
webMethods EntireX

EntireX RPC Server for .NET

Version 10.5

October 2019

This document applies to webMethods EntireX Version 10.5 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-DOTNETRPC-105-20220422

Table of Contents

EntireX RPC Server for .NET ... v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction to the RPC Server for .NET .. 5
Administration using Command Central .. 6
.NET Wrapper Runtime and .NET Server Assembly .. 7
Worker Models ... 8

3 Administering the RPC Server for .NET using the Command Central GUI 9
Logging in to Command Central ... 10
Creating an RPC Server Instance ... 11
Configuring an RPC Server Instance ... 15
Viewing the Runtime Status ... 21
Starting an RPC Server Instance .. 22
Stopping an RPC Server Instance ... 24
Inspecting the Log Files ... 26
Changing the Trace Level Temporarily .. 27
Deleting an RPC Server Instance ... 27

4 Administering the RPC Server for .NET using the Command Central Command
Line ... 29

Creating an RPC Server Instance ... 30
Configuring an RPC Server Instance ... 31
Displaying the EntireX Inventory .. 48
Viewing the Runtime Status ... 50
Starting an RPC Server Instance .. 51
Stopping an RPC Server Instance ... 51
Inspecting the Log Files ... 52
Changing the Trace Level Temporarily .. 54
Deleting an RPC Server Instance ... 55

5 Administering the RPC Server for .NET with Local Scripts ... 57
Customizing the RPC Server .. 58
Configuring the RPC Server ... 60
Locating and Calling the Target Server .. 67
Using SSL/TLS with the RPC Server .. 67
Starting the RPC Server .. 69
Stopping the RPC Server .. 70
Pinging the RPC Server .. 71
Deploying the RPC Server ... 71
Running an EntireX RPC Server as a Windows Service .. 72
Activating Tracing for the RPC Server ... 72

6 Scenarios .. 73
Writing a New .NET Server Assembly ... 74

iii

iv

EntireX RPC Server for .NET

The EntireX RPC Server for .NET allows standard RPC clients to communicate with .NET server
assemblies. It works together with the .NET Wrapper.

The supported .NET development and runtime environments are described underWindows
Prerequisites in the Release Notes.

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

EntireX RPC Server for .NET2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3EntireX RPC Server for .NET

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Introduction to the RPC Server for .NET

■ Administration using Command Central ... 6
■ .NET Wrapper Runtime and .NET Server Assembly ... 7
■ Worker Models ... 8

5

The EntireX RPC Server for .NET allows standard RPC clients to communicate with .NET server
assemblies. It works together with the .NET Wrapper.

Administration using Command Central

Software AG Command Central is a tool that enables you to manage your Software AG products
remotely from one location. Command Central offers a browser-based user interface, but you can
also automate tasks by using commands to remotely execute actions from a terminal or custom
script (for example CI servers such as Jenkins, or generic configuration management tools such
as Puppet or Chef).

CommandCentral can assistwith the following configuration,management, andmonitoring tasks:

■ Infrastructure engineers can see at a glance which products and fixes are installed, where they
are installed, and compare installations to find discrepancies.

■ System administrators can configure environments by using a single web user interface or
command-line tool. Maintenance involves minimum effort and risk.

■ Release managers can prepare and deploy changes to multiple servers using command-line
scripting for simpler, safer lifecycle management.

■ Operators can monitor server status and health, as well as start and stop servers from a single
location. They can also configure alerts to be sent to them in case of unplanned outages.

The Command Central graphical user interface is described under Administering the RPC Server
for .NET using the Command Central GUI. For the command-line interface, seeAdministering the
RPC Server for .NET using the Command Central Command Line.

EntireX RPC Server for .NET6

Introduction to the RPC Server for .NET

The core Command Central documentation is provided separately and is also available under
Guides for Tools Shared by Software AG Products on the Software AG documentation website.

.NET Wrapper Runtime and .NET Server Assembly

The RPC Server for .NET uses the .NET Wrapper Runtime to call the .NET Server assemblies.
.NET Server assembly skeletons are generated with the .NET Wrapper.

For more information on the RPC Server for .NET, .NETWrapper Runtime and .NET Framework
Configuration, see Customizing the RPC Server.

7EntireX RPC Server for .NET

Introduction to the RPC Server for .NET

Worker Models

RPC requests are worked off inside the RPC server in worker threads, which are controlled by a
main thread. Every RPC request occupies during its processing a worker thread. If you are using
RPC conversations, each RPC conversation requires its own thread during the lifetime of the
conversation. The RPC server provides two worker models:

■ FIXED
The fixedmodel creates a fixed number of worker threads. The number of worker threads does
not increase or decrease during the lifetime of an RPC server instance.

■ DYNAMIC
The dynamicmodel creates worker threads depending on the incoming load of RPC requests.

For configuration with the Command Central GUI, seeWorker Scalability under Configuration >
Server.

For technical details, see parameter endworkers under Administering the RPC Server for .NET with
Local Scripts.

EntireX RPC Server for .NET8

Introduction to the RPC Server for .NET

3 Administering the RPC Server for .NET using the Command

Central GUI
■ Logging in to Command Central ... 10
■ Creating an RPC Server Instance ... 11
■ Configuring an RPC Server Instance ... 15
■ Viewing the Runtime Status ... 21
■ Starting an RPC Server Instance .. 22
■ Stopping an RPC Server Instance .. 24
■ Inspecting the Log Files .. 26
■ Changing the Trace Level Temporarily ... 27
■ Deleting an RPC Server Instance ... 27

9

This chapter describes how to administer the EntireX RPC Server for .NET, using the Command
Central graphical user interface.

See alsoAdministering the RPC Server for .NET using the Command Central Command Line. The
core Command Central documentation is provided separately and is also available underGuides
for Tools Shared by Software AG Products on the Software AG documentation website.

Logging in to Command Central

Open an Internet browser and specify the URL of the Command Central Server as follows: ht-
tp://<Command_Central_host>:<Command_Central_port>. This takes you to the Command Central
Login page.

On Windows you can also get to the Login page from the Command Central Start Menu entry.

Provide your user credentials in the Login page and click Log In. This takes you to the pageHome
> Instances:

EntireX RPC Server for .NET10

Administering the RPC Server for .NET using the Command Central GUI

Creating an RPC Server Instance

To create an RPC Server for .NET instance

1 In the Command Central home page, click the Installations tab.

2 Click on the desired installation, for example Local, where you want to add an RPC Server
for .NET instance.

11EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

3 Click the Instances tab.

4
Click the button in the upper right corner above the list and choose EntireX RPC Server
for .NET.

5 In the Create Instancewizard, fill in the fields in the main screen and in the Server, Broker
and .NET tabs.

EntireX RPC Server for .NET12

Administering the RPC Server for .NET using the Command Central GUI

Main Screen

DescriptionParameter

Required. Name of the runtime component, for example
"MyRpcServer".

Instance name

Optional. Register Windows Service for automatic startup. Default
is not checked. If this parameter is checked, the RPC server can be
controlled by the Windows Service Control Manager.

Register Windows Service for
automatic startup

Server Tab

DescriptionParameter

Required. The case-sensitive RPC server address has the format:
CLASS/SERVER/SERVICE.

RPC Server address

Required. The administration port in range from 1025 to 65535.Administration port

13EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

Broker Tab

DescriptionParameter
Connection

Transport over TCP or SSL. Default is TCP.Transport

Required. EntireX Broker host name or IP address.Broker host

Required. Port number in range from 1025 to 65535.Broker port

Optional. Specifies the location of SSL trust store.SSL trust store
Credentials

Optional. The user ID for secured access to the broker.User

Optional. The password for secured access to the broker.Password

.NET Tab

DescriptionParameter

Optional. IDL library name associated with .NET server assembly.IDL Library

Optional. Location (path including DLL name) of .NET server assembly.Assembly

6 PressNext to get to the Summary page to verify your input.

7 Press Finish.

The new instance myRpcServer appears in the list.

EntireX RPC Server for .NET14

Administering the RPC Server for .NET using the Command Central GUI

Configuring an RPC Server Instance

To configure an RPC Server for .NET instance

1 In the Command Central home page, click the Instances tab.

2 Click on the link associated with this instance to select the RPC server instance you want to
configure.

15EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

3 Click the Configuration tab. EntireX supports the following configuration types, which are
presented in a drop-down box when you click the down arrow below the Configuration tab
label:

EntireX RPC Server for .NET16

Administering the RPC Server for .NET using the Command Central GUI

Note: All configuration changes require a restart of the instance to take effect.

■ .NET
■ Broker
■ Configuration File
■ Framework Configuration File
■ Licenses
■ Monitoring KPIs
■ Server
■ Trace Level

.NET

DescriptionParameter

Optional. IDL library name associated with .NET server assembly.IDL Library

Optional. Location (path including DLL name) of .NET server assembly.Assembly

17EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

Broker

DescriptionParameter
Connection

Transport over TCP or SSL. Default is TCP.Transport

Required. EntireX Broker host name or IP address.Broker host

Required. Port number in range from 1025 to 65535.Broker port

Required. Encodingused for the communication between theRPC server andEntireX
Broker.

Encoding

Optional. Specifies the location of SSL trust store.SSL trust store

Optional. The RPC server as SSL client checks the identity of the broker as SSL
server.

SSL verify server

Credentials

Optional. The user ID for secured access to the broker.User

Optional. The password for secured access to the broker.Password

Configuration File

Here you can view/edit the configuration file of the RPC Server for .NET.

Framework Configuration File

Here you can view/edit the framework configuration file of the RPC Server for .NET. See
.NET Framework Configuration.

Licences

Here you can view/set the license file in the EntireX installation. For details see Point to the
License Key for an Instance or Component underWorking with Standalone Product Installation in
the Command Central documentation.

Note: The license file is used for all EntireX instances in this installation.

Monitoring KPIs

Here you can modify margins of monitored key performance indicators (KPIs) available for
the RPC Server for .NET: Active Workers and Busy Workers.

Key performance indicators (KPIs) enable you to monitor the health of your RPC Server for
.NET. The following KPIs help you administer, troubleshoot, and resolve performance issues:

EntireX RPC Server for .NET18

Administering the RPC Server for .NET using the Command Central GUI

SettingKPI

entirex.generic.kpi.1.max=20Absolute number of Active Workers

entirex.generic.kpi.1.critical=0.95Critical alert relative to maximum

entirex.generic.kpi.1.marginal=0.80Marginal alert relative to maximum

entirex.generic.kpi.2.max=20Absolute number of Busy Workers

entirex.generic.kpi.2.critical=0.95Critical alert relative to maximum

entirex.generic.kpi.2.marginal=0.80Marginal alert relative to maximum

Do not change the other properties!

Server

Here you can specify the RPC Server settings.

DescriptionParameter
RPC Server

Required. The case-sensitive RPC server address has the format:
CLASS/SERVER/SERVICE.

RPC Server address

Required. The administration port in range from 1025 to 65535.Administration port

Required. Number of reconnection attempts to the broker. When the number
of attempts is reached and a connection to the broker is not possible, the RPC
Server for .NET stops.

Reconnection attempts

Worker Scalability

You can either have a fixed or dynamic number ofworkers. Default is dynamic
(true). For more information seeWorker Models.

Worker model

Required. Fixed number of workers.Must be a number in range from 1 to 255.Fixed number

Required. Minimum number of workers. Must be a number in range from 1
to 255.

Minimum number

Required. Maximum number of workers. Must be a number in range from 1
to 255.

Maximum number

Trace Level

Here you can set the trace level of the RPC Server for .NET.

DescriptionValueParameter

One of the following levels:
0 - None - No trace output (default).
1 - Standard - Minimal trace output.
2 - Advanced - Detailed trace output.
3 - Support - Support diagnostic. Use onlywhen requested by SoftwareAG support.

0-3Trace level

19EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

4 Click Edit to modify the parameters on your selected configuration type.

5 Click Test to check the correctness of your input or Apply to save your changes.

EntireX RPC Server for .NET20

Administering the RPC Server for .NET using the Command Central GUI

Viewing the Runtime Status

To view the runtime status of the RPC server instance

■ In the Command CentralHome page, click the Instances tab and select the RPC Server for
.NET instance for which youwant to see the runtime status (same as Step 1 under Configuring
a Broker Instance).

The visual key performance indicators (KPIs) and alerts enable you to monitor the RPC
Server for .NET's health.

DescriptionKPI

Number of active workers.Active Workers

Number of busy workers.Busy Workers

21EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

Starting an RPC Server Instance

To start an RPC Server for .NET instance from the Instances tab

1 In the Command Central home page, click the Instances tab.

2 Select the status, and from the context menu choose Start.

To start an RPC Server for .NET instance from its Overview tab

1 In the Command Central home page, click the Instances tab and select the RPC Server for
.NET instance you want to start (same as Step 1 under Configuring a Broker Instance).

EntireX RPC Server for .NET22

Administering the RPC Server for .NET using the Command Central GUI

2 Select the status, and from the context menu choose Start.

23EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

Stopping an RPC Server Instance

To stop an RPC Server for .NET instance from the Instances tab

1 In the Command Central home page, click the Instances tab.

2 Select the status, and from the context menu choose Stop.

To stop an RPC Server for .NET instance from its Overview tab

1 In the Command Central home page, click the Instances tab and select the RPC Server for
.NET instance you want to stop (same as Step 1 under Configuring a Broker Instance).

EntireX RPC Server for .NET24

Administering the RPC Server for .NET using the Command Central GUI

2 Select the status, and from the context menu choose Stop.

25EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

Inspecting the Log Files

To inspect the log files of an RPC Server for .NET instance

1 In the Command Central home page, click the Instances tab, then click the link associated
with the RPC Server for .NET instance for which you want to inspect the log files (same as
Step 1 under Configuring a Broker Instance).

2 Click the Logs tab:

3 In the Alias column, click the link of the log file you want to inspect, for example server.log:

EntireX RPC Server for .NET26

Administering the RPC Server for .NET using the Command Central GUI

Changing the Trace Level Temporarily

To temporarily change the trace level of an RPC Server for .NET instance

1 In the Command Central home page, click the Instances tab then click the link associated
with the RPC Server for .NET instance for which you want change the trace level temporarily
(same as Step 1 under Configuring a Broker Instance).

2 In the Administration tab, select the trace level and press Update.

Note: If you want to set the trace level permanently, see Trace Level under Configuring an
RPC Server Instance.

Deleting an RPC Server Instance

To delete an RPC Server for .NET instance

1 In the list of EntireX RPC Server for .NET instances for your selected installation (for example

Local), select the instance youwant to delete and click the button in the upper right corner
above the list.

27EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central GUI

2 ClickOK to confirm the uninstall of this RPC Server for .NET instance.

3 In the next window, click Finish. The selected instance is removed from the list.

EntireX RPC Server for .NET28

Administering the RPC Server for .NET using the Command Central GUI

4 Administering the RPC Server for .NET using the Command

Central Command Line
■ Creating an RPC Server Instance ... 30
■ Configuring an RPC Server Instance ... 31
■ Displaying the EntireX Inventory ... 48
■ Viewing the Runtime Status ... 50
■ Starting an RPC Server Instance .. 51
■ Stopping an RPC Server Instance .. 51
■ Inspecting the Log Files .. 52
■ Changing the Trace Level Temporarily ... 54
■ Deleting an RPC Server Instance ... 55

29

This chapter describes how to administer the EntireX RPC Server for .NET, using the Command
Central command-line interface.

Administering the RPC Server for .NET using the Command Central GUI is described under Ad-
ministering the RPC Server for .NET using the Command Central GUI. The core Command
Central documentation is provided separately and is also available underGuides for Tools Shared
by Software AG Products on the Software AG documentation website.

Creating an RPC Server Instance

The following table lists the parameters to include when creating an EntireX RPC instance, using
the Command Central create instances commands.

DescriptionValueParameterCommand

Required. Specifies the alias name of the
installation inwhich the runtime component
is installed.

namenode_aliassagcc
create
instances

Required. EntireXCore instance type of RPC
server. Must be "RpcServerNet".

RpcServerNettype

Required. Must be set to "EntireXCore".EntireXCoreproduct

Required.Name of the runtime component,
for example "MyRpcServer".

nameinstance.name

Optional. Register Windows Service for
automatic startup. Default is false. If this

true | falseinstall.service

parameter is true, the RPC server can be
controlled by theWindows Service Control
Manager.

Required. The case-sensitive RPC server
address has the format:
CLASS/SERVER/SERVICE.

class/server/serviceserver.address

Required. The administration port in range
from 1025 to 65535.

1025-65535server.adminport

Transport over TCP or SSL. Default is TCP.ssl | tcpbroker.transport

Required. EntireX Broker host name or IP
address.

namebroker.host

Required. Port number in range from 1025
to 65535.

1025-65535broker.port

Optional. The user ID for secured access to
the broker.

userbroker.user

Optional. The password for secured access
to the broker.

passwordbroker.password

EntireX RPC Server for .NET30

Administering the RPC Server for .NET using the Command Central Command Line

DescriptionValueParameterCommand

Optional. Specifies the location of SSL trust
store.

namebroker.truststore

Optional. IDL library name associatedwith
.NET server assembly.

nameidllibrary

Optional. Location (path including DLL
name) of .NET server assembly.

path/dllnameassembly

Example

■ To create a new instance for an installed EntireX of the type "RpcServerNet", with name
"MyRpcServer", with server address "RPC/SRV1/CALLNAT", using administration port 5757,
with broker host name "localhost", listening on broker port 1971, in the installation with alias
name "local":

sagcc create instances local EntireXCore type=RpcServerNet
instance.name=MyRpcServer server.address=RPC/SRV1/CALLNAT server.adminport=5757
broker.host=localhost broker.port=1971

Information about the creation job - including the job ID - is displayed.

Configuring an RPC Server Instance

Here you can administer the parameters of the RPC Server for .NET. Any changes to parameters
will be used the next time you start the RPC server.

■ Broker
■ Configuration File
■ Framework Configuration File
■ .NET
■ Monitoring KPIs
■ Server

31EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

■ Trace Level

Broker

Here you can administer the parameters used for communication between the RPC Server for
.NET and EntireX Broker.

■ Parameters
■ Displaying the Broker Settings of the RPC Server
■ Updating the Broker Settings of the RPC Server

Parameters

DescriptionValueParameter

Transport over TCP or SSL. Default is TCP.TCP | SSLBrokerTransport

Required. EntireX Broker host name or IP address.nameBrokerHost

Required. Port number in range from 1025 to 65535.1025-65535BrokerPort

Optional. The user ID for secured access to the broker.userBrokerUser

Optional. The password for secured access to the broker.passwordBrokerPassword

Required. Encoding used for the communication between the
RPC server and EntireX Broker.

codepageBrokerEncoding

Optional. Specifies the location of SSL trust store.filenameBrokerSslTrustStore

Optional. The RPC server as SSL client checks the identity of
the broker as SSL server.

true | falseBrokerSslVerifyServer

Displaying the Broker Settings of the RPC Server

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "BROKER".instanceid

Optional. Specifies the file where you want the output written.-o file

Example 1

■ To display the Broker parameters of the RPC Server for .NET "MyRpcServer" in the installation
with alias name "local":

EntireX RPC Server for .NET32

Administering the RPC Server for .NET using the Command Central Command Line

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer BROKER

Example 2

■ To store the Broker parameters in the file broker.json in the current working directory:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer BROKER
-o broker.json

Resulting output file in JSON format:

{
"BrokerHost":"localhost",
"BrokerPort":"1971",
"BrokerTransport":"TCP",
"BrokerUser":"testuser",
"BrokerPassword":"",
"BrokerEncoding":"Cp1252",
"BrokerSslTrustStore":"",
"BrokerSslVerifyServer":"true"
}

Updating the Broker Settings of the RPC Server

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "BROKER".instanceid

Optional. Specifies the file from where you want the input read.-i file

Example

■ To load the Broker parameters of the RPC Server for .NET "MyRpcServer" in the installation
with alias name "local" from the file broker.json in the current working directory:

33EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer BROKER
-i broker.json

See Example 2 above for sample input file.

EntireX RPC Server for .NET34

Administering the RPC Server for .NET using the Command Central Command Line

Configuration File

Here you can administer the configuration file of the RPC Server for .NET. Any changes will take
effect after the next restart.

■ Displaying the Content of the RPC Server Configuration File
■ Updating the Content of the RPC Server Configuration File

Displaying the Content of the RPC Server Configuration File

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "CONFIGURATION".instanceid

Optional. Specifies the file where you want the output written.-o file

Example 1

■ To display the configuration file of the RPC Server for .NET "MyRpcServer" in the installation
with alias name "local":

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer
CONFIGURATION

Example 2

■ To store the contents of the configuration file in the text file configuration.txt in the current
working directory:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer
CONFIGURATION -o configuration.txt

35EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

Updating the Content of the RPC Server Configuration File

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "CONFIGURATION".instanceid

Optional. Specifies the file from where you want the input read.-i file

Example

■ To load the contents of configuration file configuration.json in the current working directory:

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer
CONFIGURATION -i configuration.json

EntireX RPC Server for .NET36

Administering the RPC Server for .NET using the Command Central Command Line

Framework Configuration File

Here you can overwrite the framework configuration file of the RPC Server for .NET.

■ Displaying the Content of the RPC Server Framework Configuration File
■ Updating the Content of the RPC Server Framework Configuration File

Displaying the Content of the RPC Server Framework Configuration File

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "FRAMEWORK".instanceid

Optional. Specifies the file where you want the output written.-o file

Example 1

■ To display the framework configuration file of RPC Server for .NET "MyRpcServer" in the in-
stallation with alias name "local":

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer FRAMEWORK

Example 2

■ To store the contents of the framework configuration file in the text file framework.cfg.txt in the
current working directory:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer FRAMEWORK
-o framework.cfg.txt

Updating the Content of the RPC Server Framework Configuration File

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "FRAMEWORK".instanceid

Optional. Specifies the file from where you want the input read.-i file

37EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

Example

■ To store the contents of the framework configuration file in the text file framework.cfg.txt in the
current working directory:

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer
FRAMEWORK -i framework.cfg.txt

.NET

Here you canmodify how the RPC Server for .NET handles assembles. An assembly is configured
for each IDL library (see library-definition under Software AG IDL Grammar in the IDL Editor
documentation).

■ Parameters
■ Displaying the Assemblies
■ Updating the Assemblies

Parameters

DescriptionParameter

Enclosing parameter for list of (IdlLibrary, Assembly) parameter pairs. The parameter
has no value.

AssemblyList

IDL library associated with the assembly.IdlLibrary

Path of the assembly file (path including DLL name).Assembly

Displaying the Assemblies

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "NET".instanceid

Optional. Specifies the file where you want the output written.-o file

Example 1

■ To display the assembly parameters of RPC Server for .NET "MyRpcServer" in the installation
with alias name "local":

EntireX RPC Server for .NET38

Administering the RPC Server for .NET using the Command Central Command Line

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer NET

Example 2

■ To store the assembly parameters in the file assemblies.json in the current working directory:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer NET -o
assemblies.json

Resulting output file in JSON format:

{
"AssemblyList":
[
{

"IdlLibrary":"Calculator",
"Assembly":"c:\\assemblies\\calc\\calc.dll"

},
{

"IdlLibrary":"Hello",
"Assembly":"C:\\assemblies\\hello\\Hello.dll"

}
]
}

Updating the Assemblies

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "NET".instanceid

Optional. Specifies the file from where you want the input read.-i file

Example

■ To load the assembly parameters from file assemblies.json in the current working directory:

39EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer NET
-i assemblies.json

See Example 2 above for sample output file.

EntireX RPC Server for .NET40

Administering the RPC Server for .NET using the Command Central Command Line

Monitoring KPIs

Here you can administer margins of monitored key performance indicators (KPIs) available for
the RPC Server for .NET: Active Workers and Busy Workers.

■ Parameters
■ Displaying the Monitoring KPIs
■ Updating the Monitoring KPIs

Parameters

Key performance indicators (KPIs) enable you to monitor the health of your RPC Server for .NET.
The following KPIs help you administer, troubleshoot, and resolve performance issues:

SettingKPI

entirex.generic.kpi.1.max=20Absolute number of Active Workers

entirex.generic.kpi.1.critical=0.95Critical alert relative to maximum

entirex.generic.kpi.1.marginal=0.80Marginal alert relative to maximum

entirex.generic.kpi.2.max=20Absolute number of Busy Workers

entirex.generic.kpi.2.critical=0.95Critical alert relative to maximum

entirex.generic.kpi.2.marginal=0.80Marginal alert relative to maximum

Do not change the other properties!

Displaying the Monitoring KPIs

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "EXX-MONITORING-KPIS".instanceid

Optional. Specifies the file where you want the output written.-o file

Example 1

■ To display the monitoring KPI properties of RPC Server for .NET "MyRpcServer" in the install-
ation with alias name "local" on stdout:

41EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer
MONITORING-KPI

Example 2

■ To store the monitoring KPI properties in the filemy.properties in the current working directory:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer
MONITORING-KPI -o my.properties

Resulting output file in text format:

entirex.entirex.spm.version=10.5.0.0.473
entirex.generic.kpi.1.critical=0.95
entirex.generic.kpi.1.id=\#1
entirex.generic.kpi.1.marginal=0.80
entirex.generic.kpi.1.max=20
entirex.generic.kpi.1.name=Active Workers
entirex.generic.kpi.1.unit=
entirex.generic.kpi.1.value=0
entirex.generic.kpi.2.critical=0.95
entirex.generic.kpi.2.id=\#2
entirex.generic.kpi.2.marginal=0.80
entirex.generic.kpi.2.max=20
entirex.generic.kpi.2.name=Busy Workers
entirex.generic.kpi.2.unit=
entirex.generic.kpi.2.value=0

Updating the Monitoring KPIs

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "EXX-MONITORING-KPIS".instanceid

Optional. Specifies the file from where you want the input read.-i file

Example

■ To load the contents of file my.properties in the current working directory:

EntireX RPC Server for .NET42

Administering the RPC Server for .NET using the Command Central Command Line

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer
MONITORING-KPI -i my.properties

43EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

Server

Here you can administer the parameters defining the registration name, the administration port
and the behavior of the RPC Server for .NET.

■ Parameters
■ Displaying the Server Settings
■ Updating the Server Settings

Parameters

DescriptionValueParameter

Required. The case-sensitive RPC server address has
the format: CLASS/SERVER/SERVICE.

class/server/serviceServerAddress

Required. The administration port in range from1025
to 65535.

1025-65535ServerAdminport

Required. Number of reconnection attempts to the
broker.When the number of attempts is reached and

nReconnectionAttempts

a connection to the broker is not possible, the RPC
Server for .NET stops.

You can either have a fixed or dynamic number of
workers. Default is dynamic (true). For more
information seeWorker Models.

true | falseWorkerScalability

Required. Fixed number of workers. Must be a
number in range from 1 to 255.

1-255FixNumber

Required. Minimum number of workers. Must be a
number in range from 1 to 255.

1-255MinWorkers

Required. Maximum number of workers. Must be a
number in range from 1 to 255.

1-255MaxWorkers

Displaying the Server Settings

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "SERVER".instanceid

Optional. Specifies the file where you want the output written.-o file

EntireX RPC Server for .NET44

Administering the RPC Server for .NET using the Command Central Command Line

Example 1

■ To display the server parameters of RPC Server for .NET "MyRpcServer" in the installationwith
alias name "local" on stdout:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer SERVER

Example 2

■ To store the server parameters in the file server.json in the current working directory:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer SERVER
-o server.json

Resulting output file in JSON format:

{
"ServerAddress":"RPC/SRV1/CALLNAT",
"ServerAdminport":"4711",
"ReconnectionAttempts":"15",
"WorkerScalability":"true",
"FixNumber":"5",
"MinWorkers":"1",
"MaxWorkers":"10"
}

Updating the Server Settings

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "SERVER".instanceid

Optional. Specifies the file from where you want the input read.-i file

Example

■ To load the server parameters from the file server.json in the current working directory:

45EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer SERVER
-i server.json

See Example 2 above for sample input file.

EntireX RPC Server for .NET46

Administering the RPC Server for .NET using the Command Central Command Line

Trace Level

Here you can set the trace level of the RPC Server for .NET.

■ Parameters
■ Displaying the Trace Level
■ Updating the Trace Level

Parameters

DescriptionValueParameter

One of the following levels:
0 - None - No trace output (default).
1 - Standard - Minimal trace output.
2 - Advanced - Detailed trace output.
3 - Support - Support diagnostic. Use only when requested by Software
AG support.

0 | 1 | 2 | 3TraceLevel

Displaying the Trace Level

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc get
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "TRACE".instanceid

Optional. Specifies the file where you want the output written.-o file

Example 1

■ To display the trace level of RPC Server for .NET "MyRpcServer" in the installation with alias
name "local" on stdout:

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer TRACE

Example 2

■ To store the trace level in the file trace.json in the current working directory:

47EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc get configuration data local EntireXCore-RpcServerNet-MyRpcServer TRACE -o
trace.json

Resulting output file in JSON format:

{
"TraceLevel":"0"
}

Updating the Trace Level

DescriptionParameterCommand

Required. Specifies the alias name of the installation inwhich the runtime
component is installed.

node_aliassagcc update
configuration
data Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Required. Must be "TRACE".instanceid

Optional. Specifies the file from where you want the input read.-i file

Example

■ To load the trace level parameters from the file trace.json in the current working directory:

sagcc update configuration data local EntireXCore-RpcServerNet-MyRpcServer TRACE
-i trace.json

See Example 2 above for sample input file.

Displaying the EntireX Inventory

Listing all Inventory Components

The following table lists the parameters to include, when listing all EntireX instances, using the
Command Central list inventory commands.

EntireX RPC Server for .NET48

Administering the RPC Server for .NET using the Command Central Command Line

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc list
inventory
components Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Example

■ To list inventory components of instance EntireX in the installation with alias name "local":

sagcc list inventory components local EntireXCore*

A list of all EntireX RPC Server runtime components will be displayed.

49EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

Viewing the Runtime Status

The following table lists the parameters to include when displaying the state of an EntireX com-
ponent, using the Command Central get monitoring commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc get
monitoring state

Required. The component identifier. The prefix is
"EntireXCore-RpcServerNet-".

componentid

Example

■ To display state information about the RPC Server for .NET:

sagcc get monitoring state local EntireXCore-RpcServerNet-MyRpcServer

Runtime status and runtime state will be displayed.
■ Runtime status indicates whether a runtime component is running or not. Examples of a
runtime status are ONLINE or STOPPED.

■ Runtime state indicates the health of a runtime component by providing key performance
indicators (KPIs) for the component. Each KPI provides information about the current use,
marginal use, critical use and maximum use.

EntireX RPC Server for .NET50

Administering the RPC Server for .NET using the Command Central Command Line

Starting an RPC Server Instance

The following table lists the parameters to include when starting an EntireX RPC Server for .NET,
using the Command Central exec lifecycle commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc exec
lifecycle start

Required. The component identifier. The prefix is
"EntireXCore-RpcServerNet-".

componentid

Example

■ To start the RPC Server for .NET "MyRpcServer" in the installation with alias name "local":

sagcc exec lifecycle start local EntireXCore-RpcServerNet-MyRpcServer

Information about the job - including the job ID - will be displayed.

Stopping an RPC Server Instance

The following table lists the parameters to includewhen stopping an EntireX RPC Server for .NET,
using the Command Central exec lifecycle commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc exec
lifecycle stop

Required. The component identifier. The prefix is
"EntireXCore-RpcServerNet-".

componentid

Example

■ To stop the RPC Server for .NET "MyRpcServer" in the installation with alias name "local":

51EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc exec lifecycle stop local EntireXCore-RpcServerNet-MyRpcServer

Information about the job - including the job ID - will be displayed.

Inspecting the Log Files

Here you can administer the log files of the RPC Server for .NET. The following table lists the
parameters to include when displaying or modifying parameters of the RPC server, using the
Command Central list commands.

■ List all RPC Server Log Files
■ Getting Content from or Downloading RPC Server Log Files

List all RPC Server Log Files

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc list
diagnostics logs

Required. The component identifier. The prefix is
"EntireXCore-RpcServerNet-".

componentid

Example

■ To list the log files of RPC Server for .NET "MyRpcServer" in the installation with alias name
"local" on stdout:

sagcc list diagnostics logs local EntireXCore-RpcServerNet-MyRpcServer

Getting Content from or Downloading RPC Server Log Files

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc get
diagnostics
logs Required. The component identifier. The prefix is

"EntireXCore-RpcServerNet-".
componentid

Optional. Shows full log file content, or only tail or head.full | tail | head

Optional. Creates a zip file of the logs.export -o file

Example 1

■ To list the tail of the log file content in the current working directory:

EntireX RPC Server for .NET52

Administering the RPC Server for .NET using the Command Central Command Line

sagcc get diagnostics logs local EntireXCore-RpcServerNet-MyRpcServer server.log
tail

Example 2

■ To create a zip file myfile.zip of the logs:

sagcc get diagnostics logs local EntireXCore-RpcServerNet-MyRpcServer export -o
myfile.zip

53EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

Changing the Trace Level Temporarily

Here you can temporarily change the trace level of a running RPC server. The following table lists
the parameters to include when displaying or modifying parameters of an EntireX component,
using theCommandCentral exec administration command. The change is effective immediately;
there is no need to restart the RPC server.

Note: If you want to set the trace level permanently, see Trace Level under Configuring an
RPC Server Instance.

Displaying the Trace Level of a Running RPC Server

DescriptionParameterCommand

Required. Specifies that a component will be administered.componentsagcc exec
administration Required. Specifies the alias name of the installation in which

the runtime component is installed.
node_alias

Required. Specifies what is to be administered.Trace

Required. Get the trace level.load tracelevel=?

Required. Specifies XML or JSON as output format.-f xml|json

Example 1

■ To display the current trace level of the RPC Server for .NET "MyRpcServer" in the installation
with alias name "local" in JSON format on stdout:

sagcc exec administration component local EntireXCore-RpcServerNet-MyRpcServer
Trace load tracelevel=? -f json

Example 2

■ To display the current trace level of the RPC Server for .NET "MyRpcServer" in the installation
with alias name "local" in XML format on stdout:

sagcc exec administration component local EntireXCore-RpcServerNet-MyRpcServer
Trace load tracelevel=? -f xml

EntireX RPC Server for .NET54

Administering the RPC Server for .NET using the Command Central Command Line

Updating the Trace Level of a Running RPC Server

DescriptionParameterCommand

Required. Specifies that a component will be administered.componentsagcc exec
administration Required. Specifies the alias name of the installation in which

the runtime component is installed.
node_alias

Required. The component identifier. The prefix is
"EntireXCore-RpcServerNet-".

componentid

Required. Specifies what is to be administered.Trace

Required. Update temporarily the trace level of a running RPC
server.

update tracelevel

Required. Specifies XML or JSON as output format.-f xml|json

Example

■ To change the current trace level of the running RPC Server with the name "MyRpcServer" in
the installation with alias name "local":

sagcc exec administration component local EntireXCore-RpcServerNet-MyRpcServer
Trace update tracelevel=2 -f json

Deleting an RPC Server Instance

The following table lists the parameters to include when deleting an EntireX RPC Server instance,
using the Command Central delete instances commands.

DescriptionParameterCommand

Required. Specifies the alias name of the installation in which the
runtime component is installed.

node_aliassagcc delete
instances

Required. The component identifier. The prefix is
"EntireXCore-RpcServerNet-".

componentid

Example

■ To delete an instance of an EntireX RPC Server for .NET with the name "MyRpcServer" in the
installation with alias name "local":

55EntireX RPC Server for .NET

Administering the RPC Server for .NET using the Command Central Command Line

sagcc delete instances local EntireXCore-RpcServerNet-MyRpcServer

Information about the deletion job - including the job ID - is displayed.

EntireX RPC Server for .NET56

Administering the RPC Server for .NET using the Command Central Command Line

5 Administering the RPC Server for .NET with Local Scripts

■ Customizing the RPC Server ... 58
■ Configuring the RPC Server .. 60
■ Locating and Calling the Target Server .. 67
■ Using SSL/TLS with the RPC Server ... 67
■ Starting the RPC Server ... 69
■ Stopping the RPC Server .. 70
■ Pinging the RPC Server .. 71
■ Deploying the RPC Server .. 71
■ Running an EntireX RPC Server as a Windows Service .. 72
■ Activating Tracing for the RPC Server .. 72

57

The EntireX RPC Server for .NET allows standard RPC clients to communicate with .NET server
assemblies. It works together with the .NET Wrapper.

This chapter describes how to administer the RPC Server for .NET with local scripts as in earlier
versions of EntireX.

See alsoAdministering the RPC Server for .NETwith the Command CentralGUI |Command Line.

Customizing the RPC Server

The following elements are used for setting up the RPC Server for .NET:

■ Configuration File
■ RPC Server for .NET
■ .NET Wrapper Runtime
■ .NET Framework Configuration
■ Start Script

Configuration File

The name of the delivered example configuration file is dotNetServer.cfg provided in the config
folder. The configuration file contains the configuration for the RPC Server for .NET. The following
settings are important:

■ connection information such as broker ID, server address (class, name, service)
■ scalability parameters
■ trace settings
■ etc.

For more information see Configuring the RPC Server.

RPC Server for .NET

Technically the RPC Server for .NET consists of the rpcserver.exe and dotNetServer.dll provided in
the bin folder. The modules must always be kept together in the same folder.

EntireX RPC Server for .NET58

Administering the RPC Server for .NET with Local Scripts

.NET Wrapper Runtime

The .NET Wrapper Runtime is required by the RPC Server for .NET. It is implemented in the as-
sembly SoftwareAG.EntireX.NETWrapper.Runtime.dll provided in the bin folder. It contains, for ex-
ample, marshalling code for .NET data types to Software AG IDL data types and unmarshalling
code for the opposite direction.

.NET Framework Configuration

For complex installations and if the .NET Server assemblies are deployed in different folders(1), a
.NET FrameworkConfiguration file called rpcserver.exe.config is required. It defines in XML format
several parameters of the RPC Server for .NET, such as the dependent assemblies, version and
location and others. The file rpcserver.exe.configmust be located in the same folder as the RPC
Server for .NET itself, which by default is the bin folder of the EntireX installation. If there are
multiple .NET servers assemblies, each deployed in different folders which need to be called by
the RPC Server for .NET, they all must be defined in the rpcserver.exe.config file.

<configSections>
 <!-- EntireX Configuration Section Group Definition -->
 <sectionGroup name="EntireX">
 <section name="Assemblies" type="System.Configuration.NameValueSectionHandler, ↩
System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089, ↩
Custom=null" />
 </sectionGroup>
</configSections>
<EntireX>
 <!-- EntireX Assembly Configuration -->
 <Assemblies>
 <add key="SoftwareAG.EntireX.NETWrapper.Runtime" ↩
value="C:\SoftwareAG\EntireX\bin\SoftwareAG.EntireX.NETWrapper.Runtime.dll" />
 </Assemblies>
</EntireX>

where the location of the .NETWrapper Runtime is replaced by the location used in your EntireX
installation. Add an entry in theAssemblies section for each of your called .NET Server assemblies:

<add key="MyAssembly", value="MyLocation"/>

where MyAssembly and MyLocation represent the name and location of your .NET server assembly.
In this context, the.NET server assembly must have a strong name. Refer to the Microsoft docu-
mentation for the .NET Framework.

If versioning is required for your assemblies, follow the rules under Assembly Versioning in the
.NET Wrapper documentation.

Notes:

1. See also Locating and Calling the Target Server and Deploying the RPC Server.

59EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

2. Due to an incompatibility of the .NET Framework 2.0 to the earlier versions, an additional section
in the configSections part of file rpcserver.exe.config is required.

Start Script

The start script for the RPC Server for .NET is called dotNetServer.bat and is provided in the bin
folder of the installation directory. You may customize this file. The start script contains the fol-
lowing:

■ paths to the called .NET server
■ the configuration file used; see Configuration File
■ etc.

Configuring the RPC Server

The following rules apply:

■ In the configuration file:
■ Comments must be on a separate line.
■ Comment lines can begin with '*', '/' and ';'.
■ Empty lines are ignored.
■ Headings in square brackets [<topic>] are ignored.
■ Keywords are not case-sensitive.

■ Underscored letters in a parameter indicate the minimum number of letters that can be used
for an abbreviated command.

For example, in brokerid=localhost, brok is the minimum number of letters that can be used
as an abbreviation, that is, the commands/parameters broker=localhost and brok=localhost
are equivalents.

Req/
OptValuesDefaultParameter

RBroker ID used by the server. See Using the Broker ID in
Applications.

Example:
brokerid=myhost.com:1971

localhostbrokerid

RDo not change!dotNetServercallexit

RServer class part of the server address used by the server.
The server address must be defined as a service in the

RPCclass

EntireX RPC Server for .NET60

Administering the RPC Server for .NET with Local Scripts

Req/
OptValuesDefaultParameter

broker attribute file (see Service-specific Attributes).
Case-sensitive, up to 32 characters. Corresponds to CLASS.

Example:
class=MyRPC

OThe codepage tells the broker the encoding of the data.
The application must ensure the encoding of the data

codepage

matches the codepage. The RPC server itself does not
convert your application data. The application's data is
shipped and received as given. Often, the codepage must
also match the encoding used in the RPC server
environment for file and terminal IO, otherwise
unpredictable results may occur.

Under the Windows operating system:

■ By default, the Windows ANSI codepage configured
for your system is automatically transferred to tell the
broker how the data is encoded.

■ If you want to adapt the Windows ANSI codepage, see
the Regional Settings in theWindowsControl Panel and
your Windows documentation.

■ If you want to encode the data different to your
Windows ANSI codepage, convert the data in the
application and provide the codepage name here.
During receive, decode the data accordingly.

codepage=windows-1256

Enable character conversion in the broker by setting the
service-specific attribute CONVERSION to "SAGTRPC". See
also Configuring ICU Conversion under Configuring Broker
for Internationalization in the platform-specific
Administration documentation. More information can be
found under Internationalization with EntireX.

OEnforce compression when data is transferred between
broker and server. See Data Compression in EntireX Broker.

compresslevel= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
| 8| 9 | Y | N

Ncompresslevel

0=no compression
9=max. compression

0-9

No compression.N

Compression level 6.Y

61EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

Req/
OptValuesDefaultParameter

Example:
compresslevel=6

Otimeoutendworkers

Defines worker model FIXEDwith a fixed
number of worker threads. The number of

NEVER

worker threads is definedwith minworkers.
It does not increase or decrease during the
lifetime of an RPC server instance.

Defines slow-shrinking worker model
DYNAMIC, where the number of worker

TIMEOUT

threads is adjusted to the current number of
client requests. With value TIMEOUT, all
worker threads not used are stopped in the
time specified by the timeout, except for
the minimum number of active workers
specifiedwith minworkers. The upper limit
of workers parallel active is restricted with
maxworkers.

Defines fast-shrinking worker model
DYNAMIC, where the number of worker

IMMEDIATE

threads is adjusted to the current number of
client requests. With value IMMEDIATE,
worker threads not used are stopped
immediately as soon as they have finished
their conversation, except for the minimum
number of active workers defined with
minworkers. The upper limit of workers
active in parallel is restricted with
maxworkers.

Example:
endworkers=timeout
minworkers=2
maxworkers=6
timeout=60

Olibrary = search_logic [- library]library
=PREFIX(D) -
PREFIX()

library

is one of FIX(dllname) |
PREFIX(prefix) | PREFIX(),
and

search_logicwhere

can be repeated up to four times,
that is, five entries are possible.

library

EntireX RPC Server for .NET62

Administering the RPC Server for .NET with Local Scripts

Req/
OptValuesDefaultParameter

The IDL library name coming from
the RPC client is ignored. You have to

FIX(dllname)

define the library names (Windows
DLLs).

The IDL library name coming from
the RPC client is used to form the

PREFIX(prefix)

library name (Windows DLLs). As
prefix you can define any character.
If an RPC client sends, for example,
"SYSTEM" as the IDL library name
and "D" is defined as prefix, the
library name derived is "DSYSTEM".

The IDL library name coming from
the RPC client is used as library name
(Windows DLLs).

PREFIX()

Example FIX configuration:
library=FIX(MYSTUBS)-FIX(MYRPCS)

OExecute broker functions LOGON/LOGOFF in worker
threads. Must match the setting of the broker attribute

YESlogon

AUTOLOGON. Reliable RPC requires logon set to YES. See
Reliable RPC.

No logon/logoff functions are executed.NO

Logon/logoff functions are executed.YES

Example:
logon=no

OMinimum limit of worker threads.1minworkers

■ Forworkermodel DYNAMIC: minimumnumber of active
worker threads, even if no RPC client requests have to
be processed. This allows you to define a certain number
of worker threads - not used by the currently executing
RPC request - to wait for new RPC client requests to
process. In this way the RPC server is ready to handle
many RPC client requests arriving at the same time. Do
not set a value higher than maxworkers.

■ For worker model FIXED: number of active worker
threads. Do not set a value higher than 256.

See also endworkers.

Example:

63EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

Req/
OptValuesDefaultParameter

minworkers=2

OUpper limit of all tasks concurrently. Do not set a value
higher than 256. See also endworkers.

10maxworkers

Example:
maxworkers=2

OThe password for secured access to the broker. If possible
(write access) the password is encrypted and written to

no defaultpassword

parameter password.e. The parameter password is
removed. To change the password, add the parameter
passwordwith the new password as value.

Example:
password=MyPwd

ONumber of restart attempts if the broker is not available.
This can be used to keep the RPC Server for .NET running

15restartcycles

while the broker is down for a short time. A restart cycle
will be repeated every 60 seconds.

Note: Internally, the server waits in periods of 10 seconds
(performing six times more cycles), which you can see in
the server output.

When the number of specified cycles is reached and a
connection to the broker is not possible, the RPC Server
for .NET stops.

Example:
restartcycles=30

The serverwaits up to 30minutes (30*6*10 seconds) before
it terminates due to a missing broker connection.

RDo not change! Do not add other run optionsResetrunoption

RServer name part of the server address used by the server.
The server address must be defined as a service in the

SRV1servername

broker attribute file. See Service-specific Attributes.
Case-sensitive, up to 32 characters. Corresponds to SERVER
of the broker attribute file.

Example:
servername=mySrv

RService part of the server address used by the server. The
server address must be defined as a service in the broker

CALLNATservice

attribute file. See Service-specific Attributes. Case-sensitive,
up to 32 characters. Corresponds to SERVICE attribute of
the broker attribute file.

EntireX RPC Server for .NET64

Administering the RPC Server for .NET with Local Scripts

Req/
OptValuesDefaultParameter

Example:
service=MYSERVICE

OSet the SSL parameters. SeeUsing SSL/TLS with the RPC
Server for examples and more information.

no defaultssl_file

OTimeout in seconds, used by the server to wait for broker
requests. See broker ACI control block field WAIT formore

60timeout

information. Also influences restartcycles andworker
model DYNAMIC.

Example:
timeout=300

OThe name of the destination file for trace output. By default
the main trace file name is ERXTrace.nnn.log, where

ERXTrace.nnn.logtracedestination

nnn can be in the range from001 to 005. See alsoActivating
Tracing for the RPC Server.

■ Under Windows, the trace file is located in a subfolder
of the windows folderMy Documents.

If the default is not used and a tracedestination is
specified, you can use the following variables depending
on the operating system:

Environment variable.Windows%...%

Process ID.UNIX, Win@PID

Thread ID.UNIX, Win@TID

mmust be greater than
n, range is from 0 - 999

UNIX, Win@RANGE[n,m]

The user's home
directory. The variable

Windows@CSIDL_PERSONAL

will be resolved by
Windows shell
functions.

The Application Data
Directory. The variable

Windows@CSIDL_APPDATA

will be resolved by
Windows shell
functions.

The Local Application
Data Directory. The

Windows@CSIDL_LOCAL_
APPDATA

variablewill be resolved
by Windows shell
functions.

65EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

Req/
OptValuesDefaultParameter

See also Activating Tracing for the RPC Server.

Example:
tracedestination=ERXTrace.log

OTrace level for the server. See also Activating Tracing for
the RPC Server.

Nonetracelevel

tracelevel = None | Standard | Advanced | ↩
Support

No trace output.None

For minimal trace output.Standard

For detailed trace output.Advanced

This trace level is for support diagnostics and
should only be switched on when requested
by Software AG support.

Support

Example:
tracelevel=standard

OAdditional trace option if trace is active. See also
Activating Tracing for the RPC Server.

Nonetraceoption

No additional trace options.None

If tracelevel is Advanced or Support, the
trace additionally activates the broker stub log.

STUBLOG

Normally if a data buffer larger than 8 KB is
traced, the buffer trace is truncated. Set this

NOTRUNC

option towrite the full amount of data without
truncation.

Note: This can increase the amount of trace
output data dramatically if you transfer large
data buffers.

Example:
traceoption=(STUBLOG,NOTRUNC)

OThe user ID for access to the broker. The default ERX-SRV
will be used if this parameter is omitted or specified
without a value: "userid=".

Example:
userid=MyUid

ERX-SRVuserid

EntireX RPC Server for .NET66

Administering the RPC Server for .NET with Local Scripts

Locating and Calling the Target Server

The approach depends on whether the called .NET Server assemblies are in the same folder as the
RPC Server for .NET and .NET Wrapper Runtime or in a different folder:

■ Assemblies in same folder
Having your .NET Server assemblies in the same folder as the RPC Server for .NET and .NET
Wrapper Runtime makes sense for test and development purposes, and also for small applica-
tions. The .NET Server assemblies are loaded from the respective folder. No extra .NET Frame-
work configuration is required. See also Deploying the RPC Server.

■ Assemblies in different folder
If your .NET Server assemblies are not in the same folder as the RPC Server for .NET and .NET
Wrapper Runtime, you need to configure your .NET Framework. See .NET Framework Config-
uration.

Using SSL/TLS with the RPC Server

RPC servers can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. RPC-based servers are always
SSL clients. The SSL server can be either the EntireX Broker, Broker SSL Agent, or Direct RPC in
webMethods Integration Server (IS inbound). For an introduction see SSL/TLS and Certificates with
EntireX in the Platform-independent Administration documentation.

67EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

To use SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Specify the Broker ID, using one of the following styles:

■ URL Style, for example:

ssl://localhost:2010

■ Transport-method Style, for example:

ETB024:1609:SSL

If no port number is specified, port 1958 is used as default.

3 Specify SSL parameters, using one of the methods below:

■ As part of the Broker ID
The simplest way to specify short SSL parameter is to add them to the Broker ID.

Example with URL-style Broker ID:

ssl://localhost:2010?VERIFY_SERVER=N&TRUST_STORE=c:\\certs\\CaCert.pem

Example with transport-method-style Broker ID:

ETB024:1609:SSL?VERIFY_SERVER=N&TRUST_STORE=c:\\certs\\CaCert.pem

■ In the SSL file
Complex SSL parameters can be specified in a so-called SSL file, a text file containing the
parameters.

1. Define the SSL file with the SSL parameters, for example file mySSLParms.txtwith the
following contents:

VERIFY_SERVER=N
TRUST_STORE=c:\\certs\\CaCert.pem

2. Define the SSL file in the configuration file of the RPC Server for .NET. See parameter
ssl_file under Configuring the RPC Server. Example:

EntireX RPC Server for .NET68

Administering the RPC Server for .NET with Local Scripts

brokerid=ssl://localhost:2010
.
.
ssl_file=C:\mySSLdirectory\mySSLParms.txt

If the SSL client checks the validity of the SSL server only, this is known as one-way SSL. The
mandatory trust_store parameter specifies the file name of a keystore that must contain the
list of trusted certificate authorities for the certificate of the SSL server. By default a check is
made that the certificate of the SSL server is issued for the hostname specified in the Broker
ID. The common name of the subject entry in the server's certificate is checked against the
hostname. If they do not match, the connection will be refused. You can disable this check
with SSL parameter verify_server=no.

If the SSL server additionally checks the identity of the SSL client, this is known as two-way
SSL. In this case the SSL server requests a client certificate (the parameter verify_client=yes
is defined in the configuration of the SSL server). Two additional SSL parameters must be
specified on the SSL client side: key_store and key_passwd. This keystore must contain the
private key of the SSL client. The password that protects the private key is specified with
key_passwd.

The ampersand (&) character cannot appear in the password.

SSL parameters are separated by ampersand (&). See also SSL/TLS Parameters for SSL Clients.

4 Make sure the SSL server to which the RPC Server for .NET connects is prepared for SSL
connections as well. The SSL server can be EntireX Broker, Broker SSL Agent, or Direct RPC
in webMethods Integration Server (IS inbound). See:

■ RunningBrokerwith SSL/TLSTransport in the platform-specificAdministrationdocumentation
■ Broker SSL Agent in the UNIX and Windows Administration documentation
■ Support for SSL/TLS in the EntireX Adapter documentation (for Direct RPC)

Starting the RPC Server

Before starting, make sure all your .NET server assemblies are accessible through the standard
Windows DLL load mechanism. See also Locating and Calling the Target Server.

To start the RPC Server for .NET

■ Use the Start Script.

Or:

69EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

Use the following format:

rpcserver CFG=name [-option] [brokerid] [class] [servername] [service]

Here are some sample options. See Configuring the RPC Server for full list.

Defines an alternative log file. UnderWindows, this
is typically used byWindows Services. SeeRunning
an EntireX RPC Server as a Windows Service.

-serverlog file

Run the RPC server in silent mode, that is, no ter-
minal inputwill be required (for example to acknow-

-s[ilent]

ledge errormessages). The batch scriptswill termin-
ate automatically.
Set the trace destination parameter.-TraceDestination file

Set the trace level parameter.-TraceLevel None|Standard|Advanced

Note: The server input arguments are resolved from left to right. Parameters defined
in the configuration file may be overridden by parameters applied on the command
line and vice versa. See Configuring the RPC Server for full list of options.

Or:

You can use the RPC Server for .NET as a Windows Service. See Running an EntireX RPC
Server as a Windows Service.

Stopping the RPC Server

To stop the RPC Server for .NET

■ Use the command stopService. See Stop Running Services in Command Central's Command-
line Interface.

Or:

Stop the service using Command Central's Graphical User Interface. See Stopping a Service.

Or:

Use the command-line utility etbcmd. See etbcmd under Broker Command-line Utilities in the
platform-specific Administration documentation.

Or:

Use CTRL-C in the session where you started the RPC server instance.

EntireX RPC Server for .NET70

Administering the RPC Server for .NET with Local Scripts

See also Component Return Codes in EntireX.

Pinging the RPC Server

To ping the RPC Server for .NET

■ Enter the following command:

java -classpath "$EXXDIR/classes/entirex.jar" ↩
com.softwareag.entirex.rpcping.RPCServerPing -p <admin_port>

is the number of the administration port.admin_portwhere

The ping command returns "0" if the server is reachable, and "1" if the server cannot be ac-
cessed.

Deploying the RPC Server

The easiest way to deploy and run an RPC Server for .NET with its .NET server assemblies is the
so-called XCOPY-deployment(1). This means that all relevant files of the RPC Server for .NET are
installed in a single folder. The only prerequisite is that the EntireX Mini Runtime Considerations is
installed. The following files are typically required:

■ .NET Wrapper Runtime SoftwareAG.EntireX.NETWrapper.Runtime.dll
■ RPC Server for .NET rpcserver.exe and dotNetServer.dll
■ Configuration File dotNetServer.cfg
■ .NET Server assemblies (containing customer-written code), seeWriting a .NET Server Assembly
in the .NET Wrapper documentation

Notes:

1. The XCOPY deployment method has the drawback that copies of the .NET Wrapper Runtime
and theRPCServer for .NEThave to be deployedwith customer-written .NET Server assemblies.
It is possible to avoid this by deploying the .NET Server assemblies in different folders. See also
Locating and Calling the Target Server.

71EntireX RPC Server for .NET

Administering the RPC Server for .NET with Local Scripts

Running an EntireX RPC Server as a Windows Service

For general information see Running an EntireX RPC Server as a Windows Service.

To run the RPC Server for .NET as a Windows Service

1 Customize the Start Script according to your system installation.

Note: The script filemust pass external parameters to the RPC server and use the option
–silent:

rpcserver CFG=..\config\dotNetServer.cfg -s %*

See also Starting the RPC Server.

2 Test your RPC server to see whether it will start if you run your script file.

3 Use the EntireX RPC Service Tool and install the RPCServicewith somemeaningful extension,
for example MyServer. If your Start Script is dotNetServer.bat, the command will be

RPCService -install -ext MyServer ↩
-script install_path\EntireX\bin\dotNetServer.bat

The log file will be called RPCservice_MyServer.log.

4 InWindows Servicesmenu (Control Panel > Administrative Tools > Services) select the
service: Software AG EntireX RPC Service [MyServer] and change the property Startup
Type from "Manual" to "Automatic".

Activating Tracing for the RPC Server

To switch on tracing for the RPC Server for .NET

1 Set the parameters tracelevel, traceoption and tracedestination. See Configuring the
RPC Server.

2 Start the RPC Server for .NET. See Starting the RPC Server.

3 To evaluate the return codes, see Component Return Codes in EntireX.

To switch off tracing

■ Set the tracelevel parameter to None.

EntireX RPC Server for .NET72

Administering the RPC Server for .NET with Local Scripts

6 Scenarios

■ Writing a New .NET Server Assembly .. 74

73

Writing a New .NET Server Assembly

To write a new .NET server assembly

1 Use the .NET Wrapper to generate a C# server skeleton. SeeWriting a .NET Server Assembly.

2 Build an EntireX RPC client using any EntireX wrapper. For a quick test you can:

■ use the IDL Tester; see EntireX IDL Tester in the Designer documentation
■ generate an XMLmapping file (XMM) and use the XML Tester for verification; see EntireX
XML Tester in the XML/SOAPWrapper documentation

EntireX RPC Server for .NET74

Scenarios

	EntireX RPC Server for .NET
	Table of Contents
	EntireX RPC Server for .NET
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction to the RPC Server for .NET
	Administration using Command Central
	.NET Wrapper Runtime and .NET Server Assembly
	Worker Models

	3 Administering the RPC Server for .NET using the Command Central GUI
	Logging in to Command Central
	Creating an RPC Server Instance
	Configuring an RPC Server Instance
	Viewing the Runtime Status
	Starting an RPC Server Instance
	Stopping an RPC Server Instance
	Inspecting the Log Files
	Changing the Trace Level Temporarily
	Deleting an RPC Server Instance

	4 Administering the RPC Server for .NET using the Command Central Command Line
	Creating an RPC Server Instance
	Configuring an RPC Server Instance
	Broker
	Parameters
	Displaying the Broker Settings of the RPC Server
	Updating the Broker Settings of the RPC Server

	Configuration File
	Displaying the Content of the RPC Server Configuration File
	Updating the Content of the RPC Server Configuration File

	Framework Configuration File
	Displaying the Content of the RPC Server Framework Configuration File
	Updating the Content of the RPC Server Framework Configuration File

	.NET
	Parameters
	Displaying the Assemblies
	Updating the Assemblies

	Monitoring KPIs
	Parameters
	Displaying the Monitoring KPIs
	Updating the Monitoring KPIs

	Server
	Parameters
	Displaying the Server Settings
	Updating the Server Settings

	Trace Level
	Parameters
	Displaying the Trace Level
	Updating the Trace Level

	Displaying the EntireX Inventory
	Listing all Inventory Components

	Viewing the Runtime Status
	Starting an RPC Server Instance
	Stopping an RPC Server Instance
	Inspecting the Log Files
	List all RPC Server Log Files
	Getting Content from or Downloading RPC Server Log Files

	Changing the Trace Level Temporarily
	Displaying the Trace Level of a Running RPC Server
	Updating the Trace Level of a Running RPC Server

	Deleting an RPC Server Instance

	5 Administering the RPC Server for .NET with Local Scripts
	Customizing the RPC Server
	Configuration File
	RPC Server for .NET
	.NET Wrapper Runtime
	.NET Framework Configuration
	Start Script

	Configuring the RPC Server
	Locating and Calling the Target Server
	Using SSL/TLS with the RPC Server
	Starting the RPC Server
	Stopping the RPC Server
	Pinging the RPC Server
	Deploying the RPC Server
	Running an EntireX RPC Server as a Windows Service
	Activating Tracing for the RPC Server

	6 Scenarios
	Writing a New .NET Server Assembly

