§ software

webMethods EntireX

EntireX COBOL Wrapper

Version 10.5

October 2019

WEBMETHODS

This document applies to webMethods EntireX Version 10.5 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBWRAPPER-105-20220422

Table of Contents

EntireX COBOL WIaPPeTccueiiiiiiiiiiiiiiiiiiiiccc e vii
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
I Introduction to the COBOL WIappercccooueiiiiiiiiiiiiiiiiicciccccece e 5
2 Introduction to the COBOL WIapperccccoeciiiiiiiiiiiiiiieieiceeeeecee e 7
DeSCIIPHON ..ot 8
Generic RPC Services Modulecccociiiiiiiiiiiiiiiiiiicc 9
COBOL Client Applicationsccceevviiiiiiiiiiiiiiiiiiicicce e, 9
COBOL Server Applicationccocoviiiiiiiiiiiiciiccccece e 11
COBOL Server Interface TYPeScccceeeuieriiiiiiiiiiiiiiicieciececceece e 12
IT Using the COBOL WIAPPETccveiiiiiiiiiiiiiiieiiceiccee et 19
3 Using the COBOL Wrapper for the Client Sidecccoooviviiiiiiiiiiiiiie 21
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling
Convention (z/OS and Z/VSE)coouiiiiiiiiiiiiiiieeeeeeeeee et 23
Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and
ZIVSE) it 25
Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i) 27
Using the COBOL Wrapper for IMS (z/OS)cccccocviviiiiiiiiiiiiiiiiiiciin, 30
Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS) 32
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 34
4 Using the COBOL Wrapper for the Server Sidecc.occovviiiiiiiiiiis 37
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling
Convention (z/OS and Z/VSE)ccouiiiiiiiiiiiiiiiiceniceeeeeeeeee e 39
Using the COBOL Wrapper for CICS with Channel Container Calling
CoNVENION (Z/OS)ueeeriiiiieeeeeiecciiettee e e eeerrrrre e e e e e e s eerteeeeeeseeesnnssraeeeeessennnns 42
Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer
Interface (z/OS and Z/VSE)coouiiiiiiiiiiieiieiieeeeeieeeeeee e 47
Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i) 50
Using the COBOL Wrapper for IMS BMP (z/OS)cccccocvivviiiiiiiiiiiiiiienne 54
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 58
5 Generating COBOL Source Files from Software AG IDL Filesccccccceeui. 61
Select an IDL File and Generate RPC Client or RPC Serverccccccceeeenen. 62
Generation Settings - Propertiescoccoooveviiiiiiiiiiiiiiiccc 66
Generation Settings - Preferencescccccocviviiiiiiiiiiiiiiniiiiiiiiiccccccc 77
6 Using the COBOL Wrapper in Command-line Modec...ccocoviiininnnn 79
Command-line OPtionsccceeviiiiiiiiiiiiiiii e 80
Example Generating an RPC Clientccoceiviiiiiiiiiiiiiiiiiiiiie 83
Example Generating an RPC Server ..o, 84
Further Examplescccccoooiiiiiiiiiiiiiiiiii 84
7 Software AG IDL to COBOL Mappingcccevvevuiiviiiieniiiiciicceeceeccecnee 87
Mapping IDL Data Types to COBOL Data Typesccccccevviiiiiiiiiiiiiininnnn. 88

EntireX COBOL Wrapper

Mapping Library Name and Aliascccccoeeiiiiiiiiiiiiiiiiiiiicc, 92
Mapping Program Name and Aliasc.ccccoooooiiiiiiiiiiiii 93
Mapping Parameter Namesccoccvviiiiiiiiiiiiiiiiiiic 93
Mapping Fixed and Unbounded Arrayscccocoviiiiiiiiiiiiiiciicccs 94
Mapping Groups and Periodic Groupscccccceevviiiiiiiiiiiiniiiiiiiiciiccee 95
Mapping Structurescocoioiiiiiiiiiiii 96
Mapping the Direction Attributes In, Out, InOutccccoeciiiiiiiiiniinnn. 96
Mapping the ALIGNED Attributeccccoooiiiiiiiiiiiiiiiiie 97
Calling Servers as Procedures or FUNCtionscccoccoooiiiiiiiniiniiiiic 97
III Writing Applications with the COBOL Wrappercccccevcviiviiiiiiiiiiiiiiiciicciee 99
8 Writing Standard Call Interface Clientsc.ccccoooiiiiiiiiiiiiii 101
Step 1: Declare and Initialize the RPC Communication Areac..cc.c...... 102
Step 2: Declare the IDL Data Structures for Client Interface Objects 104
Step 3: Required Settings in the RPC Communication Areaccccoeuee. 104
Step 4: Optional Settings in the RPC Communication Areaccccoeeneee. 105
Step 5: Issue the RPC Request and Check for Successccooeeviiiiinnnns 105
9 Writing EXEC CICS LINK CHENtSccccociiiiiiiiiiiiiiiiiiiiciieeccieec e 109
Step 1: Declare IDL Structures and RPC Communication Area 110
Step 2: Initialize the RPC Communication Areacccccevcviiviinieiienncnnnen. 111
Step 3: Required Settings in the RPC Communication Areacc.c..... 112
Step 4: Optional Settings in the RPC Communication Areac...cccce.. 113
Step 5: Issue the RPC Request and Check for Successcccevvviviiiniinnnen. 113
10 Using the Generated COpybOOKSc.cccoeiiiiiiiiiiiiii 115
IDL Interface COPybOOKScooviiiiiiiiiiiiiiiiiiiiicc 116
ERXCOMM Copybookccviiiiiiiiiiiiiiiiiiicccccee e 117
ERXVSTR COPYbOOKooiiiiiiiiiiiiiiiecce e 117
COBINIT COPYDOOKoooiiiiiiiiiiiiiiiiiiiiiciic i 118
COBEXIT COPYDOOK ..ottt 118
11 Using Broker Logon and Logoffccccciiiiiiiiiiiiiiiiiic 119
INtroductionccoiiiiiiiiiii 120
Logging on Using Short Broker Passwords (all Interface Types) 120
Logging on Using Long Broker Passwords (z/OS with Call Interface) 123
12 Using Conversational RPCcccooiiiiiiiiiiiii 125
Call INterfacecccovveviiiiiiiiiiiecc 126
EXEC CICS LINK Interfaceccccocuviiiiiiiiiiiiiiiiiiiiiieccccc 129
13 Using IDL Unbounded Groups or Arrays without Maximumcc.cc...... 131
14 Using RPC Authentication (Natural Security, Impersonation, Integration
SBIVET) ettt ettt ettt e e e e ettt e e e e e e e bbbt e et e e e e e e e bbbt e eeeeeeeenataeeees 135
INtroductioncccoiiiiiiiiiiiiii 136
RPC Authentication Using Short RPC User ID/RPC Password (all Interface
TYPES) oo 137
RPC Authentication Using Long RPC User ID/RPC Password (z/OS with
Call INEEITACE) .uvvveeeeiiiiiee ettt e et e e s e e e e aaeeees 139
15 Using the COBOL Wrapper with Non-secure Natural RPC Server 141
Call Interfacecccocoviviiiiiiiiiiiiiic 142

EntireX COBOL Wrapper

EntireX COBOL Wrapper

EXEC CICS LINK INterfaceccccccceeviiiiiiiiiiiiiiiiiiiiiciicicciccceccee 144

16 USINg SSL/TLSocviiiiiiiiiiiiiiciccc e 145
ZJOS oo 146
ZIVSE i 148
UNIX, Windows, BS2000cccccoeiiiiiiiiiiiiiiiiiiciccecceicec e 150

17 Using Internationalization with the COBOL Wrappercccccccocveviiiiiiennnne. 151
IV Reliable RPC for COBOL WIAPPETcc.covvuiiriiiiiiiiiiiieiiecieeeee e 153
18 Reliable RPC for COBOL WIappercccccceviiiiiiiiiiiiiiiiiiiiiciiccieccic s 155
Introduction to Reliable RPCcccoooiiiiiiiiii 156
Writing @ CHENtcoooiiiiiiiiiiiii i 157
WIHNG @ SEIVET ...oviiiiiiiiiiccc e 162
Broker Configurationcccooviiiiiiiiiiiiiiiiii e, 162

V Delivered Examples for the COBOL Wrapperc.ccccoovviiiiiiiiniiiiiiccicccece 163
19 Client and Server Examples for z/OS Batchccccooviiiiiiiiniiiiiiiiiiiee 165
Basic RPC Client Examples - CALC, SQUAREcccccciviiiiiiniiiiiniin, 166
Basic RPC Server Examples - CALC, SQUAREccccoooiiiiiiiiiiiiices 168

20 Client and Server Examples for z/OS CICSccccocivviiiiiniiiiiiiiiiiiciicen, 171
Basic RPC Client Examples - CALC, SQUAREc..cccooooiiiiiiiiiiiies 172
Basic RPC Server Examples - CALC, SQUAREcccccooviiiiiiiiiiiiiiin, 176
Advanced CICS Channel Container RPC Server Exampleccoccee. 177

21 Client and Server Examples for z/OSIMS BMPcccccooviiiniiiiiiiiiiien, 179
22 Server Examples for z/OSIMS MPPccccccoviiiiiiiiiiiiiiiiiiiicicicc, 181
CALC SEIVETooiiviiiiiiiiiiiiiciic e 182
SQUARE SEIVET cvvniiiiiieeiieee ettt ettt e e e e e e st eesereeeseranes 182

23 Client and Server Examples for BS2000ccccoviiiiiiiininiiiicciccc 185
Basic RPC Client Examples - CALC, SQUAREcccocoiviiiiiiniiiiicien, 186
Basic RPC Server Examples - CALC, SQUAREcccccoeviiiiiiiiiniiiiiiinee 189

24 Client and Server Examples for IBM ic.ccooiiiiiiiiiiiiiii 191
Overview of Client and Server Examples for IBM iccccoviiiiiiniinninnnn. 192
Installing and Running the Client Examples for IBM icccocooviiiininnnns 193
Installing and Running the Server Examples for IBM iccccccoveviiiniinen. 193

25 Client and Server Examples for z/VSE Batchccccocoiviiiiiiiiin. 195
Basic RPC Client Examples - CALC, SQUAREccccoiiiiiiiiiiniiiinin, 196
Basic RPC Server Examples - CALC, SQUAREcccccevviiiiiiiiiiiiiiiiines 198

26 Client and Server Examples for z/VSE CICS ..o 201
Basic RPC CALC Examplecccociiiiiiiiiiiiiiiiiiiiiiiciicciccccce 202
Basic RPC SQUARE EXamplec..ccccoviiviiiiiiiiiiiicicccceecce 204

27 Client and Server Examples for Micro Focus (UNIX and Windows) 209
Basic RPC Client Examples - CALC, SQUAREccccccovviiiiiiiiiiiiiniin, 210
Basic RPC Server Examples - CALC, SQUAREcccoooiiiiiiiiiiiic 210

2 OO 213
28 The RPC Communication Area (Reference)ccceeeevuieeiiniiieeiiniiiecennnieeeen. 215
Copybook ERXCOMMcccciiiiiiiiiiiiiiieiiiciececcee s 216
Copybook ERXVSTRccoiiiiiiiiiiiiiiiiiiiicciccce e 219

29 Delivered Modulesc.cccoiiiiiiiiiiiiiiiiiii 221

EntireX COBOL Wrapper v

EntireX COBOL Wrapper

Delivered Modules for z/OS
Delivered Modules for z/VSE
Delivered Modules for BS2000
Delivered Modules for IBM i

vi

EntireX COBOL Wrapper

EntireX COBOL Wrapper

EntireX COBOL Wrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Introduction

Introduction to the COBOL Wrapper.

Using

Step-by-step guide on how to generate interactively and build (write, compile
and link) clients and server applications with the COBOL Wrapper.
Programming models for Micro Focus, batch, CICS and IMS COBOL RPC
applications are introduced. This section contains the following subsections:
® Using the COBOL Wrapper for the Client Side

® Using the COBOL Wrapper for the Server Side

® Generating COBOL Source Files from Software AG IDL Files

Command-line Mode

Using the COBOL Wrapper in command-line mode.

Mapping Mapping Software AG IDL data types, groups, arrays and structures to the
COBOL programming language.
Reliable RPC Introduction to reliable RPC; writing a client and a server for Reliable RPC;

Broker configuration.

RPC Communication Area

Provides reference material for the RPC Communication Area.

Delivered Modules

Describes the delivered COBOL Wrapper modules.

Vii

viii

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-

wareag.com.

EntireX COBOL Wrapper

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

About this Documentation

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

® Browse through our vast knowledge base.

" Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.
® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

EntireX COBOL Wrapper 3

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Introduction to the COBOL Wrapper

2 Introduction to the COBOL Wrapper

LB =Yoo RO PPPPPRUR 8
B GeneriC RPC ServiCes MOTUIEciieiiieiiiiii et e et e et e e e s nrneee e e 9
B COBOL Client APPlICALIONSeiuetieeeeiiet ettt e e e e e e e e e e 9
B COBOL Server APPIICALION ...ttt ettt e e e ettt e e e e e e et a e e e e e e 11
B COBOL Server INTErfac TYPESvvvviiiiiieeiiiitti it e et e e e e e e a e e e e e e 12

Introduction to the COBOL Wrapper

EntireX COBOL Wrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Description

The COBOL Wrapper provides access to RPC servers for COBOL client applications and access
to COBOL servers for any RPC client. The COBOL Wrapper generation tools of the Designer take
as input a Software AG IDL file, which describes the interface of the RPC, and generate COBOL
sources that implement the functions and data types of the interface.

Wrapper COBOL-based

GenericRPC | ¥ Clents | |
RPC Servers " Senvices F

<+ <+ podule

EntireX Broker
PR <>

RPC Clients RPC Server p COZOL-Dased |
b

The generated functions can be compiled with the COBOL compiler of your target platform.

The COBOL Wrapper works as follows:

COBOL code is generated from the Software AG IDL file.

Additionally for the client side, and depending on your target operating system and environment
(e.g. Micro Focus, batch, CICS or IMS), a generic RPC services module is generated (see below).

If required for the server side, a so-called server mapping file is created. A server mapping file
is a Designer file with extension .svm or .cvm. See Server Mapping Files for COBOL.

The Software AG IDL Compiler and an appropriate template are used for the COBOL code
generation.

8 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Generic RPC Services Module

In order to minimize the amount of code generated for a specific IDL file, all service-type function-
ality that is not specific to a given IDL file required by the client interface object is generated in a
generic RPC services module.

The generic RPC services module is used by RPC clients and contains the call to the broker stub,
as well as other functions needed for RPC communication where an interface object is not needed,
such as

® broker logon and logoff

" conversational support

® connecting RPC clients to RPC servers via the broker

" etc.

For more information, see Generation and Usage of Generic RPC Service Module COBSRVI.

COBOL Client Applications

For a given IDL file, the Software AG IDL Compiler and a COBOL code generation template for
clients are used to generate client interface objects and copybooks. See Reslults for RPC Client under
Select an IDL File and Generate RPC Client or RPC Server. The source code generated by the
COBOL Wrapper can be compiled with your target COBOL compiler. Application developers use
the generated generic RPC service module, the client interface object(s) and the copybooks to write
COBOL applications that access RPC servers.

EntireX COBOL Wrapper 9

Introduction to the COBOL Wrapper

COBOL Client

RPC

Client Wrapper
(client interface object)

Generic RPC
Services Module

For more information, see Using the COBOL Wrapper for the Client Side.

10 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

COBOL Server Application

The Software AG IDL Compiler and a COBOL code generation template for servers are used to
generate a server (skeleton) for a specific IDL. Additionally, depending on the IDL data types and
whether IDL program names are customized, a so-called server mapping file is created. A server
mapping file is a Designer file with extension .svm or .cvm. See When is a Server Mapping File Re-
quired?

Application developers use the generated server (skeleton) to write their own server code for each
program in the IDL. The source code is compiled and linked with your target COBOL compiler.
Client-side and server-side mapping files are handled differently. See Server Mapping Files for
COBOL and Using the COBOL Wrapper for the Server Side.

COBOL RPC
Server

Programmer
RPC ' > EntireX >
Client [Broker - oo

Implementation
)‘
Mapping

EntireX COBOL Wrapper "

Introduction to the COBOL Wrapper

COBOL Server Interface Types

Depending on your requirements and generation settings, the COBOL Wrapper generates a
server skeleton with one of the following interface types:

= CICS with DFHCOMMAREA Calling Convention

= CICS with Channel Container Calling Convention

= CICS with DFHCOMMAREA Large Buffer Interface

= Micro Focus with Standard Linkage Calling Convention

= Batch with Standard Linkage Calling Convention

= |MS BMP with Standard Linkage Calling Convention

= Compatibility between COBOL Interface Types and RPC Server

= Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

CICS with DFHCOMMAREA Calling Convention

CICS programs using the standard DFHCOMMAREA for parameter passing.

DFHCOMMAREA

. — - INOUT COBOL
A10)| 14 | A100000 | P5 | 14 < > Server

Technically, the generated COBOL server skeleton contains
* in the DFHCOMMAREA, the parameter structure

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

12 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

CICS with Channel Container Calling Convention

Channels and containers are IBM's approach to access more than 31 KB of data in CICS. There is
no need for coding any channel container statements because all this is generated. Thus the pro-
grammer focus can be on the application logic.

Input container

14 | A28 215 |4 >

COBOL

Output container Server

. ouT
A1U|I4|A25 |F‘5 ||4 «

Technically, the generated COBOL server skeleton contains

" container layouts in the linkage section

" EXEC CICS CONTAINER statements for accessing the container on input and output

See Server Interface Types for more information on how to create COBOL servers with this interface
type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data
in CICS. The interface is the same as the webMethods WMTLSRVR interface. This enables customers
to use an easy and simple interface type to access more than 31 KB of data in CICS.

EntireX COBOL Wrapper 13

Introduction to the COBOL Wrapper

DFHCOMMAREA
POINTER
:1::1' 4] At00000 | P5 [l m
Large buffer
Technically,

* the generated server skeleton contains in the DFHCOMMAREA layout a pointer to a large buffer
" the parameter structure in the linkage section is accessed using the COBOL SET ADDRESS state-

ment, using the large buffer pointer

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | A10| 14 |A100000 |12 |P5
: . INOUT coBaL

: 12| a15]14] 14| Aa100 |14 > > Server
Parameter n . .

14 | A100000 | P2

14 EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Technically, the generated COBOL server skeleton contains

® a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

" the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Farameter 1

Parameter2 | | A10| 14 [A100000 |12 |P5

: I : INQUT CoBOL
' 12| A15] 14| 14| A100 |14 < > Faii
Farameter n \
14 | a100000 | P2
Technically, the generated COBOL server skeleton contains
" a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

" the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

EntireX COBOL Wrapper 15

Introduction to the COBOL Wrapper

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported.

Farameter 1
A10] 14 | a100000 |12 [P5
Farameter 2
- PCB POINTER
: Tzl a1 e 4] at00 [1a

Farameter n \

14 | A100000 | P2

Technically, the generated COBOL server skeleton contains

= IMS-specific PCB pointers within a parameter list.

INOUT

COBOL

See Server Interface Types for more information on how to create COBOL servers with this interface

type.

16

EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Compatibility between COBOL Interface Types and RPC Server

To call your server program successfully, the target RPC runtime component used must support
the interface type. The table below gives an overview of possible combinations of an interface type

and RPC server.

Interface Type of your Server Program

z/0S UNIX/Windows

IBM i (BS2000| z/VSE

CiCcs

CICS
Socket
Listener

Cics
ECI

Micro

Batch [IMS Focus

Connect

IMS

AS/400| Batch |CICS|Batch

CICS with DFHCOMMAREA Calling
Convention

X

CICS with DFHCOMMAREA Large
Buffer Interface

CICS with Channel Container
Calling Convention

Batch with Standard Linkage
Calling Convention

Micro Focus with Standard
Linkage Calling Convention

IMS BMP with Standard Linkage
Calling Convention

IMS MPP Message Interface (IMS
Connect)

COBOL Converter

Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

The table below gives an overview of COBOL interface types and EntireX Adapter connection

types.

Interface Type of your Server Program

EntireX Adapter Connection Type

Note

CICS with DFHCOMMAREA Calling
Convention

CICS ECI Connection or
CICS Socket Listener Connection

CICS with DFHCOMMAREA Large Buffer

Interface

CICS Socket Listener Connection

CICS with Channel Container Calling

Convention

CICS Socket Listener Connection

Batch with Standard Linkage Calling

Convention

AS/400 Connection

To call your server program on
a platform other than IBM i, use
an RPC Connection or Direct
RPC Connection to an

EntireX COBOL Wrapper

17

Introduction to the COBOL Wrapper

Interface Type of your Server Program

EntireX Adapter Connection Type

Note

appropriate RPC Server for
Batch (z/OS | z/VSE | BS2000).

Micro Focus with Standard Linkage
Calling Convention

RPC Connection or
Direct RPC Connection

Use the RPC Server for Micro
Focus as RPC server.

IMS BMP with Standard Linkage
Calling Convention

RPC Connection or
Direct RPC Connection

Use the RPC Server for IMS as
RPC server.

IMS MPP Message Interface (IMS
Connect)

IMS Connect Connection

COBOL Converter

COBOL Converter Connection

18

EntireX COBOL Wrapper

I I Using the COBOL Wrapper

® Using the COBOL Wrapper for the Client Side
® Using the COBOL Wrapper for the Server Side
® Generating COBOL Source Files from Software AG IDL Files

19

20

3 Using the COBOL Wrapper for the Client Side

= Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
= Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)cccoovvviiiiiiiieeiiice e
= Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)ovvveiiiiiiiiiiiiiieeeciiiiieeee

= Using the COBOL Wrapper for IMS (z/OS)cccooviieeiiiinne

= Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)cvvvvveiiiiiiiiiie i

= Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

21

Using the COBOL Wrapper for the Client Side

The COBOL Wrapper provides access to RPC-based components from COBOL applications and
enables you to develop both clients and servers. This chapter introduces the various possibilities
for RPC-based client applications written in COBOL.

A step-by-step guide is provided in the section Writing Applications with the COBOL Wrapper.
Read this section first before writing your first RPC client program.

22 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

Client Application

CCCIIIBﬁL o Bl | o Ftl"'l:.:= 9 Broker
P €)1 P Interface 4P Srp > Stub
rogram Object 1 e
" Object 2
Object n

| supplied by EntireX
generated written by customer
) EXEC CICS LINK
) call interface

In this scenario, the generic RPC services module is installed only once within CICS as a CICS
program and shared by all COBOL RPC client programs. Also, the COBOL client program and
every generated client interface object are installed each as separate individual CICS programs.

Use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention in the following
situations:

You want to have an EXEC CICS LINK DFHCOMMAREA interface to your client interface ob-
ject(s).

You wish to separate the generic RPC service module and the broker stub from the client interface
object(s).

You require a program link to the client interface object(s).

You can accept the following restrictions:

The maximum COMMAREA length suits your purposes. Because the RPC communication
area is also transferred in the COMMAREA, the effective length that can be used for IDL data
is shorter than the CICS COMMAREA length. Nearly 31 KB can be used for IDL data.

No support for long broker passwords and long RPC user IDs/passwords.
No support for IDL unbounded arrays without maximum. See Mapping Fixed and Unbounded
Arrays.

Check if Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE) is an
alternative for you.

EntireX COBOL Wrapper 23

Using the COBOL Wrapper for the Client Side

~ To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1

Generate the client interface object for the target operating system, for example "z/OS", and
use interface type "CICS with DFHCOMMAREA calling convention". See Generating COBOL
Source Files from Software AG IDL Files. Check the option Generate the generic RPC service
module COBSRVI.

If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRV], to the target platform where you write your client application.

Write your COBOL client program. If this is your first COBOL client program, refer to Writing
EXEC CICS LINK Clients.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile:

" the generated client interface object(s)

= if required, the generic RPC service module COBSRVI

® your COBOL client program.

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly

by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

Using the standard linker (binder) of the target platform, link (bind) the following programs
to separate CICS programs:

" every generated client interface object

= if required, the generic RPC service module COBSRVI together with a broker stub

® your COBOL client program.

Install every client interface object, if required the CICS RPC service module COBSRVI and
your COBOL client program as separate CICS programs.

Make sure the correct broker stub is used and can be called dynamically by the CICS generic
RPC service module COBSRVI.

= z/OS
See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX105.LOAD. See also Administering Broker
Stubs.

= z/VSE
See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX960.

24

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

Client Applicatiun

cosoL = ©

Client
Client }4 P Interface -1|— > s::fn B"’"‘“
Program Object 1 .

Dbject 2
Oh]ect n

| supplied by EntireX
generated wiritten by customer

€ call interface

The COBOL Wrapper can be used with a call interface, even in CICS. This means you can build
a client application where every generated client interface object, the generic RPC services module
and the broker stub are linked together or called dynamically by the COBOL client program,
similar to the batch scenario. See Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and
IBM i).

Using a call interface within CICS may be useful if

* the maximum COMMAREA length for IDL data (about 31 KB) and other restrictions prevent
you from using the Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE) scenario

* you do not require a distributed program link (CICS DPL) to your client interface object(s)

® you prefer a call interface instead of EXEC CICS LINK to your client interface objects.
For platform z/OS this scenario supports the following:

® Long broker passwords. See Using Broker Logon and Logoff.

® Long RPC user IDs/passwords. See Using RPC Authentication (Natural Security, Impersonation,
Integration Server).

* IDL unbounded groups or arrays without maximum mapped to COBOL's 0CCURS 1 TO
UNBOUNDED DEPENDING ON.

~ To use the COBOL Wrapper with a call interface within CICS

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use the interface type "CICS with standard calling convention". See Generating COBOL Source

EntireX COBOL Wrapper 25

Using the COBOL Wrapper for the Client Side

Files from Software AG IDL Files. Check the option Generate the generic RPC service
module COBSRVI.

2 Ifnecessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRV], to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer to Writing
Standard Call Interface Clients.

4 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile:

" the generated client interface object(s)
* if required, the generic RPC service module COBSRVI
® your COBOL client program

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly
by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

5 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to the client application (that is, a CICS
program), using the standard linker (binder) of the target platform.

6 Install the client application within CICS.

7 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.

= z/0S
See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX105.LOAD. See also Administering Broker
Stubs.

= z/VSE
See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX960.

26 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for Batch (z/0OS, BS2000, z/VSE and IBM i)

This mode applies to z/OS, BS2000, z/VSE and IBM i.

Client Application

CCCIIIB:tL o client | @ RPC 0 Broker
= > Interface WP ool g
Program Object 1 Module

Object 2
Object n

| supplied by EntireX
generated wiritten by customer

€ call interface

In this scenario, every generated client interface object, the generic RPC services module and the
broker stub are linked together or called dynamically by the COBOL client program.

For platform z/OS this scenario supports the following:

® Long broker passwords. See Using Broker Logon and Logoff.

® Long RPC user IDs/passwords. See Using RPC Authentication (Natural Security, Impersonation,
Integration Server).

* IDL unbounded groups or arrays without maximum mapped to COBOL's 0CCURS 1 TO
UNBOUNDED DEPENDING ON.

> To use the COBOL Wrapper for batch

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use interface type "Batch with standard linkage calling convention". See Generating COBOL
Source Files from Software AG IDL Files. Check the option Generate the generic RPC service
module COBSRVI.

2 Ifnecessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRV], to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer to Writing
Standard Call Interface Clients.

4 Using a COBOL compiler supported by COBOL Wrapper, compile:

* the generated client interface object(s)

* if required, the generic RPC service module COBSRVI

EntireX COBOL Wrapper 27

Using the COBOL Wrapper for the Client Side

® your COBOL client program

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly
by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

= BS2000
The IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
See BS2000 Prerequisites for more information on supported compilers.

" IBMi

® Use the command CRTCBLMOD (create COBOL module) and compile all modules above
to ILE modules.

= Use the IBM i compiler command with the options shown below:

CRTCBLMOD
OPTIONC*NOMONOPRC) EXTDSOPT(*NODFRWRT) LINKLIT(*PRC)

= Other Platforms
Use the standard COBOL compiler of the target platform.

Using the standard linker (binder) of the target platform, link (bind) the following programs:

* the generated client interface object(s)
* if required, the generic RPC service module COBSRVI
= if required, the broker stub

® your COBOL client program
Depending on the platform:

= IBMi
Use the IBM i command CRTPGM to bind all compiled modules to an executable ILE program
of type *PGM.
To link the main program, use the following create program command with the options
shown:

CRTPGM
MODULE(*LIB/myapplication mystubl mystub2 ..)
BNDSRVPGM(EXX/EXA) ...

where EXX is the EntireX product library and EXA the broker stub.

28

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

= Other Platforms
Refer to your standard linker (binder) documentation.

6 Make sure that the correct broker stub module is used and, if linked (bound) dynamically,
that it can be called dynamically.

= z/0OS
See the broker installation documentation and use a broker stub for batch (for example
BROKER) from the common load library EXX105.LOAD. See also Administering Broker Stubs.

= z/VSE
See the broker installation documentation and use a broker stub for batch (for example
BKIMB), see sublibrary EXX960.

= BS2000
The broker stub module BROKER is located in the broker LMS load library.

= IBMi
The broker stub EXA is located by default in the EntireX product library EXX.

EntireX COBOL Wrapper 29

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IMS (z/0S)

This mode applies to z/OS IMS modes BMP and MPP.

Client Application

CCCIIIB:tL o client | @ RPC 0 Broker
= > Interface WP ool g
Program Object 1 Module

Object 2
Object n

| supplied by EntireX
generated wiritten by customer

€ call interface

In this scenario, every generated client interface object, the generic RPC services module and the
broker stub are linked together or called dynamically by the COBOL client program.

For platform z/OS this scenario supports the following:

® Long broker passwords. See Using Broker Logon and Logoff.

® Long RPC user IDs/passwords. See Using RPC Authentication (Natural Security, Impersonation,
Integration Server).

® IDL unbounded groups or arrays without maximum mapped to COBOL's 0CCURS 1 TO
UNBOUNDED DEPENDING ON.

> To use the COBOL Wrapper for IMS

1 Generate the client interface object(s) for the target operating system "z/OS" and use the inter-
face type "IMS BMP with standard linkage calling convention" or "IMS MMP with standard
linkage calling convention". See Generating COBOL Source Files from Software AG IDL Files.
Check the option Generate the generic RPC service module COBSRVI. .

2 Ifnecessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRV], to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer to Writing
Standard Call Interface Clients.

4 Using a COBOL compiler supported by the COBOL Wrapper, compile:

* the generated client interface object(s)

* if required, the generic RPC service module COBSRVI

30 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

® your COBOL client program.

Take care the generated copybooks (see Using the Generated Copybooks) are accessed correctly
by the compiler and not confused with the client interface objects, because the copybooks and
client interface objects have identical file names. Do not assign the data set with the client in-
terface objects prior in sequence to the copybooks to SYSLIB. See your compiler documentation.

5 Link (bind) all compiled modules and, if required, the broker stub, together to an executable
program, using the standard linker (binder) of the target platform.

6 Make sure the correct broker stub is used and can be called dynamically. In the common load
library EXX105.LOAD you can find broker stubs that can be used for

® IMS BMP (for example BROKER)
= IMS MPP (for example MPPETB)

See Administering Broker Stubs.

EntireX COBOL Wrapper 31

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)

This mode applies to z/OS.

Client Application

CCCIIIB:tL o client | @ RPC 0 Broker
= > Interface WP ool g
Program Object 1 Module

Object 2
Object n

| supplied by EntireX
generated wiritten by customer

€ call interface

The COBOL Wrapper can be used with a call interface in IDMS/DC. This means you can build an
application where the COBOL client program, every generated client interface object, the generic

RPC services module and the broker stub are linked together, similar to the batch scenario. See
Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM 1).

~ To use the COBOL Wrapper with a call interface within IDMS/DC

1 Generate the client interface object(s) for the target operating system "z/OS", and use the in-
terface type "IDMS/DC with standard calling convention". See Generating COBOL Source
Files from Software AG IDL Files. Check the option Generate the generic RPC service
module COBSRVI.

2 Ifnecessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRV], to the target platform where you write your client application.

3 Write your COBOL client program. See Writing Applications with the COBOL Wrapper, in
particular the section The RPC Communication Area (Reference), and take into consideration
the information given in Software AG IDL to COBOL Mapping.

4 Write your COBOL client program. If this is your first COBOL client program, refer to Writing
Standard Call Interface Clients.

5 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to an IDMS/DC program, using the
standard linker (binder) of the target platform.

6 Install the IDMS/DC program within IDMS/DC.

7 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.

32 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

See the broker installation documentation and use a broker stub for IDMS/DC (for example
IDMSETB) from the common load library EXX105.LOAD. See also Administering Broker Stubs.

EntireX COBOL Wrapper 33

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows.

Client Application

CCCIIIB:tL d client | © RPC Broker
Prog: }‘ > Interface 4Pl gorvice > Stub
rogram Object 1 s
" Object 2
Object n
1. supplied by EntireX
genE’ated wiitten by customer

€ call interface

In this scenario, the COBOL client program, every generated client interface object, generic RPC
services module and the broker stub are linked together to the client application.

> To use the COBOL Wrapper for Micro Focus

1 Generate the client interface object(s) for the target operating system, for example "Windows",
and use interface type "Micro Focus with standard linkage calling convention". See Generating
COBOL Source Files from Software AG IDL Files. Check the option Generic the RPC service
module COBSRVI.

2 Ifnecessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRV], to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer to Writing
Standard Call Interface Clients.

4 Compile and link (bind) all modules together to an executable program:

* the generated client interface object(s)
* if required, the generic RPC service module COBSRVI
® your COBOL client program

For target operating system Windows (i.e. the modules are generated for Windows):

* No additional compiler directives and linker options are required.

5 Make sure the broker stub module can be called dynamically.

34 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

= UNIX
The broker stub shared library or object libbroker.so sl is accessible according to the rules
of the UNIX system used, e.g. the directory of the library is defined in the LD_LIBRARY_PATH
environment variable.;

* Windows
The broker stub DLL broker.dll is accessible, for example with the PATH environment variable.

EntireX COBOL Wrapper 35

36

4 Using the COBOL Wrapper for the Server Side

= Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
= Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)coocvveeeinne..
= Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
= Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)ooviriiiiiiiiiiiieee e

= Using the COBOL Wrapper for IMS BMP (z/OS)c.......

= Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

37

Using the COBOL Wrapper for the Server Side

The COBOL Wrapper provides access to RPC-based components from COBOL applications and
enables you to develop both clients and servers. This chapter introduces the various possibilities
for RPC-based server applications written in COBOL.

38 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE. See also COBOL Scenarios under in the RPC Server for CICS
documentation.

for CICS

A
EXEC CICS LINK Interface

‘ RPC Server

Target operating system
and interface type (*)

A J
COBOL
Server " M
Fragr;__ry 1 < COBOL Wrapper
“Program 2 Generate RPC Server
lm L generated :
. generated if required
- hJ
_ Server
supplied by EntireX Mapping
File

written/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK.

Use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention if
" you want to have a standard EXEC CICS LINK DFHCOMMAREA interface to your server

" you require a distributed program link (CICS DPL) to your server

* the DFHCOMMAREA length restriction (31 KB) suits your needs, otherwise consider the fol-
lowing interface types:

® Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)

® Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

EntireX COBOL Wrapper 39

Using the COBOL Wrapper for the Server Side

~ To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1

Generate the server (skeleton) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA calling convention". See Generating COBOL
Source Files from Software AG IDL Files.

If a server mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for CICS (z/OS, z/VSE, CICS ECI) sections of the document-
ation, except for CICS ECI connections with the webMethods EntireX Adapter for Integration
Server, where you need to update your Adapter connection. See Step 3: Create or Update an
Adapter Connection in the Integration Server Wrapper documentation.

" Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireX Adapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping and Returning Application
Errors in the RPC Server for CICS documentation.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file. See program-definition under Software AG IDL Grammar in the IDL Editor
documentation.

Provide your server(s) to the RPC Server for CICS, EntireX Adapter, or RPC Server for CICS
ECI:

* Install your server(s) as separate CICS program(s).

* If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionand 1ibrary-definitionunder Software AG IDL Grammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try

40

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

to locate logically the server mapping file EXAMPLECALC and execute the program with the
COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

= If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

® If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

*® If you are using the RPC Server for CICS, before using your server(s), check if you need to
alter

= CICS settings - for example TWASIZE; see CICS Settings in the z/OS or z/VSE RPC Server
documentation

* for z/OS additionally IBM LE Runtime Options - for example AMODE?24, how to trap
ABENDS etc.

EntireX COBOL Wrapper 41

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with Channel Container Calling Conven-
tion (z/0S)

This section covers the following topics:

= |ntroduction

= CICS Channel Container IDL Rules

= Restrictions

Example 1: Same Container for Direction In and Out

Example 2: Different Container for Direction In and Out
Example 3: Multiple Containers

Example 4: Variable Number of Containers (Direction Out Only)
= Steps

Introduction

This mode applies to z/OS. See also COBOL Scenarios in the RPC Server for CICS documentation.

for CICS

‘ RPC Server
A

Target operating system

EXEC CICS LINK Interface and interface type (*)

L
CDED J v
"“”9"""“ - COBOL Wrapper
- Frngramz Generate RPC Server
] - 4 generated :
g generated if required
: v
i Server
| supplied by Entirex Mapping
File

written/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK passing the container(s) in the defined channel to your
server. See Channel Name.

42 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Use the COBOL Wrapper for CICS with channel container calling convention if

you require more than 31 KB of data to transfer to your server

your IDL complies with CICS channel container IDL rules (see below). If your IDL does not
match these rules, consider the interface type Using the COBOL Wrapper for CICS with
DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE) to implement your server.

you want to have a standard CICS channel container interface to your server

you require a distributed program link (CICS DPL) to your server.

CICS Channel Container IDL Rules

The following rules apply to CICS channel container IDL:

A container is described with an IDL structure. See structure-definition under Software AG
IDL Grammar in the IDL Editor documentation.

The container name is the name of the IDL structure. A maximum of 16 characters are allowed
by CICS for container names.

IDL programs reference IDL structures only. No other parameters may be referenced.
Multiple containers can be defined, see Example 3: Multiple Containers.

A variable number of containers can be defined using one-dimensional IDL unbounded arrays
with maximum (see array-definition under Software AG IDL Grammar in the IDL Editor doc-
umentation). See also Example 4: Variable Number of Containers (Direction Out Only).

Restrictions

IDL unbounded arrays (i.e. variable containers) for direction In and INOUT are not supported.

Two and three-dimensional IDL unbounded arrays are not supported.

Example 1: Same Container for Direction In and Out

This example uses the same container for input and output. The container name is "CALC".

Library 'EXAMPLE' Is

Program 'CONCALC' TIs

Define Data Parameter

1 Container ('CALC") InOut
End-Define

Struct 'CALC' Is
Define Data Parameter

1 Operation (A1)
1 Operand_1 (14)
1 Operand_2 (I4)

EntireX COBOL Wrapper 43

Using the COBOL Wrapper for the Server Side

1 Function_Result (I4)
End-Define

Example 2: Different Container for Direction In and Out

This example uses separate containers for input and output.

Library 'DFHCON" Is

Program 'TWOC"' Is /* Two Container - Separate for Input and Output

Define Data Parameter
1 ContainerlIn ("CONTAINERLI') In
1 ContainerOut ('CONTAINERZ"') Qut
End-Define
Struct '"CONTAINER1' Is
Define Data Parameter
1 Just-0Occupied-Space (A39000) /* 39K
1 Request (A1000/5) /* 5K
End-Define
Struct '"CONTAINERZ2' Is
Define Data Parameter
1 Just-0Occupied-Space (A49000) /* 49K
1 Reply (A250)
End-Define

See IDL program TWOC under Advanced CICS Channel Container RPC Server Example.

Example 3: Multiple Containers

This example shows how more than one container is used per direction. Each container has its

own structure layout.

Library 'DFHCON" Is
Program 'MULTIC' Is
Define Data Parameter

1 InContainerl ("INCONTAINERL")
1 InContainer?2 ("INCONTAINER2")
1 InContainer3 ("INCONTAINER3")

1 OutContainerl ("OUTCONTAINERL")
1 OutContainer? ("OUTCONTAINER2")
1 OutContainer3 ('"OUTCONTAINER3")

End-Define

Struct "INCONTAINERL' Is

Struct "INCONTAINERZ2' Is
Struct "INCONTAINER3' Is

In
In
In

Out
Out
Out

44

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Struct 'OUTCONTAINERI' Is ...
Struct "OUTCONTAINERI" Is ...
Struct "OUTCONTAINERI" Is ...

Example 4: Variable Number of Containers (Direction Out Only)

This example shows how to specify a range of containers. At runtime, the called RPC server creates
a variable number of containers from this range. Each container created has the same structure
layout and a container name that is formed from the structure name as prefix and the structure
index as suffix. In this example:

® MULTIPLE container names are MULTIPLEOOQO1 thru MULTIPLE9999.
® OPTIONAL container name is OPTIONALL.

Note: Make sure IDL observes the 16-character length restriction for container names given
by CICS.

Library 'DFHCON" Is
Program 'VARC' Is
Define Data Parameter

1 Input ("INPUT") In

1 Multiple ('"MULTIPLE'/V9999) Out /* 0 thru 9999 times
1 Optional ('OPTIONAL"/V1) Qut /* 0 or 1 times
End-Define

Struct "INPUT' Is ...
Struct 'MULTIPLE' Is ...
Struct 'OPTIONAL' Is ...

Steps

~ To use the COBOL Wrapper for CICS with channel container calling convention

1 Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with channel container calling convention". See Generating COBOL
Source Files from Software AG IDL Files.

2 The generated server mapping file has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for CICS documentation.

" Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-

EntireX COBOL Wrapper 45

Using the COBOL Wrapper for the Server Side

ation) and re-generate the client interface objects. For the EntireX Adapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping and Returning Application
Errors in the RPC Server for CICS documentation.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

Provide your server(s) to the RPC Server for CICS.

* Install your server(s) as separate CICS program(s).

= If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionand 1ibrary-definitionunder Software AG IDL Grammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the
COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

= If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

= If you are using the RPC Server for CICS, before using your server(s), check if you need to
alter

" CICS settings - for example TWASIZE - before using your server(s); see CICS Settings under
Administering the RPC Server for CICS

= IBM LE Runtime Options - for example AMODE24, how to trap ABENDS etc.

46

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Inter-
face (z/OS and z/VSE)

This mode applies to z/OS and z/VSE. See also COBOL Scenarios under in the RPC Server for CICS
documentation.

RPC Server
for CICS
A DFHCOMMAREA Interface with Target operating system
Pointer to Large Buffer (WMTLSRVR) and interface type (*)
¥
COBOL
Server [; 4
Program 1 < COBOL WI‘IPIIIH'
| Program 2 Generate RPC Server
- generated :
Program n
generated if required
h
supplied by EntireX Msa‘::':ﬁ':-g
File

writlen/generated by customer

O See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In CICS, the RPC server sets up all your server's parameters dynamically in the format required.
Your server is called by EXEC CICS LINK. Within the DFHCOMMAREA, pointers are passed to a
large input/output buffer.

Use the COBOL Wrapper for CICS with DFHCOMMAREA large buffer interface in the following
situations:

" You need to migrate COBOL programs implemented with webMethods WMTLSRVR interface
to the RPC Server for CICS.

® You require more than 31 KB of data to transfer to your server.

® You cannot use the channel container calling convention because your IDL does not match the
applicable rules; see CICS Channel Container IDL Rules under Using the COBOL Wrapper for
CICS with Channel Container Calling Convention (z/OS). There are no IDL restrictions for this
interface type - every IDL can be used.

EntireX COBOL Wrapper 47

Using the COBOL Wrapper for the Server Side

" You prefer this interface type rather than the channel container interface type.

" You do not require a distributed program link (CICS DPL) to your server.

~ To use the COBOL Wrapper for CICS with large buffer interface

1

Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA large buffer interface". See Generating COBOL
Source Files from Software AG IDL Files.

The generated server mapping file has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for CICS (z/OS, z/VSE) sections of the documentation.

= Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireX Adapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping and Returning Application
Errors in the RPC Server for CICS documentation.

Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOL Wrapper, translate and compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

Provide your server(s) to the RPC Server for CICS.

* Install your server(s) as separate CICS program(s).

= If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionand 1ibrary-definitionunder Software AG IDL Grammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the

48

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

= If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

= If you are using the RPC Server for CICS, before using your server(s), check if you need to
alter

= CICS settings - for example TWASIZE; see CICS Settings in the z/OS or z/VSE RPC Server
documentation

= for z/OS additionally IBM LE Runtime Options - for example AMODE?24, how to trap
ABENDS etc.

EntireX COBOL Wrapper 49

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for Batch (z/0S, BS2000, z/VSE and IBM i)

This mode applies to z/OS, BS2000, z/VSE and IBM i. See also COBOL Scenarios in the RPC Server

for Batch documentation.

RPC Server
for Batch

A
Call Interface

A

Server
Program 1 "
" Program 2
" Programn

COBOL "

supplied by EntiraX

written/generated by customer

Target operating system
and interface type (*)

hd

COBOL Wrapper
Generate RPC Server

generated if required
h

generated

Server

Mapping
File

O See Target Operating System and Server Interface Types under Generating COBOL Source Files

from Software AG IDL Files.

In batch mode, the RPC server sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces.

Use the COBOL Wrapper for batch to build servers for the RPC Server for Batch.

~ To use the COBOL Wrapper for batch

1 Generate a server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "Batch with standard linkage calling convention". See Generating COBOL
Source Files from Software AG IDL Files for details.

2 Ifaserver mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the respective RPC server documentation.

50

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

= Client-side mapping files (.cvim): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireX Adapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 Ifnecessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.
= z/0OS
See Returning Application Errors in the RPC Server for Batch documentation.

= IBMi
Consider multithreading issues:

" Your server has to be implemented as an ILE COBOL program of type *PGM.

® The RPC server is running in a multithreaded environment. Therefore your server must
be thread-safe. This implies that all commands and subprograms accessed in your servers
must allow multithreads.

" Please note that some COBOL statements do not support multithreads. Using statements
that are not thread-safe (e.g. STOP RUN) can result in the RPC server ending abnormally.
Therefore the server programs have to be terminated with a thread-safe statement, for
example EXIT PROGRAM. For details, see the IBM documentation Language Restrictions
under THREAD and Preparing ILE COBOL Programs for Multithreading.

5 Use a COBOL compiler supported by the COBOL Wrapper to compile your server.

® BS2000

® The IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
See BS2000 Prerequisites for more information on supported compilers.

® Compile them as OM or LLM modules.
= IBMi
= Use the IBM i command CRTCBLMOD (create bound COBOL module).

" As an alternative, you can compile and bind in one step, see the next step below.

EntireX COBOL Wrapper 51

Using the COBOL Wrapper for the Server Side

= Other Platforms
Use the standard COBOL compiler of the target platform.

6 Link (bind) your server to an executable program. Give the resulting server program the same
name as the program-name in the IDL file. See program-definition under Software AG IDL
Grammayr in the IDL Editor documentation.

= BS2000
There is no need to link the server modules with the BS2000 Common Runtime Environment
(CRTE). The CRTE is included in the server's BLSLIB chain and loaded dynamically. If this
is needed for any reason, the CRTE must be linked as a subsystem. All entries must be
hidden to prevent duplicates. Linking the CRTE statically will consume resources and slow
down the load time of the server modules.

= IBMi
® Bind it as a dynamically callable program of type *PGM using the command CRTPGM.

" As an alternative to compiling with CRTCBLMOD (see step above) and binding with CRTPGM
separately, you can compile and bind in one step with the command CRTBNDCBL.

® When linking/binding servers, the CRTPGM parameter ACTGRP (*CALLER) must be spe-
cified. This guarantees that the server application runs in the same activation group as
the calling RPC server.

® Other Platforms
Use the standard linker (binder) of the target platform.

7 Provide your server to the RPC Server for Batch.

= IBMi

= Put the server into a library whose name corresponds to the library name in the IDL file
(see 1ibrary-definitionunder Software AG IDL Grammar in the IDL Editor documenta-
tion).

* If you put the server program into a library other than the library name given in the IDL
(e.g. MyLib), you must tell this to the RPC server, using the server parameter
Library=Fix(MyLib).In this case, the library name sent with the client request is ignored.

Example: If a client performs an RPC request that is based on the IDL program name
CALC in the IDL library EXAMPLE, the remote RPC server will dynamically try to execute
the ILE program CALC in the IBM i library EXAMPLE. If no corresponding program can
be found, the access will fail.

= Other Platforms
= Add the server to the RPC Server for Batch STEPLIB chain.

" If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See

52 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

program-definitionand 1ibrary-definition under Software AG IDL Grammar in the
IDL Editor documentation. Example: If a client performs an RPC request that is based
on the IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynam-
ically try to locate logically the server mapping file EXAMPLECALC and execute the program
with the COBOL name defined in the server mapping. See Customize Automatically
Generated Server Names. If no corresponding program can be found, the access will fail.

= If you are using a client-side mapping file, the server mapping is taken from the RPC re-
quest and the program with the COBOL name defined in the server mapping, is executed.
See Customize Automatically Generated Server Names. If no corresponding program
can be found, the access will fail.

* Ifneither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar
in the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name
CALC, the RPC server will dynamically try to execute a program CALC. If no correspond-
ing program can be found, the access will fail.

EntireX COBOL Wrapper 53

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for IMS BMP (z/0S)

This mode applies to z/OS IMS mode BMP. See also COBOL Scenarios in the RPC Server for IMS
documentation.

RPC Server < PCB
for IMS Pointers
A Call Interface Target operating system
with PCB pointer and interface type (*)
v
COBOL
Server [; h J use
bl < COBOL Wrapper PSB
[Program 2 Generate RPC Server List
- generated :
Program n
generated if required
v
4 pce 4 pce
Pointer Pointer Server
Mapping
File
IS M5
DB OB ‘ supplied by Entirex

wriltanfgenarated by customer

OSee Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In IMS BMP, the RPC Server for IMS sets up all of your server's parameters dynamically in the
format required. Your server is called dynamically using standard call interfaces. IMS-specific
PCB pointers can be provided as parameters in the linkage section.

Use the COBOL Wrapper for IMS BMP if you need to

" access IMS BMP programs with standard linkage calling convention

" access IMS databases through IMS PCB pointers and to pass them via parameters in the linkage
section

= access the IMS PCB pointer IOPCB, for example to print data or to start an asynchronous
transaction

® use the COBOL/ DLI interface module “CBLTDLI” which requires PCB pointers in its interface.
If PCB pointers have to be provided as parameters in the COBOL linkage section of your server,

your IDL must comply with the IMS PCB Pointer IDL rules listed below. If no PCB pointers are
required, the rules can be skipped.

54 EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

IMS PCB Pointer IDL Rules

® An IMS PSB list contains the PCB pointers of your environment:

® The IMS PSB list is a text file and can be created with any text editor.

® Only one PCB pointer is listed per line.

® The PCB pointer 10PCB is always the first pointer in the IMS PSB list.

® The PCB pointers (except I0PCB) match the related PSB generation for your server.

® The PCB pointers listed match the PCB pointers provided at runtime to the RPC Server for
IMS (including I0PCB) in number and sequence.

® The IMS PSB list is assigned in the IDL properties, see Generating COBOL Source Files from
Software AG IDL Files or IDL Generation Settings - Preferences. Example:

I0PCB
DBPCB

® PCB pointers are described in the IDL as parameters. Thus they can be accessed in your server
as any other parameter. Additionally, the following is required:

® IDL parameters that are PCB pointers are marked with the attribute IMS (see attribute-11ist
under Software AG IDL Grammar in the IDL Editor documentation).

® IDL parameters that are PCB pointers must match a PCB pointer listed in the IMS PSB list,
otherwise the RPC Server for IMS does not pass them as PCB pointers at runtime. This results

in unexpected behavior. Example:

Library "IMSDB' Is
Program ' IMSDB' Is
Define Data Parameter

1 IN-COMMAND (A3)
1 T0-DATA
2 10-LAST-NAME (A10)
2 TI0-FIRST-NAME (A10)
2 TO-EXTENSION (A10)
2 10-ZIP-CODE (A07)
1 DBPCB
2 DBNAME (A8)
2 SEG-LEVEL-NO (A2)
2 DBSTATUS (A2)
2 FILLERI1 (A20)
1 OUT-MESSAGE (A40)
End-Define

IN /* ADD, DEL, DIS
IN OUT

IN IMS /* this is a PCB pointer

ouT

EntireX COBOL Wrapper

95

Using the COBOL Wrapper for the Server Side

~ To use the COBOL Wrapper for IMS BMP

1

Generate the server (skeleton(s)) for the target operating system “z/OS”, use interface type
“IMS BMP with standard linkage calling convention”. If PCB pointers should be provided as
COBOL linkage section parameters for your server, set the IMS PSB list; otherwise omit the
IMS PSB list. See Generating COBOL Source Files from Software AG IDL Files.

If a server mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for IMS documentation.

® Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireX Adapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

If necessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

Use the generated server (skeleton(s)) and complete it by applying your application logic.
You can use the IMS-specific PCB pointers in your server as usual. Note the information given
in Software AG IDL to COBOL Mapping and Returning Application Errors in the RPC Server
for IMS documentation.

Using a COBOL compiler supported by the COBOL Wrapper, compile your server.

Link (bind) the server to an executable program, using the standard linker (binder) of the
target program.

® Give the resulting server program the same name as the program in the IDL file (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation).

Provide the server to the RPC Server for IMS.

= Add the server to the RPC Server for IMS STEPLIB chain.

® If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionand 1ibrary-definitionunder Software AG IDL Grammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the

56

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

EntireX COBOL Wrapper 57

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows. See also Scenarios and Programmer Information in the

RPC Server for Micro Focus documentation.

RPC Server
for Micro Focus

A
Call Interface

A

Server
Program 1 "
" Program 2
" Programn

COBOL "

supplied by EntireX

written/generated by customer

Target operating system
and interface type (*)

hd

COBOL Wrapper
Generate RPC Server

1
generated if required
hJ

generated

Server

Mapping
File

O See Target Operating System and Server Interface Types under Generating COBOL Source Files

from Software AG IDL Files.

The RPC Server for Micro Focus sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces.

Use the COBOL Wrapper for Micro Focus to build servers for the RPC Server for Micro Focus.

~ To use the COBOL Wrapper for Micro Focus

1 Generate a server (skeleton(s)) for the target operating system, for example "Windows", and
use interface type "Micro Focus with standard linkage calling convention". See Generating
COBOL Source Files from Software AG IDL Files for details.

2 Ifaserver mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

= Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for Micro Focus documentation.

58

EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

= Client-side mapping files (.cvim): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireX Adapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 Ifnecessary, use FTP to transfer the server (skeleton(s)) to the target platform where you write
your server.

4 Import the modules into your Micro Focus IDE.

5 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

6 Compile and - if the format requires it - link (bind) and package your server(s) to one of the
following formats:

® Micro Focus intermediate code (int) or generated code (gnt). These formats can also be
packaged into a Micro Focus library file (Ibr). In this case the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the library file name. The 1ibrary-name
(Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file is ignored and not used.

® Under Windows to a DLL, and under UNIX to a shared library (so/sl). The 1ibrary-name
(Tibrary-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the executables file name, and the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match an entry point.

7 Provide your server to the RPC Server for Micro Focus.

® Make sure your server(s) are accessible by the RPC Server for Micro Focus:
* under UNIX, for example with the LD_LIBRARY_PATH environment variable
* under Windows, for example with the PATH environment variable.

*® If you are using a server-side mapping file, a concatenation of the program-name and the
Tibrary-name given in the IDL is used to locate the server mapping file. See
program-definitionand 1ibrary-definitionunder Software AG IDL Grammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the
COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

EntireX COBOL Wrapper 59

Using the COBOL Wrapper for the Server Side

= If you are using a client-side mapping file, the server mapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

* If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see 1ibrary-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name CALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

60

EntireX COBOL Wrapper

5 Generating COBOL Source Files from Software AG IDL Files

= Select an IDL File and Generate
= Generation Settings - Properties

RPC Client 0r RPC SEIVET ...,

B Generation Settings - PrEfErENCEScooiiiiiiiit e

61

Generating COBOL Source Files from Software AG IDL Files

This chapter describes how to generate COBOL source files from Software AG IDL files.

Select an IDL File and Generate RPC Client or RPC Server

From the context menu, choose COBOL > Generate RPC Client and Generate RPC Server to
generate the COBOL source files.

4 =% Demo
%] .project
|ﬁ| example.idl

U L s

Mew
Open
Open With

Copy
Paste

Delete
Move...

Rename...

Import...
Export...

Refresh

Yalidate

Show in Remote Systems view
Profile As

Debug As

Run As

Replace With

COBOL
Integration Server
Matural

Web Service
Other

Refactor Software AG IDL...
Software AG IDL Tester...

Generate RPC Client
Generate RPC Server
Modify Interface
Extract further Interface

Deploy/Synchronize Server Mapping...

J Note: In command-line mode, use command -cobol:client or -cobol:server. See Using
the COBOL Wrapper in Command-line Mode. Note that existing files will always be over-

written.

Results for RPC client:

62

EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

® The folders client and include are created as subfolders to the IDL-specific Output Folder defined
in the Generation Settings - Properties.

® The client folder contains the following:
* client interface objects

" optionally the generic RPC service module, which is only generated if the option Generate
Generic RPC Service Module COBSRVI is set, see Generation and Usage of Generic RPC
Service Module COBSRVI.

® The include folder contains the following:
* the associated copybooks
* the RPC communication area copybook ERXCOMM
" optionally its extension copybook ERXVSTR
* optionally the copybooks COBINIT and COBEXIT

For further information on the usage of copybooks generated in this folder, see Using the Gen-
erated Copybooks.

Results for RPC server:

= If you are using client-side mapping files, the following dialog is displayed.

COBOL Wrapper ﬁ

F h Generating the COBOL server caused changes that require you to re-generate existing
' RPC clients manually from your IDL file,

e

You need to rebuild all RPC clients communicating with this RPC server program. Select the
appropriate wrapper (see EntireX Wrappers in the Designer documentation) and re-generate the
client interface objects. For the EntireX Adapter you need to update your generated IS adapter
as described under To update an existing connection in Step 3: Create or Update an Adapter Connection
in the Integration Server Wrapper documentation.

® If you are using server-side mapping files, a dialog like below (with slight variations per interface
type) is displayed:

EntireX COBOL Wrapper 63

Generating COBOL Source Files from Software AG IDL Files

r COBOL Wrapper 4 l El &1

At least one generated COBOL server program requires a server mapping.

Server-side mapping file successfully saved in the same directory as the [DL file.
Using server-side mapping file
Forthe webMethods EntireX Adapter and usage with the Integration Server wrapper, it must stay in the same directory as the IDL file,
Forthe EntireX CICS ECI RPC server, it must be copied into the folder specified by 'cics.mapping.folder'.
= Forthe EntireX CICS RPC server, it has to be deployed.

¥|5ynchronize with senver-side mapping container now!

The generated server-side mapping file need to be synchronized with the server-side mapping
container of the target RPC server. For EntireX Adapter they are wrapped into the generated In-
tegration Server adapter - the same as client-side mapping files, see Integration Server Wrapper.

® Check the option Synchronize with server-side mapping container now for the following
RPC servers:

z/OS (CICS, Batch, IMS) | Micro Focus | BS2000 | z/VSE (CICS, Batch).

This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the Designer
documentation. If you are using the Server Mapping Deployment Wizard for first time with
no predefined deployment environment preferences, continue with Step 2a: Create a New De-
ployment Environment in the Designer documentation. If deployment environments are already
defined, you may also continue with Step 3: Select and Existing Deployment Environment and
Deploy.

® Uncheck the option Synchronize with server-side mapping container now.
* For EntireX Adapter

You need to update your generated IS adapter as described under To update an existing

connection in section Step 3: Create or Update an Adapter Connection in the Integration Server
Wrapper documentation.

® For CICS ECI and IMS Connect RPC servers
Continue as described under Deploying Server-side Mapping Files to the Wrapper (CICS ECI |
IMS Connect).

* For later synchronization of the RPC servers
See Deploying Server-side Mapping Files in the respective RPC server documentation

® The folder server is created as a subfolder to the IDL-specific Output Folder defined in the
Generation Settings - Properties. It contains the RPC server skeletons.

@ Caution: Take care not to overwrite an existing RPC server implementation with an RPC

server skeleton. We recommend moving your RPC server implementation to a different
folder.

64 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

® If required, a server mapping file is generated, too. See When is a Server Mapping File Required?

in the Designer documentation. The server mapping file is of type client-side (extension .cvm)
or server-side (.svm). See How to Set the Type of Server Mapping Files.

~ To quit the COBOL Wrapper and deploy the server-side mapping file

2

Check the option Synchronize with server-side mapping container now and choose OK.
This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the Designer
documentation.

= If you are using the Server Mapping Deployment Wizard for first time with no predefined
deployment environment preferences, continue with Step 2a: Create a New Deployment En-
vironment in the Designer documentation.

= If deployment environments are already defined, you may also continue with Step 3: Select
and Existing Deployment Environment and Deploy.

Continue with Using the COBOL Wrapper for the Server Side.

~ To quit the COBOL Wrapper without deploying the server-side mapping file

1

Clear the option Synchronize with server-side mapping container now and choose OK.

® Synchronize the server-side mapping container of the target RPC server later. See Deploying
Server-side Mapping Files in the respective RPC server documentation.

® For the webMethods EntireX Adapter for Integration Server and IMS Connect or CICS ECI
connections, update your Adapter connection. See Step 3: Create or Update an Adapter Con-
nection in the Integration Server Wrapper documentation.

Continue with Using the COBOL Wrapper for the Server Side.

EntireX COBOL Wrapper 65

Generating COBOL Source Files from Software AG IDL Files

Generation Settings - Properties

= |ntroduction

= Target Operating System

= Characters Used for String Literals

= |DL-specific Output Folder

= Client Interface Types

= Customize Automatically Generated Client Names

= Starting COBOL Level for Data Items in Generated Copybooks
= RPC Communication Area

= Generation and Usage of Generic RPC Service Module COBSRVI
= Customize Automatically Generated Server Names

= Server Interface Types

= |[MS PSB List

= Channel Name

Introduction

Whenever a new IDL file is created, defaults for the properties are copied from the preferences.
See Generation Settings - Preferences. To set individual properties per IDL file for COBOL
Wrapper generation, use the Properties wizard of the IDL file. The Target Operating System and
the Interface Type are essential. They determine if other parameters such as RPC Communication
Area provided by can be set or have to remain fixed. The parameter IDL-specific Output defines
the location to store the source file subfolders. Target Operating System determines whether file
extensions are generated or not.

66 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

S Properties for example.id] = @
type filter text EntireX COBOL Wrapper - v
R
EES.D:;E The COBOL properties are used to generate COBOL client or server code from the
ntir selected IDL file. The default settings are taken from the COBOL preferences,
EntireX .NET Wrapper
EntireX C Wrapper Target Operating System: [L’OS v]
EntireX COBOL Wrapper Client
EntireX Custom Wrapper : = :
EntireX DCOM Wrapper Interface Type: [CICS with DFHCOMMAREA calling convention v]
EntireX Java Wrapper RPC Communication Area provided by
EntireX PL/T Wrapper (@ Linkage Section External Clause Copybook
EntireX Web Service Wrapper
Run/Debug Settings Customize automatically generated Client Names...
Starting COBOL Level for Data Items in Generated Copybooks: 3
[7] Generate Generic RPC Service Module COBSRVI
Server
Interface Type: | CICS with DFHCOMMAREA calling convention -
Browse...
Customize autematically generated Server Names...
Character used for string literals
@ Quote () Apostrophe
IDL-Specific Qutput Folder
JCOBOL-Wrapper
’Restore Qefaultsl ’ Apply]
@j ’ oK] ’ Cancel]

In the following, we give a detailed description of the properties that need to be set for each type
of generation:
® For client and server generation:
® Target Operating System
® Characters Used for String Literals
® IDL-specific Output Folder
* For client generation only:
® Client Interface Types
® Customize Automatically Generated Client Names
® Starting COBOL Level for Data Items in Generated Copybooks

® RPC Communication Area

EntireX COBOL Wrapper 67

Generating COBOL Source Files from Software AG IDL Files

® Generation and Usage of Generic RPC Service Module COBSRVI
* For server generation only:

® Server Interface Types

® Customize Automatically Generated Server Names

® IMS PSB List

® Channel Name
Target Operating System

Select the target operating system for which COBOL code is to be generated. See Platform Coverage
for a full list of supported operating system versions.

Value Description

z/OS IBM z/OS operating system.
z/VSE IBM z/VSE operating system.

BS2000 |Fujitsu Siemens BS2000 operating system.

IBM i IBM i operating system.

Windows |Microsoft Windows operating system.

UNIX UNIX operating system.

Characters Used for String Literals

With this option you can specify how string literals are specified in the generated COBOL code.
See your COBOL compiler documentation for information on how string literals are enclosed.

Value Description

Quote String literals will be enclosed in double quotes in the generated COBOL code.

Apostrophe|String literals will be enclosed in apostrophes (single quotes) in the generated COBOL code.

IDL-specific Output Folder

This field specifies the folder where the COBOL files will be stored, by default in the same folder
as the IDL file. For a non-default location, enter another folder name or choose Browse....

68 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Client Interface Types

Target Operating
Interface Type System More Information Notes
CICS with DFHCOMMAREA z/OS, z/VSE Follow the steps under Using the COBOL 1
Calling Convention Wrapper for CICS with DFHCOMMAREA Calling
Convention (z/OS and z/VSE).
CICS with Standard Linkage z/OS, z/VSE Follow the steps under Using the COBOL 2
Calling Convention Wrapper for CICS with Call Interfaces (z/OS
and z/VSE).
Batch with Standard Linkage z/OS, z/VSE, Follow the steps under Using the COBOL 2
Calling Convention BS2000, IBM i Wrapper for Batch (z/OS, BS2000, z/VSE and
IBM i).
IMS BMP with Standard Linkage |z/OS Follow the steps under Using the COBOL |2
Calling Convention Wrapper for IMS (z/OS).
IMS MPP with Standard Linkage |z/OS Follow the steps under Using the COBOL |2
Calling Convention Wrapper for IMS (z/OS).
IDMS/DC with Standard Linkage |z/OS Follow the steps under Using the COBOL |2
Calling Convention Wrapper for IDMS/DC with Call Interfaces
(z/0S).
Micro Focus with Standard Linkage |[UNIX, Windows |Follow the steps under Using the COBOL |2
Calling Convention Wrapper for Micro Focus (UNIX and
Windows).
| Notes:

1. Use this option if you want to build a CICS RPC client application that calls the client interface
object(s) and the generic RPC module COBSRVI with a DFHCOMMAREA interface.

2. Use this option if you want to build an RPC client application that calls the client interface ob-
ject(s) and the generic RPC module COBSRVI with a standard linkage interface.

Customize Automatically Generated Client Names

If you open the link Customize automatically generated Client Names on the Properties page
you can adapt the names for the COBOL client interface objects (subprograms). When you call the
page the first time, COBOL names are suggested based on the IDL program (program-definition
under Software AG IDL Grammar in the IDL Editor documentation) or IDL program alias names.
The page varies, depending on whether the target COBOL environment supports long COBOL
names or not:

= 7/OS and z/VSE
= [BMi
= UNIX and Windows with Micro Focus

EntireX COBOL Wrapper 69

Generating COBOL Source Files from Software AG IDL Files

= BS2000
z/0S and z/VSE

Max. 8 characters (short names) are supported as COBOL names:

2 COBOL Client Names - S ——— [
Customize COBOL Client Names Used for IDL Library EXAMFLE

On this page you can adapt the names to be used for COBOL Client sources,
Adapt Mames used for COBOL Clients:

IDL Program Client name

@PSquareWithLongName m

4P CalcWithLongName CALC

Total: 2
@:l oK] [Cancel]

] Note: If your IDL file contains more than one IDL library, the additional column IDL Library
is displayed.

IBM i
Customization of client names for IBM i is the same as for z/OS and z/VSE. See z/OS and z/VSE.
UNIX and Windows with Micro Focus

Max. 31 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

70 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

@ COBOL Client Naric [

Customize COBOL Client Names Used for IDL Library EXAMFLE
On this page you can adapt the names to be used for COBOL Client sources,

Adapt Marmes used for COBOL Clients:

IDL Program Client name
4" SquareWithLongName SquareWithLongMame
@pCaIcWithLDngName CalcWithLongMame

Total: 2
Micro Focus COBOL supports names with a maximum length of 31 characters.
[T Restrict the length of names to 8 upper case characters
@:l Ok] [Cancel

J Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

2. With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

BS2000

Max. 30 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

EntireX COBOL Wrapper 71

Generating COBOL Source Files from Software AG IDL Files

= COBOL Client Names |

Customize COBOL Client Names Used for IDL Library EXAMFLE
On this page you can adapt the names to be used for COBOL Client sources,

Adapt Marmes used for COBOL Clients:

IDL Program Client name
47 SquareWithLengMName SquareWithLongMame
@PCaIcWithLDngName CalcWithLongMName
Total: 2
B52000 COBOL supports names with a maximum length of 30 characters.
[] Restrict the length of names to & upper case characters
@:‘ Ok] [Cancel

L

J Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

2. With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

Starting COBOL Level for Data Items in Generated Copybooks

With this option you can specify the starting COBOL level used in the generated copybooks for
COBOL data items.

See Using the Generated Copybooks for syntax examples.

Specify a valid COBOL level in the range 1-49. The COBOL programming language maximum of
49 subtracted by the specified level must provide enough levels to hold all IDL levels. Note that
IDL types may consume more than one COBOL level, for example:

® IDL unbounded groups require a COBOL level for every dimension. If they are defined on IDL
level 1, an extra COBOL level is required

® IDL unbounded arrays require a COBOL level for every dimension plus one extra COBOL level

" some basic (scalar) IDL data types need extra COBOL levels

J Notes:

72 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

1. Do not specify a level too deep because you may exceed the COBOL programming language
maximum of 49 and the generated copybook cannot be compiled.

2. For compatibility with Client and Server Examples for z/OS CICS, the level must be 3 or above.

3. For compatibility with all other delivered examples, the level must be 2 or above.

RPC Communication Area

The RPC communication area copybook ERXCOMM and its extension ERXVSTR are used to specify

parameters that are needed to communicate with the broker and are not specific to client interface
objects. These are for example the broker ID, client parameters such as userID and password and
the server address such as class/servername/service etc.

Value

Description

Notes

External
Clause

This kind of RPC communication area usage applies to the scenarios CICS | Batch |
IMS | Micro Focus. The RPC communication area copybooks are defined in the
working storage section as COBOL data items with the EXTERNAL clause in the
RPC client application. They are passed with the EXTERNAL clause to and the
generated client interface object(s).

Linkage
Section

This kind of RPC communication area usage applies to the scenarios CICS | Batch |
IMS | Micro Focus. The RPC communication area copybooks are defined in the
working storage section as COBOL data items. They are passed via additional
parameter between your RPC client application and the generated client interface
object(s).

Copybook

This kind of RPC communication area usage is available in the z/OS operating
system and Micro Focus environments. Refer to the scenarios CICS | Batch | IMS |
Micro Focus. The RPC communication area copybooks are provided inside the
generated client interface object(s). It is not visible in the RPC client application -
it is local to the client interface objects. Default values are retrieved from Designer
preferences or IDL-specific properties and can be overwritten in the copybook
COBINIT (see folder include).

] Notes:

1. The client interface objects are statically linked to the RPC client. It is not possible to call them

dynamically.

2. The client interface objects can be statically linked or called dynamically. For IBM compilers,
refer to documentation on the DYNAM compiler option; for other compilers, to your compiler
documentation.

EntireX COBOL Wrapper

73

Generating COBOL Source Files from Software AG IDL Files

Generation and Usage of Generic RPC Service Module COBSRVI

The generic RPC service module COBSRVI can be optionally generated in the folder client in the
container folder. It acts as a runtime for RPC communication. See Generic RPC Services Module
under Introduction to the COBOL Wrapper. The module depends on target environment (CICS,
Batch...), client interface type (see Client Interface Types) and operating system (z/OS, z/VSE...).
Use this option to control the generation of this module.

Handling depends on the interface type:

® CICS with DFHCOMMAREA calling convention
For this interface type, the generic RPC service module is installed once within CICS as a CICS
program and shared by all RPC clients using this interface type. Details and the architecture of
this scenario are described under Using the COBOL Wrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

Check this option if you want to install or replace the installed generic RPC service module in
CICS with the version generated by the COBOL Wrapper. This makes sense in the following
situations:

® You have not installed the RPC examples on z/OS, because installation of this module is
part of Installing RPC Examples.

" You need an update of the generic RPC service module because of a newer COBOL Wrapper
version, for example an Eclipse update without mainframe update. For compile job and
CICS CSD definitions see Delivered Modules for z/OS | z/VSE.

Clear this option if you have already installed the generic RPC service module in CICS (already
installed RPC examples for z/OS or previous COBOL Wrapper project) and do not want to
re-install it in CICS. This prevents the generation of the generic RPC service module.

= All other calling conventions

The preferred approach is to check this option. This will generate the generic RPC service
module. The generated module is part of your client application. Its usage is described under
Using the COBOL Wrapper with a Call Interface (CICS | Batch | IMS | Micro Focus).

Clear this option if you can reuse the generic RPC service module from a previous COBOL
Wrapper project. This will prevent the generation of the generic RPC service module. It is
important that Target Operating System, Client Interface Types and Characters Used for
String Literals are the same.

74

EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Customize Automatically Generated Server Names

If you open the link Customize automatically generated Server Names on the properties page
you can, adapt the names for the COBOL server (subprograms). When you call the page the first
time, COBOL names are suggested based on the IDL program (program-definitionunder Software
AG IDL Grammar in the IDL Editor documentation) or IDL program alias names. For further details
on customizing names for the server side, see the platform-specific section under Customize Auto-
matically Generated Client Names; the information here also applies to server names:

® 2/0OS and z/VSE
® UNIX and Windows with Micro Focus
= BS2000

] Notes:

1. Customization of server names is not supported under IBM i.

2. If the server names (automatically generated or customized) differ from the IDL program names,
a server mapping file is required. A server mapping file is a Designer file with extension .svm
or .cvm. It is generated during generation of RPC server and has to be used in subsequent steps.
See Server Mapping Files for COBOL and Using the COBOL Wrapper for the Server Side.

Server Interface Types

Target Operating

Interface Type System Description

CICS with z/OS, z/VSE Use this option if you want to build a CICS RPC server
DFHCOMMAREA calling application with a DFHCOMMAREA interface. Follow the
convention steps under Using the COBOL Wrapper for CICS with

DFHCOMMAREA Calling Convention (z/OS and z/VSE).

CICS with Channel z/OS Use this option if you want to build a CICS RPC server
Container calling convention application with a channel container interface. To specify a

channel name, see Channel Name. Follow the steps under
Using the COBOL Wrapper for CICS with Channel Container
Calling Convention (z/OS).

CICS with z/OS, z/VSE Use this option if you want to build a CICS RPC server
DFHCOMMAREA large application with a large buffer interface. Follow the steps
buffer interface under Using the COBOL Wrapper for CICS with

DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE).
Batch with standard linkage |z/OS, z/VSE, |Use this option if you want to build an application for an RPC

calling convention BS2000, IBM i |server for Batch. Follow the steps under Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

IMS BMP with standard z/OS Use this option if you want to build an IMS RPC server

linkage calling convention application for IMS BMP mode (no MPP) with standard call

interfaces. If your server uses PCB pointers, see IMS PSB List

EntireX COBOL Wrapper 75

Generating COBOL Source Files from Software AG IDL Files

Target Operating
Interface Type System Description
below. Follow the steps under Using the COBOL Wrapper
for IMS BMP (z/0S).
Micro Focus with standard |UNIX, Use this option if you want to build an RPC server application
linkage calling convention |Windows for Micro Focus with standard linkage interface(s). Follow
the steps under Using the COBOL Wrapper for Micro Focus
(UNIX and Windows).

IMS PSB List

IMS PSB List applies to the server interface type “IMS BMP with standard linkage calling conven-
tion” only. If your server uses PCB pointers and requires that they are passed through the linkage
section, an IMS PSB list is required. Your IDL must comply with the rules under IMS PCB Pointer
IDL Rules. If no PCB pointers are required, omit the IMS PSB list. See Server Interface Types for
more information.

Channel Name

Channel Name applies to the server interface type "CICS with Channel Container calling conven-
tion" only.

If a channel name is specified, the server is

*® called with the given channel name

= generated with COBOL code to check for channel name validity.
If no channel name is specified, the server is

= called with the "EntireXChannel" channel name

® generated without COBOL code to check for channel name validity.

Your IDL must comply with the rules described under CICS Channel Container IDL Rules. See
Server Interface Types for more information.

76 EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Generation Settings - Preferences

Use the Preferences page of the COBOL Wrapper to set the workspace defaults for the target op-

erating system, interface types etc. The settings (except Type of COBOL mapping) are used as

the defaults for the IDL properties when a new IDL file is created; see Generation Settings -
Properties.

S Preferences e — LI—I—JEI X
type filter text COBOL Wrapper Ko v
“ S?&.;«:::ceDifeloper i The COB.O.L prefererjces are default values for COBOL properties of the [DL file. Preferences can be pvemritten by
APL-Portal IDL-specific properties; subsequent changes to preferences have no effect on COBOL code generation,
. Business Services Target Operating Systerm: lz.."OS v]
» Code Generation Client
» Construct Interface Type: [CICS with DFHCOMMAREA calling convention v]
Document Expansio . .
4 EntireX Starting COBOL Level for Data Items in Generated Copybooks: 3
4 COBOL RPC Communication Area provided by
COBOL Wrap (@ Linkage Section External Clause Copybook
Deployment . .
IDL Extractor [] Generate Generic RPC Service Module COBSRVI
Integration Serve Server
> Matural Interface Type: | CICS with DFHCOMMAREA calling convention hd
. PLA 3
> Web Services
> Wrappers Browse...
External Tools o
. Character used for string literals
Integration Servers -)
. Natural — @ Quote () Apostrophe
Predict Description :
Request Document See "COBOL' for setting type of COBOL mapping.
> Service Developmen
Testing i
- .%’"'""” . [Restore Defaults] [Apply]
(?:' [oK l [Cancel]

Use the Preferences > COBOL to set the workspace defaults for the COBOL mapping type. IDL
Extractor for COBOL and COBOL Wrapper use this setting.

EntireX COBOL Wrapper 7

Generating COBOL Source Files from Software AG IDL Files

& Preferences l (=] &J

type filter text COBOL - * v

4 Software AG -
Ajax Developer

See 'COBOL Wrapper' for settings to generate COBOL code for client or server.
See 'Deployment Environments' to manage deployment environments.
See DL Extractor for COBOL' for settings to extract IDL files from COBOL sources.

. Business Services

» Code Generation
- Construct
Document Expansio Type of COBOL mapping
4 EntireX = i@ Client-side Mapping () Server-side Mapping
- | COBOL
Integration Servel
> Matural
- PLAI

» Web Services

- Wrappers -

| F—r— - [Restore Qefaults] [Apply]

':?3' @:l [oK] [Cancel]

Every Designer (Eclipse) workspace is either in client-side mapping mode (generating Designer
server mapping files with extension .cvm) or server-side mapping mode (generating Designer
server mapping files with extension .svm). See Server Mapping Files for COBOL for an introduction.
The following rules apply:

" Server mapping files are generated automatically for RPC servers if required. See When is a
Server Mapping File Required? for the COBOL Wrapper in the Software AG Designer documentation.

" Server mapping files are not generated for RPC clients.

For a description of all other preferences, see Generation Settings - Properties.

78 EntireX COBOL Wrapper

6 Using the COBOL Wrapper in Command-line Mode

= Command-line Options
= Example Generating an RPC Client
= Example Generating an RPC Server
= Further Examplesccccccveeeeennns

79

Using the COBOL Wrapper in Command-line Mode

Commands are available to generate a COBOL RPC client or COBOL RPC server from a specified
IDL file.

See also Command-line Mode under Server Mapping Deployment Wizard in the Designer documentation.

Command-line Options

= Generate a COBOL RPC Client from IDL File
= Generate a COBOL RPC Server from IDL File

See Using EntireX in the Designer Command-line Mode for the general command-line syntax.
Generate a COBOL RPC Client from IDL File

To generate a COBOL RPC client from the specified IDL file, use the following command with
options in table below:

-cobol:client

Option Description

-comm The RPC communication area. Valid values: EXTERNAL, LINKAGE, COPYBOOK. See RPC
Communication Area for more information.

EXTERNAL External Clause
LINKAGE Linkage Section
COPYBOOK Copybook

For possible combinations with -target and -interface option, see below.

-folder Folder where the COBOL files will be stored.
-help Display this usage message.
-interface Interface type, either DFHCOMMAREA or LINKAGE.

For possible combinations with -target and - comm option, see below.

-literal Enclose string literals in quotes or apostrophes. Valid values: QUOTE, APOST. See
Characters Used for String Literals for more information.

-target Target operating system and environment, one of BATCH_Z0S, BATCH_VSE,
BATCH_BS2000, BATCH_I50S, CICS_Z0S, CICS_VSE, IMS_MPP, IMS_BMP, IDMS_Z0S,
MICROFOCUS_WINDOWS or MICROFOCUS_UNIX. See Client Interface Types for more
information. For possible combinations with the -interface and - comm option.

-target -interface -comm Usage for
CICS_Z0S DFHCOMMAREA LINKAGE CICS with
DFHCOMMAREA

80 EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Option

Description

-target

-interface

-comm

Usage for

calling convention
for z/OS.

LINKAGE

LINKAGE

EXTERNAL

COPYBOOK CICS with standard

linkage calling
convention for z/OS.

CICS_VSE

DFHCOMMAREA

LINKAGE

CICS with
DFHCOMMAREA

calling convention
for z/VSE.

LINKAGE

LINKAGE

EXTERNAL

CICS with standard
linkage calling

convention for
z/VSE.

BATCH_VSE

LINKAGE

LINKAGE

EXTERNAL

Batch with standard
linkage calling
convention for
z/VSE.

BATCH_BS2000

LINKAGE

LINKAGE

EXTERNAL

Batch with standard
linkage calling
convention for
BS2000.

BATCH_I50S

LINKAGE

LINKAGE

EXTERNAL

Batch with standard
linkage calling
convention for IBM i.

BATCH_Z0S

LINKAGE

LINKAGE

EXTERNAL

COPYBOOK Batch with standard

linkage calling
convention for z/OS.

IMS_BMP

LINKAGE

LINKAGE

EXTERNAL

COPYBOOK IMS BMP with

standard linkage
calling convention
for z/OS.

IMS_MPP

LINKAGE

LINKAGE

EXTERNAL

COPYBOOK IMS MPP with

standard linkage
calling convention
for z/OS.

IDMS_Z0S

LINKAGE

LINKAGE

EXTERNAL

COPYBOOK IDMS/DC with

standard linkage
calling convention
for z/OS.

MICROFOCUS_
WINDOWS

LINKAGE

LINKAGE

EXTERNAL

COPYBOOK Micro Focus with

standard calling

EntireX COBOL Wrapper

81

Using the COBOL Wrapper in Command-line Mode

Option Description

-target -interface -comm Usage for
convention for
Windows.

MICROFOCUS_ |LINKAGE LINKAGE EXTERNAL COPYBOOK Micro Focus with

UNIX standard calling
convention for
various UNIX
operating systems.

-copybooklevel |Define the beginning level for COBOL data items in generated copybooks, see Starting

COBOL Level for Data Items in Generated Copybooks. Valid values: 1-49.

-rpcservice Option to generate the generic RPC service module COBSRVLI. See Generation and Usage

of Generic RPC Service Module COBSRVI. Valid values:
TRUE - Generate generic RPC service module.
FALSE - Do not generate the generic RPC service module.

Generate a COBOL RPC Server from IDL File

To generate a COBOL RPC server from the specified IDL file, use the following command with
options in table below:

-cobol:server

Option Description
-channel |A CICS channel name can be provided for the interface type 'CICS with Channel Container
calling convention'. See Using the COBOL Wrapper for CICS with Channel Container Calling
Convention (z/0S). See also Channel Name.
-folder Folder where the COBOL files will be stored.
-help Display this usage message.
-interface|Interface type, one of DFHCOMMAREA, DFHLBUFFER, DFHCHANNEL or LINKAGE. See table below
for possible combinations.
-literal |Enclose string literals in quotes or apostrophes. See Characters Used for String Literals.
-target Target operating system and environment. For possible combinations with option
-interface, see below and also Server Interface Types.
-target -interface Usage for
CICS_7Z0S DFHCOMMAREA CICS with DFHCOMMAREA calling convention for
z/OS.
DFHLBUFFER CICS with DFHCOMMAREA large buffer interface
for z/OS.
DFHCHANNEL CICS with Channel Container calling convention for
z/OS.
82 EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Option Description

-target -interface Usage for

CICS_VSE DFHCOMMAREA CICS with DFHCOMMAREA calling convention for
z/VSE.

DFHLBUFFER CICS with DFHCOMMAREA large buffer interface
for z/VSE.

BATCH_VSE LINKAGE Batch with standard linkage calling convention for
z/VSE.

BATCH_BS2000 LINKAGE Batch with standard linkage calling convention for
BS2000.

BATCH_I50S LINKAGE Batch with standard linkage calling convention for
IBM i.

BATCH_Z0S LINKAGE Batch with standard linkage calling convention for
z/OS.

IMS_BMP LINKAGE IMS BMP with standard linkage calling convention
for z/OS. This target may require a PSBLIST. See
below.

MICROFOCUS_WINDOWS|LINKAGE Micro Focus with standard linkage calling
convention for Windows.

MICROFOCUS_UNIX LINKAGE Micro Focus with standard linkage calling
convention for various UNIX operating systems.

-psblist |AnIMS PSB list containing IMS PCB pointers can be provided for the server interface type
IMS BMP with standard linkage calling convention. See Using the COBOL Wrapper for IMS
BMP (z/0S) for scenarios on PCB pointer usage. See also IMS PSB List.

Example Generating an RPC Client

<workbench> -cobol:client /Demo/example.idl -target CICS_ZO0S

where <workbench> is a placeholder for the actual EntireX design-time starter as described under
Using EntireX in the Designer Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file inside the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

If you do not specify a folder (option - folder), the generated COBOL source files (client interface
objects and the client declarations) will be stored in parallel to the IDL file, in the generated sub-
folders client and include, e.g. Demo/client and Demo/include.

EntireX COBOL Wrapper 83

Using the COBOL Wrapper in Command-line Mode

Example Generating an RPC Server

<workbench> -cobol:server /Demo/example.idl -target CICS_Z0S

where <workbench> is a placeholder for the actual EntireX design-time starter as described under
Using EntireX in the Designer Command-line Mode.

The generated COBOL source files (server (skeletons))

* will be stored in parallel to the IDL file, in the generated subfolder server, e.g. Demo/server.

* will overwrite existing files from a previous command-line mode generation.

@ Caution: Take care not to overwrite an existing server implementation with a server

skeleton. We recommend you to move your server implementation to a different folder.

Further Examples

Windows
Example 1

<workbench> -cobol:client C:\Temp\example.idl -folder src -target CICS_Z0S

Uses the IDL file C:\ Temp \example.idl and generates the COBOL source files to the subfolder src
of the IDL file. Slashes and backslashes are permitted in the file name. Output to standard output:

Using workspace file:\C:\myWorkspace\.

Run COBOL client wrapper with C:/Temp/example.idl and target CICS_ZO0S.
Processing IDL file C:/Temp/example.idl

Store COBOL Source (1/2): C:\Temp\src/include/CALC

Store COBOL Source (2/2): C:\Temp\src/client/CALC

Exit value: 0

84 EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Example 2

{workbench> -cobol:client C:\Temp*idl -folder C:\Temp\src -target CICS_ZOS
Generates COBOL source files for all IDL files in C:\ Temnp.

Example 3

<workbench> -cobol:client /Demo/example.idl -target CICS_Z0S

Uses the IDL file /Demo/example.idl and generates the COBOL source files in parallel to the IDL
file, here to the project /Demo.

Example 4
<workbench> -cobol:client -help
or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

Linux
Example 1

<workbench> -cobol:client /Demo/example.idl -folder src -target CICS_Z0S

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demol/example.idl is used from file system. The generated output will be stored in
/Demolsrc, the subfolder of /Demo.

Example 2

<workbench> -cobol:client /Demo/*.idl -folder src -target CICS_Z0S

Generates COBOL client interface objects for all IDL files in project Demo (or in folder /Demo if the
project does not exist). The generated files are in /Demol/src.

EntireX COBOL Wrapper 85

Using the COBOL Wrapper in Command-line Mode

Example 3

<workbench> -cobol:client -help

or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

86 EntireX COBOL Wrapper

7 Software AG IDL to COBOL Mapping

Mapping IDL Data Types t0 COBOL Data TYPESccoiiiviiiiiiieeeeee ettt
Mapping Library Name and Alias
Mapping Program Name and Alias
Mapping Parameter Names
Mapping Fixed and Unbounded Arrays
Mapping Groups and Periodic Groups
Mapping Structuresccccoeevvvvvveeennn.

= Mapping the Direction Attributes In, OuUt, INOULoiiiiii e

= Mapping the ALIGNED Attribute

= Calling Servers as Procedures or Functions

87

Software AG IDL to COBOL Mapping

This chapter describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the COBOL programming language. Please note also the remarks and hints on the
IDL data types valid for all language bindings found under Software AG IDL File in the IDL Editor

documentation.

Mapping IDL Data Types to COBOL Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

® The metasymbols "[" and "]" enclose optional lexical entities.

® The informal term number (or in some cases numberl.number?)is a sequence of numeric characters,

for example 123.

Software AG IDL Description COBOL Data Type Note
Anumber Alphanumeric [PIC X(number)
AV Alphanumeric |not supported
variable length
AVLnumber] Alphanumeric [PIC X(number) 14
variable length
with maximum
length
Bnumber Binary PIC XCnumber) 12
BV Binary variable |not supported
length
BV[number] Binary variable |PIC X(number) 12,14
length with
maximum length
D Date PIC 9(8)
F4 Floating point [USAGE COMP-1 4
(small)
F8 Floating point [USAGE COMP-2 4
(large)
I1 Integer (small) |PIC S9(2) COMP-5 10
PIC X 9,13
12 Integer PIC S9(4) COMP-5 10
(medium) PIC S9(4) BINARY 11,13
14 Integer (large) |PIC S9(9) COMP-5 10
PIC S9(9) BINARY 11,13
Knumber Kanji PIC G(number/2) DISPLAY-1 5
88 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Software AG IDL Description COBOL Data Type Note
KV Kanji variable |not supported
length
KVLnumber] Kanji variable |PIC G(number/2 DISPLAY-1) 5,14
length with
maximum length
L Logical PIC X 6,7
Nnumberll .number2] |Unpacked PIC S9(numberl) [V(number?)] 2
decimal
NUnumberlI[.numberZ2]|Unpacked PIC 9Cnumberl) [V(numberZ)] 2
decimal
unsigned
PnumberIl.number?2] |Packed decimal |PIC S9(numberl) [V(numberZ2)] PACKED-DECIMAL|2
PUnumberlI[.numberZ]|Packed decimal |PIC 9(numberl) [V(numberZ2)] PACKED-DECIMAL |2
unsigned
T Time PIC 9(15) 3
Unumber Unicode PIC NCnumber) NATIONAL
uv Unicode variable |not supported
length
UVnumber Unicode variable |[PIC N(number) NATIONAL 8,14
length with
maximum length

See also the hints and restrictions under Software AG IDL File in the IDL Editor documentation
valid for all language bindings.

Notes:

1. The date corresponds to the format PIC 9(8). The value contained has the form YYYYMMDD. This
form corresponds to COBOL DATE functions. This is an IBM extension of COBOLS5 standard.

2. For COBOL, the total number of digits (numberI+number?) is lower than the maximum of 99
that EntireX supports. See IDL Data Types. It varies by operating system and COBOL compiler.
To enable more total number of digits than 18, a compiler directive (option) may be required.

= 7z/0S

The total number of digits (numberi+number?) is restricted to 31 digits. The compiler option
AR(E) is generated into the client interface objects and server skeletons if more than 18 digits
are defined in the IDL.

®" Micro Focus

The total number of digits (numberI+number?) is restricted to 38 digits. The compiler option
INTLEVEL"4" is generated into the client interface objects and server skeletons if more than
18 digits are defined in the IDL.

EntireX COBOL Wrapper

89

Software AG IDL to COBOL Mapping

* BS2000
The total number of digits (numberil+number?) is restricted to 31 digits.

= z/VSE
The total number of digits (numberI+number?) is restricted to 18 digits.

® Other Operating Systems or Compilers
Refer to your COBOL compiler documentation to see whether compiler directives or options
exist.

If you connect two endpoints, the total number of digits used must be lower or equal than the
maxima of both endpoints. For the supported total number of digits for endpoints, see the notes
under data types N, NU, P and PU in section Mapping Software AG IDL Data Types in the respect-
ive Wrapper or language-specific documentation.

3. The time corresponds to the format PIC 9(15). The value contained has the form
YYYYMMDDHHIISST. This form corresponds to COBOL DATE/TIME functions.

4. When floating-point data types are used, rounding errors can occur, so that the values of senders
and receivers might differ slightly.

5. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes). IDL data type K is not supported under BS2000 because Fujitsu Siemens compilers do
not support DBCS.

6. To inspect the Boolean value of a data item of IDL type Logical, you can specify PIC X followed
by condition names (similar code is generated for scalar logical IDL types):

level-number data-name PIC X.

88 data-name-false value X'00"'.
88 data-name-true value X'01' thru X'FF'.
=" IBM i

The SYMBOLIC CHARACTERS clause in the SPECIAL-NAMES paragraph is not supported. The
following COBOL statements demonstrate how you can define alternatively a character,
named HEX- 00, with a value of hexadecimal zero to be used for comparison:

WORKING-STORAGE SECTION.

01 HEX-00-B PIC 9(4) BINARY VALUE O.
01 HEX-00-H REDEFINES HEX-00-B.

02 FILLER PIC X.

02 HEX-00 PIC X.

7. To set the Boolean value of a Logical data item, specify the following hexadecimal values in a
one-byte data field (e.g. defined as PIC X.):

® Case False: Move X'00' to data-name.
® Case True: Move X'01' to data-name.

8. The length is given in Unicode code units following the Unicode standard UTE-16.

90 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

® z/OS and IBM Compiler
Unicode requires the IBM Enterprise compiler.

Unicode is represented in UTF-16 big-endian format (CCSID 1200).

® BS2000
Unicode requires a compiler that supports COBOL data type NATIONAL. See BS2000 Pre-
requisites.

Unicode is represented in UTF-16 big-endian format.

® Micro Focus (UNIX and Windows)
Set the compiler directive NSYMBOL"NATIONAL".

For clients, Unicode can be represented in UTF-16 big-endian format (compiler directive
UNICODE(PORTABLE)) or machine-dependent endianness UTF-16 big or little endian (compiler
directive UNICODE (NATIVE)).

For servers, Unicode can be represented in UTF-16 machine-dependent endianness (big or
little endian) format only. UNICODE (PORTABLE) is not upported.

® Other Operating Systems or Compilers
Refer to your COBOL compiler documentation.

9. COBOL for operating systems z/OS, z/VSE, BS2000 and IBM i does not have a corresponding
data type for a compatible I1 mapping. The mapping to COBOL PIC X data type should be seen
asa FILLER variable. If including an I1 data type into the interface is required, it is your respons-
ibility as application developer to process the content of this parameter provided (during receive)
and expected (during send) correctly. Negative values are given as the two's complement binary
number.

10. Supported for Micro Focus COBOL for operating systems UNIX and Windows only.

11. The value range for COBOL data type BINARY on z/OS, z/VSE, BS2000 and IBM i depends on
the COBOL compiler settings:

® With COBOL 85 standard, the mapped COBOL data type BINARY is more restrictive than the
IDL data types 12 and 14. See IDL Data Types. This means that COBOL RPC clients cannot
send (and COBOL RPC servers cannot return) the full value range defined by the IDL types
I2 and I4. On the other hand, COBOL RPC clients and COBOL RPC servers may receive a
value range (from a non-COBOL RPC partner) outside of the value range of your COBOL
data type.

= Without COBOL 85 standard, the value range of the COBOL data type BINARY depends on
the binary field size, thus matches the IDL data type exactly. In this case, there are no restriction
regarding value ranges.

® To match the value range of IDL type I2 and 14 exactly, depending on the operating system,
the following compiler directive (option) is generated into the client interface objects and
server skeletons:

EntireX COBOL Wrapper 91

Software AG IDL to COBOL Mapping

* z/OS and z/VSE
the IBM compiler option TRUNC(BIN)

® Other Operating Systems or Compilers
refer to your COBOL compiler documentation to see whether compiler directives or options
exist.

12 COBOL does not have a corresponding data type for a compatible B/BV mapping. Thus the
mapping is to COBOL PIC X data type. EntireX RPC transports the (binary) data as it is: no
character conversion will be performed.

13. Supported for operating systems z/OS, z/VSE, BS2000 and IBM i only.

14 With variable length fields with maximum (AVn, BVn, KVn and UVn), connecting COBOL to
endpoints with a concept of real string types - such as Java, .NET, C, XML, Web services etc. -
is straightforward. The transfer of data in the RPC data stream depends on the actual length of
the data and not the field size, as seen in COBOL. For the COBOL side, the actual content length
of such fields is determined using a trim mechanism. For AV, all trailing SPACEs are ignored
before send. After receive, the content is padded with trailing SPACEs up to the COBOL field
size. For BVn, HEX ZERO is used instead of SPACE; for UV n, Unicode code point U+0020. See also
the notes under IDL Data Types in the IDL Editor documentation. If your application relies on
trailing SPACEs, HEX ZEROs or Unicode code points U+0020, you cannot use a mapping to variable
length fields with maximum (AVn, BVn, KVn and UVn); Use a mapping to fixed length types
instead: An, Bn, Knand Un.

Mapping Library Name and Alias

Client Side

The IDL library name as specified in the IDL file (there is no 8-character limitation) is sent from a
client to the server. Special characters are not replaced. The library alias is neither sent to the
server nor used for other purposes on the COBOL client side.

Server Side

If you are using a so-called server mapping file, the target COBOL server program is located with
the help of this file. A server mapping file is a Designer file with extension .svm or .cvm. See
Server Mapping Files for COBOL. See also Locating and Calling the Target Server in the platform-spe-
cific administration or RPC server documentation.

If you are not using a server mapping file, the IDL library name as specified in the IDL file is ignored.

92 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Mapping Program Name and Alias

Client Side

The IDL program name as specified in the IDL file (there is no 8-character limitation) is sent from
a client to the server. Special characters are not replaced. The program alias is not sent to the
server, but during wrapping it is used to derive the suggestion for the source file names of the
client interface objects (COBOL subprograms, copybooks) instead of using the IDL program names,
see Customize Automatically Generated Client Names.

Server Side

If you are using a so-called server mapping file, the target COBOL server program is located with
the help of this file. A server mapping file is a Designer file with extension .svm or .cvm. See
Server Mapping Files for COBOL. This provides the following advantages:

® IDL program names are not limited to 8 characters and do not have to match the target COBOL
server program names.
® Target COBOL server program names (COBOL subprograms) can be customized during

wrapping. See Customize Automatically Generated Server Names.

If you are not using a server mapping file, the target COBOL server program must match the IDL
program name. In this case:

® The length of the IDL program names is limited by your COBOL system (often 8 characters).

® The set of allowed characters for IDL program names is restricted by your COBOL system and

the underlying file system.

It is your responsibility as application developer to ensure that these requirements are met. See
Locating and Calling the Target Server in the platform-specific administration or RPC server docu-
mentation.

Mapping Parameter Names

The parameter names, as given in the parameter-data-definition under Software AG IDL
Grammar in the IDL Editor documentation of the IDL file, are mapped to fields within the LINKAGE
section of the generated COBOL client interface objects and COBOL server skeletons.

When building fields within the LINKAGE section, the special characters '#, '$', '&', '+, -, ", '/, '@
and '_', allowed within names of parameters, are mapped to the character hyphen '-' valid for
COBOL names. Example:

EntireX COBOL Wrapper 93

Software AG IDL to COBOL Mapping

HU$GO results in HU- GO

Trailing and preceding special characters are also removed. Example:

J#HUGO$ results in HUGO

Subsequent special characters are replaced by one hyphen. Example:

HU$#$ GO results in HU-GO

If the parameter name starts with a digit, e.g. '1', it is prefixed with the character 'P'. Example:

1HUGO results in P1HUGO

Mapping Fixed and Unbounded Arrays

Client and Server Side

* Fixed Arrays

Fixed arrays within the IDL file are mapped to fixed COBOL tables. See the array-definition
under Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to de-
scribe fixed arrays within the IDL file and refer to fixed-bound-array-index.

IDL Unbounded Arrays with Maximum

IDL unbounded arrays with maximum are mapped to COBOL tables with the DEPENDING ON
clause. See COBOL Tables with Variable Size - DEPENDING ON Clause under COBOL to IDL Mapping
in the IDL Extractor for COBOL documentation. Note the following;:

The from-value of the DEPENDING ON clause is always 1.

ODO objects for justification of the number of occurrences are generated into the client interface
objects and server skeletons.

When a 2/3 dimensional unbounded array is received from a partner, all vectors of the second
dimension must have the same length, i.e. the array forms a rectangle. The same applies to
the third dimension (all vectors must have the same length), the array forms a cuboid. If these
rules are violated, unexpected behavior occurs. For illustration, see picture under
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

Sending a 2/3 dimensional unbounded array to a partner violating the rule above is not pos-
sible: COBOL does not allow you to set vector lengths differently.

A maximum upper bound given with the IDL unbounded array defines the maximum COBOL
table size. The COBOL table can vary from 1 to this maximum. See array-definition under
Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe
unbounded arrays within the IDL file and refer to unbound-array-index.

Depending on your target COBOL compiler, 2- and 3-dimensional unbounded arrays may
not be supported (e.g. BS2000).

94

EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

® The Designer generates the COBOL interface objects and server (skeletons) without considering
restrictions of the target COBOL compiler. See your COBOL compiler documentation for
possible workarounds, for example using compiler switches or compiler options.

Client Side

® IDL Unbounded Arrays without Maximum
IDL unbounded arrays without a maximum are mapped to COBOL tables with the UNBOUNDED
keyword. There is no upper bound limitation also on the COBOL side. They are restricted to
clients on z/OS with standard linkage calling convention (CICS | Batch | IMS) to its client interface
object. See Using IDL Unbounded Groups or Arrays without Maximum for more information.

Server Side

* IDL Unbounded Arrays without Maximum
IDL unbounded arrays without a maximum are not supported by COBOL Wrapper server
generation and EntireX RPC servers under z/OS (CICS, Batch, IMS) | z/VSE (CICS, Batch) |
BS2000 | Micro Focus | CICS ECI | IMS Connect | CICS Socket Listener.

Mapping Groups and Periodic Groups

Client and Server Side

® Groups within the IDL file are mapped to COBOL structures using level numbers. See the
group-parameter-definitionunder Software AG IDL Grammar in the IDL Editor documentation
for the syntax on how to describe groups within the IDL file.

® For groups with an array definition (including fixed, maximum upper bound or without upper
bound) the same applies as for arrays, see Mapping Fixed and Unbounded Arrays. Additionally
note the following:

® If unbounded groups are nested, and depending on your target COBOL compiler, they may
not be supported (e.g. BS2000).

® There is a restriction on the number of indices. Most COBOL compilers support a maximum
of 7 indices.

The Designer generates the COBOL interface objects and server (skeletons) without considering
restrictions of the target COBOL compiler. See your COBOL compiler documentation for
possibilities to work round the restrictions, for example using compiler switches or compiler
options.

EntireX COBOL Wrapper 95

Software AG IDL to COBOL Mapping

Mapping Structures

Client and Server Side

Structures within the IDL file are dissolved at the location where they are used. They are mapped
to COBOL structures like groups. See the structure-definitionunder Software AG IDL Grammar
in the IDL Editor documentation for the syntax on how to describe structures within the IDL file.

Mapping the Direction Attributes In, Out, InOut

The IDL syntax allows you to define parameters as In parameters, Out parameters, or InOut
parameters (which is the default if nothing is specified). See the attribute-11ist under Software
AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe attributes
within the IDL file and refer to direction-attribute.

Client Side
This direction specification is reflected in the generated COBOL interface object as follows:
® Direction attributes do not change the COBOL call interface because parameters are always

treated as “called by reference”.

" Usage of direction attributes may be useful to reduce data traffic between RPC client and RPC
server.

= Parameters with the In attribute are sent from the RPC client to the RPC server.
= Parameters with the Out attribute are sent from the RPC server to the RPC client.
® Parameters with the In and Out attribute are sent from the RPC client to the RPC server and

then back to the RPC client.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

Seethe attribute-1ist under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Server Side

If you are using a server mapping file, the RPC server considers the direction attribute found in
the server mapping file. A server mapping file is a Designer file with extension .svm or .cvm. See
Server Mapping Files for COBOL.

96 EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

If your RPC server is generated with a previous version of EntireX without a server mapping file,
the RPC server considers the direction attribute sent from any RPC client, for example Java, DCOM,
C, COBOL, .NET, XML and PL/L

Mapping the ALIGNED Attribute

Seethe attribute-11ist under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Client and Server Side

This attribute corresponds to the SYNCHRONIZED clause. If it is specified, data will be mapped ac-
cording to the following rules:

Software AG IDL|COBOL Data Type Alignment|Notes
F4 USAGE COMP-1 SYNC +4 1

F8 USAGE COMP-2 SYNC +8 1

12 PIC S9(4) BINARY SYNC|+2 1

14 PIC S9(8) BINARY SYNC|+4 1

] Notes:

1. On IBM i, specify the compiler option *SYNC in the commands CRTCBLMOD or CRTBNDCBL for the
usage of the SYNCHRONIZED clause.

Calling Servers as Procedures or Functions

Client and Server Side

The COBOL 85 standard does not support a concept of functions like the programming languages

Cor PL/I. Any Software AG IDL program definition is mapped to a COBOL program. See Mapping
Program Name and Alias.

EntireX COBOL Wrapper 97

98

I I I Writing Applications with the COBOL Wrapper

® Writing Standard Call Interface Clients

® Writing EXEC CICS LINK Clients

® Using the Generated Copybooks

® Using Broker Logon and Logoff

® Using Conversational RPC

® Using IDL Unbounded Groups or Arrays without Maximum

® Using RPC Authentication (Natural Security, Impersonation, Integration Server)
® Using the COBOL Wrapper with Non-secure Natural RPC Server

® Using SSL/TLS

® Using Internationalization with the COBOL Wrapper

See also Scenarios and Programmer Information in the respective RPC Server documentation.

99

100

8 Writing Standard Call Interface Clients

= Step 1: Declare and Initialize the RPC Communication Areacccovviiiiiiiiiiiieeiiiiiiiieee e 102
= Step 2: Declare the IDL Data Structures for Client Interface ObJectscccvvieiiiiiiiiiic e 104
= Step 3: Required Settings in the RPC Communication Areaoooiiiiiiiiiiiiiieeiiiee e 104
= Step 4: Optional Settings in the RPC CommuNiCation Areacooiiiiiiiiiiiiiiiiie e 105
= Step 5: Issue the RPC Request and Check fOr SUCCESSvvvviiiiiiiiiiiiiiici e 105

101

Writing Standard Call Interface Clients

This chapter describes in five steps how to write your first COBOL RPC client program. It uses
the standard call interface: CICS | Batch | IMS | Micro Focus.

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

Step 1: Declare and Initialize the RPC Communication Area

The RPC Communication Area is your interface (API) to RPC communication and the generic
RPC service module COBSRVI.

How to declare the communication area in your RPC client program depends on the generation
option External Clause, Linkage Section or Copybook (see RPC Communication Area under
Generation Settings - Properties) and whether only copybook ERXCOMM is used, or both copybooks
ERXCOMM and ERXVSTR are used.

The optional ERXVSTR copybook is an extension to the ERXCOMM copybook. It enables an RPC client
to specify long data strings (e.g. passwords). For usage see ERXVSTR Copybook under Using the
Generated Copybooks.

See the following code snippets:

= Only Copybook ERXCOMM is Used
= Both Copybooks ERXCOMM and ERXVSTR are Used

Only Copybook ERXCOMM is Used
* For External Clause Option

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA EXTERNAL.
COPY ERXCOMM.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.

* Set version (see Note 2)
MOVE "2000" to COMM-VERSION.

* For Linkage Section option

102 EntireX COBOL Wrapper

Writing Standard Call Interface Clients

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.

* Set version (see Note 2)
MOVE "2000" to COMM-VERSION.

Both Copybooks ERXCOMM and ERXVSTR are Used

® For External Clause option

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA EXTERNAL.
COPY ERXCOMM.
01 ERX-COMMUNICATION-VSTR EXTERNAL.
COPY ERXVSTR.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.
INITIALIZE ERX-COMMUNICATION-VSTR.

* Set version (see Note 2)
MOVE "4000" to COMM-VERSION.

® For Linkage Section option

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.
01 ERX-COMMUNICATION-VSTR.
COPY ERXVSTR.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.
INITIALIZE ERX-COMMUNICATION-VSTR.

* Set version (see Note 2)
MOVE "4000" to COMM-VERSION.

® For Copybook option
This step is obsolete in the client application and is omitted. Default values for the RPC commu-
nication area are retrieved from Designer preferences or IDL-specific properties. If required,
those default values can be overwritten in the COBINIT Copybook.

Notes:

EntireX COBOL Wrapper 103

Writing Standard Call Interface Clients

1. The RPC communication area copybook ERXCOMM and - if used - its extension copybook ERXVSTR
must be correctly initialized with the data formats. Do not move SPACES to them! Use, for ex-
ample, a COBOL INITIALIZE statement.

2. If the copybook ERXCOMM only is used, COMM-VERSION is set to "2000". If both copybooks are used
(ERXCOMM and its extension ERXVSTR), COMM-VERSION is set to "4000".

Step 2: Declare the IDL Data Structures for Client Interface Objects

For every program definition of the IDL file, the COBOL Wrapper generates an IDL interface
copybook with the description of the customer's interface data as a COBOL structure. For ease of
use you can include these structures into your RPC client program as shown below.

* Declare customer data to generated RPC Stubs
01 CALC-AREA.
COPY CALC.

However, as an alternative, you can use your own customer data structures. In this case the COBOL
data types and structures must match the interfaces of the generated client interface objects, oth-
erwise unpredictable results may occur.

* Declare customer data to generated RPC Stubs
01 CALC-AREA.
10 PARAMETER.

15 OPERATOR PIC X.

15 OPERANDI PIC S9(9) BINARY.
15 OPERAND?2 PIC S9(9) BINARY.
15 RESULT PIC S9(9) BINARY.

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOL Wrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into the client interface objects.

* assign the broker to talk with ...

MOVE "Tocalhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with ...

MOVE "RPC" to COMM-ETB-SERVER-CLASS.

MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user id to the broker ...
MOVE "ERXUSER" to COMM-USERID.

104 EntireX COBOL Wrapper

Writing Standard Call Interface Clients

Step 4: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the COBOL Wrapper,
for example:

MOVE "EXAMPLE" to COMM-LIBRARY.

MOVE "00000300" to COMM-ETB-WAIT.

MOVE "PASSWORD" to COMM-PASSWORD. (Note 1)
] Notes:

1. For Implicit Logon, if required in your environment, the client password can be given here. It is
provided then through the client interface object. If you have to issue an Explicit Logon, see Using
Broker Logon and Logoff.

Step 5: Issue the RPC Request and Check for Success

How to issue the request in your RPC client program depends on the generation option External
Clause, Linkage Sectionor Copybook (see RPC Communication Area) and usage of the copybooks
ERXCOMM and ERXVSTR. See following code snippets:

* External Clause option

CALL "CALC"™ USING OPERATOR OPERAND1 OPERAND2 RESULT
ON EXCEPTION
s Perform error-handling
NOT ON EXCEPTION
IF COMM-RETURN-CODE = ZERO

& Perform success-handling
ELSE
* Perform error-handling (See Note 1)
END-IF
END-CALL.

* Linkage Section option; copybook ERXCOMM is used only

EntireX COBOL Wrapper 105

Writing Standard Call Interface Clients

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT
ERX-COMMUNICATION-AREA
ON EXCEPTION
B Perform error-handling
NOT ON EXCEPTION
IF COMM-RETURN-CODE = ZERO

B Perform success-handling
ELSE
& Perform error-handling (See Note 1)
END-IF
END-CALL.

* Linkage Section option; both copybooks ERXCOMM and ERXVSTR are used

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT
ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR

ON EXCEPTION
& Perform error-handling
NOT ON EXCEPTION
IF COMM-RETURN-CODE = ZERO

s Perform success-handling
ELSE
* Perform error-handling (See Note 1)
END-IF
END-CALL.

® Copybook option

CALL "CALC™ USING OPERATOR OPERAND1 OPERAND2 RESULT
ON EXCEPTION
& Perform error-handling
NOT ON EXCEPTION
IF RETURN-CODE = ZERO

s Perform success-handling
ELSE
s Perform error-handling (See Note 2)
END-IF
END-CALL.
Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

2. Because the RPC communication area is not used for data exchange between the client application
and the client interface objects, the COMM-RETURN-CODE field in the RPC communication area
cannot be checked directly upon return from RPC calls. Therefore, the COBOL mechanism
RETURN-CODE special register is used to provide errors from client interface objects to the client

106 EntireX COBOL Wrapper

Writing Standard Call Interface Clients

application. For IBM compilers, errors can be adapted in the COBEXIT copybook (see folder in-
clude).

EntireX COBOL Wrapper 107

108

9 Writing EXEC CICS LINK Clients

= Step 1: Declare IDL Structures and RPC CommuniCation Ar€auvvvuvururuiiiiiiiiiiiiiiiiiiiisiiirnninnnannnnnnnns 110
= Step 2: Initialize the RPC CommuUNICatioN ArEaccoiiiiiiiiiiiiiie e 111
= Step 3: Required Settings in the RPC Communication Areaoooiiiiiiiiiiiiiieeiiiee e 112
= Step 4: Optional Settings in the RPC CommuNiCation Areacooiiiiiiiiiiiiiiiiie e 113
= Step 5: Issue the RPC Request and Check fOr SUCCESSvvvviiiiiiiiiiiiiiici e 113

109

Writing EXEC CICS LINK Clients

This chapter describes in five steps how to write your first COBOL RPC client program for an
EXEC CICS LINKinterface.You can also write an RPC client for CICS with a standard call interface,
see Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

Step 1: Declare IDL Structures and RPC Communication Area

For every program definition of the IDL file, the COBOL Wrapper generates an IDL interface
copybook with the description of the customer's interface data as a COBOL structure. For ease of
use you can include these structures together with the RPC communication area copybook ERXCOMM
into your RPC client program. The RPC communication area is your interface (API) to RPC com-
munication and the Generation and Usage of Generic RPC Service Module COBSRVI.

Definition is physically in a specific order (see code snippet below):

" A parent label on COBOL level 01 (here label CALC-AREA) is followed by the IDL interface
copybook (here copybook CALC).

® Then comes a COBOL label with the RPC communication area below (here label
RPC-COMMUNICATION-AREA together with copybook ERXCOMM).

Label names could be different in your application, but the physical sequence of labels and copy-
books are important. See following code snippets:

See following code snippets:

* Declare customer data to generated client interface objects
01 CALC-AREA.
COPY CALC
* Declare RPC communication area
03 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

However, as an alternative, you can use your own customer data structures. In this case the COBOL
data types and structures must match the interfaces of the generated client interface objects, oth-
erwise unpredictable results may occur.

110 EntireX COBOL Wrapper

Writing EXEC CICS LINK Clients

* Declare customer data to generated client interface objects
01 CALC-AREA.

03 OPERATOR PIC X.

03 OPERANDI PIC S9(8) COMP.
03 OPERANDZ PIC S9(8) COMP.
03 RESULT PIC S9(8) COMP.

* Declare RPC communication area
03 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

Step 2: Initialize the RPC Communication Area

* Call subprogram to initialize the RPC Communication Area (see Note 1)
CALL "INIT-RPC" USING ERX-COMMUNICATION-AREA.

* Set version (see Note 2)
MOVE "2000" to COMM-VERSION.

* Subprogram to initialize the RPC communication area
IDENTIFICATION DIVISION.
PROGRAM-ID. INIT-RPC.
DATA DIVISION.
LINKAGE SECTION.
01 RPC-COMMUNICATION-AREA.
COPY ERXCOMM.
PROCEDURE DIVISION USING RPC-COMMUNICATION-AREA.
MAIN SECTION.
* Initialize the RPC Communication Area (see Note 3)
INITIALIZE RPC-COMMUNICATION-AREA.
EXIT PROGRAM.
END PROGRAM INIT-RPC.

Notes:

1. If your generated IDL interface copybook contains a COBOL table with an 0CCURS DEPENDING
ON clause, originating from an IDL unbounded array; it is important to set the ODO object to
the required value for upper-bound before you call the initialization subprogram. (Refer to
Fixed and Unbounded Arrays in the IDL Editor documentation.) See the following code snippet:

EntireX COBOL Wrapper 11

Writing EXEC CICS LINK Clients

01 IDL-AREA.

03 IDL-FIELD1 PIC X(8).

03 IDL-FIELD2 PIC X(32).

03 . . .

03 ODO-O0OBJECT PIC 9(8) BINARY.

03 ODO-SUBJECT OCCURS 1 TO 24 DEPENDING ON ODO-OBJECT.
04 ODO-FIELDL PIC X(5).
04 ODO-FIELD1 PIC X(1).
04 .

03 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Set the 0DO object to required value for input
MOVE <upper-bound> TO ODO-OBJECT.
MOVE .

* Initialize RPC communication area
CALL "INIT-RPC" USING ERX-COMMUNICATION-AREA.

2. Because only copybook ERXCOMM is used, COMM-VERSION is set to "2000".

3. The RPC communication area copybook ERXCOMM must be correctly initialized with the data
formats. Do not move SPACES to it! Use, for example, a COBOL INITIALIZE statement.

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOL Wrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into the client interface objects.

* assign the broker to talk with
MOVE "Tocalhost:1971" to COMM-ETB-BROKER-ID.
* assign the server to talk with

MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user id to the broker ...
MOVE "ERXUSER" to COMM-USERID.

112 EntireX COBOL Wrapper

Writing EXEC CICS LINK Clients

Step 4: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the COBOL Wrapper,
for example:

MOVE "EXAMPLE" to COMM-LIBRARY.

MOVE "00000300" to COMM-ETB-WAIT.

MOVE "PASSWORD" to COMM-PASSWORD. (Note 1)
Notes:

1. For Implicit Logon, if required in your environment, the client password can be given here. It is
provided then through the client interface object. If you have to issue an Explicit Logon, see Using
Broker Logon and Logoff.

Step 5: Issue the RPC Request and Check for Success

See following code snippets:

MOVE LENGTH OF CALC-AREA TO COMLEN.
EXEC CICS LINK PROGRAM("CALC") COMMAREA(CALC-AREA)
LENGTHCCOMLEN) RESP(WORKRESP)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
el Perform success-handling
ELSE
B Perform error-handling (See Note 1)
END-IF
ELSE
& Perform error-handling
END-IF.

i Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper 13

14

10 Using the Generated Copybooks

= DL Interface COPYDOOKSevieiiiiie et 116
B ERXCOMM COPYDOOK ...ttt 117
B ERXVSTR COPYDOOK ...ttt ettt et e et e et e eas 117
B COBINIT COPYDOOK ...ttt ettt ettt e e as 118
B COBEXIT COPYDOOK ..ttt ettt e et e e e e e e e e e e e e e e e e 118

15

Using the Generated Copybooks

This chapter explains how clients built with the COBOL Wrapper use the generated copybooks.

IDL Interface Copybooks

The IDL interface copybooks (see folder include) are the API of the COBOL client application using
client interface objects. You can customize the Starting COBOL Level for Data Items in Generated
Copybooks according to your needs.

If IDL unbounded groups without maximum (/V) or arrays without maximum (for example
(A100/V)) are contained in the IDL, these are mapped with keyword UNBOUNDED. In this case:
® cut and paste the top-level COBOL groups where

® anywhere deeper the keyword UNBOUNDED is contained into the LINKAGE SECTION

* no keyword UNBOUNDED is contained into the WORKING STORAGE SECTION

For details see Using IDL Unbounded Groups or Arrays without Maximum.
For all other IDLs, a starting level greater than one allows you to

® embed (include) the generated copybook into other existing COBOL structures:

1 MYGROUP.
10 .
10 . . .
10 MYIDL.
COPY MYIDL.

" specify usage clauses such as EXTERNAL, GLOBAL etc.:

1 MYIDL1I GLOBAL.
COPY MYIDLI.

® use multiple generated copybooks with duplicate parameter names on IDL level 1 in the same
COBOL program:

1 MYIDLL.

COPY MYIDLI.
1 MYIDLZ.

COPY MYIDLZ.

More information:

® For IDL unbounded groups or arrays without maximum, see the array-definition under
Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe

116 EntireX COBOL Wrapper

Using the Generated Copybooks

unbounded arrays within the IDL file and refer to unbound-array - i ndex. For COBOL mappings,
see Mapping Fixed and Unbounded Arrays and Mapping Groups and Periodic Groups.

® For writing a standard call interface client according to scenario CICS | Batch | IMS | Micro
Focus, see Writing Standard Call Interface Clients.

® For writing a client according to scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE), see Writing EXEC CICS LINK Clients.

ERXCOMM Copybook

The ERXCOMM copybook (see folder include) holds RPC metadata for RPC clients. Here you provide
parameters that are needed to communicate with the broker and are not specific to client interface
objects. Upon return from an RPC request it provides, for example, the error code. In this way it

defines a context for RPC clients.

For usage, refer to the following sections:

® Copybook ERXCOMMunder The RPC Communication Area (Reference)

= Step 1: Declare and Initialize the RPC Communication Area in section Writing Standard Call
Interface Clients

ERXVSTR Copybook

The ERXVSTR copybook (see folder include) is an extension to the ERXCOMM copybook for RPC clients.
It enables an RPC client to specify long broker passwords, and long user IDs/passwords for RPC
authorization. Its usage is optional.

The RPC communication area extension copybook ERXVSTR is generated for Target Operating
System z/OS and RPC clients using a call interface to its client interface object, meaning one of the
following Client Interface Types is selected:

® CICS with Standard Linkage Calling Convention

® Batch with Standard Linkage Calling Convention

® IMS BMP with Standard Linkage Calling Convention

® IMS MPP with Standard Linkage Calling Convention

For usage, refer to the following sections:

® Using Broker Logon and Logoff

® Using RPC Authentication (Natural Security, Impersonation, Integration Server)

EntireX COBOL Wrapper 17

Using the Generated Copybooks

® Copybook ERXVSTRunder The RPC Communication Area (Reference)

= Step 1: Declare and Initialize the RPC Communication Area in section Writing Standard Call
Interface Clients

COBINIT Copybook

The COBINIT copybook (see folder include) is generated if option Copybook for RPC Communication
Area is selected. Its purpose is to set communication parameters such as COMM-ETB-BROKER-ID,
COMM-ETB-SERVER-NAME etc. into the RPC Communication Area. You can set parameters made
available through £RXCOMM Copybook and also ERXVSTR Copybook.

COBEXIT Copybook

The COBEXIT copybook (see folder include) is generated if option Copybook for RPC Communication
Area is selected. Its purpose is to check and map error codes. COBOL statements that have been
commented out are generated into the copybook as an example.

118 EntireX COBOL Wrapper

11 Using Broker Logon and Logoff

L 1211 (0o 1o o) PSP PPPPTPRRR 120
= | ogging on Using Short Broker Passwords (all Interface TYPes)vvvveeiiiiiieiiiiiieeeiie e 120
= L ogging on Using Long Broker Passwords (z/OS with Call Interface)ccooviiviiiiiiiiii e 123

19

Using Broker Logon and Logoff

Introduction

This section explains how clients built with the COBOL Wrapper use explicit broker logon and
logoff functions. The logon call is the first call to the broker, before any RPC call. The COMM-ETB-
USER- 1D field (and the COMM-ETB-TOKEN field, where provided) must not change from logon, through
all calls of client interface objects, until final logoff. The logoff call should be issued as soon as RPC
communication is no longer needed. This is similar to LOGON and LOGOFF, USER-ID and TOKEN and
Authentication under Writing Applications using EntireX Security in the ACI Programming document-
ation.

To use explicit broker logon and logoff you need the following components:

® the Delivered Modules are provided to log on to and log off from the broker

® the copybook ERXCOMM if a 32-byte broker password is sufficient; see RPC communication area
Copybook ERXCOMM

* the copybook ERXVSTR to use a long broker password; see RPC communication area Copybook
ERXVSTR

® We strongly recommend using SSL/TLS if you send an authentication as described here with
the COBOL Wrapper to a secure partner. See also SSL/TLS Parameters for SSL Clients under
SSL/TLS and Certificates with EntireX in the Platform-independent Administration documentation.

Logging on Using Short Broker Passwords (all Interface Types)

This approach allows a maximum of 32 bytes for the broker password. The code you write depends
on the interface type:

= Call Interface
m EXEC CICS LINK Interface

See Client Interface Types.
Call Interface

This interface type applies to the scenarios CICS | Batch | IMS | Micro Focus.

~ To log on to the Broker with a short password

1 Declare and initialize the RPC communication area as described under Only Copybook
ERXCOMM is Used under Step 1: Declare and Initialize the RPC Communication Area in sec-
tion Writing Standard Call Interface Clients.

120 EntireX COBOL Wrapper

Using Broker Logon and Logoff

2 Logon to the broker with the logon function L0 provided by the generic RPC services module,
using the Call Interface.

* Set function broker logon

MOVE "LO" TO COMM-FUNCTION.

* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.

* Optionally set broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call generic RPC service module to call broker (see Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
% Perform error-handling
NOT ON EXCEPTION
IF (COMM-RETURN-CODE = 0) THEN

2 Perform success-handling
ELSE

% Perform error-handling (see Note 2)
END-IF

END-CALL.

* begin of application logic

3 Issue your RPC requests as usual, without using explicit logon and logoff.

~ To log off from the Broker with a short password

» Log off from the broker with the log off function LF provided by the generic RPC services
module, using a CALL statement.

EXEC CICS LINK Interface

This interface type applies to the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

~ To log on to the Broker with a short password

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in section Writing EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPC Commu-
nication Area under Writing EXEC CICS LINK Clients.

3 Logon to the broker with the logon function L0 provided by the generic RPC services module,
using EXEC CICS LINK.

EntireX COBOL Wrapper 121

Using Broker Logon and Logoff

MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.

* Optionally set broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call generic RPC service module to call broker
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP?2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
E Perform success-handling
ELSE
* Perform error-handling (see Note 2)
END-IF
ELSE
E Perform error-handling
END-IF.
* begin of application logic

4 Issue your RPC requests as usual, without using explicit logon and logoff.

~ To log off from the Broker with a short password

= Log off from the broker with the log off function LF provided by the generic RPC services
module, using EXEC CICS LINK.

Notes:

1. If you are only using copybook ERXCOMM only, pass only the address of ERXCOMM to the generic
RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

122 EntireX COBOL Wrapper

Using Broker Logon and Logoff

Logging on Using Long Broker Passwords (z/OS with Call Interface)

This section applies to the scenarios CICS, Batch and IMS with the CALL interface.
With this approach you can use long passwords. It requires the ERXVSTR copybook.

The RPC communication area extension copybook ERXVSTR is generated for Target Operating
System z/OS and RPC clients using a call interface to its client interface object, meaning one of the
following Client Interface Types is selected:

® CICS with Standard Linkage Calling Convention

Batch with Standard Linkage Calling Convention
IMS BMP with Standard Linkage Calling Convention
IMS MPP with Standard Linkage Calling Convention

~ To log on to the Broker with a long password

1 Declare and initialize the RPC communication area as described under Both Copybooks
ERXCOMM and ERXVSTR are Used under Step 1: Declare and Initialize the RPC Communication
Area in section Writing Standard Call Interface Clients.

2 Logon to the broker with the logon function L0 provided by the generic RPC services module,
using the Call Interface.

* Set function broker logon
MOVE "LO" TO COMM-FUNCTION.

* Set broker user ID/kernelsecurity in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.

MOVE "Y" TO COMM-KERNEL-SECURITY.

* set long broker password in RPC Variable String Area
INSPECT ETBPWD TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE 1 TO STR-OFFSET.

MOVE STR-OFFSET TO COMM-ETB-PASSWORD-OFFSET.
MOVE STR-LENGTH TO COMM-ETB-PASSWORD-LENGTH.
STRING ETBPWD DELIMITED BY SPACE INTO
COMM-STRING-AREA WITH POINTER STR-OFFSET.
* Call generic RPC service module to call broker
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.
ON EXCEPTION
& Perform error-handling
NOT ON EXCEPTION
IF (COMM-RETURN-CODE = 0) THEN
w8 Perform success-handling
ELSE
* Perform error-handling (see Note 2)

EntireX COBOL Wrapper 123

Using Broker Logon and Logoff

END-IF
END-CALL.

> To log off from the Broker with a long password

m See the following code snippet:

* Set function broker logoff
MOVE "LF" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
* Call generic RPC service module to call broker (see Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.
ON EXCEPTION
B Perform error-handling
NOT ON EXCEPTION
IF (COMM-RETURN-CODE = 0) THEN
w8 Perform success-handling
ELSE
* Perform error-handling (see Note 2)
END-IF
END-CALL.

] Notes:

1. If both copybooks are used, you need to pass both addresses, first the address of ERXCOMM, then
the address of ERXVSTR to the generic RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

124 EntireX COBOL Wrapper

12 Using Conversational RPC

B Call INEBITACE ..o e 126
B EXEC CICS LINK INEIACE ..evvve e, 129

125

Using Conversational RPC

This chapter explains how clients built with the COBOL Wrapper use conversational RPC.

RPC conversations are supported when communicating with an RPC server. It is further assumed
that you are familiar with the concepts of conversational RPC and non-conversational RPC. To
use conversational RPC, you need the following components:

® the Delivered Modules are provided to open, close or abort conversations

® the RPC Communication Area

The code you write depends on the interface type:

See Client Interface Types.

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS | Micro Focus.

> To use conversational RPC

1 Declare and initialize the RPC communication area with one of the approaches described
under Step 1: Declare and Initialize the RPC Communication Area in section Writing Standard
Call Interface Clients. Here you can use copybook ERXCOMM only, or both copybooks ERXCOMM
and ERXVSTR.
2 Open a conversation with the function Open Conversation 0C provided by the generic RPC
services module. The code snippet below illustrates the variant where only copybook ERXCOMM
is used. If you are using both copybooks ERXCOMM and ERXVSTR, see Note 1.
MOVE "OC" TO COMM-FUNCTION.
* Call generic RPC service module to use conversational mode (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
Perform error-handling
NOT ON EXCEPTION
I[F (COMM-RETURN-CODE = 0) THEN
= Perform success-handling
ELSE
* Perform error-handling (See Note 2)
END-IF
END-CALL.
3 Issueyour RPC requests as within non-conversational mode using the generated client interface
objects. Different client interface objects can participate in the same RPC conversation.
126 EntireX COBOL Wrapper

Using Conversational RPC

> To abort conversational RPC communication

» Abort an unsuccessful RPC conversation with the function Close Conversation CB provided
by the generic RPC services module. The code snippet below illustrates the variant where

only copybook ERXCOMM is used. If you are using both copybooks ERXCOMM and ERXVSTR, see
Note 1.

MOVE "CB" TO COMM-FUNCTION.
* Call generic RPC service module to use conversational mode (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
E Perform error-handling
NOT ON EXCEPTION
IF (COMM-RETURN-CODE = 0) THEN

2 Perform success-handling
ELSE

= Perform error-handling (See Note 2)
END-IF

END-CALL.

> To close and commit a conversational RPC communication

= Close the RPC conversation successfully with the function Close Conversation and Commit
CE provided by the generic RPC services module. The code snippet below illustrates the
variant where only copybook ERXCOMM is used. If you are using both copybooks ERXCOMM and
ERXVSTR, see Note 1.

MOVE "CE" TO COMM-FUNCTION.

* Call generic RPC service module to use conversational mode (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION

w Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
Perform success-handling
ELSE
* Perform error-handling (See Note 2)
END-IF
END-CALL.

Notes:

1. If both copybooks ERXCOMM and ERXVSTR are used, you need to pass both parameters:

EntireX COBOL Wrapper 127

Using Conversational RPC

CALL "COBSRVI"™ USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

128 EntireX COBOL Wrapper

Using Conversational RPC

EXEC CICS LINK Interface

This interface type applies to the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

> To use conversational RPC

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in section Writing EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPC Commu-
nication Area under Writing EXEC CICS LINK Clients.

3 Open a conversation with the function Open Conversation 0C provided by the generic RPC
services module:

MOVE "0C" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI1)
RESP?2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = Q) THEN
= Perform success-handling
ELSE
& Perform error-handling (See Note 1)
END-TF
ELSE
w Perform error-handling
END-IF.

4 Issue your RPC requests as within non-conversational mode using the generated client interface
objects. Different client interface objects can participate in the same RPC conversation.

> To abort conversational RPC communication

= Abort an unsuccessful RPC conversation with the function Close Conversation CB provided
by the generic RPC services module:

EntireX COBOL Wrapper 129

Using Conversational RPC

MOVE "CB" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
Perform success-handling
ELSE
* Perform error-handling (See Note 1)
END-IF
ELSE
= Perform error-handling
END-IF.

> To close and commit a conversational RPC communication

m Close the RPC conversation successfully with the function Close Conversation and Commit
CE provided by the generic RPC services module:

MOVE "CE" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
w Perform success-handling
ELSE
* Perform error-handling (See Note 1)
END-IF
ELSE
= Perform error-handling
END-IF.

Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

130 EntireX COBOL Wrapper

13 Using IDL Unbounded Groups or Arrays without Maximum

This chapter explains how clients built with the COBOL Wrapper use IDL unbounded groups or
arrays without maximum upper bounds. For illustration of IDL unbounded arrays, see Example
of Arrays with Variable Upper-bounds under Software AG IDL Grammar in the IDL Editor document-
ation.

Usage of IDL unbounded groups or arrays without maximum is supported for:

" operating system z/OS with IBM Enterprise COBOL compiler for z/OS version 6.1 and above

® RPC clients using a call interface to its client interface object, meaning one of the following Client
Interface Types is selected:

® CICS with Standard Linkage Calling Convention
® Batch with Standard Linkage Calling Convention
® IMS BMP with Standard Linkage Calling Convention
® IMS MPP with Standard Linkage Calling Convention

See also Mapping Fixed and Unbounded Arrays.

The example below illustrates how IDL unbounded groups without maximum (/V) are used from
COBOL. The client interface objects are generated from the IDL as described in Using the COBOL
Wrapper (CICS with Call Interfaces | Batch | IMS). Storage allocation and pointer usage for un-
bounded arrays without maximum (for example (A100/V)) are the same as for unbounded groups.
Both are mapped to 0CCURS DEPENDING ON with keyword UNBOUNDED.

For writing the RPC client programs, the steps described Writing Standard Call Interface Clients
are valid. Additionally the COBOL group on level 1 containing 0CCURS DEPENDING ON with keyword
UNBOUNDED originating from an IDL unbounded group or array is

*® defined in the LINKAGE SECTION. If no keyword UNBOUNDED is contained in the COBOL group
on level 1, it is usually defined in the WORKING STORAGE SECTION. Compare (050) below and
Step 2: Declare the IDL Data Structures for Client Interface Objects

131

Using IDL Unbounded Groups or Arrays without Maximum

* allocated and freed manually, see (070) and (140) below. We strongly recommend using the
IBM-specific COBOL ALLOCATE and FREE statements, because the storage is freed and reallocated
inside the client interface object using same ALLOCATE and FREE statements

" passed with a pointer to the client interface object, see (110) below.

Sample IDL Program

program 'UnboundedTables' is
define data parameter

1 UT-TAL (/\) In Out
2 UT-FST (A12)
2 UT-TAZ (/\)
3 UT-ELE (AO05)
2 UT-LST (A12)

end-define

Sample COBOL RPC Client and Explanation of Statements

(010) IDENTIFICATION DIVISION.
PROGRAM-ID. UNBNDCLT.

DATA DIVISION.
WORKING-STORAGE SECTION.

(020) 01 SIZE-IN-BYTES PIC 9(4) BINARY.

(030) 01 ITERATIONI PIC 9(4) BINARY.
01 ITERATIONZ PIC 9(4) BINARY.
(040) 01 UT-TALA-PTR POINTER.

LINKAGE SECTION.

(050) 01 UT-TAIA.

02 UT-TAI-41 PIC 9(8) BINARY.

02 UT-TAZ2-61 PIC 9(8) BINARY.

02 UT-TAIX OCCURS 1 TO UNBOUNDED DEPENDING ON UT-TAl-41.
03 UT-FST PIC X(12).

03 UT-TA2X OCCURS 1 TO UNBOUNDED DEPENDING ON UT-TA2-61.
04 UT-ELE PIC X(5).

03 UT-LST PIC X(12).

PROCEDURE DIVISION.

W upper bound is 4 for UT-TA1-41 and 6 for UT-TA1-61

(060) COMPUTE SIZE-IN-BYTES = LENGTH OF UT-FST * 4
+ LENGTH OF UT-ELE * 4 * 6

+ LENGTH OF UT-LST * 4.

132 EntireX COBOL Wrapper

Using IDL Unbounded Groups or Arrays without Maximum

(070)
(080)
(090)

(100)

(110)
(120)
(130)

(140)

ALLOCATE SIZE-IN-BYTES CHARACTERS INITIALIZED RETURNING UT-TAIA-PTR.
SET ADDRESS OF UT-TALA TO UT-TA1A-PTR.
MOVE 4 TO UT-TA1-41.
MOVE 6 TO UT-TAl-61.
MOVE O TO ITERATIONI.
PERFORM UT-TA1-41 TIMES
ADD 1 TO ITERATIONI
MOVE ... TO UT-FSTCITERATIONI)
MOVE O TO ITERATIONZ
PERFORM UT-TA2-61 TIMES
ADD 1 TO ITERATIONZ
MOVE ... TO UT-ELECITERATIONI ITERATIONZ)
END-PERFORM
MOVE ... TO UT-LSTCITERATIONI)
END-PERFORM.
CALL "UNBNDTAB" USING UT-TAIA-PTR ERX-COMMUNICATION-AREA.
SET ADDRESS OF UT-TALA TO UT-TA1A-PTR.
MOVE O TO ITERATIONI.
PERFORM UT-TA1-41 TIMES
ADD 1 TO ITERATIONI
MOVE UT-FSTCITERATIONL) TO ...
MOVE O TO ITERATIONZ
PERFORM UT-TA2-61 TIMES
ADD 1 TO ITERATIONZ
MOVE UT-ELECITERATIONI ITERATIONZ) TO ...
END-PERFORM
MOVE UT-LSTCITERATIONI) TO ...
END-PERFORM.
FREE UT-TA1A-PTR.

END PROGRAM UNBNDCLT.

Explanation of Statements

(010) COBOL RPC client UNBNDCLT to demonstrate IDL unbounded groups without maximum.
(020) Variable to hold the result of the storage calculation in bytes for the COBOL structure

(040)
(050)
(060)

(070)

(080)
(090)
(100)

POINTER variable to access the COBOL structure (050) describing the IDL interface (010).
COBOL structure describing the IDL interface (010) defined in LINKAGE SECTION.

Storage calculation for COBOL structure (050) assuming upper bound is 4 for UT-TA1-41
and 6 for UT-TA1-61.

Storage allocation using the calculated SIZE-IN-BYTES (060) with IBM-specific COBOL
ALLOCATE statement; returned address is assigned to COBOL pointer UT-TA1A-PTR (040).

COBOL structure (050) is set to the address of the allocated storage (070).
Upper bounds are assigned to ODO objects of COBOL structure (050).
ODO subjects of COBOL structure (050) are filled with data.

EntireX COBOL Wrapper 133

Using IDL Unbounded Groups or Arrays without Maximum

(110) Callto the client interface object; COBOL pointer UT-TAIA-PTR (040) is passed as parameter;
The COBOL name of the client interface object UNBNDTAB is customized, see Customize
Automatically Generated Client Names.

(120) The client interface object may return a changed COBOL pointer UT-TALA-PTR. So the
COBOL structure (050) is set to the address returned from the client interface object.

(130) Processing of returned data.

(140) Storage allocated in (070) or returned by call to client interface object (110) is freed.

134 EntireX COBOL Wrapper

14 Using RPC Authentication (Natural Security,

Impersonation, Integration Server)

L 121 (oo 1o} o) o PSP PPPPTPRRR 136
= RPC Authentication Using Short RPC User ID/RPC Password (all Interface Types)cccvvvveeeeeiiiiiiiiinnenennn. 137
= RPC Authentication Using Long RPC User ID/RPC Password (z/OS with Call Interface)cccccvveenne. 139

135

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

Introduction

This section explains how clients built with the COBOL Wrapper can communicate with the fol-

lowing:

Natural RPC Servers running under Natural Security

RPC servers running with impersonation. See Impersonation in the respective RPC Server
documentation.

EntireX Adapter Listener with enabled Execute Service with Client Credentials, see Configuring
Listeners in the EntireX Adapter documentation.

For this you will need the following components:

the Delivered Modules which are provided to create and get a security token

the copybook ERXCOMM if an 8-byte RPC user ID, an 8-byte RPC password and an 8 byte RPC
library are sufficient. See ERXCOMM.

the copybook ERXVSTR to use a long RPC user ID, a long RPC password and, if required, to
override the IDL library with a long RPC library. See ERXVSTR.

We strongly recommend using SSL/TLS if you send an authentication as described here with
the COBOL Wrapper to a secure partner. See Using SSL/TLS in this section and also SSL/TLS
Parameters for SSL Clients under SSL/TLS and Certificates with EntireX in the Platform-independent
Administration documentation.

136 EntireX COBOL Wrapper

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

RPC Authentication Using Short RPC User ID/RPC Password (all Interface
Types)

This approach allows a maximum of 8 bytes for each of RPC user ID, RPC password and RPC
library. The code you write depends on the interface type:

= Call Interface
m EXEC CICS LINK Interface

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS | Micro Focus.

~ To use RPC authentication using short RPC user ID, RPC password and RPC library

1 Declare and initialize the RPC communication area as described under Only Copybook
ERXCOMM is Used under Step 1: Declare and Initialize the RPC Communication Area in sec-
tion Writing Standard Call Interface Clients.

2 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

* Set function to create security token

MOVE "CT" TO COMM-FUNCTION.

* Set RPC userid and RPC password in RPC Communication Area
MOVE "RPC-USER" TO COMM-USERID.

MOVE "RPC-PSWD" TO COMM-PASSWORD.

* Optional set RPC library e.g. for Natural Security

MOVE "RPC-LIB" TO COMM-LIBRARY.
* Call generic RPC service module to create security token (see Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA

ON EXCEPTION
2 Perform error-handling

NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN

& Perform success-handling
ELSE

% Perform error-handling (See Note 2)
END-IF

END-CALL.

After successful return from creating the security token, the authentication fields in the RPC
communication area are properly set, so they can be used in subsequent RPC requests.

EntireX COBOL Wrapper 137

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

EXEC CICS LINK Interface

This interface type applies to the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

~ To use RPC authentication using short RPC user ID, RPC password and RPC library

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in section Writing EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPC Commu-
nication Area under Writing EXEC CICS LINK Clients.

3 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

MOVE "CT" TO COMM-FUNCTION.
* Set RPC userid and RPC password in RPC Communication Area
MOVE "RPC-USER" TO COMM-USERID.
MOVE "RPC-PSWD" TO COMM-PASSWORD.
* Optional set RPC library e.g. for Natural Security
MOVE "RPC-LIB" TO COMM-LIBRARY.
* Call generic RPC service module to create security token
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESPI1)
RESP?2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = 0) THEN
® Perform success-handling
ELSE
* Perform error-handling (See Note 2)
END-IF
ELSE
2 Perform error-handling
END-IF.

After successful return from creating the security token, the authentication fields in the RPC
communication area are properly set, so they can be used in subsequent RPC requests.

] Notes:

1. If you are only using copybook ERXCOMM only, pass only the address of ERXCOMM to the generic
RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

138 EntireX COBOL Wrapper

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

RPC Authentication Using Long RPC User ID/RPC Password (z/OS with Call
Interface)

This section applies to the scenarios CICS, Batch and IMS with the CALL interface.

With this approach you can use a long RPC user ID, RPC password and RPC library. It requires
the ERXVSTR copybook.

The RPC communication area extension copybook ERXVSTR is generated for Target Operating
System z/OS and RPC clients using a call interface to its client interface object, meaning one of the
following Client Interface Types is selected:

® CICS with Standard Linkage Calling Convention

Batch with Standard Linkage Calling Convention
IMS BMP with Standard Linkage Calling Convention
IMS MPP with Standard Linkage Calling Convention

~ To use RPC authentication with long RPC user ID, RPC password and RPC library

Declare and initialize the RPC communication area as described under Both Copybooks
ERXCOMM and ERXVSTR are Used under Step 1: Declare and Initialize the RPC Communication
Area in section Writing Standard Call Interface Clients.

Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

* Set function to create security token
MOVE "CT" TO COMM-FUNCTION.

* Set Tong RPC userid in RPC Variable String Area
INSPECT RPCUID TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE 1 TO STR-OFFSET.

MOVE STR-OFFSET TO COMM-RPC-USERID-OFFSET.

MOVE STR-LENGTH TO COMM-RPC-USERID-LENGTH.

STRING RPCUID DELIMITED BY SPACE INTO
COMM-STRING-AREA WITH POINTER STR-OFFSET.

* Set long RPC password in RPC Variable String Area
INSPECT RPCPWD TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE STR-OFFSET TO COMM-RPC-PASSWORD-OFFSET.

MOVE STR-LENGTH TO COMM-RPC-PASSWORD-LENGTH.
STRING RPCPWD DELIMITED BY SPACE INTO
COMM-STRING-AREA WITH POINTER STR-OFFSET.

* Optional set long RPC library e.g. for Natural Security
INSPECT RPCLIB TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE STR-OFFSET TO COMM-RPC-LIBRARY-OFFSET.

MOVE STR-LENGTH TO COMM-RPC-LIBRARY-LENGTH.

EntireX COBOL Wrapper 139

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

STRING RPCLIB DELIMITED BY SPACE INTO
COMM-STRING-AREA WITH POINTER STR-OFFSET.
* Set CCSID for encoding of RPC userid/password and application data (Note 3)
MOVE "37" TO COMM-CCSID.
* Call generic RPC service module to create security token (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION
IF (COMM-RETURN-CODE = 0) THEN
% Perform success-handling
ELSE
* Perform error-handling (See Note 2)
END-IF
END-CALL.

After successful return from creating the security token with a long RPC user ID/RPC password:

* The authentication fields in the RPC communication area are properly set, so they can be used
in subsequent RPC requests.

® The RPC protocol is forced to 2050 as a minium. You need an RPC server supporting this protocol

level, see Supported RPC Protocols.

] Notes:

1. If both copybooks are used, you need to pass both addresses, first the address of ERXCOMM, then
the address of ERXVSTR to the generic RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

3. If a CCSID is provided:

= Itis used for conversion of the long RPC password and RPC user ID. If no CCSID is provided,
the codepage active during compilation applies. Refer to your compiler documentation.

® It is used as the codepage name to tell the broker the encoding of your application data. See
Using Internationalization with the COBOL Wrapper.

140 EntireX COBOL Wrapper

15 Using the COBOL Wrapper with Non-secure Natural RPC

Server
B Call INEBITACE ..o 142
B EXEC CICS LINK INBIACE .. ovvv e e e 144

141

Using the COBOL Wrapper with Non-secure Natural RPC Server

This chapter explains how clients built with the COBOL Wrapper set the Natural library used to
execute the RPC request programmatically when communicating to a non-secure Natural RPC
Server (not running with Natural Security). If the Natural RPC Server is running with Natural
Security, see Using RPC Authentication (Natural Security, Impersonation, Integration Server).

You will need the following components:

® the Delivered Modules, which are provided to create and get a security token

® the RPC communication area copybook ERXCOMM

The code you write depends on the interface type, Call Interface or EXEC CICS LINK Interface:

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS | Micro Focus.

~ To set the Natural library when communicating to a non-secure Natural RPC server

1 Declare and initialize the RPC communication area with one of the approaches described
under Step 1: Declare and Initialize the RPC Communication Area in section Writing Standard
Call Interface Clients. Here you can use copybook ERXCOMM only, or both copybooks ERXCOMM
and ERXVSTR.

2 Set the library in RPC Communication Area and call generic RPC service module to create a
security token with the function Create Security Token CT provided by the generic RPC services
module, using the Call interface. The code snippet below illustrates the variant where only
copybook ERXCOMM is used. If you are using both copybooks ERXCOMM and ERXVSTR, see Note 1.

MOVE "CT" TO COMM-FUNCTION.

* Set library in RPC Communication Area

MOVE "NAT-LIB" TO COMM-LIBRARY.

* Call generic RPC service module to create security token (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
2 Perform error-handling

NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN

® Perform success-handling
ELSE

* Perform error-handling (See Note 2)
END-IF

END-CALL.

142 EntireX COBOL Wrapper

Using the COBOL Wrapper with Non-secure Natural RPC Server

After successful return from the generic RPC services module, the required fields in the RPC

communication area are properly set, so the non-secure Natural RPC server executes the RPC re-
quest in the library set.

| Notes:
1. If both copybooks ERXCOMM and ERXVSTR are used, you need to pass both parameters:

CALL "COBSRVI"™ USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper 143

Using the COBOL Wrapper with Non-secure Natural RPC Server

EXEC CICS LINK Interface

This interface type applies to the scenario Using the COBOL Wrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

~ To set the Natural library when communicating to a non-secure Natural RPC server

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in section Writing EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPC Commu-
nication Area under Writing EXEC CICS LINK Clients.

3 Set the library in RPC Communication Area and call generic RPC service module to create a
security token with the function Create Security Token CT provided by the generic RPC services
module, using EXEC CICS LINK.

MOVE "CT" TO COMM-FUNCTION.
* Set Tibrary in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
EXEC CICS LINK PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP?2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)
IF (COMM-RETURN-CODE = Q) THEN
® Perform success-handling
ELSE
* Perform error-handling (See Note 1)
END-IF
ELSE
% Perform error-handling
END-IF.

After successful return from the generic RPC services module, the required fields in the RPC
communication area are properly set, so the non-secure Natural RPC server executes the RPC re-
quest in the library set.

] Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

144 EntireX COBOL Wrapper

16

Using SSL/TLS
L2 O N PSPPSR 146
LA] =PRSS PPRRSPPPR 148
B UNIX, WIndows, BS2000ccoooiiiiiiiieie e 150

145

Using SSL/TLS

RPC client applications can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the
transport medium. The term “SSL” in this chapter refers to both SSL and TLS. RPC-based clients
are always SSL clients. The SSL server can be either the EntireX Broker, Broker SSL Agent, or
Direct RPC in webMethods Integration Server (IS inbound). For an introduction see SSL/TLS and
Certificates with EntireX in the Platform-independent Administration documentation. This chapter
describes using SSL with the COBOL Wrapper on z/OS and z/VSE.

z/IO0S

SSL delivered on a z/OS mainframe will typically use the Resource Access Control Facility (RACF)
as the certificate authority (CA). Certificates managed by RACF can only be accessed through the
RACEF keyring container. A keyring is a collection of certificates that identify a networking trust
relationship (also called a trust policy). In an SSL client/server network environment, entities
identify themselves using digital certificates called through a keyring. Server applications on z/OS
that wish to establish network connections to other entities can use keyrings and their certificate
contents to determine the trustworthiness of the client or peer entity. Note that certificates can
belong to more than one keyring, and you can assign different users to the same keyring. Because
of the way RACF internally references certificates, they must be uniquely identifiable by owner
and label, and also unique by serial number plus data set name (DSN).

For establishing an SSL connection on z/OS, IBM's Application Transparent Transport Layer Se-
curity (AT-TLS) can be used, where the establishment of the SSL connection is pushed down the
stack into the TCP layer.

With the COBOL Wrapper you can use IBM's Application Transparent Transport Layer Security
(AT-TLS), where the establishment of the SSL connection is pushed down the stack into the TCP
layer.

Using IBM's Application Transparent Transport Layer Security (AT-TLS)

Configure the AT-TLS rules for the policy agent (PAGENT) @ using an appropriate client @ and the
z/OS Management Facility (zZOSMF) @. Together with SSL parameters (to provide certificates
stored in z/OS as RACF keyrings) define AT-TLS rules, for example by using the application &
job name and remote TCP port number. If the rules match, the TCP connection is turned into an
SSL connection @. Refer to your IBM documentation for more information, for example the IBM
Redbook Communications Server for z/OS VxRy TCP/IP Implementation Volume 4: Security and Policy-
Based Networking.

146 EntireX COBOL Wrapper

Using SSL/TLS

i (2] © (5]

‘ \ -PHDSMF’— > Policy ‘ RPC Client ‘

T . |
TCP
(4] (6]
Y Y S55L
Palicy Agent TCPAP |
PAGENT |_ i Stack >

© Client to interact with z/OS Management Facility (z/OSMF).
@ AT-TLS rules are defined with z/OSMF policy management.
© Policy Repository with AT-TLS rules stored as z/OS files.

@ Policy Agent, MVS task PAGENT, provides AT-TLS rules through a policy enforcement point
(PEP) to TCP/IP stack.

© Application using TCP connection.

® If AT-TLS rules match, the TCP connection is turned into an SSL connection.

] Notes:

1. The client @ may vary per operating system, for example a Web browser for z/OS 2.1.

2. z/OSMF @ includes other administration and management tasks in addition to policy manage-
ment.

3. Policy Management & includes other rules, such as IP filtering, network address translation
etc.

~ To set up SSL with AT-TLS

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Set up the RPC component for a TCP/IP connection. On mainframe platforms, use Transport-
method-style Broker ID. Example:

EntireX COBOL Wrapper 147

Using SSL/TLS

ETB024:1699:TCP

3 Configure AT-TLS to turn the TCP/IP connection to an SSL connection, using a client to interact
with the z/OS Management Facility (z/OSMF). The outcome of this configuration is a Policy
Repository with AT-TLS rules stored as z/OS files. This file is the configuration file for the
Policy Agent, MVS task PAGENT.

4 Make sure the SSL server to which the RPC component connects is prepared for SSL connec-
tions as well. The SSL server can be EntireX Broker, Broker SSL. Agent, or Direct RPC in
webMethods Integration Server (IS inbound). See:

* Running Broker with SSL/TLS Transport in the platform-specific Administration documentation
" Broker SSL Agent in the UNIX and Windows Administration documentation
= Support for SSL/TLS in the EntireX Adapter documentation (for Direct RPC)

z/VSE

Establishing an SSL connection on z/VSE requires BSI's Automatic Transport Layer Security (ATLS).
This facility is similar to z/OS Application Transparent - Transport Layer Security (AT-TLS). ATLS
is supported by the BSI stack only.

Using BSI's Automatic Transport Layer Security (ATLS)

Together with SSL parameters (to provide certificates), define ATLS rules for socket interception
in the ATLS daemon startup job BSTTATLS @. If the rules match, the socket connection is turned

into an SSL connection @. Refer to your IBM documentation for further information. For an
overview, refer to the IBM Redbook Enhanced Networking on IBM z/VSE; for a more detailed de-
scription, refer to BSI SSL Installation, Programming and User’s Guide.

(4] (1]
| TCP
RPC Client - p BSTT=NET

A

(2]

¥

e

BSTTATLS F >

© BSI TCP/IP Stack, either BSTTINET (IPv4) or BSTT6NET (IPv6).

148 EntireX COBOL Wrapper

Using SSL/TLS

@ ATLS rules are defined manually. See Sample ATLS Daemon Configuration below.
€ BSTTATLS is associated with a TCP/IP stack.
© Application using TCP connection.

© BSTTATLS intercepts outbound TCP connection and converts it to SSL connection. For inbound,
SSL connections can also be intercepted and converted to TCP connections.

~ To set up SSL with ATLS

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Set up the RPC component for a TCP/IP connection. On mainframe platforms, use Transport-
method-style Broker ID. Example:

ETB024:1699:TCP

3 Configure ATLS to turn the TCP/IP connection to an SSL connection, see above.

4 Make sure the SSL server to which the RPC component connects is prepared for SSL connec-
tions as well. The SSL server can be EntireX Broker, Broker SSL Agent, or Direct RPC in
webMethods Integration Server (IS inbound). See:

® Running Broker with SSL/TLS Transport in the platform-specific Administration documentation
" Broker SSL Agent in the UNIX and Windows Administration documentation
= Support for SSL/TLS in the EntireX Adapter documentation (for Direct RPC)

Sample ATLS Daemon Configuration

* Converting inbound EntireX Broker connection

* Converts listen port 1971 to SSL Tisten port 1972

OPTION SERVER

ATTLS 1971 AS 2071 SSL

*

* Converting outbound client connection

* Converts connect to 192.168.2.100:1972:TCP to 192.168.2.100:2072:SSL
OPTION CLIENT

ATTLS 1972 TO 192.168.2.100 AS 2072 SSL

Note: We recommend setting SETPARM value SUBTASK to a value greater than 0 in the ATLS

daemon startup job (valid values 0-16, default=0). For example:

EntireX COBOL Wrapper 149

Using SSL/TLS

// SETPARM SUBTASK=8

See also BSI SSL Installation, Programming and User’s Guide.

UNIX, Windows, BS2000

RPC client applications built with the COBOL Wrapper do not support Secure Sockets Layer/Trans-
port Layer Security (SSL/TLS) as the transport medium under UNIX, Windows or BS2000.

150 EntireX COBOL Wrapper

17 Using Internationalization with the COBOL Wrapper

RPC clients generated with the COBOL Wrapper do not convert your application data (in RPC
IDL type A, K, AV and KV fields) before it is sent to the broker. The application's data is shipped
as given by the RPC client program.

* For Operating System z/OS

" By default, no codepage is transferred to the broker. It is assumed the broker's locale string
defaults match. See Broker’s Locale String Defaults.

® You can provide the CCSID in the field COMM-CCSID of copybook ERXCOMM to tell the broker
the encoding of your application data. Do this before issuing broker and RPC calls, for example
in Step Optional Settings in the RPC Communication Area (Call Interface | CICS).

Example:
MOVE 37 TO COMM-CCSID.

® Ifa CCSIDis provided, it is sent as CP<number> to the broker. It must be a codepage supported
by the broker and follow the rules described under Locale String Mapping.

® For Operating System Windows

® The Generic RPC Service module assumes the data is given in the encoding of the Windows
ANSI codepage configured for your system. A codepage identifier of this Windows ANSI
codepage is automatically transferred to tell the broker how the data is encoded.

® If you want to adapt the Windows ANSI codepage, see the Regional Settings in the Windows
Control Panel and your Windows documentation.

* For all other Operating System

" No codepage is transferred to the broker. It is assumed the broker's locale string defaults
match. See Broker’s Locale String Defaults.

151

Using Internationalization with the COBOL Wrapper

Enable character conversion in the broker by setting the service-specific attribute CONVERSION to
"SAGTRPC". See also Configuring ICU Conversion under Configuring Broker for Internationalization in
the platform-specific Administration documentation. More information can be found under Inter-
nationalization with EntireX.

152 EntireX COBOL Wrapper

IV Reliable RPC for COBOL Wrapper

153

154

18 Reliable RPC for COBOL Wrapper

= |ntroduction to Reliable RPCoiiii e 156
BOWHENG @ CHENT ..ottt e e et e e e et e e e et e e e e e e 157
B WHIING @ SEIVET ..ottt et e et e e e e 162
B Broker CONfIGUIALIONviiiiiii e 162

155

Reliable RPC for COBOL Wrapper

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becoming more and more important. Reliable messaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

Reliable RPC allows asynchronous calls (“fire and forget”)

Reliable RPC is supported by most EntireX wrappers

Reliable RPC messages are stored in the Broker's persistent store until a server is available

Reliable RPC clients are able to request the status of the messages they have sent

Persistent
Store

.‘ [

RPC
with UOW : v

RPC | EntireX
Client < Broker

Error Status
RFC
with UOW

b

RPC
Server

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX COBOL Wrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

= AUTO_COMMIT
" CLIENT_COMMIT

156 EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

While AUTO_COMMIT commits each RPC message implicitly after sending it, a series of RPC messages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

The following steps describe how to write a COBOL reliable RPC client program with the scenario
Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
and Linkage access to RPC communication.

Reliable RPC requires an explicit broker logon. See Using Broker Logon and Logoff.
Step 1: Declare the Data Structures for RPC Client Interface Objects

For every program definition in the Software AG IDL file, the templates will generate a copybook
file that describes the customer data of the interface as a COBOL structure. For ease of use, the
copybook can be embedded into the RPC client program.

However, if more appropriate, customer data structures can be used. In this case the COBOL data
types and structures must match the interfaces of the generated client interface objects, otherwise
unpredictable results will occur.

* Declare the customer data of the generated RPC interface
01 SENDMATL.

02 SM-COMA.
03 SM-TOADDRESS PIC X(60).
03 SM-SUBJECT PIC X(20).
03 SM-TEXT PIC X(100).

Step 2: Declare and Initialize the RPC Communication Area

The RPC communication area must be declared and initialized in your RPC client program as
follows:

* Declare RPC communication area
02 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

EntireX COBOL Wrapper 157

Reliable RPC for COBOL Wrapper

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOL Wrapper. These settings have to be applied in your RPC client program. It is not possible

to generate any defaults into your client interface objects:

* assign the broker to talk with
MOVE "Tocalhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with

MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.
* assign the user ID for Broker logon

MOVE "ERXUSER" to COMM-USERID.

MOVE "PASSWORD" to COMM-PASSWORD.

Step 4a: Perform a Broker Logon

MOVE "LO" TO COMM-FUNCTION.
EXEC CICS LINK
PROGRAM ("COBSRVI™")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

RESP (CICS-RESPI)
RESP?2 (CICS-RESP2)
END-EXEC.

Step 4b: Examine the Error Code

Check whether the logon call was successful or not.

Step 5: Enable Reliable RPC with CLIENT_COMMIT

Before reliable RPC can be used, the reliable state must be set to either ERX_RELIABLE_CLIENT_COMMIT

or ERX_RELIABLE_AUTO_COMMIT.

= "C"-CLIENT_COMMIT
= "A"-AUTO_COMMIT

158

EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

* Set the reliable RPC mode
MOVE "C" TO COMM-RELIABLE-STATE.

Step 6a: Send the RPC Message

The RPC message is sent using the EXEC CICS LINK interface.

* Send the RPC message
MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK
PROGRAM ("SENDMAIL")
RESP (CICS-RESP1)
RESP?2 (CICS-RESP2)
COMMAREA (SENDMATL)
LENGTH (LENGTH OF SENDMATIL)
END-EXEC.

Step 6b: Examine the Error Code
When the RPC message is returned, it needs to be checked whether it was successful or not:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling
ELSE
Perform error-handling
END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided by the
COBOL Wrapper. For the error messages returned, see Error Messages and Codes.

Note: After successful call (Step 6a) the UOWID is available in the RPC communication area
field COMM-ETB-UOW-ID. See The RPC Communication Area (Reference).

Step 7a: Check the Reliable RPC Message Status

To determine that reliable RPC messages are delivered, the reliable RPC message status can be
queried. See Understanding UOW Status and Broker UOW Status Transition for more information.

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")

RESP (CICS-RESP1)

RESPZ (CICS-RESP2)

EntireX COBOL Wrapper 159

Reliable RPC for COBOL Wrapper

COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

] Note: After successful call the UOW status is available in the RPC communication area field
COMM-RELIABLE-STATUS. See The RPC Communication Area (Reference).

Step 7b: Examine the Error Code

Check whether the check status call was successful or not.

Step 8: Send a Second RPC Message

Send a second reliable RPC message. See Step 6a and Step 6b.

Step 9: Check the Reliable RPC Message Status

Check the reliable RPC message before the commit call. See Step 7a and Step 7b.
Step 10a: Commit both Reliable RPC Messages

Now both reliable RPC messages are committed. This will deliver all reliable RPC messages to
the server if it is available.

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RC" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

Step 10b: Examine the Error Code

Check whether the commit call was successful or not.

160 EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

Step 11: Send a Third RPC Message

Send a third reliable RPC message. See Step 5a and Step 5b.

Step 12: Check the Reliable RPC Message Status

Check the reliable RPC message before the rollback call. See Step 6.

Step 13a: Roll Back the Third RPC Message

Roll back the current reliable RPC message.

MOVE DFHRESP(NORMAL) TO CICS-RESPI.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RR" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ~ ("COBSRVI")

RESP (CICS-RESPI)

RESP2 (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

Step 13b: Examine the Error Code

When the rollback call is returned, check whether it was successful or not. If the rollback call failed,
an explicit EOC needs to be sent:

MOVE DFHRESP(NORMAL) TO CICS-RESPIL.
MOVE DFHRESP(NORMAL) TO CICS-RESPZ.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ~ ("COBSRVI™)

RESP (CICS-RESPI)

RESP?Z (CICS-RESP2)

COMMAREA (ERX-COMMUNICATION-AREA)

LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
END-EXEC.

EntireX COBOL Wrapper 161

Reliable RPC for COBOL Wrapper

Step 14a: Perform a Broker Logoff

MOVE "LF" TO COMM-FUNCTION.
EXEC CICS LINK
PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

RESP (CICS-RESPI)
RESP2 (CICS-RESP2)
END-EXEC.

Step 14b: Examine the Error Code

Check whether the logoff call was successful or not.

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code greater than zero. This causes the transaction (unit
of work inside the Broker) to be cancelled, and the error code is written to the user status field of
the unit of work. For writing reliable RPC servers, see Using the COBOL Wrapper for the Server
Side.

To execute a reliable RPC service with an RPC server, the parameter 1ogon (LOGN under CICS)
must be set to YES. See 1ogon in the relevant sections of the documentation.

Broker Configuration

A Broker configuration with PSTORE is recommended. This enables the Broker to store the messages
for more than one Broker session. These messages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of the messages and the status information can be configured with the attributes
UOW-DATA-LIFETIME and UOW-STATUS-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW,
MAX-UOWS and MAX-UOW-MESSAGE - LENGTH may be used in addition to configure the units of work.
See Broker Attributes.

The result of the generic RPC function call "RS" - get reliable status depends on the configuration
of the unit of work status lifetime in the EntireX Broker configuration. See COMM-FUNCTION. If the
status is not stored longer than the message, the function call returns the error code 00780305 (no
matching UOW found).

162 EntireX COBOL Wrapper

V Delivered Examples for the COBOL Wrapper

This chapter describes the following examples provided for the COBOL Wrapper:

® Client and Server Examples for z/OS Batch

® Client and Server Examples for z/OS CICS

® Client and Server Examples for z/OS IMS BMP

® Server Examples for z/OS IMS MPP

® Client and Server Examples for IBM i

® Client and Server Examples for BS2000

® Client and Server Examples for z/VSE Batch

= Client and Server Examples for z/VSE CICS

® Client and Server Examples for Micro Focus (UNIX and Windows)

163

164

19 Client and Server Examples for z/OS Batch

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 166
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 168

165

Client and Server Examples for z/OS Batch

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. They are also
available as a z/OS data set, see Installing RPC Examples.

Basic RPC Client Examples - CALC, SQUARE

= CALC Client
= SQUARE Client

CALC Client

For z/OS Batch, the CALC client is built with COBOL Wrapper "Batch with standard linkage calling
convention" interface type. See Client Interface Types for more information.

Name Type Data Set Description Notes

CALC COBOL source code |[EXP105.CCCO |Client interface object for IDL program CALC. 1

CALCCLT|COBOL source code |[EXP105.CCCO|A client application calling the remote procedure |2
(RPC service) CALC, with associated example.idl.

CALCIGY|JCL EXP105.CCCO|Job (JCL) to build the RPC client CALCCLT. 3
CALCRUN|JCL EXP105.CCCO|Job (JCL) to execute the RPC client CALCCLT. 3
CALC COBOL copybook |EXP105.CICO |Client interface object copybook for IDL program |1
CALC.
COBSRVI|COBOL source code|EXP105.CCCO |Generic RPC service module for Batch. 4
| Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the Designer.

2. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM 1).

3. Adapt the JCL to your needs.
4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information refer to the readme file in EntireX directory examples/RPC/CobolClient/zosBatch
under UNIX or Windows.

166 EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

SQUARE Client

For batch under operating system z/OS, the SQUARE client is built with COBOL Wrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes

COBSRVI|COBOL source code|EXP105.CCCO|Generic RPC service module for Batch. 4

SQRECLT |COBOL source code | EXP105.CCCO|A client application calling the remote procedure |1
(RPC service) SQUARE, with associated example.idl.

SQREIGY |JCL EXP105.CCCO|Job (JCL) to build the RPC client SQRECLT.
SQRERUN|JCL EXP105.CCCO|Job (JCL) to execute the RPC client SQRECLT.
SQUARE |COBOL source code |EXP105.CCCO|Client interface object for IDL program SQUARE.

SQUARE |COBOL copybook |EXP105.CICO |Client interface object copybook for IDL program
SQUARE.

] Notes:

1. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM 1).

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the Designer.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, see the readme file in EntireX directory examples/RPC/CobolClient/zosBatch
under UNIX or Windows.

EntireX COBOL Wrapper 167

Client and Server Examples for z/OS Batch

Basic RPC Server Examples - CALC, SQUARE

= CALC Server
= SQUARE Server

CALC Server

For batch under operating system z/OS, the CALC server is built with COBOL Wrapper "Batch
with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

Name Type Data Set Description Notes

CALC COBOL source code|EXP105.CVCO | A server application providing the remote procedure|1
CALC (RPC service), with associated example.idl.

CALCIGY|JCL EXP105.CVCO |Job (JCL) to build the remote procedure CALC (RPC|2
service).

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zosBatch
under UNIX or Windows.

SQUARE Server

For batch on operating system z/OS, the SQUARE server is built with COBOL Wrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes
SQREIGY|JCL EXP105.CVCO|Job (JCL) to build the remote procedure SQUARE |2
(RPC service)

SQUARE |COBOL source code |[EXP105.CVCO|a server application providing the remote procedure|1
SQUARE (RPC service), with associated example.idl

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM 1).

168 EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zosBatch
under UNIX or Windows.

EntireX COBOL Wrapper 169

170

20 Client and Server Examples for z/OS CICS

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 172
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 176
= Advanced CICS Channel Container RPC Server EXamplecccvvviiiiiiiiiiiee e 177

171

Client and Server Examples for z/OS CICS

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. They are also
available for z/OS, if this is installed. See Installing RPC Examples.

Basic RPC Client Examples - CALC, SQUARE

= CALC Client using DFHCOMMAREA

= CALC Client using Call Interface

= SQUARE Client using DFHCOMMAREA
= SQUARE Client using Call Interface

CALC Client using DFHCOMMAREA

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

Name Type Data Set Description Notes
CALCIDFH|CICS CSD EXP105.DCCO |CSD Definition for RPC client CALC1CLT.
CALCLIGY|JCL EXP105.DCCO |Job (JCL) to build the RPC client CALC1CLT. 2
CALCIMAP|CICS Map EXP105.DCCO|CICS Map definition for RPC clientand CALC1CLT.
CALC1 COBOL source code| EXP105.DCCO|Client interface object for IDL program CALC1, alias |1

of CALC.
CALCICLT|COBOL source code|EXP105.DCCO|An RPC client application calling the remote 3

procedure (RPC service) CALC.

CALCIMAP|COBOL copybook |EXP105.DICO |Description of input and output fields of map
CALCIMAP.

CALCI COBOL copybook |EXP105.DICO |Client interface object copybook for IDL program |1
CALC1, alias of CALC.

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the Designer.

2. Adapt the JCL to your needs.

3. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL file exampleWithPgmAlias.idl, delivered under UNIX and Windows in
EntireX directory examples/RPC/CobolClient/zosCICS/ DFHCOMMAREA.

172 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

c. client interface object name CALC1 different from remote procedure name CALC (RPC ser-

vice).

d. CALCICLT and client interface objects CALC1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

CALC Client using Call Interface

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with standard linkage calling convention". See Client Interface Types for more inform-

ation.

Name Type Data Set Description Notes

CALC COBOL source code |[EXP105.DCCO|Client interface object for IDL program CALC. 1

CALCCLT|COBOL source code |[EXP105.DCCO|An RPC client application calling the remote 2
procedure (RPC service) CALC.

CALCDFH|CICS CSD EXP105.DCCO|CSD Definition for RPC client CALCCLT.

CALCIGY|JCL EXP105.DCCO|Job (JCL) to build the RPC client CALCCLT. 3

CALCMAP|CICS Map EXP105.DCCO|CICS Map definition for RPC client CALCCLT.

CALC COBOL copybook |EXP105.DICO |Client interface object copybook for IDL program |1
CALC.

CALCMAP|COBOL copybook |EXP105.DICO |Description of input and output fields of map
CALCMAP.

COBSRVI|COBOL source code |[EXP105.DICO |Generic RPC service module for CICS with call 4
interface.

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,

generate these objects with the Designer.

2. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE)

b. associated with IDL file example.idl
c. CALCCLT uses CICS Map definition CALCMAP
d. CALCCLT and client interface object CALC are linked together
e. CALCCLT installed as single CICS program

3. Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

EntireX COBOL Wrapper

173

Client and Server Examples for z/OS CICS

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-

CICS/Callinterface under UNIX or Windows.

SQUARE Client using DFHCOMMAREA

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-

formation.

Name Type Data Set Description Notes

SQRE1DFH|CICS CSD EXP105.DCCO|CSD Definition for RPC client SQRE1CLT.

SQREI1GY|JCL EXP105.DCCO|Job (JCL) to build the RPC client SQRE1CLT. 2

SQREIMAP|CICS Map EXP105.DCCO|CICS Map definition for RPC clients SQRE1CLT.

SQREL COBOL source code| EXP105.DCCO|Client interface object for IDL program SQREI, alias |1
of SQUARE.

SQRE1CLT|COBOL source code| EXP105.DCCO|An RPC client application calling the remote 3
procedure (RPC service) SQUARE.

SQREIMAP|COBOL copybook |EXP105.DICO |Description of input and output fields of map
SQRE1IMAP.

SQREL COBOL copybook |EXP105.DICO |Client interface object copybook for IDL program |1

SQRE], alias of SQUARE.

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,
generate these objects with the Designer.

2. Adapt the JCL to your needs.

3. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL exampleWithPgmAlias.idl.

c. client interface object name SQREI1 different from remote procedure name SQUARE (RPC

service).

d. SQRE1ICLT and client interface object SQRE1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

174

EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

SQUARE Client using Call Interface

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICS with standard linkage calling convention". See Client Interface Types for more inform-

ation.

Name Type Data Set Description Notes

COBSRVI|COBOL source code |[EXP105.DCCO |Generate RPC service module for CICS with call |4
interface.

SQRECLT|COBOL source code |[EXP105.DCCO|An RPC client application calling the remote 2
procedure (RPC service) SQUARE.

SQREDFH|CICS CSD EXP105.DCCO|CSD Definition for RPC client SQRECLT.

SQREIGY |JCL EXP105.DCCO|Job (JCL) to build the RPC client SQRECLT. 3

SQREMAP |CICS Map EXP105.DCCO|CICS Map definition for RPC client SQRECLT.

SQUARE |COBOL source code |[EXP105.DCCO |Client interface object for IDL program SQUARE. |1

SQREMAP |COBOL copybook |EXP105.DICO |Description of input and output fields of map
SQREMAP.

SQUARE |COBOL copybook |EXP105.DICO |Client interface object copybook for IDL program |1
SQUARE.

Notes:

1. Under z/OS, client interface objects are delivered with the installation; under UNIX and Windows,

generate these objects with the Designer.

2. Application

a. built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE).

b. associated with IDL file example.idl.

c. SQRECLT uses CICS Map definition SQREMAP.
d. SQRECLT and client interface object SQUARE are linked together.
e. SQRECLT installed as single CICS program.

3. Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-

CICS/CallInterface under UNIX or Windows

EntireX COBOL Wrapper

175

Client and Server Examples for z/OS CICS

Basic RPC Server Examples - CALC, SQUARE

= CALC Server
= SQUARE Server

CALC Server
For CICS under operating system z/OS, the CALC server is built with COBOL Wrapper "CICS

with DFHCOMMAREA calling convention" interface type. See Server Interface Types for more
information.

Name Type Data Set Description Notes

CALC COBOL source code|EXP105.DVCO| A server application providing the remote procedure|1
CALC (RPC service), with associated example.idl.

CALCDFH|CICS CSD EXP105.DVCO|CSD Definition for remote procedure CALC (RPC
service).
CALCIGY|JCL EXP105.DVCO |Job (JCL) to build the remote procedure CALC (RPC|2
service).
] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

SQUARE Server

For CICS under operating system z/OS, the SQUARE server is built with COBOL Wrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Client Interface Types for more
information.

Name Type Data Set Description Notes

SQREDFH|CICS CSD EXP105.DVCO|CSD Definition for remote procedure SQUARE (RPC
service).

SQREIGY|JCL EXP105.DVCO|Job (JCL) to build the remote procedure SQUARE |2
(RPC service).

SQUARE |COBOL source code |[EXP105.DVCO | A server application providing the remote procedure |1
SQUARE (RPC service), with associated example.idl.

176 EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

) Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

Advanced CICS Channel Container RPC Server Example

For CICS on operating system z/OS, the TWOC server is built with COBOL Wrapper "CICS with
Channel Container calling convention" interface type. See Server Interface Types for more inform-
ation.

Name Type Data Set Description Notes

TWOC COBOL source code |[EXP105.DVCO| A server application providing the remote procedure |1
TWOC (RPC service), with associated
CICSChannelContainer.idl.

TWOCDFH|CICS CSD EXP105.DVCO|CSD Definition for remote procedure TWOC (RPC
service).

TWOCIGY |JCL EXP105.DVCO|Job (JCL) to build remote procedure TWOC (RPC |2
service).

1. Application built according to the server-side build instructions. See Using the COBOL Wrapper
for CICS with Channel Container Calling Convention (z/OS).

2. Adapt the JCL to your needs.

For more information, see the readme file in EntireX directory examples/RPC/CobolServer/zos-
CICS/ChannelContainer under UNIX or Windows.

EntireX COBOL Wrapper 177

178

21 Client and Server Examples for z/OS IMS BMP

The delivered client examples for z/OS batch can be used as a basis for use in BMP mode, but they
have to be adapted.

The delivered server examples for z/OS batch can also be used in BMP mode. See Client and
Server Examples for z/OS Batch. Using IMS PCB pointers to access IMS databases in this context
is described in IMS PCB Pointer IDL Rules under Using the COBOL Wrapper for IMS BMP
(z/08).

179

180

22

Server Examples for z/0OS IMS MPP

= CALC Server

= SQUARE Server

181

Server Examples for z/OS IMS MPP

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. They are also
available as a z/OS data set, see Installing RPC Examples.

CALC Server

The CALC server is an IMS message processing program (MPP) for the TP system IMS under

operating system z/OS. It is accessible with IMS Connect using RPC Server for IMS Connect or the
EntireX Adapter.

Name Type Data Set Description Notes

CALC COBOL source code |[EXP105.MVCO| A server application providing the remote procedure
CALC (RPC service) with associated example.idl.

CALCIGY|JCL EXP105.MVCO |Job (JCL) to build the remote procedure CALC (RPC|1
service).
CALCSTG|IMS definition EXP105.MVCO|IMS first stage generation definition for TNCALCP |1
transaction.
Notes:

|
1. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zosIMS-
MPP under UNIX or Windows.

SQUARE Server

The SQUARE server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using the RPC Server for IMS Connect or
the EntireX Adapter.

Name Type Data Set Description Notes

SQUARE |COBOL source code|EXP105.MVCO | A server application providing the remote procedure
SQUARE (RPC service), with associated example.idl.

SQREIGY|JCL EXP105.MVCO|]Job (JCL) to build the remote procedure SQUARE |1
(RPC service).
SQRESTG |IMS definition EXP105.MVCO|IMS first stage generation definition for TNSQREP |1
transaction.
Notes:

182 EntireX COBOL Wrapper

Server Examples for z/OS IMS MPP

1. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zosIMS-
MPP under UNIX or Windows.

EntireX COBOL Wrapper 183

184

23 Client and Server Examples for BS2000

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 186
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 189

185

Client and Server Examples for BS2000

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. The basic
RPC server example CALC is also delivered on BS2000 in the LMS library EXP103.COBS.

Basic RPC Client Examples - CALC, SQUARE

= CALC

= SQUARE
CALC
Element Type |Comment Notes
CREATE-CALC-CLIENT/(]J S-procedure to generate the CALC COBOL sample client application. It|2

makes use of RUN-COBOL-COMPILER and BIND-CALC-CLIENT.

BIND-CALC-CLIENT |]J S-procedure to bind the CALC COBOL sample client application.
RUN-COBOL-COMPILER]J S-procedure to run the COBOL2000 / COBOLS85 compiler. 2
RUN-CALC-CLIENT J S-procedure to run the CALC COBOL sample client application. 7
CALCCLT.COB S |Main program source of the CALC COBOL example. 1
CALC.COB S |COBOL RPC client interface object. 3
CALC S |COBOL RPC interface copybook. 3
COBSRVI.COB S |Generic RPC service. 4
ERXCOMM S |Layout of the RPC communication area. See The RPC Communication|3

Area (Reference).

CLIENT-ADAPARM

Adabas ADALNK IDTNAME parameter required when using the NET
transport method. It is shared by all clients.

CLIENT-INPARM-CALC

CALC client input parameters.

Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

. For applications built according to the client-side build instructions, see Using the COBOL

. The default configuration expects a COBOL2000 environment. Depending on your installation

it might be necessary to change the COMPILER parameter within the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOLS5 syntax.

3. Generate these objects with the Designer.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

5. Optional. If NET is chosen as transport method, specify the name of the ID table to which the
broker is connected: ADALNK IDTNAME=ADAXXXXX.

6. Set up the BROKER-ID in one of two formats depending on the transport method:

186 EntireX COBOL Wrapper

Client and Server Examples for BS2000

® TCP Transport Method

ip:port:TCP

where ip is the address or DNS host name,
port is the port number that EntireX Broker is listening on, and

TCP is the protocol name

® NET Transport Method
ETBnnn:SVCmmm:NET
where nnn is the ID under which EntireX Broker is connected to the Adabas ID table,

mmm is the SVC number under which the Adabas ID table can be accessed, and

NET is the protocol name

7. Enter the following command to run the CALC COBOL sample client:

/CALL-PROCEDURE *LIB(LIB=EXP103.COBC,ELE=RUN-CALC-CLIENT)

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

SQUARE
Element Type | Comment Notes
CREATE-SQUARE-CLIENTIJ S-procedure to generate the SQUARE COBOL sample client 2

application. It makes use of RUN-COBOL-COMPILER and
BIND-SQUARE-CLIENT.

BIND-SQUARE-CLIENT
RUN-COBOL-COMPILER
RUN-SQUARE-CLIENT

SQRECLT.COB Main program source of the SQUARE COBOL example.

] S-procedure to bind the SQUARE COBOL sample client application.

J

J

S
SQUARE.COB S |COBOL RPC client interface object.

S

S

S

S-procedure to run the COBOL2000 / COBOLS85 compiler.

S-procedure to run the SQUARE COBOL sample client application.

SQUARE COBOL RPC interface copybook.
COBSRVI.COB
ERXCOMM

Generic RPC service.

W | Q| W =[N DN

Layout of the RPC communication area. See The RPC
Communication Area (Reference).

CLIENT-ADAPARM S |Adabas ADALNK IDTNAME parameter required when using the |5
NET transport method. It is shared by all clients.

EntireX COBOL Wrapper 187

Client and Server Examples for BS2000

Element Type | Comment Notes

CLIENT-INPARM-SQUARE|S |SQUARE client input parameters. 6

1. For applications built according to the client-side build instructions, see Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM 1i).

2. The default configuration expects a COBOL2000 environment. Depending on your installation
it might be necessary to change the COMPILER parameter within the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOLS85 syntax.

3. Generate these objects with the Designer.
4. See Generation and Usage of Generic RPC Service Module COBSRVI.

5. Optional. If NET is chosen as transport method, specify the name of the ID table to which the
broker is connected: ADALNK IDTNAME=ADAXXXXX.

6. Set up the BROKERID in one of two formats depending on the transport method:
® TCP Transport Method

ip:port:TCP

where 7p is the address or DNS host name,
port is the port number that EntireX Broker is listening on, and

TCP is the protocol name

® NET Transport Method

ETBnnn: SVCmmm:NET

where nnn is the ID under which EntireX Broker is connected to the Adabas ID table,
mmm is the SVC number under which the Adabas ID table can be accessed, and

NET is the protocol name

7. Enter the following command to run the SQUARE COBOL sample client:

/CALL-PROCEDURE *LIB(LIB=EXP103.COBC,ELE=RUN-SQUARE-CLIENT)

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

188 EntireX COBOL Wrapper

Client and Server Examples for BS2000

Basic RPC Server Examples - CALC, SQUARE

= CALC
= SQUARE

CALC

Element Type |Comment Notes

CREATE-CALC-SERVER|] S-procedure to generate the CALC COBOL example server. It makes |2

use of RUN-COBOL-COMPILER.

RUN-COBOL-COMPILER]J S-procedure to run the COBOL2000 / COBOLS5 compiler. 2
CALC.COB S |Server program source of CALC COBOL example. 1,3
1. For applications built according to the server-side build instructions, see Using the COBOL

Wrapper for Batch (z/OS, BS2000, z/VSE and IBM 1).

The default configuration expects a COBOL2000 environment. Depending on your installation
it might be necessary to change the COMPILER parameter within the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOLS5 syntax.

When executing:

* make sure the RPC server runs as COBOL RPC server (refer to parameter marshallingin
the RPC-CONFIG S-element in library EXP103.JOBS)

® make sure that library EXP103.COBS is included as PROGRAM- LIB in the startup procedure
START-RPC-SERVER

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

SQUARE

Element Type | Comment Notes

CREATE-SQUARE-SERVER(]J S-procedure to generate the SQUARE COBOL example server. It (2

makes use of RUN-COBOL-COMPILER.

RUN-COBOL-COMPILER |J |S-procedure to run the COBOL2000 / COBOLS85 compiler. 2
SQUARE.COB S |Server program source of SQUARE COBOL example. 1,3
1. For applications built according to the server-side build instructions, see Using the COBOL

Wrapper for Batch (z/OS, BS2000, z/VSE and IBM 1i).

. The default configuration expects a COBOL2000 environment. Depending on your installation

it might be necessary to change the COMPILER parameter within the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOLS85 syntax.

EntireX COBOL Wrapper 189

Client and Server Examples for BS2000

3. When executing:

* make sure the RPC server runs as COBOL RPC server (refer to parameter marshallingin
the RPC-CONFIG S-element in library EXP103.JOBS)

® make sure that library EXP103.COBS is included as PROGRAM- L1B in the startup procedure
START-RPC-SERVER

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

190 EntireX COBOL Wrapper

24 Client and Server Examples for IBM i

= Qverview of Client and Server Examples for IBM iooiiiiiiiiiiie e 192
= |nstalling and Running the Client Examples for IBM ioooiiiiiiiiii e 193
= |nstalling and Running the Server Examples for IBM icooviiiiiiiii e 193

191

Client and Server Examples for IBM i

This chapter describes the examples provided for the COBOL Wrapper for z/OS Batch.

Overview of Client and Server Examples for IBM i

The following examples are delivered for IBM i in the library EXAMPLE:

Module Source file (Windows File Name |Description Notes
CALCMENU|QCBLLESRC |- not delivered here -|COBOL client display file (source) 1
CALCMAIN|QCBLLESRC|- not delivered here -|COBOL client dialog program (source) |1
CCALC QCBLLESRC|- not delivered here -|client interface object (generated) 1
RPCSRVI |QCBLLESRC|- not delivered here - |generic RPC service module 1
CALC QCBLLESRC |- not delivered here - |RPC server calc (source) 2
Module

The name of the delivered module.

Source file

The name of the source file where the modules are delivered.
Windows File Name

IBM i examples are not delivered in the Windows installation.
Description

The purpose of the module

] Notes:

1. The client application is built by the source members: CALCMENU, CALCMAIN, CCALC and RPCSRVI.
You can find the associated IDL file example.idl in the Windows installation.

2. The server application.

192 EntireX COBOL Wrapper

Client and Server Examples for IBM i

Installing and Running the Client Examples for IBM i

~ To run the client examples for IBM i

1 The EntireX product library EXX must be in your library list. It contains the Broker ACI service
program EXA.

2 Confirm that the broker and the RPC server are active.

3 Start the client application CALCCLIENT that you built, see Using the COBOL Wrapper for
Batch (z/OS, BS2000, z/VSE and IBM i).

4 A menu similar to the following will be displayed:

Calculator Menu

Operation: + (type + - * / to calculate or
type . to terminate)

Operand 1:

Operand 2:

Result:

Broker-ID: localhost:1971 Server: SRVI

Specity the ID of the remote Broker and the name of the server that provides the CALC program.
Specify the numbers you want to compute and press ENTER. If the Broker connection fails, you will
get an appropriate error message.

Installing and Running the Server Examples for IBM i

~ To install and run the server examples for IBM i

1 For IBMj, the delivered program CALC in QCBLLESRC source file must be provided to the RPC
server under IBM i.

2 Confirm that the broker is active.

3 Start the RPC server under IBM i.

EntireX COBOL Wrapper 193

194

25 Client and Server Examples for z/VSE Batch

= Basic RPC Client Examples - CALC, SQUAREoouiiiiiii e 196
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiii e 198

195

Client and Server Examples for z/VSE Batch

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC.

Basic RPC Client Examples - CALC, SQUARE

= CALC Client
= SQUARE Client

CALC Client

The CALC client is built with COBOL Wrapper interface type "Batch with standard linkage calling
convention". See Client Interface Types for more information.

Name Type Sublibrary™ Description Notes

READMEL . TXT|Text document EXAMPLE.COBCLTB |Client build instructions and description.

CALCCLT.C |COBOL source code|EXAMPLE.COBCLTB|A client application calling the remote 2
procedure (RPC service) CALC, with
associated example.idl.

CALC.C COBOL source code | EXAMPLE . COBCLTB |Client interface object for IDL program |1
CALC.

CALC.C COBOL copybook |EXAMPLE.COBCPYB |Client interface object copybook for IDL |1
program CALC.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 1

COBSRVIB.C |COBOL source code|EXAMPLE.COBCLTB|Generic RPC Service for Batch. 4

CALCCLT.J [JCL EXAMPLE.COBCLTB|Job control to build the RPC client CALCCLT.|3

CALCRUN.J |JCL EXAMPLE.COBCLTRB|Job control to execute the RPC client 3
CALCCLT.

| Notes:

1. Generate these objects with the Designer.

2. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM 1).

3. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information refer to the file READMEL . TXT in EntireX directory examples/RPC/CobolCli-
ent/vseBatch under UNIX or Windows.

196 EntireX COBOL Wrapper

Client and Server Examples for z/VSE Batch

SQUARE Client

For batch under operating system z/VSE, the SQUARE client is built with COBOL Wrapper interface
type "Batch with standard linkage calling convention". See Client Interface Types for more inform-
ation.

&)

Name Type Sublibrary Description Notes

READMEL.TXT |Text document EXAMPLE.COBCLTB |Client build instructions and description

SQRECLT.C |COBOL source code|EXAMPLE.COBCLTB|A client application calling the remote 1
procedure (RPC service) SQUARE, with
associated example.idl.

SQUARE.C COBOL source code|EXAMPLE . COBCLTB|Client interface object for IDL program |3
SQUARE.

SQUARE.C COBOL copybook |EXAMPLE.COBCPYB|Client interface object copybook for IDL |3
program SQUARE.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 3
COBSRVIB.C |COBOL source code|EXAMPLE.COBCLTB|Generic RPC Service for Batch. 4
SQRECLT.J |JCL EXAMPLE.COBCLTB |Job control to build the RPC client SQRECLT. |2
SQRERUN.J |JCL EXAMPLE.COBCLTB|Job control to execute the RPC client 2
SQRECLT.
] Notes:

1. Application built according to the client-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM 1).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

3. Generate these objects with the Designer.
4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the file READMEL. TXT in EntireX directory examples/RPC/CobolCli-
ent/vseBatch under UNIX or Windows.

EntireX COBOL Wrapper 197

Client and Server Examples for z/VSE Batch

Basic RPC Server Examples - CALC, SQUARE

= CALC Server
= SQUARE Server

CALC Server
For batch under operating system z/VSE, the CALC server is built with COBOL Wrapper "Batch

with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

Name Type Sublibrary *“ Description Notes

READMEL . TXT |Text file EXAMPLE.COBSRVB|CALC server build instructions and
description

CALC.C COBOL source |EXAMPLE.COBSRVB|A server application providing the remote |1

code procedure CALC (RPC service), with

associated example.idl.

CALC.J JCL EXAMPLE.COBSRVB |Job control to build the remote procedure 2
CALC (RPC service).

| Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information refer to the file READMEL . TXT in EntireX directory examples/RPC/CobolServ-
er/vseBatch under UNIX or Windows.

SQUARE Server

For Batch on operating system z/VSE, the SQUARE server is built with COBOL Wrapper interface
type "Batch with standard linkage calling convention". See Client Interface Types for more inform-
ation.

198 EntireX COBOL Wrapper

Client and Server Examples for z/VSE Batch

Name Type Sublibrary" Description Notes
READMEL . TXT |Text file EXAMPLE.COBSRVB|SQUARE server build instructions and
description
SQUARE.C COBOL source |EXAMPLE.COBSRVB|A server application providing the remote |1
code procedure SQUARE (RPC service), with
associated example.idl
SQUARE.J JCL EXAMPLE.COBSRVB|Job control to build the remote procedure 2
SQUARE (RPC service)

) Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for Batch (z/OS, BS2000, z/VSE and IBM 1).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information refer to the file READMEL. TXT in EntireX directory examples/RPC/CobolServ-
er/vseBatch under UNIX or Windows.

EntireX COBOL Wrapper

199

200

26 Client and Server Examples for z/VSE CICS

= Basic RPC CALC Example

= Basic RPC SQUARE Example

201

Client and Server Examples for z/VSE CICS

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. This chapter
covers the following topics.

Basic RPC CALC Example

= CALC Client using Call Interface (CALCCLT)
= CALC Client using DFHACOMMAREA (CALC1CLT)
= CALC Server (CALC)

CALC Client using Call Interface (CALCCLT)

The CALC CICS client example CALCCLT is implemented with interface type "CICS with standard
linkage calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

READMEL . TXT|Text file EXAMPLE.COBCLTC |Client build instructions and description.

CALCCLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) CALC.

CALC.C COBOL source code | EXAMPLE . COBCLTC |Client interface object for IDL program |2
CALC.

CALC.C COBOL copybook [EXAMPLE.COBCPYC |Client interface object copybook for IDL |2

program CALC.
ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVID.C [COBOL source code|EXAMPLE.COBCLTC |Generic RPC Service module for CICS with |5
call interface.

CALCMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client CALCCLT.
CALCMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3
CALCLT.J JCL EXAMPLE.COBCLTC|Job control to build the RPC client CALCCLT.|4
CALCDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client CALCCLT.
| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with Call Interfaces (z/OS and z/VSE).

2. Generate these objects with the Designer.
3. Generated from CALCMAP . A during execution of CALCCLT.J.

4. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

202 EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

5. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the READMEL.TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows.

CALC Client using DFHACOMMAREA (CALC1CLT)

The CALC CICS client example CALC1CLT is implemented with interface type "CICS with DFHCOM-
MAREA calling convention". See Client Interface Types for more information.

Name Type Sublibrary Description Notes

README3. TXT|Text file EXAMPLE.COBCLTC |Client build instructions and description.

CALCICLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) CALC.

CALCL.C COBOL source code | EXAMPLE . COBCLTC |Client interface object for IDL program |2
CALC.

CALCL.C COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program CALC.

ERXCOMM.C |COBOL copybook [EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVIC.C |COBOL source code|EXAMPLE.COBCLTC|Generic RPC Service with EXEC CICS 5
LINK interface.

CALCIMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client CALC1CLT.

CALCIMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

CALCICLT.J |JCL EXAMPLE.COBCLTC|Job control to build the RPC client 4
CALCICLT.

CALCIDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client CALC1CLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

Adapt the JCL to your needs.

Module COBSRVI.

. Generate these objects with the Designer.

. Generated from CALCIMAP. A during execution of CALCICLT.J.

. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.

. Built as COBSRVI.PHASE by CALCICLT.J. See Generation and Usage of Generic RPC Service

For more information, refer to the README3. TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows.

EntireX COBOL Wrapper

203

Client and Server Examples for z/VSE CICS

CALC Server (CALC)

The CALC CICS server example is built with COBOL Wrapper interface type "CICS with DFHCOM-
MAREA calling convention". See Server Interface Types for more information.

Name Type Sublibrary (2) Description Notes

READMEL . TXT|Text file EXAMPLE.COBSRVC|CALC server build instructions and description.

CALC.C COBOL source [EXAMPLE.COBSRVC|A server application providing the remote 1

code procedure CALC (RPC service), with associated

example.idl.

CALC.J JCL EXAMPLE.COBSRVC |Job control to build the remote procedure CALC|2
(RPC service).

CALCDFH.J |JCL EXAMPLE.COBSRVC|CICS CSD definitions job control for remote
procedure CALC (RPC service).

j Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information, refer to the READMEL. TXT file in EntireX directory examples/RPC/CobolServ-
er/vseCICS under UNIX or Windows.

Basic RPC SQUARE Example

= SQUARE Client using Call Interface (SQRECLT)
= SQUARE Client using DFHACOMMAREA (SQRE1CLT)
= SQUARE Server (SQUARE)

SQUARE Client using Call Interface (SQRECLT)

The SQUARE CICS client example SQRECLT is implemented with interface type "CICS with
standard linkage calling convention". See Client Interface Types for more information.

204 EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

Name Type Sublibrary Description Notes

READMEL . TXT|Text file EXAMPLE.COBCLTC|Client build instructions and description.

SQRECLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) SQUARE.

SQUARE.C COBOL source code|EXAMPLE . COBCLTC|Client interface object for IDL program |2
SQUARE.

SQUARE.C COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program SQUARE.

ERXCOMM.C |COBOL copybook |EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVID.C [COBOL source code|EXAMPLE.COBCLTC |Generic RPC Service for CICS with call 2,5
interface.

SQREMAP. A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client SQRECLT.

SQREMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

SQRECLT.J |JCL EXAMPLE.COBCLTC|Job control to build the RPC client SQRECLT. |4

SQREDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client SQRECLT.

| Notes:
1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS

with Call Interfaces (z/OS and z/VSE).

Adapt the JCL to your needs.

5.

Generate these objects with the Designer.

Generated from SQREMAP . A during execution of SQRECLT. J.

See Generation and Usage of Generic RPC Service Module COBSRVI.

The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.

For more information, refer to the README1.TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTC.

SQUARE Client using DFHACOMMAREA (SQRE1CLT)

The SQUARE CICS client example SOREICLT is implemented with interface type "CICS with DFH-
COMMAREA calling convention". See Client Interface Types for more information.

EntireX COBOL Wrapper

205

Client and Server Examples for z/VSE CICS

Name Type Sublibrary Description Notes

README3. TXT|Text file EXAMPLE.COBCLTC|Client build instructions and description.

SQRE1CLT.C |COBOL source code|EXAMPLE.COBCLTC|An RPC client application calling the 1
remote procedure (RPC service) SQUARE.

SQRETL.C COBOL source code|EXAMPLE . COBCLTC|Client interface object for IDL program |2
SQUARE.

SQRETL.C COBOL copybook |EXAMPLE.COBCPYC|Client interface object copybook for IDL |2
program SQUARE.

ERXCOMM.C |COBOL copybook |EXAMPLE.COBCPY |RPC Communication Area copybook. 2

COBSRVIC.C [COBOL source code|EXAMPLE.COBCLTC |Generic RPC Service. 2,5

SQREIMAP.A |CICS map EXAMPLE.COBCLTC|CICS map for RPC client SQREICLT.

SQREIMAP.C |COBOL copybook |EXAMPLE.COBCPYC|Generated CICS Map COBOL Definitions. |3

SQREICLT.J [JCL EXAMPLE.COBCLTC|Job control to build the RPC client 4
SQRE1CLT.

CALCIDFH.J |JCL EXAMPLE.COBCLTC|CICS CSD definitions job control for RPC
client SQRE1ICLT.

| Notes:

1. Built according to the client-side build instructions, see Using the COBOL Wrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

Adapt the JCL to your needs.

Module COBSRVI.

Generate these objects with the Designer.

Generated from SQREIMAP. A during execution of SQRE1CLT. J.

The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.

Built as COBSRVI.PHASE by SQRE1ICLT. J. See Generation and Usage of Generic RPC Service

For more information, refer to the README3. TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTC.

206

EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

SQUARE Server (SQUARE)

The SQUARE CICS server example is built with COBOL Wrapper interface type "CICS with DFH-
COMMAREA calling convention". See Server Interface Types for more information.

Name Type Sublibrary Description Notes
READMEL . TXT|Text file EXAMPLE.COBSRVC|CALC server build instructions and description.
SQUARE.C COBOL source |EXAMPLE.COBSRVC|A server application providing the remote 1
code procedure SQUARE (RPC service), with
associated example.idl.
SQUARE . J JCL EXAMPLE.COBSRVC |Job control to build the remote procedure 2

SQUARE (RPC service).

SQREDFH.J |JCL

EXAMPLE.COBSRVC

CICS CSD definitions job control for remote
procedure SQUARE (RPC service).

] Notes:

1. Application built according to the server-side build instructions, see Using the COBOL Wrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information, refer to the READMEL . TXT file in EntireX directory examples/RPC/CobolServ-
er/vseCICS under UNIX or Windows.

EntireX COBOL Wrapper

207

208

27 Client and Server Examples for Micro Focus (UNIX and

Windows)
= Basic RPC Client Examples - CALC, SQUAREooiiiiiiii e 210
= Basic RPC Server Examples - CALC, SQUAREoooiiiiiiiiie e 210

209

Client and Server Examples for Micro Focus (UNIX and Windows)

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC.

Basic RPC Client Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE clients are built with COBOL Wrapper
"Micro Focus with standard linkage calling convention" interface type. See Client Interface Types
for more information.

Name Type Description Notes

CALCCLT.cb1|COBOL source code|A client application calling the remote procedure (RPC service) |1
CALC, with associated example.idl.

SQRECLT.cb1|COBOL source code|A client application calling the remote procedure (RPC service) |1
SQUARE, with associated example.idl.

] Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

For more information, see the readme file in EntireX directory examples/RPC/CobolClient/MicroFocus
under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE servers are built with COBOL Wrapper
"Micro Focus with standard linkage calling convention" interface type. See Server Interface Types
for more information.

Name Type Description Notes

CALC.cb1 |COBOL source code |A server application providing the remote procedure CALC (RPC|1
service), with associated example.idl.

SQUARE . cb1|COBOL source code|A server application providing the remote procedure SQUARE |1
(RPC service), with associated example.idl.

] Notes:

1. Application built according to the server-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

210 EntireX COBOL Wrapper

Client and Server Examples for Micro Focus (UNIX and Windows)

For more information, see the readme file in EntireX directory examples/RPC/CobolServer/MicroFocus
under UNIX or Windows.

EntireX COBOL Wrapper 211

212

VI

= 28 The RPC Communication Area (REFEIENCE)cciviiiiiiiiiiicie e 215
B 20 DElVErEd MOTUIES ...ttt 221

213

214

28 The RPC Communication Area (Reference)

B COPYDOOK ERXCOMM ..ot ettt ettt 216
B COPYDOOK ERXVSTR ..o eeeee e eese e ee e et e et ee st e e e et e et 219

215

The RPC Communication Area (Reference)

The RPC communication area is used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. These are, for example, the Broker ID,

client parameters such as user ID, password and the server address such as class/servername/service
etc. See the tables below for a complete listing.

The RPC communication area is provided with the generated copybook ERXCOMM and optionally
with its extension copybook ERXVSTR in the folder include for RPC client generation. See Generating
COBOL Source Files from Software AG IDL Files.

Copybook ERXCOMM

The ERXCOMM copybook enables an RPC client to specify and retrieve data for RPC communication.
For usage refer to £RXCOMM Copybook under Using the Generated Copybooks.

Reg/
Opt/ | In/
RPC Communication Area Field Explanation Auto |Out |Notes
ERXCOMM-HEADER Label. - -
COMM-REQUEST Label. - -
COMM-VERSION Version of RPC communication area. Possible values: | R | T |7
2000 or 4000.
COMM-FUNCTION LO - log on to the Broker o111
LF - log off from the Broker 1
0C - open conversation 2
CE - close conversation with commit 2
CB - close conversation with backout 2
CT - create Natural Security token 3
RC - do reliable RPC commit 5
RR - do reliable RPC rollback 5
RS - get reliable status 5
EC - end of conversation -
COMM-RETURN-CODE Message class and message code returned by COBOL| - | O |-
Wrapper.
COMM-MESSAGE-TEXT-EX Message text provided by COBOL Wrapper (long - 10|
versions).
COMM-MESSAGE-TEXT Deprecated. Use COMM-MESSAGE-TEXT-EX instead. | - | O |-
ERXCOMM-AREAL Label. - - -
COMM-USERID Label. - - |-
COMM-USERIDI1 RPC user ID (8 characters) for RPC authentication. O|T1]3

216

EntireX COBOL Wrapper

The RPC Communication Area (Reference)

Req/
Opt/ | In/
RPC Communication Area Field Explanation Auto |Out |Notes
COMM-USERIDZ Deprecated - do not use. (O
COMM-PASSWORD RPC password (8 characters) for RPC authentication. | O | I |3
COMM- LIBRARY RPC library name (8 characters) for RPC authentication| O | I |3,4
or to log on to a specific library.
COMM-SECURITY-TOKEN-LENGTH |Length of Natural Security token. A |I/O|6
COMM-SECURITY-TOKEN Natural Security token. A [I/O|6
COMM-IN-CONVERSATION Control variable used internally by generic RPC A |I/O|6
services and client interface objects. If set to Y, RPC
requests will use COMM-ETB-CONV - ID for
conversationality.
COMM-IN-ACTIVE-UOW Control variable used internally by generic RPC A |I/O|6
services and client interface objects for reliable RPC. If
set to Y, RPC requests will use COMM-ETB-UOW- 1D for
reliability.
COMM-RELIABLE-STATE Control variable used by the application to determine| R |I/O|5
whether standard RPC requests or reliable RPC
messages are used. Valid values:
"' (blank) normal RPC requests
A reliable RPC in AUTO-COMMIT mode
C reliable RPC in CLIENT-COMMIT mode
COMM-RELIABLE-STATUS Result of a “get reliable status” call to generic RPC A |O|5
services, see field COMM-FUNCTION above. Values
correspond to broker ACI field UOWSTATUS.
COMM-KERNEL-SECURITY Corresponds to Broker ACI field KERNELSECURITY. oI
COMM-CCSID This field is available for operating system z/OSonly. | O | I |-
Specify the CCSID for the following tasks:
" to convert the codepage of the long RPC password
and RPC user ID; see RPC Authentication Using Long
RPC User ID/RPC Password (z/OS with Call Interface)
= to tell the broker the encoding of your application
data; see Using Internationalization with the
COBOL Wrapper
COMM-ETB-BROKER-ID Corresponds to Broker ACI field BROKER-ID. R |T|
COMM-ETB-SERVER-CLASS Corresponds to Broker ACI field SERVER-CLASS. R |T|-
COMM-ETB-SERVER-NAME Corresponds to Broker ACI field SERVER-NAME. R |T]|
COMM-ETB-SERVICE-NAME Corresponds to Broker ACI field SERVICE. R|T]-
COMM-ETB-USER-ID Corresponds to Broker ACI field USER- ID. o|11
EntireX COBOL Wrapper 217

The RPC Communication Area (Reference)

Req/
Opt/ | In/

RPC Communication Area Field Explanation Auto |Out |Notes
COMM-ETB-PASSWORD Corresponds to Broker ACI field PASSWORD. oO|11
COMM-ETB-TOKEN Corresponds to Broker ACI field TOKEN. O |I/O|-
COMM-ETB-SECURITY-TOKEN Corresponds to Broker ACI field SECURITY-TOKEN. | A |I/O|6
COMM-ETB-CONV-ID Corresponds to Broker ACI field CONV-ID. A [I/O|6
COMM-ETB-WAIT Corresponds to Broker ACI field WAIT. Default: 60 O |1 |-

seconds.
COMM-ETB-APIVERS Corresponds to Broker ACI field APT-VERSION. A [I/O|6
COMM-ETB-UOW-ID Corresponds to Broker ACI field UOWID. O |I/O|5
COMM-ETB-STORE Corresponds to Broker ACI field STORE. O |I/O|5
COMM-ETB-PROGRAM-OFFSET Fields are used internally to support Application A |I/O|6
COMM-ETB- LIBRARY-OFFSET Monitoring and for accounting purposes. See Accounting|~ A /06

in EntireX Broker in the platform-specific Administration

documentation.
COMM-ETB-MESSAGE-ID Corresponds to Broker ACI field MESSAGE - ID. A |O |-
COMM-ETB-CORRELATION-ID Corresponds to Broker ACI field CORRELATION-ID. | A | O |-
APPMON-SUPPORT Fields are used internally to support Application A |I/O|6
APPMON-VERTFY Monitoring A [1/0[6
APPMON-TIMEVALUE A |I/O|6
APPMON-TRANSPORT-BUFFER A |I/O|6
APPMON-LEN-TRANSPORT-BUFFER A |I/O|6
APPMON-RECEIVE-BUFFER A |I/O|6
APPMON-LEN-RECEIVE-BUFFER A |I/O|6
APPMON-LEN-DATA A |I/O|6
APPMON-RETURN-CODE A |I/O|6
Key
Req/Opt/Auto

Indicates for input fields whether they have to be given by the RPC client (required) or may
be given by the user (optional). Fields marked with "Auto" are managed internally by the De-
livered Modules themselves.

In/Out
Indicates whether the field is an input field (to be given by the RPC client) or an output field
(returned to your RPC client).

] Notes:

1. See Using Broker Logon and Logoff.

218 EntireX COBOL Wrapper

The RPC Communication Area (Reference)

2. For RPC conversations. See Using Conversational RPC.
3. See Using RPC Authentication (Natural Security, Impersonation, Integration Server).

4. If you are communicating with a non-secure Natural RPC Server you can set the Natural library.
See Using the COBOL Wrapper with Non-secure Natural RPC Server.

5. See Reliable RPC for COBOL Wrapper.

6. Control variable used internally by generic RPC services and client interface objects. This means
the field is managed internally by the Delivered Modules themselves.

7. ® For astandard call interface client, see Step 1: Declare and Initialize the RPC Communication
Area in section Writing Standard Call Interface Clients.

® Foran EXEC CICS LINKclientreferto Step 1: Declare IDL Structures and RPC Communication
Area in section Writing EXEC CICS LINK Clients.

Copybook ERXVSTR

The optional ERXVSTR copybook is an extension to the ERXCOMM copybook. It enables an RPC client
to specify long data strings (e.g. passwords). For usage see ERXVSTR Copybook under Using the
Generated Copybooks.

This table describes the fields in the RPC Variable String Area.

Reg/

Opt/ |In/
RPC Variable String Area Field Explanation |Auto |Out [Notes
ERXCOMM-AREA2 Label. - - -
COMM-STRING-HEADER Label. - - -
COMM-ETB-PASSWORD-OFFSET o I |1
COMM-ETB-PASSWORD-LENGTH o |I |1
COMM-RPC-USERID-0OFFSET o |I |2
COMM-RPC-USERID-LENGTH O I |2
COMM-RPC-PASSWORD-OFFSET O I |2
COMM-RPC-PASSWORD-LENGTH o I |2
COMM-RPC-LIBRARY-OFFSET o I |2
COMM-RPC-LIBRARY-LENGTH o I |2
COMM-STRING-AREA o I |12

J Notes:

1. See Using Broker Logon and Logoff.

EntireX COBOL Wrapper 219

The RPC Communication Area (Reference)

2. See Using RPC Authentication (Natural Security, Impersonation, Integration Server).

220 EntireX COBOL Wrapper

29 Delivered Modules

m Delivered ModUIES fOr Z/OSeeiieeeee e 222
B Delivered MOAUIES TOr ZIVSEoveeeeeeeeeeeeeeee e 223
® Delivered Modules for BS2000cooiiiiiiiii oot 223
m Delivered Modules fOr IBM iiiiiiie e e 224

221

Delivered Modules

This section covers the following topics:

Delivered Modules for z/0S

Module Data Set Description Notes

COBSRVI |EXP105.SRCE|CICS generic RPC services with EXEC CICS LINK interface. 2

COBDFH |EXP105.SRCE |CICS CSD definitions of CICS generic RPC services COBSRVI with EXEC |2
CICS LINKinterface.

ERXCOMM |EXP105.INCL |RPC communication area. 1
ERXVSTR |EXP105.INCL|RPC communication area extension copybook. 4
ERXRCSRV|EXP105.SRCE |C main module for application errors. 3
3
2

ERXRCSRV|EXP105.LDO00 |Ready-to-use ERXRCSRYV module for application errors.

EXPCSRVI|EXX105.JOBS |JCL to compile the CICS generic RPC service module COBSRVI with EXEC
CICS LINKinterface.

® EXP105.INCL
The Generic RPC include data set may be delivered as a patch with a different name EXP105.INnn,
where nn is the patch level number. Make sure you install the highest patch level available. The
data set is required to SYSLIB input for the COBOL compiler.

* EXP105.SRCE
The Generic RPC source data set may be delivered as a patch with a different name EXP105.S0nn,
where nn is the patch level number. Make sure you install the highest patch level available. The
data set is required to SYSLIB input for the COBOL compiler.

] Notes:

1. The ERXCOMM copybook enables an RPC client to specify and retrieve data for RPC communication.
For usage refer to £RXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.
3. See Returning Application Errors in the RPC Server for CICS documentation.

4. The optional ERXVSTR copybook is an extension to the ERXCOMM copybook. It enables an RPC
client to specify long data strings (e.g. passwords). For usage see ERXVSTR Copybook under
Using the Generated Copybooks.

222 EntireX COBOL Wrapper

Delivered Modules

Delivered Modules for z/VSE

File Sublibrary | Description Notes
ERXCOMM EXP960 |RPC Communication area. 1,3
COBSRVIB.C |EXP960 |Batch generic RPC services with call interface (source). 2,3
COBSRVIB.0BJ|EXP960 |Batch generic RPC services with call interface (object). 2,3

COBSRVIC.C |EXP960 |CICS generic RPC services with EXEC CICS LINK interface (source).|2,3
COBSRVIC.0BJ|EXP960 |CICS generic RPC services with EXEC CICS LINK interface (object). (2,3

COBSRVID.C |EXP960 |CICS generic RPC services with call interface (source). 2,3
COBSRVID.0BJ|EXP960 |CICS generic RPC services with call interface (object). 2,3
] Notes:

1. The ERXCOMM copybook enables an RPC client to specify and retrieve data for RPC communication.
For usage refer to £RXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. Do not use the modules delivered with your z/VSE installation. Use the modules generated by
the Designer instead. Refer to Generating COBOL Source Files from Software AG IDL Files.

Delivered Modules for BS2000

Module Data Set Description Notes

ERXCOMM EXP103.COBC |RPC communication area. 1,3
COBSRVI.COB|EXP103.COBC |Batch generic RPC services with call interface. |2, 3

] Notes:

1. The ERXCOMM copybook enables an RPC client to specify and retrieve data for RPC communication.
For usage refer to £RXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. Do not use the modules delivered with your BS2000 installation. Use the modules generated
by the Designer instead. Refer to Generating COBOL Source Files from Software AG IDL Files.

EntireX COBOL Wrapper 223

Delivered Modules

Delivered Modules for IBM i

Module |Source file

Description

Notes

ERXCOMM|QCBLLESRC

RPC communication area.

1,3

RPCSRVI|QCBLLESRC

Batch generic RPC services with call interface.

2,3

J Notes:

1. The ERXCOMM copybook enables an RPC client to specify and retrieve data for RPC communication.
For usage refer to £RXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. Do not use the modules delivered with your IBM i installation. Use the modules generated by
the Designer instead. Refer to Generating COBOL Source Files from Software AG IDL Files.

224

EntireX COBOL Wrapper

	EntireX COBOL Wrapper
	Table of Contents
	EntireX COBOL Wrapper
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Introduction to the COBOL Wrapper
	2 Introduction to the COBOL Wrapper
	Description
	Generic RPC Services Module
	COBOL Client Applications
	COBOL Server Application
	COBOL Server Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface
	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS BMP with Standard Linkage Calling Convention
	Compatibility between COBOL Interface Types and RPC Server
	Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

	II Using the COBOL Wrapper
	3 Using the COBOL Wrapper for the Client Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)
	Using the COBOL Wrapper for IMS (z/OS)
	Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

	4 Using the COBOL Wrapper for the Server Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)
	Introduction
	CICS Channel Container IDL Rules
	Restrictions
	Example 1: Same Container for Direction In and Out
	Example 2: Different Container for Direction In and Out
	Example 3: Multiple Containers
	Example 4: Variable Number of Containers (Direction Out Only)
	Steps

	Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)
	Using the COBOL Wrapper for IMS BMP (z/OS)
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

	5 Generating COBOL Source Files from Software AG IDL Files
	Select an IDL File and Generate RPC Client or RPC Server
	Generation Settings - Properties
	Introduction
	Target Operating System
	Characters Used for String Literals
	IDL-specific Output Folder
	Client Interface Types
	Customize Automatically Generated Client Names
	z/OS and z/VSE
	IBM i
	UNIX and Windows with Micro Focus
	BS2000

	Starting COBOL Level for Data Items in Generated Copybooks
	RPC Communication Area
	Generation and Usage of Generic RPC Service Module COBSRVI
	Customize Automatically Generated Server Names
	Server Interface Types
	IMS PSB List
	Channel Name

	Generation Settings - Preferences

	6 Using the COBOL Wrapper in Command-line Mode
	Command-line Options
	Generate a COBOL RPC Client from IDL File
	Generate a COBOL RPC Server from IDL File

	Example Generating an RPC Client
	Example Generating an RPC Server
	Further Examples
	Windows
	Example 1
	Example 2
	Example 3
	Example 4

	Linux
	Example 1
	Example 2
	Example 3

	7 Software AG IDL to COBOL Mapping
	Mapping IDL Data Types to COBOL Data Types
	Mapping Library Name and Alias
	Client Side
	Server Side

	Mapping Program Name and Alias
	Client Side
	Server Side

	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes In, Out, InOut
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	III Writing Applications with the COBOL Wrapper
	8 Writing Standard Call Interface Clients
	Step 1: Declare and Initialize the RPC Communication Area
	Only Copybook ERXCOMM is Used
	Both Copybooks ERXCOMM and ERXVSTR are Used

	Step 2: Declare the IDL Data Structures for Client Interface Objects
	Step 3: Required Settings in the RPC Communication Area
	Step 4: Optional Settings in the RPC Communication Area
	Step 5: Issue the RPC Request and Check for Success

	9 Writing EXEC CICS LINK Clients
	Step 1: Declare IDL Structures and RPC Communication Area
	Step 2: Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4: Optional Settings in the RPC Communication Area
	Step 5: Issue the RPC Request and Check for Success

	10 Using the Generated Copybooks
	IDL Interface Copybooks
	ERXCOMM Copybook
	ERXVSTR Copybook
	COBINIT Copybook
	COBEXIT Copybook

	11 Using Broker Logon and Logoff
	Introduction
	Logging on Using Short Broker Passwords (all Interface Types)
	Call Interface
	EXEC CICS LINK Interface

	Logging on Using Long Broker Passwords (z/OS with Call Interface)

	12 Using Conversational RPC
	Call Interface
	EXEC CICS LINK Interface

	13 Using IDL Unbounded Groups or Arrays without Maximum
	14 Using RPC Authentication (Natural Security, Impersonation, Integration Server)
	Introduction
	RPC Authentication Using Short RPC User ID/RPC Password (all Interface Types)
	Call Interface
	EXEC CICS LINK Interface

	RPC Authentication Using Long RPC User ID/RPC Password (z/OS with Call Interface)

	15 Using the COBOL Wrapper with Non-secure Natural RPC Server
	Call Interface
	EXEC CICS LINK Interface

	16 Using SSL/TLS
	z/OS
	Using IBM's Application Transparent Transport Layer Security (AT-TLS)

	z/VSE
	Using BSI's Automatic Transport Layer Security (ATLS)

	UNIX, Windows, BS2000

	17 Using Internationalization with the COBOL Wrapper

	IV Reliable RPC for COBOL Wrapper
	18 Reliable RPC for COBOL Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Step 1: Declare the Data Structures for RPC Client Interface Objects
	Step 2: Declare and Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4a: Perform a Broker Logon
	Step 4b: Examine the Error Code
	Step 5: Enable Reliable RPC with CLIENT_COMMIT
	Step 6a: Send the RPC Message
	Step 6b: Examine the Error Code
	Step 7a: Check the Reliable RPC Message Status
	Step 7b: Examine the Error Code
	Step 8: Send a Second RPC Message
	Step 9: Check the Reliable RPC Message Status
	Step 10a: Commit both Reliable RPC Messages
	Step 10b: Examine the Error Code
	Step 11: Send a Third RPC Message
	Step 12: Check the Reliable RPC Message Status
	Step 13a: Roll Back the Third RPC Message
	Step 13b: Examine the Error Code
	Step 14a: Perform a Broker Logoff
	Step 14b: Examine the Error Code

	Writing a Server
	Broker Configuration

	V Delivered Examples for the COBOL Wrapper
	19 Client and Server Examples for z/OS Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	20 Client and Server Examples for z/OS CICS
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client using DFHCOMMAREA
	CALC Client using Call Interface
	SQUARE Client using DFHCOMMAREA
	SQUARE Client using Call Interface

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Advanced CICS Channel Container RPC Server Example

	21 Client and Server Examples for z/OS IMS BMP
	22 Server Examples for z/OS IMS MPP
	CALC Server
	SQUARE Server

	23 Client and Server Examples for BS2000
	Basic RPC Client Examples - CALC, SQUARE
	CALC
	SQUARE

	Basic RPC Server Examples - CALC, SQUARE
	CALC
	SQUARE

	24 Client and Server Examples for IBM i
	Overview of Client and Server Examples for IBM i
	Installing and Running the Client Examples for IBM i
	Installing and Running the Server Examples for IBM i

	25 Client and Server Examples for z/VSE Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	26 Client and Server Examples for z/VSE CICS
	Basic RPC CALC Example
	CALC Client using Call Interface (CALCCLT)
	CALC Client using DFHACOMMAREA (CALC1CLT)
	CALC Server (CALC)

	Basic RPC SQUARE Example
	SQUARE Client using Call Interface (SQRECLT)
	SQUARE Client using DFHACOMMAREA (SQRE1CLT)
	SQUARE Server (SQUARE)

	27 Client and Server Examples for Micro Focus (UNIX and Windows)
	Basic RPC Client Examples - CALC, SQUARE
	Basic RPC Server Examples - CALC, SQUARE

	VI
	28 The RPC Communication Area (Reference)
	Copybook ERXCOMM
	Copybook ERXVSTR

	29 Delivered Modules
	Delivered Modules for z/OS
	Delivered Modules for z/VSE
	Delivered Modules for BS2000
	Delivered Modules for IBM i

