs involved in a conversation, andwhich are in DELIVERED state, revert to ACCEPTED statewhen
the conversation times out. UOWs in ACCEPTED state are no longer bound to a server nor to an
existing conversation. Therefore, UOW in ACCEPTED state is part of a new conversation that is
available to any server.

Administration196

Timeout Considerations for EntireX Broker

15 EXXMSG - Command-line Tool for Displaying Error

Messages
■ Running the EXXMSG Command-line Utility ... 198

197

EXXMSG is a command-line tool that displays the text of an EntireX error message for a supplied
error number. It is available on all platforms.

Running the EXXMSG Command-line Utility

Under z/OS, command-line utility EXXMSG is located in library EXB107.LOAD. Under UNIX and
Windows, the utility is located in the EntireX bin directory.

Command-line Parameters

The only command-line parameter is any 8-digit error code.

Sample Command

exxmsg 02150148

Sample Output

Software AG webMethods EntireX 10.7.0 (473) Linux 3.1.10-1.16-desktop
(c) Copyright 1997 - 2020 Software AG. All rights reserved.

02150148 EntireX Broker not active : (or Transport-Specific Error Text)
Explanation The requested Broker specified in BROKER-ID is not reachable.
Action Check the BROKER-ID. If it is correct, check if ETB_TRANSPORT

environment variable is defined and if defined, it should point to
the desired transport method. If problem persists, contact your
network administrator.

Administration198

EXXMSG - Command-line Tool for Displaying Error Messages

16 Introduction toEntireXMainframeBrokerMonitoringusing

Command Central
■ Scope ... 200
■ Monitoring EntireX Broker KPIs .. 201
■ Supported Configuration Types .. 202

199

EntireX Mainframe Broker Monitoring is a package with which you can monitor EntireX Broker
on mainframe platforms z/OS and BS2000. Define an instance of your mainframe broker, using
Command Central under UNIX or Windows. This instance - a so-called proxy - holds connection
information to the remote broker.

See also EntireX Mainframe Broker Monitoring using the Command Central GUI | Command Line.

Note: CommandCentral functionality that is not EntireX-specific is described in the separate
CommandCentral documentation or the online help providedwith CommandCentral. On
Empower, the documentation is provided under webMethods > EntireX > EntireX 10.7 >
Additional Documentation.

Scope

This section applies to Broker instances running on mainframe platforms z/OS and BS2000. For
EntireX Brokers running onUNIX andWindowsplatforms, see Introduction to Administering EntireX
Broker with Command Central (UNIX and Windows).

The EntireXMainframeAdministration instance is automatically provided in CommandCentral.
For more information see the separate Command Central documentation or the online help
provided with Command Central.
From the Configuration tab (GUI) or with the command-line interface you can create or delete
Mainframe Broker Connections to a broker running in a mainframe environment.

Administration200

Introduction to EntireX Mainframe Broker Monitoring using Command Central

Use Mainframe Broker Connections to perform the following operations on EntireX Broker:

■ view the EntireX Brokers running in each environment of your IT landscape
■ monitor runtime status, KPIs (key performance indicators), and alerts of EntireX Broker in-
stances

■ display services
■ display server instances of a service

When you create a mainframe connection, this is logged to file connection.log of the mainframe
connection instance.

Note: Do not confuse this logfile with the broker log on the mainframe (for example
DD:SYSOUT under z/OS).

Monitoring EntireX Broker KPIs

The visual key performance indicators (KPIs) and alerts enable you tomonitorwebMethods EntireX
Broker's health. The following KPIs help you administer, troubleshoot, and resolve performance
issues in EntireX Broker:

DescriptionKPI

Number of active clients.Clients

Number of active servers.Servers

Number of active conversations.Conversations

201Administration

Introduction to EntireX Mainframe Broker Monitoring using Command Central

Supported Configuration Types

Command Central supports the following configuration instance:

Use to...TypeInstance

Show and edit the Monitoring KPI settings, like the
marginal and critical bounds, etc.

EXX-MONITORING-KPISEXX-MONITORING-KPIS

Administration202

Introduction to EntireX Mainframe Broker Monitoring using Command Central

17 EntireXMainframeBrokerMonitoring using theCommand

Central GUI
■ Logging in to Command Central ... 204
■ Creating an EntireX Mainframe Broker Connection ... 205
■ Viewing the Runtime Status ... 207
■ Configuring an EntireX Mainframe Broker Connection ... 208
■ Configuring the Monitoring KPIs ... 209
■ Inspecting the Log Files .. 210
■ Displaying the Statistics .. 211
■ Displaying Services and Servers ... 213
■ Deleting an EntireX Mainframe Broker Connection ... 216
■ Security Considerations .. 216

203

EntireX Mainframe Broker Monitoring is a package with which you can monitor EntireX Broker
on mainframe platforms z/OS and BS2000. Define an instance of your mainframe broker, using
Command Central under UNIX or Windows. This instance - a so-called proxy - holds connection
information to the remote broker.

See also Introduction to EntireX Mainframe Broker Monitoring using Command Central and EntireX
Mainframe Broker Monitoring using the Command Central Command Line.

Logging in to Command Central

To log in to Command Central

1 Open an Internet browser and specify the URL of the CommandCentral Server: “http://<Com-
mand_Central_host>:<Command_Central_port>”.

This takes you to the Command Central Login page.

OnWindows you can also get to the Login page from theCommandCentral StartMenu entry.

2 In the Login page, provide your user credentials and click Log In.

This takes you to the pageHome > Instances:

Administration204

EntireX Mainframe Broker Monitoring using the Command Central GUI

Creating an EntireX Mainframe Broker Connection

To create an EntireX Mainframe Broker connection

1 Navigate toHome > Instances > ALL > EntireX Mainframe Administration and click the
Configuration tab.

2 Click the + button in the upper right corner to add a mainframe broker connection.

205Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

DescriptionParameter
Broker

Required. Provide unique instance name. Permitted characters: letters, numbers,
hyphen (-), underscore (_) and dot (.).

Instance name

Transport over TCP or SSL. Default is TCP.Transport

Required. EntireX Broker host name or IP address.Broker host

Required. Port number in range from 1025 to 65535.Broker port

Optional. Specifies the location of SSL trust store.SSL trust store

Optional. The RPC server as SSL client checks the identity of the broker as SSL
server.

SSL verify server

Credentials

Optional. The user ID for secured access to the broker.User

Optional. The password for secured access to the broker.Password

3 Click Edit to configure the broker connection.

4 Click Test to check the correctness of your input, or Save to apply your changes.

If the instance is not valid, click the Logs tab of the instance for more information in the con-
nection.log file.

Administration206

EntireX Mainframe Broker Monitoring using the Command Central GUI

Viewing the Runtime Status

To view the runtime status of the EntireX Mainframe Broker

■ Navigate toHome > Instances > ALL > EntireX Mainframe Broker <instance name> and
click theOverview tab.

DescriptionStatus

The EntireX Mainframe Broker has not answered yet; the status is shown as
unresponsive. This is the default status after creating an EntireX Mainframe Broker
connection. For more information click the Logs tab to see the connection.log file.

Unresponsive

The EntireX Mainframe Broker is down after successful communication.Stopped

If the EntireX Mainframe Broker communication returns an error, the status is shown
as error. For more information click the Logs tab to see the connection.log file.

Error

The EntireX Mainframe Broker is running.Online

207Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

Configuring an EntireX Mainframe Broker Connection

To configure EntireX Mainframe Broker

1 Navigate toHome > Instances > ALL > EntireX Mainframe Broker <instance name> and
click the Configuration tab.

DescriptionParameter
Broker

Transport over TCP or SSL. Default is TCP.Transport

Required. EntireX Broker host name or IP address.Broker host

Required. Port number in range from 1025 to 65535.Broker port

Optional. Specifies the location of SSL trust store.SSL trust store

Optional. The RPC server as SSL client checks the identity of the broker as SSL
server.

SSL verify server

Credentials

Optional. The user ID for secured access to the broker.User

Optional. The password for secured access to the broker.Password

Administration208

EntireX Mainframe Broker Monitoring using the Command Central GUI

2 Click Edit to configure the broker connection.

3 Click Test to test the correctness of your input, or Save to apply your changes.

Configuring the Monitoring KPIs

To configure Monitoring KPIs of an EntireX Mainframe Broker

1 Navigate toHome > Instances > ALL > EntireX Mainframe Broker <instance name>, click
the Configuration tab and chooseMonitoring KPIs.

209Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

DescriptionParameter
Clients

Maximum number of clients in the overview graph.Maximum

Marginal barrier for numbers of clients in the overview graph.Marginal

Critical barrier for numbers of clients in the overview graph.Critical
Servers

Maximum number of servers in the overview graph.Maximum

Marginal barrier for numbers of servers in the overview graph.Marginal

Critical barrier for numbers of servers in graph.Critical
Conversations

Maximum number of conversations in the overview graph.Maximum

Marginal barrier for numbers of conversations in the overview graph.Marginal

Critical barrier for numbers of conversations in the overview graph.Critical

2 Click Edit to adjust the scaling of the EntireX Mainframe Broker KPIs.

3 Click Test to test the correctness of your input, or Apply.

Inspecting the Log Files

To inspect the log file of the broker connection

1 Navigate toHome > Instances > ALL > EntireX Mainframe Broker <instance name> and
click the Logs tab.

2 In the Alias column you can select a log file to inspect.

Administration210

EntireX Mainframe Broker Monitoring using the Command Central GUI

Displaying the Statistics

To display the Statistics of a running Broker instance

1 In the Command CentralHome page, click the Instances tab, then click the link associated
with the Broker instance for which youwant to see its statistics (same as Step 1 under Config-
uring an EntireX Mainframe Broker Connection).

2 Click on the Administration tab

3 Choose Statistics in the drop-down box.

4 Choose tabGeneral to see important setings and statistics, or choose tab Units of Work to
see UOW statistics (summarized per service).

211Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

Administration212

EntireX Mainframe Broker Monitoring using the Command Central GUI

Note: The returned value “UOWStatusFailed” represents the sum of UOW status “backed-
out”, “cancelled”, “timeout” and “discarded”.

Displaying Services and Servers

To view services registered to an EntireX Mainframe Broker

1 Navigate toHome > Instances > ALL > EntireX Mainframe Broker <instance name> and
click the Administration tab.

213Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

2 In the Class/Server/Service column, click on a service to display the servers providing this
service.

Administration214

EntireX Mainframe Broker Monitoring using the Command Central GUI

The Start Time is displayed in the local time where the SPM is running.

215Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

Deleting an EntireX Mainframe Broker Connection

To delete an EntireX Mainframe Broker connection

1 Navigate toHome > Instances > ALL > EntireX Mainframe Administration and click the
Configuration tab.

2
Select the broker connection you want to delete and press the button in the upper right
corner.

3 ClickOK to confirm deletion of this broker connection.

Security Considerations

If you change the credentials of a secured Mainframe Broker using a security system where the
number of login attempts is limited (for example RACF), this might result in your user ID being
revoked. Command Central regularly tries to connect to the Mainframe Brokers to retrieve and
display the latest information. If the number of rejected login attempts is reached before the
Mainframe Broker Connection has been reconfigured in Command Central, the security system
might block this user and the affected Mainframe Brokers cannot be accessed.

This is avoided by the following behavior: if a Mainframe Broker Connection retrieves an EntireX
ACI Security Error (message class 0008) all Mainframe Broker Connections with the same user are
disabled by setting their runtime status to Error preventing any more connection attempts. The

Administration216

EntireX Mainframe Broker Monitoring using the Command Central GUI

affectedMainframe Broker Connections aremarked by "Credentials invalid" on theConfiguration
tab ofHome > Instances > ALL > EntireX Mainframe Administration:

The connection.log of the affected Mainframe Broker Connections contains the following entry:

<time stamp> <instance name> Security Error occurred for a Mainframe Broker proxy ↩
with same user ID '<user ID>' => this instance is set to runtime status Error!

To free Mainframe Broker Connections blocked due to changed credentials

■ UnderHome > Instances > ALL > EntireX Mainframe Broker <instance name>, click the
Configuration tab of the affected Mainframe Broker Connections and adjust the credentials
accordingly.

The actual runtime status is displayed, in contrast to the runtime status Error (see above).

Note: Because the same security system such as RACF might be used on multiple hosts,
only the user of each Mainframe Broker Connection is considered, not the host. This could
result inMainframe Broker Connections being disabled even if they are not directly affected
by a credentials change.

217Administration

EntireX Mainframe Broker Monitoring using the Command Central GUI

218

18 EntireXMainframeBrokerMonitoring using theCommand

Central Command Line
■ Creating an EntireX Mainframe Broker Connection ... 220
■ Displaying the EntireX Mainframe Broker Connection .. 221
■ Viewing the Runtime Status ... 222
■ Configuring the EntireX Mainframe Broker .. 222
■ Inspecting the Log Files .. 225
■ Displaying the Statistics .. 226
■ Monitoring Services .. 229
■ Deleting an EntireX Mainframe Broker Connection ... 230

219

EntireX Mainframe Broker Monitoring is a package with which you can monitor EntireX Broker
on mainframe platforms z/OS and BS2000. Define an instance of your mainframe broker, using
Command Central under UNIX or Windows. This instance - a so-called proxy - holds connection
information to the remote broker.

See also Introduction to EntireX Mainframe Broker Monitoring using Command Central and EntireX
Mainframe Broker Monitoring using the Command Central GUI.

Creating an EntireX Mainframe Broker Connection

DescriptionValueParameter

Required. Name of the runtime component, for example "myBroker".instanceInstance

Transport over TCP or SSL. Default is TCP.TCP | SSLTransport

Required. EntireX Broker host name or IP address.nameHost

Required. Port number in range from 1025 to 65535.1025-65535Port

Optional. Specifies the location of the SSL trust store.filenameSslTrustStore

Optional. The RPC server as SSL client checks the identity of the broker
as SSL server. Default is true.

true | falseSslVerifyServer

Optional. The user ID for secured access to the broker.userUser

Optional. The password for secured access to the broker.passwordPassword

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the broker
connection is installed.

node_aliassagcc create
configuration
data Required. Must be EntireXMainframeProxy-Administration.componentid

Required. Must be EXX-BROKER.instanceid

Required. Specifies the file from where you want the input read.-i file

Example

■ To create a new instance of "EntireX Mainframe Broker", with the name "MyBroker" in the in-
stallation with alias name "local" from the fileMyBroker.json in the current working directory:

sagcc create configuration data local EntireXMainframeProxy-Administration ↩
EXX-BROKER -i MyBroker.json

Administration220

EntireX Mainframe Broker Monitoring using the Command Central Command Line

MyBroker.json

{
"Instance": "MyBroker",
"Transport": "TCP",
"Host": "mainframeHost",
"Port": "4713",
"SslTrustStore": "",
"SslVerifyServer": "false",
"User": "",
"Password": ""

}

Displaying the EntireX Mainframe Broker Connection

The following table lists the parameters to include when listing all EntireX instances, using the
Command Central list inventory commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
broker connection is installed.

node_aliassagcc list
inventory
components Required. The component identifier. The prefix is

"EntireXMainframeProxy-Broker-".
componentid

Example

■ To list EntireX Mainframe Broker Connection components in the installation with alias name
"local":

sagcc list inventory components local EntireXMainframeProxy-Broker-*

A list of all EntireXMainframe Broker Connection componentswill be displayed. If the component
is not valid, you will find more information in the connection.log file.

221Administration

EntireX Mainframe Broker Monitoring using the Command Central Command Line

Viewing the Runtime Status

The following table lists the parameters to include when displaying the state of an EntireX Main-
frame Broker component, using the Command Central get monitoring commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
broker connection is installed.

node_aliassagcc get
monitoring state

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Example

■ To display state information about the EntireX Mainframe Broker:

sagcc get monitoring state local EntireXMainframeProxy-Broker-MyBroker

Runtime status and runtime state will be displayed.
■ Runtime status indicates whether a runtime component is running, unknown or down. Ex-
amples of a runtime status are UNRESPONSIVE, ONLINE, ERROR, or STOPPED. If the EntireX
Mainframe Broker is detected as a non-mainframe broker, the status is shown as ERROR.

■ Runtime state indicates the health of a runtime component by providing key performance
indicators (KPIs) for the component. Each KPI provides information about the current use,
marginal use, critical use and maximum use.

Configuring the EntireX Mainframe Broker

■ Configuring the Broker Connection
■ Configuring the Monitoring KPIs

Configuring the Broker Connection

The following table lists the parameters to includewhenupdating a BrokerConnection of an EntireX
Mainframe Broker instance, using the Command Central update configuration commands.

Administration222

EntireX Mainframe Broker Monitoring using the Command Central Command Line

DescriptionValueParameter

Transport over TCP or SSL. Default is TCP.TCP | SSLTransport

Required. EntireX Broker host name or IP address.nameHost

Required. Port number in range from 1025 to 65535.1025-65535Port

Optional. Specifies the location of the SSL trust store.filenameSslTrustStore

Optional. The RPC server as SSL client checks the identity of the broker
as SSL server. Default is true.

true | falseSslVerifyServer

Optional. The user ID for secured access to the broker.userUser

Optional. The password for secured access to the broker.passwordPassword

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the broker
connection is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXMainframeProxy-Broker-".
componentid

Required. Must be EXX-BROKER.instanceid

Required. Specifies the file from where you want the input read.-i file

Example

■ To update an instance of "EntireX Mainframe Broker Connection", with the name "MyBroker"
in the installation with alias name "local" from the fileMyBroker.json in the current working
directory:

sagcc update configuration data local EntireXMainframeProxy-Administration ↩
EXX-BROKER -i MyBroker.json

MyBroker.json

{
"Transport": "TCP",
"Host": "mainframeHost",
"Port": "9999",
"SslTrustStore": "",
"SslVerifyServer": "false",
"User": "",
"Password": ""

}

223Administration

EntireX Mainframe Broker Monitoring using the Command Central Command Line

Configuring the Monitoring KPIs

The following table lists the parameters to includewhenupdating theMonitoringKPIs of an EntireX
Mainframe Broker instance, using the Command Central update configuration commands.

DescriptionValueParameter

Required. Maximum number of clients in graph.1-2147483647ClientsMaximum

Required. Critical barrier of clients in graph in %.1-100ClientsCriticalPercent

Required. Marginal barrier of clients in graph in %.1-100ClientsMarginalPercent

Required. Maximum number of servers in graph.1-2147483647ServersMaximum

Required. Critical barrier of servers in graph in %.1-100ServersCriticalPercent

Required. Marginal barrier of servers in graph in %.1-100ServersMarginalPercent

Required.Maximumnumber of conversations in graph.1-2147483647ConversationsMaximum

Required. Critical barrier of conversations in graph in
%.

1-100ConversationsCriticalPercent

Required. Marginal barrier of conversations in graph
in %.

1-100ConversationsMarginalPercent

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the broker
connection is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXMainframeProxy-Broker-".
componentid

Required. Must be EXX-MONITORING-KPIS.instanceid

Required. Specifies the file from where you want the input read.-i file

Example

■ To update an instance of "EntireXMainframe Broker", with the name "MyBroker" in the install-
ation with alias name "local" from the file MyKpis.json in the current working directory:

sagcc update configuration data local EntireXMainframeProxy-Broker-MyBroker ↩
EXX-MONITORING-KPIS -i MyKpis.json

Administration224

EntireX Mainframe Broker Monitoring using the Command Central Command Line

MyKpis.json

{
"ClientsMaximum": "200",
"ClientsCriticalPercent": "95",
"ClientsMarginalPercent": "80",
"ServersMaximum": "50",
"ServersCriticalPercent": "95",
"ServersMarginalPercent": "80",
"ConversationsMaximum": "1000",
"ConversationsCriticalPercent": "95",
"ConversationsMarginalPercent": "80"

}

Inspecting the Log Files

Here you can administer the log files of the EntireX Mainframe Broker Connection instance.

■ Listing all EntireX Broker Log Files
■ Getting Content from or Downloading RPC Server Log Files

Listing all EntireX Broker Log Files

The following table lists the parameters to include when displaying or modifying parameters of
the EntireX Mainframe Broker, using the Command Central list commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
broker connection is installed.

node_aliassagcc list
diagnostics logs

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Example

■ To list the log files of EntireX Mainframe Broker Connection instance, in the installation with
alias name "local" on stdout:

225Administration

EntireX Mainframe Broker Monitoring using the Command Central Command Line

sagcc list diagnostics logs local EntireXMainframeProxy-Broker-MyBroker

Getting Content from or Downloading RPC Server Log Files

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
broker connection is installed.

node_aliassagcc get
diagnostics
logs Required. The component identifier. The prefix is

"EntireXMainframeProxy-Broker-".
componentid

Optional. Shows full log file content, or only tail or head.full | tail | head

Optional. Creates a zip file of the logs.export -o file

Examples

■ To list the tail of the log file content in the current working directory:

sagcc get diagnostics logs local EntireXMainframeProxy-Broker-MyBroker ↩
connection.log tail

■ To create a zip file myfile.zip of the logs:

sagcc get diagnostics logs local EntireXMainframeProxy-Broker-MyBroker export -o ↩
myfile.zip

Displaying the Statistics

■ Displaying the General Statistics of a Running EntireX Broker
■ Displaying the UOW (Unit of Work) Statistics of a Running EntireX Broker

Displaying the General Statistics of a Running EntireX Broker

Here you can display the current statistics of a running EntireX Broker.

DescriptionParameterCommand

Specifies that a component will be administered.componentget
administration Required. Specifies the alias name of the installation inwhich

the runtime component is installed.
node_alias

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Required. Specifies what is to be administered.Statistics

Administration226

EntireX Mainframe Broker Monitoring using the Command Central Command Line

DescriptionParameterCommand

Required. Get the general settings.loadStatisticGeneral

Required. Specifies XML or JSON as output format.-f xml|json

Optional. Specifies the file where you want the output
written.

-o file

Examples

■ To display the current general setting of the running EntireX Broker with the name 'MyBroker'
in the installation with alias name 'local'.broker in JSON format on stdout:

sagcc get administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Statistics loadStatisticGeneral -f json

■ To display the current general setting of the running EntireX Broker with the name 'MyBroker'
in the installation with alias name 'local' in XML format on stdout:

sagcc get administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Statistics loadStatisticGeneral -f xml

Displaying the UOW (Unit of Work) Statistics of a Running EntireX Broker

Here you can display the current UOW statistics of a running EntireX Broker. The UOW statistics
are summarized per service.

Note: The returned value “UOWStatusFailed” represents the sum of UOW status “backed-
out”, “cancelled”, “timeout” and “discarded”.

DescriptionParameterCommand

Specifies that a component will be administered.componentget
administration Required. Specifies the alias name of the installation in which the

runtime component is installed.
node_alias

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Required. Specifies what is to be administered.Statistics

Required. Get the statistics of UOW usage.loadStatisticUow

Required. Specifies XML or JSON as output format.-f xml|json

Optional. Specifies the file where you want the output written.-o file

Examples

■ To display the current UOW statistics of the running EntireX Broker with the name 'MyBroker'
in the installation with alias name 'local'.broker in JSON format on stdout:

227Administration

EntireX Mainframe Broker Monitoring using the Command Central Command Line

sagcc get administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Statistics loadStatisticUow -f json

■ To display the current UOW statistics of the running EntireX Broker with the name 'MyBroker'
in the installation with alias name 'local' in XML format on stdout:

sagcc get administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Statistics loadStatisticUow -f xml

Administration228

EntireX Mainframe Broker Monitoring using the Command Central Command Line

Monitoring Services

■ List Running Services
■ List Server Instances

List Running Services

DescriptionParameterCommand

Specifies that a component will be administered.componentsagcc list
administration Required. Specifies the alias name of the installation inwhich the broker

connection is installed.
node_alias

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Required. Specifies what is to be administered.Services

Required. List all services.listServices

Required. Specifies XML or JSON as output format.-f xml|json

Examples

■ To display a list of services of the running EntireXMainfram Broker with the name "MyBroker"
in the installation with alias name "local" in JSON format:

sagcc list administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Services listServices -f json

■ To store a list of services of the EntireX Mainframe Broker with the name "MyBroker" in the in-
stallation with alias name "local" in JSON format in the file services.json of the current working
directory:

sagcc list administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Services listServices -o services.json

229Administration

EntireX Mainframe Broker Monitoring using the Command Central Command Line

List Server Instances

DescriptionParameterCommand

Specifies that a component will be administered.componentsagcc list
administration Required. Specifies the alias name of the installation inwhich the broker

connection is installed.
node_alias

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Required. Specifies what is to be administered.Services

Required. List all servers.listServers

Required. Shows only servers of this service. Format:
class/server/service.

serviceName

Required. Specifies XML or JSON as output format.-f xml|json

Examples

■ To display a list of servers of the current service of the EntireXMainframe Broker with the name
"MyBroker" in the installation with alias name "local" in XML format:

sagcc list administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Services listServers serviceName=RPC/SRV1/CALLNAT -f xml

■ To store a list of servers in JSON format in the file services.json of the current working directory:

sagcc list administration component local EntireXMainframeProxy-Broker-MyBroker ↩
Services listServers serviceName=RPC/SRV1/CALLNAT -o server.json

Deleting an EntireX Mainframe Broker Connection

The following table lists the parameters to include when deleting an EntireX Mainframe Broker
Connection instance, using the Command Central delete configuration commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
broker connection is installed.

node_aliassagcc delete
configuration data

Required. The component identifier. The prefix is
"EntireXMainframeProxy-Broker-".

componentid

Administration230

EntireX Mainframe Broker Monitoring using the Command Central Command Line

Example

■ To delete an instance of an EntireX Mainframe Broker Connection with the name "MyBroker"
in the installation with alias name "local":

sagcc delete configuration data local EntireXMainframeProxy-Administration ↩
EntireXMainframeProxy-Broker-MyBroker --force

231Administration

EntireX Mainframe Broker Monitoring using the Command Central Command Line

232

19 Introduction to Administering EntireX RPC Servers using

Command Central (UNIX and Windows)
■ Scope ... 234
■ Monitoring EntireX RPC Server KPIs ... 235
■ Supported Configuration Types .. 235

233

See also:

■ Administering the EntireX RPC Server for C | CICS Socket Listener | .NET | IMS Connect | Java |
IBMMQ | XML/SOAP using the Command Central GUI

■ Administering the EntireX RPC Server for C | CICS Socket Listener | .NET | IMS Connect | Java |
IBMMQ | XML/SOAP using the Command Central Command Line

Note: CommandCentral functionality that is not EntireX-specific is described in the separate
CommandCentral documentation or the online help providedwith CommandCentral. On
Empower, the documentation is provided under webMethods > EntireX > EntireX 10.7 >
Additional Documentation.

Scope

This section applies to RPC server instances running on UNIX and Windows platforms. You can
use Command Central to perform the following operations on EntireX RPC servers:

■ View the EntireX RPC servers running in each environment of your IT landscape
■ View the versions of EntireX RPC servers
■ Monitor EntireX RPC server installations
■ Monitor runtime status, KPIs (key performance indicators), and alerts of EntireX RPC server
instances

■ Start, stop, and restart EntireX RPC servers
■ Configure the following parameters of EntireX RPC servers:

■ Broker connection parameters
■ Configuration file
■ License keys
■ Monitoring KPIs
■ Server settings
■ Trace
■ Classpath *
■ Library locations *
■ CICS connection parameters *
■ MQ connection parameters *
■ IMS connection parameters *
■ NET Library parameters *

Administration234

Introduction to Administering EntireX RPC Servers using Command Central (UNIX and Win-
dows)

■ XML deployment parameters *
■ XML mapping file parameters *

■ Enable and specify EntireX RPC trace level
■ Create new EntireX RPC servers
■ Delete existing EntireX RPC servers

Note: Configuration parameters marked with an asterisk (*) do not apply to all types of
RPC server (see Supported Configuration Types below). These parameters are described in
the relevant sections.

Monitoring EntireX RPC Server KPIs

The visual key performance indicators (KPIs) and alerts enable you to monitor a webMethods
EntireX RPC Server's health. The following KPIs help you administer, troubleshoot, and resolve
performance issues in EntireX RPC servers:

DescriptionKPI

Absolute number of active workers.Active Workers

Absolute number of busy servers.Busy Workers

Supported Configuration Types

The EntireX RPC server component supports the configuration instances listed in the following
table.

235Administration

Introduction to Administering EntireX RPC Servers using Command Central (UNIX and Win-
dows)

Applies toUse to...TypeInstance

AllConfigure broker connection settingsBROKERBROKER

AllShow and edit the RPC server
configuration file

CONFIGURATION-FILECONFIGURATION-FILE

AllShow and set the license key fileLICENSE-KEYSLICENSE-KEYS

AllShow and edit the monitoring KPI
settings, such as marginal and critical
bounds, etc.

MONITORING-KPIMONITORING-KPI

AllConfigure server settingsSERVERSERVER

AllShow and edit the EntireX RPC server
trace level

TRACETRACE

JavaClasspath to the RPC server
implementation

CLASSPATHCLASSPATH

CPath to the library containing theC server
programs

LIBRARY-LOCATIONSLIBRARY-LOCATIONS

CICS Socket
Listener

CICS-specific parametersCICSCICS

IBMMQMQ-specific parametrersMQMQ

IMS ConnectIMS-specific parametersIMSIMS

.NET.NET-specific parameters.NET.NET

XML/SOAPThe list of XMLmapping files configured
for this RPC server

XML MAPPING FILESXML MAPPING FILES

Allow dynamic deployment of XML
mapping files.

DEPLOYMENTDEPLOYMENT

Administration236

Introduction to Administering EntireX RPC Servers using Command Central (UNIX and Win-
dows)

	Administration
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Environment Variables in EntireX
	Table of Environment Variables
	Using Environment Variables under z/OS
	Using Environment Variables under UNIX
	Using Environment Variables under Windows
	Using Environment Variables under BS2000 (Batch, Dialog)
	Using Environment Variables under z/VSE

	3 Directories as Used in EntireX
	Application Data Directory
	Windows

	Broker Directory
	UNIX
	Windows

	Broker User Exit Directory
	UNIX
	Windows

	Local Application Data Directory
	Windows

	Trace Directory
	Windows

	User's Home Directory
	Windows

	Working Directory
	Windows

	EntireX Directory etc
	UNIX
	Windows

	4 Broker Resource Allocation
	General Considerations
	Specifying Global Resources
	Restricting the Resources of Particular Services
	Specifying Attributes for Privileged Services
	Maximum Units of Work
	Calculating Resources Automatically
	Dynamic Memory Management
	Dynamic Worker Management
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Maximum TCP/IP Connections per Communicator
	Note for z/OS
	Note for UNIX
	Note for Linux
	bash
	systemd

	5 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definitions
	Service Update Modes
	OPTION Values for Conversion

	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL/TLS-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Application Monitoring-specific Attributes
	Authorization Rule-specific Attributes
	Variable Definition File

	6 Concepts of Persistent Messaging
	Client Server Model: Persistent Messaging
	Definitions of Persistent Messaging Terms
	UOW
	Persistent Store
	Persistent Store Drivers
	UOW Lifetime
	Persistent UOW
	Persistent Status

	Availability of Persistent Store
	Introduction
	Disconnect the Persistent Store
	Connect the Persistent Store

	Migrating the Persistent Store
	Introduction
	Configuration
	Migration Procedure

	Persistent Store Report
	Configuration
	Sample Report

	7 Using Persistence and Units of Work
	Implementation Issues
	Table of Persistent Store Drivers
	Changes are Required
	Attributes used for Units of Work
	ACI Fields used for Units of Work
	ACI Function SYNCPOINT used for Units of Work
	Options used for UOW Operations

	Using Units of Work
	UOW vs non-UOW Conversations
	Sequencing of Messages across Conversations

	Use of LOGON and TOKEN
	User Identification for Units of Work
	Which Applications should use UOWs?
	Understanding UOW Status
	UOW Status on RECEIVE
	Using User Status
	Resource and Performance Considerations

	Using Persistence
	When do Persistent UOWs Make Sense?
	Adding Persistence to a UOW
	Resource and Performance Considerations
	Which Information is Saved with the UOW?
	What happens when Broker Restarts?
	Restart Behavior of UOW
	Re-creation of Internal Control Blocks
	Behavior of Conversation at Broker Restart

	UOWs and Replicated Servers
	Postponing Units of Work

	Using Persistent Status
	When does Persistent Status Make Sense?
	Adding Persistent Status to a UOW
	Resource and Performance Considerations

	Recovery Processing
	Introduction
	Determining the Status of a UOW
	A Real-world Example: Chess-by-Mail
	Client Behavior
	Server Behavior

	8 Broker UOW Status Transition
	Initial UOW Status: NULL | Received
	Initial UOW Status: Accepted | Delivered | Postponed
	Initial UOW Status: Processed | Timedout
	Initial UOW Status: Cancelled | Discarded | Backedout
	Legend for UOW Status Transition Table
	Table of Column Abbreviations

	9 Accounting in EntireX Broker
	EntireX Accounting Data Fields
	Using Accounting under UNIX and Windows
	Broker Attribute File Settings
	Retrieving Accounting Data

	Using Accounting under z/OS
	Attribute File
	Retrieving Accounting Records
	Accounting Record Layouts
	Notes

	Example Uses of Accounting Data
	Chargeback
	Trend Analysis
	Tuning for Application Performance

	10 Monitoring EntireX Applications and Components
	Application Monitoring
	Monitoring EntireX with Command Central
	Monitoring from the Command-line
	Command Central
	ETBINFO
	EntireX Monitoring Scripts

	webMethods EntireX Adapter for Integration Server
	Watching the Default Broker View in Designer/Eclipse

	11 SSL/TLS, HTTP(S), and Certificates with EntireX
	Introduction
	Encryption
	Authentication

	Random Number Generator
	SSL/TLS Sample Certificates Delivered with EntireX
	Default Certificates for z/OS
	Default Certificates for UNIX and Windows
	Default Certificates for Java

	SSL/TLS Parameters for Broker as SSL Server (One-way SSL)
	SSL/TLS Parameters for SSL Clients
	Using SSL/TLS with EntireX Components
	SSL/TLS Certificate Creation and Handling
	Creating Certificates with OpenSSL (z/OS, UNIX, Windows)
	Creating Certificates with keytool (Java)
	Importing Certificates into RACF (z/OS)
	Additional Considerations for PKI (Public Key Infrastructure)
	Support of Self-signed Certificates

	Managing One-way and Two-way SSL

	12 Authorization Rules
	Introduction
	Rules Stored in Broker Attribute File
	Sample Attribute File Settings

	Rules Stored in LDAP Repository
	Sample Attribute File Settings
	Configuring your LDAP Repository
	Authorization Rule Data
	Hints for Microsoft Active Directory

	13 Data Compression in EntireX Broker
	Introduction
	zlib
	Implementation
	Sequencing Summary
	Sample Programs

	14 Timeout Considerations for EntireX Broker
	Timeout Units
	Timeout Settings
	Relationship between Timeout Values
	UOW Messages
	Non-UOW Messages

	Timeout-related Error Messages
	CLIENT-NONACT
	SERV-NONACT
	CONV-NONACT
	Special Case for UOW Messages

	15 EXXMSG - Command-line Tool for Displaying Error Messages
	Running the EXXMSG Command-line Utility
	Command-line Parameters
	Sample Command
	Sample Output

	16 Introduction to EntireX Mainframe Broker Monitoring using Command Central
	Scope
	Monitoring EntireX Broker KPIs
	Supported Configuration Types

	17 EntireX Mainframe Broker Monitoring using the Command Central GUI
	Logging in to Command Central
	Creating an EntireX Mainframe Broker Connection
	Viewing the Runtime Status
	Configuring an EntireX Mainframe Broker Connection
	Configuring the Monitoring KPIs
	Inspecting the Log Files
	Displaying the Statistics
	Displaying Services and Servers
	Deleting an EntireX Mainframe Broker Connection
	Security Considerations

	18 EntireX Mainframe Broker Monitoring using the Command Central Command Line
	Creating an EntireX Mainframe Broker Connection
	Displaying the EntireX Mainframe Broker Connection
	Viewing the Runtime Status
	Configuring the EntireX Mainframe Broker
	Configuring the Broker Connection
	Configuring the Monitoring KPIs

	Inspecting the Log Files
	Listing all EntireX Broker Log Files
	Getting Content from or Downloading RPC Server Log Files

	Displaying the Statistics
	Displaying the General Statistics of a Running EntireX Broker
	Displaying the UOW (Unit of Work) Statistics of a Running EntireX Broker

	Monitoring Services
	List Running Services
	List Server Instances

	Deleting an EntireX Mainframe Broker Connection

	19 Introduction to Administering EntireX RPC Servers using Command Central (UNIX and Windows)
	Scope
	Monitoring EntireX RPC Server KPIs
	Supported Configuration Types

