
webMethods EntireX

Broker ACI for PL/I

Version 10.7

October 2020

This document applies to webMethods EntireX Version 10.7 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-ACI-107-20220422RPG

Table of Contents

1 About this Documentation .. 1
Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 EntireX Broker ACI for RPG ... 5
Call Format ... 6
Broker ACI Control Block Layout .. 6
Broker ACI Control Block Copybook .. 10
ACI Examples and Copybooks .. 15
Creating an RPG User Application under IBM i ... 16

3 Writing Client and Server Applications .. 19
Basic Concepts of Client and Server .. 20
API-TYPE and API-VERSION ... 22
LOGON and LOGOFF ... 22
USER-ID and TOKEN .. 23
Control Block Fields and Verbs .. 25
Implementation of Client and Server Components ... 28
Blocked and Non-blocked Broker Calls ... 29
Conversational and Non-conversational Mode ... 32
Managing Conversation Contexts .. 34
Delayed SEND Function .. 37
Timeout Parameters ... 38
Data Compression .. 40
Error Handling ... 41
Using Send and Receive Buffers .. 43
Tracing .. 45
Transport Methods ... 46
Variable-length Error Text .. 49
Programmatically Turning on Command Logging ... 49

4 Writing Applications: Units of Work ... 51
What is a Unit of Work? ... 52
Control Block Fields and Verbs .. 53
Client/Server Programming for Units of Work .. 56
Client/Server Programming for a Persistent Unit of Work 58
Client/Server Restart after System Failure ... 60

5 Writing Applications: Attach Server ... 61
Implementing an Attach Server ... 62
Implementing Servers Started by an Attach Server ... 64

6 Writing Applications: Command and Information Services .. 67
Accessing the Services .. 68
Security with Command and Information Services ... 73
Examples of Command Service ... 75

7 Writing Applications using EntireX Security .. 77

iii

General Programming Considerations .. 78
Authentication .. 80
Changing your Password ... 81
Role of Security Token (STOKEN) during Authentication 81
Trusted User ID (z/OS only) ... 82
Client User ID ... 83
FORCE-LOGON ... 83
Authorization ... 84

8 Broker ACI Fields .. 85
Field Formats .. 86
Field Descriptions .. 86

9 Broker ACI Functions .. 101
Overview Table ... 103
Function Descriptions .. 104
Option Descriptions ... 112
ACI Field/Function Reference Table .. 114
Unique Message ID .. 116

10 Broker UOW Status Transition .. 121
Initial UOW Status: NULL | Received ... 122
Initial UOW Status: Accepted | Delivered | Postponed .. 123
Initial UOW Status: Processed | Timedout .. 124
Initial UOW Status: Cancelled | Discarded | Backedout 125
Legend for UOW Status Transition Table .. 126
Table of Column Abbreviations ... 126

11 Broker CIS Data Structures .. 127
Command Request Structure ... 129
Command Request Parameter Combinations .. 132
Common Header Structure for Response Data .. 136
Information Request Structure ... 138
Information Reply Structures ... 147

Broker ACI for PL/Iiv

Broker ACI for PL/I

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

Broker ACI for PL/I2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Broker ACI for PL/I

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 EntireX Broker ACI for RPG

■ Call Format .. 6
■ Broker ACI Control Block Layout .. 6
■ Broker ACI Control Block Copybook .. 10
■ ACI Examples and Copybooks ... 15
■ Creating an RPG User Application under IBM i .. 16

5

ACI stands forAdvancedCommunication Interface.ACI-basedprogramming is the base technology
of EntireX. It uses a traditional Application Programming Interface (API) approach for conducting
client/server and peer-to-peer dialog between distributed processes.

This chapter describes the EntireX Broker ACI from the perspective of the programming language
RPG.

Call Format

Calls to EntireX Broker use the following arguments:

1. The ACI control block is the first argument.

2. The send buffer is the second argument.

3. The receive buffer is the third argument.

4. The error text buffer is the last argument. It can provide a short text of the error code, if desired.
Sufficient buffer length must be supplied to allow the standard 40-byte-long message to be re-
turned by EntireX Broker. For ACI version 9 and above, the error text buffer can be greater than
40 bytes as specified in the ACI field ERRTEXT-LENGTH.

The send buffer and the receive buffer must always be provided. If they are not required by the
selected EntireX Broker function, you can define them as PIC X(1) fields.

The API is called with a statement as follows:

C...CALLB(D) 'broker'
C...PARM ETBCB
C...PARM G_SEND_BUFF
C...PARM G_RECV_BUFF
C...PARM ERROR_TEXT

Broker ACI Control Block Layout

The following table shows the Broker fields in the order of the physical layout of the Broker ACI
control block and provides a brief description of each field. See the actual copybook for RPGbelow
in Broker ACI Control Block Copybook.

See Broker ACI Fields for more information.

Broker ACI for PL/I6

EntireX Broker ACI for RPG

Notes
API
Vers.

Description /
Related InformationRPG DefinitionBroker ACI Field

1See API-TYPE
and
API-VERSION.

API type.ETB_TYPE 1API-TYPE

1API version.ETB_VERSION 1API-VERSION

1See Broker ACI Functions to
perform Broker function.

ETB_FUNCTION 1FUNCTION

1See Option Descriptions.ETB_OPTION 1OPTION

11Reserved for future use.RESERVED 16

1Send length. SeeUsing Send and
Receive Buffers.

ETB_SEND_LEN 10ISEND-LENGTH

1See Using Send
and Receive
Buffers.

Receive length.ETB_RECV_LEN 10IRECEIVE-LENGTH

1Return length.ETB_RETN_LEN 10IRETURN-LENGTH

1Error text length.ETB_ERRT_LEN 10IERRTEXT-LENGTH

1Broker ID. See Using the Broker
ID in Applications.

ETB_BROKER_ID 32BROKER-ID

3,51Service. See Control Block Fields
and Verbs.

ETB_SERV_CLAS 32
ETB_SERV_NAME 32
ETB_SERVICE 32

SERVER-CLASS
SERVER-NAME
SERVICE

1User ID. See USER-ID and
TOKEN.

ETB_USERID 32USER-ID

4,51Password. See Authentication.ETB_PASSWD 32PASSWORD

3,51Reconnection token. See
USER-ID and TOKEN.

ETB_TOKEN 32TOKEN

4,51Security token. See Role of
Security Token (STOKEN) during
Authentication.

ETB_SEC_TOKEN 32SECURITY-TOKEN

3,51Conversation ID. See
Conversational and
Non-conversational Mode.

ETB_CONV_ID 16CONV-ID

3,51Wait value. See Blocked and
Non-blocked Broker Calls.

ETB_WAIT_TOUT 8WAIT

1Error code. See Error Handling
and Error Messages and Codes.

ETB_ERR_CODE 8ERROR-CODE

3,51Pass additional information to
Translation User Exit. For more

ETB_ENVIRON 32ENVIRONMENT

information see ACI field
ENVIRONMENT.

2Attempted delivery count. See
Writing Applications: Units of
Work.

ETB_ADCOUNT 10IADCOUNT

7Broker ACI for PL/I

EntireX Broker ACI for RPG

Notes
API
Vers.

Description /
Related InformationRPG DefinitionBroker ACI Field

3,52Conversation User Data. See
Managing Conversation Contexts.

ETB_USER_DATA 16USER-DATA

4,52Message ID.ETB_MSG_ID 32Not used.

3,52Message type.ETB_MSG_TYPE 16Not used.

1,3,52Reserved for future use.ETB_PTIME 8

4,52New password. See Changing
your Password.

ETB_NEW_PWD 32NEWPASSWORD

2Adapter error.ETB_ADAPT_ERR 8Not used.

2Client user ID. See Client User
ID.

ETB_CLIENT_UID 32CLIENT-UID

2Conversation status. See
Conversational and
Non-conversational Mode.

ETB_CONV_STAT 1CONV-STAT

2SeeWriting
Applications:
Units of Work.

Persistence or
non-persistence
of a UOW.

ETB_STORE 1STORE

12Reserved for future use.ETB_STATUS 1

3,53SeeWriting
Applications:
Units of Work.

UOW Status.ETB_UOW_STAT 1UOWSTATUS

3,53UOW lifetime.ETB_UOW_TIME 8UWTIME

3,53UOW unique
identifier.

ETB_UOW_ID 16UOWID

3User status.ETB_USER_STAT 32USTATUS

23Multiplier for
persistent status
lifetime.

ETB_STAT_PERS 1UOW-STATUS-PERSIST

13Reserved for future use.ETB_UOWLATER 3

4Locale string. To be used to
override or provide a codepage

ETB_LOCALE_STR 40LOCALE-STRING

name to tell the broker the
encoding of the data. For more
information see ACI field
LOCALE-STRING.

24Data architecture.ETB_DATA_ARCH 1DATA-ARCH

6SeeWriting
Applications

OverrideBroker
AUTOLOGON. See
FORCE-LOGON.

ETB_FORCE_LGON 1FORCE-LOGON

using EntireX
Security. 26Deprecated.ETB_ENC_LEVEL 1

7Kernel security.
See Is Broker
Kernel Secure?.

ETB_KERSEC 1KERNELSECURITY

Broker ACI for PL/I8

EntireX Broker ACI for RPG

Notes
API
Vers.

Description /
Related InformationRPG DefinitionBroker ACI Field

7Commit time. SeeWriting
Applications: Units of Work.

ETB_COMMTIME 17COMMITTIME

7Compression level. See Data
Compression.

ETB_COMPLVL 1COMPRESSLEVEL

17Reserved for future use.ETB_RESVD3 2

17Reserved for future use.ETB_RESVD4 4

8Add value for persistent status
lifetime. SeeUWSTAT-LIFETIME.

ETB_UWSTATLIFE 8UWSTAT-LIFETIME

18Reserved for future use.ETB_RESVD_V91_1 96

18Reserved for future use.ETB_RESVD_V91_2 16

18Reserved for future use.ETB_RESVD_V99_1 32

18Reserved for future use.ETB_RESVD_V73_1 10I

18Reserved for future use.ETB_RESVD_V73_2 10I

18Reserved for future use.ETB_RESVD_V73_3 10I

9Returns to a server application
the unique instance number of

ETB_CLIENT_ID 10ICLIENT-ID

a client application. It is
returned on receipt of amessage
(RECEIVE or SENDwith WAIT).

9Log the current command. See
alsoProgrammatically Turning on
Command Logging.

ETB_LOG_COMMAND 1LOG-COMMAND

9Indicates the credentials type to
be used to authenticate a user.

ETB_CRED_TYPE 1CREDENTIALS-TYPE

The default is to use user ID and
password.

10Internal Software AG field.ETB_VAR_LIST_OFF 10IVARLIST-OFFSET

10See LONG-BROKER-ID-LENGTH.ETB_LONG_BROKER_ID_LEN
10I

LONG-BROKER-ID-LENGTH

11See Unique Message ID under
Broker ACI Functions.

ETB_NEW_MSG_ID 64MESSAGE-ID

11CORRELATION-ID.ETB_COR_ID 64CORRELATION-ID

11Use supplied MESSAGE-ID for
SEND.

ETB_USE_MSG_ID 1USE-SPECIFIED-MESSAGE-ID

11SendsuppliedCORRELATION-ID
to Broker.

ETB_USE_COR_ID 1USE-SPECIFIED-CORRELATION-ID

11Reserved for future use.ETB_RESVD6 3

11Reserved for future use.ETB_RESVD7 10I

9Broker ACI for PL/I

EntireX Broker ACI for RPG

Notes
API
Vers.

Description /
Related InformationRPG DefinitionBroker ACI Field

12Length of long password. See
Authentication.

ETB_LONG_PSWD_LEN 10ILONG-PASSWORD-LENGTH

12Length of long new password.
See Changing your Password.

ETB_LONG_NEW_PSWD_LEN
10I

LONG-NEWPASSWORD-LENGTH

Notes:

1. Reserved for future use.

2. You must set this field to a low value (X'00') if you do not intend to use it.

3. The field is transmitted up to the first blank or low value (X'00'). It is not transmitted if the first
character is a blank or a low value (X'00').

4. All trailing low values (X'00') are truncated. The field is not transmitted if the entire field is a
low value (X'00').

5. If fields are not needed for a specific command function, suppress their transmission by initial-
izing them to blanks or low value (X'00').

Broker ACI Control Block Copybook

EntireX provides a copybook with the ACI control block definition. See ACI Examples and Copy-
books for where it is provided on your platform:

**
* Product : EntireX Broker
* Copyright : Copyright (c) 1997 - 2020 Software AG,
* Darmstadt, Germany and/or Software AG USA,
* Inc., Reston, VA, United States of America,
* and/or their licensors.
* Version : 10.7
* File Version : $Revision: 1.37 $
* File : RPGDEF
* Description : RPG ACI control block definitions.
**
*
H DECEDIT('0,') DATEDIT(*DMY.)
*
*--------------- TYPE CONSTATNTS -------------------------------------
D TYPES DS
D TYPE_1_I 5I 0 INZ(1)
D TYPE_1 1 OVERLAY(TYPE_1_I:2)
*
*--------------- VERSION CONSTANTS -----------------------------------

Broker ACI for PL/I10

EntireX Broker ACI for RPG

D VERSIONS DS
D VERSION_1_I 5I 0 INZ(1)
D VERSION_1 1 OVERLAY(VERSION_1_I:2)
D VERSION_2_I 5I 0 INZ(2)
D VERSION_2 1 OVERLAY(VERSION_2_I:2)
D VERSION_3_I 5I 0 INZ(3)
D VERSION_3 1 OVERLAY(VERSION_3_I:2)
D VERSION_4_I 5I 0 INZ(3)
D VERSION_4 1 OVERLAY(VERSION_4_I:2)
D VERSION_5_I 5I 0 INZ(3)
D VERSION_5 1 OVERLAY(VERSION_5_I:2)
D VERSION_6_I 5I 0 INZ(3)
D VERSION_6 1 OVERLAY(VERSION_6_I:2)
D VERSION_7_I 5I 0 INZ(3)
D VERSION_7 1 OVERLAY(VERSION_7_I:2)
D VERSION_8_I 5I 0 INZ(3)
D VERSION_8 1 OVERLAY(VERSION_8_I:2)
D VERSION_9_I 5I 0 INZ(3)
D VERSION_9 1 OVERLAY(VERSION_9_I:2)
D VERSION_10_I 5I 0 INZ(3)
D VERSION_10 1 OVERLAY(VERSION_10_I:2)
D VERSION_11_I 5I 0 INZ(3)
D VERSION_11 1 OVERLAY(VERSION_11_I:2)
D VERSION_12_I 5I 0 INZ(3)
D VERSION_12 1 OVERLAY(VERSION_12_I:2)
*
*--------------- FUNCTION CONSTANTS ----------------------------------
D FCT DS
D FCT_SEND_I 5I 0 INZ(1)
D FCT_SEND 1 OVERLAY(FCT_SEND_I:2)
D FCT_RECEIVE_I 5I 0 INZ(2)
D FCT_RECEIVE 1 OVERLAY(FCT_RECEIVE_I:2)
D FCT_UNDO_I 5I 0 INZ(4)
D FCT_UNDO 1 OVERLAY(FCT_UNDO_I:2)
D FCT_EOC_I 5I 0 INZ(5)
D FCT_EOC 1 OVERLAY(FCT_EOC_I:2)
D FCT_REG_I 5I 0 INZ(6)
D FCT_REGISTER 1 OVERLAY(FCT_REG_I:2)
D FCT_DEREG_I 5I 0 INZ(7)
D FCT_DEREG 1 OVERLAY(FCT_DEREG_I:2)
D FCT_VERSION_I 5I 0 INZ(8)
D FCT_VERSION 1 OVERLAY(FCT_VERSION_I:2)
D FCT_LOGON_I 5I 0 INZ(9)
D FCT_LOGON 1 OVERLAY(FCT_LOGON_I:2)
D FCT_LOGOFF_I 5I 0 INZ(10)
D FCT_LOGOFF 1 OVERLAY(FCT_LOGOFF_I:2)
D FCT_SET_I 5I 0 INZ(11)
D FCT_SET 1 OVERLAY(FCT_SET_I:2)
D FCT_GET_I 5I 0 INZ(12)
D FCT_GET 1 OVERLAY(FCT_GET_I:2)
D FCT_SYNC_I 5I 0 INZ(13)
D FCT_SYNC 1 OVERLAY(FCT_SYNC_I:2)

11Broker ACI for PL/I

EntireX Broker ACI for RPG

D FCT_KERNEL_I 5I 0 INZ(14)
D FCT_KERNEL 1 OVERLAY(FCT_KERNEL_I:2)
D FCT_REPLYERR_I 5I 0 INZ(22)
D FCT_REPLYERR 1 OVERLAY(FCT_REPLYERR_I:2)
D FCT_GET_MSG_ID_I 5I 0 INZ(26)
D FCT_GET_MSG_ID 1 OVERLAY(FCT_GET_MSG_ID_I:2)
*
*--------------- OPTION CONSTANTS ------------------------------------
D OPT DS
D OPT_MSG_I 5I 0 INZ(1)
D OPT_MSG 1 OVERLAY(OPT_MSG_I:2)
D OPT_HOLD_I 5I 0 INZ(2)
D OPT_HOLD 1 OVERLAY(OPT_HOLD_I:2)
D OPT_IMMED_I 5I 0 INZ(3)
D OPT_IMMED 1 OVERLAY(OPT_IMMED_I:2)
D OPT_QUIESCE_I 5I 0 INZ(4)
D OPT_QUIESCE 1 OVERLAY(OPT_QUIESCE_I:2)
D OPT_EOC_I 5I 0 INZ(5)
D OPT_EOC 1 OVERLAY(OPT_EOC_I:2)
D OPT_CANCEL_I 5I 0 INZ(6)
D OPT_CANCEL 1 OVERLAY(OPT_CANCEL_I:2)
D OPT_LAST_I 5I 0 INZ(7)
D OPT_LAST 1 OVERLAY(OPT_LAST_I:2)
D OPT_NEXT_I 5I 0 INZ(8)
D OPT_NEXT 1 OVERLAY(OPT_NEXT_I:2)
D OPT_PREVIEW_I 5I 0 INZ(9)
D OPT_PREVIEW 1 OVERLAY(OPT_PREVIEW_I:2)
D OPT_COMMIT_I 5I 0 INZ(10)
D OPT_COMMIT 1 OVERLAY(OPT_COMMIT_I:2)
D OPT_BACKOUT_I 5I 0 INZ(11)
D OPT_BACKOUT 1 OVERLAY(OPT_BACKOUT_I:2)
D OPT_SYNCPOI_I 5I 0 INZ(12)
D OPT_SYNCPOINT 1 OVERLAY(OPT_SYNCPOI_I:2)
D OPT_ATTACH_I 5I 0 INZ(13)
D OPT_ATTACH 1 OVERLAY(OPT_ATTACH_I:2)
D OPT_DELETE_I 5I 0 INZ(14)
D OPT_DELETE 1 OVERLAY(OPT_DELETE_I:2)
D OPT_EOCCANC_I 5I 0 INZ(15)
D OPT_EOCCANCEL 1 OVERLAY(OPT_EOCCANC_I:2)
D OPT_QUERY_I 5I 0 INZ(16)
D OPT_QUERY 1 OVERLAY(OPT_QUERY_I:2)
D OPT_SETUSTAT_I 5I 0 INZ(17)
D OPT_SETUSTATUS 1 OVERLAY(OPT_SETUSTAT_I:2)
D OPT_ANY_I 5I 0 INZ(18)
D OPT_ANY 1 OVERLAY(OPT_ANY_I:2)
D OPT_TERMINAT_I 5I 0 INZ(19)
D OPT_TERMINATE 1 OVERLAY(OPT_TERMINAT_I:2)
D OPT_CHECKSERVIC_I 5I 0 INZ(21)
D OPT_CHECKSERVICE 1 OVERLAY(OPT_CHECKSERVIC_I:2)
*
*--------------- CONVERSATION STATUS CONSTANTS -----------------------
D CONV DS

Broker ACI for PL/I12

EntireX Broker ACI for RPG

D CONV_NEW_I 5I 0 INZ(1)
D CONV_NEW 1 OVERLAY(CONV_NONE_I:2)
D CONV_OLD_I 5I 0 INZ(2)
D CONV_OLD 1 OVERLAY(CONV_NONE_I:2)
D CONV_NONE_I 5I 0 INZ(3)
D CONV_NONE 1 OVERLAY(CONV_NONE_I:2)
*
*--------------- STORE CONSTANTS -------------------------------------
D STORE DS
D STORE_0FF_I 5I 0 INZ(1)
D STORE_0FF 1 OVERLAY(STORE_0FF_I:2)
D STORE_BROKER_I 5I 0 INZ(2)
D STORE_BROKER 1 OVERLAY(STORE_BROKER_I:2)
*
*--------------- STATUS CONSTANTS ------------------------------------
D STATUS DS
D STA_0FF_I 5I 0 INZ(1)
D STA_0FF 1 OVERLAY(STA_0FF_I:2)
D STA_STORED_I 5I 0 INZ(2)
D STA_STORED 1 OVERLAY(STA_STORED_I:2)
D STA_DELI_ATT_I 5I 0 INZ(3)
D STA_DELI_ATT 1 OVERLAY(STA_DELI_ATT_I:2)
D STA_DELIVER_I 5I 0 INZ(4)
D STA_DELIVER 1 OVERLAY(STA_DELIVER_I:2)
D STA_PROCESS_I 5I 0 INZ(5)
D STA_PROCESS 1 OVERLAY(STA_PROCESS_I:2)
D STA_DEAD_I 5I 0 INZ(6)
D STA_DEAD 1 OVERLAY(STA_DEAD_I:2)
*
*--------------- CONTROL BLOCK DEFINITION ----------------------------
D ETBCB DS
D ETB_TYPE 1
D ETB_VERSION 1
D ETB_FUNCTION 1
D ETB_OPTION 1
D ETB_RESERVED 16 INZ(' ')
D ETB_SEND_LEN 10I 0 INZ(0)
D ETB_RECV_LEN 10I 0 INZ(0)
D ETB_RETN_LEN 10I 0 INZ(0)
D ETB_ERRT_LEN 10I 0 INZ(0)
D ETB_BROKER_ID 32 INZ(' ')
D ETB_SERV_CLAS 32 INZ(' ')
D ETB_SERV_NAME 32 INZ(' ')
D ETB_SERVICE 32 INZ(' ')
D ETB_USERID 32 INZ(' ')
D ETB_PASSWD 32 INZ(' ')
D ETB_TOKEN 32 INZ(' ')
D ETB_SEC_TOKEN 32 INZ(' ')
D ETB_CONV_ID 16 INZ(' ')
D ETB_WAIT_TOUT 8 INZ(' ')
D ETB_ERR_CODE 8 INZ(' ')
D ETB_ERR_CLASS 4 OVERLAY(ETB_ERR_CODE:1)

13Broker ACI for PL/I

EntireX Broker ACI for RPG

D ETB_ERR_NBR 4 OVERLAY(ETB_ERR_CODE:5)
D ETB_ENVIRON 32 INZ(' ')
D ETB_ADCOUNT 10I 0 INZ(0)
D ETB_USER_DATA 16 INZ(' ')
D ETB_MSG_ID 32 INZ(' ')
D ETB_MSG_TYPE 16 INZ(' ')
D ETB_PTIME 8 INZ(' ')
D ETB_NEW_PWD 32 INZ(' ')
D ETB_ADAPT_ERR 8 INZ(' ')
D ETB_CLIENT_UID 32 INZ(' ')
D ETB_CONV_STAT 1 INZ(' ')
D ETB_STORE 1 INZ(' ')
D ETB_STATUS 1 INZ(' ')
D ETB_UOW_STAT 1 INZ(' ')
D ETB_UOW_TIME 8 INZ(' ')
D ETB_UOW_ID 16 INZ(' ')
D ETB_USER_STAT 32 INZ(' ')
D ETB_STAT_PERS 1 INZ(' ')
D ETB_UOWLATER 3 INZ(' ')
D ETB_LOCALE_STR 40 INZ(' ')
D ETB_DATA_ARCH 1 INZ(' ')
D ETB_FORCE_LGON 1 INZ(' ')
* following field is deprecated:
D ETB_ENC_LEVEL 1 INZ(' ')
*
D ETB_KERSEC 1 INZ(' ')
D ETB_COMMTIME 17 INZ(' ')
D ETB_COMPLVL 1 INZ(' ')
D ETB_RESVD3 2 INZ(' ')
D ETB_RESVD4 10I 0 INZ(0)
D ETB_UWSTATLIFE 8 INZ(' ')
D ETB_RESVD_V91_1 96 INZ(' ')
D ETB_RESVD_V91_2 16 INZ(' ')
D ETB_RESVD_V99_1 32 INZ(' ')
D ETB_RESVD_V73_1 10I 0 INZ(0)
D ETB_RESVD_V73_2 10I 0 INZ(0)
D ETB_RESVD_V73_3 10I 0 INZ(0)
D ETB_CLIENT_ID 10I 0 INZ(0)
D ETB_RESVD_V73_4 32 INZ(' ')
D ETB_LOG_COMMAND 1 INZ(' ')
D ETB_CRED_TYPE 1 INZ(' ')
D ETB_RESVD_V73_5 32 INZ(' ')
D ETB_RESVD5 2 INZ(' ')
D ETB_VAR_LIST_OFF 10I 0 INZ(0)
D ETB_LONG_BID_LEN 10I 0 INZ(0)
D ETB_NEW_MSG_ID 64 INZ(' ')
D ETB_COR_ID 64 INZ(' ')
D ETB_USE_MSG_ID 1 INZ(' ')
D ETB_USE_COR_ID 1 INZ(' ')
D ETB_RESVD6 2 INZ(' ')
D ETB_RESVD7 10I 0 INZ(0)
D ETB_LONG_PSWD_LEN 10I 0 INZ(0)

Broker ACI for PL/I14

EntireX Broker ACI for RPG

D ETB_LONG_NEW_PSWD_LEN 10I 0 INZ(0)
*
*
D ERROR_TEXT S 40 INZ(' ')
*--------------- INDEPENDENT ---
D I_PARM DS
D IN_PARAM_ID 32
D I_SWITCH_ID 2 OVERLAY(IN_PARAM_ID:1)
D I_BROKER_ID 30 OVERLAY(IN_PARAM_ID:3)
*
D G_SEND_BUFF S 256 INZ(' ')
*
D G_RECV_BUFF S 256 INZ(' ')
*
D BIN_FIELD DS
D BIN_ZERO_I 5I 0 INZ(0)
D BIN_ZERO 1 OVERLAY(BIN_ZERO_I:2)
*
*

D E_CLASS 10I 0 INZ(0)
D S_LOOP 10I 0 INZ(10)
D E_COUNT 10I 0 INZ(0)

D MSGDATA DS
D MSG_FUNC 6 INZ(' ')
D MSG_ECLASS 4 INZ(' ')
D MSG_ENUM 4 INZ(' ')
D MSG_FILL 1 INZ(' ')
D MSG_ETEXT 32 INZ(' ')
**

ACI Examples and Copybooks

When you begin to write your first Broker ACI program in RPG, you can use these examples as
a model for your own implementation:

■ client: BCOCRPG
■ server: BCOSRPG

Depending on your platform for RPG, you will find the files with the examples, copybooks, etc.
at the following locations:

15Broker ACI for PL/I

EntireX Broker ACI for RPG

NotesLocationCopybooks / ExamplesPlatform

1See member RPGDEF in include source file
QRPGLESRC.

Broker ACI control block copybook.IBM i

1See member CRT_RPGMOD in source file
QRPGLESRC.

Sample procedure for compiling.

1Seemember EXABNDPGMin source fileEXASRC.Sample procedure for binding.

1, 3See member BCOCRPG of type RPGLE in source
file EXASRC.

Client example

1, 2See the CL member EXABCOC in source file
EXASRC.

Procedure to call client example

1, 2See the CL member EXABCOCSEC in source file
EXASRC.

Procedure to call client example with
security parameters

1, 3See member BCOSRPG of type RPGLE in source
file EXASRC.

Server example

1, 2See the CL member EXABCOS in source file
EXASRC.

Procedure to call server example

1, 2See the CL member EXABCOSSEC in source file
EXASRC.

Procedure to call server example with
Security parameters

Notes:

1. See Installing EntireX under IBM i.

2. By default, these CL procedures call the C type of the client and server programs (BCOC and
BCOS). To use the relevant RPG programs BCOCRPG and BCOSRPG, you must modify the
procedures accordingly. After adjusting the Broker ID, Broker version and security parameters,
you must compile the sources and bind the created modules to executable *PGM programs.
For compiling, use theprocedureCRT_RPGMOD.For binding, use theprocedureEXABNDPGM.
All sample programs copy theACI Broker control block definitionsRPGDEFduring compilation.

3. See also Verifying the Installation of the Broker Stubs.

Creating an RPG User Application under IBM i

On the IBM i system, the broker stub is implemented as an object of type *SRVPGM (Service Program).
This object type has the advantage that its program code can be shared by several programs. It
exists as an object on its own and can therefore be easily replaced without rebinding the user's
application, when a newer version becomes available.

The service program EXA supplied by Software AG contains all the functions necessary for con-
trolling and communicating with the remote broker. To create an executable Broker application
on IBM i, you need to develop, in any ILE-enabled programming language, at least one main
module to which the EXA service program is bound.

Broker ACI for PL/I16

EntireX Broker ACI for RPG

■ For compilation use the IBM i command CRTRPGMOD

■ For binding use IBM i command CRTPGMwith the option:

...BNDSRVPGM(*LIBL/EXA)...

Example:

The following steps show how to create a server application using the program BCOSRPG. See
ACI Examples and Copybooks.

Step 1: Set the Environment

The library EXX must be located in the *LIBL list.

To set the library list, you can use the IBM i command:

CHGCURLIB CURLIB(EXX)

Step 2: Compile the User Program

To compile BCOSRPG, use the command CRTRPGMODwith the following options:

MODULE(BCOSRPG) SRCFILE(*CURLIB/EXASRC) OUTPUT(*PRINT)

Or, use the sample procedure CRT_RPGMOD.

If the program has been successfully compiled, the module BCOSRPG will be created.

Step 3: Bind EXA to the User Program

To produce an executable program, bind the user program BCOSRPG to the service program EXA
supplied by Software AG.

CRTPGM PGM(EXX/BCOSRPG) MODULE(*PGM) ENTMOD(*PGM)
BNDSRVPGM(EXX/EXA) BNDDIR(*NONE) OPTION(*GEN *WARN *DUPVAR)
DETAIL(*EXTENDED)

Or, use the sample program EXABNDPGM.

17Broker ACI for PL/I

EntireX Broker ACI for RPG

18

3 Writing Client and Server Applications

■ Basic Concepts of Client and Server ... 20
■ API-TYPE and API-VERSION .. 22
■ LOGON and LOGOFF .. 22
■ USER-ID and TOKEN .. 23
■ Control Block Fields and Verbs .. 25
■ Implementation of Client and Server Components .. 28
■ Blocked and Non-blocked Broker Calls .. 29
■ Conversational and Non-conversational Mode ... 32
■ Managing Conversation Contexts ... 34
■ Delayed SEND Function ... 37
■ Timeout Parameters .. 38
■ Data Compression ... 40
■ Error Handling .. 41
■ Using Send and Receive Buffers .. 43
■ Tracing .. 45
■ Transport Methods .. 46
■ Variable-length Error Text .. 49
■ Programmatically Turning on Command Logging ... 49

19

The client and server communication model is based on a logical connection between exactly two
partners: a client and a server. It covers the communication requirements conversational and non-
conversational, and synchronous and asynchronous. This chapter describes how to implement
and program client and server applications with EntireX Broker.

See alsoWriting Applications: Attach Server andWriting Applications: Units of Work.

Basic Concepts of Client and Server

■ Client-and-Server Application Components
■ Conversationality
■ Synchronicity

Client-and-Server Application Components

In the client-and-server communication model there are two partner application components: a
requesting partner (the client) and the partner satisfying the request (the server). The client iden-
tifies the required service through the names of the SERVER-CLASS, SERVER-NAME and SERVICEwith
which the partner has registered.

EntireX Broker allowsmultiple server application components to register the same service in order
to satisfy processing requirements. In conversational requests, the client and the server are bound
to each other for the duration of the conversation. In addition, a server application component can
satisfy more than one request type after registering several class, server and service names.

An application component is not restricted to a single role as either client or server; it can perform
the role of both client and server. It can thereforemake requests for processingwhile also satisfying
requests from other partner application components.

Conversationality

The EntireX Broker allows both non-conversational and conversational communication in order
to meet the different requirements of connections between distributed application components.

■ Non-conversational
In this communication type, each request comprises a singlemessage from the client that requires
at most one reply from a server. Since there is only one SEND / RECEIVE cycle per request, each
request can be satisfied individually by any of a number of server replicas.

■ Conversational
In this communication type, the request contains a series of relatedmessages, initiated by a client,
which occur between client and server. Since there is a series of SEND / RECEIVE commands for
each request, the same replica of a servermust process all relatedmessageswithin a conversation.

Broker ACI for PL/I20

Writing Client and Server Applications

Using EntireX Broker, an application may have more than one conversation active at the same
time with the same partner or with different partners. Conversational and non-conversational
modes can also be used simultaneously. The requiredmode of communication is always controlled
by the application component that initiates the communication, that is, the client side.

Synchronicity

EntireX Broker makes possible both synchronous and asynchronous communication. EntireX
Broker enables application components to combine synchronous and asynchronous communication
as needed by the application. The terms synchronous and asynchronous correspond to the terms
“blocked” and “non-blocked”. See Blocked and Non-blocked Broker Calls.

■ Synchronous
The application component initiating the request waits for the processing to be completed by
the partner application component before continuing. EntireX Broker provides the application
with facilities towait automatically for the partner application to complete processing and reply
to the requesting application partner.

■ Asynchronous
The application component initiating the request does notwait for the processing to be completed
and continues to executewithout needing to receive a reply from the partner application. EntireX
Broker provides the application with facilities to continue processing and obtain the partner's
reply at a later time, if needed.

21Broker ACI for PL/I

Writing Client and Server Applications

API-TYPE and API-VERSION

Both the API-TYPE and the API-VERSION fields must always be provided.

DescriptionBit PatternValue

The standard value for API-TYPE is 1 (x'01') and usable with all Broker stubs in all
environments.

Note: If any of the following conditions exist, youmust install theAdabasCICS linkmodule
with the definition PARMTYP=ALL, using the ADAGSETmacro.

(x'01')1

1. If you are using NET transport with CICSETB stub with send or receive buffers greater
than 32 KB.

2. If you are using NET transport with CICSETB stub and your application does not have
a TWA.

Certain Broker functionality requires a minimum API-VERSION. For the highest available version
of Broker, see API-VERSION. The send buffer and the receive buffer are passed as parameters to
the EntireX Broker. Both buffers can occupy the same location.

See in ACI Programming documentation.

Both the API-TYPE and API-VERSION fields must be set correctly to ensure that Broker returns the
correct value in ACI field ERROR-CODE. Otherwise, depending on your programming language
and environment, a return code may not always be given.

See in ACI Programming documentation.

LOGON and LOGOFF

The LOGON and LOGOFFBroker functions are optionalwhenusing the client-and-server programming
model in your application. However, we recommend that the application issues LOGON and LOGOFF
function calls for the following reasons:

■ LOGOFFwill notify the Broker to clean up in-memory resources held for your program, making
them available to other users of the Broker.

■ Without LOGOFF, the user's in-memory resources will time out in accordance with the Broker
attributes CLIENT-NONACT and SERVER-NONACT. Depending on the values set by the administrator,
this may not occur for some time.

Example for programming language Natural:

Broker ACI for PL/I22

Writing Client and Server Applications

/* Logon to Broker/LOGON
MOVE #FCT-LOGON TO #ETBCB.#FUNCTION
/*
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

Logoff example for programming language Natural:

/* Logoff to Broker/LOGOFF
MOVE #FCT-LOGOFF TO #ETBCB.#FUNCTION
CALL 'BROKER' #ETBAPI #SEND-BUFF #RECV-BUFF #ERR-TXT

USER-ID and TOKEN

■ Identifying the Caller
■ Restarting after System Failure
■ Managing the Security Token

Identifying the Caller

USER-ID identifies the caller and is required for all functions except VERSION. The USER-ID is
combinedwith an internal ID orwith the TOKEN field, if supplied, in order to guarantee uniqueness,
for example where more than one application component is executing under a single USER-ID.

Brokers identify callers as follows:

■ When the ACI field TOKEN is supplied:

The ACI field USER-ID, together with the TOKEN, is used to identify the user. Using TOKEN allows
the application to reconnect with a different process or thread without losing the existing con-
versation. When a new call is issued under the same USER-ID from a different location but with
the same TOKEN, the caller is reconnected to the previous context.

Note: The ability to reconnect to the previous context is vital if restart capabilities of ap-
plications are required. The combination of USER-ID and TOKENmust be unique to the
Broker. It is not possible to have the same USER-ID and TOKEN combination duplicated.

■ When the ACI field TOKEN is not supplied:

The USER-ID is combinedwith an internally generated ID. It is possible to use the same USER-ID
in different threads or processes. All threads and processes are distinct Broker users.

23Broker ACI for PL/I

Writing Client and Server Applications

Restarting after System Failure

The Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER-ID, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

Specification of USER and TOKEN is necessary for reconnection with the correct user context after
Broker has been stopped and restarted.

Managing the Security Token

If you are using EntireX Security, the applicationmustmaintain the content of the SECURITY-TOKEN
field and not change this field on subsequent calls.

Broker ACI for PL/I24

Writing Client and Server Applications

Control Block Fields and Verbs

■ Basic Functionality of Broker API
■ ACI Syntax
■ Key ACI Field Names
■ Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the basic functionality of the Broker API. The following functions in the
Broker API are fundamental to client-and-server processing. For full set of verbs relating to UOW
processing, see Control Block Fields and Verbs.

■ DEREGISTER
The function DEREGISTER is used by a server to indicate its intention to terminate its role as a
server for the named SERVER-CLASS, SERVER-CLASS and SERVER-CLASS. The server can terminate
its role as server for all class, server and service names for which it is registered, using a single
DEREGISTER command.

■ EOC
The function EOC is used by either partner to terminate one or more active conversations.

■ RECEIVE
The function RECEIVE is used by the server to obtain new requests from a client, and in the case
of conversations, to obtain subsequent related messages from the same client. This function is
also used by clients that issue asynchronous requests and wish to obtain the server's reply at a
later time. The field CONV-ID defines the behavior of this function. RECEIVE,CONV-ID=NEW signals
the server's readiness to obtain the next available new request, whereas the value CONV-ID=nnn
indicates that the next messagewithin an existing conversation is being requested by the server.
The client uses RECEIVE,CONV-ID=nnn to obtain asynchronously a reply from the server for an
existing conversation.

■ REGISTER
The function REGISTER is used by a component of an application to identify its intention to become
a server and satisfy requests issued to the named SERVER-CLASS, SERVER-CLASS and SERVER-CLASS.

■ SEND
The function SEND is used by the client either tomake a new request or to send subsequent related
messages within a conversation. This function is also used by servers, after satisfying a request,
or during the course of a conversation, to reply to the client. The field CONV-ID defines the beha-
vior of this function. The client uses SEND,CONV-ID=NEW to initiate a new request and the value
CONV-ID=nnnwhen sending subsequent related messages in a conversation. The server always
uses SEND,CONV-ID=nnnwhen replying to a client, where nnn indicates the identity of the existing
conversation. The same syntax is used for both conversational and non-conversational modes.

25Broker ACI for PL/I

Writing Client and Server Applications

ACI Syntax

Fields in EntireX Broker Control BlockFunction

DEREGISTER API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[, OPTION = QUIESCE | IMMED]

EOC API = 2 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
[, OPTION = CANCEL]
, CONV-ID = conv_id | ANY
[, SERVER-CLASS = class_name]
[, SERVER-NAME = server_name]
[, SERVICE = service_name]

RECEIVE API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
, WAIT = n | YES | NO
, CONV-ID = conv_id | NEW | OLD | ANY
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *

REGISTER API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
, SERVER-CLASS = class_name
, SERVER-NAME = server_name
, SERVICE = service_name
[, OPTION = ATTACH]

SEND API = 1 or higher
, BROKER-ID = BROKER-ID
, USER-ID = user_id
[, TOKEN = token]
[, OPTION = DEFERRED]
, WAIT = n | YES | NO
, CONV-ID = conv_id | NEW
, SERVER-CLASS = class_name

Broker ACI for PL/I26

Writing Client and Server Applications

Fields in EntireX Broker Control BlockFunction

, SERVER-NAME = server_name
, SERVICE = service_name

Key ACI Field Names

The following table lists keyACI field names for implementing applications that use the client/server
communication model. The other fields are available to identify partner programs, specify buffer
lengths, convey error codes, etc.

See Broker ACI Fields for all fields.

ExplanationACI Field Name

A client uses these fields to identify the service that it requires. A server uses this to offer
a service.

SERVER-CLASS

Identifier to obtain and specify the conversation. Also used to determine communication
mode: conversational or non-conversational. See Conversationality.

CONV-ID

Function code for one of the verbs (see Key Verbs for FUNCTION Field).FUNCTION

Indication of specific Broker behavior, depending on the function.OPTION

Time value to specify blocking or non-blocking of the conversation. See Blocked and
Non-blocked Broker Calls.

WAIT

Key Verbs for FUNCTION Field

The following table lists the most important verbs for the FUNCTION field.

See Broker ACI Functions for a complete list of functions.

DescriptionVerb

Inform the EntireX Broker that a service is available.REGISTER

Retrieve request from partner.RECEIVE

Send reply to the partner.SEND

Terminate one or more conversations.EOC

Remove the availability of the service.DEREGISTER

27Broker ACI for PL/I

Writing Client and Server Applications

Implementation of Client and Server Components

This example implements a simple non-conversational server and the appropriate client. The
server is able to receive a request from the client and send back a reply. See Conversationality.

The following EntireX Broker functions are used to implement the server component:

ExplanationFunction

Log on the application to EntireX Broker.LOGON

Inform EntireX Broker about the availability of a service.REGISTER

Retrieve request from partner.RECEIVE

Commit the sending or acknowledgment receipts of a UOW and examine status.SYNCPOINT

Send reply to the partner.SEND

Remove the availability of the service.DEREGISTER

Log off the application from EntireX Broker.LOGOFF

The program flow of the client component is:

LOGON USER-ID=user-id
SEND SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
LOGOFF USER-ID=user-id

The program flow of the server component is:

LOGON
REGISTER SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
repeat

RECEIVE SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
(individual request processing: reply to client for each message)
SEND CONV-ID=n

end-repeat
DEREGISTER SERVER-CLASS=server-class,SERVER-NAME=server-name,SERVICE=service
LOGOFF

The example above illustrates the structure of a typical server program. It consists of a server re-
gistration and a loop with RECEIVE / SEND cycles. This RECEIVE / SEND loop is normally interrupted
by shutdown messages from administration programs.

The appropriate client component needs three functions:

Broker ACI for PL/I28

Writing Client and Server Applications

ExplanationFunction

Log on the application to EntireX Broker.LOGON

Send request to partner.SEND

Log off the application from EntireX Broker.LOGOFF

The service offered by the server above is used by issuing a SEND operation within the client
component of the application.

Both server and client perform a LOGON as the first call and LOGOFF as the last call. This enables se-
curity checks and saves resources in EntireX Broker.

Blocked and Non-blocked Broker Calls

The application can use the EntireX Broker control block field WAIT to determine whether Broker
will automatically generate a WAIT in order for the command to be received or satisfied by the
partner application.

■ Non-blocked Command: WAIT=NO
■ Blocked Command: WAIT=YES or WAIT=n
■ Examples: WAIT

Non-blocked Command: WAIT=NO

■ SEND
An application sends a message via Broker to a partner application. The caller does not wait for
the partner application to RECEIVE the message or to process it. The application subsequently
performs RECEIVE commands if it intends to retrieve messages from the partner. This technique
is frequently used by server applications when replying to clients after satisfying their requests;
it can also be used by client applications that do not want to wait for the request to be serviced,
such as when using units of work (seeWriting Applications: Units of Work).

■ RECEIVE
Allows an application to ask for a message to be returned from the partner application. If the
partner application has not yet communicated anymessages to Broker using the SEND command,
an ACI response code is given to the application, indicating nomessages are currently available
either for the designated class/server/service or for the conversation (if an existing conversation
was established). This technique can be used by both client and server application components,
especially in a multithreading context, where more than one communication thread is being
maintained, or when programming units of work (seeWriting Applications: Units of Work).

29Broker ACI for PL/I

Writing Client and Server Applications

Blocked Command: WAIT=YES or WAIT=n

■ SEND
An application sends a request via Broker to a partner application. The calling application is
automatically put into a WAIT state until the partner application has performed a RECEIVE oper-
ation to obtain the request and then processes it before issuing a reply, using the SEND command.
Unlike the case where WAIT=NO, an inherent RECEIVE is generated to return the partner's reply.
This technique is used by client applications only.

■ RECEIVE
An application asks for a message to be returned from the partner application. The calling ap-
plication is automatically put into a WAIT state until the partner application has provided the
necessary message through issuing a SEND command. If no messages are available during the
specifiedwaiting time, anACI response code is given to the application, indicating nomessages
were available for the designated class/server/service or for the conversation (if an existing
conversation was established). This technique is frequently used by server applications when
waiting for messages to arrive from clients; it can also be used by client applications if the SEND
and RECEIVE commands are programmed separately.

Examples: WAIT

The EntireX Broker allows both server and client applications to specify a WAIT time with the SEND
or RECEIVE function. WAIT is a field in the ACI control block (see Broker ACI Fields). If a WAIT time
is specified, the application is suspended until a reply is received or the timeout value has elapsed.
If a timeout occurs, the EntireX Broker returns an error code to the calling program. If no WAIT
time is specified, the application continues processing and collects the reply later.

Server applications typically use the WAITfieldwith a RECEIVE function in order towait for requests.
WAIT is not typically used with server SEND functions, allowing the server to continue processing
instead of waiting for a request. For example:

LOGON
REGISTER service
repeat

RECEIVE,CONV-ID=NEW,WAIT=nS
(individual processing)
SEND,CONV-ID=n,WAIT=NO

end-repeat
DEREGISTER service
LOGOFF

Client applications use the WAIT field with a SEND function in non-conversational communication
if they require a reply. Because the mode is non-conversational, no conversation ID is returned to
the client. The client must therefore wait for the reply from the server.

Broker ACI for PL/I30

Writing Client and Server Applications

LOGON
SEND,CONV-ID=NONE,WAIT=nS
LOGOFF

A RECEIVE function with no WAIT time can be used to check if requests or data/messages are
available for processing. Control is returned to the caller even if no request or data/message is
available to satisfy the caller's operation. Appropriate error codes are returned when nothing is
available.

LOGON
RECEIVE,CONV-ID=n,WAIT=NO
LOGOFF

The application can use the EntireX Broker control block field WAIT in the following ways to de-
terminewhether Brokerwill automatically generate a WAIT in order for the command to be received
or satisfied by the partner application.

31Broker ACI for PL/I

Writing Client and Server Applications

Conversational and Non-conversational Mode

Themode of communication is always controlled by the component of the distributed application
that initiates communication. In the client and server model, this is the client side. When starting
a communication, the CONV-ID field of the ACI control block is used to signal the communication
mode to the Broker as follows:

■ CONV-ID=NONE
Coded on the service-requesting side (client program), it denotes non-conversational mode.
EntireX Broker assigns a unique conversation ID to the communication that the client does not
need to know.

■ CONV-ID=NEW
Coded in the client program, it denotes conversational mode. The EntireX Broker assigns a
unique conversation ID to the communication, which is retrieved by the server and client pro-
gram. This conversation ID must be specified in subsequent calls by both sides to refer to this
conversation, until the conversation is ended by either side.

The server always retrieves the unique conversation ID and uses it when sending back the reply
to the client. If no reply is required in non-conversationalmode, the server ignores the conversation
ID.

Non-conversational Mode

When implementing a non-conversational communication, the CONV-ID field is used by the server
as follows:

LOGON
REGISTER service
repeat

RECEIVE,CONV-ID=NEW
(individual processing)
SEND,CONV-ID=n

end-repeat
DEREGISTER service
LOGOFF

The client's SEND function is supplemented as follows:

Broker ACI for PL/I32

Writing Client and Server Applications

LOGON
SEND,CONV-ID=NONE
LOGOFF

Conversational Mode

When implementing conversational communication, the server uses the CONV-ID field as follows:

LOGON
REGISTER service
repeat

RECEIVE,CONV-ID=NEW
repeat

(individual processing)
SEND,CONV-ID=n
RECEIVE,CONV-ID=n

end-repeat until conversation ended
end-repeat
DEREGISTER service
LOGOFF

The conversation is ended whenMessage Class 0003 - EntireX ACI - Conversation Ended is received.
See Error Handling.

The client's SEND function is supplemented as follows:

LOGON
SEND,CONV-ID=NEW
SEND,CONV-ID=n
SEND,CONV-ID=n
EOC,CONV-ID=n
LOGOFF

EOC Reason

The reason for an EOCmight be of interest to the partner of the conversation. EntireX Broker enables
you to define the CANCEL option for an EOC function to indicate an abortive end of conversation.
You can also distinguish between a timeout and a regular EOC on the basis of the error number.
The error class is alwaysMessage Class 0003 - EntireX ACI - Conversation Ended; the error number
specifies the actual circumstances.

33Broker ACI for PL/I

Writing Client and Server Applications

Managing Conversation Contexts

It is possible to program a server application to handle several clients simultaneously and thus
many conversations in parallel. Such a server is also capable of providing several different services
and this technique can be used to reduce the number of different server applications executing on
your machine. This increases throughput without wasting resources on a new service replica. The
following features make it easier to implement a server that supports multiple conversations:

■ Conversation Status
■ Conversation User Data
■ Stored EOC

Conversation Status

The Broker ACI control block contains a field named CONV-STAT. This is filled by Broker after a
RECEIVE command. The following values are possible:

DescriptionValue

This is a new conversation. If the server needs to allocate a user-specific area, for example, this can
be done without a comparison being made against existing conversations.

NEW

This message is a conversationless message. It is probably not necessary to create a user context,
since the next request of this user is completely independent of this one, which is a requirement of

NONE

conversationless communication. The implementation of mixed servers (conversational and
non-conversational) is easier if it is known whether a message is conversational or not.

Themessage belongs to an existing conversation. The server can refer to the conversation user data
to find the partner context. See Conversation User Data.

OLD

Conversation User Data

Servers capable of serving multiple clients simultaneously are either stateless (servicing non-con-
versational requests) or they have to store conversation-related data for each user. This conversation-
related context data is typically stored by the server application in a dynamicmemory area.When
a message is received, the user context related to that conversation must be located. This can be
done by implementing a mapping structure in the application that can be indexed by the conver-
sation ID, which returns the related context data.

Additionally, conversation-related contexts can be maintained by the Broker on behalf of the
server applicationusing the USER-DATAfield in theACI control block. Broker remembers information
stored in the USER-DATA field when executing the SEND command. This data is returned to the ap-
plication on subsequent RECEIVE commands executed within the same conversation. Therefore,
your application is able to store information in USER-DATAwhen executing SEND commands and
retrieve it on RECEIVE commands. The data in USER-DATA is considered binary and is untouched
by the Broker.

Broker ACI for PL/I34

Writing Client and Server Applications

Note: The USER-DATA is never transmitted from client to server or vice versa. Both sides of
a conversation can store different USER-DATA, and both sides always receive their own data.

This USER-DATA helpswith context areas as follows. A server application encounters a new conver-
sation with the CONV-STAT API field. The user area is created and, typically, a first application
confirmation is sent back to the client. Along with this SEND function, the server specifies the
pointer to the user context - or the index into a context array, or whatever is available - into the
USER-DATA. Whenever another request/message comes from that client via this conversation, this
pointer/index is returned to the application, and the server has the context of the client application
immediately, without having to scan a list of known conversations. Example:

35Broker ACI for PL/I

Writing Client and Server Applications

* example of State-ful server program which utilizes
* USER-DATA to maintain application specific context
* information between successive messages within
* conversations with clients.

REGISTER #SERVER-CLASS #SERVER-NAME #SERVICE

DO FOREVER
RECEIVE #CONV-ID=ANY
DECIDE ON FIRST VALUE #ERROR-CODE
/* ============================
/* NICE RETURN CODE
VALUE '0'

DECIDE ON FIRST VALUE #CONV-ID
/* ========================
/* NEW CONVERSATION
VALUE 'NEW'

#REQUEST-IN = #RECEIVE-BUFFER
... PROCESS NEW REQUEST FROM CLIENT AND

REPLY TO CLIENT ASKING BROKER TO REMEMBER
ACCOUNT NUMBER SO CLIENT DOESN'T HAVE TO
TRANSMIT THIS WITH EVERY MESSAGE

#ACCOUNT-NR = REQUEST-IN.ACCOUNT-NR
SEND #CONV-ID #SEND-DATA #USER-DATA

/* ========================
/* EXISTING CONVERSATION
NONE VALUE

/* NEXT MESSAGE IN CONVERSATION RECEIVED
/* AND ACCOUNT NUMBER REMEMBERED BY BROKER
#ACCOUNT-NR = #USER-DATA
#REQUEST-IN = #RECEIVE-BUFFER
... DO SOME PROCESSING BASED ON REQUEST AND

ACCOUNT NUMBER REMEMBERED BY BROKER FOR
THIS CONVERSATION CONTEXT

... REPLY TO CLIENT AS APPROPRIATE AND
END CONVERSATION SOONER OR LATER

SEND #CONV-ID #SEND-DATA #USER-DATA
END-DECIDE

VALUE '00740074' /* RECEIVE TIME-OUT
ESCAPE BOTTOM

NONE VALUE /* REAL BROKER ERROR
... DEAL WITH A REAL BROKER ERROR

END-DECIDE
DOEND /* END FOREVER LOOP

DEREGISTER

Broker ACI for PL/I36

Writing Client and Server Applications

Stored EOC

Servers that handle multiple conversations in parallel normally have to maintain a user context
related to every conversation as described above. However, this context is typically allocated dy-
namically, and is therefore released after the conversation has ended. Not knowingwhen a partic-
ular conversation has finished would result in orphan contexts. To avoid this, the Broker offers
the NOTIFY-EOC option, which is a service-specific attribute defined in the Broker Attributes.

This means that the EOC notification, even for timed-out conversations, is kept until the server re-
ceives it. This is useful for servers serving multiple conversations, since they are always informed
about the end of a particular conversation and can therefore release all internal resources of a
particular user context.

Specification of NOTIFY-EOC=YES can consume substantial system resources; as a result, a shortage
of conversations for a service may occur. To avoid this shortage, a server must issue RECEIVE re-
quests not restricted to any conversation, which gives the Broker the chance to report timed-out
conversations. This does not of coursemean that only RECEIVE functionswith CONVERSATION-ID=ANY
are valid, but from time to time such an unrestricted RECEIVE function should be issued.

Delayed SEND Function

To allow maximum flexibility in communication, the EntireX Broker provides a simple means of
delaying the delivery of messages: allowing delivery of related messages in one logical block. If,
for some reason, the messages that belong to a block cannot all be sent, all the messages in the lo-
gical block can optionally be deleted.

The mechanisms by which the EntireX Broker does this are the HOLD option on the SEND function
and the UNDO function. Messages sent with HOLD status are not delivered until a message without
the HOLD option is sent on the same conversation.

Example

This example illustrates the logical program flow of a client program that sends several messages
on the same conversation, making delivery of the messages dependent on some condition. If the
logical block of messages cannot be delivered (triggering an error condition), all messages in the
logical block already sent can be deleted:

37Broker ACI for PL/I

Writing Client and Server Applications

SEND,CONV-ID=NEW,OPTION=HOLD
.... /* individual processing
SEND,CONV-ID=n,WAIT=NO,OPTION=HOLD
.... /* individual processing
SEND,CONV-ID=n,WAIT=NO,OPTION=HOLD
.... /* individual processing
if <error> then /* error condition

UNDO,CONV-ID=n,OPTION=HOLD
else

SEND,CONV-ID=n,WAIT=NO
end-if
.... /* individual processing
EOC

Timeout Parameters

■ Timeout Behavior
■ Types of Non-activity Time
■ Recommendations
■ Unit of Work Lifetime
■ Unit of Work Status Lifetime

Timeout Behavior

EntireX Broker provides a number of timeout mechanisms that allow you to control WAIT times
flexibly, optimize resource usage, and configure efficient communication.

■ The CLIENT-NONACT, SERVER-NONACT and CONV-NONACT attributes are non-activity timeout para-
meters that can be specified independently of each other to govern the three elements involved
in a conversation: the requesting client, the registered server, and the conversation thatwill exist
between them.

■ The WAIT field in the Broker ACI control block allows you to place the sending or receiving
program in a WAIT state for a specified time to allow data or a reply to be received before control
is passed to the calling program. Placing the program into a WAIT state during a Broker command
is referred to as issuing a blocked command. A non-blocked command is executed if WAIT=NO
is specified. See Blocked and Non-blocked Broker Calls.

There is interplay between the WAIT values of your SEND and RECEIVE calls and the settings of the
non-activity parameters in the Broker attribute file. See the WAIT field.

Broker ACI for PL/I38

Writing Client and Server Applications

Types of Non-activity Time

There is interplay between the non-activity times specified in the attribute file for the attributes
CLIENT-NONACT and SERVER-NONACT, where an application component performs more than one of
these roles. In this case, the maximum non-activity time associated with the user will take preced-
ence.

Recommendations

The following recommendations apply to developing client and server applications:

■ Make the Broker WAIT time used for blocked SEND / RECEIVE calls in the application (both servers
and clients) adjustable. This means that WAIT values must be read as a startup parameter from
a user-supplied INI or CFG file, or any other parameter data set or set of environment variables,
depending on the platform in use.

■ On the client side, avoid high values for the WAIT time, which may lead to communication
problems.

■ When the WAIT time is lower than CONV-NONACT attribute, the caller will receive 00740074 error
messages. Since the lifetime of the conversation exceeds the WAIT time specified for the command,
the application can retry with the Broker function RECEIVE, and option LAST is possible.

■ When the WAIT time is higher than CONV-NONACT attribute, the caller will receive 00030003 error
messages. Since the lifetime of the conversation is less than the WAIT time specified for the
command, it is not possible for the application to retry because any messages relating to the
current conversation have already been cleaned up.

See also Timeout Considerations for EntireX Broker.

Unit of Work Lifetime

The UWTIME parameter in the Broker Attributes specifies the lifetime for a persistent UOW. The
UOW exists until it has been successfully processed or until it is explicitly cancelled or backed
out. If a UOW times out before being processed, or before any other explicit action is taken, its
status changes to TIMEOUT. The statusmay ormay not be retained in the persistent store, depending
on the value of UOW status lifetime as described below. The default UOW lifetime for the Broker
is defined by the UWTIME attribute. It can be overridden by the application in the UWTIME field of
the ACI control block.

The UOW lifetime for the units of work is calculated only while Broker is executing.

39Broker ACI for PL/I

Writing Client and Server Applications

Unit of Work Status Lifetime

This can be specified through either of the following two exclusive attribute settings. The default
value zero implies the UOW status lifetime is zero, which means the status of the UOWSTATUS is
not retained after one of the following events occurs: UOW is processed; UOW times out; UOW
is backed out; UOW is cancelled. Status lifetime can be specified through either of the following
two parameters in the Broker Attributes:

■ UWSTATP (ACI version 3 or above)

This attribute contains a multiplier used to compute the lifetime of the status of a UOW. See
Writing Applications: Units of Work. The UWSTATP value is multiplied by the UWTIME value (the
lifetime of the associated UOW) to determine how much additional time the UOW status is re-
tained in the persistent store. The lifetime is calculated to start when any of the above events
occurs and ends when the lifetime value expires. It can be overridden by the application in the
UOW-STATUS-PERSIST field in the ACI control block.

■ UWSTAT-LIFETIME (ACI version 8 or above)

This attribute specifies the value to be added to the UWTIME (lifetime of the associated UOWSTATUS)
to compute the length of time the UOW status is persisted. The UOW status lifetime begins at
the time at which the associatedUOWenters any of the following statuses: PROCESSED, TIMEOUT,
BACKEDOUT, CANCELLED, DISCARDED. Specifying unit of work status lifetime in this way excludes
specifying it as a multiplier value through the attribute UWSTATP.

The status lifetime for the unit of work is calculated only while Broker is executing.

Note: The values described here as UWSTATP and UWSTAT-LIFETIME can also be assigned as
global Broker attributes or as a per-service attribute. However, the value specified by the
application in the ACI control block overrides the Broker (or service) attributes. See Broker
ACI Fields.

Data Compression

Data compression within EntireX Broker allows you to exchange smaller packet sizes between
senders and receivers. This helps to reduce response time during transmissions aswell as improve
the overall network throughput, especially with low bandwidth connections.

Compression is performed only on the buffers used to send and receive data. The application has
the option of setting the level of compression/decompression for data transmission. The compression
level can be set to achieve either no compression or a range of compression/decompression. See
Data Compression in EntireX Broker. Application components can set compression individually to
Broker.

Broker ACI for PL/I40

Writing Client and Server Applications

zlib is a general-purpose software implementing data compression across a variety of platforms.
The functions used within EntireX Broker represent a subset of those available within the zlib
software. The compression algorithms are implemented through the open source software zlib.
It may occur that the data buffer does not compress during a data transmission; if it does not
compress, a logged warning message will appear in 00200450 and in the stub.

Technique

The Broker ACI control block contains a field that is used to set the compression level. This field
determines for any send/receive transmissionwhether the data buffer will be compressed/decom-
pressed. See ACI control block field COMPRESSLEVEL.

Error Handling

After every broker operation, the application must check the ERROR-CODE. It consists of a combin-
ation of

■ error class (first four digits) and
■ error number (last four digits)

While the error number describes the exact situation, the error class often determines how the
program will proceed after returning from the EntireX Broker operation. From the programmer's
point of view, therefore, the error class may be more important than the particular error number.

For more information, see Error Messages and Codes.

Programming Techniques

We recommend trapping the error classes in a “case” statement, for example, a DECIDE in Natural
or a switch statement in C.

All error classes - for example user and configuration errors - leading to the same action (that is,
reporting or logging the situation and aborting issuing broker calls), can be handled together in
the NONE VALUE or default case.

41Broker ACI for PL/I

Writing Client and Server Applications

http://www.zlib.net/

Example for C Programming Language

int i, iErrorCode, iErrorClass, iErrorNumber, ret_val;
char szErrorTextBuffer[S_TXT + 1];.....

/* prepare error code field and error text buffer */
memset(pETBCB->error_code,'0',sizeof(pETBCB->error_code));
memset(szErrorTextBuffer,'\0',sizeof(szErrorTextBuffer));

/* call the broker */
ret_val = broker(pETBCB,pSendBuffer,pReceiveBuffer,szErrorTextBuffer);

/* evaluate error class from error code field */
iErrorClass = 0;
for(i = 0; i < 4; ++i)
{

iErrorClass *= 10;
iErrorClass += pETBCB->error_code[i] - '0';

}

if (iErrorClass == 0 && ret_val != 0)
{

printf("Wrong API_TYPE and/or API_VERSION\n");
}
else
{

/* evaluate error number from error code field */
iErrorNumber = 0;
for(i = 4; i < 8; ++i)
{

iErrorNumber *= 10;
iErrorNumber += pETBCB->error_code[i] - '0';

}

/* evaluate error code as integer value */
iErrorCode = (iErrorClass * 10000) + iErrorNumber;

/* handle error */
switch (iErrorClass)
{

case 0: /* Successful Response */
....
break;

case 2: /* User does not exist */
....
break;

case 3: /* Conversation ended */
....
break;

Broker ACI for PL/I42

Writing Client and Server Applications

case 7: /* Service not registered */
....
break;

case 74: /* Wait Timeout occurred */
....
break;

....

default:
printf("EntireX Broker Error occurred.\n");
printf("%8.8u %s",iErrorCode,szErrorTextBuffer);
break;

}
}

Using Send and Receive Buffers

■ Introduction
■ Error Cases
■ Transport Methods

Introduction

The send buffer and the receive buffer are passed as parameters to the EntireX Broker. Both buffers
can occupy the same location. See in ACI Programming documentation.

The length of the data to be sent is given in the ACI field SEND-LENGTH. If the SEND-LENGTH is
greater than the send buffer during data transmission, you could accidentally send the data that
is physically located in memory behind your send buffer to the designated Broker.

The RECEIVE-LENGTH is required with the RECEIVE function and with SEND functions waiting for a
reply. The length of the receive buffer is specified in the ACI field RECEIVE-LENGTH. If the
RECEIVE-LENGTH is greater than the receive buffer during data reception, you can overwrite the
data physically located behind the receive buffer being used.

If the data to be returned is less than RECEIVE-LENGTH, the rest of the receive buffer remains un-
changed and is not padded with trailing blanks or other characters. The ACI field RETURN-LENGTH
contains the length of the data actually returned. The RECEIVE-LENGTH field is not changed upon
return.

Note: With Adabas version 8, the maximum size of message data is no longer limited to
approximately 32 KB. If Adabas version 8 or above is not used, these same limits still apply
under z/OS.

43Broker ACI for PL/I

Writing Client and Server Applications

Error Cases

Character conversions of data can increase the amount of data and thus require a buffer of a larger
size than provided. It may also be impossible to determine the size required in advance. EntireX
provides a feature to reread the data in such cases:

Using API version 2 and above, if the amount of data to be returned is greater than the
RECEIVE-LENGTH, the exact length needed is given in the ACI field RETURN-LENGTH together with
an error code, depending on the character conversion approach. See Internationalizationwith EntireX.
Note the following:

■ For Translation User Exit:
■ The error code is 00200094.
■ The data up to the length of the receive buffer is translated. The rest is truncated.

■ For ICU Conversion and SAGTRPC User Exit:
■ The error code is 00200377.
■ No data is returned in the receive buffer.

To obtain the entire message, increase the size of the receive buffer and issue an additional Broker
ACI function RECEIVEwith the option "LAST".

Using API version 5 and above, it is also possible for a client to reread a truncatedmessage in non-
conversationalmode, by issuing an additional BrokerACI function RECEIVEwith the option "LAST"
as well as the CONV-ID returned from the ACI control block. No EOC is needed after RECEIVE.

Transport Methods

The maximum length possible for send and receive buffers is affected by the transport method
used.

If using this transport method, ...
Maximum Receive /
Send Buffer SizeTransport Method

2,147,482,111 BTCP/IP ■ the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

30,545 BEntireNet-Work ■ the send and receive buffer sizes are affected by the setting of the
Net-Work parameter IUBL for all involved platforms (see the
Net-Work documentation for more information);

■ the send and receive buffer sizes are affected by the Adabas
SVC/Entire Net-Work-specific attribute IUBL for Broker running
under z/OS;

■ the maximum send and receive buffer size is around 30,545 bytes.

Broker ACI for PL/I44

Writing Client and Server Applications

If using this transport method, ...
Maximum Receive /
Send Buffer SizeTransport Method

Note: Under z/OS with Adabas version 8, the value for NET is the
same as for TCP.

2,147,482,111 BSSL ■ the maximum send and receive buffer size is approximately
2,147,482,111 bytes.

Tracing

Trace information showing the commands help the application programmer debug applications
and solve problems. Tracing can be obtained for the application (stub trace) and for the Broker
kernel (kernel trace). The stub trace shows the Broker functions issued by your application,
whereas the Broker kernel trace will contain all Broker functions issued by all applications using
the Broker.

Setting the Broker attribute TRACE-LEVEL=1 provides traces containing just the Broker functions
processed by the Broker kernel without additional diagnostics. It is only necessary to set the trace
value higher when generating traces for Software AG Support.

Stub Trace

Tracing is available for all stubs onUNIX andWindows. For the stubs forwhich tracing is available
on z/OS, see table under Administering Broker Stubs.

To set the stub trace, see Tracing for Broker Stubs in the platform-specificAdministration document-
ation.

Kernel Trace

Tracing is available for Broker on all platforms. For z/OS, see Administering Broker Stubs.

To set the kernel trace, see Tracing webMethods EntireX under UNIX | Windows | BS2000 | z/VSE
in the platform-specific Administration documentation.

45Broker ACI for PL/I

Writing Client and Server Applications

Transport Methods

■ Overview of Supported Transports
■ TCP/IP
■ Entire Net-Work
■ SSL/TLS
■ Considerations for Writing Applications
■ Restrictions with API Versions 1 and 2

Overview of Supported Transports

This table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker
ModuleEnvironmentOperating System HTTP(S) (5)NET (1)SSLTCP

x(2)xARFETBAdabas Replication Servicesz/OS

x(2)xBROKERBatch, TSO, IMS (BMP)

x(2)xCOMETBCom-plete

x(2)xCICSETBCICS

x(2)xMPPETBIMS (MPP)
(2)xIDMSETBIDMS/DC (3)

x(2)xNATETB23Natural

x(2)xNATETBZNatural RPC Server

xxxEntireX Java ACIUNIX System Services

xxbroker.soUNIX

xxxEntireX Java ACI

xxbroker.dll (4)Windows

xxxEntireX Java ACI

xxBROKERBatch, Dialog (formerly TIAM)BS2000

x(6)xBKIMBBatchz/VSE

x(6)xBKIMCCICS

xEXAIBM i

Notes:

1. NET is available for transport to a broker running under mainframe platforms only; not to a
broker running under UNIX or Windows.

Broker ACI for PL/I46

Writing Client and Server Applications

2. Under z/OS, use IBM's Application Transparent Transport Layer Security (AT-TLS). Refer to
the IBM documentation for more information. See also SSL/TLS, HTTP(S), and Certificates with
EntireX.

3. Tracing and transport timeout are not supported in this environment.

4. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is
identical to broker.dll.

5. Via EntireX BrokerHTTP(S) Agent; see BrokerHTTP(S) Agent in the UNIX |WindowsAdmin-
istration documentation.

6. Under z/VSE, use BSI's Automatic Transport Layer Security (ATLS). Refer to the BSI SSL Install-
ation, Programming and User's Guide. See also SSL/TLS, HTTP(S), and Certificates with EntireX.

See also:

■ Transport Methods for Broker Stubs under z/OS | UNIX | Windows | BS2000 | z/VSE in the plat-
form-specific Administration documentation

■ Setting Transport Methods underWriting Advanced Applications - EntireX Java ACI

TCP/IP

TCP is not available for all Broker stubs and all environments (see table above).

SeeUsing TCP/IP as Transport Method for the Broker Stub in Transport Methods for Broker Stubs under
z/OS |UNIX |Windows | BS2000 | z/VSE in the platform-specificAdministration documentation,
which describes how to set up TCP transport.

Application programs using TCP/IP as the transport specify the target Broker ID in terms of a host
name (or IP address) together with the port number onwhich the Broker TCP/IP communications
driver is listening. Example: An application communicating through TCP/IP would specify on
each command the Broker ID

IBM1:3932:TCP

where the host on which the Broker kernel executes is known to TCP as IBM1 and is listening on
port 3932.

47Broker ACI for PL/I

Writing Client and Server Applications

Entire Net-Work

Communication through Entire Net-Work is available for all Broker stubs when communicating
with a Broker kernel on z/OS through Entire Net-Work. Applications can also utilize Entire Net-
Work communication to obtain local interprocess communicationwith a z/OSBroker kernel running
on the same machine as the application. This can provide a considerable performance benefit.
Local interprocess communication is achieved through the Adabas SVC mechanism.

Application programs using EntireNet-Work as the transport specify the target Broker ID in terms
of the target Entire Net-Work ID of the Broker kernel. For example, an application communicating
through Entire Net-Work would specify on each command the Broker ID:

ETB001::NET

This can be abbreviated to the following for the Assembler stubs executing on z/OS (BROKER,
CICSETB, COMETB, MPPETB):

ETB001

where the Entire Net-Work ID of the Broker kernel is 001.

SSL/TLS

Application programs using Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the
transport must specify the SSL settings to the broker stub before any communication with the
Broker can take place. There are various methods of setting SSL/TLS transport depending on
programming language and platform. For ACI clients and ACI servers, see Using the Broker ACI
with SSL/TLS (Assembler | C | COBOL | Java | Natural | PL/I).

Considerations for Writing Applications

■ The ACI field WAIT allows the application to place the sending or receiving program in a WAIT
state for a specified time; data or a reply will therefore be received before control is passed to
the calling program. When a WAIT value is specified for a SEND / RECEIVE function, the calling
application waits until the specified time has elapsed or a notification event occurs.

■ WAIT=YESmakes additional handling necessary in the Broker stub, whereby YES is replaced by
the maximum integer value. We recommend you specify a finite value instead of YES.

■ If frequent outages are expected in the network connections, it is useful to set the transport
timeout to n seconds. After n seconds, the Broker stub terminates the TCP connection, if there
is no response from the other side (the Broker kernel). This will help free up the network on the
application side. In the case of applications for which the WAIT value is specified in the ACI
control block (that is, blocking applications), the actual timeout value is the total of the transport
timeout plus WAIT time.

■ TCP/IP only:

Broker ACI for PL/I48

Writing Client and Server Applications

■ The Broker ID can contain either an IP address or a hostname. If a hostname is used, it should
be a valid entry in the domain name server.

■ A LOGOFF call to the Broker kernel will only logically disconnect the application from the
Broker kernel. The physical TCP/IP connection is not released until the application terminates.

Restrictions with API Versions 1 and 2

The following maximum message sizes apply to all transport methods:

■ ACI version 1: 32167 bytes
■ ACI version 2: 31647 bytes

Variable-length Error Text

In previous ACI versions, Broker kernel always returned 40 bytes of error text, space-padded if
necessary. For ACI version 9 and above, variable length error text can nowbe returned if requested.
With ACI 9 and above, error text up to the requested length is returned via a new section in the
ACI reply. For any previous ACI versions, ETXL is not sent, and the error text is returned by the
traditional method.

Note that the error text will continue to be traced in the stub and kernel trace and kernel command
log.

See Broker ACI Fields.

Programmatically Turning on Command Logging

You can trigger command logging for EntireX components that communicatewith Broker by setting
the field LOG-COMMAND in the ACI control block.

All functions with LOG-COMMAND programmatically set in the ACI string field will have their com-
mands logged, regardless of any filter settings. Because the LOG-COMMAND option will override any
command-log filter settings, remember to reset the LOG-COMMAND field if subsequent requests do
not need to be logged.

49Broker ACI for PL/I

Writing Client and Server Applications

50

4 Writing Applications: Units of Work

■ What is a Unit of Work? .. 52
■ Control Block Fields and Verbs .. 53
■ Client/Server Programming for Units of Work .. 56
■ Client/Server Programming for a Persistent Unit of Work ... 58
■ Client/Server Restart after System Failure .. 60

51

This chapter describes the concept of units-of-work programming for EntireX Broker. Units of
work are the precondition for achieving persistent messaging within your applications. Units of
work can also be used without persistence.

This chapter assumes you are familiar with basic Broker ACI programming. If you are not familiar
with it, we recommend beginning with the chapterWriting Client and Server Applications.

What is a Unit of Work?

A unit of work (UOW) is a group of related messages transmitted and received as a single entity.
This is achieved through the sender committing as a single unit all the messages being sent and
the receiver acknowledging receipt, as a single unit, of all the messages being received. Units of
work are used in conjunction with conversations where a UOW exists strictly within one conver-
sation. There can be more than one unit of work within a conversation. Where this is the case,
subsequentUOWs can be created by either the client or the server. Since the conversation is always
initiated by a client, the first UOW in the conversation is always created by the client. The UOW
creator must commit the UOW to be created before being allowed to create another UOWwithin
the same conversation.

Messages belonging to a UOW are always sent with OPTION=SYNC, or OPTION=COMMIT, which per-
forms an implicit COMMIT at the same time as the SEND. Messages belonging to a UOW are always
sent asynchronously, that is, SEND,WAIT=NO. Messages belonging to a UOW are always received
with OPTION=SYNC and can be received either with WAIT=NO or by specifying WAIT=[YES |
timevalue], depending on application requirements.

Broker ACI for PL/I52

Writing Applications: Units of Work

Control Block Fields and Verbs

■ Basic Functionality of Broker API
■ ACI Syntax
■ Key ACI Field Names
■ Key Verbs for FUNCTION Field

Basic Functionality of Broker API

This section describes the expanded functionality of the Broker API used when programming
units of work (UOWs) with or without persistence.

■ DEREGISTER
The function DEREGISTER is used by a server to indicate its intention to terminate its role as a
server for the specified SERVER-CLASS, SERVER-NAME and SERVICE. The server can terminate its
role as server for all class, server and service names for which it is registered, using a single
DEREGISTER.

■ RECEIVE
The function RECEIVE is used by the server to obtain new requests from a client, and in the case
of conversations, to obtain subsequent related messages from the same client. This function is
also used by clients that issue asynchronous requests and wish to obtain the server's reply at a
later time. The field CONV-ID defines the behavior of this function. RECEIVE,CONV-ID=NEW signals
the server's readiness to obtain the next available new request, whereas the value CONV-ID=nnn
indicates that the next messagewithin an existing conversation is being requested by the server.
The client uses RECEIVE,CONV-ID=nnn to obtain asynchronously a reply from the server for an
existing conversation.

■ REGISTER
The function REGISTER is used by a component of an application to identify its intention to become
a server and satisfy requests issued to the named SERVER-CLASS, SERVER-NAME SERVICE.

■ SEND
The function SEND is used by the client either to initiate a new conversation or to send subsequent
messages within that conversation. This function is also used by servers to reply to the client
during the course of a conversation. Eachmessage is assigned to the unit of work currently being
created by the sender. If this is the firstmessage from the sender, a newUOW is created. Senders
can create a subsequent unit ofwork by committing their existingUOW, creating and performing
another subsequent SEND function. The field CONV-ID defines the behavior of this function re-
garding conversations. The client uses SEND,CONV-ID=NEW to initiate a new conversation and the
value CONV-ID=nnnwhen sending subsequent related messages in a conversation. The server
always uses SEND,CONV-ID=nnnwhen replying to a client, where nnn indicates the identity of the
existing conversation. The SEND command is always used asynchronously with units of work,
by both client and server. The sender can override the default persistence setting in the attribute
file for the server class, server name and service, using the ACI field STORE.

53Broker ACI for PL/I

Writing Applications: Units of Work

■ SYNCPOINT
The function is used by either the client or the server when committing UOWs that they are
creating, and also to acknowledge receipt of UOWs that they are receiving. It can also be used
by the creator of a UOW to determine its current status or modify the status of a UOW at a later
time.

ACI Syntax

Fields in EntireX Broker Control BlockFunction

DEREGISTER API = 1 or higher
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[,OPTION = QUIESCE | IMMED]

RECEIVE API = 3 or higher for UOW
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, OPTION = SYNC
, WAIT = n | YES | NO
, CONV-ID = conv_id | NEW | OLD | ANY
, SERVER-CLASS = class_name | *
, SERVER-NAME = server_name | *
, SERVICE = service_name | *
[,USTATUS = user_status]
[,UOWID = uowid]

REGISTER API = 1 or higher
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, SERVER-CLASS = class_name,
, SERVER-NAME = server_name,
, SERVICE = service_name

SEND API = 3 or higher for UOW
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, OPTION = COMMIT | SYNC
, WAIT = NO
, CONV-ID = conv_id | NEW
, SERVER-CLASS = class_name,
, SERVER-NAME = server_name,
, SERVICE = service_name

Broker ACI for PL/I54

Writing Applications: Units of Work

Fields in EntireX Broker Control BlockFunction

[,USTATUS = user_status]
[,STORE = BROKER | OFF]
[,UWTIME = uow_life_time]
[,UWSTATUS-PERSIST = uow_status_persist_multiplier
| UWSTAT-LIFETIME = uow_status_persist_lifetime]
[,UOWID = uowid]

SYNCPOINT API = 3 or higher for UOW
, BROKER-ID = broker_id
, USER-ID = user_id
[,TOKEN = token]
, OPTION = BACKOUT |

CANCEL |
COMMIT |
DELETE |

EOCCANCEL |
LAST |
QUERY |
SETUSTATUS

[,CONV-ID = conv_id]
[,UOWID = uowid]
[,USTATUS = user_status]

Key ACI Field Names

ExplanationACI Field Name

A client uses these fields to identify the service that it requires. A server uses this to offer
a service.

SERVER-CLASS

Identifier to obtain and specify the conversation. Also used to determine communication
mode (non-conversational or conversational).

CONV-ID

Function code for one of the verbs; see Key Verbs for FUNCTION Field.FUNCTION

Indication of specific Broker behavior, depending on the function.OPTION

Identifier generated by the Broker that identifies to the caller the unit of work ID. Specify
valid UOWID to indicate an existing unit of work or leave blank when starting to SEND or

UOWID

RECEIVE a new unit of work. It is optionally specifiedwhen examining the status of a unit
of work already created by the participant.

Time value to specify blocking or non-blocking of the conversation. See Blocked and
Non-blocked Broker Calls.

WAIT

55Broker ACI for PL/I

Writing Applications: Units of Work

Key Verbs for FUNCTION Field

DescriptionVerb

Inform the broker that a service is available.REGISTER

Retrieve request from partner.RECEIVE

Send reply to the partner.SEND

Remove the availability of the service.DEREGISTER

Client/Server Programming for Units of Work

The figure below illustrates the logical programflowof a simple two-message client request UOW
and a one-message server reply UOW. See also Broker UOW Status Transition.

1. The server logs on, registers, and issues a RECEIVE operation, and waits for a new CID and a
UOW (unit of work).

2. The client logs on, creates a new UOW and a new conversation ID. It sends a message as part
of a UOW and then commits the UOW, allowing the Broker to deliver it.

3. The server receives the first message in the UOW. Then the next (last) message. The server then
creates a newUOW for the reply. The newUOW is part of the existing conversation (CID=123).
The server commits both UOWs, that is, the incoming UOW is processed and the outgoing
UOW is ACCEPTED.

4. The client receives the incomingmessage and commits the UOW. The UOW is now PROCESSED.

ServerClient

LOGON,UID=,TOKEN=
>OK
REGISTER
>OK
RECEIVE,CID=NEW,OPT=SYNC,WAIT=1M

This receive operation will be satisfied by a new CID
and a UOW. Non-UOWmessages will not satisfy.
(waits)

LOGON,UID=,TOKEN=
>OK
SEND,OPT=SYNC,CID=NEW,WAIT=NO

Creates a new UOW and a new CID.

Broker ACI for PL/I56

Writing Applications: Units of Work

ServerClient

>OK,CID=123,UOWSTATUS=RECEIVED,
UOWID=987
SEND,OPT=SYNC,CID=123,WAIT=NO

Adds another message to the open UOW
>OK,CID=123,UOWSTATUS=RECEIVED,
UOWID=987
SYNCPOINT,OPT=COMMIT,CID=123

Commits the open UOW, allowing the broker to
deliver it.

>OK,CID=123,UOWSTATUS=FIRST,UOWID=987>OK,CID=123,UOWSTATUS=ACCEPTED,
UOWID=987

The initial receive operation is completed, indicating
a CID, a UOWID, and the FIRST message of a UOW.

UOW (UOWID=987) is now safely in the hands of
the broker.

RECEIVE ,CID=123,OPT=SYNCRECEIVE,CID=123,OPT=SYNC,WAIT=1M

Request the next message in open UOW.This will be satisfied by a UOW on CID=123.

(waits) >OK,CID=123,UOWSTATUS=LAST,UOWID=987

Receive the next message, which is the last. The server
now has all the data.
SEND,OPT=SYNC,CID=123,WAIT=NO

Create a new UOW for the reply, on CID=123.
>OK,CID=123,UOWSTATUS=RECEIVED,UOWID=456

There are now actually 2 open UOWs (987 and 456),
one in each direction.
SYNCPOINT,OPT=COMMIT,CID=123,
UOWID=

This commits both UOWs, the incoming one (987) is
now PROCESSED and the outgoing one (456) is
ACCEPTED.
>OK,CID=123,UOWSTATUS=ACCEPTED,
UOWID=456

>OK,CID=123,UOWSTATUS=ONLY,UOWID=456

Receive a message, the only one, in a UOW on
CID=123. This is a different UOW than was sent.

57Broker ACI for PL/I

Writing Applications: Units of Work

ServerClient

(Loops back and reissues original receive)SYNCPOINT,OPTION=COMMIT,CID=123

This commits the UOW; it is now PROCESSED

>OK,CID=123,UOWSTATUS=PROCESSED,
UOWID=456
LOGOFF
>OK

Client/Server Programming for a Persistent Unit of Work

The figure below illustrates the logical program flow of a simple one-message persistent UOW
with deferred delivery to a server, with no reply. The client queries the status of the UOW to de-
termine its completion. See also Broker UOW Status Transition.

1. The client logs on and creates a new persistent UOW and a new conversation. The intended
server is not currently available.

2. The client commits the open UOW, allowing the Broker to deliver it. The UOW (UOWID=987)
is now stored by the Broker. It will be delivered whenever the server is available and will be
retained even in case of system failure (that is, the UOW is persistent).

3. The client logs off.

4. The server logs on and registers. It receives the new conversation ID and the new UOW. The
UOW is committed. Its status is now PROCESSED.

5. The client logs on using a user ID and token to identify itself as the client that originated the
UOW. It then queries the status of its UOW. The status PROCESSED is returned, so the client
knows that its UOW has been successfully delivered and processed by the server.

ServerClient

LOGON, UID=,TOKEN=
>OK
SEND,OPT=SYNC,CID=NEW,WAIT=NO,
STORE=BROKER,
UWTIME=5M,UWSTATP=5

Creates a new persistent UOW and a new CID. The UOW
will have a lifetime of 5 minutes; the duration of the status
is 5 times this value (25 minutes). The intended server is
not up at this time.

Broker ACI for PL/I58

Writing Applications: Units of Work

ServerClient

>OK,CID=123,UOWSTATUS=RECEIVED,UOWID=987
SYNCPOINT,OPT=COMMIT,CID=123

Commit the open UOW, allowing the broker to deliver it.
>OK,CID=123,UOWSTATUS=ACCEPTED,UOWID=987

UOW (UOWID=987) is now safely in the hands of the
broker. The UOWwill be delivered whenever the server
comes up, even if the system should fail.

LOGOFF

The client can now terminate, knowing that the UOWwill
be delivered.

Some time later, the server comes up.
LOGON,UID=,TOKEN=
>OK
REGISTER,
>OK
RECEIVE,CID=NEW,OPT=SYNC

This receive operationwill be satisfied by a new
CID and a UOW. Non-UOWmessages will not
satisfy.
>OK,CID=123,UOWSTATUS=ONLY,UOWID=987

The receive completes, indicating a CID and the
ONLY message of a UOW.
SYNCPOINT,OPT=COMMIT,CID=123,
UOWID=987

This commits the UOW; its status is now
PROCESSED.
>OK,CID=123,UOWSTATUS=PROCESSED,
UOWID=987

(Loop back and reissue original receive, if
desired, or terminate)

Some time later, the client can come back and check the
status of its UOW.

59Broker ACI for PL/I

Writing Applications: Units of Work

ServerClient

LOGON, UID=, TOKEN=

Specifying the same UID/TOKEN ensures that this client
can be identified as the original client.
>OK

SYNCPOINT,OPTION=LAST

Request the status of the last UOW this user created.
The request must bemadewithin 30minutes, based on the
value of the original SEND.
>OK,UOWID=987,CID=123,UOWSTATUS=PROCESSED

The client now knows that its UOWwas successfully
processed by the server.
LOGOFF
>OK

Client/Server Restart after System Failure

Caution: USER and TOKENmust be specified when using persistent units of work (UOWs)
to persist either amessage or the status of amessage exchanged between partner application
components, where this information is held in the persistent store.

EntireX Broker provides a reconnection feature, using the TOKEN field in the ACI. If the application
supplies a token along with USER-ID, the processing is automatically transferred when a request
with the same user ID and token is received, either from the same process or from a different
process or thread.

You need to specify USER and TOKEN to reconnect with the correct user context after a broker has
been stopped and restarted when using units of work.

Broker ACI for PL/I60

Writing Applications: Units of Work

5 Writing Applications: Attach Server

■ Implementing an Attach Server .. 62
■ Implementing Servers Started by an Attach Server ... 64

61

This chapter describes the programming of Attach Server for EntireX Broker. It assumes you are
familiar with basic Broker ACI programming.

Implementing an Attach Server

An attach server is a server that is capable of starting another server rather than handling service
requests itself. To implement an attach server, perform the following steps:

■ Step 1: Register with EntireX Broker
■ Step 2: Issue a Receive with Wait
■ Step 3: Start Task
■ Step 4: Deregister when the Work is Done

Step 1: Register with EntireX Broker

To register with EntireX Broker, the application has to add the ATTACH option to the REGISTER call.
The SERVER-CLASS, SERVER-NAME and SERVICE parametersmust reflect the service you can dynam-
ically start. If the attach server is able to start several services, it has to register each service with
the option ATTACH so that EntireX Broker knows exactlywhich services can be started by that attach
server.

For example, an attach manager can start services (C1, N1, S1), (C2, N2, S2) and (C3, N3, S3). It
therefore issues the following three registrations:

REGISTER SERVER-CLASS=C1,SERVER-NAME=N1,SERVICE=S1,OPTION=ATTACH
REGISTER SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2,OPTION=ATTACH
REGISTER SERVER-CLASS=C3,SERVER-NAME=N3,SERVICE=S3,OPTION=ATTACH

Step 2: Issue a Receive with Wait

After all startable services have been registered by the attach server, the attach server must issue
an unrestricted RECEIVE command in order to receive notification about queued service requests.
The RECEIVE itselfmust be blocked for a certain time (WAIT=nnn). The attach servermust be prepared
to receive a notification for one of the announced services.

To continue the example from Step 1 above, the attach server now issues the RECEIVE command:

Broker ACI for PL/I62

Writing Applications: Attach Server

RECEIVE SERVER-CLASS=*,SERVER-NAME=*,SERVICE=*,WAIT=10M,RECEIVE-LENGTH=150

EntireX Broker answers either that nomessages will be available after 10 minutes (error class 0074
is used for this kind of information) or that an attach service is required (error class 0010 and error
code 0022), for example:

SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2,RETURN-LENGTH=116

with the following structure in the receive buffer, which is shownhere in C programming language
notation. The structure is the same for all programming languages and must be described in ac-
cordance with the programming language you select:

typedef struct
{
ETB_SHORT atm_version; /*version of structure */
ETB_SHORT atm_NotUsed; /* alignment */
ETB_LONG atm_nAttach; /* # of failed server lookups */
ETB_LONG atm_nServer; /* # of registered replicas */
ETB_LONG atm_nPendConv; /* # of pending conversations */
ETB_LONG atm_nActvConv; /* # of active conversations */
ETB_CHAR atm_server_class [S_SERVER_CLASS];/*class to attach */
ETB_CHAR atm_server_name [S_SERVER_NAME]; /*server name to attach */
ETB_CHAR atm_service [S_SERVICE]; /*service name to attach */
} ETB_ATMCB;

This structure contains the information necessary to decide whether a new replica needs to be
started.

DescriptionParameter

Number of client requests (SEND CONVID=NEW) the Broker could not schedule to a server
immediately. After the Attach Manager has issued a RECEIVE, the value is reset to 0. If

atm_nAttach

the Attach Manager does not issue its RECEIVE, this number shows the unreceived
requests.

Number of registered servers (replicas)minus those servers that are only finishing existing
conversations (after issuingDEREGISTEROPTION=QUIESCE). This counter does not include
the active Attach Server instances.

atm_nServer

Number of pending conversations, that is, client requests that could not currently be
scheduled to a server. They are a subset of the active conversations.

atm_nPendConv

Number of the active conversations requesting a particular service.atm_nActvConv

63Broker ACI for PL/I

Writing Applications: Attach Server

Step 3: Start Task

This step depends very much on the platform. The attach server determines how to start up the
desired application. The attach server only gets the logical name of the service. Themapping from
the logical name to the program, including the path, startup parameters etc., must be performed
by the attach server.

Step 4: Deregister when the Work is Done

Generally, attach servers are designed to “run forever”. Once they are deregistered, nomore services
can be started on that platform automatically. However, if the administrator decides to shut down
an attach server for whatever reason, he or she must DEREGISTER all registered services. There is
no special flag for the deregistration.

After the final deregister, the attach server should perform a LOGOFF call to release all allocated
resources:

DEREGISTER SERVER-CLASS=C1,SERVER-NAME=N1,SERVICE=S1
DEREGISTER SERVER-CLASS=C2,SERVER-NAME=N2,SERVICE=S2
DEREGISTER SERVER-CLASS=C3,SERVER-NAME=N3,SERVICE=S3

or better

DEREGISTER SERVER-CLASS=*,SERVER-NAME=*,SERVICE=*

and as the last EntireX Broker-related command:

LOGOFF

Implementing Servers Started by an Attach Server

In general, every server that can be used as a standalone server can be started up automatically.
However, servers started by an attach server do not usually deregister and quit when no longer
busy. They are not scalable, that is, the number of replicas increases if not enough power is available,
but the number does not decrease when there is no more work to be done.

To get around this situation, servers need to be prepared in such a way that they are started up
automatically. Note the following points:

Notes:

1. The easiest server you can implement handles only one client for one conversation. After the
last EOC, you can DEREGISTER or, preferably, LOGOFF the application and exit.

Broker ACI for PL/I64

Writing Applications: Attach Server

2. If youwrite an application that is automatically controlled by an attach server, try to implement
the startup and the first RECEIVE as soon as possible. In other words, perform the necessary
initialization after the conversation request is received.

3. Receive only the first call with the option NEW. Receive all subsequent calls with receive functions
that are restricted to the established conversation (either with the option OLD, or with explicit
restriction to the established conversation).

4. If you want to implement a server that does not exit after the first conversation, observe point
3 above. After the conversation has finished, set up the next RECEIVEwith the option NEW. With
this mechanism, the number of servers started in parallel corresponds to the number of clients
trying to access the service simultaneously. This feature adapts the number of servers for high
load peaks.

5. If you want to reduce the number of servers when they are no longer needed, set a proper
RECEIVE timeout if youwant to accept a new conversation, and finish your server if you actually
receive a timeout. Both mechanisms give you the chance to react to load changes in both direc-
tions (increasing load and decreasing load).

6. Starting up a server for only one conversation is a simple server scheme, but you have to balance
the simplicity of the application against the performance degradation for automatic startup.
We recommendyouuse purely automatic server startup for servers onlywhen the conversation
is expected to last a reasonable length of time.
If this is not clear, or if you want to run servers with short conversations - or even conversation-
less servers - you should consider using the method described under 4 and 5 above.

65Broker ACI for PL/I

Writing Applications: Attach Server

66

6 Writing Applications: Command and Information Services

■ Accessing the Services .. 68
■ Security with Command and Information Services .. 73
■ Examples of Command Service ... 75

67

EntireX Broker provides an API for Command and Information Services (CIS) that include the
following: shutting down conversations, servers and services; switching trace on and off; retrieving
information on clients; registering servers and services.

Before you begin to write an application, see Broker Command and Information Services.

This chapter describes how to use the Command and Information Services from a programmer's
point of view.

Accessing the Services

EntireX Broker's Command and Information Services are implemented as internal services. The
method for requesting these services is exactly the same as the method for requesting any other
service. An application issues a SEND function with appropriate data, retrieves the response with
the receive data of the SEND function and, in the case of the information service, with additional
RECEIVE operations. The RECEIVE operations have to be repeated until the information service in-
dicates the end of data with an EOC return message.

Command and Information Services define a protocol that must be followed by the application.
This protocol defines the structures needed to indicate to the service which information is desired
and to return this information to the application so that the information can be interpreted.

Basic Rules

Several basic rules for command as well as information services are described here.

■ Field Values
■ Structures

Broker ACI for PL/I68

Writing Applications: Command and Information Services

Field Values

All fields necessary for a SEND function must be provided. The following values for SERVER-CLASS
and SERVER-NAME are used for CIS:

DescriptionValue

Value is always SAG (Software AG).SERVER-CLASS=SAG

Value is always ETBCIS (EntireX Broker Command and Information
Services).

SERVER-NAME=ETBCIS

Full information service. Specify this for the full information service.
All clients, servers and conversations are listed. SeeWriting
Applications using EntireX Security.

SERVICE=INFO

Limited information service. Specify this for limited information
service. Only the user's own resources are listed. SeeWriting
Applications using EntireX Security.

SERVICE=USER-INFO

Specify this for the command service.SERVICE=CMD

Specify this for the participant shutdown functionality.SERVICE=PARTICIPANT-SHUTDOWN

Specify this for the EntireX Security command service.SERVICE=SECURITY-CMD

The services do not have to be defined in the broker attribute file. Nothing has to be started or
configured. You can use the services immediately after starting the broker.

The request for a command service or an information service is specified within the SEND buffer;
the response - if there is one - is returned in the RECEIVE buffer.

69Broker ACI for PL/I

Writing Applications: Command and Information Services

Structures

Structures are used to describe the request and to return information. The following structures
are available:

DescriptionCommand
Service

Information
Service

Structure

Usedby an application to specify an information service
request.

InputInformation Request
Structure

Used by an application to specify a command service
request.

InputCommand Request
Structure

Returned as the first structure in each block from both
the information service and the command service.

ReturnedReturnedCommonHeader Structure
for Response Data

The object-specific information reply structures are
used to return information about these object types:

Optionally
Returned

Information Reply
Structures

■ BROKER

■ CLIENT

■ CMDLOG-FILTER

■ CONVERSATION

■ NET

■ PARTICIPANT

■ POOL-USAGE

■ PSF

■ PSFADA

■ PSFCTREE

■ PSFDIV

■ RESOURCE-USAGE

■ SECURITY

■ SERVER

■ SERVICE

■ SSL

■ STATISTICS

■ TCP

■ TRANSPORT

■ UOW-STATISTICS

■ USER

■ WORKER

■ WORKER-USAGE

Broker ACI for PL/I70

Writing Applications: Command and Information Services

Command and Information Services can be accessed from any environment from which EntireX
Broker can be accessed. The structures for these services are available for the programming lan-
guages Assembler, C, Natural and COBOL.

Accessing Information Services

For an information service request, the send buffer contains the information request structurewith
selection criteria depending on the requested information. See Information Request Structure.

Examples of Selection Criteria

OBJECT-TYPE = SERVICE

will return a list of all services.

OBJECT-TYPE = CONV, USER-ID = HUGO, TOKEN = FRED

will return a list of all conversations belonging to user with USER-ID HUGO who specified
TOKEN=FRED within Broker calls.

OBJECT-TYPE = CONV, CONV-ID = 0815

will return information about the one single conversation with ID 0815.

When the SEND request returns, the receive buffer contains parts or all of the return data, and the
CID field contains a conversation ID.

The return data in the receive buffer includes the common header structure followed by a list of
one or more object type structures. See Common Header Structure for Response Data. For each object
for which information is returned, there is one information reply structure containing the inform-
ation.

Information Request StructureSend Buffer

Common Header Structure for Response Data [Information Reply Structures]Receive Buffer

Tips

■ The size of the common header structure depends on the CIS interface version used.
■ Test the error code in the common header structure. See Broker Command and Information Services
Error Codes.

■ If the receive buffer is not large enough to contain all available information, the remaining in-
formation can be obtainedwith additional RECEIVE functions in the same conversation. WAIT=NO
can be specified because the data is there and only has to be collected. When no more data is
available, the RECEIVE returns an end of conversation (EOC) message.

71Broker ACI for PL/I

Writing Applications: Command and Information Services

■ If the selection is not unique - that is, more than one occurrence is possible - the information
service returns a list (array) of information reply structures of the requested type. The common
header structure informs the application of the total number of objects and the number of objects
accompanying the reply data.

■ The protocol for an information service request is as follows:

CALL BROKER
FUNCTION=SEND // send data = information request
Service=USER-INFO
CID=NEW
WAIT=YES // receive data = information reply

/* work off retrieved data */
REPEAT
CALL BROKER // receive data=information reply
FUNCTION=RECEIVE
Service=USER-INFO
CID=n
WAIT=NO

IF End of Conversation
escape

END-IF
/* work off retrieved data */

LOOP

■ The initial SENDmust be issued with the following:
■ WAIT=YES for blocking send commands
■ CID=NEW because the information service is implemented as a conversational service

Accessing Command Service

For a command service request, the send buffer contains the command request structure. See
Command Request Structure. When sending a command service request, note the possible combin-
ations under Command Request Parameter Combinations.

The return data in the receive buffer includes the common header structure (see Common Header
Structure for Response Data):

Command Request StructureSend Buffer

Common Header Structure for Response DataReceive Buffer

Broker ACI for PL/I72

Writing Applications: Command and Information Services

Tips

■ The error code in the common header structure must be tested by the application programmer.
See Broker Command and Information Services Error Codes.

■ A typical command service request looks like this:

CALL BROKER
FUNCTION=SEND // send data = command request
Service=CMD
CID=NONE
WAIT=YES

■ Unlike information service requests, the command service is defined as a non-conversational
service that returns a single response. Therefore, the initial SENDmust be issuedwith the follow-
ing:
■ CID=NONE

■ WAIT=YES

Security with Command and Information Services

For security purposes, the Command and Information services are treated exactly like any other
service. Therefore, if you are using EntireX Security, user access to operate these services can be
protected. This allows you to grant access based upon user ID to only those users who are author-
ized, where this facility is provided by the platform security implementation for Broker kernel.

■ Full Command and Information Services
■ Limited Information Services
■ Protecting Specific Options

Full Command and Information Services

When using EntireX Security (or an equivalent), the full command service and the full information
service are protected to avoid unauthorized access to information or potential disruption to systems.
Therefore, you must grant appropriate access to the following resource profiles protecting the in-
ternal services:

■ Full Command Service

73Broker ACI for PL/I

Writing Applications: Command and Information Services

Class: SAG Server: ETBCIS Service: CMD

■ Full Information Service

Class: SAG Server: ETBCIS Service: INFO

Limited Information Services

The limited information service only returns information that belongs solely to the application
making the request; it is not necessary to protect this service from unauthorized users. You can
provide either limited or unlimited access to the resource profile used to protect the limited inform-
ation service, as required:

■ Limited Information Service

Class: SAG Server: ETBCIS Service: USER-INFO

Protecting Specific Options

The full command service can be used to shut down individual servers and, therefore, terminate
any Class/Server/Service registered to the server application. When using EntireX Security, the
shut-server operation is protected to avoid unauthorized termination of applications. This security
check honors the Class/Server/Service of the server application. Therefore, you must grant appro-
priate access to resource profiles protecting the server application, which gives authorized users
permission to register. This is in addition to the authorization for the full command service:

■ Full Command Service (Shut Service option)

Class: ACLASS Server: ASERVER Service: ASERVICE

The full command service can be used as a PARTICIPANT-SHUTDOWN for individual participants
currently active in thememory of the Broker kernel.When using EntireX Security (or an equivalent),
the stop-participant operation is protected to avoid unauthorized use and potential disruption of
systems. Therefore, you must grant appropriate access to the following resource profile:

■ Full Command Service (PARTICIPANT-SHUTDOWN option)

Broker ACI for PL/I74

Writing Applications: Command and Information Services

Class: SAG Server: ETBCIS Service: PARTICIPANT-SHUTDOWN

The full command service can be used to administer EntireX Security. Currently the EntireX Security
commands:

■ allow the EntireX Security trace level to be changed independently of the Broker trace level
■ allow all cached security information for a user to be cleared.

Therefore, you must grant appropriate access to the following resource profile:

■ Full Command Service (SECURITY-CMD option)

Class: SAG Server: ETBCIS Service: SECURITY-CMD

The CIS commands SHUTDOWN CONVERSATION and SHUTDOWN SERVICE require the authorization to
use the specified Class/Server/Service triplet and to use CIS commands.

See Introduction to EntireX Security.

Examples of Command Service

Example 1: ALLOW-NEWUOWMSGS

The Broker was restarted with the attribute NEW-UOW-MESSAGES=NO. This action will allow only
consumption of UOWs to occur after Broker restart. Therefore, after the persistent store capacity
has decreased to an acceptable level, the Broker administrator can issue the CIS command to allow
new UOWmessages in the broker. See ALLOW-NEWUOWMSGS.

Example 2: FORBID-NEWUOWMSGS

The Broker has been executing for a period of time when the Broker administrator notices that the
persistent store is nearly at capacity. As a preventive action, the Broker administrator can issue
the CIS command to forbid new UOWmessages. See FORBID-NEWUOWMSGS. This action will cause
only consumption of UOWs to occur in the Broker. Thereafter, when the persistent store capacity
has been reduced to an acceptable level, the Broker administrator can issue the CIS command to
allow new UOWmessages in the Broker. See ALLOW-NEWUOWMSGS.

75Broker ACI for PL/I

Writing Applications: Command and Information Services

76

7 Writing Applications using EntireX Security

■ General Programming Considerations ... 78
■ Authentication ... 80
■ Changing your Password .. 81
■ Role of Security Token (STOKEN) during Authentication ... 81
■ Trusted User ID (z/OS only) ... 82
■ Client User ID ... 83
■ FORCE-LOGON ... 83
■ Authorization .. 84

77

This chapter provides programming aids relevant to EntireX Security programming. It assumes
you are familiar with the basics of EntireX Broker ACI programming. See EntireX Broker ACI Pro-
gramming.

General Programming Considerations

See Introduction to EntireX Security for overview of concepts and installation.

■ ACI Versions and Security
■ Is Broker Kernel Secure?

ACI Versions and Security

If your applications are using ACI versions 1 to 7, you will decide at installation time whether
they are to communicate with a secured Broker. Your administrator will probably have installed
components of EntireX Security into the Broker stub environment(s) and into the Broker kernel.

If your environment is configured using components of EntireX Security, your applications can
communicate onlywith secured Broker kernels. If you attempt to communicate with both secured
and non-secured Broker kernels, you will receive ACI response code 00200379, indicating “incon-
sistent security installation”.

To achieve greater flexibility, particularly when migrating applications from development to
production, ACI version 8 introduces the new functionality described in the following table. For
ACI version 8 and above, the application may assign to the broker control block field
KERNELSECURITY one of the following values:

DescriptionValue

Application does not intend to communicate with a secured Broker kernel.N

Application intends to communicate with a Broker kernel which is secured using EntireX Security.Y

Application intends to communicate with a Broker kernel which is secured with the customer's own
security exits.

U

This information indicates the application's intention and ensures that the correct execution occurs
in the Broker stub and the Broker kernel. If the stub and the field KERNELSECURITY do not match,
the application will receive ACI response code 00200379. If an improper value is assigned, it is
treated as a blank. To make this assignment seamless, use an initial KERNELVERS command when
communicating with each Broker kernel so that the field is assigned automatically.

Note: The default value (binary zero or space) specified in this field will result in the beha-
vior being determined by the security configuration rather than programmatically. It is
therefore possible to communicate either with a secure or non-secure Broker.

Broker ACI for PL/I78

Writing Applications using EntireX Security

Is Broker Kernel Secure?

Issuing a KERNELVERS commandwill return information in the KERNELSECURITY field of the broker
control block structure to indicatewhether the application is communicatingwith a secure or non-
secure Broker Kernel. This information can be important for ensuring the security of transactions
and when making decisions such as prompting for user ID and password credentials. Providing
user ID and password in ACI-based Programming is described under Broker ACI fields USER-ID,
PASSWORD, LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For user ID and
password handling with RPC clients, refer the documentation of the wrapper in use; see EntireX
Wrappers in the Designer documentation.

The following values are returned in the KERNELSECURITY field for ACI version 8 and above:

DescriptionValue

This is not a secured Broker kernel.N

This is a secured Broker kernel which is using EntireX Security.Y

This is a secured Broker kernel which is using the customer's own written security exits.U

By issuing a KERNELVERS command, the appropriate value of KERNELSECURITY is automatically
assigned to the control block structure; the user application does not need to take any further action
other than supplying the correct USER-ID and PASSWORD. The applicationmustmaintain the contents
of the control block structure for the duration of communication with the Broker kernel in order
to retain the correct value of the KERNELSECURITY field. See in ACI Programming documentation.

Notes:

1. Only applications using ACI version 7 or above can determine whether Broker is executing
with security. In version 8 or above, the necessary information is automatically set up in the
Broker control block.

2. We strongly recommend that applications maintain a separate copy of the Broker control block
for eachuser ID (or USER-ID and TOKEN if specified). Furthermore, if the application communicates
with different Broker kernels, a separate copy of the Broker control block must be maintained
for each user and each Broker ID.

79Broker ACI for PL/I

Writing Applications using EntireX Security

Authentication

The application is responsible for assigning the correct user ID and password credentials, except
when Trusted User ID (z/OS only) is used. This information is normally communicated through
the LOGON command, since this command initiates the user's session with the Broker kernel.
Starting with a LOGON command is called an Explicit Logon.

An Implicit Logon is possible where the attribute file contains AUTOLOGON=YES the first command
issued by a user does not have to be LOGON, in which case the application must supply user ID and
password credentials for the commands SEND or REGISTER.

The user ID must be supplied with all commands. The password is required only for the first
command and should not be supplied subsequently, except when executing multiple instances
of the same application.

Supplying the user ID and password credentials could subsequently be required if the user times
out due to expiration of either CLIENT-NONACT or SERVER-NONACT time limits. If the user context
has timed out due to these inactivity limits being exceeded, one of the following events will occur
when the application attempts to issue the next command:

■ 00200134

Application must perform another Explicit Logonwith correct credentials in the USER-ID and
PASSWORD fields:

AUTOLOGON=NO in the attribute file, or AUTOLOGON=YES and FORCE-LOGON=YES.

■ 00080003

Application must supply correct credentials in USER-ID and PASSWORD fields:

AUTOLOGON=YES in attribute file, FORCE-LOGON=YES not specified in the control block.

Subsequent commands do not require Explicit Logon to be issued.
■ 00080352

Application has attempted to transfer control to a different thread, or process, without correctly
transferring the necessary values of USER-ID, TOKEN and STOKEN:

The application transferring control must make values of USER, TOKEN and STOKEN available to
the application that is delegated to continue thread of execution.

■ 00080353

Application has not correctly maintained the value of security token (STOKEN) in the control
block structure:

Broker ACI for PL/I80

Writing Applications using EntireX Security

The applicationmustmaintain the value of STOKEN in order to communicate securelywith Broker
kernel without sending PASSWORDwith each command.

The passwords are always communicated in an encrypted format. Providing user ID and password
in ACI-based Programming is described under Broker ACI fields USER-ID, PASSWORD,
LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For user ID and password
handling with RPC clients, refer the documentation of the wrapper in use; see EntireX Wrappers
in the Designer documentation.

Note: Caution should be taken when repeating a failed authentication attempt for both an
explicit and an implicit logon. Repeating the attempt several times can lead to a revocation
of the user ID, depending on the configuration of your security system.

Changing your Password

The application is able to change the password by assigning a user ID, password andnewpassword.
Thismust be done at the time of initial authentication or at a subsequent timewhen authentication
is repeated due to timeout. It cannot be done at an arbitrary time by assigning a new password.

The passwords are always communicated in an encrypted format.

For details on how to provide user ID, password and new password, refer to USER-ID, PASSWORD,
NEWPASSWORD, LONG-PASSWORD-LENGTH and LONG-NEWPASSWORD-LENGTH under Broker ACI Fields.

Role of Security Token (STOKEN) during Authentication

EntireX Security automatically generates a non-repeated security token, which is placed in the
ACI control block of the calling application. A unique security token is generated on behalf of all
Broker participants only after successful authentication has occurred, and is used to ensure nobody
can “tap in” to a participant's session. The calling application is responsible for maintaining the
contents of the control block structure for the duration of its communicationwith the Broker kernel
in order to ensure the correct value of security token is available on subsequent commands. An
incorrect value of security token will cause access to be denied. Security token avoids the need for
applications to supply a password except for presenting this once during the LOGON command, or
the first command (excluding KERNELVERSION), if AUTOLOGON=YES is defined. If a LOGOFF command
is issued or a participant is timed out, the passwordmust be reentered so that a newunique security
token can be generated.

An additional benefit of the security token is that it enables an application to transfer its execution
to a different thread or even to a different process. This requires the application to make available
the following fields of the control block structure to the program which is delegated to continue

81Broker ACI for PL/I

Writing Applications using EntireX Security

the thread of execution: USER, TOKEN and STOKEN. However, it is not necessary for the program
transferring control to make its password available.

Note: If an application is unwilling or does not want to maintain the security token field
(STOKEN) in the control block structure, it is possible for the systems administrator to configure
the following field in the EntireX Security configuration module: BKISTK=Y. See Ignore Se-
curity Token.

Trusted User ID (z/OS only)

This mechanism is available where the application and Broker kernel are executing on the same
z/OS machine, and communication is handled locally through Entire Net-Work (Adabas SVC).

Trusted User ID is an optional mechanism with which EntireX Security determines the identity
under which the application is executing, without the application having to provide the user ID
and password.

The benefit of thismechanism is that application components executing on the same z/OSmachine
as the Broker kernel never have to provide credentials for authentication. This is because the
identity under which execution occurs has already been verified when initially accessing the ma-
chine in each of these cases:

■ online users
■ batch jobs or started tasks.

All subsequent security authorization checks - for example SEND or REGISTER - are then performed
under the known user ID under which the application executes.

Application components intending to utilize Trusted User ID must provide the user ID only. The
value assigned to this field is arbitrary for security purposes but required in order to satisfy exe-
cution the stub. No password must be provided if Trusted User ID is used. See the following ex-
ample:

USER-ID = 'SERVER123' /* arbitrary value: used by Broker but not
significant for security purposes */

PASSWORD = ' ' /* password field must be
set to blanks or binary zeros */

LONG-PASSWORD-LENGTH=0

If a password is provided, EntireX Security will assume that the application does not want to use
Trusted User ID. Therefore valid credentials must be supplied as user ID and password in order
to perform conventional authentication. This causes EntireX Security to ignore the trusted user
ID in favor of the supplied credentials and allows you to override the trusted user ID. Applications
must therefore ensure that they do not assign an incorrect user ID or spurious password where
"trusted" user ID is implemented.

Broker ACI for PL/I82

Writing Applications using EntireX Security

The CLIENT-ID as conveyed to the server component of the application represents the client's
verified user ID, derived either from valid user ID/password credentials or from the trusted user
ID itself.

See also Trusted User ID under EntireX Security under z/OS. Providing user ID and password in
ACI-based Programming is described under Broker ACI fields USER-ID, PASSWORD,
LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For user ID and password
handling with RPC clients, refer the documentation of the wrapper in use; see EntireX Wrappers
in the Designer documentation.

Client User ID

Server applications are able to determine the user ID under which the partner client is executing
by examining the content of the CLIENT-USERID field exposed in the Broker control block. Specific-
ally, the CLIENT-USERID field should be examined on the first RECEIVE command of each new
conversation to obtain the identity of the client. When EntireX Security is active, the server applic-
ation is able to rely on the accuracy of the client user identity since it is derived from the user ID
and password credentials supplied by the client.

See alsoTrustedUser ID (z/OS only) andVerified Client User ID underConfigurationOptions for Broker
in the EntireX Security documentation for z/OS.

FORCE-LOGON

FORCE-LOGON is used to override the AUTOLOGON feature of the Broker, with the result that the user
does not log on to the Broker kernel implicitly with the first command issued but instead requires
an Explicit Logon. When this option is used, it is necessary for the client and server to issue explicit
LOGON function calls - even after the expiration of a client timeout CLIENT-NONACT or server timeout
SERVER-NONACT. See Timeout Parameters.

FORCE-LOGON can be useful in cases where an Implicit Logonwould be undesirable, for example
when attempting to authenticate a user. Specifically, unless the passwordwas communicatedwith
every command, an implicit logon - after a period of inactivity - would fail because of a missing
password.

When FORCE-LOGON is set - and in the case of a client/server inactivity timeout - error 00200134 is
returned instead of an implicit logon being performed automatically. Therefore, the specification
of FORCE-LOGON can be used to give the programmer the opportunity to provide the password,
which is needed for successful authentication.

Providing user ID and password in ACI-based Programming is described under Broker ACI fields
USER-ID, PASSWORD, LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For

83Broker ACI for PL/I

Writing Applications using EntireX Security

user ID and password handling with RPC clients, refer the documentation of the wrapper in use;
see EntireX Wrappers in the Designer documentation.

Authorization

Client applications are automatically subject to authorization requests if security is installed for
EntireX Broker.

For clients, an authorization check based on class, server and service is performed for the first
SEND of a conversation and on every SEND if there is only onemessage in the conversation (CONV-ID).
Messages are transmitted through to the server application only if the authorization check is suc-
cessful; otherwise an ACI response is given to the client.

For servers, an authorization check based on class/server/service is performed when the server
application issues a REGISTER command. The server is allowed to register only if the authorization
check is successful; otherwise an ACI response code is returned to the server application.

The ACI error response codes encountered for authorization failures are: 00080009 | 00080010.

For more information refer to

■ Resource Profiles in EntireX Security under EntireX Security under z/OS
■ Authorization Rules (UNIX and Windows)

Broker ACI for PL/I84

Writing Applications using EntireX Security

8 Broker ACI Fields

■ Field Formats ... 86
■ Field Descriptions .. 86

85

Field Formats

The ACI field formats are alphanumeric, binary, or integer and include the number of bytes. For
example:

DescriptionFormat

Alphanumeric (A-Z, 0-9, underscore, hyphen). Other characters are currently possible,
but we cannot guarantee that these will work consistently across all platforms in future
versions. Do not use dollar, percent, period or comma.

A8, A16, A32

BinaryB16, B32

Integer (unsigned)

The terms “null value” or “nothing specified” used for a fieldmean blank for alphanumeric formats
and zero for integer formats.

Field Descriptions

The ACI fields are described below in alphabetical order.

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Filled by Broker with the transport error as
supplemental diagnostic data.

O2A8ADAPTER-ERROR

A count of the number of times an attempt was
made to deliver a UOW. The count is incremented
if a UOW is backed out or timed out.

O2I4ADCOUNT

Required for all ACI functions. See API-TYPE and
API-VERSION.

I1bitsB1API-TYPE

Required for all ACI functions.I11-13I1API-VERSION

ID of the broker instance. Required for all ACI
functions except VERSION.

The BROKER-IDmay be specified in URL-style or
transport-method style. In order to communicate,
applications must specify the same BROKER-ID.

I1stringA32BROKER-ID

Note: URL style does not apply to mainframe
platforms (z/OS and BS2000).

Returns to a server application the unique instance
number of a client application.

O91-2147483647I4CLIENT-ID

Broker ACI for PL/I86

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Applies only to client/server communicationmodel.

When a server issues a RECEIVE function, the user
ID of the client is returned to the server in the

O2stringA32CLIENT-UID

CLIENT-UID field. If EntireX Security is installed,
it is valid for the server application to rely on this
user ID when making decisions concerning access
to information.

See Authentication (z/OS only).

Note: There is an uppercase translation when the
USER-ID field is propagated to the CLIENT-UID
field under EntireX Security when Broker kernel is
running under z/OS.

Time when UOWwas committed.O7YYYY
MMDD
HHMM
SSms
(millisecs.)

A17COMMITTIME

Compression level. See Data Compression. The
following values are possible:

I70-9 or Y | NA1COMPRESSLEVEL

0 = no compression, 9 = maximum
compression/decompression.

0 - 9

No compression.N

Compression level 6.Y

A unique ID assigned to each conversation by
EntireX Broker. Client and server must include the

I/O1stringA16CONV-ID

CONV-ID in their communications. Client and server
can also specify the indicated textual values
(capitals) in order to indicate to Broker the expected
status of the conversation. Messages for the
conversation are taken from the queue on a first-in,
first-out basis. See Conversational and
Non-conversational Mode.

On a SEND function, initiates a new
conversation. On a RECEIVE function,

NEW

signals readiness to receive requests for
new conversations only. A CONV-ID
value is assigned to the conversation,
and the value is returned to the caller.

87Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Applies to RECEIVE function only. Only
messages for existing conversations are
returned.

OLD

On a RECEIVE function, requests or
messages are returned on a first-in,

ANY

first-out basis for any conversation. On
an EOC function, any conversations
belonging to the caller are terminated.

On a SEND function, the message is
non-conversational.

NONE

Indicates a specific conversation.

The CONV-ID value is an internally
generated identifier (containing numeric

conv-id

characters only or alphanumeric
characters) for the conversation.
Application programmers are advised
to make no assumptions about the
contents, layout, or meaning of any part
of the CONV-ID field.

If the client has specified API-VERSION
3 or above, the CONV-ID contains both
alphanumeric and numeric characters.

If the Broker does not support UOW
processing (the Broker attribute
MAX-UOWS=0) or the client has specified
API-VERSION or 2, the CONV-ID
contains numeric characters.

Conversation Status. SeeManaging Conversation
Contexts.

O21 | 2 | 3I1CONV-STAT

NEW - The message is the first in a new
conversation.

1

OLD - The message is part of an existing
conversation.

2

NONE - The message is non-conversational.3

Output value for function SEND if a message has
been received. The CORRELATION-ID is the

O11string;
padded with
hex zero

A64CORRELATION-ID

MESSAGE-ID that was used for the sent message.
See Unique Message ID under Broker ACI Functions.

Broker ACI for PL/I88

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Determines the credentials type to be used to
authenticate a user.

O90I1CREDENTIALS-TYPE

Default. Use user ID and password.0

Architecture code. For future use.I4I1DATA-ARCH

Using the character conversion approachTranslation
User Exit, an ACI programmer can provide

I1stringA32ENVIRONMENT

additional information to their translation exit
through the ENVIRONMENT field, allowing flexible
character conversion behavior in accordance with
application requirements such as EBCDIC-ASCII
conversion, byte swapping, and mixed data types.
The ENVIRONMENT field can be used to pass this
information from the application to the translation
exit in Broker kernel.

The field cannot be used for any other character
conversion approaches and must be empty if a
method other than translation user exit is used.

Returns an error code to the caller. The application
should check the contents of this field at the

O1A8ERROR-CODE

completion of every Broker function. See Error
Handling. The first four digits represent the error
class; the next four digits represent the error
number; see also Error Messages and Codes.

Length of the error text buffer in bytes. See in ACI
Programming documentation.

If there are fewer than 40 bytes, the error text may
be truncated. A value of 0 (zero) means no error
text.

I1 |
9

0-40 | 0-255I4ERRTEXT-LENGTH

Note: In previous ACI versions, Broker kernel
always returned 40 bytes of error text that were
space-padded if necessary. With ACI version 9 and
above, variable-length error texts can be returned
to improve logging and tracing.

Override the AUTOLOGON feature of the Broker. See
AUTOLOGON.

I6Y | NA1FORCE-LOGON

The attribute AUTOLOGON=YES in the Broker
attribute file is overridden. See FORCE-LOGON
underWriting Applications using EntireX Security.

Y

Default. Use the value of the Broker attribute file
for AUTOLOGON.

N

89Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

I11-22I1FUNCTION

LOGON9SEND1

LOGOFF10RECEIVE2

SYNCPOINT13UNDO4

KERNELVERS14EOC5

SETSSLPARMS16REGISTER6

REPLY_ERROR22DEREGISTER7

GET-MESSAGE-ID26VERSION8

I/O7Y | N | UA1KERNELSECURITY

EntireX SecurityY

No securityN

User-written security (deprecated). Existing
user-written security exits created for earlier

U

versions of EntireX will continue to be
supported.

Notes

■ Output
In version 7 or above, this field returns the output
value when executing the KERNELVERSION
command.

■ Input
In version 8 or above, the application can
programmatically specify the desired security
behavior for all commands other than
KERNELVERSION.

The optional locale string contains a codepage name
and tells the broker the encoding of the data. The

I4stringA40LOCALE-STRING

application must ensure the encoding of the data
matches the locale string. The broker stub itself does
not convert your application data. The application's
data is shipped and received as given.

Under the Windows operating system:

■ The broker stub assumes by default the data is
given in the encoding of the Windows ANSI
codepage configured for your system. If you are
using at least API-VERSION 8, a codepage
identifier of this Windows ANSI codepage is
automatically transferred to tell the broker how

Broker ACI for PL/I90

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

the data is encoded, even if no codepage name
in the locale string is given.

■ If you want to adapt the Windows ANSI
codepage, see the Regional Settings in the
Windows Control Panel and your Windows
documentation.

■ If you want to encode the data different to your
WindowsANSI codepage, convert the data in the
application and provide the codepage name in
the locale string. During receive, decode the data
accordingly.

Under all other operating systems:

■ The broker stub does not automatically send a
codepage identifier to the broker.

■ It is assumed the broker's locale string defaults
match. See Locale String Mapping. If they do not
match, provide the correct codepage name in the
locale string here.

Enable character conversion in the broker by setting
the service-specific attribute CONVERSION to
"SAGTCHA". See also Configuring ICU Conversion
under Configuring Broker for Internationalization in
the platform-specific Administration
documentation. More information can be found
under Internationalization with EntireX.

Components that communicate with Broker can
trigger command logging by setting this field. By

I90 | 1I1LOG-COMMAND

default, command logging is based on the command
log filters set in the kernel. You may override these
kernel settings programmatically by setting this
LOG-COMMAND field. If this field is set, all associated
commands will be logged.

Note: If command logging is not enabled for your
kernel, you must first contact your administrator.

Length of long-broker-id value. If the value is
non-zero, specify the value of long-broker-id

100-2147483647I4LONG-BROKER-ID-LENGTH

directly after the ACI control block. The
long-broker-id value overrides any entry for
ACI field BROKER-ID.

With the long-broker-id you can now specify
numeric IPv6 addresses. Some sample values:

91Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

tcpip://[2001:0db8:85a3:08d3:1319:8a2e:
0370:7347]:3930

[2001:0db8:85a3:08d3:1319:8a2e:0370:
7347]:3930:TCP

(2001:0db8:85a3:08d3:1319:8a2e:0370:
7347):3930:TCP

The IP address is enclosed in square brackets or
parentheses.

Length of long-newpassword value.

If the value is non-zero, specify the value of
long-newpassword directly after the ACI control
block after second optional value long-password.

I120-65535I4LONG-NEWPASSWORD-LENGTH

The long-newpassword value is the third optional
value after the ACI control block. With this value
you can specify long new passwordsup to 64 KB in
length.

The value of ACI field NEWPASSWORD is ignored if
the value of LONG-NEWPASSWORD-LENGTH is
non-zero.

The current long password can be changed only
when the client or server authenticates itself, see
Changing your Password underWriting Applications
using EntireX Security. This occurs on the first Broker
ACI function (can be LOGON) and requires the
application to set long-password and
long-newpassword and to assign
LONG-PASSWORD-LENGTH and
LONG-NEWPASSWORD-LENGTH.

Length of long-password value.

If the value is non-zero, specify the value of
long-passworddirectly after theACI control block

I120-65535I4LONG-PASSWORD-LENGTH

after first optional value long-broker-id. The
value of long-password is transmitted to the
Broker to check the authentication of the
application. See Authentication and FORCE-LOGON
underWriting Applications using EntireX Security.

The long-password value is the second optional
value after the ACI control block.

Broker ACI for PL/I92

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

With the long-password you can specify long
passwords up to 64 KB in length.

The value of ACI field PASSWORD is ignored if the
value of LONG-PASSWORD-LENGTH is non-zero.

Input value for function SEND if
USE-SPECIFIED-MESSAGE-ID is 1. The supplied

I/O11string;
padded with
hex zero

A64MESSAGE-ID

MESSAGE-ID is used as unique identification for the
message in the send buffer.

Output value of function GET-MESSAGE-ID.

If a message has been received, this field returns
the corresponding MESSAGE-ID. Note that the
sender must use API version 11 or above to receive
a MESSAGE-ID.

This MESSAGE-ID is a unique indicator for the
corresponding message.

See Unique Message ID under Broker ACI Functions.

The current password can be changed only when
the client or server authenticates itself. SeeChanging

I2Can contain
binary data.

B32NEWPASSWORD

your Password underWriting Applications using
EntireX Security. This occurs on the first BrokerACI
function (can be LOGON) and requires the application
to assign to the Broker ACI fields PASSWORD and
NEWPASSWORD.

Use of control block field
LONG-NEWPASSWORD-LENGTH and optional long
password is recommendedwithACI version 12 and
above. However, NEWPASSWORD is still supported
for compatibility reasons. If your passwords do not
exceed 32 bytes and if password phrases are not
applicable, the NEWPASSWORD field can be used
without any functional constraints.

Provides additional information that modifies the
behavior of the Broker ACI Functions.

I10-21I1OPTION

QUERY16NEXT8no option0

SETUSTATUS17PREVIEW9MSG1

ANY18COMMIT10HOLD2

reserved for
future use

19BACKOUT11IMMED3

93Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

DURABLE
(deprecated)

20SYNC12QUIESCE4

CHECKSERVICE21ATTACH13EOC5

DELETE14CANCEL6

EOCCANCEL15LAST7

Specifies a password to be transmitted to the Broker
to check the authentication of the application. See

I1Can contain
binary data.

A32PASSWORD

Authentication and FORCE-LOGON underWriting
Applications using EntireX Security.

Use of control block field LONG-PASSWORD-LENGTH
and optional long password is recommended with
ACI version 12 and above. However, PASSWORD is
still supported for compatibility reasons. If your
passwords do not exceed 32 bytes and if password
phrases are not applicable, the PASSWORD field can
be used without any functional constraints.

Not used by EntireX Broker.I2A8PTIME

Specifies the length of receive buffer, in bytes. The
maximum length depends on the transportmethod:

I/O1Binary.I4RECEIVE-LENGTH

30,545NET

2,147,483,647TCP

2,147,483,647SSL

Note: Under z/OSwithAdabas version 8, the value
for NET is the same as for TCP.

See Using Send and Receive Buffers.

Length, in bytes, of the data returned.

See Using Send and Receive Buffers.

O1I4RETURN-LENGTH

The contents of this field depend heavily on the
implementation of the security exits.

This field is utilized by EntireX Security. The
application must maintain SECURITY-TOKEN

I/O1binaryB32SECURITY-TOKEN

between commands and not change this value. We
recommend that the application allocate a separate
ACI control block for each user if it issues
commands on behalf of more than one user. For
objects executing inside Web servers, assigning a
unique value, such as 'session ID', to the ACI TOKEN

Broker ACI for PL/I94

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

field is highly recommended to ensure uniqueness
of user at same physical location. See Ignore Security
Token.

If EntireX Security is not implemented, and you
choose to write your own security exits, you can
transmit an initial value to your security exit as a
credential that is used to calculate the actual security
token. After an application's authenticity has been
verified by the security exits, the SECURITY-TOKEN
can be used to avoid additional authentication
checks.

Specifies the length of data being sent, in bytes. The
maximum length depends on the transportmethod:

I/O1binaryI4SEND-LENGTH

30,545NET

2,147,483,647TCP

2,147,483,647SSL

Note: Under z/OSwithAdabas version 8, the value
for NET is the same as for TCP.

See Using Send and Receive Buffers.

A client uses these fields to identify the service that
it requires. A server uses this field to offer a service.

Using all three fields allows you to organize servers,
making them easier to identify, monitor, and

I/O1string, case-
sensitive

A32
each

SERVER-CLASS
SERVER-NAME
SERVICE

maintain. Servers can be organized into
server-classes,with each server providing a number
of different services. Each service must be defined
in the attribute file (see Service-specific Attributes).

The service fields are requiredwith SEND, RECEIVE,
and EOC functionswhen CONV-ID is set to NEW, OLD,
or ANY. When a CONV-ID is supplied, the service
fields are ignored.

SERVICE=* or SERVER-NAME=* can be used on a
RECEIVE function to indicate all services within a
specified server or all servers within a specified
server class.

Note: Server classes "SAG", "Entire", "Adabas",
"Natural", "ETB", "RPC" and Broker are reserved

95Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

for Software AG. Do not use them in your
applications.

Not used by EntireX Broker.I/O2I1STATUS

Persistence or non-persistence of aUOW.Usedwith
the first SEND function for a UOW to specify

I/O20 | 1 | 2I1STORE

whether the UOW is persistent or not. Once
established, the persistence of a UOW cannot be
altered.

none - Defaults to the value specified for the
service.

0

OFF - The UOW is not persistent.1

BROKER - The UOW is persistent.2

Optionally identifies the caller and, when used, is
required for all Broker ACI functions except
VERSION. See USER-ID and TOKEN.

Caution: USER-ID and TOKENmust be specified by
all applications that useUOWsheld in the persistent
store.

I1string, case-
sensitive

A32TOKEN

The value of theUOW-STATUS-PERSISTfield is used
as a multiplier to calculate the lifetime for the

I30 - 255UOW-STATUS-PERSIST

persistent status of a UOW. The value is multiplied
by the value of the broker attribute UWTIME. The
value 255 can be specified to indicate no persistent
status.

Means that the multiplier will have the
same value as the UWSTATP Broker
attribute.

0

Means that therewill be no persistent status
for UOWs.

255

Any number in this range is a valid
multiplier.

1-254

A unique identifier for a UOW.
The value is returned on the first SEND or RECEIVE
command within a UOW; the value must be

I/O3A16UOWID

provided on all subsequent SEND, RECEIVE and
SYNCPOINT commands related to the same UOW.
Client and server can also specify the indicated
textual value (capitals) in order to indicate to Broker
the following:

Broker ACI for PL/I96

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

Since a server receives a UOW and replies
with a different UOW, both UOWs can be

BOTH

committed or backed out by specifying
UOWID=BOTH for theSYNCPOINT command.

The uowidmust be supplied in subsequent
SEND,RECEIVE andSYNCPOINT commands
related to the same UOW.

uowid

Contains the status of a UOW. EntireX Broker
returns the UOWSTATUS field to the calling

O3I1UOWSTATUS

application in order to provide information about
the condition of the specified UOW.

RECEIVED - One or more messages have been
sent as part of a UOW, but the UOW has not yet
been committed.

1

ACCEPTED - The UOW has been committed by
the sender.

2

DELIVERED - The UOW is currently being
received.

3

BACKEDOUT - The UOW has been backed out by
the sender.

4

PROCESSED - The UOW has been received and
the receiver has committed it.

5

CANCELLED - The UOW has been cancelled by
the receiver.

6

TIMEOUT - The UOWwas not processed within
the time allowed.

7

DISCARDED - The UOWwas not persistent and
its data was discarded as the result of a restart.

8

With the exception of DELIVERED, all UOWSTATUS
values are persistent. Persistent values are kept until
they are explicitly deleted by the user or the time
limit is exceeded. The lifetime of the UOWSTATUS
value is determined by the broker attribute
UWSTATP.

UOWSTATUS values in the following table are
returned on a RECEIVE function to indicatewhether
themessage being transferred is part of aUOWand,
if so, its sequence within the UOW:

97Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

NONE - The message is not part of a UOW.0

FIRST - The message is the first message in a
UOW.

9

MIDDLE - The message is neither the first nor
the last in the UOW.

10

LAST - The message is the last message in the
UOW.

11

ONLY - The message is the only message in the
UOW.

12

Only used for function SEND.I110 | 1I1USE-SPECIFIED-CORRELATION
-ID

Default. No CORRELATION-ID is sent to the
broker.

0

The value in field CORRELATION-ID is sent with
this request.

1

See Unique Message ID under Broker ACI Functions.

Only used for function SEND.I110 | 1I1USE-SPECIFIED-MESSAGE-ID

Default. A MESSAGE-IDmust be generated for
the message that is sent with this request.

0

The existing value in field MESSAGE-IDmust be
used for the message that is sent with this
request.

1

See Unique Message ID under Broker ACI Functions.

ConversationUser Data. SeeManaging Conversation
Contexts.

I/O2binaryB16USER-DATA

Identifies the caller and is required for all Broker
ACI functions except VERSION. See USER-ID and
TOKEN.

I1string, case-
sensitive

A32USER-ID

User-defined information about a unit of work
(UOW). It can be transmitted on a SEND or

I/O3stringA32USTATUS

SYNCPOINT function and is returned to applications
that query the status of the UOW or issue function
RECEIVE. To update the USTATUSfield, use function
SYNCPOINT OPTION=SETUSTATUS.

Add value for persistent status lifetime in the client
and server communicationmodel. SeeWritingClient
and Server Applications.

This field is used to calculate the lifetime of the
UOWstatus. The value of this field determines how

I8nS | nM| nH
| nD

A8UWSTAT-LIFETIME

Broker ACI for PL/I98

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

long the UOW status is to be retained in the
persistent store after theUOW is processed or timed
out if it is not processed. This is an alternative to
specifying UOW-STATUS-PERSIST.

The number of additional seconds the UOW
status will exist.

nS

The number of additional minutes the UOW
status will exist.

nM

The number of additional hours the UOW
status will exist.

nH

The number of additional days theUOWstatus
will exist.

nD

The lifetime of a UOW. The UOW exists until its
lifetime expires or it is explicitly cancelled or backed

I3nS | nM| nH
| nD

A8UWTIME

out with SYNCPOINT OPTION=CANCEL or
SYNCPOINT OPTION=BACKOUT.

If the UOW is not committed, backed out, or
cancelled before its UWTIME expires, the UOW is
discarded and its status becomes TIMEOUT.

UWTIME is specified on the first SEND function for a
UOW; it is not allowed on a RECEIVE function.

The number of seconds the UOW can exist.nS

The number of minutes the UOW can exist.nM

The number of hours the UOW can exist.nH

The number of days the UOW can exist.nD

For Software AG internal use only.I100-2147483647I4VARLIST-OFFSET

When a WAIT value (other than NO) is specified on
a SEND or RECEIVE function, the caller will wait for

I1NO | YES |
nS | nM| nH

A8WAIT

a reply until themessage is received or the specified
time limit has been reached. See Blocked and
Non-blocked Broker Calls.

Default. No wait. Control is returned to the
caller.

NO

The number of seconds the callerwill wait for
a reply.

nS

The number ofminutes the caller will wait for
a reply.

nM

99Broker ACI for PL/I

Broker ACI Fields

DescriptionI/O
API
Vers

Possible
ValuesFormatACI Field

The number of hours the caller will wait for
a reply.

nH

Depending on the role of the user (client or
server), the respective attribute is used

YES

(CLIENT-NONACT | SERVER-NONACT). If a
server registers multiple services, the highest
value of all the services registered is taken as
wait time for the server. However, if the user
is both client and server, CLIENT-NONACT is
also used for calculating the wait time.

All different roles provide non-activity
attributes. The maximum value is taken for
the wait time.

Broker ACI for PL/I100

Broker ACI Fields

9 Broker ACI Functions

■ Overview Table ... 103
■ Function Descriptions ... 104
■ Option Descriptions .. 112
■ ACI Field/Function Reference Table .. 114
■ Unique Message ID .. 116

101

Programswritten for EntireX Broker contain instructions that specify to the Brokerwhich functions
to perform. The function's behavior is controlled by the option value and other ACI fields.

See also Broker ACI Fields and EntireX Broker ACI for Assembler | C | COBOL | Natural | PL/I |
RPG.

Broker ACI for PL/I102

Broker ACI Functions

Overview Table

Minimum API VersionUser ID Required (2)Logon Required (1)

Applicable Participant
Function Name ServerClient

1XXDEREGISTER

1XXXEOC

11XXXGET-MESSAGE-ID

4XXXKERNELVERS

2XXXXLOGOFF

2XXXLOGON

1X(3)XXRECEIVE

1XXREGISTER

8XXXREPLY_ERROR

1X(3)XXSEND

6XXSETSSLPARMS

3XX(3)XXSYNCPOINT

2XXXXUNDO

2XXVERSION

Key

Logon is a prerequisite for issuing this command. See LOGON.(1)

User ID is a prerequisite for issuing this command.(2)

The following functions require a logon when used with units of work: RECEIVE, SEND,
SYNCPOINT.

(3)

103Broker ACI for PL/I

Broker ACI Functions

Function Descriptions

DEREGISTER

This function is used by a server application to deregister a service from EntireX Broker. Assigned
resources are deallocated. To removemultiple services, specify either SERVER-CLASS, SERVER-NAME
and/or SERVICE.

DescriptionOption

To execute an immediate deregistration, use IMMED. The service is removed immediately; an
error code informs partners in existing conversations of this removal. Any activeUOW is backedout.

IMMED

To execute a non-immediate deregistration, use QUIESCE. All active conversations are allowed
to continue until an EOC is issued or a conversation timeout occurs. The application that issues

QUIESCE

the DEREGISTER function must remain active until all existing conversations are ended. No new
conversations are accepted.

EOC

This function is used by a client or server and applies to conversational mode only. It is used to
terminate one or more conversations. EntireX Broker accepts no additional SENDs for the conver-
sation(s). The partner can receive requests andmessages that were sent before the EOCwas issued.

Although conversations are normally terminated by the client, the EOC function can be issued by
either partner in a conversation. If an active UOW has not yet been committed (that is, its current
status is received or delivered) the conversation will not be terminated until the UOW is either com-
mitted, backedout, cancelled, or timedout. See Broker UOW Status Transition.

■ To terminate all conversations initiated by the participant, use CONV-ID.
■ To terminate all conversations for a particular service, use CONV-ID, SERVER-CLASS, SERVER-NAME
and/or SERVICE.

DescriptionOption

To inform the partner that the EOC is due to an unexpected event, use CANCEL.CANCEL

Broker ACI for PL/I104

Broker ACI Functions

GET-MESSAGE-ID

This function is used by clients and servers to generate a MESSAGE-ID for a subsequent SEND.
GET-MESSAGE-IDmakes it possible to access the MESSAGE-ID before sending it. API function SEND
with field USE-SPECIFIED-MESSAGE-ID set to 1 is used to send the message with the previously
generated MESSAGE-ID.

KERNELVERS

This function is used by any participant to determine the highest API-VERSION that is supported
by the requested Broker. The highest API-VERSION that the Broker supports is returned in the
API-VERSION field (see API-TYPE and API-VERSION). Platform and version information is returned
in the error text.

DescriptionOption

If option is set to CHECKSERVICE, the command will determine whether a specified
SERVICE is currently registered to the Broker.

CHECKSERVICE

The KERNELSECURITY field returns one of the following values to indicate whether the kernel is
running with security. These values are returned only for API version 7 or above.

DescriptionValue

Software AG-supplied security (SECURITY=YES in the Broker attribute file).Y

SECURITY=NO in the Broker attribute file.N

LOGOFF

This function is used by all application components before termination when no further Broker
functions are to be issued.

LOGOFF should be issued after the application's last SEND, RECEIVE or DEREGISTER has been executed.
It releases all resources used by the application immediately rather than waiting until they time
out (see Timeout Parameters).

LOGON

This function is used by all application components so that the application can establish commu-
nication with a particular instance of the Broker kernel.

Allows the client or server application to logon to EntireX Broker, which allocates the necessary
structures to handle the new participant. If EntireX Broker is running in a secure environment
(with SECURITY=YES in the attribute file), LOGON performs the authentication process. See Authen-
tication.

An Explicit Logon is normally the first function.

105Broker ACI for PL/I

Broker ACI Functions

LOGON is normally the first function.

In addition to the user ID, the LOGON optionally transmits the password, new password and
SECURITY-TOKEN to authenticate itself, provided SECURITY=YES is set in the broker attribute file.

Starting with ACI version 12, long passwords are supported up to a maximum length of 65535
bytes, containing upper and lowercase characters, digits, or any special characters.

Providing user ID and password in ACI-based Programming is described under Broker ACI fields
USER-ID, PASSWORD, LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For
user ID and password handling with RPC clients, refer the documentation of the wrapper in use;
see EntireX Wrappers in the Designer documentation.

RECEIVE

This function is used by clients to receive incoming messages and by servers to receive incoming
requests.

■ You can specify a WAIT time, causing the RECEIVE to wait for the request ormessage that satisfies
the operation.

■ The RECEIVE-LENGTH field is required. It specifies the maximum length of data the caller can
receive. A receive buffer of at least this lengthmust be provided. The actual length of themessage
received is returned in the RETURN-LENGTH field.

NoteDescriptionOption

Used with the RECEIVE function to indicate that the RECEIVEwill be
satisfied by any message, whether part of a UOW or not.

ANY

With this option,
WAITmust be set to
NO or not specified.

To retrieve the last (most recent) message in a conversation, use LAST.LAST

To indicate that the RECEIVEwill be satisfied only by amessage that is not
part of a UOW, use MSG. See also Broker UOW Status Transition.

MSG

To retrieve the next unprocessed request ormessage in a conversation, use
NEXT.

NEXT

To retrieve the next unprocessed request or message in a conversation
without deleting the previous message or moving the READ pointer, use
PREVIEW, which excludes using units of work.

PREVIEW

To receive only messages that are part of a UOW, use SYNC. See also Broker
UOW Status Transition.

SYNC

Broker ACI for PL/I106

Broker ACI Functions

REGISTER

This function is used by servers to inform EntireX Broker that a service is available. The Broker
obtains information about the service from the Broker Attributes, creates the appropriate environ-
ment, andmakes the participant available as the specified SERVER-CLASS, SERVER-NAME and SERVICE.

If REGISTER is the first call by a server when both AUTOLOGON and SECURITY are set to YES in the
Broker attribute file, user ID and password are required in order to authenticate and authorize
the server. This is because an Implicit Logon is being performed.

The services being registered must be defined in the attribute file.

Providing user ID and password in ACI-based Programming is described under Broker ACI fields
USER-ID, PASSWORD, LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For
user ID and password handling with RPC clients, refer the documentation of the wrapper in use;
see EntireX Wrappers in the Designer documentation.

DescriptionOption

To register an attach service, use ATTACH. An attach service cannot be requested by a client. Its
function is to make available a service that cannot otherwise be scheduled.

ATTACH

REPLY_ERROR

This function is used by clients or servers to send an error message to the partner of the conversa-
tion. The error number is specified in the error code field. The sentmessage is delivered as an error
text; the specified error number is delivered as an error code.

■ The user must be logged on.
■ The error number is a numeric 8-byte value andmust start with 8, for example 80010001. A zero
error number will be rejected. These errors are user-definable and therefore not documented.

■ The error message is provided in the send buffer and is limited to 40 bytes.
■ Use the SEND-LENGTH field to specify the length of the error message.
■ REPLY_ERROR can be used with a valid CONV-ID only.
■ Only WAIT=NO is allowed.
■ The conversation is not allowed to contain units of work.

107Broker ACI for PL/I

Broker ACI Functions

DescriptionOption

To end the conversation after the REPLY_ERROR function, use EOC.EOC

SEND

This function is used by clients to send requests and by servers to send replies (messages). If a
corresponding RECEIVE function issued by a partner application is outstanding, EntireX Broker
forwards the request or message to that partner application. If not, EntireX Broker queues the re-
quest or message until a suitable RECEIVE is issued by a partner application. If no suitable RECEIVE
is issued by a partner application, the request will timeout within the specified timeout period.

■ You can specify a SENDwith either of the following:
■ WAIT=YES | Value

This causes an implicit RECEIVE to be generated and the SEND to wait for a reply. If a reply is
expected, the SENDmust pass the length of the receive buffer, in bytes, as the value of the
RECEIVE-LENGTH parameter. The actual - not the specified - length of the reply is returned to
the sender as the RETURN-LENGTH value.

■ WAIT=NO

Choose WAIT=NO if you are only forwarding a request or message.
■ Use the SEND-LENGTHfield to specify the length of the request ormessage being sent. The specified
number of bytes is transferred, starting at the beginning of the send buffer.

■ The client starts a new conversation, using CONV-ID=NEW.
■ The client can specify non-conversational mode, using CONV-ID=NONE.
■ Include the SERVER-CLASS, SERVER-NAME and SERVICE if this is a new conversation or a non-
conversational request.

■ If you add the ENVIRONMENTparameter, its value is passed to the translation routine for the service.
■ To transmit conversation-related data to the sending application, use USER-DATA.
■ If SEND is the first call by a client when both AUTOLOGON and SECURITY are set to YES in the Broker
attribute file, user ID and password are required in order to authenticate and authorize the client.
This is because an Implicit Logon is being performed.

Providing user ID and password inACI-based Programming is described under Broker ACI fields
USER-ID, PASSWORD, LONG-PASSWORD-LENGTH, and the COBOL Example using Long Password. For
user ID and password handling with RPC clients, refer the documentation of the wrapper in
use; see EntireX Wrappers in the Designer documentation.

Broker ACI for PL/I108

Broker ACI Functions

NoteDescriptionOption

Use COMMIT to indicate that the UOW being sent is complete
and can now be delivered to the intended receiver, which can
be either client or server.

COMMIT

WAITmust be NO or not specified.To end the conversation after the SEND, use EOC.EOC

WAITmust be NO or not specified.To hold SEND data in a queue, use HOLD. The data is released by
a SENDwithout a HOLD.

HOLD

WAITmust be NO or not specified.Client and server can send a message as part of a unit of work
(UOW), using SYNC.

SYNC

SETSSLPARMS

This function is only available on platforms where the broker stub directly supports SSL/TLS
transport. See Transport: Broker Stubs and APIs. It is used by ACI clients and ACI servers to set the
SSL parameters. ACI-based clients or servers are always SSL clients. The SSL parameters are spe-
cified in the send buffer, (second parameter of the Broker ACI call). These SSL parameters are used
and communication is performed if the Secure Sockets Layer is configured. See SSL/TLS, HTTP(S),
and Certificates with EntireX.

Note: Since EntireX version 10.7, this function no longer applies to all threads as in earlier
versions. Instead, this function needs to be performed for each thread to create an SSL
connection to the broker.

To use SSL

1 See Using the Broker ACI with SSL/TLS (Assembler | C | COBOL | Java | Natural | PL/I).

2 Make sure the SSL server to which the ACI application (client or server)[jca:check] connects
is prepared for SSL connections as well. The SSL server can be EntireX Broker or Broker SSL
Agent. See:

■ RunningBrokerwith SSL/TLSTransport in the platform-specificAdministrationdocumentation
■ Broker SSL Agent in the UNIX | Windows Administration documentation

SYNCPOINT

This function allows you to manage units of work (UOWs), both persistent and non-persistent,
that have been sent or received. See Using Persistence and Units of Work.

SYNCPOINT is used with the OPTION field. The UOWID parameter is required and normally limits the
request to a specified UOW. For example:

109Broker ACI for PL/I

Broker ACI Functions

SYNCPOINT OPTION=COMMIT,UOWID=n
SYNCPOINT OPTION=BACKOUT,UOWID=n

In cases where a server receives a UOW and sends a different UOW, you can ensure that the two
UOWs will be processed together (that is, if one is committed, both are committed) by specifying
UOWID=BOTH. For example:

SYNCPOINT OPTION=COMMIT,UOWID=BOTH

UOWID=BOTH can also be usedwith BACKOUT. This simply backs out bothUOWs in a single call instead
of two separate calls:

SYNCPOINT OPTION=BACKOUT,UOWID=BOTH

DescriptionOption

Used by the sender, it causes the UOW to be deleted, with a status of backedout.
By the receiver, causes the UOW to be returned to its prior, unreceived state, with a status
of accepted. The ADCOUNT field is incremented. See also Broker UOW Status Transition.

BACKOUT

Used by the receiver, it causes the UOW to be considered finished, with a status of cancelled.
No further processing of the UOW is possible. The sender can cancel the UOW if, and only

CANCEL

if, it is in accepted status. The following sequence of commands, issued during recovery
processing, allows the sender to remove any created but undelivered UOWs:

■ SYNCPOINT OPTION=LAST

■ SYNCPOINT OPTION=CANCEL

■ SYNCPOINT OPTION=DELETE

User by the sender, it indicates that the UOW has been completely built and can be made
available for delivery, with a status of accepted. By the receiver, indicates that the UOW has

COMMIT

been completely received, with a status of processed. No further processing of the UOW is
possible.

With UOWID=n, commits the UOW being created and ends the conversation.EOC

With UOWID=n, commits the UOW being created and cancels the conversation, that is,
terminates the conversation immediately.

EOCCANCEL

With UOWID=n, deletes the persistent status of the specifiedUOW. TheUOWmust be logically
complete (processed, cancelled, timedout, backedout, discarded) and must have been created by
the caller.

DELETE

Returns the status of the last committedUOW sent by the caller. In addition, SERVER-CLASS,
SERVER-NAME, SERVICE and CONV-ID are also returned.

LAST

With UOWID=n, returns the status of the specified UOW. In addition, SERVER-CLASS,
SERVER-NAME and SERVICE details of the associated server are also returned.

QUERY

With UOWID=n, updates the user status of the specified UOW.SETUSTATUS

Broker ACI for PL/I110

Broker ACI Functions

UNDO

This function is used to removemessages that have been sent but not received. It can only be used
with an existing conversation. When a message is undone, the conversation continues.

Note: UNDO is not used in conjunction with units of work. See Using Persistence and Units of
Work.

DescriptionOption

To undo messages in HOLD status, use UNDOwith HOLD.HOLD

VERSION

This function is used to return the version of the stub implementation in the receive buffer. This
version string is useful to the application in determining the maximumAPI version supported by
the stub and to Software AG Support if problems occur.

The string was modified in version 8.2. Example:

EntireX Broker Stub XXXXXXXX Version=08.3.0.00, Highest API Supported=09

is is the name of the stub, for example "CICSETB"."XXXXXXXX"where

111Broker ACI for PL/I

Broker ACI Functions

Option Descriptions

NoteDescriptionUsed with FunctionOptionNumber

Receive only a message that is not part of a
UOW.

RECEIVEMSG1

Used in
conversational
mode only.

Places the messages in a HOLD queue. Messages
are released by a SENDwithout HOLD.

SENDHOLD2

Releases all previously held messages.UNDO

The conversation is not ended, even though the
user is logged off.

LOGOFF

Immediately terminate all conversations for the
specified server. All partners are informed with
an appropriate error code.

DEREGISTERIMMED3

Default option
for this
function.

Terminate a server smoothly. Existing
conversations are allowed to end normally; no
new conversations are accepted. The server is
removed from the “active” list.

DEREGISTERQUIESCE4

End the conversation with the current message.
It can be issued by either partner. The

SENDEOC5

conversation is not ended if an active UOW has
not yet been committed, that is, its status is
received or delivered. See Broker UOW Status
Transition.

Abort a conversation rather than terminate
normally. The receiver of a UOW can use

EOCCANCEL6

SYNCPOINT OPTION=CANCEL to interrupt
processing and discard the UOW.

Used in conversational mode to retrieve the last
(most recent) message.

RECEIVELAST7

Returns the status of the last committed UOW
sent by the caller.

SYNCPOINT

Default option
for this
function.

Retrieve the next unprocessed request or
message. The request or message is then
considered processed and can be accessed only
with OPTION=LAST.

RECEIVENEXT8

Retrieve the next unprocessed request message
without deleting the previous message or

RECEIVEPREVIEW9

moving the READ pointer. The previewed
message will be retrieved again by the next
RECEIVE OPTION=NEXT.

Broker ACI for PL/I112

Broker ACI Functions

NoteDescriptionUsed with FunctionOptionNumber

Commit the active UOW.SYNCPOINTCOMMIT10

■ For aUOWbeing sent, it means that theUOW
is complete and can now be delivered to the
intended receiver.

■ For a UOW being received, it means that the
UOW is complete and no further processing
of the UOW is allowed.

Commit the active UOW.SEND

SYNCPOINTBACKOUT11 ■ For receiver of a UOW:
Return the UOW to its undelivered state. The
UOW can be processed again, in its entirety,
by subsequent RECEIVE operations.

■ For sender of a UOW:
Delete theUOW.No further processing of the
UOW is allowed.

Indicates that the message is part of a UOW.SENDSYNC12

RECEIVEwill be satisfied only by amessage that
is part of a UOW.

RECEIVE

Register an attach server.REGISTERATTACH13

Delete the persistent status information for the
specified UOW.

SYNCPOINTDELETE14

Cancel the conversation after committing a
UOW.

SYNCPOINTEOCCANCEL15

Query the status of a UOW.SYNCPOINTQUERY16

Updates the user status of the specified UOW.SYNCPOINTSETUSTATUS17

Indicate that the RECEIVEwill be satisfied by a
message that is or is not part of a UOW.

RECEIVEANY18

No longer
used.

19

No longer
used.

20

Check if the specified service is active in EntireX
Broker.

KERNELVERSCHECKSERVICE21

113Broker ACI for PL/I

Broker ACI Functions

ACI Field/Function Reference Table

The following table identifies the ACI fields that apply to each of the Broker functions. For a given
function, an ACI field value may be a request field (Rq), and/or a reply field (Rt). Optional fields
are marked (O).

Function

ACI Field

RtRtADCOUNT

RqRqRqRqRqRqRqRqRqRqRqRqRqRqAPI-TYPE

RqRqRqRq
Rt

RqRqRqRqRqRqRqRqRqRqAPI-VERSION

RqRqRqRqRqRqRqRqRqRqRqRqRqBROKER-ID

RtCLIENT-UID

RtRtRtCOMMITTIME

OO
Rt

O
Rt

COMPRESSLEVEL

RqRq
Rt

RqRqRqRqCONV-ID

RtCONV-STAT

OOCORRELATION-ID

OOODATA-ARCH

OOOENVIRONMENT

RtRtRtRtRtRtRtRtRtRtRtRtRtRtERROR-CODE

OOOOOOOOOOOOOOERRTEXT-LENGTH

OOOOOOOOOOFORCE-LOGON

RqRqRqRqRqRqRqRqRqRqRqRqRqRqFUNCTION

RtKERNELSECURITY

RqRqRqRqRqRqRqRqRqRqRqLOG-COMMAND

OOOLOCALE-STRING

OOOLONG-PASSWORD-LENGTH

OOOLONG-NEWPASSWORD-LENGTH

Broker ACI for PL/I114

Broker ACI Functions

Function

ACI Field

RtOOMESSAGE-ID

OOONEWPASSWORD

OOOOOOOOOOOPTION

OOOPASSWORD

RqRqORECEIVE-LENGTH

RtRtRtRETURN-LENGTH

OOOOOOOOOOOSECURITY-TOKEN

RqRqRqSEND-LENGTH

O
Rt

ORqOORqSERVER-CLASS

O
Rt

ORqOORqSERVER-NAME

O
Rt

ORqOORqSERVICE

RtOSTORE

OOOOOOOOOTOKEN

RqO
Rt

O
Rt

UOWID

RtRtRtRtUOWSTATUS

OUSE-SPECIFIED-CORRELATION-ID

OUSE-SPECIFIED-MESSAGE-ID

OUOW-STATUS-PERSIST

ORtRtOUSER-DATA

RqRqRqRqRqRqRqRqRqRqRqUSER-ID

O
Rt

O
Rt

O
Rt

O
Rt

USTATUS

OUWSTAT-LIFETIME

OUWTIME

OOOWAIT

115Broker ACI for PL/I

Broker ACI Functions

Unique Message ID

This section covers the following topics:

■ Introduction
■ Simple Client/Server Scenario
■ Default Scenario (ACI and RPC)
■ Generating a Message ID before Message is Sent

Introduction

With ACI version 11 and above, all messages sent to the broker are given a unique message ID.
This message ID is useful for tracking individual messages. PSTORE-VERSION=5 is required to save
and restore message IDs of persistent data.

Under UNIX and Windows, the message ID is a Universally Unique Identifier (UUID). On main-
frame platforms, the value consists of CPU ID and clock (machine instructions STCK or STCKE).

ACI functions SEND and GET-MESSAGE-ID generate message IDs. ACI version 11 must be defined.
No additional programming in the application is needed.

The broker stub generates message IDs and saves the values in the field MESSAGE-ID. The message
ID is returned immediately with function GET-MESSAGE-ID, or after processing of function SEND
(without wait).

If the application receives a message from the broker - either by function SEND (with wait) or
function RECEIVE (with or without wait) - the field MESSAGE-ID contains the message ID of the re-
ceived message.

If the application receives a message from the broker by function SENDwith wait, the message ID
of the sent message is returned in field CORRELATION-ID.

If a server receives a message from a client by function RECEIVE (with or without WAIT) and sends
back a message as response to the client, we recommend moving the message ID of the received
message to field CORRELATION-ID and to set 1 into field USE-SPECIFIED-CORRELATION-ID before
sending the message. This correlates the response message to the received message.

If a client or a server has generated a message ID with ACI function GET-MESSAGE-ID and wants
to use this message ID for the function SEND (with or waithout WAIT), the field
USE-SPECIFIED-MESSAGE-IDmust be set to 1.

The broker stub generates a newmessage ID if client or server uses function SEND and did not issue
function GET-MESSAGE-ID before and set field USE-SPECIFIED-MESSAGE-ID to 0.

See fields MESSAGE-ID, CORRELATION-ID and USE-SPECIFIED-MESSAGE-ID under Broker ACI Fields.

Broker ACI for PL/I116

Broker ACI Functions

Simple Client/Server Scenario

First broker call.

Second broker call. Uniquemessage ID "e05d760c..." is generated automatically. No additional
programming is required.
Server receives message with ID generated by second broker call. In this simple scenario, no
correlation ID is set.

117Broker ACI for PL/I

Broker ACI Functions

Default Scenario (ACI and RPC)

First broker call.

Second broker call. Unique message ID "e05d760c..." is generated automatically.

Server receives message with ID generated by second broker call. A correlation ID is not yet
set. The server sets USE-SPECIFIED-CORRELATION-ID to 1 and moves the received message ID
to the field CORRELATION-ID.
Third broker call. Another unique message ID "88de67aa..." is generated.

Client receives message with ID generated by third broker call. The connection to the original
message is established by means of the correlation ID provided by the broker.

Generating a Message ID before Message is Sent

In this scenario a message is given a unique ID but is not sent immediately. A sample scenario
would be financial transactionswhere themessage ID needs to be logged before the actualmessage
is sent. Function GET-MESSAGE-ID generates a unique message ID. The application writes the
message ID to the log file. When the message is finally sent, the SEND request requires the flag
USE-SPECIFIED-MESSAGE-ID="1". This ensures no newmessage ID is generated; instead the unique
ID created by function GET-MESSAGE-ID is used. This unique ID makes it easier to identify the
message at a later date.

Broker ACI for PL/I118

Broker ACI Functions

Function GET-MESSAGE-ID generates a unique message ID. The application may store this ID
in a log file.
Broker call. A message is sent to the broker with the message ID specified earlier with the
command GET-MESSAGE-ID.

119Broker ACI for PL/I

Broker ACI Functions

120

10 Broker UOW Status Transition

■ Initial UOW Status: NULL | Received ... 122
■ Initial UOW Status: Accepted | Delivered | Postponed ... 123
■ Initial UOW Status: Processed | Timedout ... 124
■ Initial UOW Status: Cancelled | Discarded | Backedout .. 125
■ Legend for UOW Status Transition Table .. 126
■ Table of Column Abbreviations ... 126

121

This chapter contains the UOWstatus transition tables for EntireX Broker and covers the following
topics:

See also Broker ACI Fields | Broker ACI Functions | Error Messages and Codes.

Initial UOW Status: NULL | Received

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

ReceivedReceivedReceivedReceivedSendReceived

AcceptedAcceptedAcceptedAcceptedCommitReceived

NULLDiscardedNULLBackedOutReStartReceived

NULLBackedOutNULLBackedOutBackOutReceived

R6: This action can only be a
conversation timeout since a

NULLBackedOutNULLBackedOutTimeOutReceived

UOW only exists once it is
committed.

ReceivedReceivedReceivedReceivedDeleteReceived

ReceivedReceivedReceivedReceivedCancelReceived

ReceivedReceivedReceivedReceivedReceiveReceived

Broker ACI for PL/I122

Broker UOW Status Transition

Initial UOW Status: Accepted | Delivered | Postponed

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

DeliveredDeliveredDeliveredDeliveredReceiveAccepted

NULLTimedoutNULLTimedoutTimeoutAccepted

NULLDiscardedAcceptedAcceptedRestartAccepted

NULLCancelledNULLCancelledCancelAccepted

AcceptedAcceptedAcceptedAcceptedDeleteAccepted

AcceptedAcceptedAcceptedAcceptedBackOutAccepted

AcceptedAcceptedAcceptedAcceptedSendAccepted

AcceptedAcceptedAcceptedAcceptedCommitAccepted

DeliveredDeliveredDeliveredDeliveredReceiveDelivered

NULLProcessedNULLProcessedCommitDelivered

R20: Cancel can only be issued
by receiver of the UOW.

NULLCancelledNULLCancelledCancelDelivered

AcceptedAcceptedAcceptedAcceptedBackOutDelivered

NULLNULLNULLTimedoutTimeOutDelivered

NULLDiscardedAcceptedAcceptedRestartDelivered

DeliveredDeliveredDeliveredDeliveredDeleteDelivered

DeliveredDeliveredDeliveredDeliveredSendDelivered

Receive cannot be issued by
any user

N/AN/AN/AN/AReceivePostponed

Commit cannot be issued by
any user.

N/AN/AN/AN/ACommitPostponed

Cancel can only be issued by
the sender of the UOW.

NULLCancelledNULLCancelledCancelPostponed

BackOut cannot be issued by
any user.

N/AN/AN/AN/ABackOutPostponed

NULLNULLNULLTimedoutTimeOutPostponed

NULLDiscardedAcceptedAcceptedRestartPostponed

Delete cannot be issued by any
user.

N/AN/AN/AN/ADeletePostponed

Send cannot be issued by any
user.

N/AN/AN/AN/ASendPostponed

123Broker ACI for PL/I

Broker UOW Status Transition

Initial UOW Status: Processed | Timedout

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

Processed is a STABLE UOW status:N/ANULLN/ANULLDeleteProcessed

All actions and transitions refer to
the status of a UOW.

N/ANULLNULLNULLTimeoutProcessed

N/AProcessedN/AProcessedRestartProcessed

N/AProcessedN/AProcessedBackoutProcessed

N/AProcessedN/AProcessedCancelProcessed

N/AProcessedN/AProcessedCommitProcessed

N/AProcessedN/AProcessedReceiveProcessed

N/AProcessedN/AProcessedSendProcessed

Timedout is a STABLE UOW status:N/ATimeoutN/ATimeoutRestartTimedout

All actions and transitions refer to
the status of a UOW.

N/ANULLN/ANULLDeleteTimedout

N/ANULLN/ANULLTimeoutTimedout

N/ATimedoutN/ATimedoutSendTimedout

N/ATimedoutN/ATimedoutReceiveTimedout

N/ATimedoutN/ATimedoutCommitTimedout

N/ATimedoutN/ATimedoutBackoutTimedout

N/ATimedoutN/ATimedoutCancelTimedout

Broker ACI for PL/I124

Broker UOW Status Transition

Initial UOW Status: Cancelled | Discarded | Backedout

Description
Resulting UOW Status

ActionInitial UOW Status NPU&NPSNPU&PSPU&NPSPU&PS

Cancelled is a STABLE UOW
status:

N/ANULLN/ANULLDeleteCancelled

All actions and transitions refer
to the status of a UOW.

N/ACancelledN/ACancelledRestartCancelled

N/ANULLN/ANULLTimeOutCancelled

N/ACancelledN/ACancelledSendCancelled

N/ACancelledN/ACancelledReceiveCancelled

N/ACancelledN/ACancelledCommitCancelled

N/ACancelledN/ACancelledBackoutCancelled

N/ACancelledN/ACancelledCancelCancelled

Discarded is a STABLE UOW
status:

N/ANULLN/AN/ADeleteDiscarded

All actions and transitions refer
to the status of a UOW.

N/ANULLN/AN/ATimeOutDiscarded

N/ADiscardedN/AN/ARestartDiscarded

N/ADiscardedN/AN/ACancelDiscarded

N/ADiscardedN/AN/ASendDiscarded

N/ADiscardedN/AN/AReceiveDiscarded

N/ADiscardedN/AN/ACommitDiscarded

N/ADiscardedN/AN/ABackoutDiscarded

BackedOut is a STABLE UOW
status:

N/ANULLN/ANULLTimeOutBackedOut

All actions and transitions refer
to the status of a UOW

N/ABackedOutN/ABackedOutCancelBackedOut

N/ABackedOutN/ABackedOutRestartBackedOut

N/ABackedOutN/ABackedOutSendBackedOut

N/ABackedOutN/ABackedOutReceiveBackedOut

N/ABackedOutN/ABackedOutCommitBackedOut

N/ANULLN/ANULLDeleteBackedOut

N/ABackedOutN/ABackedOutBackoutBackedOut

125Broker ACI for PL/I

Broker UOW Status Transition

Legend for UOW Status Transition Table

Resulting UOW StatusAbbreviation

Not applicableN/A

Error condition, message issued, no changeUOW Status

Table of Column Abbreviations

UOW StatusAbbreviation

Persistent unit of workPU

Persistent statusPS

Non-persistent unit of workNPU

Non-persistent statusNPS

Broker ACI for PL/I126

Broker UOW Status Transition

11 Broker CIS Data Structures

■ Command Request Structure ... 129
■ Command Request Parameter Combinations .. 132
■ Common Header Structure for Response Data .. 136
■ Information Request Structure .. 138
■ Information Reply Structures .. 147

127

EntireX Broker provides an API for Command and Information Services (CIS) that include the
following: shutting down conversations, servers and services; switching trace on and off; retrieving
information on clients; registering servers and services.

Command and Information Services can be accessed from any environment from which EntireX
Broker can be accessed. The structures for these services are available for the programming lan-
guages Assembler, C, Natural and COBOL.

Before referring to the structure tables below, see section Command-line Utilities.

This chapter describes the Command and Information Services data structures..

Note: Version numbers in the tables below refer to the CIS interface version and not to the
Broker version.

Broker ACI for PL/I128

Broker CIS Data Structures

Command Request Structure

The request structure is given in the table below. Note possible combinations under Command
Request Parameter Combinations.

Comment

CIS
Interface
VersionFormatField Name

Interface version.1I2VERSION

Specifies the object type to which the command applies:1I2OBJECT-TYPE

BROKER7

CONVERSATION4

PARTICIPANT (1)18

PSF9

SECURITY21

SERVER1

SERVICE6

TRANSPORT29

Valid commands:1I2COMMAND

ALLOW-NEWUOWMSGS13

CLEAR-CMDLOG-FILTER20

NO-OPERATION88

CONNECT-PSTORE17

DISABLE-ACCOUNTING28

DISABLE-CMDLOG24

DISABLE-CMDLOG-FILTER22

DISABLE-DYN-WORKER37

DISCONNECT-PSTORE18

ENABLE-ACCOUNTING27

ENABLE-CMDLOG23

ENABLE-CMDLOG-FILTER21

ENABLE-DYN-WORKER38

FORBID-NEWUOWMSGS14

PRODUCE-STATISTICS25

PURGE12

RESET-USER29

129Broker ACI for PL/I

Broker CIS Data Structures

Comment

CIS
Interface
VersionFormatField Name

RESUME31

SET-CMDLOG-FILTER19

SET-UOW-STATUS42

SHUTDOWN8

START33

STATUS36

STOP32

SUSPEND30

SWITCH-CMDLOG26

TRACE-FLUSH35

TRACE-OFF2

TRACE-ON1

TRAP-ERROR34

Possible values:1I2OPTION

IMMED3

QUIESCE4

TR_LEVEL111

TR_LEVEL212

TR_LEVEL313

TR_LEVEL414

TR_LEVEL515

TR_LEVEL616

TR_LEVEL717

TR_LEVEL818

ACCEPTED20

CANCELLED21

Specifies the internal unique ID which is used to distinguish
between several users with the same user ID. Using this field

1A28P-USER-ID

uniquely identifies a single server. The value for this field
must be obtained by a previous info request. This field is used
as a handle, that is, no translation is performed.

Selection field. Optional. Specifies the unit of work to be
purged.

2A16UOWID

Selection field. Optional. Specifies the user name for
participant shutdown.

4A32UID

Broker ACI for PL/I130

Broker CIS Data Structures

Comment

CIS
Interface
VersionFormatField Name

Selection field. Optional. Specifies the token name for
participant shutdown.

4A32TOKEN

Selection field. Optional. Specifies the server class name for
command log filter addition or removal.

5A32SERVER-CLASS

Selection field. Optional. Specifies the server name for
command log filter addition or removal.

5A32SERVER

Selection field. Optional. Specifies the service name for
command log filter addition or removal.

5A32SERVICE

Reserved for future use.5A32RESERVED

Optional. Specifies the conversation to be shut down with
command SHUTDOWN.

7A16CONVID

Optional. Specifies the transport task. Possible values:
NET|Snn|Tnn. Required for commands RESUME, START,
STATUS, STOP, SUSPEND.

7A3TRANSPORTID

Optional. Exclude attach servers when shutting down a
service.

7I1EXCLUDE-ATTACH-SERVERS

Optional. Specifies the sequence number of the participant
(client or server) to be shut down. Can be used instead of
P-USER-ID.

7I4SEQNO

Specifies the error number to be used with command
TRAP-ERROR.

7I4ERROR-NUMBER

Specifies the collector broker ID.11A64COLLECTOR-BROKER-ID

Specifies the host name of the participant.12A256HOST-NAME

z/OS: Specifies job ID of the participant.
UNIX/Windows: Specifies the process ID of the participant.

12A16PROCESS-ID

z/OS: Specifies TCB address | terminal ID | task number of
the participant.
UNIX/Windows: Specifies the thread ID of the participant.

12A16THREAD-ID

131Broker ACI for PL/I

Broker CIS Data Structures

Command Request Parameter Combinations

The following table shows all valid combinations of parameters:

CommentOptionCommandObject Type

Turn off the Application Monitoring
feature in Broker.

APPMON-OFFBROKER

Turn on the Application Monitoring
feature in Broker.

APPMON-ON

Remove a command log filter. The
command log filter can be identified

CLEAR-CMDLOG-FILTER

using the fields UID, SERVER-CLASS,
SERVER and SERVICE.

Disable accounting.DISABLE-ACCOUNTING

Disable command logging.DISABLE-CMDLOG

Disable a command log filter. The
command log filter can be identified

DISABLE-CMDLOG-FILTER

using the fields UID, SERVER-CLASS,
SERVER and SERVICE.

Disable the
DYNAMIC-WORKER-MANAGEMENT.

DISABLE-DYN-WORKER

DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
The current number of active worker
tasks will not be changed until
DYNAMIC-WORKER-MANAGEMENT is
enabled again.

Enable accounting.ENABLE-ACCOUNTING

Enable command logging.ENABLE-CMDLOG

Enable a command log filter. The
command log filter can be identified

ENABLE-CMDLOG-FILTER

using the fields UID, SERVER-CLASS,
SERVER and SERVICE.

Enable the
DYNAMIC-WORKER-MANAGEMENTagain.

ENABLE-DYN-WORKER

DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
DYNAMIC-WORKER-MANAGEMENT has
been disabled before. Additional
worker tasks can be started again, or
stopped if not used.

Output current statistics to the broker
log.

PRODUCE-STATISTICS

Broker ACI for PL/I132

Broker CIS Data Structures

CommentOptionCommandObject Type

Add a command log filter. The
command log filter can be identified

SET-CMDLOG-FILTER

using the fields UID, SERVER-CLASS,
SERVER and SERVICE.

Set the collector broker ID.collector broker idSET-COLLECTOR

Shut down Broker immediately.SHUTDOWN

Force a switch of command logging
output files.

SWITCH-CMDLOG

Flush all trace data kept in internal
trace buffers to stderr (DD:SYSOUT).

TRACE-FLUSH

The broker-specific attribute
TRMODE=WRAP is required.

Set trace off in Broker.TRACE-OFF

Set TRACE-LEVEL on in Broker.LEVELTRACE-ON

Modifies the setting of the
broker-specific attribute TRAP-ERROR.

error numberTRAP-ERROR

convidSHUTDOWNCONVERSATION

Shut down server immediately. The
server must be uniquely identified

IMMEDSHUTDOWNSERVER

using field P_USER_ID or SEQNO and
will be completely removed from the
Broker environment.
The following stepswill be performed:

■ Error code 00100050 will be replied
to the server if it is waiting.

■ All existing conversations will be
finished with EOC.

■ User will be logged off.

Shut down server but allow existing
conversations to continue.
The termination is signaled to the
server by error code 00100051. After

QUIESCE

this, the next call issued must be a
DEREGISTER for all services
(SC=*,SN=*,SV=* if more than one
service is active).

New UOWmessages are allowed.ALLOW-NEWUOWMSGSPSF

Connect the persistent store.CONNECT-PSTORE

Disconnect the persistent store.DISCONNECT-PSTORE

NewUOWmessages are not allowed.FORBID-NEWUOWMSGS

133Broker ACI for PL/I

Broker CIS Data Structures

CommentOptionCommandObject Type

Remove a unit of work from the
EntireX Broker persistent store (from
version 2).

PURGE

Change the status of a UOW that
resides in the postpone queue back to

ACCEPTEDSET-UOW-STATUS

status ACCEPTED to make it receivable
again.
Applies to the specified UOW only.
To address all UOWs of a service, use
broker command-line utility ETBCMD
(z/OS | UNIX | Windows). See also
Postponing Units of Work under Using
Persistence and Units of Work in the
platform-independentAdministration
documentation.

Cancel the specifiedUOW that resides
in the postpone queue. It performs

CANCELLED

SYNCPOINT OPTION=CANCEL of the
receiver.
Applies to the specified UOW only.
To address all UOWs of a service, use
broker command-line utility ETBCMD.

Set trace off in the persistent store.TRACE-OFF

Set TRACE-LEVEL on in the persistent
store.

LEVELTRACE-ON

Shut down participant immediately.
The participant must be identified,

IMMEDSHUTDOWNPARTICIPANT

using fields P-USER-ID, UID or TOKEN
and will be completely removed from
the Broker environment.
The following stepswill be performed:

■ Error code 00100050 will be replied
to the participant, if it is waiting.

■ All existing conversations will be
finished with EOC.

■ User will be logged off.

Shut down participant but allow
existing conversations to continue. The

QUIESCE

termination is signaled to the
participant by error code 00100051.

INFO requests return a seqno that can
be used here to identify the target.

seqno

Broker ACI for PL/I134

Broker CIS Data Structures

CommentOptionCommandObject Type

Shut down participant using
HOST-NAME,PROCESS-ID andoptional
THREAD-ID to identify the target.

HOST-NAME, PROCESS-ID
and optional
THREAD-ID

Clear all cached security information
for a user. The user must be identified
using the field UID.

RESET-USERSECURITY

Set trace off in EntireX Security.TRACE-OFF

Set TRACE-LEVEL on in EntireX
Security.

LEVELTRACE-ON

IMMEDSHUTDOWNSERVICE

QUIESCE

class/server/service

Resume NET transport or a specific
SSL or TCP communicator instance.

NET | Snn | TnnRESUMETRANSPORT

Start NET transport or a specific SSL
or TCP communicator instance.

NET | Snn | TnnSTART

Show status of NET transport or a
specific SSL or TCP communicator
instance.

NET | Snn | TnnSTATUS

Stop NET transport or a specific SSL
or TCP communicator instance.

NET | Snn | TnnSTOP

Suspend NET transport or a specific
SSL or TCP communicator instance.

NET | Snn | TnnSUSPEND

Switch trace off for all communicators
(COM) or only NET, SSL or TCP
communicators.

COM | NET | SSL |
TCP

TRACE-OFF

Set trace level for all communicators
(COM) or only NET, SSL or TCP
communicators.

COM | NET | SSL |
TCP

TRACE-ON LEVELn

135Broker ACI for PL/I

Broker CIS Data Structures

Common Header Structure for Response Data

This section describes the header structure (Struct HD_CIS), which is used by both the information
services and the command service. For command-specific or information-specific structures, see
Command Request Structure or Information Request Structure.

The header structure is always the first structure in the receive buffer that comes back from an
information or command service request. Even receive buffers obtainedwith subsequent RECEIVE
commands have this structure as the first part of the buffer. The header structure has the following
layout, whereby in the Format column I = 4-byte integer value:

Comment

CIS
Interface
VersionFormatField Name

Result of request. Value 0 indicates success. See Broker Command
and Information Services Error Codes.

1I4ERROR-CODE

Total number of objects returned in object list.1I4TOTAL-NUM-OBJECTS

Number of objects returned within current receive block.1I4CURRENT-NUM-OBJECTS

Length of longest SERVER-CLASS value in total object list. This
field is only relevant if the object-specific structure for the object
list contains the SERVER-CLASS field.

1I4MAX-SC-LEN

Length of longest SERVER-NAME value in total object list. This
field is only relevant if the object-specific structure for the object
list contains the SERVER-NAME field.

1I4MAX-SN-LEN

Length of longest SERVICE value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the SERVICE field.

1I4MAX-SV-LEN

Length of longest USER-ID value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the USER-ID field.

1I4MAX-UID-LEN

Length of longest TOKEN value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the TOKEN field.

1I4MAX-TK-LEN

This is the time that the requestwas received by the Broker kernel.4I4REQUESTTIME

This is any secondary error code from the broker kernel. See Error
Messages and Codes.

5A8ETB-ERROR-CODE

This is any secondary error text from the broker kernel. See Error
Messages and Codes.

5A40ETB-ERROR-TEXT

Length of longest RPC-LIB value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the RPC-LIB field.

6I4MAX-PPC-LIB-LEN

Broker ACI for PL/I136

Broker CIS Data Structures

Comment

CIS
Interface
VersionFormatField Name

Length of longest RPC-PGM value in total object list. This field is
only relevant if the object-specific structure for the object list
contains the RPC-PGM field.

6I4MAX-PPC-PGM-LEN

137Broker ACI for PL/I

Broker CIS Data Structures

Information Request Structure

The information services can handle many different information structures. Applications use the
information request structure to specifywhich information structure is required. See also Examples
of Selection Criteria.

The layout of the information request structure is shown in the following table. Fields BLOCK-LENGTH,
VERSION, and OBJECT-TYPE are mandatory. All other fields are optional. Fields of type I or B are
considered “not specified” if they contain lowvalue. Fields of typeA are considered “not specified”
if they contain low value or spaces (according to the caller's character set).

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

Defines the block length of the data packages returned (without
length of header.)
(RECEIVE-LENGTH field of ACI not used in order to keep the
interfaces independent.)

R1I4BLOCK-LENGTH

Interface version. This describes the kind and amount of
information wanted and enables us to extend the information

R1I2VERSION

in further versions of INFO services. Valid versions are 1 and
above.

Specifies the object type forwhich the information is required.
If an object type is specified without additional selection

R1I2OBJECT-TYPE

criteria, a list of all active objects of that type is returned in
accordancewith the information service being addressed (INFO
or USER-INFO). Possible values are:

Info on this Broker. (1)7BROKER

Info on active clients2CLIENT

Info on command log filters23CMDLOG_FILTER

Info on active conversations4CONVERSATION

Info on the Entire Net-Work
communicator. (1)

24NET

Info on participants18PARTICIPANT

Info on Broker pool usage and
dynamic memory management. (1)

25POOL_USAGE

Info on a unit of work's status9PSF

Info on the Adabas persistent store. (1)12PSFADA

Info on the c-tree persistent store. (1)20PSFCTREE

Info on the DIV persistent store. (1)11PSFDIV

Broker ACI for PL/I138

Broker CIS Data Structures

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

Info on Broker resource usage. (1)26RESOURCE_USAGE

Info on EntireX Security. (1)21SECURITY

Info on active servers1SERVER

Info on active services6SERVICE

Info on SSL communicators. (1)22SSL

Statistics on selected Broker
resources. (1)

27STATISTICS

Info on TCP communicators. (1)19TCP

Statistics onUOWsof selected services.31UOW_STATISTICS

Info on all users of Broker regardless
of the user type

28USER

Info on all workers. (1)8WORKER

Info on usage of worker tasks and
dynamic worker management. (1)

30WORKER_USAGE

(1) No additional selection criteria are needed. Other selection
criteria fields are ignored.

Selection criteria field. This is the user ID of the client or server
as specified in the field USER-ID of the EntireX Broker ACI.

O1A32USER-ID

The value of the field is used to restrict information to related
objects of a specific user.

Selection criteria field. Specifies the internal unique ID which
is used to distinguish between several users with the same
user ID.
This field uniquely identifies a client or server process. The
value for this fieldmust be obtained by a previous info request.
This field is used as a handle, that is, no translation is
performed. Any value different from low valuewill be treated
as selection value.

O1B28P-USER-ID

Selection criteria field. Corresponds to the TOKEN field of the
EntireX Broker ACI. The value restricts the information to

O1A32TOKEN

objects of users which have specified this TOKEN value in their
Broker calls.

Selection criteria field. Corresponds to field SERVER-CLASS in
the EntireX BrokerACI. The value of this field is used to restrict

O1A32SERVER-CLASS

information to objects concerning the services registered with
this class.

Selection criteria field. Corresponds to field SERVER-NAME in
the EntireX BrokerACI. The value of this field is used to restrict

O1A32SERVER-NAME

information to objects concerning the services registered with
this server name.

139Broker ACI for PL/I

Broker CIS Data Structures

Comment
Opt/
Req

CIS
Interface
VersionFormatField Name

Selection criteria field. Corresponds to field SERVICE in the
EntireX Broker ACI. The value of this field is used to restrict

O1A32SERVICE

information to objects concerning the services registered with
this service name.

Selection criteria field. Specifies the conversation ID of a
conversation. Using this field uniquely identifies a

O1A16CONV-ID

conversation. The value for this field must be obtained by a
previous info request.

Reserved for future use.1I2RESERVED

Selection criteria field. Specifies the unit of work ID.O2A16UOWID

Selection criteria field. Specifies the unit of work status search
criteria:

O2I1UOWSTATUS

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

Selection field. Specifies the user status selection value.O2A32USERSTATUS

Selection field. Specifies the unit-of-work receiver's user ID.O2A32RECVUID

Selection field. Specifies the unit-of-work receiver's token ID.O2A32RECVTOKEN

Selection field. Specifies the unit-of-work receiver's server
name.

O2A32RECVSERVER

Selection field. Specifies the unit-of-work receiver's service
name.

O2A32RECVSERVICE

Selection field. Specifies the unit-of-work receiver's class name.O2A32RECVCLASS

Selection field. Specifies the conversation type:O5I2CONVERSATION-TYPE

NON-CONVERSATIONAL1

CONVERSATIONAL2

Broker ACI for PL/I140

Broker CIS Data Structures

Legend

Long Form / DescriptionAbbreviation

The field is specified.Y

The field is ignored.I

The field is not specified; information should not be restricted by its value.N

141Broker ACI for PL/I

Broker CIS Data Structures

Column Abbreviation Table

Long Form / DescriptionAbbreviation

USER-IDUID

RECEIVER USER-IDRECV-UID

P-USER-IDPUID

TOKENTK

RECEIVER TOKENRECV-TK

SERVER-CLASSSC

RECEIVER SERVER-CLASSRECV-SC

SERVER-NAMESN

RECEIVER SERVER-NAMERECV-SN

SERVICESV

RECEIVER SERVICERECV-SV

CONV-IDCID

UNIT OF WORK IDUOWID

UNIT OF WORK STATUSUWSTAT

USER STATUSUSTAT

Broker ACI for PL/I142

Broker CIS Data Structures

Selection Criteria CLIENT Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYClient (1)

IIIIYYNClient (2)

IIIINYNClients with UID

IIIIYNNClients with TK

IIIINNNall clients

Selection Criteria SERVER Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYServer (1)

IIIIYYNServer (2)

IIIINYNServers with UID

IIIIYNNServers with TK

IYYYNNNServers offering service

INNNNNNAll Servers

Selection Criteria SERVICE Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYServices offered by this server (1)

IIIIYYNServices offered by this server (2)

IYYYNNNServices with this SC/SN/SV

INYYNNNServices with this SC/SN

IYNYNNNServices with this SC/SV

INNYNNNServices with this SC

IYYNNNNServices with this SN/SV

INYNNNNServices with this SN

IYNNNNNServices with this SV

INNNNNNAll services

143Broker ACI for PL/I

Broker CIS Data Structures

Selection Criteria CONV Object Type

CIDSVSNSCTKUIDPUIDSelection

IIIIIIYConversations of this client/server (1)

IIIIYYNConversations of this client/server (2)

IYYYNNNConversations of this service

YNNNNNNThe conversation with CID

NNNNNNNAll Conversations

Broker ACI for PL/I144

Broker CIS Data Structures

Selection Criteria PSF Object Type (Version 2 and above)

CIDSVSNSCTKUIDUOWIDSelection

IIIIIIYThe unit of work

YIIIIINAll units of work for the conversation

NNNNNYNUOWs with client UID

NNNNYNNUOWs with clients having TK

NNNYNNNUOWs with the client SC

NNYNNNNUOWs with the client SN

NYNNNNNUOWs with the client SV

NNYYNNNUOWs with the client SC/SN

NYNYNNNUOWs with the client SC/SV

NYYYNNNUOWs with the client SC/SN/SV

NYYNNNNUOWs with the client SN/SV

NNNNNNNAll UOWs

YNIIIIIUOWs with user status

NYIIIIIUOWs with UOW status

NNNNNNYUOWs with server ID

NNNNYNNUOWs with server having TK

NNNYNNNUOWs with the server SC

NNYNNNNUOWs with the server SN

NYNNNNNUOWs with the server SV

NNYYNNNUOWs with the server SC/SN

NYNYNNNUOWs with the server SC/SV

NYYYNNNUOWs with the server SC/SN/SV

NYYNNNNUOWs with the server SN/SV

NNNNNNNAll UOWs

145Broker ACI for PL/I

Broker CIS Data Structures

Key

if participant is not using TK (token) for authentication(1)

if participant is using TK (token) for authentication(2)

Broker ACI for PL/I146

Broker CIS Data Structures

Information Reply Structures

The information reply structures are defined and described in the delivered source code. The
structures are available for programming languages Assembler, C, Natural and COBOL.

■ BROKER-OBJECT (Struct INFO_BKR)
■ CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)
■ CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)
■ CONVERSATION-OBJECT (Struct INFO_CV)
■ NET-OBJECT (Struct INFO_NET)
■ POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)
■ PSF-OBJECT (Struct INFO_PSF)
■ PSFADA-OBJECT (Struct INFO_PSFADA)
■ PSFCTREE-OBJECT (Struct INFO_PSTCTREE)
■ PSFDIV-OBJECT (Struct INFO_PSFDIV)
■ RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)
■ SECURITY-OBJECT (Struct INFO_SECURITY)
■ SERVICE-OBJECT (Struct INFO_SV)
■ SSL-OBJECT (Struct INFO_SSL)
■ STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)
■ TCP-OBJECT (Struct INFO_TCP)
■ UOW-STATISTICS (Struct INFO_UOW_STATISTICS)
■ USER-OBJECT (Struct INFO_USER)
■ WORKER-OBJECT (Struct INFO_WKR)
■ WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

147Broker ACI for PL/I

Broker CIS Data Structures

BROKER-OBJECT (Struct INFO_BKR)

Description / Action

CIS
Interface
VersionFormatField Name

Platform dependent.1A8PLATFORM

Time since Broker started, in seconds. Computed
from current time - Broker start time.

1I4RUNTIME

Number of active workers.1I4NUM-WORKER-ACT

Number of long buffers defined (see
NUM-LONG-BUFFER).

1I4NUM-LONG

Number of long buffers active (in use).1I4LONG-ACT

Highest number of long buffers active since Broker
started.

1I4LONG-HIGH

Number of short buffers defined (see
NUM-SHORT-BUFFER).

1I4NUM-SHORT

Number of short buffers active.1I4SHORT-ACT

Highest number of short buffers active since Broker
started.

1I4SHORT-HIGH

Size of long buffer entry.1I4LONG-SIZE

Size of short buffer entry.1I4SHORT-SIZE

Number of services defined (see NUM-SERVICE).1I4NUM-SERVICE

Number of services active.1I4SERVICE-ACT

Number of servers defined (see NUM-SERVER).1I4NUM-SERVER

Number of servers active. This counter also includes
the active Attach Server instances.

1I4SERVER-ACT

Highest number of servers active since Broker
started.

1I4SERVER-HIGH

Number of clients defined (see NUM-CLIENT).1I4NUM-CLIENT

Number of clients active.1I4CLIENT-ACT

Highest number of clients active since Broker
started.

1I4CLIENT-HIGH

Number of conversations defined (see
NUM-CONVERSATION).

1I4NUM-CONV

Highest number of conversations active since Broker
started.

1I4CONV-HIGH

Actual Trace Level value.1I2TRACE-LEVEL

Unused.1I2UNUSED1

Maximum number of active UOWs.2I4LMAXUOWS

Maximum number of messages in a UOW.2I4LMAXUOWMSG

Broker ACI for PL/I148

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Maximum UOW lifetime2I4LUWTIME

Currently not in use. (Count is always zero.)2I4LMAXDELCNT

Maximum size of a message2I4LMAXMSGSIZE

Number of UOWs.2I4LTOTALUOWS

Store attribute for all UOWs:2I1CSTORE

OFF0

BROKER1

Startup value for persistent store:2I1CPSTORE

NO0

HOT1

COLD2

WARM4

UOW status lifetime multiplier (0-255)2I1CUWSTATP

Default status attribute for all UOWs:2I1CDEFERRED

NO0

YES1

3A3CACCOUNTING

Accounting not activeNO

Accounting active on UNIX and WindowsYES

SMF Record number on z/OSnnn

Authorization Default:3I1CAUTHDEFAULT

NO0

YES1

Port number being used for SSL transport (UNIX
and Windows only).

3I4LSSLPORT

New UOWmessages:3I1NEW-UOW-MESSAGES

NO0

YES1

Unused.3I1UNUSED2

Full platform name where Broker is running3A32CPLATNAME

149Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Persistent store type. It will be one of the following
values:

3A8CPSTORETYPE

Data-in-Virtual Persistent Store (z/OS
only)

DIV

B-Tree Store (UNIX and Windows only,
no longer supported)

FILE

Adabas Persistent Store (all platforms)ADABAS

For example: 0x06.4I1HIGHEST-API-VERSION

For example: 0x06.4I1HIGHEST-CIS-VERSION

4I1PSTORE-CONNECTED

NO0

YES1

Number of attach servers active.4I4ATTACH-MGRS-ACT

Unit of work status additional lifetime.4I4LUWSTAT-ADD-TIME

Version, release, service pack, and patch level, e.g.
8.0.1.00.

4A16PRODUCT-VERSION

License expiration date.5A10LICENSE-EXPIRATION-DATE

Security type:5I1SECURITY-TYPE

None0

SAG1

Light2

Other3

5I1ACCOUNTING-ENABLED

Accounting enabled1

Accounting disabled0

Number of free CCB entries (conversation control
block).

5I4NUM-FREE-CCB

Number of free PCB entries(participant control
block).

5I4NUM-FREE-PCB

Number of free PCBEXT entries (PCB extension).5I4NUM-FREE-PCBEXT

Number of free SCB entries (service control block).5I4NUM-FREE-SCB

Number of free SCBEXT entries (SCB extension).5I4NUM-FREE-SCBEXT

Number of free TCBEXT entries (TCP extension).5I4NUM-FREE-TCBEXT

Number of free TOQ entries (timeout queue).5I4NUM-FREE-TOQ

Number of freeUWCB entries (UOWcontrol block).5I4NUM-FREE-UWCB

Broker ACI for PL/I150

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of communication buffers.5I4NUM-COM-BUFFER

Number of communication buffer slots.5I4NUM-COM-SLOT

Number of communication buffer slots free.5I4NUM-COM-SLOT-FREE

Number of CMDLOG filters.5I4NUM-CMDLOG-FILTER

Number of CMDLOG filters active.5I4NUM-CMDLOG-FILTER-ACTIVE

Reflects status of Broker attribute CMDLOG:5I1CMDLOG

Command logging features are available for the
Broker

1

Command logging not available0

Reflects result of commands DISABLE-CMDLOG and
ENABLE-CMDLOG:

5I1CMDLOG-ENABLED

Command logging enabled1

Command logging temporarily disabled0

Alignment.5A2NOTUSED3

Attribute file name.5A256ATTRIBUTE-FILE-NAME

Name of trace log file.5A256LOG-FILE-NAME

Size of trace log file.5I4LOG-FILE-SIZE

License file name.5A256LICENSE-FILE-NAME

Max. size of CMDLOG file.5I4CMDLOG-FILE-SIZE

Name of open CMDLOG file.5A256OPEN-CMDLOG-FILE-NAME

Size of CMDLOG file.5I4OPEN-CMDLOG-FILE-SIZE

Name of closed CMDLOG file.5A256CLOSED-CMDLOG-FILE-NAME

Size of closed CMDLOG file.5I4CLOSED-CMDLOG-FILE-SIZE

Reserved for future use.5I4RESERVED

Name of accounting output file.5A256ACCOUNTING-FILE-NAME

Size of accounting output file.5I4ACCOUNTING-FILE-SIZE

Control interval in seconds.5I4CONTROL-INTERVAL

Max. number of takeover attempts.5I4MAX-TAKEOVER-ATTEMPTS

Broker run mode.5A16RUN-MODE

Partner Cluster Address.5A32PARTNER-CLUSTER-ADDRESS

Number of CMDLOG switches by size.5I4CMDLOG-SWITCHES-BY-SIZE

Number of CMDLOG switches by CIS.5I4CMDLOG-SWITCHES-BY-CIS

Client timeout in seconds. See broker attribute
CLIENT-NONACT.

7I4CLIENT-NONACT

151Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number ofwork queue entries. See broker attribute
NUM-WQE.

7I4NUM-WQE

Size of allocated storage in bytes.7I4TOTAL-STORAGE-ALLOCATED

Highest size of allocated storage in bytes since
Broker started.

7I4TOTAL-STORAGE-ALLOCATED-HIGH

Maximum of storage that can be allocated. See
broker attribute MAX-MEMORY.

7I4TOTAL-STORAGE-LIMIT

BROKER-ID. See broker attribute BROKER-ID.7A32BROKER-ID

Name of host running broker (on z/OS copied from
CVTSNAME).

7A256HOST-NAME

Name of SYSPLEX (copied from ECVTSPLX).7A8SYSPLEX-NAME

Auto logon:7I1CAUTOLOGON

NO0

YES1

See broker attribute AUTOLOGON.

Dynamic memory management:7I1CDYNAMIC-MEMORY-MANAGEMENT

NO0

YES1

Seebroker attributeDYNAMIC-MEMORY-MANAGEMENT.

Dynamic worker management:7I1CDYNAMIC-WORKER-MANAGEMENT

NO0

YES1

Seebroker attributeDYNAMIC-WORKER-MANAGEMENT.

Service updates:7I1CSERVICE-UPDATES

NO0

YES1

See broker attribute SERVICE-UPDATES.

Was TRANSPORT=NET specified?7I1CTRANSPORT-NET

NO0

YES1

See broker attribute TRANSPORT=NET.

Broker ACI for PL/I152

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Was TRANSPORT=SSL specified?7I1CTRANSPORT-SSL

NO0

YES1

See broker attribute TRANSPORT=SSL.

Was TRANSPORT=TCP specified?7I1CTRANSPORT-TCP

NO0

YES1

See broker attribute TRANSPORT=TCP.

Value defined for attribute TRAP-ERROR.7I4NTRAP-ERROR

Amount of CPU time in seconds used by Broker
process since Broker start.

9I4CPU-USED-IN-SECONDS

Additional CPU time in microseconds used by
Broker process since Broker start. (CPU time is

9I4CPU-USED-REST-IN-MICROSECONDS

provided by twofields because total value including
microseconds may exceed one 4-byte integer.)

CPU time consumed by Broker process in relation
to total CPU workload in percent and normalized
by the number of CPUs. It never exceeds 100%.

9I4CPU-USED-PERCENTAGE

Application Monitoring.11I1APPLICATION-MONITORING

NO0

YES1

See broker attribute APPLICATION-MONITORING.

Collector Broker ID. See Application Monitoring
attribute COLLECTOR-BROKER-ID.

11A64COLLECTOR-BROKER-ID

Alignment.11A3UNUSED3

Process ID of Broker. Under z/OS, the JOB-ID is
returned.

12A16PROCESS-ID

Thread ID of Broker. Under z/OS, the TCB address
of the main task is returned.

12A16THREAD-ID

153Broker ACI for PL/I

Broker CIS Data Structures

CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)

Description / Action

CIS
Interface
VersionFormatField Name

Corresponds to USER-ID in theACI. Themaximum
length of this field is determined by field

1A32USER-ID

MAX-UID-LEN in the header. See Common Header
Structure for Response Data.

Specifies the physical internal unique ID which is
used to distinguish between several users with the

1B28P-USER-ID

same user ID. This field is used as a handle, that is,
no translation is performed. With CIS commands
SHUTDOWN PARTICIPANT and SHUTDOWN SERVER,
field SEQNO is provided as unique criterion.

No longer used.1A28P-USER-ID-CHAR

Corresponds to TOKEN in the ACI. The maximum
length of this field is determined by MAX-TK-LEN

1A32TOKEN

in the header. See Common Header Structure for
Response Data.

Character set of user's platform:1I2CHAR-SET

EBCDIC IBM34

EBCDIC SNI66

ASCII PC 3861

ASCII PC OS/216

ASCII 8859-1128

Endian type of user's platform:1I2ENDIAN

Big endian (high order first)1

Little endian0

Status of user:1I2STATUS

Not waiting0

Waiting5

Unused.1I2UNUSED1

Only valid if user is waiting. Indicates what kind of
conversation user is waiting for:

1A16WAIT-CONV-TYPE

User waiting for new conversationsNEW

User waiting for any conversationANY

User waiting for old conversationsOLD

Broker ACI for PL/I154

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

User waiting for non-conversational
reply

NONE

User waiting for specific conversationCONV-ID

When waiting for ANY, NEW or OLD, the class name
of the service to wait for is returned.

1A32WAIT-SERVER-CLASS

When waiting for ANY, NEW or OLD, the server name
of the service to wait for is returned.

1A32WAIT-SERVER-NAME

When waiting for ANY, NEW or OLD, the name of the
service to wait for is returned.

1A32WAIT-SERVICE

Number of active conversations of this user.1I4CONV-ACT

Number of services active (offered) by this server.
This information is available for server only.

1I4SERVICE-ACT

Elapsed time since the last activity of the user.1I4LAST-ACTIVE

Non-activity time-out value.1I4NONACT

Accumulated time a server waited for new
conversations. (Receive with CONVID=NEW or

1I4WAIT-NEW

CONVID=ANY). A high value indicates that server
has capacity.

Number of times a server had to wait for new
conversations.

1I4NUM-WAIT-NEW

Accumulated time a server or client waited for
messages of existing conversations. (Receive with

1I4WAIT-OLD

CONVID=cid or CONVID=OLD.) A high value for a
server indicates that server had to wait for the
clients. A high value for a client indicates that the
server's response was delayed.

Number of times a server or client had to wait for
messages of existing conversations.

1I4NUM-WAIT-OLD

Sumof conversations (including non-conversational
requests) for the user since start of User.

1I4SUM-CONV

Number of UOWs.2I4LTOTALUOWS

IPv4 address of client/server.4A16IP-ADDRESS

Host name of client/server.4A256HOST-NAME

Receive option.4I1RECV-OPTION

Attach manager indicator.4I1ATTACH-MGR

Unused.4I2UNUSED2

Reserved for future use.5A32RESERVED_ETBINFO_V73_1

155Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

The name of the executable that called the broker.
If the program that issued the broker call is running

5A64APPLICATION-NAME

on a mainframe system, the eight-byte job name is
used as application name. If the job name is shorter
than eight bytes, it is padded with underscore
characters.

If the z/OS program issuing the broker call is
running in a TP monitor (except IDMS/DC), a dash
sign is set as ninth byte. The following eight bytes
fromposition 10-17 containmonitor-dependent data:

The four-byte transaction ID is set.CICS

The eight-byte program name is set.Com-plete

The four-byte IMS ID is set.IMS

Padding blanks in bytes 10-17 are replaced by
underscore characters.

Application type. This field is used internally. It can
be set by other Software AG products, which pass

5A8APPLICATION-TYPE

this value to the Broker stub via an unpublished
control block. If no value is set, the respective
operating system is displayed here.

Reserved for future use.5A32RESERVED_ETBINFO_V73_3

Counter AUTHORIZ succeeded.5I4COUNT-AUTHORIZATION-SUCCEEDED

Counter AUTHORIZ failed.5I4COUNT-AUTHORIZATION-FAILED

Creation time of the participant. Time as time_t
value (number of seconds since the epoch (00:00:00
UTC, January 1, 1970)).

Note: Deprecated (can only handle timestamps up
to January 2038). New field CREATE-TIME-CL32
was introduced in CIS version 12.

5I4CREATE-TIME

Name of the RPC library of the current user request.
If the user is inactive at the time of the request and

6A128RPC-LIBRARY-NAME

has not issued a request to be processed by the
Broker, no RPC information is displayed.

Name of the RPC program of the current user
request. If the user is inactive at the time of the

6A128RPC-PROGRAM-NAME

request and has not issued a request to be processed
by the Broker, no RPC information is displayed.

Unique sequence number of client/server. Can be
used with CIS command SHUTDOWN.

7I4SEQNO

Broker ACI for PL/I156

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Application version. This field is used internally. It
can be set by other Software AG products, which

7A16APPLICATION-VERSION

pass this value to the Broker stub via an unpublished
control block. The value is the version of the
program that calls the Broker stub.

IPv6 address corresponding to attribute HOST in
DEFAULTS=SSL|TCP section of Broker attribute file.

8A46IPV6-ADDRESS

Alignment.8A2NOTUSED8

10I1ARF

Ordinary client or server.0

Client or server is an Adabas Event Replicator
source or target.

1

If ARF=1:10I1SCM

Single Conversation Mode was not activated by
the client.

0

Single Conversation Mode was activated by the
client.

1

If ARF=1 and SCM=1:10I1PREFETCH

Server is not prefetching units of work0

Server is prefetching units of work1

10I1ROAMING

Server is not using roaming of conversations.0

Server is using roaming of conversations.1

10A5RPC

Server identified as RPC server.YES

Server identified as ACI server.NO

Server not identified at all.UNDEF

Alignment.10A3NOTUSED10

Process ID of client/server. Under z/OS, the job ID
is returned instead of the process ID.

12A16PROCESS-ID

Thread ID of client/server. Under z/OS, what is
returned depends on the environment:

12A16THREAD-ID

TCB address.Batch

Terminal ID (if present) or task number.CICS

157Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Com-plete Unit-of-work control block
address (CUOW).

Com-plete

Terminal ID (if present) or TCB address.IMS

Terminal ID (if present) or TCB address.Natural

USER-ID verified by the security system. Only
available with CIS service INFO. Under z/OS and

12A32VERIFIED-USER-ID

using SSL certificates for authentication: the
USER-ID coresponding to SSL certificate of the
participant.

Creation time of the participant as 32-byte string. It
replaces the deprecated field CREATE-TIME that can
not handle timestamps beyond January 2038.

12A32CREATE-TIME-CL32

CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)

Description / Action

CIS
Interface
VersionFormatField Name

User ID.5A32UID

Class.5A32SERVER-CLASS

Server.5A32SERVER

Service.5A32SERVICE

User ID of filter setter.5A32SETTER-UID

5I1ENABLED

Enabled1

Disabled0

CONVERSATION-OBJECT (Struct INFO_CV)

Description / Action

CIS
Interface
VersionFormatField Name

Unique identification of conversation.1A16CONV-ID

User ID of server - corresponds to USER-ID in the ACI. The
maximum length of this field is determined by field

1A32SERVER-USER-ID

MAX-UID-LEN in the header. See Common Header Structure
for Response Data.

Broker ACI for PL/I158

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Specifies the physical internal unique ID which is used to
distinguish between several users with the same user ID.

1B28SERVER-P-USER-ID

This field is used as a handle, that is, no translation is
performed.

No longer used.1A28SERVER-P-USER-ID-CHAR

Partner's additional identification - corresponds to TOKEN
in the ACI. The maximum length of this field is determined

1A32SERVER-TOKEN

by MAX-TK-LEN in the header. SeeCommonHeader Structure
for Response Data.

Owners name. Corresponds to USER-ID in the ACI.1A32CLIENT-USER-ID

Specifies the physical internal unique ID which is used to
distinguish between several users with the same user ID.

1B28CLIENT-P-USER-ID

This field is used as a handle, that is, no translation is
performed.

No longer used.1A28CLIENT-P-USER-ID-CHAR

Owner's additional identification - corresponds to TOKEN in
the ACI.

1A32CLIENT-TOKEN

Server class of Service of Conversation.1A32SERVER-CLASS

Server name of Service of Conversation. The maximum
length of SERVER-CLASS, SERVER-NAME and SERVICE is

1A32SERVER-NAME

determined by fields MAX-SC-LEN, MAX-SN-LEN and
MAX-SV-LEN in the header. SeeCommonHeader Structure for
Response Data.

Service name of Service of Conversation.1A32SERVICE

Conversation timeout (corresponds to CONV-NONACT of the
service in the attribute file)

1I4CONV-TIME-OUT

Elapsed time since the last activity for this conversation.1I4LAST-ACTIVE

Type of conversation:1I2TYPE

conversational0

non-conversational1

Unused.2I2UNUSED1

Number of UOWs.2I4LTOTALUOWS

Name of the RPC library that was provided by the RPC
client at the start of the conversation, that is, the first SEND

6A128CLIENT-RPC-LIBRARY-NAME

that contains both RPC library and RPC program is stored
in the conversation.

Name of the RPC program that was provided by the RPC
client at the start of the conversation, that is, the first SEND

6A128CLIENT-RPC-PROGRAM-NAME

159Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

that contains both RPC library and RPC program is stored
in the conversation.

Name of the RPC library that was provided by the RPC
server with the first response to clients request, that is, the

6A128SERVER-RPC-LIBRARY-NAME

first SEND that contains both RPC library and RPC program
is stored in the conversation.

Name of the RPC program that was provided by the RPC
server with the first response to clients request, that is, the

6A128SERVER-RPC-PROGRAM-NAME

first SEND that contains both RPC library and RPC program
is stored in the conversation.

10I1ARF

Ordinary conversation.0

Conversation belongs to Adabas Event Replication.1

If ARF=1:10I1SCM

Conversation does not run in Single ConversationMode.0

conversation runs in Single Conversation Mode.1

If ARF=1 and SCM=1:10I1PREFETCH

Server is not prefetching units of work.0

Server is prefetching units of work.1

10I1ROAMING

Server is not using roaming of conversations.0

Server is using roaming of conversations.1

Broker ACI for PL/I160

Broker CIS Data Structures

NET-OBJECT (Struct INFO_NET)

Description / Action

CIS
Interface
VersionFormatField Name

Clone index.5I4CLONE-INDEX

Status of communicator. Possible values defined as
ETB_INFO_COM_STATUS_.

5I4STATUS

DBID.5I2DBID

Adabas SVC number.5I2SVC-NUMBER

Maximum buffer length.5I4IUBL

MPM-12 timeout.5I4TIME

Number of attached buffers.5I4NABS

Number of CQEs.5I4CQES

DBID table entry overwrite.5I1FORCE

5I1LOCAL

Local node1

Not local0

Alignment.5A2NOTUSED0

POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)

Description / Action

CIS
Interface
VersionFormatField Name

Number of pools currently allocated.7I4TOTAL-NUM-POOLS

Size of allocated storage in bytes.7I4TOTAL-STORAGE-ALLOCATED

ACCOUNTING: Number of pools.7I4ACCOUNTING-NUM-POOLS

ACCOUNTING: Size of all pools in bytes.7I4ACCOUNTING-SIZE-ALL-POOLS

ACCOUNTING: Size of one pool in bytes.7I4ACCOUNTING-SIZE-ONE-POOL

BLACKLIST: Number of pools.7I4BLACKLIST-NUM-POOLS

BLACKLIST: Size of all pools in bytes.7I4BLACKLIST-SIZE-ALL-POOLS

BLACKLIST: Size of one pool in bytes.7I4BLACKLIST-SIZE-ONE-POOL

BROKER-TO-BROKER: Number of pools.7I4BROKER-TO-BROKER-NUM-POOLS

BROKER-TO-BROKER: Size of all pools in bytes.7I4BROKER-TO-BROKER-SIZE-ALL-POOLS

BROKER-TO-BROKER: Size of one pool in bytes.7I4BROKER-TO-BROKER-SIZE-ONE-POOL

COM-BUFFER: Number of pools.7I4COM-BUFFER-NUM-POOLS

COM-BUFFER: Size of all pools in bytes.7I4COM-BUFFER-SIZE-ALL-POOLS

COM-BUFFER: Size of one pool in bytes.7I4COM-BUFFER-SIZE-ONE-POOL

161Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

CMDLOG: Number of pools.7I4CMDLOG-NUM-POOLS

CMDLOG: Size of all pools in bytes.7I4CMDLOG-SIZE-ALL-POOLS

CMDLOG: Size of one pool in bytes.7I4CMDLOG-SIZE-ONE-POOL

CONNECTION: Number of pools.7I4CONNECTION-NUM-POOLS

CONNECTION: Size of all pools in bytes.7I4CONNECTION-SIZE-ALL-POOLS

CONNECTION: Size of one pool in bytes.7I4CONNECTION-SIZE-ONE-POOL

CONVERSATION: Number of pools.7I4CONVERSATION-NUM-POOLS

CONVERSATION: Size of all pools in bytes.7I4CONVERSATION-SIZE-ALL-POOLS

CONVERSATION: Size of one pool in bytes.7I4CONVERSATION-SIZE-ONE-POOL

HEAP: Number of pools.7I4HEAP-NUM-POOLS

HEAP: Size of all pools in bytes.7I4HEAP-SIZE-ALL-POOLS

HEAP: Size of one pool in bytes.7I4HEAP-SIZE-ONE-POOL

MSG-BUFFER-LONG: Number of pools.7I4MSG-BUFFER-LONG-NUM-POOLS

MSG-BUFFER-LONG: Size of all pools in bytes.7I4MSG-BUFFER-LONG-SIZE-ALL-POOLS

MSG-BUFFER-LONG: Size of one pool in bytes.7I4MSG-BUFFER-LONG-SIZE-ONE-POOL

MSG-BUFFER-SHORT: Number of pools.7I4MSG-BUFFER-SHORT-NUM-POOLS

MSG-BUFFER-SHORT: Size of all pools in bytes.7I4MSG-BUFFER-SHORT-SIZE-ALL-POOLS

MSG-BUFFER-SHORT: Size of one pool in bytes.7I4MSG-BUFFER-SHORT-SIZE-ONE-POOL

PARTICIPANT: Number of pools.7I4PARTICIPANT-NUM-POOLS

PARTICIPANT: Size of all pools in bytes.7I4PARTICIPANT-SIZE-ALL-POOLS

PARTICIPANT: Size of one pool in bytes.7I4PARTICIPANT-SIZE-ONE-POOL

PARTICIPANT-EXT: Number of pools.7I4PARTICIPANT-EXT-NUM-POOLS

PARTICIPANT-EXT: Size of all pools in bytes.7I4PARTICIPANT-EXT-SIZE-ALL-POOLS

PARTICIPANT-EXT: Size of one pool in bytes.7I4PARTICIPANT-EXT-SIZE-ONE-POOL

PROXY-QUEUE: Number of pools.7I4PROXY-QUEUE-NUM-POOLS

PROXY-QUEUE: Size of all pools in bytes.7I4PROXY-QUEUE-SIZE-ALL-POOLS

PROXY-QUEUE: Size of one pool in bytes.7I4PROXY-QUEUE-SIZE-ONE-POOL

SERVICE-ATTRIBUTES: Number of pools.7I4SERVICE-ATTRIBUTES-NUM-POOLS

SERVICE-ATTRIBUTES: Size of all pools in
bytes.

7I4SERVICE-ATTRIBUTES-SIZE-ALL-POOLS

SERVICE-ATTRIBUTES: Size of one pool in
bytes.

7I4SERVICE-ATTRIBUTES-SIZE-ONE-POOL

SERVICE: Number of pools.7I4SERVICE-NUM-POOLS

SERVICE: Size of all pools in bytes.7I4SERVICE-SIZE-ALL-POOLS

SERVICE: Size of one pool in bytes.7I4SERVICE-SIZE-ONE-POOL

Broker ACI for PL/I162

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

SERVICE-EXT: Number of pools.7I4SERVICE-EXT-NUM-POOLS

SERVICE-EXT: Size of all pools in bytes.7I4SERVICE-EXT-SIZE-ALL-POOLS

SERVICE-EXT: Size of one pool in bytes.7I4SERVICE-EXT-SIZE-ONE-POOL

TIMEOUT-QUEUE: Number of pools.7I4TIMEOUT-QUEUE-NUM-POOLS

TIMEOUT-QUEUE: Size of all pools in bytes.7I4TIMEOUT-QUEUE-SIZE-ALL-POOLS

TIMEOUT-QUEUE: Size of one pool in bytes.7I4TIMEOUT-QUEUE-SIZE-ONE-POOL

TRANSLATION: Number of pools.7I4TRANSLATION-NUM-POOLS

TRANSLATION: Size of all pools in bytes.7I4TRANSLATION-SIZE-ALL-POOLS

TRANSLATION: Size of one pool in bytes.7I4TRANSLATION-SIZE-ONE-POOL

UOW: Number of pools.7I4UOW-NUM-POOLS

UOW: Size of all pools in bytes.7I4UOW-SIZE-ALL-POOLS

UOW: Size of one pool in bytes.7I4UOW-SIZE-ONE-POOL

WORK-QUEUE: Number of pools.7I4WORK-QUEUE-NUM-POOLS

WORK-QUEUE: Size of all pools in bytes.7I4WORK-QUEUE-SIZE-ALL-POOLS

WORK-QUEUE: Size of one pool in bytes.7I4WORK-QUEUE-SIZE-ONE-POOL

PSF-OBJECT (Struct INFO_PSF)

Information about individual UOWs, or groups of UOWs, can be obtained through information
services.

Description / Action

CIS
Interface
VersionFormatField Name

Unit of work ID.2A16UOWID

Conversation ID.2A16CONVID

Sender user ID.2A32SENDERUID

Sender user token2A32SENDERTOKEN

Sender server name2A32SENDERSERVER

Sender server class2A32SENDERCLASS

Sender service name2A32SENDERSERVICE

Receiver user ID.2A32RECVRUID

Receiver user token2A32RECVRTOKEN

Receiver server name2A32RECVRSERVER

Receiver server class2A32RECVRCLASS

Receiver service name2A32RECVRSERVICE

163Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

User status2A32USERSTATUS

UOW status:2I1UWSTATUS

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

End of conversation state:2I1CEOC

NO0

YES1

Persistence flag:2I1CSTORE

OFF0

BROKER1

Multiplier used to calculate lifetime for the persistent
status of a UOW:

2I1CUOWSTATSTORE

no persistent status255

valid multiplier values1-254

End of conversation reason code.2I4LEOCREASON

Attempted delivery count.2I4LATTEMPTCOUNT

Number of messages.2I4LMSQCNT

Total message size.2I4LMSQSIZE

Status lifetime.2A32UWSTATUSLIFETIME

Pseudo time UOW created. Broker downtimes are
subtracted.

2A32UWCREATETIME

UOW lifetime.2I4UWLIFETIME

10I1ARF

Ordinary unit of work.0

Unit ofwork belongs toAdabas Event Replication.1

Broker ACI for PL/I164

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

If ARF=1:10I1SCM

Unit of work was not created in Single
Conversation Mode.

0

Unit of work was created in Single Conversation
Mode.

1

Number of POSTPONE-ATTEMPTS configured for the
related service.

10I4MAX-POSTPONE-ATTEMPTS

Remaining attempts moving the UOW to the
postpone queue.

10I4REMAINING-POSTPONE-ATTEMPTS

POSTPONE-DELAY in number of seconds configured
for the related service.

10I4POSTPONE-DELAY

Time when UOWwill be taken out of the postpone
queue for another processing attempt.

10A32TIME-BACK-TO-ACCEPTED

Time UOWwas committed.10A32COMMIT-TIME

Time UOWwas created.10A32CREATE-TIME

PSFADA-OBJECT (Struct INFO_PSFADA)

Note: Some of the fields listed in this table are represented by blanks or zeros under Win-
dows. Such fields will not be displayed under Windows because of this limitation.

Description / Action

CIS
Interface
VersionFormatField Name

Adabas persistent store information services version.3I4ADA-INFO-VERS

Adabas database ID (DBID) where the store is located.3I4ADA-DBID

Adabas file number of the store (FNR).3I4ADA-FNR

Adabas file name of the store.3A16ADA-FNAME

TOD of persistent store last format in YYYMMDDHHMMSST.3A16ADA-FORMAT-TOD

Persistent store format version.3I4ADA-FORMAT-VERS

Number of times the persistent store has been opened.3I4ADA-START-CNT

TOD of persistent store last open in YYYMMDDHHMMSST.3A16ADA-START-TOD

Length of attribute data.3I4ADA-ATTLEN

Length of object identifier.3I4ADA-OID-LEN

Offset of object identifier.3I4ADA-OID-OFF

Number of attributes in the store.3I4ADA-ATT-CNT

Number of object identifiers in the store.3I4ADA-OID-CNT

165Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of upper index extents of the Adabas file used by the store.3I4ADA-UI-EXTS

Number of normal index extents of the Adabas file used by the store.3I4ADA-NI-EXTS

Number of address converter extents of the Adabas file used by the
store.

3I4ADA-AC-EXTS

Number of data extents of the Adabas file used by the store.3I4ADA-DA-EXTS

Number of index levels in the Adabas file used by the store.3I4ADA-INDEX-LVLS

Percentage of upper index that has been used by the store.3I4ADA-UI-PCT

Percentage of normal index that has been used by the store.3I4ADA-NI-PCT

Percentage of address converter that has been used by the store.3I4ADA-AC-PCT

Percentage of data area that has been used by the store.3I4ADA-DA-PCT

PSTORE trace level.5I2TRACE-LEVEL

Alignment.5I2NOTUSED0

Broker ACI for PL/I166

Broker CIS Data Structures

PSFCTREE-OBJECT (Struct INFO_PSTCTREE)

Description / Action

CIS
Interface
VersionFormatField Name

Store version format.5I4FORMAT-VERS

YYYYMMDDHHMMSST cold start.5A16COLD-START-TIME

Hot starts since format.5I4HOT-STARTS

Message data file name.5A256MSG-DAT-FILE-NAME

Message data file size (64-bit).5I8MSG-DAT-FILE-SIZE

Message index file name.5A256MSG-IDX-FILE-NAME

Message index file size (64-bit).5I8MSG-IDX-FILE-SIZE

Status data file name.5A256STATUS-DAT-FILE-NAME

Status data file size (64-bit).5I8STATUS-DAT-FILE-SIZE

Status index file name.5A256STATUS-IDX-FILE-SIZE

Status index file size (64-bit).5I8STATUS-IDX-FILE-SIZE

PSTORE trace level.5I2TRACE-LEVEL

Alignment.5I2NOTUSED0

PSFDIV-OBJECT (Struct INFO_PSFDIV)

Information services also provide detailed information on the allocation and usage of the various
storage pools that implement the z/OS-DIV persistent store. This information can be used to tune
the persistent store.

Note: Persistent store administration was simplified with EntireX version 9.7 and cell pool
services are no longer used. Cell pool information is no longer returned in the PSFDIV-OBJECT;
all returned fields from DIV-SH-IXMODULUS to DIV-CX-QUERY-RC contain zeros only.

Description / Action

CIS
Interface
VersionFormatField Name

PSD query structure version.2I4DIV-INFO-VERS

Persistent store name (DATASPACE-NAME in
DIV-specific attributes).

2A8DIV-SH-NAME

TOD of persistent store cold start at
YYYYMMDDHHMMSST.

2A16DIV-SH-FORMAT-TOD

Persistent store format version (PSTORE-VERSION in
Broker-specific attributes).

2I4DIV-SH-FORMAT-VERS

Highest address in the data space.2B4DIV-SH-HWMARK

Number of times the persistent store has been opened.2I4DIV-SH-START-CNT

167Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

ALET (Access List Entry Token) for data space.2B4DIV-SH-DS-ALET

Length of attribute data.2I4DIV-SH-ATT-LEN

Length of object identifier.2I4DIV-SH-OID-LEN

Offset of object identifier.2I4DIV-SH-OID-OFF

Size of array/hash modulus.2I4DIV-SH-IXMODULUS (1)

Number of cell pool definitions.2I4DIV-SH-CP-DEF-CNT (1)

Cell pool name.2A8DIV-CP-NAME (1)

Cell size.2I4DIV-CP-CELL-SIZE (1)

Total number of cells.2I4DIV-CP-CELL-TOTAL (1)

Number of cells available.2I4DIV-CP-CELL-AVAIL (1)

Number of cell pool extents.2I4DIV-CP-EXTENT-CNT (1)

Return code from cell pool query.2I4DIV-CP-QUERY-RC (1)

Cell pool extent status.2I4DIV-CX-STATUS (1)

Address of cell pool extent.2B4DIV-CX-EXTENT-ADDR (1)

Length of cell pool extent.2I4DIV-CX-EXTENT-LEN (1)

Address of cell area.2B4DIV-CX-AREA-ADDR (1)

Length of cell area.2I4DIV-CX-AREA-LEN (1)

Number of cells in extent.2I4DIV-CX-CELL-TOTAL (1)

Number of cells available in extent.2I4DIV-CX-CELL-AVAIL (1)

Return code from cell pool extent query.2I4DIV-CX-QUERY-RC (1)

PSTORE trace level.5I2TRACE-LEVEL

Alignment.5I2NOTUSED0

Number of CONTROL-DATA pools in data space.9I4DIV-CNTLDAT-NUM-POOLS

Size of one slot in a CONTROL-DATA pool.9I4DIV-CNTLDAT-BYTES-PER-SLOT

Number of allocated slots in all CONTROL-DATA pools.9I4DIV-CNTLDAT-ALLOC-SLOTS

Number of free slots in all CONTROL-DATA pools.9I4DIV-CNTLDAT-FREE-SLOTS

Number of used slots in all CONTROL-DATA pools.9I4DIV-CNTLDAT-USED-SLOTS

Number of LONG-MESSAGE-DATA pools in data space.9I4DIV-LMSGDAT-NUM-POOLS

Size of one slot in a LONG-MESSAGE-DATA pool.9I4DIV-LMSGDAT-BYTES-PER-SLOT

Number of allocated slots in all LONG-MESSAGE-DATA
pools.

9I4DIV-LMSGDAT-ALLOC-SLOTS

Number of free slots in all LONG-MESSAGE-DATA pools.9I4DIV-LMSGDAT-FREE-SLOTS

Number of used slots in allLONG-MESSAGE-DATApools.9I4DIV-LMSGDAT-USED-SLOTS

Number of SHORT-MESSAGE-DATApools in data space.9I4DIV-SMSGDAT-NUM-POOLS

Size of one slot in a SHORT-MESSAGE-DATA pool.9I4DIV-SMSGDAT-BYTES-PER-SLOT

Broker ACI for PL/I168

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of allocated slots in all SHORT-MESSAGE-DATA
pools.

9I4DIV-SMSGDAT-ALLOC-SLOTS

Number of free slots in all SHORT-MESSAGE-DATA
pools.

9I4DIV-SMSGDAT-FREE-SLOTS

Number of used slots in all SHORT-MESSAGE-DATA
pools.

9I4DIV-SMSGDAT-USED-SLOTS

Number of UOW index pools in data space.9I4DIV-UOWIDX-NUM-POOLS

Size of one slot in a UOW index pool.9I4DIV-UOWIDX-BYTES-PER-SLOT

Number of allocated slots in all UOW index pools.9I4DIV-UOWIDX-ALLOC-SLOTS

Number of free slots in all UOW index pools.9I4DIV-UOWIDX-FREE-SLOTS

Number of used slots in all UOW index pools.9I4DIV-UOWIDX-USED-SLOTS

Notes:

1. Obsolete since EntireX 9.7. Returned field contains zeros only.

169Broker ACI for PL/I

Broker CIS Data Structures

RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)

Description / Action

CIS
Interface
VersionFormatField Name

Size of allocated storage in bytes.7I4TOTAL-STORAGE-ALLOCATED

Highest size of allocated storage in bytes
since Broker started.

7I4TOTAL-STORAGE-ALLOCATED-HIGH

Maximum of storage that can be allocated
(broker attribute MAX-MEMORY).

7I4TOTAL-STORAGE-LIMIT

ACCOUNTING: Number of buffers allocated.7I4ACCOUNTING-BUFFERS-ALLOCATED

ACCOUNTING: Number of buffers free.7I4ACCOUNTING-BUFFERS-FREE

ACCOUNTING: Number of buffers used.7I4ACCOUNTING-BUFFERS-USED

BLACKLIST: Number of entries allocated.7I4BLACKLIST-ENTRIES-ALLOCATED

BLACKLIST: Number of entries free.7I4BLACKLIST-ENTRIES-FREE

BLACKLIST: Number of entries used.7I4BLACKLIST-ENTRIES-USED

BROKER-TO-BROKER: Number of entries
allocated.

7I4BROKER-TO-BROKER-ENTRIES-ALLOCATED

BROKER-TO-BROKER:Number of entries free.7I4BROKER-TO-BROKER-ENTRIES-FREE

BROKER-TO-BROKER: Number of entries
used.

7I4BROKER-TO-BROKER-ENTRIES-USED

COM-BUFFER: Number of buffers allocated.7I4COM-BUFFERS-ALLOCATED

COM-BUFFER: Number of buffers free.7I4COM-BUFFERS-FREE

COM-BUFFER: Number of buffers used.7I4COM-BUFFERS-USED

CMDLOG-FILTER: Number of entries
allocated.

7I4CMDLOG-FILTER-ENTRIES-ALLOCATED

CMDLOG-FILTER: Number of entries free.7I4CMDLOG-FILTER-ENTRIES-FREE

CMDLOG-FILTER: Number of entries used.7I4CMDLOG-FILTER-ENTRIES-USED

CONNECTION: Number of entries allocated.7I4CONNECTION-ENTRIES-ALLOCATED

CONNECTION: Number of entries free.7I4CONNECTION-ENTRIES-FREE

CONNECTION: Number of entries used.7I4CONNECTION-ENTRIES-USED

CONVERSATION:Number of entries allocated.7I4CONVERSATION-ENTRIES-ALLOCATED

CONVERSATION: Number of entries free.7I4CONVERSATION-ENTRIES-FREE

CONVERSATION: Number of entries used.7I4CONVERSATION-ENTRIES-USED

HEAP: Number of bytes allocated.7I4HEAP-BYTES-ALLOCATED

HEAP: Number of bytes free.7I4HEAP-BYTES-FREE

HEAP: Number of bytes used.7I4HEAP-BYTES-USED

MSG-BUFFER-LONG: Number of buffers
allocated.

7I4MSG-BUFFER-LONG-ALLOCATED

Broker ACI for PL/I170

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

MSG-BUFFER-LONG: Number of buffers free.7I4MSG-BUFFER-LONG-FREE

MSG-BUFFER-LONG:Numberof buffersused.7I4MSG-BUFFER-LONG-USED

MSG-BUFFER-SHORT: Number of buffers
allocated.

7I4MSG-BUFFER-SHORT-ALLOCATED

MSG-BUFFER-SHORT: Number of buffers
free.

7I4MSG-BUFFER-SHORT-FREE

MSG-BUFFER-SHORT: Number of buffers
used.

7I4MSG-BUFFER-SHORT-USED

PARTICIPANT: Number of entries allocated.7I4PARTICIPANT-ENTRIES-ALLOCATED

PARTICIPANT: Number of entries free.7I4PARTICIPANT-ENTRIES-FREE

PARTICIPANT: Number of entries used.7I4PARTICIPANT-ENTRIES-USED

PARTICIPANT-EXT: Number of entries
allocated.

7I4PARTICIPANT-EXT-ENTRIES-ALLOCATED

PARTICIPANT-EXT: Number of entries free.7I4PARTICIPANT-EXT-ENTRIES-FREE

PARTICIPANT-EXT:Number of entries used.7I4PARTICIPANT-EXT-ENTRIES-USED

PROXY-QUEUE: Number of entries allocated.7I4PROXY-QUEUE-ENTRIES-ALLOCATED

PROXY-QUEUE: Number of entries free.7I4PROXY-QUEUE-ENTRIES-FREE

PROXY-QUEUE: Number of entries used.7I4PROXY-QUEUE-ENTRIES-USED

SERVICE-ATTRIBUTE: Number of entries
allocated.

7I4SERVICE-ATTRIBUTE-ENTRIES-ALLOCATED

SERVICE-ATTRIBUTE: Number of entries
free.

7I4SERVICE-ATTRIBUTE-ENTRIES-FREE

SERVICE-ATTRIBUTE: Number of entries
used.

7I4SERVICE-ATTRIBUTE-ENTRIES-USED

SERVICE: Number of entries allocated.7I4SERVICE-ENTRIES-ALLOCATED

SERVICE: Number of entries free.7I4SERVICE-ENTRIES-FREE

SERVICE: Number of entries used.7I4SERVICE-ENTRIES-USED

SERVICE-EXT: Number of entries allocated.7I4SERVICE-EXT-ENTRIES-ALLOCATED

SERVICE-EXT: Number of entries free.7I4SERVICE-EXT-ENTRIES-FREE

SERVICE-EXT: Number of entries used.7I4SERVICE-EXT-ENTRIES-USED

TIMEOUT-QUEUE: Number of entries
allocated.

7I4TIMEOUT-QUEUE-ENTRIES-ALLOCATED

TIMEOUT-QUEUE: Number of entries free.7I4TIMEOUT-QUEUE-ENTRIES-FREE

TIMEOUT-QUEUE: Number of entries used.7I4TIMEOUT-QUEUE-ENTRIES-USED

TRANSLATION: Number of entries allocated.7I4TRANSLATION-ENTRIES-ALLOCATED

TRANSLATION: Number of entries free.7I4TRANSLATION-ENTRIES-FREE

TRANSLATION: Number of entries used.7I4TRANSLATION-ENTRIES-USED

171Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

UOW: Number of entries allocated.7I4UOW-ENTRIES-ALLOCATED

UOW: Number of entries free.7I4UOW-ENTRIES-FREE

UOW: Number of entries used.7I4UOW-ENTRIES-USED

WORK-QUEUE: Number of entries allocated.7I4WORK-QUEUE-ENTRIES-ALLOCATED

WORK-QUEUE: Number of entries free.7I4WORK-QUEUE-ENTRIES-FREE

WORK-QUEUE: Number of entries used.7I4WORK-QUEUE-ENTRIES-USED

SECURITY-OBJECT (Struct INFO_SECURITY)

Description / Action

CIS
Interface
VersionFormatField Name

Successful authentications.5I4COUNT-AUTHENTICATION-SUCCEEDED

Failed authentications.5I4COUNT-AUTHENTICATION-FAILED

Successful authorizations.5I4COUNT-AUTHORIZATION-SUCCEEDED

Failed authorizations.5I4COUNT-AUTHORIZATION-FAILED

Max profile length (CDT) m/f.5I4SAF-PROFILE-LENGTH

Security trace level.5I2TRACE-LEVEL

Security Level m/f.5I2SECURITY-LEVEL

Authentication type.5A8AUTHENTICATION-TYPE

SAF profile CLASS (8) m/f.5A8SAF-CLASS

Security node m/f.5A8SECURITY-NODE

Include CLASS in prof m/f.5I1INCLUDE-CLASS

Include NAME in prof m/f.5I1INCLUDE-NAME

Include SERVICE in prof m/f.5I1INCLUDE-SERVICE

Allow undefined profile m/f.5I1UNIVERSAL

Check IP address m/f.5I1CHECK-IP-ADDRESS

Run in warn mode m/f.5I1WARN-MODE

Ignore ACI STOKENm/f.5I1IGNORE-STOKEN

Trusted User ID m/f.5I1TRUSTED-USER

VerifiedId m/f.5I1PROPAGATE-TRUSTED-USER

Convert password to uppercase m/f.5I1PASSWORD-TO-UPPER-CASE

Alignment.5A2NOTUSED0

Broker ACI for PL/I172

Broker CIS Data Structures

SERVICE-OBJECT (Struct INFO_SV)

Description / Action

CIS
Interface
VersionFormatField Name

Name of server class.1A32SERVER-CLASS

Name of server.1A32SERVER-NAME

Name of service. The header contains the maximum length
for the SERVER-CLASS, SERVER-NAME and SERVICE fields for

1A32SERVICE

all retrieved objects. SeeCommonHeader Structure for Response
Data.

Name of translation routine used.1A8TRANS

Conversation timeout (corresponds to CONV-NONACT for the
service in the attribute file).

1I4CONV-NONACT

Number of servers active for service. This counter also
includes the active Attach Server instances. Youmay subtract

1I4SERVER-ACT

the field ATTACH-MGRS-ACT to calculate the number of
ordinary server instances.

Number of conversations active for service.1I4CONV-ACT

Highest number of conversations active for service.1I4CONV-HIGH

Number of long buffers active (in use) for the service.1I4LONG-ACT

Highest number of long buffers active (in use) for the service.1I4LONG-HIGH

Number of short buffers active (in use) for the service.1I4SHORT-ACT

Highest number of short buffers active (in use) for the service.1I4SHORT-HIGH

Number of times a client had to wait for this service or
messages from the server.

1I4NUM-WAIT-SERVER

Number of times a client request (SENDwith CONVID=NEW or
NONE) could not be immediately assigned to a waiting server,
that is, all servers offering this service are occupied.

1I4NUM-SERV-OCC

Number of new conversations which are currently in the
queue, but not yet assigned to a server (pending).

1I4NUM-PEND

Highest number of pending conversations.1I4PEND-HIGH

Accumulatednumber of requests (number ofSEND commands
with CONVID=NEW or NONE).

1I4REQ-SUM

Maximum number of active UOWs2I4LMAXUOWS

Maximum number of messages in a UOW2I4LMAXUOWMSG

Maximum UOW lifetime2I4LUWTIME

Is currently not in use (count is always zero.)2I4LMAXDELCNT

Maximum size of a message2I4LMAXMSGSIZE

Number of UOWs2I4LTOTALUOWS

173Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Store attribute for all UOWs:
0=OFF
1=BROKER

2I1CSTORE

UOWstatus lifetime multiplier (0-255)2I1CUWSTATP

Default status attribute for all UOWs:2I1CDEFERRED

NO0

YES1

Deprecated. For encrypted transportwe strongly recommend
using the Secure Sockets Layer/Transport Layer Security

3I1CENCLEVEL

protocol. See SSL/TLS, HTTP(S), and Certificates with EntireX
in the platform-independent Administration documentation.

Number of attach servers active4I4ATTACH-MGRS-ACT

Unit of work status additional lifetime4I4LUWSTAT-ADD-TIME

Number of conversations.5I4NUM-CONV

Number of servers.5I4NUM-SERVER

Number of long message buffers.5I4NUM-LONG-MSG-BUFFER

Number of short message buffers.5I4NUM-SHORT-MSG-BUFFER

Name of conversion routine.5A8CONVERSION

Conversion parameters.5A255CONVERSION-PARMS

Alignment.5A1NOTUSED1

Reserved for future use.5I4RESERVED

10I1ARF

Ordinary service.0

Service belongs to Adabas Event Replication.1

If ARF=1:10I1SCM

Single Conversation Mode was not activated for this
service.

0

Single Conversation Mode was activated for this service.1

If ARF=1 and SCM=1:10I1PREFETCH

Server is not prefetching units of work0

Server is prefetching units of work1

10A5RPC

Server identified as RPC server.YES

Server identified as ACI server.NO

Broker ACI for PL/I174

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Server not identified at all.UNDEF

Number of POSTPONE-ATTEMPTS configured for this service.10I4MAX-POSTPONE-ATTEMPTS

POSTPONE-DELAY in number of seconds configured for this
service.

10I4POSTPONE-DELAY

175Broker ACI for PL/I

Broker CIS Data Structures

SSL-OBJECT (Struct INFO_SSL)

Description / Action

CIS
Interface
VersionFormatField Name

Clone index.5I4CLONE-INDEX

Status of communicator. Possible values defined as
ETB_INFO_COM_STATUS_.

5I4STATUS

Number of open connections.5I4OPEN-CONNECTIONS

Maximum number of connections.5I4MAX-CONNECTIONS

Port number.5I4PORT-NUMBER

IPv4 address corresponding to attribute HOST in DEFAULTS=SSL
section of Broker attribute file.

6A16IP-ADDRESS

Host name specified using attribute HOST in DEFAULTS=SSL section
of Broker attribute file.

6A256HOST-NAME

Transport task running. 0=NO, 1=YES.8I1TASK-RUNNING

IPV6 address corresponding to attribute HOST in the DEFAULTS=SSL
section of the Broker attribute file.

8A46IPV6-ADDRESS

STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)

Description / Action

CIS
Interface
VersionFormatField Name

Number of services defined (see NUM-SERVER).7I4NUM-SERVICE

Number of services active.7I4SERVICE-ACT

Number of clients defined (see NUM-CLIENT).7I4NUM-CLIENT

Number of clients active.7I4CLIENT-ACT

Highest number of clients active since Broker started.7I4CLIENT-HIGH

Number of servers (see NUM-SERVER).7I4NUM-SERVER

Number of servers active. This counter also includes the active Attach
Server instances.

7I4SERVER-ACT

Highest number of servers active since Broker started.7I4SERVER-HIGH

Number of conversations defined (see NUM-CONVERSATION).7I4NUM-CONV

Number of conversations active.7I4CONV-ACT

Highest number of conversations active since Broker started.7I4CONV-HIGH

Number of long buffers defined (see NUM-LONG-BUFFER).7I4NUM-LONG

Number of long buffers active.7I4LONG-ACT

Highest number of long buffers active since Broker started.7I4LONG-HIGH

Number of short buffers defined (see NUM-SHORT-BUFFER).7I4NUM-SHORT

Broker ACI for PL/I176

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Number of short buffers active.7I4SHORT-ACT

Highest number of short buffers active since Broker started.7I4SHORT-HIGH

TCP-OBJECT (Struct INFO_TCP)

Description / Action

CIS
Interface
VersionFormatField Name

Clone index.5I4CLONE-INDEX

Status of communicator ETB_INFO_COM_STATUS_.5I4STATUS

Number of open connections.5I4OPEN-CONNECTIONS

Maximum number of connections. Platform-dependent. See
MaximumTCP/IPConnections per CommunicatorunderBroker Resource
Allocation.

5I4MAX-CONNECTIONS

Port number.5I4PORT-NUMBER

IPv4 address corresponding to attribute HOST in DEFAULTS=TCP
section of Broker attribute file.

6A16IP-ADDRESS

Host name specified using attribute HOST in DEFAULTS=TCP section
of Broker attribute file.

6A256HOST-NAME

Transport task running. 0=NO, 1=YES.8I1TASK-RUNNING

IPV6 address corresponding to attribute HOST in the DEFAULTS=TCP
section of the Broker attribute file.

8A46IPV6-ADDRESS

UOW-STATISTICS (Struct INFO_UOW_STATISTICS)

Description / Action

CIS
Interface
VersionFormatField Name

Name of server class.9A32SERVER-CLASS

Name of server.9A32SERVER-NAME

Name of service.9A32SERVICE

Current number of units of work
for this service.

9I8CURRENT-NUMBER-OF-UOWS

Current number of UOW
messages for this service.

9I8CURRENT-NUMBER-OF-UOW-MESSAGES

Current number of bytes in all
UOWmessages for this service.

9I8CURRENT-NUMBER-OF-BYTES-IN-ALL-UOW-MESSAGES

177Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Max value of 'number of
messages in one UOW'.

9I4MAX-VALUE-MESSAGES-IN-ONE-UOW

Max value of 'number of bytes in
one UOW'.

9I4MAX-VALUE-NUMBER-OF-BYTES-IN-ONE-UOW

Date and time of the oldest UOW
for this service.

9A32OLDEST-TIME-OF-UOW-CREATION

Date and time of the newest
UOW for this service.

9A32NEWEST-TIME-OF-UOW-CREATION

Current number of units of work
with status RECEIVED.

11I4NUMBER-OF-UOWS-WITH-STATUS-RECEIVED

Current number of units of work
with status ACCEPTED.

11I4NUMBER-OF-UOWS-WITH-STATUS-ACCEPTED

Current number of units of work
with status DELIVERED.

11I4NUMBER-OF-UOWS-WITH-STATUS-DELIVERED

Current number of units of work
with status BACKEDOUT.

11I4NUMBER-OF-UOWS-WITH-STATUS-BACKEDOUT

Current number of units of work
with status PROCESSED.

11I4NUMBER-OF-UOWS-WITH-STATUS-PROCESSED

Current number of units of work
with status CANCELLED.

11I4NUMBER-OF-UOWS-WITH-STATUS-CANCELLED

Current number of units of work
with status TIMEOUT.

11I4NUMBER-OF-UOWS-WITH-STATUS-TIMEOUT

Current number of units of work
with status DISCARDED.

11I4NUMBER-OF-UOWS-WITH-STATUS-DISCARDED

Current number of units of work
with status POSTPONED.

11I4NUMBER-OF-UOWS-WITH-STATUS-POSTPONED

USER-OBJECT (Struct INFO_USER)

Description / Action

CIS
Interface
VersionFormatField Name

Corresponds to USER-ID in the ACI. The maximum length of this field is
determined by field MAX-UID-LEN in the header. See Common Header
Structure.

7A32USER-ID

Is user a client?7I1IS-CLIENT

NO0

YES1

Broker ACI for PL/I178

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Is user a server?7I1IS-SERVER

NO0

YES1

Unique sequence number of user. Can be used with CIS command
SHUTDOWN.

7I4SEQNO

Endian type of user's platform:7I2ENDIAN

BIG ENDIAN (high order first)1

LITTLE ENDIAN0

Character set of user's platform:7I2CHAR-SET

EBCDIC IBM34

EBCDIC SNI66

ASCII PC 3861

ASCII PC OS/216

ASCII 8859-1128

Specifies the physical internal unique ID which is used to distinguish
between several userswith the same user ID. This field is used as a handle,

7B28P-USER-ID

that is, no translation is performed. With CIS commands SHUTDOWN
PARTICIPANT and SHUTDOWN SERVER, field SEQNO is provided as unique
criterion.

Corresponds to TOKEN in the ACI. The maximum length of this field is
determined by MAX-TK-LEN in the header. See Common Header Structure
for Response Data.

7A32TOKEN

Elapsed time since the last activity of the user.7I4LAST-ACTIVE

WORKER-OBJECT (Struct INFO_WKR)

Description / Action

CIS
Interface
VersionFormatField Name

The worker ID is the table number of this worker's worker queue entry.1I2WORKER-ID

Status of worker:1I2WORKER-STAT

ACTIVE2

STARTED4

WAITING5

179Broker ACI for PL/I

Broker CIS Data Structures

Description / Action

CIS
Interface
VersionFormatField Name

Sum of calls per worker since Broker started.1I4CALL-SUM

Sum of idle time per worker since Broker started.1I4IDLE-SUM

WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

Description / Action

CIS
Interface
VersionFormatField Name

Maximum number of worker tasks the
Broker can use. See broker attribute
WORKER-MAX.

7I4WORKER-MAX-ATTRIBUTE

Minimum number of worker tasks the
Broker can use. See broker attribute
WORKER-MIN.

7I4WORKER-MIN-ATTRIBUTE

Non-activity time in seconds to elapse before
a worker tasks is stopped. See broker
attribute WORKER-NONACT.

7I4WORKER-NONACT-ATTRIBUTE

Number of unassigned user requests in the
input queue before anotherworker task gets

7I4WORKER-QUEUE-DEPTH

started. See broker attribute
WORKER-QUEUE-DEPTH.

Delay after a successful worker task
invocation before another worker task can

7I4WORKER-START-DELAY-ATTRIBUTE

be started. See broker attribute
WORKER-START-DELAY.

Time of last worker startup.7I4LAST-START-TIME

Time of last worker stop.7I4LAST-STOP-TIME

Time value representing the seconds of the
timeval structure that contains the effective
time consumption starting a worker task.

7I4EFFECTIVE-START-DELAY-SECONDS

Time value representing the microseconds
of the timeval structure that contains the

7I4EFFECTIVE-START-DELAY-MICRO-SECONDS

effective time consumption starting aworker
task.

Highest number ofworker tasks active since
Broker started.

7I4WORKER-HIGH

Lowest number of worker tasks active since
Broker started.

7I4WORKER-LOW

Broker ACI for PL/I180

Broker CIS Data Structures

	Broker ACI for PL/I
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 EntireX Broker ACI for RPG
	Call Format
	Broker ACI Control Block Layout
	Broker ACI Control Block Copybook
	ACI Examples and Copybooks
	Creating an RPG User Application under IBM i
	Step 1: Set the Environment
	Step 2: Compile the User Program
	Step 3: Bind EXA to the User Program

	3 Writing Client and Server Applications
	Basic Concepts of Client and Server
	Client-and-Server Application Components
	Conversationality
	Synchronicity

	API-TYPE and API-VERSION
	LOGON and LOGOFF
	USER-ID and TOKEN
	Identifying the Caller
	Restarting after System Failure
	Managing the Security Token

	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Implementation of Client and Server Components
	Blocked and Non-blocked Broker Calls
	Non-blocked Command: WAIT=NO
	Blocked Command: WAIT=YES or WAIT=n
	Examples: WAIT

	Conversational and Non-conversational Mode
	Non-conversational Mode
	Conversational Mode

	Managing Conversation Contexts
	Conversation Status
	Conversation User Data
	Stored EOC

	Delayed SEND Function
	Example

	Timeout Parameters
	Timeout Behavior
	Types of Non-activity Time
	Recommendations
	Unit of Work Lifetime
	Unit of Work Status Lifetime

	Data Compression
	Error Handling
	Programming Techniques
	Example for C Programming Language

	Using Send and Receive Buffers
	Introduction
	Error Cases
	Transport Methods

	Tracing
	Stub Trace
	Kernel Trace

	Transport Methods
	Overview of Supported Transports
	TCP/IP
	Entire Net-Work
	SSL/TLS
	Considerations for Writing Applications
	Restrictions with API Versions 1 and 2

	Variable-length Error Text
	Programmatically Turning on Command Logging

	4 Writing Applications: Units of Work
	What is a Unit of Work?
	Control Block Fields and Verbs
	Basic Functionality of Broker API
	ACI Syntax
	Key ACI Field Names
	Key Verbs for FUNCTION Field

	Client/Server Programming for Units of Work
	Client/Server Programming for a Persistent Unit of Work
	Client/Server Restart after System Failure

	5 Writing Applications: Attach Server
	Implementing an Attach Server
	Step 1: Register with EntireX Broker
	Step 2: Issue a Receive with Wait
	Step 3: Start Task
	Step 4: Deregister when the Work is Done

	Implementing Servers Started by an Attach Server

	6 Writing Applications: Command and Information Services
	Accessing the Services
	Basic Rules
	Field Values
	Structures

	Accessing Information Services
	Examples of Selection Criteria
	Tips

	Accessing Command Service
	Tips

	Security with Command and Information Services
	Full Command and Information Services
	Limited Information Services
	Protecting Specific Options

	Examples of Command Service
	Example 1: ALLOW-NEWUOWMSGS
	Example 2: FORBID-NEWUOWMSGS

	7 Writing Applications using EntireX Security
	General Programming Considerations
	ACI Versions and Security
	Is Broker Kernel Secure?

	Authentication
	Changing your Password
	Role of Security Token (STOKEN) during Authentication
	Trusted User ID (z/OS only)
	Client User ID
	FORCE-LOGON
	Authorization

	8 Broker ACI Fields
	Field Formats
	Field Descriptions

	9 Broker ACI Functions
	Overview Table
	Key

	Function Descriptions
	DEREGISTER
	EOC
	GET‑MESSAGE‑ID
	KERNELVERS
	LOGOFF
	LOGON
	RECEIVE
	REGISTER
	REPLY_ERROR
	SEND
	SETSSLPARMS
	SYNCPOINT
	UNDO
	VERSION

	Option Descriptions
	ACI Field/Function Reference Table
	Unique Message ID
	Introduction
	Simple Client/Server Scenario
	Default Scenario (ACI and RPC)
	Generating a Message ID before Message is Sent

	10 Broker UOW Status Transition
	Initial UOW Status: NULL | Received
	Initial UOW Status: Accepted | Delivered | Postponed
	Initial UOW Status: Processed | Timedout
	Initial UOW Status: Cancelled | Discarded | Backedout
	Legend for UOW Status Transition Table
	Table of Column Abbreviations

	11 Broker CIS Data Structures
	Command Request Structure
	Command Request Parameter Combinations
	Common Header Structure for Response Data
	Information Request Structure
	Legend
	Column Abbreviation Table
	Selection Criteria CLIENT Object Type
	Selection Criteria SERVER Object Type
	Selection Criteria SERVICE Object Type
	Selection Criteria CONV Object Type
	Selection Criteria PSF Object Type (Version 2 and above)
	Key

	Information Reply Structures
	BROKER-OBJECT (Struct INFO_BKR)
	CLIENT-SERVER-PARTICIPANT-OBJECT (Struct INFO_CS)
	CMDLOG_FILTER-OBJECT (Struct INFO_CMDLOG_FILTER)
	CONVERSATION-OBJECT (Struct INFO_CV)
	NET-OBJECT (Struct INFO_NET)
	POOL-USAGE-OBJECT (Struct INFO_POOL_USAGE)
	PSF-OBJECT (Struct INFO_PSF)
	PSFADA-OBJECT (Struct INFO_PSFADA)
	PSFCTREE-OBJECT (Struct INFO_PSTCTREE)
	PSFDIV-OBJECT (Struct INFO_PSFDIV)
	RESOURCE-USAGE-OBJECT (Struct INFO_RESOURCE_USAGE)
	SECURITY-OBJECT (Struct INFO_SECURITY)
	SERVICE-OBJECT (Struct INFO_SV)
	SSL-OBJECT (Struct INFO_SSL)
	STATISTICS-OBJECT (Struct INFO_STATISTICS) (Excerpt of BROKER-OBJECT)
	TCP-OBJECT (Struct INFO_TCP)
	UOW-STATISTICS (Struct INFO_UOW_STATISTICS)
	USER-OBJECT (Struct INFO_USER)
	WORKER-OBJECT (Struct INFO_WKR)
	WORKER-USAGE-OBJECT (Struct INFO_WORKER-USAGE)

