§ software

webMethods EntireX

EntireX Broker ActiveX Control

Version 10.7

October 2020

WEBMETHODS



This document applies to webMethods EntireX Version 10.7 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXACI-107-20220422ACTX



Table of Contents

PTOACE ..t v
1 About this Documentation ...........cc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNS ..........ccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTt .......c.ccieiiiiiiiiiii 2
Data Protection .........c..ooooiiiiiiiiiic 3
2 Broker ActiveX Control Introduction ............ccccoeiiiiiniiiiiiii 5
Broker ACT ......ooiiiiiiic 6
Transaction ODJects .........ccociiiiiiiiiiiiiiiii 6
3 Writing Applications - Broker ActiveX Control ... 7
Calling a Broker FUNCHON ........ccccociiiiiiiiiiiiiiiiiiic e 8
Viewing the Type Library ..o 10
Adding the Broker ActiveX Control Component to Visual Studio ...........c...c......... 11
Using the Property Pages ..........c.cooooiiiiiiiiiiiiccc 14
4 Broker ActiveX Control with Visual Basic .........ccccccociiiiiii 17
Step 1: Instantiate EntireX Broker ActiveX Control ..........cccccceeviiiiiiiiiiiiiiiinnnnn, 18
Step 2: Instantiate the Transaction Object ..........c.ccccooieiiiiiiiiii 20
Step 3: Call Methods .......ccooviiiiiiiiiiiiiiiiiic e 20
Step 4: Access the Returned Data ............cccoooviiiiiiiiiiiii 21
Step 5: Cleanup ReSOUTCES ........cocoeiuiiiiiiiiiiiiiiicieic e 24
Step 6: Error Handling in Transaction Object Methods ...........ccccocciiiiiiininn 24
Examples: Writing an ACI Client and Server with Broker ActiveX Control ........... 24
5 Using Broker ActiveX Control with Active Server Pages ..........c.cccccoeviiviiiiiiiinnnn 29
PrerequiSites .........cooiiiiiiii 30
Designing a Web Page with ASP and Broker ActiveX Control ...........cccccceeeevnennee. 30
Using Broker ActiveX Control in Multiple Pages ............ccccoocooiiiiiiiiiiiiiiiic, 32
6 Using Broker ActiveX Control with INET .........ccccooiiiiiiiiiii 33
Using Broker ActiveX Control with Visual Studio NET ..........cccccceciiiiiinnn 34
A Small Visual Basic NET Example ...........ccccooiiiiiiiii, 34
7 Transaction Objects in Broker ActiveX Control ...........cccociviiiiiiiiiiiiiiiiiiiiiiceee, 35
Advantages of Transaction ObjJects ..........c.ccceeviiiiiiiiiiiiiiiiic, 36
Calling the Transaction Object EQitOr .........ccccooiiiiiiiiiiiiiiiiis 36
Managing TOR Files ...........ccooiiiiiiiiiiiiiiecicec e 38
Defining Methods .........cociiiiiiiiiiiii e 41
Specifying Connection Information ............cccccoviiiiiiiiiiiiiiiii, 46
Defining Custom Data TyPes .........cccoovuiiiiiiiiiiiiiiiccc 48
8 Calling Broker ActiveX Control Remotely ...........cccocciiviiiiiiiiiiiiiiiiiiicicee 51
Setting up the Server Environment .............cccccooiiiiiiiiiiiiii 52
Setting up the Client Environment .............cccccoooiiiiiiiniiiini, 57
Testing the CONNECtION .......cccciciiiiiiiiiiiiii 59
9 REEIEINCE ...t 63
MethOds ..o 64
PrOPerti€s .......oocuiiiiiiiii 65







Preface

Broker ActiveX Control allows GUI application developers to use an ActiveX-based interface to
access EntireX Broker. It can be used within ActiveX containers, such as Visual Basic, PowerBuilder,
Delphi, Microsoft Excel, Microsoft Word.

Broker ActiveX Control Broker ActiveX Control provides a programmatic interface to
Introduction COM-enabled programming environments. It has two types of operation:
the Broker ACI and transaction objects. Broker ActiveX Control enables
you to create EntireX ACI clients and EntireX ACI servers.

Writing Applications - Broker |Topics include calling a Broker function; viewing the type library; using
ActiveX Control property pages.

Broker ActiveX Control with  |Visual Basic is used here as an example of a development environment
Visual Basic in which applications using Broker ActiveX Control can work. Broker
ActiveX Control can be used by any programming language or
programming environment that can act as a container for ActiveX controls.

Using Broker ActiveX Control |Microsoft's Active Server Page (ASP) is an HTML page that includes one
with Active Server Pages or more scripts and reusable ActiveX server components to create dynamic
Web pages. The scripts and ActiveX components are processed on a
Microsoft Web server before the page is sent to the user.

Using Broker ActiveX Control |How to use Broker ActiveX Control with Visual Studio .NET. An example
with .NET is provided.

Transaction Objects in Broker |Transaction objects (TOs) in Broker ActiveX Control are selections of
ActiveX Control logical methods that are stored in a transaction object repository (TOR).
These logical methods contain all the connection and interface details
necessary to communicate with the Broker.

Calling Broker ActiveX Control |You can call Broker ActiveX Control remotely if you use it as an
Remotely automation server. This means you can use the Broker component from
a separate process - either on the same machine or on another machine
in the network.

Reference Methods and properties of Broker ActiveX Control.




vi



1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOI ........cooiiiiiiiiie e
B DAt PrO OO ON . oo e




About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [ ] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-

wareag.com.

EntireX Broker ActiveX Control


https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

About this Documentation

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

® Browse through our vast knowledge base.

" Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.
® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

EntireX Broker ActiveX Control 3


https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/




2 Broker ActiveX Control Introduction

LI = (0] Y O OO RUUR T OTOPPRPPRRR
B TraNSACHON ODJECES ...ttt et




Broker ActiveX Control Introduction

Broker ActiveX Control provides a programmatic interface to COM-enabled programming envir-
onments. It has two types of operation: the Broker ACI and transaction objects. Broker ActiveX
Control enables the user to create EntireX ACI clients and EntireX ACI servers.

Broker ACI

The Broker ACI provides a simple automation API that is one-to-one compatible with the published
EntireX Broker ACI. It provides Broker ActiveX Control properties and corresponding property

pages for the control parameters detailed in the Broker ACI fields. This API is conceptually com-
patible with current Broker programming practices. Further, the Broker ActiveX Control program-
mer can count on programmatic behavior consistent with programming the Broker API directly,
such as non-blocking calls and polling for completion.

Transaction Objects

Broker ActiveX Control generates ActiveX automation server interfaces dynamically at runtime
from files in the Transaction Object Repository (TOR).

Broker ActiveX Control transaction objects provide a dictionary subsystem and user interface that
will allow the EntireX Broker developer to define a dynamic IDispatch interface. This interface
allows received data to be accessed with the traditional automation methodology.

The transaction object definition of a method also includes parsing up the SEND and RECEIVE
buffers of a Broker message into parameters and return properties respectively. The transaction
objects are loaded at runtime and the ActiveX container can then call the methods of that transaction
object to send/receive data.

See Transaction Objects in Broker ActiveX Control for more information.

6 EntireX Broker ActiveX Control



3 Writing

Applications - Broker ActiveX Control

B Calling @ BroKer FUNCHON ... .iiiiii ettt e e e e et aeeeaa s 8
B VIeWING the TYPE LIDFAIY ..ottt e e e e e e 10
= Adding the Broker ActiveX Control Component to Visual StUdio ............cooovriiiiiiiiiiiiee e 1
B USING the PrOPErty PAGES .......coiiiiiiiiiiiie e 14




Writing Applications - Broker ActiveX Control

Calling a Broker Function

Setting the Broker ActiveX Properties

You can set the Broker ActiveX properties either in the program or in the property pages. See
Properties.

Specifying the Send Parameters

Before executing a send function, specify the send parameters with the method
SetSendDatalong(String bsData, Long Datalen) or SetSendData(String bsData, Short
Datalen).

This method sets only the send buffer.

The first parameter specifies the buffer that has to be sent to the server. The second parameter
specifies the number of bytes to be transferred.

The following rules apply to the SetSendData method:

® The Datalen bytes of the string bsData are copied to the internal send buffer.

® A byte copy is performed (not a string character copy), which means that the string bsData can
contain zero bytes.

" The function BOOL SetSendData( String bsData, Short Datalen ) can be used if the send
buffer is smaller than 32 KB.

Calling the Broker Function

Set the required properties.

When you use the send function, use the method SetSendData to set up the send buffer.

When you use the receive function, use the property ReceiveBufferSize to set up the size of
the internal receive buffer.

Use the static automation method to call the Broker functions:

BOOL InvokeBrokerFunction()

This method executes the Broker function defined by the current value of the property Function.
Depending on the function, the required Broker parameters are taken from the current values of
the corresponding properties.

8 EntireX Broker ActiveX Control



Writing Applications - Broker ActiveX Control

If the Broker call is successful:

® The function returns TRUE.

® The ErrorCode property is set to '00000000' and the ErrorMsg property is empty.
If the Broker call is a Send or Receive function, this call may also update the ConvID property.

If the Broker call is a Receive function and asterisks were specified for ServerClass, ServerName
and Service, the call updates the ServerClass, ServerName and Service properties.

If the Broker callis a Receive or Send with implicit Receive (Wait > 0), the number of bytes received
is stored in the property ReturnDatalength and the returned data can be retrieved with the
GetReceiveData method.

If the Broker call fails:

® The function returns FALSE.

® The ErrorCode and ErrorMsg properties contain the corresponding error reason.
The error code has two parts:

= error class (first four digits), which provides information for the application on how to react to
the returned error, and

® error number (last four digits), which indicates the reason for the error.
The GetErrorText method is still available and returns the value of the ErrorMsg property.

For more information see Error Messages and Codes.

Getting the Contents of the Receive Buffer

If a Receive function was executed, the receive buffer can be retrieved with the function
STRING GetReceiveData()

AboutBox

The AboutBox method is used to show the version of Broker ActiveX Control.

A message box will be displayed containing the About information.

EntireX Broker ActiveX Control 9



Writing Applications - Broker ActiveX Control

AboutBox ()

About EntireX Broker Active Control El

Y Entirel Broker Activel Contral
g £.0.0.95

(2] Copyright 1396 - 2008 Software AG. Al rights reserved.

wharning: This computer program is protected by copyright lav and
international treatiez. Unauthorized reproduction or distribution of thiz
proaram, or any portion of it, may result in severe civil and criminal
penalties, and will be progecuted.

Protected by the Patents:
- EP 0942 362
- EP 0600 235 and US 5,329,615
- U5 5,812,768

Viewing the Type Library

~ To view the Type Library of Broker ActiveX Control

s Use the OLE/COM Object Viewer (choose EntireX Broker ActiveX Control and choose View
Type Information).

: OLE/COM Object Viewer [_ O] x]

File Object “iew Help

=3 &| BI= @l

[+-[&] Active Scripting Engine Automation Objects
Active Scripting Engine with Authoring Frond {40FCEE D5-2438-11CF-A30E-020036F 1 2502}

Active Scnptlng Englne with Parzing

Regiztry I

Bltmap E"E':t Component Categories

g:;:t‘?glg'am'“”” . {40FCEEDS-2438-11CF-430B-080036F1 25602} [409] = Automation Objects
Controlz zafely initializable from persistent data
Controlz that are zafely zcriptable

Document Objects

Embeddable Objects

Internet Explorer Browser Cormmunication Band
Internet Studio Web Site Wizards

&) MM Control

é OLEViewer Interface Yiewers

Ready

To do this with Visual Basic, see Using Broker ActiveX Control as an Automation Server.

10 EntireX Broker ActiveX Control



Writing Applications - Broker ActiveX Control

Adding the Broker ActiveX Control Component to Visual Studio

~ To add the Broker ActiveX Control component to Visual Studio

1

2
3

In Visual Studio, choose Toolbox > Components.

2% WindowsApplication2 - Microsoft ¥isual Studio

File Edit View Project Buld Debug Data Tools ‘Window  Community  Help

G-~ H el & B \ - -2 | p Debug - finy CPU - | [ N -

[l G =!I A 1 e 1 | g T = FL|T L 2y
Solution Explorer - Windows.., » L X ﬁm Start Page - X Xt:"—
.@ E = g}, sll Ih'||'indm|4l£|ls F:rrlns ci'
[ Solution “Windowsapplication2' (1 pr = Fio ! E Ezrnrll::::rson = g

= E@ WindowsApplication2
| My Project
=] Farmt.vb

Menus & Toolbars
Data

=/ Components

k‘ Painter

E Backgroundsiorker
E DirectoryEnkry

{f,l DirectorySearcher
&) ErrorProvider

{‘ﬂ EventLog

E,] Filesystemiw'atcher
HelpProvider

(=W Imagelisk
|Aﬁ MessageQuele

4 PerformanceCounter

j Process
= SerialPort
(= Imagelistt =l serviceCortroller
< | > Timer
LT:_gSoluti... E%CIass L:;F’rope... Printing
5 Di
outpLEt -1 x i+ Dialogs
Crystal Reports
Show output: From: - _ﬂ ,_J EN = General

[Z4 Code Definition Windov | 2 E1Call Brawser | ] Cutput

Ready

From the context menu, choose Choose Item.

In the Choose Toolbox Items dialog under COM Components, check "EntireX Broker ActiveX
Control".

EntireX Broker ActiveX Control 11



Writing Applications - Broker ActiveX Control

Choose Toolbox ltems

\MET Framewark Companents | ©CM Components |

Mame Path Library L
Entirey Broker Activel Control CHPROGRA~ICOMMON~11SOFTW, ., Enkirex Broker ...
[] gotobar Class C TN S system 32 medm, oo
[ Helpviewerwrapper Class CWINDOWSIPCHealthiHelpCEriBin.,.  Help Center I ...
] HHCkrl object Cm IO S system 32 hhckrl oo
[ HHCrr Object W INDOWS) system32 hhckrl oo
] HHCkrl object Cm IO S system 32 hhckrl oo
[ HmiDlgHelper Class W INDOWS) system32) mshkmled. dll OpksHald 1.0T...
[ 1nstalEnginect! Object Cm IO S system 32 aschrls, ooy Ackive Setup Co...
[] ListPad class CWIMDOW S Syskem32cic. dil cic 1.0 Type Lib...
[] LM Auto Effect Behaivar Cm IO S system 32 im_t. dll ¥
= . . . . | a2 bt
ActionBywr Class

Language:  Language Meutral

Version: 1.0.0115

o4 ] [ Zancel ] [ Reset ]

% WindowsApplication2 - Microsoft Visual Studio

File Edit ‘iew Project Buld Debug Data Tools  window  Community  Help
G- - e | # S ¢~ Sl 5L b Debug = iy CPU - | [ KN 5
El-gilllz & o] 5

Solution Explorer - Windows... » & X | Forml.vb [Design]* | Start Page - X
Y E = 6?}, . All Windows Forms

e Common Controls
p : Containers

= 2 ;nl:::‘:rso?epclt]hcatmnz Menus & Toolbars
=] Farm1.vb —
=/ Components
& Poirter
E Backgroundswaorker
@ DirectaryEntry
{:,1 DirectorySearcher
&) ErrorProvider
i3] EvertlLog
SE:J] FileSystemiwatcher
HelpProvider
(=W ImageList
S MessageQueus

#4| PerfarmanceCounter

=l

-
o+ el =+ | U = . =S

I'o—

u]
_i Process
& SerialPort
(= ImageList1 l.',';" ServiceController
< | & Timer
Il“fgSquti... IQ%CIass :_!]Prope... |,§i Entirex Broker Activel Control
Gt -1 X Printing

Dialogs
Crystal Reports
General

Show autput Fram: = LB | & - =

[E3Code Definition Window | $2Call Browser | (=] Output

Ready

12 EntireX Broker ActiveX Control



Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control is now known to Visual Studio. It can be copied and pasted

into the new form for later use.

% WindowsApplication2 - Microsoft ¥isual Studio

Fil= Edit ‘Wew Project Build Debug Data  Format  Tools  Wwindow  Community  Help
] - - o o o | % Ga A9 - ERENE EIDebug - finy CPU - | [ N -
L N = _,J_.—_.L._.‘ =1 4] i | oia =3 H [5] | § "
ELop T v ] 2 Ty 3 -
Solution Explorer - Windows... = & X || -Forml.vb [Design]* | StartPage « » | Properties >~ 1 X %
=1 7] | [F E 09:4, AxBrokerl AxBrokerLib.AxBroker = g'
'_: Solution “Windowsapplication2' (1 pr Form = g
= EE WindowsApplication2 - -
=] My Project (ApplicationSetti L
=] Farmt.vb (DataBindings)
(Mame) AxBrokerl
AccessibleDescri
AccessibleMame
— o mo AccessibleRole  Default
AdapterErrar
cEntirel Broker o AdCaunt o
allowDrop False
Anchor Top, Left
APTVeErsion Zz
BrokerID
BrokerSecurity
CausesYalidatior True
ClignkID 1]
ClientUserid
CommandLog
Cormmit Time
(& Imagelist1 CompressLevel K
7 I o Fombeiitenn, et : bt
— — Activel -Edit; Activel -Properties.. .
LT_:gSoluti... 'Q%CIass \EPrope... Ackivel - About...
Qukput - 0 X
Showe output from: - } ,_J BN =
{ApplicationSettings)
Maps property settings ko an
licati Figur atian file,
[ Code Definition Windav | #E1Call Brawser | 5] Cutput S AT G AN S
Ready

EntireX Broker ActiveX Control

13



Writing Applications - Broker ActiveX Control

Using the Property Pages

If you do not use Transaction Object Repository (TOR) files, you can also supply the properties
using the property sheet of Broker ActiveX Control. (If you use Broker ActiveX Control as an
automation server, the property pages are not available.)

The property sheet contains the following;:

= General Page
= Function Page
= Parameters Page
= Results Page

General Page

With this page you can specify the API version and the size of the receive buffer.

Properties §|

General |Functinn Farameters | Results

AP Version:
E RSIOM 8 [requires ETE 7.2) v

Euffers:

Beceive buffer size;| ERE3E = b,

I Ok H Cancel ][ Apply

Function Page

With this page you can specify the function to be called and Service, Server Class and Server Name.

14 EntireX Broker ActiveX Control



Writing Applications - Broker ActiveX Control

Properties

General |; |

| Parameters || Results |

X]

Function: |SEND v|

Connected to:

Server Clazs: | |

Server Mame: | |

Service: | |

[ ok

l [ Cancel Apply

Parameters Page

With this page you can specify the Conversation ID, Broker ID, User ID, Password, Environment,

Wait time, and Option.

Properties

General || Furction || Parameters |

X]

| Results |
Corperzation 10 W ait:
Optior: | WULL w

Broker ID:
Uzer ID:

Pazsword: | |
Ervvironment: | |

H Cancel ] Apply

Results Page

This page displays the results of the Broker function.

EntireX Broker ActiveX Control

15



Writing Applications - Broker ActiveX Control

X]

Properties

Function Output:

o

Server Class: Return:

Server Name: Conv. 1D:

Service: | |

Errar Infarmation:
Error Code:

Ernor messzage: | |

I Ok l [ Cancel Apply

16 EntireX Broker ActiveX Control



4 Broker ActiveX Control with Visual Basic

= Step 1: Instantiate EntireX Broker ActiveX Control .....
= Step 2: Instantiate the Transaction Object ................
m Step 3: Call MethodS ....ovvvvvviiiieeiiice e,
= Step 4: Access the Returned Data .............vvvvvvvnnnns
= Step 5: Cleanup ResOUrces .........coocvvvvveeeeeeeiiinnnn,

= Step 6: Error Handling in Transaction Object Methods

= Examples: Writing an ACI Client and Server with Broker ActiveX Control ..............cccoovviiiiiiiiiiiiiiiiieece,

17



Broker ActiveX Control with Visual Basic

Visual Basic is used here as an example of a development environment in which applications using
Broker ActiveX Control can work. Broker ActiveX Control can be used by any programming lan-
guage or programming environment that can act as a container for ActiveX controls.

Note: If you edit a Visual Basic application that uses Broker ActiveX Control and save these

changes with the new version of Broker ActiveX Control, you will not be able to use this
application with Broker ActiveX Control version 1.2.1.

Step 1: Instantiate EntireX Broker ActiveX Control

> To use Broker ActiveX Control as a control

1  From the Project, Components, Controls menu choose EntireX Broker ActiveX Control.

2 Drop it into your dialog.

18 EntireX Broker ActiveX Control



Broker ActiveX Control with Visual Basic

licationSettings)

Bind

AccessibleDescription
Accessiblehlame
AccessibleRols
AdapterError
AdCount
allowDrop
anchor
APIYersion
BrokerID
BrokerSecurity
Causes\'alidation
ClientID
ClientUserid
CaommandLog
CammitTime
CompressLevel
ConkextMenuStrip
CanvID
ConvStatus
CredentialsType
Dok
EncryptionLevel
Environment
ErrorCode
EtraorMsg
ErrorTextState
Forcelogon
Function
GenerateMernber
Localestring
Location
Locked
LogicalBrakerID
LogicalService
LogicalSetMame
Margin

AxBrokerl AxBrokerlib, AxBroker -

AxBrokerl

Diefault

1]

False

Top, Left

8
localhost:1971

True
0

{none)
NONE
1]

Mone

True
False

True
LOCAL
96; 103
False

b HbcHiC H "

Activel -Edit; Activel -Properties...; Actives -

About..,

{DataBindings)

The data bindings For the control.

AxBrokerl AxBrokerlib, fxBroker -

A=
Maximum3ize oo ~
Messageld
MessageType
Minirum Size oo
Modifiers Friend
MewPassward
Option 1]
Padding oo 0
PartrerBrokerID
Password Password
PublicationID
ReceiveBufferLength 65536

Receivebuffersize 1]
ReturnDatalength 0

ReturnLength 1]
SecurityToken
SendBufferSize a
Server’lass
ServerMame
Service

Size 100; 50
Skare 1
TabIndex 1
TabStop True
Tag
Token
Topic
LICWID
LG Skatus 1]
12w SkatusLife
LI SkatusPersist 1]
LW Time
serData
|JserID Userld
UserStatus
UseSameEufferstate  False
s aitCursor False
Wisible True
Wit 2

Activel -Edit; Ackivel -Properties...; dckives -
about..,

({DataBindings)
The data bindings For the contral,

In this example, Name is set to "BOX" in the Properties dialog:

Using Broker ActiveX Control as an Automation Server

If you want to see the interface description of Broker ActiveX Control in the object browser or use

the early bind feature:

EntireX Broker ActiveX Control



Broker ActiveX Control with Visual Basic

From the Project > References menu, choose Browse and then select Broker ActiveX Control in
<drive>:\ SoftwareAG\ EntireX \bin \ebx.dll.

To use Broker ActiveX Control as an automation server, you can define the following in your code:

Dim BOX as Object

or

Dim BOX as Broker
Set BOX=CreateObject("EntireX.Broker.ACI")

If you use Broker ActiveX Control as an automation server, you will not be able to:

= call the methods DefineTOMethods and AboutBox

" use the property pages.

Step 2: Instantiate the Transaction Object

If a Transaction Object Repository (TOR) file is used, it is not necessary to set the other properties.
If you want to use a transaction object, instantiate the transaction object with the command:

Dim TransObject As Object
Set TransObject = BOX.CreateTransObject("c:\\path\\to\\trans\\object\\object.tor")

BOXis the name set previously.

See the Methods for list of methods available for supporting transaction objects.

Step 3: Call Methods

Once a transaction object has been instantiated, the methods defined in that transaction object can
be called. If the transaction object method being called has one or more return values, transaction
object methods always return these values wrapped in a return object.

Dim ReturnObject As Object
Set ReturnObject = TransObject.MyMethod("Paraml", 50, "Param3")

A return object is always used, as TO methods usually return multiple scalar data items, or arrays,
structures or records. These in fact define the possible return values in a return object. They will
be either scalars:

= 2-byte INT

20 EntireX Broker ActiveX Control



Broker ActiveX Control with Visual Basic

" 4-byte INT
= etc., basically all scalar types handled through the automation VARIANT structure

or objects:

= structure objects
® collection objects
" arrays

= records

Alias custom types are mapped internally to the data type they alias, either scalars or objects.

Step 4: Access the Returned Data

You then access the returned data by interpreting the return object. The code required depends
on whether you are accessing scalars, structures, or arrays and records.

| Note: Care must be taken to avoid recursive complex type definitions. For example, a

structure should not be defined that contains an instance of itself, or less directly, an array
of structures should not be defined that contains an instance of the same array type. These
and other permutations of recursive definitions cannot be resolved, and thus cannot be
used.

Scalars
Scalars can be accessed through the return object with code like this:

Dim Str As String
Dim Int As Integer

Str = ReturnObject.MyString
Int = ReturnObject.MyInt
Structures

Structures can be accessed from the return object like this:

EntireX Broker ActiveX Control 21



Broker ActiveX Control with Visual Basic

Dim Struct As Object

Dim Str As String

Set Struct = ReturnObject.MyStruct
Str = Struct.MyString

Arrays and Records Exposed as Collections

Arrays and records are exposed by Broker ActiveX Control as automation collections when the
method CreateTransObject is used. As collections, they support the Count property, as well as
the I'tem property that acts as the default value when subscripting is performed without the Item
name. Thus, an array in the return object can be accessed like this:

Dim Array_Value As 0Object

Dim I As Integer

Dim MyInt As Integer

Set Array_Value = ReturnObject.MyArray

For I = 0 To Array_Value.Count - 1
MyInt = Array_Value(I)

Next I

The elements of a record can be accessed with the following method:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For T = 0 To Array_Value.Count - 1
Set Struct = Array_Value(I)
Str = Struct.Str
Next

or also:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For Each Struct in Array_Value
Str = Struct.str
Next

22 EntireX Broker ActiveX Control



Broker ActiveX Control with Visual Basic

Arrays and Records Exposed as Safe Arrays

Arrays and Records are exposed as safe arrays when the method

CreateTransObjectSA(torfilename) is used. Instead of the Count property, the LBound and UBound

functions are supported.

An array in the return object can be accessed like this:

Dim Array_Value as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray

For I = LBound(Array_Value) To UBound(Array_Value)
Str = Array_Valuel[I]

Next

The elements on a record can be accessed with the following method:

Dim Array_Value as Variant
Dim Struct as Variant

Dim I as Integer

Dim Str as String

Array_Value = ReturnObject.MyArray

For I = LBound(Array_Value) To UBound(Array_Value)
Set Struct = Array_Valuel[I]
Str = Struct.Str

Next

Another possible For statement:

For Each Struct in Array_Value
Str = Struct.Str
Next

There are no limitations to the number of complex types or their relationship to each object in a
transaction object. Arrays can exist within structures, and conversely, structures and arrays can
exist within records, etc. Thus, multidimensional arrays can easily be simulated if the given Broker

service that the method maps to provides data in such a format.

EntireX Broker ActiveX Control

23



Broker ActiveX Control with Visual Basic

Step 5: Cleanup Resources

When objects in your automation code are no longer used, be sure to call:

Set ObjectName = Nothing

This decrements the reference count of the object, thus allowing cleanup of object resources. While
the above information pertains specifically to Visual Basic, the concepts are also relevant to other
automation controllers, such as Delphi and FoxPro.

Step 6: Error Handling in Transaction Object Methods

TO methods do not return an error flag; they raise a standard ActiveX exception instead. In
Visual Basic, this exception can be caught with an 'On error’ clause. The most likely reason for the
failure of a TO method is that the Broker call that was issued returned an error. In Visual Basic,
use the standard Err object to retrieve the error number and message (Err.Number and Err.Descrip-
tion).

If the error is a Broker error, Err.Description shows a generic error message "Automation Error".
For a detailed error description use the ErrorCode and ErrorMsg properties.

Examples: Writing an ACI Client and Server with Broker ActiveX Control

= Writing an ACI Client with Broker ActiveX Control
= Writing an ACI Server with Broker ActiveX Control

Writing an ACI Client with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object

Dim senddata As String
Dim lToopcount As Integer

loopcount = 0
simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "Tocalhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"

24 EntireX Broker ActiveX Control



Broker ActiveX Control with Visual Basic

ebx.Service = "ASERVICE"
ebx.UserId = "EBX-USER"
ebx.function = 9 "' Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub

End If

Do
ebx.function = 1 ' Send
ebx.ConvID = "NONE"

' SetSendData data, length of data
Len(senddata)

ebx.SetSendData senddata,

ebx.wait = "10s" " wait 10 seconds for a response from server

ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg

Else

MsgBox "Received " + Str(ebx.ReturnDatalength) + " bytes (" + ebx.GetReceiveData + ")"

End If

loopcount = loopcount + 1
If loopcount = 2 Then
senddata = " shutdown"
End If

Loop Until Toopcount > 2

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Writing an ACI Server with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object

Dim senddata As String
Dim receivedata As String
' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")

ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"
ebx.Service = "ASERVICE"

EntireX Broker ActiveX Control

25



Broker ActiveX Control with Visual Basic

ebx.UserId = "EBX-USER"
ebx.function = 9 ' Logon
ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub

End If

ebx.function = 6 ' Register
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage

End If

Do

ebx.function = 2 ' Receive

ebx.wait = "yes" ' wait until data is received

ebx.ConvID = "NEW"

ebx.SetReceiveBufferlLength = 1024 ' we are now able to receive messages up to 1024 <
bytes

ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Else

' save received data

receivedata = ebx.GetReceiveData

' send response

ebx.function =1 ' Send

' SetSendData data, length of data

ebx.SetSendData senddata, Len(senddata)

ebx.wait = "no" ' don't wait for a response

ebx.InvokeBrokerFunction

If ebx.ErrorCode <> 0 Then

MsgBox ebx.ErrorMsg

Else

MsgBox "Received data: " + receivedata

End If

End If

" loop until the received data has the string "shutdown" from the position 20
receivedata = Mid(receivedata, 20, 8)

Loop Until receivedata = "shutdown"

ebx.function = 7 ' DeRegister
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction

26 EntireX Broker ActiveX Control



Broker ActiveX Control with Visual Basic

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

EntireX Broker ActiveX Control 27



28



5 Using Broker ActiveX Control with Active Server Pages

B PrereqUISItES ...oovvvvviiiieeeee e

= Designing a Web Page with ASP and Broker ActiveX Control ..............oooiiiiiiiiiiiiiiiiece e

= Using Broker ActiveX Control in Multiple Pages

29



Using Broker ActiveX Control with Active Server Pages

Microsoft's Active Server Page (ASP) is an HTML page that includes one or more scripts and re-
usable ActiveX server components to create dynamic Web pages. The scripts and ActiveX compon-
ents are processed on a Microsoft Web server before the page is sent to the user.

Prerequisites

Installation prerequisites for all EntireX components are described centrally. See Prerequisites in
the Release Notes.

To use Broker ActiveX Control with ASP, you must have a running Web server.

Designing a Web Page with ASP and Broker ActiveX Control

Creating an Instance of the ActiveX Control and the Transaction Object

<%

Set EBX = server.Createobject("EntireX.Broker.ACI")
Set torobj = EBX.CreateTransObject("calc.tor")
or

Set torobj = EBX.CreateTransObjectSA("calc.tor") (if returnvalue contains array)
%>

Calling a TOR Method

Set retobj = torobj.calc(op,opl,op?2)

Accessing the Data
Scalars

<% string = retobj.result %>

30 EntireX Broker ActiveX Control



Using Broker ActiveX Control with Active Server Pages

Structures

<% string = retobj.result.str %>
Arrays
You can have access to array elements:

<kstring = retobj.retarr(0) %>

or

<%

return = retobj.retarr
string = return(0)

%>

or

<%

For Each element in retobj.retarr
string = element

Next

%>

Records

You can have access to record elements:

<kstring = retobj.retrec(0).str %>

or

<%

Set return = retobj.retrec(3)
Response.Write return.str

%>

or

EntireX Broker ActiveX Control 31



Using Broker ActiveX Control with Active Server Pages

<%

For Each struct in retobj.retrec
string = struct.str

Next

%>

or

<%

Array_Value = retobj.retrec

For I = LBound(Array_Value) To UBound(Array_Value)
string = Array_Value(I).str

Next

%>

Using Broker ActiveX Control in Multiple Pages

Objects created by Server.CreateObject or CreateTransObject have page scope. They will be
destroyed automatically when the current ASP page is finished.

To create an object with session or application scope, you can either use the <OBJECT> tag and set
the SCOPE parameter to SESSION or APPLICATION, or store the object in a session or application
variable.

For example, an object stored in a session variable, as shown in the following script, is destroyed
when the Session object is destroyed. That is, when the session times out, or the Abandon method
is called.

<% Set Session("torobj") = EBX.CreateTransObject("calc.tor")%>

You can destroy the object by setting the variable to "Nothing" or setting the variable to a new
value.

<% Session("torobj") = Nothing %>

32 EntireX Broker ActiveX Control



6 Using Broker ActiveX Control with .NET

= Using Broker ActiveX Control with Visual Studio ;NET ..........ooiiiiiiiii e

= A Small Visual Basic .NET Example

33



Using Broker ActiveX Control with .NET

Using Broker ActiveX Control with Visual Studio .NET

> To use Broker ActiveX Control with Visual Studio .NET

1 Add Broker ActiveX Control to the Project references.
2 Add a Broker Control variable BrokerLib.BrokerClass().

While you are using Broker ActiveX Control, the properties and methods of the object are listed
in the member list.

Note: To use custom data types you have to access the items through a temporary object.

See Defining Custom Data Types.

A Small Visual Basic .NET Example

' create new ActiveX Control
Dim broker As New BrokerLib.BrokerClass()

Dim TransactionObject As Object
Dim SomeObject As Object
Dim CTObject As Object

" load tor object
TransactionObject = broker.CreateTransObject("Broker.tor")

" call a method from the tor object
SomeObject = TransactionObject.GetData("Personl")

reference a temporary object to the Customer Data type

CTObject = SomeObject.CustData

' access to the items of the Customer Data
Console.WriteLine("Name :" & CTObject.Name)
Console.WriteLine("Address :" & CTObject.Address)

34 EntireX Broker ActiveX Control



7 Transaction Objects in Broker ActiveX Control

= Advantages of Transaction Objects

= Calling the Transaction ObJECt EQILOF ..........vviiiiiiie et

= Managing TOR Files ..................
= Defining Methods ......................
= Specifying Connection Information
= Defining Custom Data Types .......

35



Transaction Objects in Broker ActiveX Control

Transaction Object (TOs) in Broker ActiveX Control are selections of logical methods that are
stored in a transaction object repository (TOR). These logical methods contain all the connection
and interface details necessary to communicate with EntireX Broker.

Advantages of Transaction Objects

The advantages of using transaction objects are:
" Services are defined once, in one place, and distributed as needed. They can then be used by
anyone from many different applications to access back-end applications.

* Transaction objects can encapsulate all connection and conversational information from the
developer, which simplifies the implementation and administration of distributed applications.

® The send buffer of a message is broken down into parameters, and the receive buffer is mapped
to the return object. This means you do not have to worry about offsets, data types, repeating
fields (arrays), or structures.

Calling the Transaction Object Editor

The Transaction Object Editor is a tool within Broker ActiveX Control with which you can define
and maintain transaction objects. It is invoked by calling the method DefineTOMethods from a
form that includes an ActiveX control.

The Transaction Object Editor can be called directly using the TORed1it executable. The extension
".tor" is registered as a file type, so you can call the Transaction Object Editor with a double click
from the Windows Explorer.

] Notes:

1. After installation you will find the Transaction Object Editor in directory <inst_root>\ En-
tireX \bin \x86 (32-bit).

2. Before you start the TOR Editor for the first time, you need to register the required DLL ebx.dll
to your Windows system manually. Simply open a Windows Command prompt in folder
<inst_root>\ EntireX \bin \x86 and run the command regsvr32 ebx.d11.1If you later want to use
a TOR Editor from a different installation directory, register the corresponding ebx.dll as above.

36 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

-
3 CAU DesktoptorMNOME.t =l
I gt SRR
File Edit Help
r— Defintion of this method:
Method: || ;I | Mew I Copy... | Delete |
Call Type | Parameters I Retum Object I Method Connection... |
Call types supported by thiz method;
Call Type | Action Description -
Send Data Method passes data to a Broker Service {1
’ Send and Receive Data  Method passes data to a Broker Service,
Receive Data Method receives data from a Broker Servid
Logon Logon to the Broker
Logoff Logoff from Broker i
End of Conversation Teminate one or more conversations 3
Syncpaint Syncpoint
Register Register a Server
Dereqister Dereqister a Server
4 T 3
Connection... | Custom Types... | Bxit

When a transaction object is loaded, the corresponding file name will be displayed in the title bar.
If loading or saving fails, an error message will be displayed in the title bar.

EntireX Broker ActiveX Control

37



Transaction Objects in Broker ActiveX Control

Managing TOR Files

The following functions are available for managing TOR files.

= File Menu
= Edit Menu

38 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

= Help Menu

File Menu

i Transaction Cbject Editor

File | Edit Help
Mew
Open ...
Save
Save a5 .. I Retum Object
Exit -
I Actior
Send Data Methe
’ Send and Receive Data  Methe
Receive Data Methe
Logon Logar
Logoff Logof
Menu Item | Description
New Resets the TOR Editor.
Open  |Loads an existing TOR file. A standard Open File dialog will be displayed. This function is

needed to modify an existing TOR file.

Save Saves a TOR file.
Save as |Saves a new or modified TOR file. A standard Save File dialog will be displayed.
Exit Closes the TOR Editor.

EntireX Broker ActiveX Control

39



Transaction Objects in Broker ActiveX Control

Edit Menu

-

i Transaction Object Editor

File Help
Ded Custom Data Types
Me Connection -

Call Type | Parameters | Retum Objed]

Call Type Action Descripti
Send Data Method passes
’ Send and Receive Data  Method passes

D mmiven M-t Meotbnd rmncinen

Menu ltem Description

Custom Types |Calls the Custom Data Types dialog. See Defining Custom Data Types.

Connection |Calls Broker Connection Information dialog. See the Specifying Connection Information

Help Menu

Menu Item | Description

About |Displays the About box.

40 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

Defining Methods

The following buttons are available in the transaction method definition model:

® The New button causes the method name within the dialog box to be added to the store.

® The Copy button copies the currently selected method to a new method.

® The Delete button removes the selected method from the store.

Methods are logically grouped in a transaction object. Each method specified in the transaction

object relates directly to a specific Broker service. To define a new method, therefore, you need to
know which services are available. Each method requires the following information:

= Connection

= Call Type

= Parameters
= Return Object

Connection

Connection information is specified using the Broker Connection Information dialog. Each TOR
file has default connection information, and each method has its individual connection information.
If a parameter is not defined in the connection information of a method, the default is taken. For
a description of the parameters, see Specifying Connection Information.

Call Type

The Call Type tab represents the call types that can be used for this method.

Call Type Description

Send Data Used to define a method that accepts parameters but does not return data from
the service. This could be used to notify a back-end application of some event
without waiting for a response.

Send and Receive Data |Used to define a method that accepts parameters and returns data from that service.

Receive Data Can be used to get information from a back-end application that requires no input,
for example MOTD (message of the day) information. It is also used to wait for
incoming requests if you are using Broker ActiveX Control to write Broker Server

applications.
Logon Logon to EntireX Broker.
Logoff Logoff from EntireX Broker.

End of Conversation |Used to end a conversation.

Syncpoint Used to commit, backout, or cancel a unit of work, obtain the status of a unit of
work, or delete the persistent status of a unit of work.

EntireX Broker ActiveX Control 41



Transaction Objects in Broker ActiveX Control

Call Type Description
Register Informs EntireX Broker that a service is available.
Deregister Removes previously registered services from EntireX Broker's active list.

The Call Type tab is shown in the Transaction Object Editor screen above.

Parameters

The Parameter tab exposes a multiline box containing individual parameter variables.

These parameters are placed into the SEND-BUFFER of the EntireX Broker call. Each parameter
has a data type (Integer, Real, String etc.) and a length.

i Transaction Object Editor [ = &J

File Edit Help

Definition of this method:
Method: calc ﬂ | New | Comr...| Del_ete|

Method Connection... |

Cal Type Parameters lRetum Object |

Method data items:
Name In Type Out Type Offset Length
operand String String 1] 1
’ operator String String 1 12
operator? String String 13 12
Add... | Remove | Mawve Up | Move Down |
Data is provided as: |String j Data offset: |1
Data is gert as: |String j Data length: (I _|:I

Connection... | Custom Types... | Exit |

42 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

Defining a Parameter List

If data is sent, it is necessary to define a parameter list for this method. The T0 method parameter
list serves as a "map" between the types passed as parameters, and the data types and locations
within the method's send buffer. Items within the T0 method parameter list are ordered sequentially
as they will be passed when the method is invoked.

List Control

A list control is used for defining, removing and ordering parameters of the current method. The
list control supports in-place editing of items names, and works together with the item configuration
controls positioned below. When a particular item is selected, it can be moved up and down the

list sequentially. The order of the list defines the order in which parameters are passed when the
method is invoked. Note that offsets are automatically generated for each list item, relative to the
start of the list, and the items (and their sizes) that precede it.

The Add function adds the field after the selected position.
Data Conversion

Data conversion is also supported between a type provided by the client and the type expected
by the Broker service. For parameters, the user can specify the data type that will be provided,
and the type that will be sent to the Broker service. For return objects, the data received by the
Broker service can be set to the data type retrieved by the user. The important data types are those
sent to and received from a Broker service. Broker ActiveX Control automatically converts between
the data type received from the Broker and a data type specified by the user (see the Data is received
as and Data is retrieved as fields in the screen below).

Implemented Data Types
The scalar data types supported by the Broker ActiveX are a subset of the standard Automation

VARIANT types and are listed below. In cases where the selected data type is of fixed length, the
data length edit control is set to the appropriate length and grayed.

Transaction Object Method Data Types | Description

1-byte Integer 1-byte Integer used for signed and unsigned.
2-byte Integer 2-byte Integer used for signed and unsigned.
4-byte Integer 4-byte Integer used for signed and unsigned.
4-byte Real 4-byte Real compatible with "C" float.

8-byte Real 8-byte Real compatible with "C" double.
Bool Boolean variable.

String String of specified length.

Blob Generic byte block.

EntireX Broker ActiveX Control 43



Transaction Objects in Broker ActiveX Control

Transaction Object Method Data Types |Description

Padding Used to separate types in the buffer.

Return Object

If the transaction object method is invoked with call type 'Send and Receive' or 'Receive’, a Return
Object is created. This is a logical object that enables you to retrieve multiple scalar values or records
by referencing its properties.

The Return Object tab exposes the individual properties that are mapped onto the RECEIVE-
BUFFER of the Broker call. When the data is returned from the Broker service, Broker ActiveX
Control uses the types and lengths of the defined properties to populate the values of the properties.
You can now access the contents of the receive buffer as ActiveX properties of the method that is
created by loading the transaction object.

i Transaction Object Editor [ = &J
File Edit Help
Definition of this method:
Method: [ealc] ﬂ | New | Copy... | Delete |
Cal ype ] Parameters  Rstum Object l Method Connection... |
Method data items: [~ Manually set data offset
Name In Type Out Type Offset Length
’ result String String 1] 12
Add... | Remove | | |
Data is recejved as: |String j Data offset: |7
Data is retrieved as: |String j Data lgngth: |12 _|:I
Connection... | Custom Types... | Exit |

As with the parameters, Broker ActiveX Control calculates the offset in the RECEIVE-BUFFER for
each property. For information on list control, data conversion and implemented data types, see
Defining a Parameter List.

Custom Data Types are used for non-scalar data types such as arrays and structures. They are also
used to assign aliases to parameters for consistent naming purposes.

44 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

The Manually set data offset check box allows the transaction object designer to override auto-
matic offset calculation and specify offsets manually. This feature is powerful, but also potentially
dangerous, because no base type checking can be performed.

EntireX Broker ActiveX Control 45



Transaction Objects in Broker ActiveX Control

Specifying Connection Information

= |ntroduction
= Connection Information Parameters

Introduction

Connection information relates directly to the Broker service that you want to communicate with
when using this method.

Transaction methods are defined using the Transaction Object Editor. Connection information is
specified using the Broker Connection Information dialog. Each TOR file has default connection
information, and each method has its individual connection information. If a parameter is not
specified in the connection information of a method, the default is taken. The Broker parameters
are part of this connection information (with the exception of Function, which depends on the
Call Type).

Broker Connection Infol
. —

Server Class:

s

Service:

Server Name: | Cancel

Broker ID:

User ID: |

Passward: |

Token: |

Broker Security: - Force Logon: NO -

Conversation I—L| Option: m
Wait: [ =]

uow StatusLife: |

LOW Time: [ uowstatusPersist: [0

Enwvironment: |

Compression Level: -
Encryption Level: | NONE | (deprecated; use SSL/TLS)

%

The Broker Connection Information dialog box accepts all the parameters required for establishing
the necessary Broker connection to execute the defined method/call type. Information in this dialog
can be changed without affecting the application code. For example, if the BrokerID changed, you

46 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

would change the connection information in the methods (services) affected and distribute the

new transaction object file. The next time the application code loads the transaction object file and
calls a method, the new connection information will be used.

Connection Information Parameters

Parameter Description

ServerClass, ServerName, | These three parameters represent the unique “signature” of this method call.
Service

BrokerID The unique name of the Broker node that the services are attached to. See Using
the Broker ID in Applications in the ACI Programming documentation and details
on TCP/IP under Transport Methods.

Wait The following values are set for this parameter, depending on the operation:
Operation Wait Value (in seconds)
Send 0

Send and Receive 30 ©
Receive 59 O

@ if no value is specified in the Connection info.

See Properties for a description of the other parameters.
Setting the Broker Call Parameters

Calling a method of a transaction object results in a Broker call. The parameters for the Broker call
are taken either

® from the Broker Connection Information dialog, see above, or
® from the properties (see Properties).

If a value is specified in the Connection Information dialog, this value is taken and overrides any
value specified in the properties.

If no value is specified in the Connection Information dialog, the current setting of the properties
is taken. Leaving these parameters blank in the Connection Information dialog enables you to

change these parameters dynamically, and also enables Broker communication in conversational
mode. See example below:

EntireX Broker ActiveX Control 47



Transaction Objects in Broker ActiveX Control

Visual Basic Example

This example shows a possible usage of dynamic parameter assignment:

Set TransObject=BOCX.CreateTransObject ("...calc.tor")

BOCX.UserID = "USER1"

BOCX.BrokerID = "ETB121"

Set ReturnOb = TransObject.calc("+", "000000000001", "000000000002")

Defining Custom Data Types

The Custom Data Types dialog allows you to define new data types that will appear in the Return
Object tag. With the Apply button you can embed a custom type within another custom type as
long as this does not result in a recursive inclusion.

The following four classes of custom data types are supported:

= Custom Data Type 'Alias'

= Custom Data Type 'Array’

= Custom Data Type 'Record'
= Custom Data Type 'Structure'

Any custom data type can be used in transaction objects return objects. Custom data types are not
supported as method parameters.

| Note: All custom data types can be used recursively. That is, any custom data type can be

used as a member or base type for any other custom type. This allows for nested structures,
as well as arrays within structures and records.

Custom Data Type 'Alias’
An alias is a custom data type that allows an administrator to specify an alias for any defined data

type - custom or not. Aliasing also allows the definition of data types with specific in and out data
types (type translation).

48 EntireX Broker ActiveX Control



Transaction Objects in Broker ActiveX Control

Custom Data Type 'Array'

Custom Data types &J

Custom: |anay—example ﬂ | New | Copy | Del_ete|
Custom Data type definition:

Alias Amay  Record | Structure
Data is received as: |String j Data length: |34 4;

Data is retrieved as: |String j

Maimum elements in the amay: |4 _|:I

ke

An array consists of multiple serial elements of the same data types. Arrays can be made up of
either scalar or custom data types. The number of elements in an array must be specified.

Array custom data types accept the same basic information as alias data types, with the addition
of the number of elements in the array. Arrays allow elements of the specified base type to be ac-
cessed in a subscripted fashion.

| Note: Multidimensional arrays and arrays of structures can be implemented by specifying

a custom array or record data type as the base type of this array.
Custom Data Type 'Record'

A record is a repeating collection of data types - scalar or custom.

This custom data type allows you to define a collection of data types that can be accessed in a
subscripted fashion. The order of defined types in the Record can be changed. Also, the number
of records within the receive buffer can be specified if known.

EntireX Broker ActiveX Control 49



Transaction Objects in Broker ActiveX Control

Custom Data types ﬁ

Custom: |record-example || Mew | Copy | Del_ete|
Custom Data type definition:

Alias Amay || Record Structure

Data types in regord:

MName In Type Out Type Length
PersonallD String String 2
Firstname String String B4
’ Lastname String String B4
Add... | Remove | Move Up | |
Data is received as: |String j Data length: |64 _%l
Data is retrieved as: |String j

Maximum records in the buffer: 3| _|:|

Custom Data Type 'Structure’

A structure is a named collection of data types.

The controls for this custom data type are identical to those of the data type 'record’, with the ex-
ception of a repetitive count, which is not applicable.

50 EntireX Broker ActiveX Control



8 Calling Broker ActiveX Control Remotely

= Setting up the Server Environment
= Setting up the Client Environment
= Testing the Connection ..............

51



Calling Broker ActiveX Control Remotely

You can call Broker ActiveX Control remotely if you use it as an automation server. This means
you can use the Broker component from a separate process - either on the same machine or on
another machine in the network.

Setting up the Server Environment

~ To set up the server environment

1  From the Administrative Tools in the Control Panel, open the Component Services on the
server.

The following dialog box will be displayed:

i Component Services [Z”E|g|
@ File  Action Wew Window Help ;lilJ
¢+ @@ @ rEEE8

[_1 Console Root A | Entirer Broker Ackive Control 0 object(s)

= @ Component Services
= [:l Camputers
= @ My Computer
+-|_7 CoM+ applications
=1-1_7 DCOM Config
+ Accstore Class
Entire Connection Camms Server
EntireConnection, Terminal
Entirex Broker Ackiver Control
Entirex.MatIDL b

+- [+

¥

Select EntireX Broker ActiveX Control in the DCOM Config list box and choose the properties
from the context menu.

The following dialog box will be displayed:

52 EntireX Broker ActiveX Control



Calling Broker ActiveX Control Remotely

EntireX Broker ActiveX Control Properties

General |anati0n Security | Endpoints || 1dentity

Application Mame:
Application [D:
Application Type:
Authentication Level:

Local Path:

General properties of thizs DCOM application

Entirei< Broker dctivel Contral

{F7AC2803-B2EE-11CF-9B1 7-0000C0C39393}

Loczal Server

I 0k l [ Cancel Apply

Click the Security tab.

Click the Security tab.

EntireX Broker ActiveX Control Properties

Gerneral anationl Security |End|:n:nints Identity

{* ilze Defaul

T

" Customize

Access Permissions

* Use Default

" Customize

" Use Default

* Customize

Launch and Activation Permizsions

1

Configuration Permigzions

Edit...

0k H Cancel ] Apply

EntireX Broker ActiveX Control

53



Calling Broker ActiveX Control Remotely

3

In the dialog box displayed above, keep the defaults for access, launch and configuration
permissions.

Click the Identity tab.

EntireX Broker ActiveX Control Properties

General || Location | Security | Endpoints | 1dentity

Which uzer account do wou want bo uze to run thiz application?

" The interactive user.

" This user.

I (]S H Cancel ]

There are three options to define the user account to be used to run the application:
* The interactive user

This implies that a user with permission to launch the application must be logged on to the
server machine.

® The launching user
This implies that an account must be created on the server machine with the same user-

name/password as on the client machine. This account will then be used to launch the ap-
plication.

* This user
A final option is to specify a user account to be used when launching the application.

In each case, the username/password of the client machine must also exist on the server ma-
chine.

Select one of the options and choose OK to return to the Component Services.

Click on My Computer and choose the properties from the context menu.

54

EntireX Broker ActiveX Control



Calling Broker ActiveX Control Remotely

Click on My Computer and choose the properties from the context menu.

([ console Rook
= @ Cormponent Services
—-|_7] Computers
= ompuker
+-|_] COM+ Applications
—-|_7] DCOM Canfig

The following dialog box will be displayed; click on the Default Properties tab.

My Computer. Properties

Default Protocols MSOTC COM Security
General Options Default Properties

¥ ‘Erable Distributed COM on this computer:

™ Enable COM Intemet Services on this computer

Drefault Distributed COM Communication Properties

The duthentication Level specifies security at the packet level,

Default Authentication Level:

Cal -

The imperzonation level specifies whether applications can determine
wha iz calling them, and whether the application can do operations
uzing the client's identity,

Default Impersonation Level:

Identify -

Security for reference tracking can be provided if authentication is used
and that the default imperzonation level iz nob anonemous,

[~ Provide additional security for reference tracking

I 0k H Cancel H Apply l

Choose the options as shown in the dialog box above.

5  Click on the COM Security tab.

Click on the COM Security tab.

EntireX Broker ActiveX Control 55



Calling Broker ActiveX Control Remotely

My Computer. Properties

General Optiong Drefault Properties

Default Protocals MSOTC COM Security

Accezz Pemizsions

You may edit who is allowed default access to applications. You may
alzo zet limitz on applications that determine their own permiszions,

Edit Limits...

Launch and Activation Permizsions

You may edit wha is allowed by default to launch applications or
activate objectsz. You may alzo et limitz on applications that
determing their own permizsions.

Edit Limitz. .. Edit Defaul...

l 0k ” Cancel H Apply

LLaunch Permission

Security Limits l

Group or user names:

ﬁ Adrni
ﬂi Ewvemone

COO0E&S Admini

Agd... | Bemove |

Permizsions for Administrators Al Deny

Local Launch
Remate Launch
Local dctivation

RIEIEIE
aoom

Remote Activation

Ok | Cancel

In the Launch and Activation Permissions area of the dialog box displayed above, choose
Edit Default. The following dialog box will be displayed:

56

EntireX Broker ActiveX Control



Calling Broker ActiveX Control Remotely

Make sure that either the user corresponding to the client machine account, or a group to
which the user belongs, has Allow Launch as Type of Access.

Choose OK in this screen and then Apply, and exit Component Services on the server.

Setting up the Client Environment

The EbxProxy.dll is installed by default on the server in directory <drive>:\ Software AG\ EntireX \ bin.
Copy the file from the server machine to the client machine.

The DLL must then be registered with: REGSVR32 <path>\EBXproxy.d11.

~ To configure the client environment

1  From the Administrative Tools in the Control Panel, open the Component Services on the

client.

The following dialog box will be displayed:

i#> Component Services

(B Ele

& » @

window

@

Ackion  Wiew Help

[ Console Rook
= @ Cormponent Services
—-|_7] Computers
= @ My Computer
+-|_7] CoM+ Applications
—-|_7] DCOM Canfig
+ AccSkore Class
Entire Connection Carmms Setver
EntireConnection, Terminal
Entires Broker Ackiver Control
Entires. MakIDL

+- [+

¥

e

=S
N

Entirey Broker ActiveX Contral 0 object(s)

Select EntireX Broker ActiveX Control in the DCOM Config list box, choose the properties
from the context menu and click the Location tab.

2 Inthe Location tab of the ActiveX Control Properties dialog box above, select the checkbox
Run application on the following computer: and enter either the hostname or the IP address

of the server machine.

EntireX Broker ActiveX Control

of



Calling Broker ActiveX Control Remotely

EntireX Broker ActiveX Control Properties

General | Location |SEI3L-Irit_'.-' Endpointz | [dentity

The following settings allow DCOM to locate the corect computer far this
application. If you make more than one zelection, then DCOM uzes the first
applicable one. Clent applizations may override your zelections.

| Fun application on the computer where the data iz located.
—

v Run application on the fallowing computer:

hosthame or |P addresd Browze. ..

Q. | | Cancel | | Apply

Choose Apply and then OK.

3 Select My Computer and choose the properties from the context menu.

(23 Console Root
= @ Component Services
= [:l Camputers

+-|_7] oM+ Applications
=1-1_7 DCOM Config

The My Computer Properties dialog box will be displayed. Select the Default Properties tab.

58 EntireX Broker ActiveX Control



Calling Broker ActiveX Control Remotely

My Computer. Properties

Default Protocols MSOTC COM Security
General Options Default Properties

¥ ‘Erable Distributed COM on this computer:

™ Enable COM Intemet Services on this computer

Drefault Distributed COM Communication Properties

The duthentication Level specifies security at the packet level,

Default Authentication Level:

Cal -

The imperzonation level specifies whether applications can determine
wha iz calling them, and whether the application can do operations
uzing the client's identity,

Default Impersonation Level:

Identify -

Security for reference tracking can be provided if authentication is used
and that the default imperzonation level iz nob anonemous,

[~ Provide additional security for reference tracking

I 0k H Cancel H Apply l

Choose the check box Enable Distributed COM on this computer, set the default authentic-
ation level to Call and the default impersonation level to Identify.

Choose OK.

Testing the Connection

You are now ready to test the connection between the client machine and the server machine.
Test the TCP/IP Connection

Test the TCP/IP connection between the client and the server (use, for example, ping).

EntireX Broker ActiveX Control 59



Calling Broker ActiveX Control Remotely

Test the Remote Call

To test whether an application can be called remotely, you can use the OLE/COM Object Viewer:

Run the OLE/COM Object Viewer on the client.

The OLE/COM Object Viewer dialog box will be displayed:

s OLE/COM Object Viewer
File Object ‘iew Help

=3 &| 55 a

= Object Classes
= Grouped by Component Category
+ MET Categaory
30 DireckTransForm
Active Scripking Engine

B R e

FEN Fe e o o

Ready

Active Scripting Engine with Authoring
Active Scripting Engine with Encoding
Active Scripting Engine with Parsing

Design Time UI Ackivatable Control

-~ Automnation DObjects
--ﬂ {40FCEEDS-2438-11CF-430E-080036F1 2502}

Regiztmy ]

Cornponent Cateqories
{40FCAEDS-2438-11CF-A3DB-080036F 1 2502} [409] = Automatio

Select Automation Objects in the navigation frame to display a list of all the automation objects

on the client machine.

A screen similar to the one displayed below will be displayed:

- OLE/COM Object Viewer
File Object Wiew Help

Bly| & BF

+- @, DxtKey Class

+-fg, eCSharpBuild Class

+-fg, eCSharpCommonBuild Class
+ -, eCSharpCompiler Class

+| g, eCSharpDebug Class

+-fg, eCSharpDeviceSettings Class
+-f, eCSharpGeneral Class

+ -, eCSharp¥ersion Class

+| @, eCSharpiWebSettings Class
+-[EA EffectBuvr Class

+ @gz EFStaticExtenderProvider .2
+ 3 Emboss

+ @gz Encoder Feature Segment

+ @, EncryptedData Class

+ @52 EndpointsTable Class

+- @&, EndUserShelExt Class

+- @, EngControl Class

+ &gz Enagine Class

+ @ Engrawve

+- @, EnlistmentEnumerator Class
+ @I Entirer Broker Activel Control
+®, Entires,MatIDL

+- g, EnumInputSequenceCheckers Class
+ @, EnumTask Class

LA

L) PR TSR S

Ready

Nojeon  ENHTER Broker Activei Contral
avaikble (E2s 0280362611 CF-98H 7-0000C0C33353}

Registy | Implementation | Activation LaunchF’ermissions]Access Permizsions

{F7 AZ2803-B2E6- 1 1CF-9617-0000C0C39393} [ <no name =] = Entirex Broker Activex Control
{F7AC2803-52E6-1 1CF-9517-0000C0C39393} [ApplD] = {F7ACZ803-62EE-11CF-961 7-0000C0C 39393}
PraglD = Broker.BrokerCerl 1
Programmable
TypelLib = {F7AC2500-62EB-11CF-9617-0000C0C39393)
VersionIndependentProgID = Entire.Broker ACT
ApplD
{F7 AC2803-B2E6- 1 1CF-9617-0000C0C39393} [ <no name =] = Entirer Broker Activex Control
{F7AC2803-B2E6-1 1CF-9617-0000C0C 39393} [RemoteServeriame] = remokeserver
Eroker BrokerCtrl.1 = Entirel Broker Activel Control
CL5ID = {F7ACZ803-B2EE-1 1CF-9B17-0000C0C39395}
Insertable =
TypelLib =
{F7AC2800-B2E6-1 1CF-9817-0000C0C39393}
1.0 = Entire Broker Activex Control
o
win32 = C:\Program Files)Software AG\EntireX\Bintebxprosy . dil
FLAGS =2
HELPDIR = C:\Program FileshSoftware AG\EntirexGin

60

EntireX Broker ActiveX Control



Calling Broker ActiveX Control Remotely

Select EntireX Broker ActiveX Control, open its context menu and choose Create Instance.

If the remote call is successful, the EntireX Broker component on the server machine will be called
and the following screen will be displayed:

s OLE/COM Object Viewer,
File Object ¥iew Help

B3| & BE il

<
Ready

+ @I EntireX Broker ActiveX Contral
? _DBroker
? IConneckionPointContainer
9 IDataChject
? IDispatch
? I0leCache
? I0leControl
9 10leIrPlacectivethject
? I0leInPlaceCbiject
? IoleInPlace0bjectwindowless

Nojoen £t Broker Activel Control
Avaikble (E7s £o003B2EE-11 CF-9BH 7-0000C0C39353)

Registry l Implementation | Activation | Launch F'ermissions] Access Permissions

{F7ACZ803-E2E6-11CF-9817-0000C0C39393} [ <no name =] = Entirel Broker ActiveX Contral
{F7AC2803-B2E6-1 1CF-9817-0000C0C39393) [ApplD] = {F7AC2803-B2EE-11CF-9B17-0000C0C39393}
ProgID = Broker.BrokerCtrl 1
Programmable
TypelLib = {F7AC2500-B2EB-11CF-9B17-0000C0C39393;

7 Ioleobject versionIndependentProglD = Entirel. Broker, ACT
IPerPropertyBrowsing ApplD
? IPersist {F7AC2803-52E6-1 1CF-9817-0000C0C39393} [ <no name =] = Entirel Broker ActiveX Contral
9 IPersistMemory {F7AC2803-B2EE-11CF-9B1 7-0000C0C39393) [Remate Serverilame] = remakeserver
9 IPEFS!StPVUPEftYBag Broker.BrokerChrl.1 = EntireX Broker Activel Control
7 IPersistStorage CLSID = {FFACZE03-B2EE-11CF-9B17-0000C0C39393)
? IPersistStreamInit Insertable =
? IProvideClassInfo Typelib =

9 IProvideClassInfo2

? IQuickactivate

? I5pecifyPropertyPages
? IUnknown

P IViewObject

T WiewObjectz

Lo T _— e =

{F7AC2800-B2E6-1 1CF-9617-0000C0C39393);
1.0 = Entire Broker &ctives Control
1]
win32 = C\Program Files\Software AGYERtireX)Binlebxproxy . dil
FLAGS =2
HELPDIR = C:\Program FileshSoftware AG\EtireX\Bin

If you receive an error message (for example “Class not registered”) check the following;:

® the TCP/IP connection (with PING)

" the security definitions on the server with Component Services

" the remote server name on the client (this can also be checked with the OLE/COM Object
Viewer)

When the connection has been established, you will be able to run your application on the client.
Note that Broker ActiveX Control must be used as automation server. For information on how to
use Broker ActiveX Control with Visual Basic see Using Broker ActiveX Control as an Automation
Server.

EntireX Broker ActiveX Control 61



62



9

Reference

= Methods ..

= Properties

63



Reference

Methods

This section describes the methods of Broker ActiveX Control.

Broker ACI

The following methods are useful for writing applications using the native interface.

Method

Description

BSTR GetReceiveData()

Return the received data inner string

BSTR GetErrorText()

Return the last received error message.

BOOL SetSendDatalong(String, Long) or Copy user's data buffer into the send buffer.

BOOL SetSendData (String, Short)

BOOL InvokeBrokerFunction() Invoke the broker function call. Set the properties
Function and Option.

Transaction Objects

Method Description

Bool DefineTOMethods(String) Starts the TO editor. If you specify a valid TOR name, this TO

is then loaded into the editor. If a valid TOR name is not
specified, the currently loaded TO will be displayed or an
empty editor will be started.

Bool LoadTransObject(String)

Loads and initializes a transaction object. You must specify a
valid TOR file name; otherwise FALSE will be returned.

Object CreateTransObject(String)

Loads and initializes a transaction object. You must specify a
valid TOR file name. An object reference will be returned,
which can be used to call the methods defined in the TO. If
loading fails, a null reference will be returned.

Object CreateTransObjectSA(String)

This method uses the safe array implementation for arrays
instead of the collection implementation. If you experience
problems accessing arrays with an automation controller, try
using this method to instantiate a TOR object.

64

EntireX Broker ActiveX Control



Reference

Properties

Most properties of Broker ActiveX Control correspond to the Broker ACI fields. The properties
must be set to the appropriate values before using any function.

If transaction object repository (TOR) files are used, it will not be necessary to set all the properties.
See Transaction Objects in Broker ActiveX Control. The properties can also be supplied by means

of the property pages (see Using the Property Pages).

Property Name

Broker ACI Field

Format

Length

API
Version

Description

Adapterkrror

not used

String

2

AdCount

not used

Long

2

APIVersion

API-VERSION

Short

2

Possible values: 1, 2, 3,4, 5,6, 7,
8,9.

The default is 2. This value can
be changed dynamically by
setting the property. If the
current value of the Function
or Option property requires a
minimal API version, the value
of APIVersion will be adjusted
automatically.

BrokerID

BROKER-ID

String

32

Target Broker ID. See Using the
Broker ID in Applications and
details on TCP/IP in Transport
Methods in the ACI
Programming documentation.

BrokerSecurity

KERNELSECURITY

String

ClientUserid

CLIENT-UID

String

32

The partner's user ID.

CommitTime

COMMITTIME

String

17

Readonly property.

Time when UOW was
committed.

Format:
YYYYMMDDHHMMSSms
ms = milliseconds in Possible
Values field.

Compresslevel

COMPRESSLEVEL

String

Compression level. Possible
values: N/Y/0-9.

The first character of the string
will be used as the compression
value. If you type YES, the

EntireX Broker ActiveX Control

65



Reference

Property Name

Broker ACI Field

Format

Length

API
Version

Description

character Y will be used and ES
will be cut off. Example:
Brokerl.CompressLevel = "6".

See also Data Compression.

ConvID

CONV-1ID

String

Conversation ID, see Managing
Conversation Contexts.

ConvStatus

CONV-STAT

Short

Contains the status of the
conversation when the
RECEIVE function is complete.
See Managing Conversation
Contexts. Possible values:

1 NEW
2 OLD
3 NONE

EncryptionlLevel

Short

Deprecated. For encrypted
transport we strongly
recommend using the Secure
Sockets Layer/Transport Layer
Security protocol. See SSL/TLS,
HTTP(S), and Certificates with
EntireX in the
platform-independent
Administration documentation.

Environment

ENVIRONMENT

String

32

Pass additional information to
Translation User Exit. For more
information see ACI
ENVIRONMENT.

ErrorCode

ERROR-CODE

String

Broker error code, see Error
Handling.

ErrorMsg

not used

String

40

Contains the error message to
the corresponding error code.

Forcelogon

FORCE-LOGON

Boolean

Possible values: Y, N.

Function

FUNCTION
Possible values:

SEND

RECEIVE

UNDO

EOC

REGISTER

N| N O b= N =

DEREGISTER

Short

The functions to be performed
by Broker.

66

EntireX Broker ActiveX Control




Reference

Property Name

Broker ACI Field

Format

Length

API
Version

Description

8

VERSION

9

LOGON

10

LOGOFF

13

SYNCPOINT

14

KERNELVERS

localeString

LOCALE-STRING

String

40

The Broker ActiveX Control uses
the Windows ANSI codepage to
convert the Unicode (UTF-16)
representation within
BSTRINGS to the encoding sent
to or received from the broker.
This codepage is also transferred
as part of the locale string to tell
the broker the encoding of the
data. It is not possible to use any
codepage other than the
codepage configured for
Windows in the Regional
Settings. If you want to adapt
the Windows ANSI codepage,
see the Regional Settings in the
Windows Control Panel and
your Windows documentation.

Enable character conversion in
the broker by setting the
service-specific attribute
CONVERSION to "SAGTCHA". See
also Configuring ICU Conversion
under Confiquring Broker for
Internationalization in the
platform-specific Administration
documentation. More
information can be found under
Internationalization with EntireX.

Messageld

not used

String

32

MessageType

not used

String

32

NewPassword

NEWPASSWORD

String

32

Option

OPTION

Possible values:

0

NULL

1

MSG

Short

=N

EntireX Broker ActiveX Control

67



Reference

Property Name Broker ACI Field Format |Length C::sion Description
2 HOLD
3 IMMED
4 QUIESCE
5 EOC
6 CANCEL
7 LAST
8 NEXT
9 PREVIEW
10 COMMIT
11 BACKOUT
12 SYNC
13 ATTACH
14 DELETE
15 EOCCANCEL
16 QUERY
17 SETUSTATUS
18 ANY
19 no longer used
20 no longer used
21 CHECKSERVICE
Password PASSWORD String |32
ReceiveBufferLength|RECEIVE-LENGTH Long 3 Length of the receive buffer.
ReceiveBufferSize |RECEIVE-LENGTH Short This is an old property. Can be
used instead of
ReceiveBufferlLength - for
buffers with less than 32 KB
only.
ReturnDatalength RETURN-LENGTH Long 3 Length of returned data.
ReturnlLength RETURN-LENGTH Short This is an old property. Can be
used instead of
ReturnDatalength - forbuffers
with less than 32 KB only.
SecurityToken SECURITY-TOKEN String |32 2 This is handled automatically,
but can be filled in by the user
if required.
SendBufferSize Short 1 No longer used.
ServerClass SERVER-CLASS String |32 1 These three Broker parameters

form the target service.

68

EntireX Broker ActiveX Control



Reference

Property Name Broker ACI Field Format |Length C::sion Description
ServerName SERVER-NAME String |32 1
Service SERVICE String |32 1
Store STORE Short 2 Possible values:
0 NULL
1 OFF
2 BROKER
Token TOKEN String |32 1
UOWID UOWID String (16 3
UOWStatus UOWSTATUS Short 3
Possible values:
0 NONE
1 RECEIVED
2 ACCEPTED
3 DELIVERED
4 BACKEDOUT
5 PROCESSED
6 CANCELLED
7 TIMEOUT
8 DISCARDED
9 FIRST
10 MIDDLE
11 LAST
12 ONLY
UOWStatusPersist UOW-STATUS-PERSIST|Short 3
UOWTime UWTIME String |8
UserData USER-DATA String |16 This field is not converted by the
Broker. If the field contains
H'00', only the data up to the
first H'00' will be sent.
UserlID USER-ID String (32 1 User ID.
UserStatus USTATUS String |32 3
Wait WATT String (8 Possible values: Yes No <n>5S -

waiting n Seconds (max 99999)
<n>M - waiting n Minutes (Max
99999) <n>H - waiting n Hours

EntireX Broker ActiveX Control

69



Reference

API
Property Name Broker ACI Field Format |Length|Version |Description
(max 99999). See Blocked and
Non-blocked Broker Calls.
UOWStatusLife String (8 8

70

EntireX Broker ActiveX Control




	EntireX Broker ActiveX Control
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Broker ActiveX Control Introduction
	Broker ACI
	Transaction Objects

	3 Writing Applications - Broker ActiveX Control
	Calling a Broker Function
	Setting the Broker ActiveX Properties
	Specifying the Send Parameters
	Calling the Broker Function
	Getting the Contents of the Receive Buffer
	AboutBox

	Viewing the Type Library
	Adding the Broker ActiveX Control Component to Visual Studio
	Using the Property Pages
	General Page
	Function Page
	Parameters Page
	Results Page


	4 Broker ActiveX Control with Visual Basic
	Step 1: Instantiate EntireX Broker ActiveX Control
	Step 2: Instantiate the Transaction Object
	Step 3: Call Methods
	Step 4: Access the Returned Data
	Scalars
	Structures
	Arrays and Records Exposed as Collections
	Arrays and Records Exposed as Safe Arrays

	Step 5: Cleanup Resources
	Step 6: Error Handling in Transaction Object Methods
	Examples: Writing an ACI Client and Server with Broker ActiveX Control
	Writing an ACI Client with Broker ActiveX Control
	Writing an ACI Server with Broker ActiveX Control


	5 Using Broker ActiveX Control with Active Server Pages
	Prerequisites
	Designing a Web Page with ASP and Broker ActiveX Control
	Creating an Instance of the ActiveX Control and the Transaction Object
	Calling a TOR Method
	Accessing the Data
	Scalars
	Structures
	Arrays
	Records


	Using Broker ActiveX Control in Multiple Pages

	6 Using Broker ActiveX Control with .NET
	Using Broker ActiveX Control with Visual Studio .NET
	A Small Visual Basic .NET Example

	7 Transaction Objects in Broker ActiveX Control
	Advantages of Transaction Objects
	Calling the Transaction Object Editor
	Managing TOR Files
	File Menu
	Edit Menu
	Help Menu

	Defining Methods
	Connection
	Call Type
	Parameters
	Defining a Parameter List
	List Control
	Data Conversion
	Implemented Data Types

	Return Object

	Specifying Connection Information
	Introduction
	Connection Information Parameters
	Setting the Broker Call Parameters
	Visual Basic Example


	Defining Custom Data Types
	Custom Data Type 'Alias'
	Custom Data Type 'Array'
	Custom Data Type 'Record'
	Custom Data Type 'Structure'


	8 Calling Broker ActiveX Control Remotely
	Setting up the Server Environment
	Setting up the Client Environment
	Testing the Connection
	Test the TCP/IP Connection
	Test the Remote Call


	9 Reference
	Methods
	Broker ACI
	Transaction Objects

	Properties


