
webMethods EntireX

EntireX .NET Wrapper

Version 10.5

October 2019

This document applies to webMethods EntireX Version 10.5 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXDOTNETWRAPPER-105-20220422

Table of Contents

EntireX .NET Wrapper ... v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction to the .NET Wrapper .. 5
Description ... 6
Generic .NET Wrapper Runtime .. 7
.NET Client Applications ... 7
.NET Server DLL .. 8

3 Using the .NET Wrapper ... 9
Generation Process ... 10
Using .NET Wrapper Interactively ... 10

4 Microsoft Visual Studio Wizard for EntireX .NET Wrapper ... 13
Installing the Plug-in .. 14
Using the Plug-in ... 14
Uninstalling the Plug-in ... 18

5 Using the .NET Wrapper in IDL Compiler Command-line Mode 19
6 Software AG IDL to .NET Mapping .. 21

Mapping IDL Data Types to .NET Data Types .. 22
Mapping Library Name and Alias ... 24
Mapping Program Name and Alias ... 25
Mapping Parameter Names ... 25
Mapping Fixed and Unbounded Arrays ... 26
Mapping Groups and Periodic Groups ... 26
Mapping Structures .. 26
Mapping the Direction Attributes In, Out, InOut .. 27
Mapping the ALIGNED Attribute ... 27
Calling Servers as Procedures or Functions ... 27

7 Writing Applications with the .NET Wrapper .. 29
Writing a Client Application .. 30
Writing a .NET Server Assembly ... 32
Creating ASP.NET Web Services .. 32
Using the Broker and RPC User ID/Password ... 34
Using SSL/TLS .. 35
Using Internationalization with the .NET Wrapper .. 36

8 Configuring a .NET Wrapper Application .. 37
Assembly Versioning ... 38
Client Configuration .. 39
Server Configuration .. 43

9 Reliable RPC for .NET Wrapper .. 45
Introduction to Reliable RPC ... 46
Writing a Client .. 47

iii

Writing a Server .. 49
Broker Configuration ... 49

10 .NET Wrapper Reference ... 51
Attributes .. 52
Classes .. 54

EntireX .NET Wrapperiv

EntireX .NET Wrapper

EntireX .NET Wrapper

The EntireX .NETWrapper provides access to RPC servers for .NET client applications and access
to .NET servers for any RPC client. The .NET Wrapper generation tools of the Designer take as
input a Software AG IDL file, which describes the interface of the RPC, and generates C# classes
that implement the methods and data types of the interface.

Introduction to the .NET Wrapper.Introduction

How to use the .NET Wrapper: the generation process; using the
.NET Wrapper interactively

Using

Using .NET Wrapper with Microsoft Visual Studio Plug-in.Visual Studio Wizard for .NET
Wrapper

Using the .NET Wrapper in IDL Compiler command-line modeIDL Compiler Command-line Mode

Mapping Software AG IDL data types to .NET data types.Mapping

Writing a client application with the EntireX .NET Wrapper.Writing Applications

Configuring a .NET Wrapper application.Application Configuration

Introduction to reliable RPC;writing a client and a server for Reliable
RPC; Broker configuration.

Reliable RPC

Reference material (attributes and classes).Reference

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

EntireX .NET Wrapper2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3EntireX .NET Wrapper

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Introduction to the .NET Wrapper

■ Description .. 6
■ Generic .NET Wrapper Runtime ... 7
■ .NET Client Applications ... 7
■ .NET Server DLL .. 8

5

Description

The EntireX .NETWrapper provides access to RPC servers for .NET client applications and access
to .NET servers for any RPC client. The .NET Wrapper generation tools of the Designer take as
input a Software AG IDL file, which describes the interface of the RPC, and generates C# classes
that implement the methods and data types of the interface.

The generated classes can be compiled with the C# compiler into a .NET assembly which can then
be called from any .NET language.

The .NET Wrapper works as follows:

■ C# code is generated from the Software AG IDL file. Using C# is a natural choice when full-
fledged .NET programming is required, since C# was designed for the .NET platform.

■ The .NETWrapper runtime implements functionality that is not specific to a given IDL file (e.g.,
marshalling and unmarshalling of data). The generatedC# codemakes use of the .NETWrapper
runtime functionality. The customer interface and the .NETWrapper runtime is “managed”.NET
code (C#) and makes use of advanced .NET features such as Attributes, VersionInfo, etc.

■ The .NETWrapper runtime makes use of the functionality of the “unmanaged” RPC C runtime
(dllimport in C#). “Managed”.NET code and “unmanaged” DLL code can be combined safely.

■ The SoftwareAG IDLCompiler and an appropriate template are used for the C# code generation.

EntireX .NET Wrapper6

Introduction to the .NET Wrapper

Generic .NET Wrapper Runtime

In order tominimize the amount of code generated for a specific IDL, all service-type functionality
required by the client interface object or the server DLL is implemented in a generic .NETWrapper
runtime SoftwareAG.EntireX.NETWrapper.Runtime.dll. The generic .NET Wrapper runtime imple-
ments service classes, i.e.:

■ Marshalling .NET data types to Software AG IDL data types
■ Unmarshalling Software AG IDL data types to .NET data types
■ Connecting to RPC servers via Broker

.NET Client Applications

For a given IDL file, the Software AG IDL Compiler and a C# code generation template for clients
are used to generate a client interface object. The source code generated by the .NETWrapper can
be compiled into a .NET assembly with the C# compiler. Application developers can use the gen-
erated client interface object assembly to write .NET applications that access RPC servers. They
are not limited to C# as programming language. Any .NET programming language based on the
Common Language Runtime (CLR) can make use of the client interface object assembly. Choices
are C#, VisualBasic.NET or managed C++.

7EntireX .NET Wrapper

Introduction to the .NET Wrapper

.NET Server DLL

The SoftwareAG IDLCompiler and aC# code generation template for servers are used to generate
a C# code frame for a specific IDL. Application developers can use the generated frame to write
their own server code for each program in the IDL. The source code can be compiled into a .NET
assembly (DLL) with the C# compiler. At runtime, RPC clients access the .NET Server assembly
via the RPC Server for .NET.

EntireX .NET Wrapper8

Introduction to the .NET Wrapper

3 Using the .NET Wrapper

■ Generation Process ... 10
■ Using .NET Wrapper Interactively ... 10

9

Generation Process

To generate the C# client or server code, use the Designer. This can be done interactively with the
graphical user interface or in IDL Compiler Command-line Mode.

Using .NET Wrapper Interactively

To use the .NET Wrapper functions, open your Eclipse Workspace.

Setting Wrapper Options

Before you start the generation of C# code for the first time, adjust the global options for the .NET
Wrapper in the Eclipse preferences under Software AG > EntireX > .NET Wrapper.

On theGeneral tab, set the paths to the Microsoft .NET Framework directory and the EntireX
.NET Wrapper runtime (SoftwareAG.EntireX.NETWrapper.Runtime.dll). The preferences on the
Generate Client andGenerate Server tabs are identical. Choose your default settings for the cli-
ent/server generation.

DescriptionOption

Used to define additional options for the C# compiler (cse.exe).C# compiler options

A folder (structure) for C# code generation and compilation relative to the
Eclipse project where the IDL file is located.

Project relative output
directory

Default/String/StringBuilder: in the default case, "string" is used for IN and
"StringBuilder" is used for OUT/INOUT parameters. In the case of "String",

String handling

the C# type "string" is used for IN/INOUT/OUT. In the case of
"StringBuilder", the C# class "StringBuilder" is used.

A string is used to prefix the name of the inner classes when the Sanitize
option is selected (only necessary for Visual Basic clients).

Class name prefix for inner
classes

Use this flag only if you have large environments built with previous
versions of the .NET Wrapper. If this flag is set and you have more than

Use IDL file base name for
output

one library in your IDL file, a C# file is generated with the file base name
of the IDL file (base name=file name without extension). If this flag is not
set, the library name is used as file base name for the generated C# file (one
file for every library in the IDL file).

If this flag is set, the IDL names are sanitized according to the programming
conventions for C#. SeeMapping IDL Data Types to .NET Data Types.

Sanitize

The C# data type "char" is used for IDL parameters of type A1.Generate "char" for A1 instead
of String

The C# data type "byte" is used for IDL parameters of type B1.Generate "byte" for B1 instead
of byte

EntireX .NET Wrapper10

Using the .NET Wrapper

DescriptionOption

Remove trailing blanks after unmarshalling the data. This flag is useful on
the client side to remove trailing blanks before the data returned from the
server is put into the C# classes string | StringBuilder.

Remove trailing blanks

These options are then used as default for the properties of your individual IDL files. You can
change these options (except those on theGeneral tab) for every individual IDL file.

11EntireX .NET Wrapper

Using the .NET Wrapper

12

4 Microsoft Visual Studio Wizard for EntireX .NET Wrapper

■ Installing the Plug-in ... 14
■ Using the Plug-in ... 14
■ Uninstalling the Plug-in ... 18

13

The Visual StudioWizard for .NETWrapper is a plug-in forMicrosoft Visual Studio, whichmakes
the functionality of the EntireX .NET Wrapper available to Microsoft Visual Studio.

Supported versions of Microsoft Visual Studio and other prerequisites for EntireX components
are described centrally. SeeWindows Prerequisites.

Installing the Plug-in

The EntireX .NETWrapperWizard Plug-in for Visual Studio .NET is part of the EntireX installation.
After you have installed EntireX, you can find the installer under etc in your EntireX installation
path. To install EntireX .NETWrapper Plug-in, startNetVSAddIn103.msi and follow the instructions.

Note: We recommend you close all other Microsoft applications before installing the plug-
in.

Caution: The installation pathmust include the bindirectory (e.g.C:\SoftwareAG\EntireX\bin)
of the corresponding EntireX installation, otherwise the plug-in will not work properly!

Using the Plug-in

Once the wizard has been installed, start Microsoft Visual Studio. UnderNew Project > Installed
> Templates > Visual C#, you will find a new template called EntireX .NETWrapper Application.

Select this template to start the .NET Wrapper Wizard.

EntireX .NET Wrapper14

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

First enter the name of a Software AG IDL file in the opening window. You can select whatever
you want to generate client or server code. The project name will be set to IDLNameClient or
IDLNameServer automatically. You can enter the name of the path of the .NET Wrapper Runtime
DLL if it is not located in the default path.

15EntireX .NET Wrapper

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

On the page Broker/Service you can change the default settings for Broker and Service.

EntireX .NET Wrapper16

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

On the parameters page you can select the options Sanitize and char/string support.

Formore information on Broker/Service and parameters, see the EntireX .NETWrapper document-
ation.

When all data has been entered, click the button Finish. A new Visual Studio .NET solution will
be generatedwhich includes a projectwith the name IDLNameClient or IDLNameServer. This project
contains the Software AG IDL file, the generated .cs file C# file) and references to the System.dll
and the EntireX.NetWrapper.Runtime.dll.

The project will generate a class library (DLL), which can be used in any other .NET project C# or
VB.NET). For this purpose an additionalApp.config file is generatedwhich can be used in a project
where an .exe file is generated. The App.config file contains information about Broker, Services etc.

Caution: Any changes to the SoftwareAG IDLfilewill trigger the EntireXAddIn after saving.
The .cs file will be re-generated and all specifications youmade during the implementation
will be lost.

17EntireX .NET Wrapper

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

Uninstalling the Plug-in

You can uninstall the EntireX .NET Wrapper Wizard Plug-in for Visual Studio by using the Win-
dows Control Panel > Add or Remove Programs. Select Software AG EntireX .NET Wrapper
Wizard and choose Remove.

The EntireX .NETWrapperWizard Plug-in forVisual Studiowill be removed fromyour computer.

Note: The plug-in must be uninstalled before you uninstall EntireX, otherwise the uninstall
of EntireX will fail.

EntireX .NET Wrapper18

Microsoft Visual Studio Wizard for EntireX .NET Wrapper

5 Using the .NET Wrapper in IDL Compiler Command-line

Mode

The table below shows the command-line options for the .NET Wrapper if the IDL Compiler is
used. Options can be valid for client and server side.

Description
Req/
OptOption

The EntireX Broker.R-D BROKER=nnn

The EntireX Service.R-D SERVICE=nnn

Template for client (csharp_client.tpl) or server generation
(csharp_server.tpl).

R-t nnn

Project relative output directory or absolute PathR-o nnn

String handling (Default if omitted).O-D
ATOSTRING=String|StringBuilder

Class name prefix for inner classes.O-D CLASSNAMEPREFIX=nnn

Generate "char" for A1 instead of String (1 if required).O-D A1TOCHAR=n

Generate "byte" for B1 instead of byte (1 if required).O-D B1TOBYTE=n

Remove trailing blanks (1 if required).O-D TRIM=n

Sanitize.O-PSANITIZE

File base name for output.O-F nnn

See also Starting the IDL Compiler and IDL Compiler Usage Examples.

Example

To start the IDLCompilerwith the parameters for the interface object generation, enter, for example
the following in a single command line:

19

java -classpath "%ProgramFiles%\Software
AG\EntireX\classes\saglic.jar";"%ProgramFiles%\Software
AG\EntireX\Classes\exxidlcompiler.jar" -Dsagcommon="%CommonProgramFiles%\Software
AG" com/softwareag/entirex/idlcompiler/TplParser -PSANITIZE -D BROKER="localhost:1971"
-D SERVICE="RPC/SRV1/CALLNAT" -t "%ProgramFiles%\Software
AG\EntireX\Template\csharp_client.tpl" -F example -o NET example.idl

The client interface object is generated in the subdirectory NET.

Status and processing messages are written to standard output (stdout), which is normally set to
the executing shell window.

EntireX .NET Wrapper20

Using the .NET Wrapper in IDL Compiler Command-line Mode

6 Software AG IDL to .NET Mapping

■ Mapping IDL Data Types to .NET Data Types ... 22
■ Mapping Library Name and Alias .. 24
■ Mapping Program Name and Alias .. 25
■ Mapping Parameter Names ... 25
■ Mapping Fixed and Unbounded Arrays .. 26
■ Mapping Groups and Periodic Groups ... 26
■ Mapping Structures .. 26
■ Mapping the Direction Attributes In, Out, InOut .. 27
■ Mapping the ALIGNED Attribute ... 27
■ Calling Servers as Procedures or Functions .. 27

21

Mapping IDL Data Types to .NET Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

■ The metasymbols "[" and "]" enclose optional lexical entities.
■ The informal term number (or in some cases number1.number2) is a sequence of numeric characters,
for example 123.

Note.NET Data TypesDescriptionSoftware AG IDL

1, 5char or String/StringBuilderAlphanumericA1

1String/StringBuilderAlphanumericAnumber

1String/StringBuilderAlphanumeric variable lengthAV

1String/StringBuilderAlphanumeric variable length with
maximum length

AV[number]

6byte or byte[]BinaryB1

byte[]BinaryBnumber

2byte[]Binary variable lengthBV

byte[]Binary variable length with maximum
length

BV[number]

3, 7DateTimeDateD

floatFloating point (small)F4

doubleFloating point (large)F8

sbyteInteger (small)I1

shortInteger (medium)I2

intInteger (large)I4

1String/StringBuilderKanjiKnumber

1String/StringBuilderKanji variable lengthKV

1String/StringBuilderKanji variable length with maximum
length

KV[number]

boolLogicalL

9,10BigNumericUnpacked decimalNnumber1[.number2]

8,10decimal

9,10BigNumericUnpacked decimal unsignedNUnumber1[.number2]

8,10decimal

9,10BigNumericPacked decimalPnumber1[.number2]

8,10decimal

9,10BigNumericPacked decimal unsignedPUnumber1[.number2]

EntireX .NET Wrapper22

Software AG IDL to .NET Mapping

Note.NET Data TypesDescriptionSoftware AG IDL

8,10decimal

4,7DateTimeTimeT

Notes:

1. System.String for direction in, otherwise System.Text.StringBuilder if Default is used for
parameter ATOSTRING. If String is used for ATOSTRING, System.String is used everywhere, and
if StringBuilder is used for ATOSTRING, System.Text.StringBuilder is used everywhere. See
Using the .NET Wrapper.

2. Unsigned integer ranging from 0 to 255.

3. Count of days AD (anno domini, after the birth of Christ). The valid range is from 1.1.0001 up
to 28.11.2737 (only the date part of DateTime is used).

4. Count of tenths of a secondAD (AnnoDomini, after the birth of Christ). The valid range is from
1.1.0001 00:00:00.0 up to 16.11.3168 09:46:39 plus 0.9 seconds.

5. If -D A1TOCHAR=1 is defined in the erxidl call, A1 is mapped to char, otherwise to
String/StringBuilder.

6. If -D B1TOBYTE=1 is defined in the erxidl call, B1 is mapped to byte, otherwise to byte[].

7. The Natural DATE type allows for the value 01.01.0000 to denote an undefined date. In order to
avoid the .NET runtime throwing an exception when attempting to assign the invalid date
value 01.01.0000 to a .NET DateTime variable, the .NET runtime converts an incoming neutral
date/time value 01.01.0000 00:00:00.0 into the special .NET DateTime value DateTime.MaxValue
- 1 tick (that is 31.12.9999:23:59:59.9999998). When this value is passed to the EntireX runtime
to be sent to an EntireX RPC service, it is converted back into the neutral RPC date/time value
01.01.0000 00:00:00.0.

8. If the total number of digits (number1+number2) is equal to or lower than 28, mapping is to the
.NET data type decimal.

9. If the total number of digits (number1+number2) is greater than 28, mapping is to the .NET class
BigNumeric. See BigNumeric under .NET Wrapper Reference.

10. If you connect two endpoints, the total number of digits used must be lower or equal than the
maxima of both endpoints. For the supported total number of digits for endpoints, see the notes
under data typesN,NU, P and PU in sectionMapping Software AG IDLData Types in the respect-
ive Wrapper or language-specific documentation.

Please also note the hints and restrictions on the IDLdata types valid for all programming language
bindings as described under IDL Data Types.

23EntireX .NET Wrapper

Software AG IDL to .NET Mapping

Mapping Library Name and Alias

The library name as specified in the IDL file is sent from a client to the server. Special characters
are not replaced. The library alias is not sent to the server.

In the RPC server, the IDL library name sent may be used to locate the target server. See Locating
and Calling the Target Server in the platform-specific administration or RPC server documentation.

The library name as given in the IDL file is used to compose the names of the generated output
files. See library-definition under Software AG IDL Grammar in the IDL Editor documentation.
Therefore the allowed characters are restricted by the underlying file system. The name is composed
from <library-name>.idl to <library-name>.cs as default. The name of the client stub file can
be changed by using the -F option of the erxidl command. See Using the .NET Wrapper in IDL
Compiler Command-line Mode.

In accordance with the C# conventions, the class name is built as follows with the default setting
-PSANITIZE:

■ The initial character and characters following one of the special characters '#', '$', '&', '+', '-', '_',
'.', '/' and '@' are converted to uppercase.

■ All other characters are converted to lowercase.
■ The special characters '#', '$', '&', '+', '-', '_', '.', '/' and '@' are removed.

Other special characters used in the library name are not changed andmay lead to problems with
your underlying file system and to compile errors.

If there is an alias for the library name in the library-definition, this alias is used “as is” to form
the class name. Therefore, this alias must be a valid C# class name.

Examples:

MY-CLASS to MyClass (class)

MY-CLASS alias YOUR_CLASS to YOUR_CLASS(class)

EntireX .NET Wrapper24

Software AG IDL to .NET Mapping

Mapping Program Name and Alias

The program name is sent from a client to the server. Special characters are not replaced. The
program alias is not sent to the server.

In the RPC server, the IDL program name sent is used to locate the target server. See Locating and
Calling the Target Server in the platform-specific administration or RPC server documentation.

The program names as given in the IDL file are mapped to methods within the generated C#
sources. See program-definitionunder SoftwareAG IDLGrammar in the IDLEditor documentation.

In accordance with the C# conventions method names are built as follows with the default setting
-PSANITIZE:

■ Characters are converted to lowercase with the following exceptions
■ The special characters '#', '$', '&', '+', '-', '_', '.', '/' and '@' are removed
■ The character following one of the special characters is converted to uppercase.

Other special characters used in the programname are not changed andmay lead to compile errors.

If there is an alias for the program name in the program-definition under Software AG IDL
Grammar in the IDLEditor documentation, this alias is used “as is” for themethod name. Therefore,
this alias must be a valid C# method name.

Examples:

MY-PROGRAM to MyProgram (method).

MY-PROGRAM alias YOUR_PROGRAM to YOUR_PROGRAM(method).

Mapping Parameter Names

The parameter names as given in the parameter-data-definition of the IDL file are mapped to
parameters of the generated C# methods.

In accordance with the C# conventions the parameter names are built as follows with the default
setting -PSANITIZE:

■ Characters are converted to lowercase except
■ The special characters '#', '$', '&', '+', '-', '_', '.', '/' and '@' are removed
■ The character following one of those special characters is converted to uppercase.

25EntireX .NET Wrapper

Software AG IDL to .NET Mapping

IDL files that use C# keywords (e.g. string or float) as parameter names are not supported. Do
not use C# keywords such as string or float as parameter names. Modify your IDL file accord-
ingly.

Example:

MY-PARAM to myParam (parameter)

Mapping Fixed and Unbounded Arrays

Arrays in the IDL file are mapped to C# arrays. If an array value does not have the correct number
of dimensions or elements, this will result in an exception. If the value null (null pointer) is used
as an input parameter (for IN and INOUT parameters), an array will be instantiated by the runtime.

Mapping Groups and Periodic Groups

Groups in the IDL file are mapped to C# classes.

Thenamespace for group classes is SoftwareAG.EntireX.NETWrapper.Generated.filename.Groups
on the client side, and SoftwareAG.EntireX.NETWrapper.Server.libraryname.Groups on the
server side.

Mapping Structures

Structures in the IDL file are mapped to C# classes.

The namespace for structure classes is
SoftwareAG.EntireX.NETWrapper.Generated.filename.Structs on the client side, and
SoftwareAG.EntireX.NETWrapper.Server.libraryname.Structs on the server side.

SeeMapping Groups and Periodic Groups.

EntireX .NET Wrapper26

Software AG IDL to .NET Mapping

Mapping the Direction Attributes In, Out, InOut

■ IN parameters are implemented as normal parameters of the generated C# class method.
■ OUT parameters are implemented as out parameters of the generated C# class method.
■ INOUT parameters are implemented as ref parameters of the generated method.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See attribute-list under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to the direction attribute.

Mapping the ALIGNED Attribute

Not supported.

Calling Servers as Procedures or Functions

The IDL syntax allows definitions of procedures only. It does not have the concept of a function.
A function is a procedure which, in addition to the parameters, returns a value. Procedures and
functions are transparent between clients and servers, that is, a client using a function can call a
server implemented as a procedure and vice versa.

In C# a procedure corresponds to a method with result type void, a function returns a value of
some type.

It is possible to treat an OUT parameter of a procedure as the return value of a function. The .NET
Wrapper generates a method with a non-void result type when the following two conditions are
met:

■ the last parameter of the procedure definition is of type OUT
■ this last parameter of the procedure definition has the name Function_Result

In this case no function parameter is generated for this OUT parameter.

27EntireX .NET Wrapper

Software AG IDL to .NET Mapping

28

7 Writing Applications with the .NET Wrapper

■ Writing a Client Application .. 30
■ Writing a .NET Server Assembly ... 32
■ Creating ASP.NET Web Services .. 32
■ Using the Broker and RPC User ID/Password ... 34
■ Using SSL/TLS ... 35
■ Using Internationalization with the .NET Wrapper ... 36

29

Writing a Client Application

■ Required Steps
■ Creating a Microsoft Visual Studio Solution
■ Creating the .NET Wrapper Client Stub Library (Assembly)
■ Creating the .NET Wrapper Client Application

Required Steps

Writing a client application with the EntireX .NETWrapper typically requires the following steps:

■ Starting from an IDL file, generate a C# client interface object as described underUsing the .NET
Wrapper. From the context menu of the IDL file, chooseOther > Generate NET > RPC Client.
As an alternative, use theMicrosoft Visual Studio Wizard for EntireX .NET Wrapper. Both ap-
proaches generate C# sources from an IDL file. If there is a related client-side mapping file
(Natural | COBOL), this is also used (internally).

■ Create a Visual Studio Solution. See Creating a Microsoft Visual Studio Solution.
■ Build a .NET assembly from the generated C# client interface object. See Creating the .NET
Wrapper Client Stub Library (Assembly).

■ Create an application that uses the generated client interface object assembly and the .NET
Wrapper runtime SoftwareAG.EntireX.NETWrapper.Runtime.dll. See Creating the .NET Wrapper
Client Application.

The following description outlines as an example the steps required to build a .NETWrapper client
application (solution) with the Microsoft Visual Studio.

Creating a Microsoft Visual Studio Solution

1. Start Microsoft Visual Studio.

2. From the Filemenu, chooseNew > Blank Solution.... and choose an appropriate name for the
solution.

Creating the .NET Wrapper Client Stub Library (Assembly)

1. Select the solution and choose Add, chooseNew Project.

2. In theNewProject dialog, chooseVisual C# Projects andClass Library. Choose an appropriate
name for the class library, e.g. "exampleClientStub".

3. Delete the default class file Class1.cs.

4. Select the newproject and chooseAdd >AddExisting Item and add the example.csfile generated
previously.

EntireX .NET Wrapper30

Writing Applications with the .NET Wrapper

5. Select References, choose Add Reference and add the .NET Wrapper runtime SoftwareAG.En-
tireX.NETWrapper.Runtime.dll.

Note: Make sure the property CopyLocal is not set to true in the properties of the refer-
enced assembly.

6. Build the class library.

Creating the .NET Wrapper Client Application

1. Add a newproject to the solution: Choose the solution,Add,NewProject...,Visual C# Projects,
ConsoleApplication. Choose an appropriate name for the project, for example, "exampleClient".

2. Rename the default class file Class1.cs as appropriate.

3. Choose References > Add Reference and add the .NET Wrapper runtime SoftwareAG.En-
tireX.NETWrapper.Runtime.dll.

4. ChooseReferences >AddReference > Projects and add the .NETWrapper client interface object
exampleClientStub.

5. Now implement your client application. Add the following lines to the top of the class file:

using SoftwareAG.EntireX.NETWrapper.Runtime;
using SoftwareAG.EntireX.NETWrapper.Generated.example;

6. In amethod of the application class implement the connection to an EntireX Broker, for example:

Broker broker = new Broker("localhost:1971", "ERX-USER");
broker.Logon("ERX-PASS");

and an EntireX RPC service, for example:

Service service = new Service(broker, "RPC/SRV1/CALLNAT", "EXAMPLE");
service.UserIDAndPassword("RPC-USER", "RPC-PASSWORD");

7. The example class can now be instantiated, for example:

Example e = new Example(service);

and the example methods called, for example:

31EntireX .NET Wrapper

Writing Applications with the .NET Wrapper

int result = ex.Calculator("+", 10, 15);

Writing a .NET Server Assembly

Writing a .NET server assembly with the EntireX .NET Wrapper typically requires the following
steps:

■ Generate a C# file as described under Using the .NET Wrapper. From the context menu of the
IDL file, chooseOther > Generate NET > RPC Server. As an alternative, use theMicrosoft
Visual Studio Wizard for EntireX .NET Wrapper.

■ Insert your server-specific code at the required positions (C# methods).
■ Build a .NET Server assembly (DLL) from the generated C# file, following the rules for building
a client stub library with the Microsoft Visual Studio.

■ Make the .NET Server assembly available to the RPC Server for .NET, see Locating and Calling
the Target Server in the RPC Server for .NET documentation.

■ To start, stop and configure the RPC Server for .NET to suit your needs, see Administering the
RPC Server for .NET in the RPC Server for .NET documentation.

Creating ASP.NET Web Services

The generated C# client interface object can be used in anASP.NETWeb service to publish EntireX
RPC services as Web services. With Visual Studio you can easily create an ASP.NET Web service
that publishes methods of the EntireX RPC service (or your ownmethods that just use the EntireX
RPC service).

Note: The .NETWrapper Runtime uses unmanagedDLLs. For this reason, ASP.NET applic-
ations have to run in full-trust mode.

Example

You have built the .NET Wrapper example EntireX\examples\RPC\dotNetClient as described in
the README file.

Then create a new “ASP.NETWeb service” project with references to the generated client interface
object and the .NET Wrapper runtime.

You can use the following example code (in the .asmx file) to implement a Web method add that
exposes the calcmethod of the example.

EntireX .NET Wrapper32

Writing Applications with the .NET Wrapper

using System;
using System.Collections;
using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;
using System.Text;
using SoftwareAG.EntireX.NETWrapper.Runtime;
using SoftwareAG.EntireX.NETWrapper.Generated.example;

namespace WebService1
{
/// <summary>
/// Summary description for Service1.
/// </summary>
public class Service1 : System.Web.Services.WebService
{
public Service1()
{
//CODEGEN: This call is required by the ASP.NET Web Services Designer
InitializeComponent();
}

#region Component Designer generated code

//Required by the Web Services Designer
private IContainer components = null;

/// <summary>
/// Required method for Designer support - do not modify
/// the contents of this method with the code editor.
/// </summary>
private void InitializeComponent()
{
}

/// <summary>
/// Clean up any resources being used.
/// </summary>
protected override void Dispose(bool disposing)
{
if(disposing && components != null)
{
components.Dispose();
}
base.Dispose(disposing);
}

#endregion

// WEB SERVICE EXAMPLE

33EntireX .NET Wrapper

Writing Applications with the .NET Wrapper

[WebMethod]
public int add(int sum1, int sum2)
{
Example e = new Example();

int result = e.calc("+", sum1,sum2);
return result;
}
}
}

Using the Broker and RPC User ID/Password

EntireX supports two user ID/password pairs: a broker user ID/password pair and an (optional)
RPCuser ID/password pair sent fromRPC clients to RPC servers.With EntireX Security, the broker
user ID/password pair can be checked for authentication and authorization.

The RPC user ID/password pair is designed to be used by the receiving RPC server. This compon-
ent's configuration determines whether the pair is considered or not. Useful scenarios are:

■ Credentials for Natural Security
■ Impersonation in the respective RPC Server documentation
■ Web Service Transport Security with the RPC Server for XML/SOAP, see XML Mapping Files
■ Service executionwith client credentials for EntireX Adapter Listeners, see Configuring Listeners
■ etc.

Sending the RPC user ID/password pair needs to be explicitly enabled by the RPC client. If it is
enabled but no RPC user ID/password pair is provided, the broker user ID/password pair is inher-
ited to the RPC user ID/password pair.

With the property NaturalLogon (see below) sending the RPC user ID/password pair is enabled
for the Java RPC clients. If you do so, we strongly recommend using SSL/TLS. SeeUsing SSL/TLS.

To use the broker and RPC user ID/password

1 Specify a broker user ID and broker password using the constructor and methods of class
Broker.

2 Set the property NaturalLogon of class Service to true to enable sending the RPC user
ID/password pair.

3 If different user IDs and/or passwords are used for broker and RPC, use the methods and
properties offered by class Service to provide a different RPC user ID/password pair.

EntireX .NET Wrapper34

Writing Applications with the .NET Wrapper

4 By default the library name sent to the RPC server is retrieved from the IDL file (see
library-definition under Software AG IDL Grammar in the IDL Editor documentation). The
library name can be overwritten. This is useful if communicating with a Natural RPC server.
Specify a library in the property Library of class Service.

Using SSL/TLS

RPC client applications can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the
transport medium. The term “SSL” in this section refers to both SSL and TLS. RPC-based clients
are always SSL clients. The SSL server can be either the EntireXBroker orDirect RPC inwebMethods
Integration Server (IS inbound). For an introduction see SSL/TLS and Certificates with EntireX in
the Platform-independent Administration documentation.

With the .NET Wrapper, the SSL parameters (e.g. certificates) are appended to the Broker ID,
separated by a question mark (?). See URL-style Broker ID under EntireX RPC Programming.

To use SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Specify the Broker ID using URL style, for example:

ssl://localhost:2010

If no port number is specified, port 1958 is used as default.

3 Specify SSL parameters, for example:

"VERIFY_SERVER=N&TRUST_STORE=c:\\certs\\CaCert.pem"

If the SSL client checks the validity of the SSL server only, this is known as one-way SSL. The
mandatory trust_store parameter specifies the file name of a keystore that must contain the
list of trusted certificate authorities for the certificate of the SSL server. By default a check is
made that the certificate of the SSL server is issued for the hostname specified in the Broker
ID. The common name of the subject entry in the server's certificate is checked against the
hostname. If they do not match, the connection will be refused. You can disable this check
with SSL parameter verify_server=no.

If the SSL server additionally checks the identity of the SSL client, this is known as two-way
SSL. In this case the SSL server requests a client certificate (the parameter verify_client=yes
is defined in the configuration of the SSL server). Two additional SSL parameters must be
specified on the SSL client side: key_store and key_passwd. This keystore must contain the

35EntireX .NET Wrapper

Writing Applications with the .NET Wrapper

private key of the SSL client. The password that protects the private key is specified with
key_passwd.

The ampersand (&) character cannot appear in the password.

SSL parameters are separated by ampersand (&). See also SSL/TLS Parameters for SSL Clients.

4 Make sure the SSL server to which the .NET client connects is prepared for SSL connections
as well. The SSL server can be EntireX Broker or Direct RPC. See Running Broker with SSL/TLS
Transport in the platform-specific Administration documentation.

Using Internationalization with the .NET Wrapper

RPC clients generated with the .NETWrapper use by default the “current locale” encoding set up
on the Windows system for converting UNICODE (UTF-16) representations of strings to single-
byte or multibyte representations that are sent to the Broker, and vice versa. The codepage name
is also transferred to tell the broker the encoding of the data. If youwant to adapt the locale settings
of yourWindows system, use the Regional and Language Options in theWindows Control Panel.

The Broker class of the .NET Wrapper Runtime makes use of the .NET Framework class
System.Text.Encoding for character conversion.

Refer also to the .NET Framework class library documentation for System.Text.Encoding.

The CharacterEncoding property of the Broker class that guides the character conversion is initial-
ized with System.Text.Encoding.GetEncoding(0) (current locale). The application programmer
can also assign a custom encoding object to the Broker class's CharacterEncoding property for
custom character conversions. If an encoding object is provided, the corresponding codepage is
transferred to the Broker instead of the default Windows locale.

Enable character conversion in the broker by setting the service-specific attribute CONVERSION to
"SAGTRPC". See also Configuring ICU Conversion under Configuring Broker for Internationalization in
the platform-specific Administration documentation.More information can be found under Inter-
nationalization with EntireX.

EntireX .NET Wrapper36

Writing Applications with the .NET Wrapper

8 Configuring a .NET Wrapper Application

■ Assembly Versioning .. 38
■ Client Configuration ... 39
■ Server Configuration .. 43

37

Most applications require some configuration parameters that represent durable applications or
user preferences.

The .NET framework includes configuration functionality that loads an application's configuration
automatically at runtimewithout programmer intervention. For a standalone application, named,
for example,myapp.exe youmust name the configuration file (containing configuration settings in
a given XML format) myapp.exe.config. The framework will then be able to load and parse the
configuration file automatically when myapp.exe is run. For an ASP.NET Web application the
configuration file is named web.config.

Assembly Versioning

.NET Framework assemblies support a strong versioning concept. The specific version of an as-
sembly and the versions of dependent assemblies are recorded in the assembly's manifest. The
versions of the dependent assemblies to be loaded at runtime are determined depending on the
version policy in effect.

The default version policy is that applications run only with the exact versions of dependent as-
semblies they were built with. Thus applications that are deployed together with their dependent
assemblies are not affected by newer or older versions of some of these assemblies. However, it
is sometimes desirable to update an assemblywith a newer version. In order tomake this possible,
the default version policy can be overridden by explicit version policies specified in configuration
files, for example, the application configuration file (<appname>.exe.config or web.config for Web
applications).

The following example shows a configuration file fragment that, when placed in a standalone
application's <appname>.exe.config file or a Web application's web.config file, directs the .NET
runtime loader to load version 10.5.0.0 of the .NET Wrapper runtime whenever earlier versions
in the range 7.1.1.0-7.2.1.73 are required.

<runtime>
 <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
 <dependentAssembly>
 <assemblyIdentity name="SoftwareAG.EntireX.NETWrapper.Runtime"
publicKeyToken="645917c53ee5c617" />
 <bindingRedirect oldVersion="7.1.1.0-7.2.1.73" newVersion="10.5.0.0" />
 <codeBase version="10.5.0.0"
 ↩
href="file:///C:\SoftwareAG\EntireX\bin\SoftwareAG.EntireX.NETWrapper.Runtime.dll"/>
 </dependentAssembly>
 </assemblyBinding>
</runtime>

Notes:

EntireX .NET Wrapper38

Configuring a .NET Wrapper Application

1. After installation you will find the .NET Wrapper Runtime at the following locations:
■ <inst_root>\EntireX\bin (64-bit)
■ <inst_root>\EntireX\bin\x86 (32-bit)

2. The runtime configuration fragment must come after the configSections and appSettings
sections of the configuration file, otherwise the .NET Wrapper Runtime will report errors.

See also the Microsoft .NET Framework documentation on assembly versioning.

Client Configuration

The .NET Wrapper Runtime supports the .NET framework configuration mechanism for several
EntireX Broker and (RPC) Service class properties. Bymaking use of this configurationmechanism,
.NETWrapper client applications can avoid constructing Broker and Service objects explicitly and
leave this task to the .NET Wrapper Runtime.

There is one section group named EntireX with the two sections Broker and Service where you
can specify the settings for EntireX .NETWrapper Broker and Service class instances respectively.
This section covers the following topics:

■ Example
■ Broker Configuration Section
■ Broker Configuration Example
■ Service Configuration Section
■ Service Configuration Example
■ Sample Configuration File

Example

 <sectionGroup name="EntireX"> <!-- EntireX Configuration Section Group ↩
Definition -->
 <section name="Broker" type="System.Configuration.NameValueSectionHandler" />
 <section name="Service" type="System.Configuration.NameValueSectionHandler" />
 </sectionGroup>

For an ASP.NET web.config configuration file, the parameters of the NameValueSectionHandler
that processes the configuration must be specified in more detail.

39EntireX .NET Wrapper

Configuring a .NET Wrapper Application

<sectionGroup name="EntireX">
 <section name="Broker" type="System.Configuration.NameValueSectionHandler,
 ↩
System,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089,Custom=null" />
 <section name="Service" type="System.Configuration.NameValueSectionHandler,
 ↩
System,Version=2.0.0.0,Culture=neutral,PublicKeyToken=b77a5c561934e089,Custom=null" />
</sectionGroup>

Broker Configuration Section

If the default constructor Broker() is used to construct a Broker object, i.e. if there is no Broker
name (or Broker ID) supplied, then the application's configuration file is examined for configuration
settings to be taken as values. If no entry is found for a given setting name, the default values listed
in the table below will apply.

The following can be configured for Broker instances:

DescriptionKey

Specifies the Broker name (or Broker ID). The default value is "localhost:1971". Only the
URL-style Broker ID is supported. For secured brokers, the host name starts with
"ssl://...". See Examples.

name

Specifies the user ID to be used to connect to the Broker;
The default value is "NET-USER".

userID

Specifies the password to be used to connect to the Broker. This setting is only considered
when userID is also specified.
The default value is "NET-PASS".

password

The password will be encrypted when the application is started and will be replaced
by a secure password in the configuration file. This secured password is re-generated
every time the password is specified again.

securedPassword

Specifies whether the data sent to the Broker should be compressed.
Possible values are:

compression

■ NO_COMPRESSION (CompressionLevel=0)
■ BEST_COMPRESSION (CompressionLevel=9)
■ DEFAULT_COMPRESSION (CompressionLevel=6)
this.compression=Compression.DEFAULT_COMPRESSION;

■ BEST_SPEED (CompressionLevel=1)
■ DEFLATED (CompressionLevel=8)

Thedefault value isNO_COMPRESSION.Use eitherCompression orCompressionLevel.

Specifies what compression level should be used.
Possible values are in the range 0 to 9 (see CompressionLevel property in the Broker
class). Use either Compression or CompressionLevel.

compressionLevel

EntireX .NET Wrapper40

Configuring a .NET Wrapper Application

DescriptionKey

Specifies whether a forceLogon should be performed.
Possible values are "true" and "false".
The default value is "false".

For details see FORCE-LOGON underWriting Applications using EntireX Security.

forceLogon

Specifies a token value to be used in conjunction with the user ID.
The default value is "".

token

Broker Configuration Example

<Broker>
<!-- EntireX Broker Configuration -->
<add key="name" value="localhost:1971" />
<add key="userID" value="NET-USER" />
<add key="password" value="NET-PASS" />
<add key="compression" value="NO_COMPRESSION" />
<add key="forceLogon" value="false" />
<add key="token" value="top secret" />

</Broker>

Service Configuration Section

If the default constructor Service() is used to construct a Service object, i.e. there is no Service name
(class/server/service) supplied, then the application's configurationfile is examined for configuration
settings to be taken as values. If no entry is found for a given setting name, then the default values
apply as listed below.

The following can be configured for Service instances.

DescriptionKey

Specifies the name of the service.
Default value is "RPC/SRV1/CALLNAT".

name

Specifies whether a Natural logon should be performed.
Possible values are "true" and "false".
The default value is "false".

naturalLogon

Specifies the user ID to be used to connect to the RPC Server.userID

Specifies a password to be used to connect to the RPC Server. This setting is only
considered when userID is also specified.

password

The password will be encrypted when the application is started and will be replaced by
a secure password in the configuration file. This secured password is re-generated every
time the password is specified again.

securedPassword

Sets or retrieves the timeout value for a given Service instance. timeout = 0 is invalid.
If 0 is set, a default of 50 seconds will be used.

timeout

41EntireX .NET Wrapper

Configuring a .NET Wrapper Application

DescriptionKey

Define an encoding for character translation. Default is
System.Text.Encoding.GetEncoding(0) (current locale). See also the .NET
Framework class library documentation for System.Text.Encoding.

encoding

Service Configuration Example

<Service>
<!-- EntireX Service Configuration -->
<add key="name" value="RPC/SRV1/CALLNAT" />
<add key="libraryName" value="" />
<add key="naturalLogon" value="false" />
<add key="timeout" value="100" />
<add key="encoding" value="iso-8859-1" />

</Service>

Sample Configuration File

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <configSections>
 <sectionGroup name="EntireX"> <!-- EntireX Configuration Section Group ↩
Definition -->
 <section name="Broker" type="System.Configuration.NameValueSectionHandler" />
 <section name="Service" type="System.Configuration.NameValueSectionHandler" />
 </sectionGroup>
 </configSections>
 <EntireX>
 <!-- EntireX Configuration Section -->
 <Broker>
 <!-- EntireX Broker Configuration -->
 <add key="name" value="localhost:1971" />
 <add key="userID" value="NET-USER" />
 <add key="password" value="NET-PASS" />
 <add key="compression" value="NO_COMPRESSION" />
 <add key="forceLogon" value="false" />
 <add key="token" value="top secret" />
 </Broker>
 <Service>
 <!-- EntireX Service Configuration -->
 <add key="name" value="RPC/SRV1/CALLNAT" />
 <add key="libraryName" value="" />
 <add key="naturalLogon" value="false" />
 </Service>
 </EntireX>
 <appSettings>
 <!-- other app settings go here -->
 </appSettings>
</configuration>

EntireX .NET Wrapper42

Configuring a .NET Wrapper Application

Server Configuration

Configuring a .NET Server assembly is described under Locating and Calling the Target Server in
the RPC Server for .NET documentation. See alsoWriting a .NET Server Assembly.

43EntireX .NET Wrapper

Configuring a .NET Wrapper Application

44

9 Reliable RPC for .NET Wrapper

■ Introduction to Reliable RPC .. 46
■ Writing a Client ... 47
■ Writing a Server .. 49
■ Broker Configuration .. 49

45

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becomingmore andmore important. Reliablemessaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

■ Reliable RPC allows asynchronous calls (“fire and forget”)
■ Reliable RPC is supported by most EntireX wrappers
■ Reliable RPC messages are stored in the Broker's persistent store until a server is available
■ Reliable RPC clients are able to request the status of the messages they have sent

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX .NET Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

■ AUTO_COMMIT

■ CLIENT_COMMIT

EntireX .NET Wrapper46

Reliable RPC for .NET Wrapper

While AUTO_COMMIT commits eachRPCmessage implicitly after sending it, a series of RPCmessages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

All methods for reliable RPC are available on the service class object. See description of class
Service for details. The methods are:

■ Service.SetReliableState
■ Service.getReliableState
■ Service.ReliableCommit
■ Service.ReliableRollback
■ Service.GetReliableId
■ Service.GetReliableStatus

Example:

Create Broker object and interface object.

Mail mail = new Mail();
mail.service.broker.logon();

Enable reliable RPC with CLIENT_COMMIT:

mail.SetReliableState(Service.ReliableState.RELIABLE_AUTO_COMMIT);

The first RPC message.

mail.Sendmail("mail receiver", "subject 1", "Text 1");

Check the status: get the message ID first and use it to retrieve the status.

StringBuilder reliableID = new StringBuilder();
StringBuilder reliableStatus = new StringBuilder();

mail.service.GetReliableID(ref reliableID);
mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

The second RPC message.

47EntireX .NET Wrapper

Reliable RPC for .NET Wrapper

mail.Sendmail("mail receiver", "subject 2", "Text 2");

Commit the two messages.

mail.service.ReliableCommit();

Check the status again for the same message ID.

mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

The third RPC message.

mail.Sendmail("mail receiver", "subject 3", "Text 3");

Check the status: get the new message ID and use it to retrieve the status.

mail.service.GetReliableID(ref reliableID);
mail.service.GetReliableStatus(reliableID, ref reliableStatus);
Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

Roll back the third message and check status.

mail.service.ReliableRollback();
mail.service.GetReliableStatus(reliableID, ref reliableStatus);

Console.Out.WriteLine("Reliable ID = " + reliableID.ToString());
Console.Out.WriteLine("Reliable Status = " + reliableStatus.ToString());

mail.service.broker.logoff();

Limitations

1. All program calls that are called in the same transaction (CLIENT_COMMIT) must be in the same
IDL library.

2. It is not allowed to switch from CLIENT_COMMIT to AUTO_COMMIT in a transaction.

3. Messages (IDL programs) must have IN parameters only.

EntireX .NET Wrapper48

Reliable RPC for .NET Wrapper

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it throws an exception. This causes the transaction (unit of work inside the
broker) to be cancelled, and the error code is written to the user status field of the unit of work.

Broker Configuration

ABroker configurationwith PSTORE is recommended. This enables the Broker to store themessages
formore than one Broker session. Thesemessages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of themessages and the status information can be configuredwith the attributes
UOW-DATA-LIFETIME and UOW-STATUS-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW,
MAX-UOWS and MAX-UOW-MESSAGE-LENGTHmay be used in addition to configure the units of work.
See Broker Attributes.

The result of the function Service.GetReliableStatus depends on the configuration of the unit
of work status lifetime in the EntireX Broker configuration. If the status is not stored longer than
the message, the function returns the error code 00780305 (no matching UOW found).

49EntireX .NET Wrapper

Reliable RPC for .NET Wrapper

50

10 .NET Wrapper Reference

■ Attributes ... 52
■ Classes ... 54

51

Attributes

Attribute classes are defined and implemented in the .NET Wrapper runtime and used in the C#
client interface object code to hold information extracted from the IDL file.

EntireXVersionAttribute

This attribute contains version information.

Example

[EntireXVersion("10.5.0.0")]
public class Example

LibraryAttribute

This attribute contains the library name.

Example

[Library("EXAMPLE")]
public class Example

BrokerAttribute

This attribute contains the Broker ID.

Example (without SSL)

[Broker("localhost:1971")]
public class Example

Example (with SSL)

[Broker("ssl://localhost:22101?trust_store=C:\SoftwareAG\EntireX/etc/ExxCACert.jks&key_store=C:\SoftwareAG\EntireX/etc/ExxJavaAppCert.jks&key_passwd=ExxJavaAppCert")]
public class Example

EntireX .NET Wrapper52

.NET Wrapper Reference

ServiceAttribute

This attribute contains the service name.

Example

[Service("RPC/SRV1/CALLNAT")]
public class Example

ProgramAttribute

This attribute contains the program name.

Example

[Program("CALC")]
public int Calculator(

[SendAs(IdlType.A, Length=1f)][In] string operation,
[SendAs(IdlType.I4)][In] int operand1,
[SendAs(IdlType.I4)][In] int operand2

)

SendAsAttribute

This attribute contains type, length (fixed or dynamic) and dimension (fixed or dynamic) inform-
ation.

Direction Attributes (In, Out)

These attributes contain direction information. They are supported natively by C#.

Example

[Program("HELLO")]
public void Hello(

[SendAs(IdlType.A, Length=80f)][In] string client,
[SendAs(IdlType.A, Length=80f)][In, Out] ref StringBuilder mail

)

53EntireX .NET Wrapper

.NET Wrapper Reference

Classes

The .NET Wrapper runtime defines and implements several generic service classes that are used
in the generated C# client interface object and by .NET client applications.

BigNumeric
Implementation of decimal valueswithout upper and lower limit and a default number of 99 digits
after the decimal sign.

Constructors

public BigNumeric (BigNumeric number)

Copy Constructor.

public BigNumeric (decimal number)

Constructor translating a decimal number into a BigNumeric value.

public BigNumeric (Int32 number)

Constructor translating an Int32 number into a BigNumeric value.

public BigNumeric (Int64 number)

Constructor translating an Int64 number into a BigNumeric value.

public BigNumeric (double number)

Constructor translating a double to its exact BigNumeric representation.

public BigNumeric (string number)

Constructor converting the string representation of a number into a BigNumeric object. The string
representation consists of an optional sign, '+' or '-', followed by a sequence of zero or more
decimal digits, optionally followed by a fraction which consists of a decimal point followed by
zero ormore decimal digits and optionally followed by an exponentwhich consists of the character
'e' or 'E' followed by one ormore decimal digits. The valuemust not exceed the size of theN(U)/P(U)
data type.

EntireX .NET Wrapper54

.NET Wrapper Reference

public BigNumeric (string number , CulturInfo info)

Constructor converting the string representation of a number into a BigNumeric object. The desired
culture info is used to interpret the numeric string.

Methods

public int GetHashCode()

Returns the hash code of the instance.

public string ToString()

Converts the value of the instance to its string representation.

public string ToString(NumberFormatInfo info)

Converts the value of the instance to its string representation using the desired number format.

public BigInteger Truncate()

Returns the integral part of the number.

public BigNumeric Truncate (int scale)

Returns a new BigNumericwith a maximum number of digits after the decimal sign. The number
is truncated to the desired precision if necessary.

public BigNumeric Round (int scale)

Returns a new BigNumericwith a maximum number of digits after the decimal sign. The number
is rounded to the desired precision if necessary. Rounding is performed according to the rounding
mode "HALF_UP" of Java class BigDecimal.

public bool isNegative()

Returns true for negative numbers.

public static BigNumeric Random (int preDecimal , int postDecimal)

Create a random BigNumeric number with the desired number of predecimal and a maximum of
99 postdecimal digits.

55EntireX .NET Wrapper

.NET Wrapper Reference

Operators

public static BigNumeric operator + (BigNumeric operand1 , BigNumeric operand2)

Adds two BigNumerics. The result inherits the scale of operand1.

public static BigNumeric operator - (BigNumeric operand1 , BigNumeric operand2)

Subtracts two BigNumerics. The result inherits the scale of operand1.

public static BigNumeric operator * (BigNumeric operand1 , BigNumeric operand2)

Multiplies two BigNumerics. The result inherits the scale of operand1.

public static BigNumeric operator / (BigNumeric operand1 , BigNumeric operand2)

Divides two BigNumerics. The result inherits the scale of operand1.

public static implicit operator BigNumeric (decimal value)

Converts a decimal value to a BigNumeric.

public static implicit operator BigNumeric (Int32 value)

Converts an int value to a BigNumeric.

public static implicit operator BigNumeric (Int64 value)

Converts a long value to a BigNumeric.

public static explicit operator Decimal (BigNumeric value)

Converts the BigNumeric to a decimal, throws an exception if the value doesn't match the decimal's
numeric range.

public static bool operator < (BigNumeric left , BigNumeric right)

Compares the value of two BigNumerics.

public static bool operator <= (BigNumeric left , BigNumeric right)

Compares the value of two BigNumerics.

EntireX .NET Wrapper56

.NET Wrapper Reference

public static bool operator > (BigNumeric left , BigNumeric right)

Compares the value of two BigNumerics.

public static bool operator >= (BigNumeric left , BigNumeric right)

Compares the value of two BigNumerics.

public static bool operator == (BigNumeric left , BigNumeric right)

Compares the value of two BigNumerics.

public static bool operator != (BigNumeric left , BigNumeric right)

Compares the value of two BigNumerics.

bool Equals (object o)

Compares the desired object with the value of this.

public static bool operator < (BigNumeric left , Decimal right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator <= (BigNumeric left , Decimal right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator > (BigNumeric left , Decimal right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator >= (BigNumeric left , Decimal right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator == (BigNumeric left , Decimal right)

Compares the value of a BigNumericwith the value of a decimal.

57EntireX .NET Wrapper

.NET Wrapper Reference

public static bool operator != (BigNumeric left , Decimal right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator < (Decimal left , BigNumeric right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator <= (Decimal left , BigNumeric right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator > (Decimal left , BigNumeric right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator >= (Decimal left , BigNumeric right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator == (Decimal left , BigNumeric right)

Compares the value of a BigNumericwith the value of a decimal.

public static bool operator != (Decimal left , BigNumeric right)

Compares the value of a BigNumericwith the value of a decimal.

Properties

public static BigNumeric Zero

Returns a BigNumeric representing the value 0

public static BigNumeric One

Returns a BigNumeric representing the value 1

public static BigNumeric MinusOne

Returns a BigNumeric representing the value -1

EntireX .NET Wrapper58

.NET Wrapper Reference

public int Scale

Set/Get maximum number of digits after decimal sign

Broker

This class represents an EntireX Broker session and handles the connections to the Broker.

Constructors

public Broker()

Default Broker for default user.

The values for the default Broker and user are taken in the following order

■ from the application's configuration file or
■ from the [Broker] attribute of the client interface object (Broker values only) or
■ from hard-coded constants localhost:1971 and ERX-USER.

public Broker(string hostName)

Broker on hostName for default user (ERX-USER). See Examples.

public Broker(string hostName, string userName)

Broker on hostName for userName.

public Broker(string hostName, string userName, string token)

Broker on hostName for userNamewith token.

Methods

public void Logon()

Performs a logon to the Broker with the default user ID and password (that were set, for example,
with the UserID and Password property).

59EntireX .NET Wrapper

.NET Wrapper Reference

public void Logon(string password)

Performs a logon to the Broker with the given password.

public void Logon(string password, string newPassword)

Performs a logon to the Brokerwith the given password and changes the password to newPassword

public void Logon(string userID, string token, string password)

Performs a logon to the Broker with the given user ID, token and password

public void Logoff()

Performs a logoff from the Broker.

Properties

public bool ForceLogon

Specifies whether force logon is performed. The default is false.

public char BrokerSecurity

Sets or retrieves the level and type of Broker security to be used.

'N' : no security
'Y' : default EntireX Security
'C' : user-specific security

public int CompressionLevel

Specifies what compression level should be used. Possible values are in the range 0 to 9.
The following values have a dedicated purpose.

0: do not compress
1: use compression method with best speed
6: use default compression
8: deflated
9: use best compression
The default value is 0 (no compression)

EntireX .NET Wrapper60

.NET Wrapper Reference

public string BrokerID

Retrieves the Broker ID of the given Broker class instance. This property is read-only.

public string Password

Sets the password of a given Broker class instance for subsequent authentication. This property
is write-only.

public byte[] SecurityToken

Sets or retrieves the security token of a given Broker class instance. The default value is null.

public string Token

Sets or retrieves the token of the given Broker class instance. The default value is null.

public string UserID

Sets or retrieves the user ID of the given Broker class instance for subsequent authentication.

public string ApplicationName

The application name used for the client calls. Max. 64 characters. Set this property before calling
one of the Logon methods if you want to replace the default application name.

public Compress Compression

Deprecated. Please use the CompressionLevel property instead.

Example

Broker broker = new Broker("ibm2:3762", "ERX-USER");
broker.Logon("ERX-PASS");

61EntireX .NET Wrapper

.NET Wrapper Reference

Service

Constructors

public Service()

Default service with default Broker.

public Service(string libraryName)

Service for given library with default Broker.

public Service(Broker broker)

Service for given Broker.

public Service(Broker broker, string trinity)

Service for givenBroker and service name: class/server/service (for example RPC/SRV1/CALLNAT).

public Service(string Broker broker, string trinity, libraryName)

Service for given Broker, service name: class/server/service and library.

Methods

public int SetReliableState(int uReliableState)

Set the Reliable State. Possible values:

RELIABLE_OFF (0) - default value
RELIABLE_AUTO_COMMIT (1)
RELIABLE_CLIENT_COMMIT (2)

See Reliable RPC for .NET Wrapper.

public int ReliableCommit()

Do a commit in Reliable State RELIABLE_CLIENT_COMMIT.

EntireX .NET Wrapper62

.NET Wrapper Reference

public int ReliableRollback()

Do a rollback in Reliable State RELIABLE_CLIENT_COMMIT.

public int GetReliableID(ref StringBuilder ReliableID)

Get the ReliableID.

public int GetReliableStatus(StringBuilder ReliableID, ref StringBuilder ↩
ReliableStatus)

Get the Reliable Status. Possible values:

RECEIVED
ACCEPTED
DELIVERED
BACKEDOUT
PROCESSED
CANCELLED
TIMEOUT
DISCARDED

See Broker ACI Fields for more information.

public void CloseConversation()

Close an RPC conversation.

public void CloseConversationCommit()

Close an RPC conversation and commit.

public void UserIDAndPassword(string user, string password)

Specify user ID and password for a service.

public void OpenConversation()

Open an RPC conversation.

63EntireX .NET Wrapper

.NET Wrapper Reference

public unsafe object Invoke (string library , string method , params object[] ↩
objArray)

is the name of the class in the generated client interface objectlibrarywhere
the name of the method to be invokedmethod
the methods parameters as an array of objects - the array size must fit the para-
meter count of the method .

objArray

Invoke returns the result (if any) of the invoked method.

The initialisation of the parameter array follows the rules:

1. Parameters of type groups, structs and arrays have to be assigned as follows

int[] numbers = new int[10] ;
...
objArray[i] = numbers ;

2. [in,out] and [out] parameters of the simple data types bool, char, byte, sbyte, decimal, float,
double, short, int and DateTime have to be assigned as follows:

int number = 4711 ;
...
objArray[i] = new Ref (ref number) ;

where Ref is the class SoftwareAG.EntireX.NETWrapper.Runtime.Ref.

Note: The name of the class and the assembly name (file name) have to be identical. For
each class, a separate assembly is required. All these assemblies have to be placed in the
folder of the client executable or have to be configured according to the rules described
under .NET Framework Configuration in the RPC Server for .NET documentation.

Properties

public Encoding CharacterEncoding

Define an encoding for character translation. Default is System.Text.Encoding.GetEncoding(0)
(current locale). See also the .NET Framework class library documentation for
System.Text.Encoding.

EntireX .NET Wrapper64

.NET Wrapper Reference

public bool NaturalLogon

Specify whether Natural logon should be performed. The default is false. If NaturalLogon is set
to true but no RPCUserID and RPCPassword have been defined, the runtime uses the Broker user
ID and password (provided the Broker password has been set with the Password property).

public Broker Broker

Sets or retrieves the Broker instance associated with the given Service instance.

public string RPCUserID

Sets or retrieves the RPC user ID of a given Service instance.

public string RPCPassword

Sets the RPC user password of a given Service instance.

public string ServerAddress

Retrieves the server address (class/server/service triplet) of a given Service instance.

public string Library

Sets or retrieves the library name of a given Service instance.

public Uint Timeout

Sets or retrieves the timeout value for a given Service instance. timeout = 0 is invalid. If 0 is set,
a default of 50 seconds will be used.

public string MessageIDOfRequest

Unique message ID of the request part of the last RPC call. Available for EntireX Broker version
10.1 and higher. See Unique Message ID under Broker ACI Functions in the EntireX Broker ACI
Programming documentation for detailed explanation of message IDs.

public string CorrelationIDOfReply

Unique message (correlation) ID of reply part of the last RPC call. Available for EntireX Broker
version 10.1 and higher. See Unique Message ID under Broker ACI Functions in the EntireX Broker
ACI Programming documentation for detailed explanation of message IDs.

65EntireX .NET Wrapper

.NET Wrapper Reference

Example

Service service = new Service(broker, "RPC/SRV1/CALLNAT", "EXAMPLE");
service.UserIDAndPassword("RPC-USER", "RPC-Password");

XException

Properties

public int errorCode

If an XException is thrown, errorCode contains the specific error code.

public string Message

If an XException is thrown, Message contains the specific error message. SeeMessage Class 2002 -
.NET Wrapper.

Example

try {
...

} catch (EntireX.XException e) {
Console.WriteLine(e.Message) ;

};

Output: "02150148: EntireX Broker not active.

EntireX .NET Wrapper66

.NET Wrapper Reference

	EntireX .NET Wrapper
	Table of Contents
	EntireX .NET Wrapper
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction to the .NET Wrapper
	Description
	Generic .NET Wrapper Runtime
	.NET Client Applications
	.NET Server DLL

	3 Using the .NET Wrapper
	Generation Process
	Using .NET Wrapper Interactively
	Setting Wrapper Options

	4 Microsoft Visual Studio Wizard for EntireX .NET Wrapper
	Installing the Plug-in
	Using the Plug-in
	Uninstalling the Plug-in

	5 Using the .NET Wrapper in IDL Compiler Command-line Mode
	6 Software AG IDL to .NET Mapping
	Mapping IDL Data Types to .NET Data Types
	Mapping Library Name and Alias
	Mapping Program Name and Alias
	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes In, Out, InOut
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	7 Writing Applications with the .NET Wrapper
	Writing a Client Application
	Required Steps
	Creating a Microsoft Visual Studio Solution
	Creating the .NET Wrapper Client Stub Library (Assembly)
	Creating the .NET Wrapper Client Application

	Writing a .NET Server Assembly
	Creating ASP.NET Web Services
	Example

	Using the Broker and RPC User ID/Password
	Using SSL/TLS
	Using Internationalization with the .NET Wrapper

	8 Configuring a .NET Wrapper Application
	Assembly Versioning
	Client Configuration
	Example
	Broker Configuration Section
	Broker Configuration Example
	Service Configuration Section
	Service Configuration Example
	Sample Configuration File

	Server Configuration

	9 Reliable RPC for .NET Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Writing a Server
	Broker Configuration

	10 .NET Wrapper Reference
	Attributes
	EntireXVersionAttribute
	Example

	LibraryAttribute
	Example

	BrokerAttribute
	Example (without SSL)
	Example (with SSL)

	ServiceAttribute
	Example

	ProgramAttribute
	Example

	SendAsAttribute
	Direction Attributes (In, Out)
	Example

	Classes
	BigNumeric
	Constructors
	Methods
	Operators
	Properties

	Broker
	Constructors
	Methods
	Properties
	Example

	Service
	Constructors
	Methods
	Properties
	Example

	XException
	Properties
	Example

