
webMethods EntireX

EntireX Broker ActiveX Control

Version 10.7

October 2020

This document applies to webMethods EntireX Version 10.7 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2020 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXACI-107-20220422ACTX

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Broker ActiveX Control Introduction .. 5
Broker ACI ... 6
Transaction Objects .. 6

3 Writing Applications - Broker ActiveX Control .. 7
Calling a Broker Function .. 8
Viewing the Type Library .. 10
Adding the Broker ActiveX Control Component to Visual Studio 11
Using the Property Pages ... 14

4 Broker ActiveX Control with Visual Basic .. 17
Step 1: Instantiate EntireX Broker ActiveX Control ... 18
Step 2: Instantiate the Transaction Object .. 20
Step 3: Call Methods ... 20
Step 4: Access the Returned Data ... 21
Step 5: Cleanup Resources ... 24
Step 6: Error Handling in Transaction Object Methods ... 24
Examples: Writing an ACI Client and Server with Broker ActiveX Control 24

5 Using Broker ActiveX Control with Active Server Pages ... 29
Prerequisites ... 30
Designing a Web Page with ASP and Broker ActiveX Control 30
Using Broker ActiveX Control in Multiple Pages .. 32

6 Using Broker ActiveX Control with .NET ... 33
Using Broker ActiveX Control with Visual Studio .NET ... 34
A Small Visual Basic .NET Example .. 34

7 Transaction Objects in Broker ActiveX Control .. 35
Advantages of Transaction Objects .. 36
Calling the Transaction Object Editor .. 36
Managing TOR Files ... 38
Defining Methods .. 41
Specifying Connection Information ... 46
Defining Custom Data Types ... 48

8 Calling Broker ActiveX Control Remotely .. 51
Setting up the Server Environment .. 52
Setting up the Client Environment .. 57
Testing the Connection ... 59

9 Reference ... 63
Methods .. 64
Properties ... 65

iii

iv

Preface

Broker ActiveX Control allows GUI application developers to use an ActiveX-based interface to
access EntireX Broker. It can be usedwithinActiveX containers, such as Visual Basic, PowerBuilder,
Delphi, Microsoft Excel, Microsoft Word.

Broker ActiveX Control provides a programmatic interface to
COM-enabled programming environments. It has two types of operation:

Broker ActiveX Control
Introduction

the Broker ACI and transaction objects. Broker ActiveX Control enables
you to create EntireX ACI clients and EntireX ACI servers.

Topics include calling a Broker function; viewing the type library; using
property pages.

Writing Applications - Broker
ActiveX Control

Visual Basic is used here as an example of a development environment
in which applications using Broker ActiveX Control can work. Broker

Broker ActiveX Control with
Visual Basic

ActiveX Control can be used by any programming language or
programming environment that can act as a container forActiveX controls.

Microsoft's Active Server Page (ASP) is an HTML page that includes one
ormore scripts and reusableActiveX server components to create dynamic

Using Broker ActiveX Control
with Active Server Pages

Web pages. The scripts and ActiveX components are processed on a
Microsoft Web server before the page is sent to the user.

How to use BrokerActiveXControlwith Visual Studio .NET. An example
is provided.

Using Broker ActiveX Control
with .NET

Transaction objects (TOs) in Broker ActiveX Control are selections of
logical methods that are stored in a transaction object repository (TOR).

Transaction Objects in Broker
ActiveX Control

These logical methods contain all the connection and interface details
necessary to communicate with the Broker.

You can call Broker ActiveX Control remotely if you use it as an
automation server. This means you can use the Broker component from

Calling Broker ActiveX Control
Remotely

a separate process - either on the same machine or on another machine
in the network.

Methods and properties of Broker ActiveX Control.Reference

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

EntireX Broker ActiveX Control2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3EntireX Broker ActiveX Control

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Broker ActiveX Control Introduction

■ Broker ACI ... 6
■ Transaction Objects ... 6

5

Broker ActiveX Control provides a programmatic interface to COM-enabled programming envir-
onments. It has two types of operation: the Broker ACI and transaction objects. Broker ActiveX
Control enables the user to create EntireX ACI clients and EntireX ACI servers.

Broker ACI

The BrokerACI provides a simple automationAPI that is one-to-one compatiblewith the published
EntireX Broker ACI. It provides Broker ActiveX Control properties and corresponding property
pages for the control parameters detailed in the Broker ACI fields. This API is conceptually com-
patiblewith current Broker programming practices. Further, the Broker ActiveXControl program-
mer can count on programmatic behavior consistent with programming the Broker API directly,
such as non-blocking calls and polling for completion.

Transaction Objects

Broker ActiveX Control generates ActiveX automation server interfaces dynamically at runtime
from files in the Transaction Object Repository (TOR).

Broker ActiveX Control transaction objects provide a dictionary subsystem and user interface that
will allow the EntireX Broker developer to define a dynamic IDispatch interface. This interface
allows received data to be accessed with the traditional automation methodology.

The transaction object definition of a method also includes parsing up the SEND and RECEIVE
buffers of a Broker message into parameters and return properties respectively. The transaction
objects are loaded at runtime and theActiveX container can then call themethods of that transaction
object to send/receive data.

See Transaction Objects in Broker ActiveX Control for more information.

EntireX Broker ActiveX Control6

Broker ActiveX Control Introduction

3 Writing Applications - Broker ActiveX Control

■ Calling a Broker Function .. 8
■ Viewing the Type Library ... 10
■ Adding the Broker ActiveX Control Component to Visual Studio .. 11
■ Using the Property Pages ... 14

7

Calling a Broker Function

Setting the Broker ActiveX Properties

You can set the Broker ActiveX properties either in the program or in the property pages. See
Properties.

Specifying the Send Parameters

Before executing a send function, specify the send parameters with the method
SetSendDataLong(String bsData, Long DataLen) or SetSendData(String bsData, Short
DataLen).

This method sets only the send buffer.

The first parameter specifies the buffer that has to be sent to the server. The second parameter
specifies the number of bytes to be transferred.

The following rules apply to the SetSendDatamethod:

■ The DataLen bytes of the string bsData are copied to the internal send buffer.
■ A byte copy is performed (not a string character copy), which means that the string bsData can
contain zero bytes.

■ The function BOOL SetSendData(String bsData, Short DataLen) can be used if the send
buffer is smaller than 32 KB.

Calling the Broker Function

■ Set the required properties.
■ When you use the send function, use the method SetSendData to set up the send buffer.
■ When you use the receive function, use the property ReceiveBufferSize to set up the size of
the internal receive buffer.

■ Use the static automation method to call the Broker functions:

BOOL InvokeBrokerFunction()

This method executes the Broker function defined by the current value of the property Function.
Depending on the function, the required Broker parameters are taken from the current values of
the corresponding properties.

EntireX Broker ActiveX Control8

Writing Applications - Broker ActiveX Control

If the Broker call is successful:

■ The function returns TRUE.
■ The ErrorCode property is set to '00000000' and the ErrorMsg property is empty.

If the Broker call is a Send or Receive function, this call may also update the ConvID property.

If the Broker call is a Receive function and asterisks were specified for ServerClass, ServerName
and Service, the call updates the ServerClass, ServerName and Service properties.

If the Broker call is a Receive or Sendwith implicit Receive (Wait > 0), the number of bytes received
is stored in the property ReturnDataLength and the returned data can be retrieved with the
GetReceiveDatamethod.

If the Broker call fails:

■ The function returns FALSE.
■ The ErrorCode and ErrorMsg properties contain the corresponding error reason.

The error code has two parts:

■ error class (first four digits), which provides information for the application on how to react to
the returned error, and

■ error number (last four digits), which indicates the reason for the error.

The GetErrorTextmethod is still available and returns the value of the ErrorMsg property.

For more information see Error Messages and Codes.

Getting the Contents of the Receive Buffer

If a Receive function was executed, the receive buffer can be retrieved with the function

STRING GetReceiveData()

AboutBox

The AboutBoxmethod is used to show the version of Broker ActiveX Control.

A message box will be displayed containing the About information.

9EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

AboutBox ()

Viewing the Type Library

To view the Type Library of Broker ActiveX Control

■ Use the OLE/COMObject Viewer (choose EntireX Broker ActiveX Control and chooseView
Type Information).

To do this with Visual Basic, see Using Broker ActiveX Control as an Automation Server.

EntireX Broker ActiveX Control10

Writing Applications - Broker ActiveX Control

Adding the Broker ActiveX Control Component to Visual Studio

To add the Broker ActiveX Control component to Visual Studio

1 In Visual Studio, choose Toolbox > Components.

2 From the context menu, choose Choose Item.

3 In theChoose Toolbox Itemsdialog underCOMComponents, check "EntireX BrokerActiveX
Control".

11EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control12

Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control is now known to Visual Studio. It can be copied and pasted
into the new form for later use.

13EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

Using the Property Pages

If you do not use Transaction Object Repository (TOR) files, you can also supply the properties
using the property sheet of Broker ActiveX Control. (If you use Broker ActiveX Control as an
automation server, the property pages are not available.)

The property sheet contains the following:

■ General Page
■ Function Page
■ Parameters Page
■ Results Page

General Page

With this page you can specify the API version and the size of the receive buffer.

Function Page

With this page you can specify the function to be called and Service, Server Class and ServerName.

EntireX Broker ActiveX Control14

Writing Applications - Broker ActiveX Control

Parameters Page

With this page you can specify the Conversation ID, Broker ID, User ID, Password, Environment,
Wait time, and Option.

Results Page

This page displays the results of the Broker function.

15EntireX Broker ActiveX Control

Writing Applications - Broker ActiveX Control

EntireX Broker ActiveX Control16

Writing Applications - Broker ActiveX Control

4 Broker ActiveX Control with Visual Basic

■ Step 1: Instantiate EntireX Broker ActiveX Control ... 18
■ Step 2: Instantiate the Transaction Object .. 20
■ Step 3: Call Methods .. 20
■ Step 4: Access the Returned Data .. 21
■ Step 5: Cleanup Resources ... 24
■ Step 6: Error Handling in Transaction Object Methods .. 24
■ Examples: Writing an ACI Client and Server with Broker ActiveX Control .. 24

17

Visual Basic is used here as an example of a development environment inwhich applications using
Broker ActiveX Control can work. Broker ActiveX Control can be used by any programming lan-
guage or programming environment that can act as a container for ActiveX controls.

Note: If you edit a Visual Basic application that uses Broker ActiveX Control and save these
changes with the new version of Broker ActiveX Control, you will not be able to use this
application with Broker ActiveX Control version 1.2.1.

Step 1: Instantiate EntireX Broker ActiveX Control

To use Broker ActiveX Control as a control

1 From the Project, Components, Controlsmenu choose EntireX Broker ActiveX Control.

2 Drop it into your dialog.

EntireX Broker ActiveX Control18

Broker ActiveX Control with Visual Basic

In this example, Name is set to "BOX" in the Properties dialog:

Using Broker ActiveX Control as an Automation Server

If you want to see the interface description of Broker ActiveX Control in the object browser or use
the early bind feature:

19EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

From the Project > Referencesmenu, choose Browse and then select Broker ActiveX Control in
<drive>:\SoftwareAG\EntireX\bin\ebx.dll.

To use Broker ActiveX Control as an automation server, you can define the following in your code:

Dim BOX as Object

or

Dim BOX as Broker
Set BOX=CreateObject("EntireX.Broker.ACI")

If you use Broker ActiveX Control as an automation server, you will not be able to:

■ call the methods DefineTOMethods and AboutBox

■ use the property pages.

Step 2: Instantiate the Transaction Object

If a Transaction Object Repository (TOR) file is used, it is not necessary to set the other properties.
If you want to use a transaction object, instantiate the transaction object with the command:

Dim TransObject As Object
Set TransObject = BOX.CreateTransObject("c:\\path\\to\\trans\\object\\object.tor")

BOX is the name set previously.

See theMethods for list of methods available for supporting transaction objects.

Step 3: Call Methods

Once a transaction object has been instantiated, the methods defined in that transaction object can
be called. If the transaction object method being called has one or more return values, transaction
object methods always return these values wrapped in a return object.

Dim ReturnObject As Object
Set ReturnObject = TransObject.MyMethod("Param1", 50, "Param3")

A return object is always used, as TOmethods usually returnmultiple scalar data items, or arrays,
structures or records. These in fact define the possible return values in a return object. They will
be either scalars:

■ 2-byte INT

EntireX Broker ActiveX Control20

Broker ActiveX Control with Visual Basic

■ 4-byte INT
■ etc., basically all scalar types handled through the automation VARIANT structure

or objects:

■ structure objects
■ collection objects
■ arrays
■ records

Alias custom types are mapped internally to the data type they alias, either scalars or objects.

Step 4: Access the Returned Data

You then access the returned data by interpreting the return object. The code required depends
on whether you are accessing scalars, structures, or arrays and records.

Note: Care must be taken to avoid recursive complex type definitions. For example, a
structure should not be defined that contains an instance of itself, or less directly, an array
of structures should not be defined that contains an instance of the same array type. These
and other permutations of recursive definitions cannot be resolved, and thus cannot be
used.

Scalars

Scalars can be accessed through the return object with code like this:

Dim Str As String
Dim Int As Integer
Str = ReturnObject.MyString
Int = ReturnObject.MyInt

Structures

Structures can be accessed from the return object like this:

21EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

Dim Struct As Object
Dim Str As String
Set Struct = ReturnObject.MyStruct
Str = Struct.MyString

Arrays and Records Exposed as Collections

Arrays and records are exposed by Broker ActiveX Control as automation collections when the
method CreateTransObject is used. As collections, they support the Count property, as well as
the Item property that acts as the default value when subscripting is performed without the Item
name. Thus, an array in the return object can be accessed like this:

Dim Array_Value As Object
Dim I As Integer
Dim MyInt As Integer
Set Array_Value = ReturnObject.MyArray
For I = 0 To Array_Value.Count - 1

MyInt = Array_Value(I)
Next I

The elements of a record can be accessed with the following method:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For I = 0 To Array_Value.Count - 1

Set Struct = Array_Value(I)
Str = Struct.Str

Next

or also:

Dim Array_Value,Struct As Object
Dim I As Integer
Set Array_Value = ReturnObject.MyArray
For Each Struct in Array_Value

Str = Struct.str
Next

EntireX Broker ActiveX Control22

Broker ActiveX Control with Visual Basic

Arrays and Records Exposed as Safe Arrays

Arrays and Records are exposed as safe arrays when the method
CreateTransObjectSA(torfilename) is used. Instead of the Countproperty, the LBound and UBound
functions are supported.

An array in the return object can be accessed like this:

Dim Array_Value as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray
For I = LBound(Array_Value) To UBound(Array_Value)

Str = Array_Value[I]
Next

The elements on a record can be accessed with the following method:

Dim Array_Value as Variant
Dim Struct as Variant
Dim I as Integer
Dim Str as String

Array_Value = ReturnObject.MyArray
For I = LBound(Array_Value) To UBound(Array_Value)

Set Struct = Array_Value[I]
Str = Struct.Str

Next

Another possible For statement:

For Each Struct in Array_Value
Str = Struct.Str

Next

There are no limitations to the number of complex types or their relationship to each object in a
transaction object. Arrays can exist within structures, and conversely, structures and arrays can
existwithin records, etc. Thus,multidimensional arrays can easily be simulated if the given Broker
service that the method maps to provides data in such a format.

23EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

Step 5: Cleanup Resources

When objects in your automation code are no longer used, be sure to call:

Set ObjectName = Nothing

This decrements the reference count of the object, thus allowing cleanup of object resources.While
the above information pertains specifically to Visual Basic, the concepts are also relevant to other
automation controllers, such as Delphi and FoxPro.

Step 6: Error Handling in Transaction Object Methods

TO methods do not return an error flag; they raise a standard ActiveX exception instead. In
Visual Basic, this exception can be caught with an 'On error' clause. The most likely reason for the
failure of a TO method is that the Broker call that was issued returned an error. In Visual Basic,
use the standard Err object to retrieve the error number andmessage (Err.Number and Err.Descrip-
tion).

If the error is a Broker error, Err.Description shows a generic error message "Automation Error".
For a detailed error description use the ErrorCode and ErrorMsg properties.

Examples: Writing an ACI Client and Server with Broker ActiveX Control

■ Writing an ACI Client with Broker ActiveX Control
■ Writing an ACI Server with Broker ActiveX Control

Writing an ACI Client with Broker ActiveX Control

On Error Resume Next
Dim ebx As Object
Dim senddata As String
Dim loopcount As Integer

loopcount = 0
' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"

EntireX Broker ActiveX Control24

Broker ActiveX Control with Visual Basic

ebx.Service = "ASERVICE"
ebx.UserId = "EBX-USER"

ebx.function = 9 ' Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub
End If

Do
ebx.function = 1 ' Send
ebx.ConvID = "NONE"
' SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "10s" ' wait 10 seconds for a response from server
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else
MsgBox "Received " + Str(ebx.ReturnDataLength) + " bytes (" + ebx.GetReceiveData + ")"
End If
loopcount = loopcount + 1
If loopcount = 2 Then
senddata = " shutdown"
End If

Loop Until loopcount > 2

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Writing an ACI Server with Broker ActiveX Control

On Error Resume Next

Dim ebx As Object
Dim senddata As String
Dim receivedata As String

' simple data to send
senddata = "Hello"

Set ebx = CreateObject("EntireX.Broker.ACI")
ebx.BrokerID = "localhost"
ebx.ServerClass = "ACLASS"
ebx.ServerName = "ASERVER"
ebx.Service = "ASERVICE"

25EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

ebx.UserId = "EBX-USER"

ebx.function = 9 ' Logon
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
Exit Sub
End If

ebx.function = 6 ' Register
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

Do
ebx.function = 2 ' Receive
ebx.wait = "yes" ' wait until data is received
ebx.ConvID = "NEW"
ebx.SetReceiveBufferLength = 1024 ' we are now able to receive messages up to 1024 ↩
bytes
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else

' save received data
receivedata = ebx.GetReceiveData
' send response
ebx.function = 1 ' Send
' SetSendData data, length of data
ebx.SetSendData senddata, Len(senddata)
ebx.wait = "no" ' don't wait for a response
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMsg
Else
MsgBox "Received data: " + receivedata
End If
End If
' loop until the received data has the string "shutdown" from the position 20
receivedata = Mid(receivedata, 20, 8)
Loop Until receivedata = "shutdown"

ebx.function = 7 ' DeRegister
ebx.InvokeBrokerFunction
If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

ebx.function = 10 ' Logoff
ebx.InvokeBrokerFunction

EntireX Broker ActiveX Control26

Broker ActiveX Control with Visual Basic

If ebx.ErrorCode <> 0 Then
MsgBox ebx.ErrorMessage
End If

27EntireX Broker ActiveX Control

Broker ActiveX Control with Visual Basic

28

5 Using Broker ActiveX Control with Active Server Pages

■ Prerequisites .. 30
■ Designing a Web Page with ASP and Broker ActiveX Control ... 30
■ Using Broker ActiveX Control in Multiple Pages ... 32

29

Microsoft's Active Server Page (ASP) is an HTML page that includes one or more scripts and re-
usable ActiveX server components to create dynamicWeb pages. The scripts andActiveX compon-
ents are processed on a Microsoft Web server before the page is sent to the user.

Prerequisites

Installation prerequisites for all EntireX components are described centrally. See Prerequisites in
the Release Notes.

To use Broker ActiveX Control with ASP, you must have a running Web server.

Designing a Web Page with ASP and Broker ActiveX Control

Creating an Instance of the ActiveX Control and the Transaction Object

<%
Set EBX = server.Createobject("EntireX.Broker.ACI")

Set torobj = EBX.CreateTransObject("calc.tor")

or

Set torobj = EBX.CreateTransObjectSA("calc.tor") (if returnvalue contains array)
%>

Calling a TOR Method

Set retobj = torobj.calc(op,op1,op2)

Accessing the Data

Scalars

<% string = retobj.result %>

EntireX Broker ActiveX Control30

Using Broker ActiveX Control with Active Server Pages

Structures

<% string = retobj.result.str %>

Arrays

You can have access to array elements:

<%string = retobj.retarr(0) %>

or

<%
return = retobj.retarr
string = return(0)
%>

or

<%
For Each element in retobj.retarr

string = element
Next
%>

Records

You can have access to record elements:

<%string = retobj.retrec(0).str %>

or

<%
Set return = retobj.retrec(3)
Response.Write return.str
%>

or

31EntireX Broker ActiveX Control

Using Broker ActiveX Control with Active Server Pages

<%
For Each struct in retobj.retrec

string = struct.str
Next
%>

or

<%
Array_Value = retobj.retrec
For I = LBound(Array_Value) To UBound(Array_Value)

string = Array_Value(I).str
Next
%>

Using Broker ActiveX Control in Multiple Pages

Objects created by Server.CreateObject or CreateTransObject have page scope. They will be
destroyed automatically when the current ASP page is finished.

To create an object with session or application scope, you can either use the <OBJECT> tag and set
the SCOPE parameter to SESSION or APPLICATION, or store the object in a session or application
variable.

For example, an object stored in a session variable, as shown in the following script, is destroyed
when the Session object is destroyed. That is, when the session times out, or the Abandonmethod
is called.

<% Set Session("torobj") = EBX.CreateTransObject("calc.tor")%>

You can destroy the object by setting the variable to "Nothing" or setting the variable to a new
value.

<% Session("torobj") = Nothing %>

EntireX Broker ActiveX Control32

Using Broker ActiveX Control with Active Server Pages

6 Using Broker ActiveX Control with .NET

■ Using Broker ActiveX Control with Visual Studio .NET .. 34
■ A Small Visual Basic .NET Example .. 34

33

Using Broker ActiveX Control with Visual Studio .NET

To use Broker ActiveX Control with Visual Studio .NET

1 Add Broker ActiveX Control to the Project references.

2 Add a Broker Control variable BrokerLib.BrokerClass().

While you are using Broker ActiveX Control, the properties and methods of the object are listed
in the member list.

Note: To use custom data types you have to access the items through a temporary object.
See Defining Custom Data Types.

A Small Visual Basic .NET Example

' create new ActiveX Control
Dim broker As New BrokerLib.BrokerClass()

Dim TransactionObject As Object
Dim SomeObject As Object
Dim CTObject As Object

' load tor object
TransactionObject = broker.CreateTransObject("Broker.tor")

' call a method from the tor object
SomeObject = TransactionObject.GetData("Person1")

'
reference a temporary object to the Customer Data type

CTObject = SomeObject.CustData

' access to the items of the Customer Data
Console.WriteLine("Name :" & CTObject.Name)
Console.WriteLine("Address :" & CTObject.Address)

EntireX Broker ActiveX Control34

Using Broker ActiveX Control with .NET

7 Transaction Objects in Broker ActiveX Control

■ Advantages of Transaction Objects ... 36
■ Calling the Transaction Object Editor ... 36
■ Managing TOR Files .. 38
■ Defining Methods .. 41
■ Specifying Connection Information .. 46
■ Defining Custom Data Types ... 48

35

Transaction Object (TOs) in Broker ActiveX Control are selections of logical methods that are
stored in a transaction object repository (TOR). These logical methods contain all the connection
and interface details necessary to communicate with EntireX Broker.

Advantages of Transaction Objects

The advantages of using transaction objects are:

■ Services are defined once, in one place, and distributed as needed. They can then be used by
anyone from many different applications to access back-end applications.

■ Transaction objects can encapsulate all connection and conversational information from the
developer, which simplifies the implementation and administration of distributed applications.

■ The send buffer of a message is broken down into parameters, and the receive buffer is mapped
to the return object. This means you do not have to worry about offsets, data types, repeating
fields (arrays), or structures.

Calling the Transaction Object Editor

The Transaction Object Editor is a tool within Broker ActiveX Control with which you can define
and maintain transaction objects. It is invoked by calling the method DefineTOMethods from a
form that includes an ActiveX control.

The Transaction Object Editor can be called directly using the TORedit executable. The extension
".tor" is registered as a file type, so you can call the Transaction Object Editor with a double click
from the Windows Explorer.

Notes:

1. After installation you will find the Transaction Object Editor in directory <inst_root>\En-
tireX\bin\x86 (32-bit).

2. Before you start the TOR Editor for the first time, you need to register the required DLL ebx.dll
to your Windows system manually. Simply open a Windows Command prompt in folder
<inst_root>\EntireX\bin\x86 and run the command regsvr32 ebx.dll. If you later want to use
a TOR Editor from a different installation directory, register the corresponding ebx.dll as above.

EntireX Broker ActiveX Control36

Transaction Objects in Broker ActiveX Control

When a transaction object is loaded, the corresponding file name will be displayed in the title bar.
If loading or saving fails, an error message will be displayed in the title bar.

37EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Managing TOR Files

The following functions are available for managing TOR files.

■ File Menu
■ Edit Menu

EntireX Broker ActiveX Control38

Transaction Objects in Broker ActiveX Control

■ Help Menu

File Menu

DescriptionMenu Item

Resets the TOR Editor.New

Loads an existing TOR file. A standardOpen File dialog will be displayed. This function is
needed to modify an existing TOR file.

Open

Saves a TOR file.Save

Saves a new or modified TOR file. A standard Save File dialog will be displayed.Save as

Closes the TOR Editor.Exit

39EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Edit Menu

DescriptionMenu Item

Calls the Custom Data Types dialog. See Defining Custom Data Types.Custom Types

Calls Broker Connection Information dialog. See the Specifying Connection InformationConnection

Help Menu

DescriptionMenu Item

Displays the About box.About

EntireX Broker ActiveX Control40

Transaction Objects in Broker ActiveX Control

Defining Methods

The following buttons are available in the transaction method definition model:

■ TheNew button causes the method name within the dialog box to be added to the store.
■ The Copy button copies the currently selected method to a new method.
■ TheDelete button removes the selected method from the store.

Methods are logically grouped in a transaction object. Each method specified in the transaction
object relates directly to a specific Broker service. To define a new method, therefore, you need to
know which services are available. Each method requires the following information:

■ Connection
■ Call Type
■ Parameters
■ Return Object

Connection

Connection information is specified using the Broker Connection Information dialog. Each TOR
file has default connection information, and eachmethod has its individual connection information.
If a parameter is not defined in the connection information of a method, the default is taken. For
a description of the parameters, see Specifying Connection Information.

Call Type

The Call Type tab represents the call types that can be used for this method.

DescriptionCall Type

Used to define a method that accepts parameters but does not return data from
the service. This could be used to notify a back-end application of some event
without waiting for a response.

Send Data

Used to define amethod that accepts parameters and returns data from that service.Send and Receive Data

Can be used to get information from a back-end application that requires no input,
for example MOTD (message of the day) information. It is also used to wait for

Receive Data

incoming requests if you are using Broker ActiveX Control to write Broker Server
applications.

Logon to EntireX Broker.Logon

Logoff from EntireX Broker.Logoff

Used to end a conversation.End of Conversation

Used to commit, backout, or cancel a unit of work, obtain the status of a unit of
work, or delete the persistent status of a unit of work.

Syncpoint

41EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

DescriptionCall Type

Informs EntireX Broker that a service is available.Register

Removes previously registered services from EntireX Broker's active list.Deregister

The Call Type tab is shown in the Transaction Object Editor screen above.

Parameters

The Parameter tab exposes a multiline box containing individual parameter variables.

These parameters are placed into the SEND-BUFFER of the EntireX Broker call. Each parameter
has a data type (Integer, Real, String etc.) and a length.

EntireX Broker ActiveX Control42

Transaction Objects in Broker ActiveX Control

Defining a Parameter List

If data is sent, it is necessary to define a parameter list for this method. The TOmethod parameter
list serves as a "map" between the types passed as parameters, and the data types and locations
within themethod's send buffer. Itemswithin the TOmethodparameter list are ordered sequentially
as they will be passed when the method is invoked.

List Control

A list control is used for defining, removing and ordering parameters of the current method. The
list control supports in-place editing of items names, andworks togetherwith the item configuration
controls positioned below. When a particular item is selected, it can be moved up and down the
list sequentially. The order of the list defines the order in which parameters are passed when the
method is invoked. Note that offsets are automatically generated for each list item, relative to the
start of the list, and the items (and their sizes) that precede it.

The Add function adds the field after the selected position.

Data Conversion

Data conversion is also supported between a type provided by the client and the type expected
by the Broker service. For parameters, the user can specify the data type that will be provided,
and the type that will be sent to the Broker service. For return objects, the data received by the
Broker service can be set to the data type retrieved by the user. The important data types are those
sent to and received from a Broker service. BrokerActiveXControl automatically converts between
the data type received from the Broker and a data type specified by the user (see theData is received
as andData is retrieved as fields in the screen below).

Implemented Data Types

The scalar data types supported by the Broker ActiveX are a subset of the standard Automation
VARIANT types and are listed below. In cases where the selected data type is of fixed length, the
data length edit control is set to the appropriate length and grayed.

DescriptionTransaction Object Method Data Types

1-byte Integer used for signed and unsigned.1-byte Integer

2-byte Integer used for signed and unsigned.2-byte Integer

4-byte Integer used for signed and unsigned.4-byte Integer

4-byte Real compatible with "C" float.4-byte Real

8-byte Real compatible with "C" double.8-byte Real

Boolean variable.Bool

String of specified length.String

Generic byte block.Blob

43EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

DescriptionTransaction Object Method Data Types

Used to separate types in the buffer.Padding

Return Object

If the transaction object method is invoked with call type 'Send and Receive' or 'Receive', a Return
Object is created. This is a logical object that enables you to retrievemultiple scalar values or records
by referencing its properties.

The Return Object tab exposes the individual properties that are mapped onto the RECEIVE-
BUFFER of the Broker call. When the data is returned from the Broker service, Broker ActiveX
Control uses the types and lengths of the defined properties to populate the values of the properties.
You can now access the contents of the receive buffer as ActiveX properties of the method that is
created by loading the transaction object.

As with the parameters, Broker ActiveX Control calculates the offset in the RECEIVE-BUFFER for
each property. For information on list control, data conversion and implemented data types, see
Defining a Parameter List.

CustomData Types are used for non-scalar data types such as arrays and structures. They are also
used to assign aliases to parameters for consistent naming purposes.

EntireX Broker ActiveX Control44

Transaction Objects in Broker ActiveX Control

TheManually set data offset check box allows the transaction object designer to override auto-
matic offset calculation and specify offsets manually. This feature is powerful, but also potentially
dangerous, because no base type checking can be performed.

45EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Specifying Connection Information

■ Introduction
■ Connection Information Parameters

Introduction

Connection information relates directly to the Broker service that you want to communicate with
when using this method.

Transaction methods are defined using the Transaction Object Editor. Connection information is
specified using the Broker Connection Information dialog. Each TOR file has default connection
information, and each method has its individual connection information. If a parameter is not
specified in the connection information of a method, the default is taken. The Broker parameters
are part of this connection information (with the exception of Function, which depends on the
Call Type).

TheBrokerConnection Informationdialog box accepts all the parameters required for establishing
the necessary Broker connection to execute the definedmethod/call type. Information in this dialog
can be changedwithout affecting the application code. For example, if the BrokerID changed, you

EntireX Broker ActiveX Control46

Transaction Objects in Broker ActiveX Control

would change the connection information in the methods (services) affected and distribute the
new transaction object file. The next time the application code loads the transaction object file and
calls a method, the new connection information will be used.

Connection Information Parameters

DescriptionParameter

These three parameters represent the unique “signature” of this method call.ServerClass, ServerName,
Service

The unique name of the Broker node that the services are attached to. SeeUsing
the Broker ID in Applications in the ACI Programming documentation and details
on TCP/IP under Transport Methods.

BrokerID

The following values are set for this parameter, depending on the operation:Wait

Wait Value (in seconds)Operation

0Send

30 (*)Send and Receive

59 (*)Receive
(*) if no value is specified in the Connection info.

See Properties for a description of the other parameters.

Setting the Broker Call Parameters

Calling a method of a transaction object results in a Broker call. The parameters for the Broker call
are taken either

■ from the Broker Connection Information dialog, see above, or
■ from the properties (see Properties).

If a value is specified in the Connection Information dialog, this value is taken and overrides any
value specified in the properties.

If no value is specified in theConnection Information dialog, the current setting of the properties
is taken. Leaving these parameters blank in the Connection Information dialog enables you to
change these parameters dynamically, and also enables Broker communication in conversational
mode. See example below:

47EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Visual Basic Example

This example shows a possible usage of dynamic parameter assignment:

Set TransObject=BOCX.CreateTransObject ("...calc.tor")
BOCX.UserID = "USER1"
BOCX.BrokerID = "ETB121"
Set ReturnOb = TransObject.calc("+", "000000000001", "000000000002")

Defining Custom Data Types

TheCustomData Types dialog allows you to define new data types that will appear in theReturn
Object tag. With the Apply button you can embed a custom type within another custom type as
long as this does not result in a recursive inclusion.

The following four classes of custom data types are supported:

■ Custom Data Type 'Alias'
■ Custom Data Type 'Array'
■ Custom Data Type 'Record'
■ Custom Data Type 'Structure'

Any custom data type can be used in transaction objects return objects. Custom data types are not
supported as method parameters.

Note: All custom data types can be used recursively. That is, any custom data type can be
used as amember or base type for any other custom type. This allows for nested structures,
as well as arrays within structures and records.

Custom Data Type 'Alias'

An alias is a custom data type that allows an administrator to specify an alias for any defined data
type - custom or not. Aliasing also allows the definition of data types with specific in and out data
types (type translation).

EntireX Broker ActiveX Control48

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Array'

An array consists of multiple serial elements of the same data types. Arrays can be made up of
either scalar or custom data types. The number of elements in an array must be specified.

Array custom data types accept the same basic information as alias data types, with the addition
of the number of elements in the array. Arrays allow elements of the specified base type to be ac-
cessed in a subscripted fashion.

Note: Multidimensional arrays and arrays of structures can be implemented by specifying
a custom array or record data type as the base type of this array.

Custom Data Type 'Record'

A record is a repeating collection of data types - scalar or custom.

This custom data type allows you to define a collection of data types that can be accessed in a
subscripted fashion. The order of defined types in the Record can be changed. Also, the number
of records within the receive buffer can be specified if known.

49EntireX Broker ActiveX Control

Transaction Objects in Broker ActiveX Control

Custom Data Type 'Structure'

A structure is a named collection of data types.

The controls for this custom data type are identical to those of the data type 'record', with the ex-
ception of a repetitive count, which is not applicable.

EntireX Broker ActiveX Control50

Transaction Objects in Broker ActiveX Control

8 Calling Broker ActiveX Control Remotely

■ Setting up the Server Environment .. 52
■ Setting up the Client Environment ... 57
■ Testing the Connection ... 59

51

You can call Broker ActiveX Control remotely if you use it as an automation server. This means
you can use the Broker component from a separate process - either on the same machine or on
another machine in the network.

Setting up the Server Environment

To set up the server environment

1 From the Administrative Tools in the Control Panel, open the Component Services on the
server.

The following dialog box will be displayed:

SelectEntireXBrokerActiveXControl in theDCOMConfig list box and choose the properties
from the context menu.

The following dialog box will be displayed:

EntireX Broker ActiveX Control52

Calling Broker ActiveX Control Remotely

2 Click the Security tab.

Click the Security tab.

53EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

In the dialog box displayed above, keep the defaults for access, launch and configuration
permissions.

3 Click the Identity tab.

There are three options to define the user account to be used to run the application:

■ The interactive user

This implies that a user with permission to launch the application must be logged on to the
server machine.

■ The launching user

This implies that an account must be created on the server machine with the same user-
name/password as on the client machine. This account will then be used to launch the ap-
plication.

■ This user

A final option is to specify a user account to be used when launching the application.

In each case, the username/password of the client machine must also exist on the server ma-
chine.

Select one of the options and chooseOK to return to the Component Services.

4 Click onMy Computer and choose the properties from the context menu.

EntireX Broker ActiveX Control54

Calling Broker ActiveX Control Remotely

Click onMy Computer and choose the properties from the context menu.

The following dialog box will be displayed; click on the Default Properties tab.

Choose the options as shown in the dialog box above.

5 Click on the COM Security tab.

Click on the COM Security tab.

55EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

In the Launch and Activation Permissions area of the dialog box displayed above, choose
Edit Default. The following dialog box will be displayed:

EntireX Broker ActiveX Control56

Calling Broker ActiveX Control Remotely

Make sure that either the user corresponding to the client machine account, or a group to
which the user belongs, has Allow Launch as Type of Access.

ChooseOK in this screen and then Apply, and exit Component Services on the server.

Setting up the Client Environment

The EbxProxy.dll is installed by default on the server in directory <drive>:\SoftwareAG\EntireX\bin.
Copy the file from the server machine to the client machine.

The DLL must then be registered with: REGSVR32 <path>\EBXproxy.dll.

To configure the client environment

1 From the Administrative Tools in the Control Panel, open the Component Services on the
client.

The following dialog box will be displayed:

Select EntireX Broker ActiveX Control in the DCOM Config list box, choose the properties
from the context menu and click the Location tab.

2 In the Location tab of the ActiveX Control Properties dialog box above, select the checkbox
Run application on the following computer: and enter either the hostname or the IP address
of the server machine.

57EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Choose Apply and thenOK.

3 SelectMy Computer and choose the properties from the context menu.

TheMyComputer Properties dialog boxwill be displayed. Select theDefault Properties tab.

EntireX Broker ActiveX Control58

Calling Broker ActiveX Control Remotely

Choose the check box Enable Distributed COM on this computer, set the default authentic-
ation level to Call and the default impersonation level to Identify.

ChooseOK.

Testing the Connection

You are now ready to test the connection between the client machine and the server machine.

Test the TCP/IP Connection

Test the TCP/IP connection between the client and the server (use, for example, ping).

59EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

Test the Remote Call

To test whether an application can be called remotely, you can use the OLE/COM Object Viewer:

Run the OLE/COM Object Viewer on the client.

TheOLE/COMObject Viewer dialog box will be displayed:

Select Automation Objects in the navigation frame to display a list of all the automation objects
on the client machine.

A screen similar to the one displayed below will be displayed:

EntireX Broker ActiveX Control60

Calling Broker ActiveX Control Remotely

Select EntireX Broker ActiveX Control, open its context menu and choose Create Instance.

If the remote call is successful, the EntireX Broker component on the server machine will be called
and the following screen will be displayed:

If you receive an error message (for example “Class not registered”) check the following:

■ the TCP/IP connection (with PING)
■ the security definitions on the server with Component Services
■ the remote server name on the client (this can also be checked with the OLE/COM Object
Viewer)

When the connection has been established, you will be able to run your application on the client.
Note that Broker ActiveX Control must be used as automation server. For information on how to
use Broker ActiveXControl with Visual Basic seeUsing Broker ActiveXControl as anAutomation
Server.

61EntireX Broker ActiveX Control

Calling Broker ActiveX Control Remotely

62

9 Reference

■ Methods .. 64
■ Properties .. 65

63

Methods

This section describes the methods of Broker ActiveX Control.

Broker ACI

The following methods are useful for writing applications using the native interface.

DescriptionMethod

Return the received data inner stringBSTR GetReceiveData()

Return the last received error message.BSTR GetErrorText()

Copy user's data buffer into the send buffer.BOOL SetSendDataLong(String, Long) or
BOOL SetSendData (String, Short)

Invoke the broker function call. Set the properties
Function and Option.

BOOL InvokeBrokerFunction()

Transaction Objects

DescriptionMethod

Starts the TO editor. If you specify a valid TOR name, this TO
is then loaded into the editor. If a valid TOR name is not

Bool DefineTOMethods(String)

specified, the currently loaded TO will be displayed or an
empty editor will be started.

Loads and initializes a transaction object. You must specify a
valid TOR file name; otherwise FALSE will be returned.

Bool LoadTransObject(String)

Loads and initializes a transaction object. You must specify a
valid TOR file name. An object reference will be returned,

Object CreateTransObject(String)

which can be used to call the methods defined in the TO. If
loading fails, a null reference will be returned.

This method uses the safe array implementation for arrays
instead of the collection implementation. If you experience

Object CreateTransObjectSA(String)

problems accessing arrays with an automation controller, try
using this method to instantiate a TOR object.

EntireX Broker ActiveX Control64

Reference

Properties

Most properties of Broker ActiveX Control correspond to the Broker ACI fields. The properties
must be set to the appropriate values before using any function.

If transaction object repository (TOR) files are used, it will not be necessary to set all the properties.
See TransactionObjects in Broker ActiveX Control. The properties can also be supplied bymeans
of the property pages (see Using the Property Pages).

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

28Stringnot usedAdapterError

2Longnot usedAdCount

Possible values: 1, 2, 3, 4, 5, 6, 7,
8, 9.

The default is 2. This value can
be changed dynamically by

2ShortAPI-VERSIONAPIVersion

setting the property. If the
current value of the Function
or Option property requires a
minimal API version, the value
of APIVersionwill be adjusted
automatically.

Target Broker ID. See Using the
Broker ID in Applications and

132StringBROKER-IDBrokerID

details on TCP/IP in Transport
Methods in the ACI
Programming documentation.

71StringKERNELSECURITYBrokerSecurity

The partner's user ID.232StringCLIENT-UIDClientUserid

Readonly property.
Time when UOWwas
committed.
Format:
YYYYMMDDHHMMSSms
ms = milliseconds in Possible
Values field.

717StringCOMMITTIMECommitTime

Compression level. Possible
values: N/Y/0-9.

The first character of the string
will be used as the compression

71StringCOMPRESSLEVELCompressLevel

value. If you type YES, the

65EntireX Broker ActiveX Control

Reference

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

character Y will be used and ES
will be cut off. Example:
Broker1.CompressLevel = "6".

See also Data Compression.

Conversation ID, seeManaging
Conversation Contexts.

116StringCONV-IDConvID

2ShortCONV-STATConvStatus Contains the status of the
conversation when the
RECEIVE function is complete.
SeeManaging Conversation
Contexts. Possible values:

NEW1

OLD2

NONE3

Deprecated. For encrypted
transport we strongly

6ShortEncryptionLevel

recommend using the Secure
Sockets Layer/Transport Layer
Security protocol. See SSL/TLS,
HTTP(S), and Certificates with
EntireX in the
platform-independent
Administration documentation.

Pass additional information to
Translation User Exit. For more

132StringENVIRONMENTEnvironment

information see ACI
ENVIRONMENT.

Broker error code, see Error
Handling.

18StringERROR-CODEErrorCode

Contains the error message to
the corresponding error code.

140Stringnot usedErrorMsg

Possible values: Y, N.6BooleanFORCE-LOGONForceLogon

The functions to be performed
by Broker.

1ShortFunction FUNCTION
Possible values:

SEND1

RECEIVE2

UNDO4

EOC5

REGISTER6

DEREGISTER7

EntireX Broker ActiveX Control66

Reference

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

VERSION8

LOGON9

LOGOFF10

SYNCPOINT13

KERNELVERS14

TheBrokerActiveXControl uses
theWindowsANSI codepage to

440StringLOCALE-STRINGlocaleString

convert the Unicode (UTF-16)
representation within
BSTRINGS to the encoding sent
to or received from the broker.
This codepage is also transferred
as part of the locale string to tell
the broker the encoding of the
data. It is not possible to use any
codepage other than the
codepage configured for
Windows in the Regional
Settings. If you want to adapt
the Windows ANSI codepage,
see the Regional Settings in the
Windows Control Panel and
your Windows documentation.

Enable character conversion in
the broker by setting the
service-specific attribute
CONVERSION to "SAGTCHA". See
also Configuring ICU Conversion
under Configuring Broker for
Internationalization in the
platform-specificAdministration
documentation. More
information can be found under
Internationalization with EntireX.

232Stringnot usedMessageId

232Stringnot usedMessageType

232StringNEWPASSWORDNewPassword

1ShortOption OPTION

Possible values:

NULL0

MSG1

67EntireX Broker ActiveX Control

Reference

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

HOLD2

IMMED3

QUIESCE4

EOC5

CANCEL6

LAST7

NEXT8

PREVIEW9

COMMIT10

BACKOUT11

SYNC12

ATTACH13

DELETE14

EOCCANCEL15

QUERY16

SETUSTATUS17

ANY18

no longer used19

no longer used20

CHECKSERVICE21

132StringPASSWORDPassword

Length of the receive buffer.3LongRECEIVE-LENGTHReceiveBufferLength

This is an old property. Can be
used instead of

1ShortRECEIVE-LENGTHReceiveBufferSize

ReceiveBufferLength - for
buffers with less than 32 KB
only.

Length of returned data.3LongRETURN-LENGTHReturnDataLength

This is an old property. Can be
used instead of

1ShortRETURN-LENGTHReturnLength

ReturnDataLength - for buffers
with less than 32 KB only.

This is handled automatically,
but can be filled in by the user
if required.

232StringSECURITY-TOKENSecurityToken

No longer used.1ShortSendBufferSize

These three Broker parameters
form the target service.

132StringSERVER-CLASSServerClass

EntireX Broker ActiveX Control68

Reference

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

132StringSERVER-NAMEServerName

132StringSERVICEService

2ShortSTOREStore Possible values:

NULL0

OFF1

BROKER2

132StringTOKENToken

316StringUOWIDUOWID

3ShortUOWStatus UOWSTATUS

Possible values:

NONE0

RECEIVED1

ACCEPTED2

DELIVERED3

BACKEDOUT4

PROCESSED5

CANCELLED6

TIMEOUT7

DISCARDED8

FIRST9

MIDDLE10

LAST11

ONLY12

3ShortUOW-STATUS-PERSISTUOWStatusPersist

38StringUWTIMEUOWTime

This field is not converted by the
Broker. If the field contains

216StringUSER-DATAUserData

H'00', only the data up to the
first H'00' will be sent.

User ID.132StringUSER-IDUserID

332StringUSTATUSUserStatus

Possible values: Yes No <n>S -
waiting n Seconds (max 99999)

18StringWAITWait

<n>M - waiting n Minutes (Max
99999) <n>H - waiting n Hours

69EntireX Broker ActiveX Control

Reference

Description
API
VersionLengthFormatBroker ACI FieldProperty Name

(max 99999). See Blocked and
Non-blocked Broker Calls.

88StringUOWStatusLife

EntireX Broker ActiveX Control70

Reference

	EntireX Broker ActiveX Control
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Broker ActiveX Control Introduction
	Broker ACI
	Transaction Objects

	3 Writing Applications - Broker ActiveX Control
	Calling a Broker Function
	Setting the Broker ActiveX Properties
	Specifying the Send Parameters
	Calling the Broker Function
	Getting the Contents of the Receive Buffer
	AboutBox

	Viewing the Type Library
	Adding the Broker ActiveX Control Component to Visual Studio
	Using the Property Pages
	General Page
	Function Page
	Parameters Page
	Results Page

	4 Broker ActiveX Control with Visual Basic
	Step 1: Instantiate EntireX Broker ActiveX Control
	Step 2: Instantiate the Transaction Object
	Step 3: Call Methods
	Step 4: Access the Returned Data
	Scalars
	Structures
	Arrays and Records Exposed as Collections
	Arrays and Records Exposed as Safe Arrays

	Step 5: Cleanup Resources
	Step 6: Error Handling in Transaction Object Methods
	Examples: Writing an ACI Client and Server with Broker ActiveX Control
	Writing an ACI Client with Broker ActiveX Control
	Writing an ACI Server with Broker ActiveX Control

	5 Using Broker ActiveX Control with Active Server Pages
	Prerequisites
	Designing a Web Page with ASP and Broker ActiveX Control
	Creating an Instance of the ActiveX Control and the Transaction Object
	Calling a TOR Method
	Accessing the Data
	Scalars
	Structures
	Arrays
	Records

	Using Broker ActiveX Control in Multiple Pages

	6 Using Broker ActiveX Control with .NET
	Using Broker ActiveX Control with Visual Studio .NET
	A Small Visual Basic .NET Example

	7 Transaction Objects in Broker ActiveX Control
	Advantages of Transaction Objects
	Calling the Transaction Object Editor
	Managing TOR Files
	File Menu
	Edit Menu
	Help Menu

	Defining Methods
	Connection
	Call Type
	Parameters
	Defining a Parameter List
	List Control
	Data Conversion
	Implemented Data Types

	Return Object

	Specifying Connection Information
	Introduction
	Connection Information Parameters
	Setting the Broker Call Parameters
	Visual Basic Example

	Defining Custom Data Types
	Custom Data Type 'Alias'
	Custom Data Type 'Array'
	Custom Data Type 'Record'
	Custom Data Type 'Structure'

	8 Calling Broker ActiveX Control Remotely
	Setting up the Server Environment
	Setting up the Client Environment
	Testing the Connection
	Test the TCP/IP Connection
	Test the Remote Call

	9 Reference
	Methods
	Broker ACI
	Transaction Objects

	Properties

