
webMethods EntireX

EntireX COBOL Wrapper

Version 10.5

October 2019

This document applies to webMethods EntireX Version 10.5 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-EEXXCOBWRAPPER-105-20220422

Table of Contents

EntireX COBOL Wrapper .. vii
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

I Introduction to the COBOL Wrapper .. 5
2 Introduction to the COBOLWrapper .. 7

Description ... 8
Generic RPC Services Module ... 9
COBOL Client Applications ... 9
COBOL Server Application .. 11
COBOL Server Interface Types .. 12

II Using the COBOL Wrapper .. 19
3 Using the COBOL Wrapper for the Client Side .. 21

Using the COBOLWrapper for CICS with DFHCOMMAREA Calling
Convention (z/OS and z/VSE) .. 23
Using the COBOLWrapper for CICS with Call Interfaces (z/OS and
z/VSE) ... 25
Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i) 27
Using the COBOL Wrapper for IMS (z/OS) ... 30
Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS) 32
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 34

4 Using the COBOL Wrapper for the Server Side .. 37
Using the COBOLWrapper for CICS with DFHCOMMAREA Calling
Convention (z/OS and z/VSE) .. 39
Using the COBOLWrapper for CICS with Channel Container Calling
Convention (z/OS) .. 42
Using the COBOLWrapper for CICS with DFHCOMMAREA Large Buffer
Interface (z/OS and z/VSE) ... 47
Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i) 50
Using the COBOL Wrapper for IMS BMP (z/OS) .. 54
Using the COBOL Wrapper for Micro Focus (UNIX and Windows) 58

5 Generating COBOL Source Files from Software AG IDL Files 61
Select an IDL File and Generate RPC Client or RPC Server 62
Generation Settings - Properties .. 66
Generation Settings - Preferences .. 77

6 Using the COBOL Wrapper in Command-line Mode ... 79
Command-line Options .. 80
Example Generating an RPC Client ... 83
Example Generating an RPC Server .. 84
Further Examples ... 84

7 Software AG IDL to COBOL Mapping ... 87
Mapping IDL Data Types to COBOL Data Types .. 88

iii

Mapping Library Name and Alias ... 92
Mapping Program Name and Alias ... 93
Mapping Parameter Names ... 93
Mapping Fixed and Unbounded Arrays ... 94
Mapping Groups and Periodic Groups ... 95
Mapping Structures .. 96
Mapping the Direction Attributes In, Out, InOut .. 96
Mapping the ALIGNED Attribute ... 97
Calling Servers as Procedures or Functions ... 97

III Writing Applications with the COBOL Wrapper .. 99
8 Writing Standard Call Interface Clients .. 101

Step 1: Declare and Initialize the RPC Communication Area 102
Step 2: Declare the IDL Data Structures for Client Interface Objects 104
Step 3: Required Settings in the RPC Communication Area 104
Step 4: Optional Settings in the RPC Communication Area 105
Step 5: Issue the RPC Request and Check for Success 105

9 Writing EXEC CICS LINK Clients ... 109
Step 1: Declare IDL Structures and RPC Communication Area 110
Step 2: Initialize the RPC Communication Area .. 111
Step 3: Required Settings in the RPC Communication Area 112
Step 4: Optional Settings in the RPC Communication Area 113
Step 5: Issue the RPC Request and Check for Success 113

10 Using the Generated Copybooks ... 115
IDL Interface Copybooks ... 116
ERXCOMM Copybook ... 117
ERXVSTR Copybook .. 117
COBINIT Copybook ... 118
COBEXIT Copybook .. 118

11 Using Broker Logon and Logoff .. 119
Introduction .. 120
Logging on Using Short Broker Passwords (all Interface Types) 120
Logging on Using Long Broker Passwords (z/OS with Call Interface) 123

12 Using Conversational RPC .. 125
Call Interface .. 126
EXEC CICS LINK Interface .. 129

13 Using IDL Unbounded Groups or Arrays without Maximum 131
14 Using RPC Authentication (Natural Security, Impersonation, Integration
Server) ... 135

Introduction .. 136
RPC Authentication Using Short RPC User ID/RPC Password (all Interface
Types) ... 137
RPC Authentication Using Long RPC User ID/RPC Password (z/OS with
Call Interface) ... 139

15 Using the COBOL Wrapper with Non-secure Natural RPC Server 141
Call Interface .. 142

EntireX COBOL Wrapperiv

EntireX COBOL Wrapper

EXEC CICS LINK Interface .. 144
16 Using SSL/TLS ... 145

z/OS .. 146
z/VSE .. 148
UNIX, Windows, BS2000 .. 150

17 Using Internationalization with the COBOLWrapper 151
IV Reliable RPC for COBOL Wrapper .. 153

18 Reliable RPC for COBOL Wrapper .. 155
Introduction to Reliable RPC ... 156
Writing a Client .. 157
Writing a Server .. 162
Broker Configuration ... 162

V Delivered Examples for the COBOL Wrapper ... 163
19 Client and Server Examples for z/OS Batch .. 165

Basic RPC Client Examples - CALC, SQUARE .. 166
Basic RPC Server Examples - CALC, SQUARE ... 168

20 Client and Server Examples for z/OS CICS ... 171
Basic RPC Client Examples - CALC, SQUARE .. 172
Basic RPC Server Examples - CALC, SQUARE ... 176
Advanced CICS Channel Container RPC Server Example 177

21 Client and Server Examples for z/OS IMS BMP .. 179
22 Server Examples for z/OS IMS MPP .. 181

CALC Server ... 182
SQUARE Server .. 182

23 Client and Server Examples for BS2000 ... 185
Basic RPC Client Examples - CALC, SQUARE .. 186
Basic RPC Server Examples - CALC, SQUARE ... 189

24 Client and Server Examples for IBM i ... 191
Overview of Client and Server Examples for IBM i 192
Installing and Running the Client Examples for IBM i 193
Installing and Running the Server Examples for IBM i 193

25 Client and Server Examples for z/VSE Batch .. 195
Basic RPC Client Examples - CALC, SQUARE .. 196
Basic RPC Server Examples - CALC, SQUARE ... 198

26 Client and Server Examples for z/VSE CICS ... 201
Basic RPC CALC Example ... 202
Basic RPC SQUARE Example .. 204

27 Client and Server Examples for Micro Focus (UNIX and Windows) 209
Basic RPC Client Examples - CALC, SQUARE .. 210
Basic RPC Server Examples - CALC, SQUARE ... 210

VI ... 213
28 The RPC Communication Area (Reference) .. 215

Copybook ERXCOMM ... 216
Copybook ERXVSTR .. 219

29 Delivered Modules .. 221

vEntireX COBOL Wrapper

EntireX COBOL Wrapper

Delivered Modules for z/OS ... 222
Delivered Modules for z/VSE ... 223
Delivered Modules for BS2000 ... 223
Delivered Modules for IBM i .. 224

EntireX COBOL Wrappervi

EntireX COBOL Wrapper

EntireX COBOL Wrapper

EntireX COBOLWrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Introduction to the COBOLWrapper.Introduction

Step-by-step guide on how to generate interactively and build (write, compile
and link) clients and server applications with the COBOLWrapper.

Using

Programming models for Micro Focus, batch, CICS and IMS COBOL RPC
applications are introduced. This section contains the following subsections:

■ Using the COBOLWrapper for the Client Side
■ Using the COBOLWrapper for the Server Side
■ Generating COBOL Source Files from Software AG IDL Files

Using the COBOLWrapper in command-line mode.Command-line Mode

Mapping Software AG IDL data types, groups, arrays and structures to the
COBOL programming language.

Mapping

Introduction to reliable RPC; writing a client and a server for Reliable RPC;
Broker configuration.

Reliable RPC

Provides reference material for the RPC Communication Area.RPC Communication Area

Describes the delivered COBOLWrapper modules.Delivered Modules

vii

viii

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

EntireX COBOL Wrapper2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3EntireX COBOL Wrapper

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

I Introduction to the COBOL Wrapper

5

6

2 Introduction to the COBOL Wrapper

■ Description .. 8
■ Generic RPC Services Module .. 9
■ COBOL Client Applications ... 9
■ COBOL Server Application .. 11
■ COBOL Server Interface Types .. 12

7

EntireX COBOLWrapper provides access to RPC-based components from COBOL applications.
It enables you to develop both client and server applications.

Description

The COBOLWrapper provides access to RPC servers for COBOL client applications and access
to COBOL servers for any RPC client. The COBOLWrapper generation tools of the Designer take
as input a Software AG IDL file, which describes the interface of the RPC, and generate COBOL
sources that implement the functions and data types of the interface.

The generated functions can be compiled with the COBOL compiler of your target platform.

The COBOLWrapper works as follows:

■ COBOL code is generated from the Software AG IDL file.
■ Additionally for the client side, and depending on your target operating system and environment
(e.g. Micro Focus, batch, CICS or IMS), a generic RPC services module is generated (see below).

■ If required for the server side, a so-called server mapping file is created. A server mapping file
is a Designer file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ The Software AG IDL Compiler and an appropriate template are used for the COBOL code
generation.

EntireX COBOL Wrapper8

Introduction to the COBOL Wrapper

Generic RPC Services Module

In order tominimize the amount of code generated for a specific IDL file, all service-type function-
ality that is not specific to a given IDL file required by the client interface object is generated in a
generic RPC services module.

The generic RPC services module is used by RPC clients and contains the call to the broker stub,
as well as other functions needed for RPC communicationwhere an interface object is not needed,
such as

■ broker logon and logoff
■ conversational support
■ connecting RPC clients to RPC servers via the broker
■ etc.

For more information, see Generation and Usage of Generic RPC Service Module COBSRVI.

COBOL Client Applications

For a given IDL file, the Software AG IDL Compiler and a COBOL code generation template for
clients are used to generate client interface objects and copybooks. SeeReslults for RPCClient under
Select an IDL File and Generate RPC Client or RPC Server. The source code generated by the
COBOLWrapper can be compiled with your target COBOL compiler. Application developers use
the generated generic RPC servicemodule, the client interface object(s) and the copybooks towrite
COBOL applications that access RPC servers.

9EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

For more information, see Using the COBOLWrapper for the Client Side.

EntireX COBOL Wrapper10

Introduction to the COBOL Wrapper

COBOL Server Application

The Software AG IDL Compiler and a COBOL code generation template for servers are used to
generate a server (skeleton) for a specific IDL. Additionally, depending on the IDL data types and
whether IDL program names are customized, a so-called server mapping file is created. A server
mapping file is a Designer file with extension .svm or .cvm. SeeWhen is a Server Mapping File Re-
quired?

Application developers use the generated server (skeleton) to write their own server code for each
program in the IDL. The source code is compiled and linked with your target COBOL compiler.
Client-side and server-side mapping files are handled differently. See Server Mapping Files for
COBOL and Using the COBOLWrapper for the Server Side.

11EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

COBOL Server Interface Types

Depending on your requirements and generation settings, the COBOLWrapper generates a
server skeleton with one of the following interface types:

■ CICS with DFHCOMMAREA Calling Convention
■ CICS with Channel Container Calling Convention
■ CICS with DFHCOMMAREA Large Buffer Interface
■ Micro Focus with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS BMP with Standard Linkage Calling Convention
■ Compatibility between COBOL Interface Types and RPC Server
■ Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

CICS with DFHCOMMAREA Calling Convention

CICS programs using the standard DFHCOMMAREA for parameter passing.

Technically, the generated COBOL server skeleton contains

■ in the DFHCOMMAREA, the parameter structure

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

EntireX COBOL Wrapper12

Introduction to the COBOL Wrapper

CICS with Channel Container Calling Convention

Channels and containers are IBM's approach to access more than 31 KB of data in CICS. There is
no need for coding any channel container statements because all this is generated. Thus the pro-
grammer focus can be on the application logic.

Technically, the generated COBOL server skeleton contains

■ container layouts in the linkage section
■ EXEC CICS CONTAINER statements for accessing the container on input and output

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

CICS with DFHCOMMAREA Large Buffer Interface

This type of program has a defined DFHCOMMAREA interface to access more than 31 KB of data
inCICS. The interface is the same as thewebMethodsWMTLSRVR interface. This enables customers
to use an easy and simple interface type to access more than 31 KB of data in CICS.

13EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

Technically,

■ the generated server skeleton contains in theDFHCOMMAREA layout a pointer to a large buffer
■ the parameter structure in the linkage section is accessed using the COBOL SET ADDRESS state-
ment, using the large buffer pointer

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

Micro Focus with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

EntireX COBOL Wrapper14

Introduction to the COBOL Wrapper

Technically, the generated COBOL server skeleton contains

■ a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

Batch with Standard Linkage Calling Convention

Standard call interfaces with a given number of parameters are supported. Every parameter ad-
dresses a fixed COBOL structure.

Technically, the generated COBOL server skeleton contains

■ a parameter list PROCEDURE DIVISION USING PARM1 PARM2 ... PARMn

■ the parameters in the linkage section as COBOL data items on level 1

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

15EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

IMS BMP with Standard Linkage Calling Convention

IMS batch message processing programs (BMP) with PCB parameters are directly supported.

Technically, the generated COBOL server skeleton contains

■ IMS-specific PCB pointerswithin a parameter list.

See Server Interface Types formore information on how to create COBOL serverswith this interface
type.

EntireX COBOL Wrapper16

Introduction to the COBOL Wrapper

Compatibility between COBOL Interface Types and RPC Server

To call your server program successfully, the target RPC runtime component used must support
the interface type. The table below gives an overview of possible combinations of an interface type
and RPC server.

z/VSEBS2000IBM iUNIX/Windowsz/OS

Interface Type of your Server Program BatchCICSBatchAS/400
IMS

Connect
Micro
Focus

CICS
Socket
Listener

CICS
ECIIMSBatchCICS

xxxxCICS with DFHCOMMAREA Calling
Convention

xxxCICS with DFHCOMMAREA Large
Buffer Interface

xxCICS with Channel Container
Calling Convention

xxxxxBatch with Standard Linkage
Calling Convention

xMicro Focus with Standard
Linkage Calling Convention

xIMS BMP with Standard Linkage
Calling Convention

xIMSMPPMessage Interface (IMS
Connect)

COBOL Converter

Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

The table below gives an overview of COBOL interface types and EntireX Adapter connection
types.

NoteEntireX Adapter Connection TypeInterface Type of your Server Program

CICS ECI Connection or
CICS Socket Listener Connection

CICS with DFHCOMMAREA Calling
Convention

CICS Socket Listener ConnectionCICS with DFHCOMMAREA Large Buffer
Interface

CICS Socket Listener ConnectionCICS with Channel Container Calling
Convention

To call your server program on
a platform other than IBM i, use

AS/400 ConnectionBatch with Standard Linkage Calling
Convention

an RPC Connection or Direct
RPC Connection to an

17EntireX COBOL Wrapper

Introduction to the COBOL Wrapper

NoteEntireX Adapter Connection TypeInterface Type of your Server Program

appropriate RPC Server for
Batch (z/OS | z/VSE | BS2000).

Use the RPC Server for Micro
Focus as RPC server.

RPC Connection or
Direct RPC Connection

Micro Focus with Standard Linkage
Calling Convention

Use the RPC Server for IMS as
RPC server.

RPC Connection or
Direct RPC Connection

IMS BMP with Standard Linkage
Calling Convention

IMS Connect ConnectionIMS MPP Message Interface (IMS
Connect)

COBOL Converter ConnectionCOBOL Converter

EntireX COBOL Wrapper18

Introduction to the COBOL Wrapper

II Using the COBOL Wrapper

■ Using the COBOLWrapper for the Client Side
■ Using the COBOLWrapper for the Server Side
■ Generating COBOL Source Files from Software AG IDL Files

19

20

3 Using the COBOL Wrapper for the Client Side

■ Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE) 23
■ Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE) .. 25
■ Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i) ... 27
■ Using the COBOL Wrapper for IMS (z/OS) ... 30
■ Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS) .. 32
■ Using the COBOL Wrapper for Micro Focus (UNIX and Windows) ... 34

21

The COBOLWrapper provides access to RPC-based components from COBOL applications and
enables you to develop both clients and servers. This chapter introduces the various possibilities
for RPC-based client applications written in COBOL.

A step-by-step guide is provided in the sectionWriting Applications with the COBOLWrapper.
Read this section first before writing your first RPC client program.

EntireX COBOL Wrapper22

Using the COBOL Wrapper for the Client Side

Using theCOBOLWrapper for CICSwith DFHCOMMAREACallingConvention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

In this scenario, the generic RPC services module is installed only once within CICS as a CICS
program and shared by all COBOL RPC client programs. Also, the COBOL client program and
every generated client interface object are installed each as separate individual CICS programs.

Use the COBOLWrapper for CICS with DFHCOMMAREA calling convention in the following
situations:

■ You want to have an EXEC CICS LINK DFHCOMMAREA interface to your client interface ob-
ject(s).

■ Youwish to separate the generic RPC servicemodule and the broker stub from the client interface
object(s).

■ You require a program link to the client interface object(s).
■ You can accept the following restrictions:

■ The maximum COMMAREA length suits your purposes. Because the RPC communication
area is also transferred in the COMMAREA, the effective length that can be used for IDL data
is shorter than the CICS COMMAREA length. Nearly 31 KB can be used for IDL data.

■ No support for long broker passwords and long RPC user IDs/passwords.
■ No support for IDLunbounded arrayswithoutmaximum. SeeMapping Fixed andUnbounded
Arrays.

Check if Using the COBOLWrapper for CICS with Call Interfaces (z/OS and z/VSE) is an
alternative for you.

23EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1 Generate the client interface object for the target operating system, for example "z/OS", and
use interface type "CICSwithDFHCOMMAREAcalling convention". SeeGenerating COBOL
Source Files fromSoftwareAG IDLFiles. Check the optionGenerate the generic RPC service
module COBSRVI.

2 If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRVI, to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer toWriting
EXEC CICS LINK Clients.

4 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL client program.

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

5 Using the standard linker (binder) of the target platform, link (bind) the following programs
to separate CICS programs:

■ every generated client interface object
■ if required, the generic RPC service module COBSRVI together with a broker stub
■ your COBOL client program.

6 Install every client interface object, if required the CICS RPC service module COBSRVI and
your COBOL client program as separate CICS programs.

7 Make sure the correct broker stub is used and can be called dynamically by the CICS generic
RPC service module COBSRVI.

■ z/OS
See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX105.LOAD. See also Administering Broker
Stubs.

■ z/VSE
See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX960.

EntireX COBOL Wrapper24

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)

This mode applies to z/OS and z/VSE.

The COBOLWrapper can be used with a call interface, even in CICS. This means you can build
a client applicationwhere every generated client interface object, the generic RPC servicesmodule
and the broker stub are linked together or called dynamically by the COBOL client program,
similar to the batch scenario. See Using the COBOLWrapper for Batch (z/OS, BS2000, z/VSE and
IBM i).

Using a call interface within CICS may be useful if

■ the maximum COMMAREA length for IDL data (about 31 KB) and other restrictions prevent
you from using theUsing the COBOLWrapper for CICSwith DFHCOMMAREACalling Convention
(z/OS and z/VSE) scenario

■ you do not require a distributed program link (CICS DPL) to your client interface object(s)
■ you prefer a call interface instead of EXEC CICS LINK to your client interface objects.

For platform z/OS this scenario supports the following:

■ Long broker passwords. See Using Broker Logon and Logoff.
■ LongRPCuser IDs/passwords. SeeUsingRPCAuthentication (Natural Security, Impersonation,
Integration Server).

■ IDL unbounded groups or arrays without maximum mapped to COBOL's OCCURS 1 TO
UNBOUNDED DEPENDING ON.

To use the COBOL Wrapper with a call interface within CICS

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use the interface type "CICSwith standard calling convention". SeeGenerating COBOLSource

25EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Files from Software AG IDL Files. Check the optionGenerate the generic RPC service
module COBSRVI.

2 If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRVI, to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer toWriting
Standard Call Interface Clients.

4 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL client program

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

5 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to the client application (that is, a CICS
program), using the standard linker (binder) of the target platform.

6 Install the client application within CICS.

7 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.

■ z/OS
See the broker installation documentation and use a broker stub for CICS (for example
CICSETB) from the common load library EXX105.LOAD. See also Administering Broker
Stubs.

■ z/VSE
See the broker installation documentation and use a broker stub for CICS (for example
BKIMC), see sublibrary EXX960.

EntireX COBOL Wrapper26

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)

This mode applies to z/OS, BS2000, z/VSE and IBM i.

In this scenario, every generated client interface object, the generic RPC services module and the
broker stub are linked together or called dynamically by the COBOL client program.

For platform z/OS this scenario supports the following:

■ Long broker passwords. See Using Broker Logon and Logoff.
■ LongRPCuser IDs/passwords. SeeUsingRPCAuthentication (Natural Security, Impersonation,
Integration Server).

■ IDL unbounded groups or arrays without maximum mapped to COBOL's OCCURS 1 TO
UNBOUNDED DEPENDING ON.

To use the COBOL Wrapper for batch

1 Generate the client interface object(s) for the target operating system, for example "z/OS", and
use interface type "Batch with standard linkage calling convention". See Generating COBOL
Source Files fromSoftwareAG IDLFiles. Check the optionGenerate the generic RPC service
module COBSRVI.

2 If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRVI, to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer toWriting
Standard Call Interface Clients.

4 Using a COBOL compiler supported by COBOLWrapper, compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI

27EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

■ your COBOL client program

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. See your compiler documentation.

■ BS2000
The IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
See BS2000 Prerequisites for more information on supported compilers.

■ IBM i
■ Use the commandCRTCBLMOD (create COBOLmodule) and compile allmodules above
to ILE modules.

■ Use the IBM i compiler command with the options shown below:

CRTCBLMOD
OPTION(*NOMONOPRC) EXTDSOPT(*NODFRWRT) LINKLIT(*PRC)

■ Other Platforms
Use the standard COBOL compiler of the target platform.

5 Using the standard linker (binder) of the target platform, link (bind) the following programs:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ if required, the broker stub
■ your COBOL client program

Depending on the platform:

■ IBM i
Use the IBM i command CRTPGM to bind all compiledmodules to an executable ILE program
of type *PGM.
To link the main program, use the following create program command with the options
shown:

CRTPGM
MODULE(*LIB/myapplication mystub1 mystub2 ..)
BNDSRVPGM(EXX/EXA) ...

where EXX is the EntireX product library and EXA the broker stub.

EntireX COBOL Wrapper28

Using the COBOL Wrapper for the Client Side

■ Other Platforms
Refer to your standard linker (binder) documentation.

6 Make sure that the correct broker stub module is used and, if linked (bound) dynamically,
that it can be called dynamically.

■ z/OS
See the broker installation documentation and use a broker stub for batch (for example
BROKER) from the common load library EXX105.LOAD. See alsoAdministering Broker Stubs.

■ z/VSE
See the broker installation documentation and use a broker stub for batch (for example
BKIMB), see sublibrary EXX960.

■ BS2000
The broker stub module BROKER is located in the broker LMS load library.

■ IBM i
The broker stub EXA is located by default in the EntireX product library EXX.

29EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IMS (z/OS)

This mode applies to z/OS IMS modes BMP and MPP.

In this scenario, every generated client interface object, the generic RPC services module and the
broker stub are linked together or called dynamically by the COBOL client program.

For platform z/OS this scenario supports the following:

■ Long broker passwords. See Using Broker Logon and Logoff.
■ LongRPCuser IDs/passwords. SeeUsingRPCAuthentication (Natural Security, Impersonation,
Integration Server).

■ IDL unbounded groups or arrays without maximum mapped to COBOL's OCCURS 1 TO
UNBOUNDED DEPENDING ON.

To use the COBOL Wrapper for IMS

1 Generate the client interface object(s) for the target operating system "z/OS" and use the inter-
face type "IMS BMP with standard linkage calling convention" or "IMS MMP with standard
linkage calling convention". SeeGenerating COBOLSource Files from Software AG IDL Files.
Check the optionGenerate the generic RPC service module COBSRVI. .

2 If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRVI, to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer toWriting
Standard Call Interface Clients.

4 Using a COBOL compiler supported by the COBOLWrapper, compile:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI

EntireX COBOL Wrapper30

Using the COBOL Wrapper for the Client Side

■ your COBOL client program.

Take care the generated copybooks (seeUsing theGeneratedCopybooks) are accessed correctly
by the compiler and not confusedwith the client interface objects, because the copybooks and
client interface objects have identical file names. Do not assign the data set with the client in-
terface objects prior in sequence to the copybooks to SYSLIB. See your compiler documentation.

5 Link (bind) all compiled modules and, if required, the broker stub, together to an executable
program, using the standard linker (binder) of the target platform.

6 Make sure the correct broker stub is used and can be called dynamically. In the common load
library EXX105.LOAD you can find broker stubs that can be used for

■ IMS BMP (for example BROKER)
■ IMS MPP (for example MPPETB)

See Administering Broker Stubs.

31EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)

This mode applies to z/OS.

The COBOLWrapper can be used with a call interface in IDMS/DC. This means you can build an
application where the COBOL client program, every generated client interface object, the generic
RPC services module and the broker stub are linked together, similar to the batch scenario. See
Using the COBOLWrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

To use the COBOL Wrapper with a call interface within IDMS/DC

1 Generate the client interface object(s) for the target operating system "z/OS", and use the in-
terface type "IDMS/DC with standard calling convention". See Generating COBOL Source
Files from Software AG IDL Files. Check the optionGenerate the generic RPC service
module COBSRVI.

2 If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRVI, to the target platform where you write your client application.

3 Write your COBOL client program. SeeWriting Applications with the COBOLWrapper, in
particular the section The RPC Communication Area (Reference), and take into consideration
the information given in Software AG IDL to COBOL Mapping.

4 Write your COBOL client program. If this is your first COBOL client program, refer toWriting
Standard Call Interface Clients.

5 Using the standard linker (binder) of the target platform, link (bind) all translated and compiled
modules, and, if required, the broker stub, together to an IDMS/DC program, using the
standard linker (binder) of the target platform.

6 Install the IDMS/DC program within IDMS/DC.

7 Make sure the correct broker stub is used and can be called dynamically by the generic RPC
service module COBSRVI.

EntireX COBOL Wrapper32

Using the COBOL Wrapper for the Client Side

See the broker installation documentation and use a broker stub for IDMS/DC (for example
IDMSETB) from the common load library EXX105.LOAD. See alsoAdministering Broker Stubs.

33EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows.

In this scenario, the COBOL client program, every generated client interface object, generic RPC
services module and the broker stub are linked together to the client application.

To use the COBOL Wrapper for Micro Focus

1 Generate the client interface object(s) for the target operating system, for example "Windows",
and use interface type "Micro Focuswith standard linkage calling convention". SeeGenerating
COBOL Source Files from Software AG IDL Files. Check the optionGeneric the RPC service
module COBSRVI.

2 If necessary, use FTP to transfer the client interface object(s), and also the generic RPC service
module COBSRVI, to the target platform where you write your client application.

3 Write your COBOL client program. If this is your first COBOL client program, refer toWriting
Standard Call Interface Clients.

4 Compile and link (bind) all modules together to an executable program:

■ the generated client interface object(s)
■ if required, the generic RPC service module COBSRVI
■ your COBOL client program

For target operating systemWindows (i.e. the modules are generated for Windows):

■ No additional compiler directives and linker options are required.

5 Make sure the broker stub module can be called dynamically.

EntireX COBOL Wrapper34

Using the COBOL Wrapper for the Client Side

■ UNIX
The broker stub shared library or object libbroker.so|sl is accessible according to the rules
of the UNIX systemused, e.g. the directory of the library is defined in the LD_LIBRARY_PATH
environment variable.;

■ Windows
The broker stubDLL broker.dll is accessible, for examplewith the PATH environment variable.

35EntireX COBOL Wrapper

Using the COBOL Wrapper for the Client Side

36

4 Using the COBOL Wrapper for the Server Side

■ Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE) 39
■ Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS) 42
■ Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE) 47
■ Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i) ... 50
■ Using the COBOL Wrapper for IMS BMP (z/OS) .. 54
■ Using the COBOL Wrapper for Micro Focus (UNIX and Windows) ... 58

37

The COBOLWrapper provides access to RPC-based components from COBOL applications and
enables you to develop both clients and servers. This chapter introduces the various possibilities
for RPC-based server applications written in COBOL.

EntireX COBOL Wrapper38

Using the COBOL Wrapper for the Server Side

Using theCOBOLWrapper for CICSwith DFHCOMMAREACallingConvention
(z/OS and z/VSE)

This mode applies to z/OS and z/VSE. See also COBOL Scenarios under in the RPC Server for CICS
documentation.

See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

(*)

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK.

Use the COBOLWrapper for CICS with DFHCOMMAREA calling convention if

■ you want to have a standard EXEC CICS LINK DFHCOMMAREA interface to your server

■ you require a distributed program link (CICS DPL) to your server
■ the DFHCOMMAREA length restriction (31 KB) suits your needs, otherwise consider the fol-
lowing interface types:
■ Using the COBOLWrapper for CICS with Channel Container Calling Convention (z/OS)
■ Using the COBOLWrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and
z/VSE)

39EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

To use the COBOL Wrapper for CICS with DFHCOMMAREA calling convention

1 Generate the server (skeleton) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA calling convention". See Generating COBOL
Source Files from Software AG IDL Files.

2 If a server mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for CICS (z/OS, z/VSE, CICS ECI) sections of the document-
ation, except for CICSECI connectionswith thewebMethods EntireXAdapter for Integration
Server, where you need to update your Adapter connection. See Step 3: Create or Update an
Adapter Connection in the Integration Server Wrapper documentation.

■ Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireXAdapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in SoftwareAG IDL toCOBOLMapping andReturningApplication
Errors in the RPC Server for CICS documentation.

5 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile your server.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file. See program-definition under Software AG IDL Grammar in the IDL Editor
documentation.

7 Provide your server(s) to the RPC Server for CICS, EntireX Adapter, or RPC Server for CICS
ECI:

■ Install your server(s) as separate CICS program(s).
■ If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDLGrammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try

EntireX COBOL Wrapper40

Using the COBOL Wrapper for the Server Side

to locate logically the server mapping file EXAMPLECALC and execute the program with the
COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

■ If you are using a client-sidemapping file, the servermapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

■ If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see library-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs anRPC request that is based on the IDLprogramnameCALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

■ If you are using the RPC Server for CICS, before using your server(s), check if you need to
alter
■ CICS settings - for example TWASIZE; see CICS Settings in the z/OS or z/VSE RPC Server
documentation

■ for z/OS additionally IBM LE Runtime Options - for example AMODE24, how to trap
ABENDS etc.

41EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOLWrapper for CICSwith Channel Container Calling Conven-
tion (z/OS)

This section covers the following topics:

■ Introduction
■ CICS Channel Container IDL Rules
■ Restrictions
■ Example 1: Same Container for Direction In and Out
■ Example 2: Different Container for Direction In and Out
■ Example 3: Multiple Containers
■ Example 4: Variable Number of Containers (Direction Out Only)
■ Steps

Introduction

This mode applies to z/OS. See also COBOL Scenarios in the RPC Server for CICS documentation.

See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

(*)

In CICS, the RPC server sets up all of your server's parameters dynamically in the format required.
Your server is called using EXEC CICS LINK passing the container(s) in the defined channel to your
server. See Channel Name.

EntireX COBOL Wrapper42

Using the COBOL Wrapper for the Server Side

Use the COBOLWrapper for CICS with channel container calling convention if

■ you require more than 31 KB of data to transfer to your server
■ your IDL complies with CICS channel container IDL rules (see below). If your IDL does not
match these rules, consider the interface type Using the COBOLWrapper for CICS with
DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE) to implement your server.

■ you want to have a standard CICS channel container interface to your server
■ you require a distributed program link (CICS DPL) to your server.

CICS Channel Container IDL Rules

The following rules apply to CICS channel container IDL:

■ A container is described with an IDL structure. See structure-definition under Software AG
IDL Grammar in the IDL Editor documentation.

■ The container name is the name of the IDL structure. A maximum of 16 characters are allowed
by CICS for container names.

■ IDL programs reference IDL structures only. No other parameters may be referenced.
■ Multiple containers can be defined, see Example 3: Multiple Containers.
■ A variable number of containers can be defined using one-dimensional IDL unbounded arrays
with maximum (see array-definition under Software AG IDL Grammar in the IDL Editor doc-
umentation). See also Example 4: Variable Number of Containers (Direction Out Only).

Restrictions

■ IDL unbounded arrays (i.e. variable containers) for direction In and INOUT are not supported.
■ Two and three-dimensional IDL unbounded arrays are not supported.

Example 1: Same Container for Direction In and Out

This example uses the same container for input and output. The container name is "CALC".

Library 'EXAMPLE' Is
Program 'CONCALC' Is
Define Data Parameter
1 Container ('CALC') InOut

End-Define

Struct 'CALC' Is
Define Data Parameter
1 Operation (A1)
1 Operand_1 (I4)
1 Operand_2 (I4)

43EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

1 Function_Result (I4)
End-Define

Example 2: Different Container for Direction In and Out

This example uses separate containers for input and output.

Library 'DFHCON' Is
Program 'TWOC' Is /* Two Container - Separate for Input and Output
Define Data Parameter
1 ContainerIn ('CONTAINER1') In
1 ContainerOut ('CONTAINER2') Out

End-Define
Struct 'CONTAINER1' Is

Define Data Parameter
1 Just-Occupied-Space (A39000) /* 39K
1 Request (A1000/5) /* 5K
End-Define

Struct 'CONTAINER2' Is
Define Data Parameter

1 Just-Occupied-Space (A49000) /* 49K
1 Reply (A250)

End-Define

See IDL program TWOC under Advanced CICS Channel Container RPC Server Example.

Example 3: Multiple Containers

This example shows how more than one container is used per direction. Each container has its
own structure layout.

Library 'DFHCON' Is
Program 'MULTIC' Is
Define Data Parameter
1 InContainer1 ('INCONTAINER1') In
1 InContainer2 ('INCONTAINER2') In
1 InContainer3 ('INCONTAINER3') In
...

1 OutContainer1 ('OUTCONTAINER1') Out
1 OutContainer2 ('OUTCONTAINER2') Out
1 OutContainer3 ('OUTCONTAINER3') Out
...

End-Define

Struct 'INCONTAINER1' Is ...
Struct 'INCONTAINER2' Is ...
Struct 'INCONTAINER3' Is ...
...

EntireX COBOL Wrapper44

Using the COBOL Wrapper for the Server Side

Struct 'OUTCONTAINER1' Is ...
Struct 'OUTCONTAINER1' Is ...
Struct 'OUTCONTAINER1' Is ...
...

Example 4: Variable Number of Containers (Direction Out Only)

This example shows how to specify a range of containers. At runtime, the called RPC server creates
a variable number of containers from this range. Each container created has the same structure
layout and a container name that is formed from the structure name as prefix and the structure
index as suffix. In this example:

■ MULTIPLE container names are MULTIPLE0001 thru MULTIPLE9999.
■ OPTIONAL container name is OPTIONAL1.

Note: Make sure IDL observes the 16-character length restriction for container names given
by CICS.

Library 'DFHCON' Is
Program 'VARC' Is
Define Data Parameter
1 Input ('INPUT') In
1 Multiple ('MULTIPLE'/V9999) Out /* 0 thru 9999 times
1 Optional ('OPTIONAL'/V1) Out /* 0 or 1 times

End-Define

Struct 'INPUT' Is ...
Struct 'MULTIPLE' Is ...
Struct 'OPTIONAL' Is ...

Steps

To use the COBOL Wrapper for CICS with channel container calling convention

1 Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with channel container calling convention". See Generating COBOL
Source Files from Software AG IDL Files.

2 The generated server mapping file has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for CICS documentation.

■ Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-

45EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

ation) and re-generate the client interface objects. For the EntireXAdapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in SoftwareAG IDL toCOBOLMapping andReturningApplication
Errors in the RPC Server for CICS documentation.

5 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile your server.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

7 Provide your server(s) to the RPC Server for CICS.

■ Install your server(s) as separate CICS program(s).
■ If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDLGrammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the
COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

■ If you are using a client-sidemapping file, the servermapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

■ If you are using the RPC Server for CICS, before using your server(s), check if you need to
alter
■ CICS settings - for example TWASIZE - before using your server(s); seeCICS Settings under
Administering the RPC Server for CICS

■ IBM LE Runtime Options - for example AMODE24, how to trap ABENDS etc.

EntireX COBOL Wrapper46

Using the COBOL Wrapper for the Server Side

Using the COBOLWrapper for CICSwith DFHCOMMAREALarge Buffer Inter-
face (z/OS and z/VSE)

This mode applies to z/OS and z/VSE. See also COBOL Scenarios under in the RPC Server for CICS
documentation.

See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

(*)

In CICS, the RPC server sets up all your server's parameters dynamically in the format required.
Your server is called by EXEC CICS LINK. Within the DFHCOMMAREA, pointers are passed to a
large input/output buffer.

Use the COBOLWrapper for CICS with DFHCOMMAREA large buffer interface in the following
situations:

■ You need to migrate COBOL programs implemented with webMethods WMTLSRVR interface
to the RPC Server for CICS.

■ You require more than 31 KB of data to transfer to your server.
■ You cannot use the channel container calling convention because your IDL does not match the
applicable rules; see CICS Channel Container IDL Rules under Using the COBOLWrapper for
CICS with Channel Container Calling Convention (z/OS). There are no IDL restrictions for this
interface type - every IDL can be used.

47EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

■ You prefer this interface type rather than the channel container interface type.
■ You do not require a distributed program link (CICS DPL) to your server.

To use the COBOL Wrapper for CICS with large buffer interface

1 Generate the server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "CICS with DFHCOMMAREA large buffer interface". SeeGenerating COBOL
Source Files from Software AG IDL Files.

2 The generated server mapping file has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for CICS (z/OS, z/VSE) sections of the documentation.

■ Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireXAdapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in SoftwareAG IDL toCOBOLMapping andReturningApplication
Errors in the RPC Server for CICS documentation.

5 Using the CICS translator for COBOL provided with your CICS installation and a COBOL
compiler supported by the COBOLWrapper, translate and compile your server.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target platform. Give your server a CICS program name that is the same as the program-name
in the IDL file (see program-definition under Software AG IDL Grammar in the IDL Editor
documentation).

7 Provide your server(s) to the RPC Server for CICS.

■ Install your server(s) as separate CICS program(s).
■ If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDLGrammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the

EntireX COBOL Wrapper48

Using the COBOL Wrapper for the Server Side

COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

■ If you are using a client-sidemapping file, the servermapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

■ If you are using the RPC Server for CICS, before using your server(s), check if you need to
alter
■ CICS settings - for example TWASIZE; see CICS Settings in the z/OS or z/VSE RPC Server
documentation

■ for z/OS additionally IBM LE Runtime Options - for example AMODE24, how to trap
ABENDS etc.

49EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)

This mode applies to z/OS, BS2000, z/VSE and IBM i. See also COBOL Scenarios in the RPC Server
for Batch documentation.

See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

(*)

In batch mode, the RPC server sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces.

Use the COBOLWrapper for batch to build servers for the RPC Server for Batch.

To use the COBOL Wrapper for batch

1 Generate a server (skeleton(s)) for the target operating system, for example "z/OS", and use
interface type "Batch with standard linkage calling convention". See Generating COBOL
Source Files from Software AG IDL Files for details.

2 If a server mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the respective RPC server documentation.

EntireX COBOL Wrapper50

Using the COBOL Wrapper for the Server Side

■ Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireXAdapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

■ z/OS
See Returning Application Errors in the RPC Server for Batch documentation.

■ IBM i
Consider multithreading issues:
■ Your server has to be implemented as an ILE COBOL program of type *PGM.
■ The RPC server is running in a multithreaded environment. Therefore your server must
be thread-safe. This implies that all commands and subprograms accessed in your servers
must allow multithreads.

■ Please note that someCOBOL statements do not supportmultithreads. Using statements
that are not thread-safe (e.g. STOP RUN) can result in the RPC server ending abnormally.
Therefore the server programs have to be terminated with a thread-safe statement, for
example EXIT PROGRAM. For details, see the IBM documentation Language Restrictions
under THREAD and Preparing ILE COBOL Programs for Multithreading.

5 Use a COBOL compiler supported by the COBOLWrapper to compile your server.

■ BS2000
■ The IDL types U or UV require a compiler that supports COBOL data type NATIONAL.
See BS2000 Prerequisites for more information on supported compilers.

■ Compile them as OM or LLMmodules.
■ IBM i

■ Use the IBM i command CRTCBLMOD (create bound COBOL module).
■ As an alternative, you can compile and bind in one step, see the next step below.

51EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

■ Other Platforms
Use the standard COBOL compiler of the target platform.

6 Link (bind) your server to an executable program.Give the resulting server program the same
name as the program-name in the IDL file. See program-definition under Software AG IDL
Grammar in the IDL Editor documentation.

■ BS2000
There is no need to link the servermoduleswith the BS2000CommonRuntime Environment
(CRTE). The CRTE is included in the server's BLSLIB chain and loaded dynamically. If this
is needed for any reason, the CRTE must be linked as a subsystem. All entries must be
hidden to prevent duplicates. Linking the CRTE staticallywill consume resources and slow
down the load time of the server modules.

■ IBM i
■ Bind it as a dynamically callable program of type *PGM using the command CRTPGM.
■ As an alternative to compiling with CRTCBLMOD (see step above) and binding with CRTPGM
separately, you can compile and bind in one step with the command CRTBNDCBL.

■ When linking/binding servers, the CRTPGM parameter ACTGRP (*CALLER)must be spe-
cified. This guarantees that the server application runs in the same activation group as
the calling RPC server.

■ Other Platforms
Use the standard linker (binder) of the target platform.

7 Provide your server to the RPC Server for Batch.

■ IBM i
■ Put the server into a library whose name corresponds to the library name in the IDL file
(see library-definition under Software AG IDL Grammar in the IDL Editor documenta-
tion).

■ If you put the server program into a library other than the library name given in the IDL
(e.g.MyLib), you must tell this to the RPC server, using the server parameter
Library=Fix(MyLib). In this case, the library name sentwith the client request is ignored.

Example: If a client performs an RPC request that is based on the IDL program name
CALC in the IDL library EXAMPLE, the remoteRPC serverwill dynamically try to execute
the ILE programCALC in the IBM i library EXAMPLE. If no corresponding program can
be found, the access will fail.

■ Other Platforms
■ Add the server to the RPC Server for Batch STEPLIB chain.
■ If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See

EntireX COBOL Wrapper52

Using the COBOL Wrapper for the Server Side

program-definition and library-definition under Software AG IDL Grammar in the
IDL Editor documentation. Example: If a client performs an RPC request that is based
on the IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynam-
ically try to locate logically the servermapping file EXAMPLECALC and execute the program
with the COBOL name defined in the server mapping. See Customize Automatically
Generated Server Names. If no corresponding program can be found, the access will fail.

■ If you are using a client-side mapping file, the server mapping is taken from the RPC re-
quest and the programwith the COBOLname defined in the servermapping, is executed.
See Customize Automatically Generated Server Names. If no corresponding program
can be found, the access will fail.

■ If neither a server-side nor client-sidemapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see library-definition under Software AG IDL Grammar
in the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs an RPC request that is based on the IDL program name
CALC, the RPC serverwill dynamically try to execute a programCALC. If no correspond-
ing program can be found, the access will fail.

53EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for IMS BMP (z/OS)

This mode applies to z/OS IMS mode BMP. See also COBOL Scenarios in the RPC Server for IMS
documentation.

(*)See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

In IMS BMP, the RPC Server for IMS sets up all of your server's parameters dynamically in the
format required. Your server is called dynamically using standard call interfaces. IMS-specific
PCB pointers can be provided as parameters in the linkage section.

Use the COBOLWrapper for IMS BMP if you need to

■ access IMS BMP programs with standard linkage calling convention
■ access IMS databases through IMS PCB pointers and to pass them via parameters in the linkage
section

■ access the IMS PCB pointer IOPCB, for example to print data or to start an asynchronous
transaction

■ use the COBOL/ DLI interface module “CBLTDLI” which requires PCB pointers in its interface.

If PCB pointers have to be provided as parameters in the COBOL linkage section of your server,
your IDL must comply with the IMS PCB Pointer IDL rules listed below. If no PCB pointers are
required, the rules can be skipped.

EntireX COBOL Wrapper54

Using the COBOL Wrapper for the Server Side

IMS PCB Pointer IDL Rules

■ An IMS PSB list contains the PCB pointers of your environment:
■ The IMS PSB list is a text file and can be created with any text editor.
■ Only one PCB pointer is listed per line.
■ The PCB pointer IOPCB is always the first pointer in the IMS PSB list.
■ The PCB pointers (except IOPCB) match the related PSB generation for your server.
■ The PCB pointers listed match the PCB pointers provided at runtime to the RPC Server for
IMS (including IOPCB) in number and sequence.

■ The IMS PSB list is assigned in the IDL properties, see Generating COBOL Source Files from
Software AG IDL Files or IDL Generation Settings - Preferences. Example:

IOPCB
DBPCB

■ PCB pointers are described in the IDL as parameters. Thus they can be accessed in your server
as any other parameter. Additionally, the following is required:
■ IDL parameters that are PCB pointers are markedwith the attribute IMS (see attribute-list
under Software AG IDL Grammar in the IDL Editor documentation).

■ IDL parameters that are PCB pointers must match a PCB pointer listed in the IMS PSB list,
otherwise the RPC Server for IMS does not pass them as PCB pointers at runtime. This results
in unexpected behavior. Example:

Library 'IMSDB' Is
Program ' IMSDB' Is

Define Data Parameter
1 IN-COMMAND (A3) IN /* ADD, DEL, DIS
1 IO-DATA IN OUT

2 IO-LAST-NAME (A10)
2 IO-FIRST-NAME (A10)
2 IO-EXTENSION (A10)
2 IO-ZIP-CODE (A07)

1 DBPCB IN IMS /* this is a PCB pointer
2 DBNAME (A8)
2 SEG-LEVEL-NO (A2)
2 DBSTATUS (A2)
2 FILLER1 (A20)

1 OUT-MESSAGE (A40) OUT
End-Define

55EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

To use the COBOL Wrapper for IMS BMP

1 Generate the server (skeleton(s)) for the target operating system “z/OS”, use interface type
“IMS BMPwith standard linkage calling convention”. If PCB pointers should be provided as
COBOL linkage section parameters for your server, set the IMS PSB list; otherwise omit the
IMS PSB list. See Generating COBOL Source Files from Software AG IDL Files.

2 If a server mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for IMS documentation.

■ Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireXAdapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Use the generated server (skeleton(s)) and complete it by applying your application logic.
You can use the IMS-specific PCB pointers in your server as usual. Note the information given
in Software AG IDL to COBOL Mapping and Returning Application Errors in the RPC Server
for IMS documentation.

5 Using a COBOL compiler supported by the COBOLWrapper, compile your server.

6 Link (bind) the server to an executable program, using the standard linker (binder) of the
target program.

■ Give the resulting server program the same name as the program in the IDL file (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation).

7 Provide the server to the RPC Server for IMS.

■ Add the server to the RPC Server for IMS STEPLIB chain.
■ If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDLGrammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the

EntireX COBOL Wrapper56

Using the COBOL Wrapper for the Server Side

COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

■ If you are using a client-sidemapping file, the servermapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

■ If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see library-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs anRPC request that is based on the IDLprogramnameCALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

57EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

This mode applies to UNIX and Windows. See also Scenarios and Programmer Information in the
RPC Server for Micro Focus documentation.

See Target Operating System and Server Interface Types under Generating COBOL Source Files
from Software AG IDL Files.

(*)

The RPC Server for Micro Focus sets up all of your server's parameters dynamically in the format
required. Your server is called dynamically using standard call interfaces.

Use the COBOLWrapper for Micro Focus to build servers for the RPC Server for Micro Focus.

To use the COBOL Wrapper for Micro Focus

1 Generate a server (skeleton(s)) for the target operating system, for example "Windows", and
use interface type "Micro Focus with standard linkage calling convention". See Generating
COBOL Source Files from Software AG IDL Files for details.

2 If a server mapping file is required, it has to be provided. A server mapping file is a Designer
file with extension .svm or .cvm. See Server Mapping Files for COBOL.

■ Server-side mapping files (.svm): Deploy these to the RPC server. See Deploying Server-side
Mapping Files in the RPC Server for Micro Focus documentation.

EntireX COBOL Wrapper58

Using the COBOL Wrapper for the Server Side

■ Client-side mapping files (.cvm): These are wrapped into RPC clients and provided with
the RPC request. You need to rebuild all RPC clients communicating with this RPC server
program. Select the appropriate wrapper (see EntireX Wrappers in the Designer document-
ation) and re-generate the client interface objects. For the EntireXAdapter you need to update
your generated IS adapter as described under To update an existing connection in Step 3:
Create or Update an Adapter Connection in the Integration Server Wrapper documentation.

See How to Set the Type of Server Mapping Files for how to define use of server-side or client-
side mapping.

3 If necessary, use FTP to transfer the server (skeleton(s)) to the target platformwhere youwrite
your server.

4 Import the modules into your Micro Focus IDE.

5 Use the generated server (skeleton(s)) and complete it by applying your application logic.
Note the information given in Software AG IDL to COBOL Mapping.

6 Compile and - if the format requires it - link (bind) and package your server(s) to one of the
following formats:

■ Micro Focus intermediate code (int) or generated code (gnt). These formats can also be
packaged into a Micro Focus library file (lbr). In this case the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the library file name. The library-name
(library-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file is ignored and not used.

■ Under Windows to a DLL, and under UNIX to a shared library (so/sl). The library-name
(library-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match the executables file name, and the program-name (see
program-definition under Software AG IDL Grammar in the IDL Editor documentation)
given in the IDL file must match an entry point.

7 Provide your server to the RPC Server for Micro Focus.

■ Make sure your server(s) are accessible by the RPC Server for Micro Focus:
■ under UNIX, for example with the LD_LIBRARY_PATH environment variable
■ under Windows, for example with the PATH environment variable.

■ If you are using a server-side mapping file, a concatenation of the program-name and the
library-name given in the IDL is used to locate the server mapping file. See
program-definition and library-definition under Software AG IDLGrammar in the IDL
Editor documentation. Example: If a client performs an RPC request that is based on the
IDL program name CALC and the IDL library EXAMPLE, the RPC server will dynamically try
to locate logically the server mapping file EXAMPLECALC and execute the program with the
COBOL name defined in the server mapping. See Customize Automatically Generated
Server Names. If no corresponding program can be found, the access will fail.

59EntireX COBOL Wrapper

Using the COBOL Wrapper for the Server Side

■ If you are using a client-sidemapping file, the servermapping is taken from the RPC request
and the program with the COBOL name defined in the server mapping, is executed. See
Customize Automatically Generated Server Names. If no corresponding program can be
found, the access will fail.

■ If neither a server-side nor client-side mapping file is used - for example it is not required
or the server is generated with a previous version of EntireX without support for server
mapping - the library name (see library-definition under Software AG IDL Grammar in
the IDL Editor documentation) given in the IDL is ignored.

Example: If a client performs anRPC request that is based on the IDLprogramnameCALC,
the RPC server will dynamically try to execute a program CALC. If no corresponding pro-
gram can be found, the access will fail.

EntireX COBOL Wrapper60

Using the COBOL Wrapper for the Server Side

5 Generating COBOLSource Files fromSoftware AG IDL Files

■ Select an IDL File and Generate RPC Client or RPC Server ... 62
■ Generation Settings - Properties ... 66
■ Generation Settings - Preferences .. 77

61

This chapter describes how to generate COBOL source files from Software AG IDL files.

Select an IDL File and Generate RPC Client or RPC Server

From the context menu, choose COBOL > Generate RPC Client andGenerate RPC Server to
generate the COBOL source files.

Note: In command-line mode, use command -cobol:client or -cobol:server. See Using
the COBOLWrapper in Command-line Mode. Note that existing files will always be over-
written.

Results for RPC client:

EntireX COBOL Wrapper62

Generating COBOL Source Files from Software AG IDL Files

■ The folders client and include are created as subfolders to the IDL-specificOutput Folderdefined
in the Generation Settings - Properties.

■ The client folder contains the following:
■ client interface objects
■ optionally the generic RPC service module, which is only generated if the optionGenerate
Generic RPC Service Module COBSRVI is set, see Generation and Usage of Generic RPC
Service Module COBSRVI.

■ The include folder contains the following:
■ the associated copybooks
■ the RPC communication area copybook ERXCOMM

■ optionally its extension copybook ERXVSTR

■ optionally the copybooks COBINIT and COBEXIT

For further information on the usage of copybooks generated in this folder, see Using the Gen-
erated Copybooks.

Results for RPC server:

■ If you are using client-side mapping files, the following dialog is displayed.

You need to rebuild all RPC clients communicating with this RPC server program. Select the
appropriate wrapper (see EntireXWrappers in the Designer documentation) and re-generate the
client interface objects. For the EntireX Adapter you need to update your generated IS adapter
as described under To update an existing connection in Step 3: Create or Update an Adapter Connection
in the Integration Server Wrapper documentation.

■ If you are using server-sidemapping files, a dialog like below (with slight variations per interface
type) is displayed:

63EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

The generated server-side mapping file need to be synchronized with the server-side mapping
container of the target RPC server. For EntireX Adapter they are wrapped into the generated In-
tegration Server adapter - the same as client-sidemapping files, see Integration ServerWrapper.
■ Check the option Synchronize with server-side mapping container now for the following
RPC servers:

z/OS (CICS, Batch, IMS) | Micro Focus | BS2000 | z/VSE (CICS, Batch).

This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the Designer
documentation. If you are using the Server Mapping Deployment Wizard for first time with
no predefined deployment environment preferences, continue with Step 2a: Create a New De-
ployment Environment in theDesigner documentation. If deployment environments are already
defined, you may also continue with Step 3: Select and Existing Deployment Environment and
Deploy.

■ Uncheck the option Synchronize with server-side mapping container now.
■ For EntireX Adapter
You need to update your generated IS adapter as described under To update an existing
connection in section Step 3: Create or Update an Adapter Connection in the Integration Server
Wrapper documentation.

■ For CICS ECI and IMS Connect RPC servers
Continue as described underDeploying Server-side Mapping Files to the Wrapper (CICS ECI |
IMS Connect).

■ For later synchronization of the RPC servers
See Deploying Server-side Mapping Files in the respective RPC server documentation

■ The folder server is created as a subfolder to the IDL-specific Output Folder defined in the
Generation Settings - Properties. It contains the RPC server skeletons.

Caution: Take care not to overwrite an existing RPC server implementation with an RPC
server skeleton. We recommend moving your RPC server implementation to a different
folder.

EntireX COBOL Wrapper64

Generating COBOL Source Files from Software AG IDL Files

■ If required, a server mapping file is generated, too. SeeWhen is a Server Mapping File Required?
in the Designer documentation. The server mapping file is of type client-side (extension .cvm)
or server-side (.svm). See How to Set the Type of Server Mapping Files.

To quit the COBOL Wrapper and deploy the server-side mapping file

1 Check the option Synchronize with server-side mapping container now and chooseOK.
This calls the Deployment Wizard. See Server Mapping Deployment Wizard in the Designer
documentation.

■ If you are using the Server Mapping Deployment Wizard for first time with no predefined
deployment environment preferences, continue with Step 2a: Create a New Deployment En-
vironment in the Designer documentation.

■ If deployment environments are already defined, you may also continue with Step 3: Select
and Existing Deployment Environment and Deploy.

2 Continue with Using the COBOLWrapper for the Server Side.

To quit the COBOL Wrapper without deploying the server-side mapping file

1 Clear the option Synchronize with server-side mapping container now and chooseOK.

■ Synchronize the server-sidemapping container of the target RPC server later. SeeDeploying
Server-side Mapping Files in the respective RPC server documentation.

■ For the webMethods EntireX Adapter for Integration Server and IMS Connect or CICS ECI
connections, update your Adapter connection. See Step 3: Create or Update an Adapter Con-
nection in the Integration Server Wrapper documentation.

2 Continue with Using the COBOLWrapper for the Server Side.

65EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Generation Settings - Properties

■ Introduction
■ Target Operating System
■ Characters Used for String Literals
■ IDL-specific Output Folder
■ Client Interface Types
■ Customize Automatically Generated Client Names
■ Starting COBOL Level for Data Items in Generated Copybooks
■ RPC Communication Area
■ Generation and Usage of Generic RPC Service Module COBSRVI
■ Customize Automatically Generated Server Names
■ Server Interface Types
■ IMS PSB List
■ Channel Name

Introduction

Whenever a new IDL file is created, defaults for the properties are copied from the preferences.
See Generation Settings - Preferences. To set individual properties per IDL file for COBOL
Wrapper generation, use the Propertieswizard of the IDL file. The Target Operating System and
the Interface Type are essential. They determine if other parameters such asRPCCommunication
Area provided by can be set or have to remain fixed. The parameter IDL-specific Output defines
the location to store the source file subfolders. Target Operating System determines whether file
extensions are generated or not.

EntireX COBOL Wrapper66

Generating COBOL Source Files from Software AG IDL Files

In the following, we give a detailed description of the properties that need to be set for each type
of generation:

■ For client and server generation:
■ Target Operating System
■ Characters Used for String Literals
■ IDL-specific Output Folder

■ For client generation only:
■ Client Interface Types
■ Customize Automatically Generated Client Names
■ Starting COBOL Level for Data Items in Generated Copybooks
■ RPC Communication Area

67EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

■ Generation and Usage of Generic RPC Service Module COBSRVI
■ For server generation only:

■ Server Interface Types
■ Customize Automatically Generated Server Names
■ IMS PSB List
■ Channel Name

Target Operating System

Select the target operating system for which COBOL code is to be generated. See Platform Coverage
for a full list of supported operating system versions.

DescriptionValue

IBM z/OS operating system.z/OS

IBM z/VSE operating system.z/VSE

Fujitsu Siemens BS2000 operating system.BS2000

IBM i operating system.IBM i

Microsoft Windows operating system.Windows

UNIX operating system.UNIX

Characters Used for String Literals

With this option you can specify how string literals are specified in the generated COBOL code.
See your COBOL compiler documentation for information on how string literals are enclosed.

DescriptionValue

String literals will be enclosed in double quotes in the generated COBOL code.Quote

String literals will be enclosed in apostrophes (single quotes) in the generated COBOL code.Apostrophe

IDL-specific Output Folder

This field specifies the folder where the COBOL files will be stored, by default in the same folder
as the IDL file. For a non-default location, enter another folder name or choose Browse....

EntireX COBOL Wrapper68

Generating COBOL Source Files from Software AG IDL Files

Client Interface Types

NotesMore Information
Target Operating
SystemInterface Type

1Follow the steps under Using the COBOL
Wrapper for CICSwith DFHCOMMAREACalling
Convention (z/OS and z/VSE).

z/OS, z/VSECICS with DFHCOMMAREA
Calling Convention

2Follow the steps under Using the COBOL
Wrapper for CICS with Call Interfaces (z/OS
and z/VSE).

z/OS, z/VSECICS with Standard Linkage
Calling Convention

2Follow the steps under Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and
IBM i).

z/OS, z/VSE,
BS2000, IBM i

Batch with Standard Linkage
Calling Convention

2Follow the steps under Using the COBOL
Wrapper for IMS (z/OS).

z/OSIMS BMP with Standard Linkage
Calling Convention

2Follow the steps under Using the COBOL
Wrapper for IMS (z/OS).

z/OSIMS MPP with Standard Linkage
Calling Convention

2Follow the steps under Using the COBOL
Wrapper for IDMS/DC with Call Interfaces
(z/OS).

z/OSIDMS/DC with Standard Linkage
Calling Convention

2Follow the steps under Using the COBOL
Wrapper for Micro Focus (UNIX and
Windows).

UNIX, WindowsMicro Focuswith StandardLinkage
Calling Convention

Notes:

1. Use this option if you want to build a CICS RPC client application that calls the client interface
object(s) and the generic RPC module COBSRVIwith a DFHCOMMAREA interface.

2. Use this option if you want to build an RPC client application that calls the client interface ob-
ject(s) and the generic RPC module COBSRVIwith a standard linkage interface.

Customize Automatically Generated Client Names

If you open the link Customize automatically generated Client Names on the Properties page
you can adapt the names for the COBOL client interface objects (subprograms). When you call the
page the first time, COBOL names are suggested based on the IDL program (program-definition
under Software AG IDL Grammar in the IDL Editor documentation) or IDL program alias names.
The page varies, depending on whether the target COBOL environment supports long COBOL
names or not:

■ z/OS and z/VSE
■ IBM i
■ UNIX and Windows with Micro Focus

69EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

■ BS2000

z/OS and z/VSE

Max. 8 characters (short names) are supported as COBOL names:

Note: If your IDL file containsmore than one IDL library, the additional column IDL Library
is displayed.

IBM i

Customization of client names for IBM i is the same as for z/OS and z/VSE. See z/OS and z/VSE.

UNIX and Windows with Micro Focus

Max. 31 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

EntireX COBOL Wrapper70

Generating COBOL Source Files from Software AG IDL Files

Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

2. With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

BS2000

Max. 30 characters are supported as COBOL names. By default, names are generated with a
maximum of 8 characters (short names).

71EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Notes:

1. If your IDL file contains more than one IDL library, the additional column IDL Library is dis-
played.

2. With the check box Restrict the length of names to 8 characters you can flip between short
names and long names. Both sorts of names (short and long) are stored in the property file. For
generation you have to decide if short or long names are to be used.

Starting COBOL Level for Data Items in Generated Copybooks

With this option you can specify the starting COBOL level used in the generated copybooks for
COBOL data items.

See Using the Generated Copybooks for syntax examples.

Specify a valid COBOL level in the range 1-49. The COBOL programming language maximum of
49 subtracted by the specified level must provide enough levels to hold all IDL levels. Note that
IDL types may consume more than one COBOL level, for example:

■ IDL unbounded groups require a COBOL level for every dimension. If they are defined on IDL
level 1, an extra COBOL level is required

■ IDL unbounded arrays require a COBOL level for every dimension plus one extra COBOL level
■ some basic (scalar) IDL data types need extra COBOL levels

Notes:

EntireX COBOL Wrapper72

Generating COBOL Source Files from Software AG IDL Files

1. Do not specify a level too deep because you may exceed the COBOL programming language
maximum of 49 and the generated copybook cannot be compiled.

2. For compatibility with Client and Server Examples for z/OS CICS, the level must be 3 or above.

3. For compatibility with all other delivered examples, the level must be 2 or above.

RPC Communication Area

The RPC communication area copybook ERXCOMM and its extension ERXVSTR are used to specify
parameters that are needed to communicate with the broker and are not specific to client interface
objects. These are for example the broker ID, client parameters such as userID and password and
the server address such as class/servername/service etc.

NotesDescriptionValue

1This kind of RPC communication area usage applies to the scenariosCICS |Batch |
IMS |Micro Focus. The RPC communication area copybooks are defined in the

External
Clause

working storage section as COBOL data items with the EXTERNAL clause in the
RPC client application. They are passed with the EXTERNAL clause to and the
generated client interface object(s).

2This kind of RPC communication area usage applies to the scenariosCICS |Batch |
IMS |Micro Focus. The RPC communication area copybooks are defined in the

Linkage
Section

working storage section as COBOL data items. They are passed via additional
parameter between your RPC client application and the generated client interface
object(s).

2This kind of RPC communication area usage is available in the z/OS operating
system andMicro Focus environments. Refer to the scenariosCICS |Batch | IMS |

Copybook

Micro Focus. The RPC communication area copybooks are provided inside the
generated client interface object(s). It is not visible in the RPC client application -
it is local to the client interface objects. Default values are retrieved from Designer
preferences or IDL-specific properties and can be overwritten in the copybook
COBINIT (see folder include).

Notes:

1. The client interface objects are statically linked to the RPC client. It is not possible to call them
dynamically.

2. The client interface objects can be statically linked or called dynamically. For IBM compilers,
refer to documentation on the DYNAM compiler option; for other compilers, to your compiler
documentation.

73EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Generation and Usage of Generic RPC Service Module COBSRVI

The generic RPC service module COBSRVI can be optionally generated in the folder client in the
container folder. It acts as a runtime for RPC communication. See Generic RPC Services Module
under Introduction to the COBOL Wrapper. The module depends on target environment (CICS,
Batch...), client interface type (see Client Interface Types) and operating system (z/OS, z/VSE...).
Use this option to control the generation of this module.

Handling depends on the interface type:

■ CICS with DFHCOMMAREA calling convention
For this interface type, the generic RPC service module is installed once within CICS as a CICS
program and shared by all RPC clients using this interface type. Details and the architecture of
this scenario are described under Using the COBOLWrapper for CICS with DFHCOMMAREA
Calling Convention (z/OS and z/VSE).
■ Check this option if you want to install or replace the installed generic RPC service module in
CICS with the version generated by the COBOLWrapper. This makes sense in the following
situations:
■ You have not installed the RPC examples on z/OS, because installation of this module is
part of Installing RPC Examples.

■ You need an update of the generic RPC servicemodule because of a newer COBOLWrapper
version, for example an Eclipse update without mainframe update. For compile job and
CICS CSD definitions see Delivered Modules for z/OS | z/VSE.

■ Clear this option if you have already installed the generic RPC servicemodule in CICS (already
installed RPC examples for z/OS or previous COBOLWrapper project) and do not want to
re-install it in CICS. This prevents the generation of the generic RPC service module.

■ All other calling conventions
■ The preferred approach is to check this option. This will generate the generic RPC service
module. The generatedmodule is part of your client application. Its usage is described under
Using the COBOL Wrapper with a Call Interface (CICS | Batch | IMS | Micro Focus).

■ Clear this option if you can reuse the generic RPC service module from a previous COBOL
Wrapper project. This will prevent the generation of the generic RPC service module. It is
important that Target Operating System, Client Interface Types and Characters Used for
String Literals are the same.

EntireX COBOL Wrapper74

Generating COBOL Source Files from Software AG IDL Files

Customize Automatically Generated Server Names

If you open the link Customize automatically generated Server Names on the properties page
you can, adapt the names for the COBOL server (subprograms). When you call the page the first
time, COBOLnames are suggested based on the IDLprogram (program-definitionunder Software
AG IDLGrammar in the IDL Editor documentation) or IDL program alias names. For further details
on customizing names for the server side, see the platform-specific section under Customize Auto-
matically Generated Client Names; the information here also applies to server names:

■ z/OS and z/VSE
■ UNIX and Windows with Micro Focus
■ BS2000

Notes:

1. Customization of server names is not supported under IBM i.

2. If the server names (automatically generated or customized) differ from the IDLprogramnames,
a server mapping file is required. A server mapping file is a Designer file with extension .svm
or .cvm. It is generated during generation of RPC server and has to be used in subsequent steps.
See Server Mapping Files for COBOL and Using the COBOLWrapper for the Server Side.

Server Interface Types

Description
Target Operating
SystemInterface Type

Use this option if you want to build a CICS RPC server
application with a DFHCOMMAREA interface. Follow the

z/OS, z/VSECICS with
DFHCOMMAREA calling
convention steps under Using the COBOLWrapper for CICS with

DFHCOMMAREA Calling Convention (z/OS and z/VSE).

Use this option if you want to build a CICS RPC server
application with a channel container interface. To specify a

z/OSCICS with Channel
Container calling convention

channel name, see Channel Name. Follow the steps under
Using theCOBOLWrapper for CICSwithChannel Container
Calling Convention (z/OS).

Use this option if you want to build a CICS RPC server
application with a large buffer interface. Follow the steps

z/OS, z/VSECICS with
DFHCOMMAREA large
buffer interface under Using the COBOLWrapper for CICS with

DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE).

Use this option if youwant to build an application for an RPC
server for Batch. Follow the steps under Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

z/OS, z/VSE,
BS2000, IBM i

Batch with standard linkage
calling convention

Use this option if you want to build an IMS RPC server
application for IMS BMP mode (no MPP) with standard call

z/OSIMS BMP with standard
linkage calling convention

interfaces. If your server uses PCB pointers, see IMSPSB List

75EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Description
Target Operating
SystemInterface Type

below. Follow the steps under Using the COBOLWrapper
for IMS BMP (z/OS).

Use this option if youwant to build an RPC server application
for Micro Focus with standard linkage interface(s). Follow

UNIX,
Windows

Micro Focus with standard
linkage calling convention

the steps under Using the COBOLWrapper for Micro Focus
(UNIX and Windows).

IMS PSB List

IMSPSB List applies to the server interface type “IMS BMPwith standard linkage calling conven-
tion” only. If your server uses PCB pointers and requires that they are passed through the linkage
section, an IMS PSB list is required. Your IDLmust comply with the rules under IMS PCB Pointer
IDL Rules. If no PCB pointers are required, omit the IMS PSB list. See Server Interface Types for
more information.

Channel Name

Channel Name applies to the server interface type "CICSwith Channel Container calling conven-
tion" only.

If a channel name is specified, the server is

■ called with the given channel name
■ generated with COBOL code to check for channel name validity.

If no channel name is specified, the server is

■ called with the "EntireXChannel" channel name
■ generated without COBOL code to check for channel name validity.

Your IDL must comply with the rules described under CICS Channel Container IDL Rules. See
Server Interface Types for more information.

EntireX COBOL Wrapper76

Generating COBOL Source Files from Software AG IDL Files

Generation Settings - Preferences

Use the Preferences page of the COBOLWrapper to set the workspace defaults for the target op-
erating system, interface types etc. The settings (except Type of COBOL mapping) are used as
the defaults for the IDL properties when a new IDL file is created; see Generation Settings -
Properties.

Use the Preferences > COBOL to set the workspace defaults for the COBOL mapping type. IDL
Extractor for COBOL and COBOLWrapper use this setting.

77EntireX COBOL Wrapper

Generating COBOL Source Files from Software AG IDL Files

Every Designer (Eclipse) workspace is either in client-side mapping mode (generating Designer
server mapping files with extension .cvm) or server-side mapping mode (generating Designer
servermapping files with extension .svm). See ServerMapping Files for COBOL for an introduction.
The following rules apply:

■ Server mapping files are generated automatically for RPC servers if required. SeeWhen is a
ServerMapping File Required? for theCOBOLWrapper in the Software AGDesignerdocumentation.

■ Server mapping files are not generated for RPC clients.

For a description of all other preferences, see Generation Settings - Properties.

EntireX COBOL Wrapper78

Generating COBOL Source Files from Software AG IDL Files

6 Using the COBOL Wrapper in Command-line Mode

■ Command-line Options ... 80
■ Example Generating an RPC Client .. 83
■ Example Generating an RPC Server ... 84
■ Further Examples .. 84

79

Commands are available to generate a COBOL RPC client or COBOL RPC server from a specified
IDL file.

See alsoCommand-lineModeunderServerMappingDeploymentWizard in theDesigner documentation.

Command-line Options

■ Generate a COBOL RPC Client from IDL File
■ Generate a COBOL RPC Server from IDL File

See Using EntireX in the Designer Command-line Mode for the general command-line syntax.

Generate a COBOL RPC Client from IDL File

To generate a COBOL RPC client from the specified IDL file, use the following command with
options in table below:

-cobol:client

DescriptionOption

The RPC communication area. Valid values: EXTERNAL, LINKAGE, COPYBOOK. See RPC
Communication Area for more information.

-comm

External ClauseEXTERNAL

Linkage SectionLINKAGE

CopybookCOPYBOOK

For possible combinations with -target and -interface option, see below.

Folder where the COBOL files will be stored.-folder

Display this usage message.-help

Interface type, either DFHCOMMAREA or LINKAGE.

For possible combinations with -target and -comm option, see below.

-interface

Enclose string literals in quotes or apostrophes. Valid values: QUOTE, APOST. See
Characters Used for String Literals for more information.

-literal

Target operating system and environment, one of BATCH_ZOS, BATCH_VSE,
BATCH_BS2000, BATCH_I5OS, CICS_ZOS, CICS_VSE, IMS_MPP, IMS_BMP, IDMS_ZOS,

-target

MICROFOCUS_WINDOWS or MICROFOCUS_UNIX. See Client Interface Types for more
information. For possible combinations with the -interface and -comm option.

Usage for-comm-interface-target

CICS with
DFHCOMMAREA

LINKAGEDFHCOMMAREACICS_ZOS

EntireX COBOL Wrapper80

Using the COBOL Wrapper in Command-line Mode

DescriptionOption

Usage for-comm-interface-target

calling convention
for z/OS.

CICS with standard
linkage calling
convention for z/OS.

LINKAGE EXTERNAL COPYBOOKLINKAGE

CICS with
DFHCOMMAREA

LINKAGEDFHCOMMAREACICS_VSE

calling convention
for z/VSE.

CICS with standard
linkage calling

LINKAGE EXTERNALLINKAGE

convention for
z/VSE.

Batch with standard
linkage calling

LINKAGE EXTERNALLINKAGEBATCH_VSE

convention for
z/VSE.

Batch with standard
linkage calling

LINKAGE EXTERNALLINKAGEBATCH_BS2000

convention for
BS2000.

Batch with standard
linkage calling
convention for IBM i.

LINKAGE EXTERNALLINKAGEBATCH_I5OS

Batch with standard
linkage calling
convention for z/OS.

LINKAGE EXTERNAL COPYBOOKLINKAGEBATCH_ZOS

IMS BMP with
standard linkage

LINKAGE EXTERNAL COPYBOOKLINKAGEIMS_BMP

calling convention
for z/OS.

IMS MPP with
standard linkage

LINKAGE EXTERNAL COPYBOOKLINKAGEIMS_MPP

calling convention
for z/OS.

IDMS/DC with
standard linkage

LINKAGE EXTERNAL COPYBOOKLINKAGEIDMS_ZOS

calling convention
for z/OS.

Micro Focus with
standard calling

LINKAGE EXTERNAL COPYBOOKLINKAGEMICROFOCUS_
WINDOWS

81EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

DescriptionOption

Usage for-comm-interface-target

convention for
Windows.

Micro Focus with
standard calling

LINKAGE EXTERNAL COPYBOOKLINKAGEMICROFOCUS_
UNIX

convention for
various UNIX
operating systems.

Define the beginning level for COBOL data items in generated copybooks, see Starting
COBOL Level for Data Items in Generated Copybooks. Valid values: 1-49.

-copybooklevel

Option to generate the generic RPC servicemoduleCOBSRVI. SeeGeneration andUsage
of Generic RPC Service Module COBSRVI. Valid values:
TRUE - Generate generic RPC service module.
FALSE - Do not generate the generic RPC service module.

-rpcservice

Generate a COBOL RPC Server from IDL File

To generate a COBOL RPC server from the specified IDL file, use the following command with
options in table below:

-cobol:server

DescriptionOption

A CICS channel name can be provided for the interface type 'CICS with Channel Container
calling convention'. SeeUsing the COBOLWrapper for CICSwith Channel Container Calling
Convention (z/OS). See also Channel Name.

-channel

Folder where the COBOL files will be stored.-folder

Display this usage message.-help

Interface type, one of DFHCOMMAREA, DFHLBUFFER, DFHCHANNEL or LINKAGE. See table below
for possible combinations.

-interface

Enclose string literals in quotes or apostrophes. See Characters Used for String Literals.-literal

Target operating system and environment. For possible combinations with option
-interface, see below and also Server Interface Types.

-target

Usage for-interface-target

CICSwithDFHCOMMAREAcalling convention for
z/OS.

DFHCOMMAREACICS_ZOS

CICS with DFHCOMMAREA large buffer interface
for z/OS.

DFHLBUFFER

CICSwith Channel Container calling convention for
z/OS.

DFHCHANNEL

EntireX COBOL Wrapper82

Using the COBOL Wrapper in Command-line Mode

DescriptionOption

Usage for-interface-target

CICSwithDFHCOMMAREAcalling convention for
z/VSE.

DFHCOMMAREACICS_VSE

CICS with DFHCOMMAREA large buffer interface
for z/VSE.

DFHLBUFFER

Batch with standard linkage calling convention for
z/VSE.

LINKAGEBATCH_VSE

Batch with standard linkage calling convention for
BS2000.

LINKAGEBATCH_BS2000

Batch with standard linkage calling convention for
IBM i.

LINKAGEBATCH_I5OS

Batch with standard linkage calling convention for
z/OS.

LINKAGEBATCH_ZOS

IMS BMP with standard linkage calling convention
for z/OS. This target may require a PSBLIST. See
below.

LINKAGEIMS_BMP

Micro Focus with standard linkage calling
convention for Windows.

LINKAGEMICROFOCUS_WINDOWS

Micro Focus with standard linkage calling
convention for various UNIX operating systems.

LINKAGEMICROFOCUS_UNIX

An IMS PSB list containing IMS PCB pointers can be provided for the server interface type
IMS BMP with standard linkage calling convention. See Using the COBOLWrapper for IMS
BMP (z/OS) for scenarios on PCB pointer usage. See also IMS PSB List.

-psblist

Example Generating an RPC Client

<workbench> -cobol:client /Demo/example.idl -target CICS_ZOS

where <workbench> is a placeholder for the actual EntireX design-time starter as described under
Using EntireX in the Designer Command-line Mode.

The name of the IDL file includes the project name. In the example, the project Demo is used. If
the IDL file name describes a file inside the Eclipse workspace, the name is case-sensitive.

If the first part of the IDL file name is not a project name in the current workspace, the IDL file
name is used as a relative (based on the IDL file) or absolute file name in the file system. Thus, the
IDL files do not need to be part of an Eclipse project.

If you do not specify a folder (option -folder), the generated COBOL source files (client interface
objects and the client declarations) will be stored in parallel to the IDL file, in the generated sub-
folders client and include, e.g. Demo/client and Demo/include.

83EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Example Generating an RPC Server

<workbench> -cobol:server /Demo/example.idl -target CICS_ZOS

where <workbench> is a placeholder for the actual EntireX design-time starter as described under
Using EntireX in the Designer Command-line Mode.

The generated COBOL source files (server (skeletons))

■ will be stored in parallel to the IDL file, in the generated subfolder server, e.g. Demo/server.
■ will overwrite existing files from a previous command-line mode generation.

Caution: Take care not to overwrite an existing server implementation with a server
skeleton. We recommend you to move your server implementation to a different folder.

Further Examples

Windows

Example 1

<workbench> -cobol:client C:\Temp\example.idl -folder src -target CICS_ZOS

Uses the IDL file C:\Temp\example.idl and generates the COBOL source files to the subfolder src
of the IDL file. Slashes and backslashes are permitted in the file name. Output to standard output:

Using workspace file:\C:\myWorkspace\.
Run COBOL client wrapper with C:/Temp/example.idl and target CICS_ZOS.
Processing IDL file C:/Temp/example.idl
Store COBOL Source (1/2): C:\Temp\src/include/CALC
Store COBOL Source (2/2): C:\Temp\src/client/CALC
Exit value: 0

EntireX COBOL Wrapper84

Using the COBOL Wrapper in Command-line Mode

Example 2

<workbench> -cobol:client C:\Temp*idl -folder C:\Temp\src -target CICS_ZOS

Generates COBOL source files for all IDL files in C:\Temp.

Example 3

<workbench> -cobol:client /Demo/example.idl -target CICS_ZOS

Uses the IDL file /Demo/example.idl and generates the COBOL source files in parallel to the IDL
file, here to the project /Demo.

Example 4

<workbench> -cobol:client -help

or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

Linux

Example 1

<workbench> -cobol:client /Demo/example.idl -folder src -target CICS_ZOS

If the project Demo exists in the workspace and example.idl exists in this project, this file is used.
Otherwise, /Demo/example.idl is used from file system. The generated output will be stored in
/Demo/src, the subfolder of /Demo.

Example 2

<workbench> -cobol:client /Demo/*.idl -folder src -target CICS_ZOS

Generates COBOL client interface objects for all IDL files in projectDemo (or in folder /Demo if the
project does not exist). The generated files are in /Demo/src.

85EntireX COBOL Wrapper

Using the COBOL Wrapper in Command-line Mode

Example 3

<workbench> -cobol:client -help

or

<workbench> -help -cobol:client

Both calls result in displaying a short help for the COBOL client wrapper.

EntireX COBOL Wrapper86

Using the COBOL Wrapper in Command-line Mode

7 Software AG IDL to COBOL Mapping

■ Mapping IDL Data Types to COBOL Data Types .. 88
■ Mapping Library Name and Alias .. 92
■ Mapping Program Name and Alias .. 93
■ Mapping Parameter Names ... 93
■ Mapping Fixed and Unbounded Arrays .. 94
■ Mapping Groups and Periodic Groups ... 95
■ Mapping Structures .. 96
■ Mapping the Direction Attributes In, Out, InOut .. 96
■ Mapping the ALIGNED Attribute ... 97
■ Calling Servers as Procedures or Functions .. 97

87

This chapter describes the specific mapping of Software AG IDL data types, groups, arrays and
structures to the COBOL programming language. Please note also the remarks and hints on the
IDL data types valid for all language bindings found under Software AG IDL File in the IDL Editor
documentation.

Mapping IDL Data Types to COBOL Data Types

In the table below, the following metasymbols and informal terms are used for the IDL.

■ The metasymbols "[" and "]" enclose optional lexical entities.
■ The informal term number (or in some cases number1.number2) is a sequence of numeric characters,
for example 123.

NoteCOBOL Data TypeDescriptionSoftware AG IDL

PIC X(number)AlphanumericAnumber

not supportedAlphanumeric
variable length

AV

14PIC X(number)Alphanumeric
variable length

AV[number]

with maximum
length

12PIC X(number)BinaryBnumber

not supportedBinary variable
length

BV

12, 14PIC X(number)Binary variable
length with
maximumlength

BV[number]

1PIC 9(8)DateD

4USAGE COMP-1Floating point
(small)

F4

4USAGE COMP-2Floating point
(large)

F8

10PIC S9(2) COMP-5Integer (small)I1

9,13PIC X

10PIC S9(4) COMP-5Integer
(medium)

I2

11,13PIC S9(4) BINARY

10PIC S9(9) COMP-5Integer (large)I4

11,13PIC S9(9) BINARY

5PIC G(number/2) DISPLAY-1KanjiKnumber

EntireX COBOL Wrapper88

Software AG IDL to COBOL Mapping

NoteCOBOL Data TypeDescriptionSoftware AG IDL

not supportedKanji variable
length

KV

5, 14PIC G(number/2 DISPLAY-1)Kanji variable
length with
maximumlength

KV[number]

6,7PIC XLogicalL

2PIC S9(number1) [V(number2)]Unpacked
decimal

Nnumber1[.number2]

2PIC 9(number1) [V(number2)]Unpacked
decimal
unsigned

NUnumber1[.number2]

2PIC S9(number1) [V(number2)] PACKED-DECIMALPacked decimalPnumber1[.number2]

2PIC 9(number1) [V(number2)] PACKED-DECIMALPacked decimal
unsigned

PUnumber1[.number2]

3PIC 9(15)TimeT

8PIC N(number) NATIONALUnicodeUnumber

not supportedUnicode variable
length

UV

8, 14PIC N(number) NATIONALUnicodevariable
length with
maximumlength

UVnumber

See also the hints and restrictions under Software AG IDL File in the IDL Editor documentation
valid for all language bindings.

Notes:

1. The date corresponds to the format PIC 9(8). The value contained has the form YYYYMMDD. This
form corresponds to COBOL DATE functions. This is an IBM extension of COBOL85 standard.

2. For COBOL, the total number of digits (number1+number2) is lower than the maximum of 99
that EntireX supports. See IDL Data Types. It varies by operating system and COBOL compiler.
To enable more total number of digits than 18, a compiler directive (option) may be required.
■ z/OS
The total number of digits (number1+number2) is restricted to 31 digits. The compiler option
AR(E) is generated into the client interface objects and server skeletons if more than 18 digits
are defined in the IDL.

■ Micro Focus
The total number of digits (number1+number2) is restricted to 38 digits. The compiler option
INTLEVEL"4" is generated into the client interface objects and server skeletons if more than
18 digits are defined in the IDL.

89EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

■ BS2000
The total number of digits (number1+number2) is restricted to 31 digits.

■ z/VSE
The total number of digits (number1+number2) is restricted to 18 digits.

■ Other Operating Systems or Compilers
Refer to your COBOL compiler documentation to see whether compiler directives or options
exist.

If you connect two endpoints, the total number of digits used must be lower or equal than the
maxima of both endpoints. For the supported total number of digits for endpoints, see the notes
under data typesN,NU, P and PU in sectionMapping Software AG IDLData Types in the respect-
ive Wrapper or language-specific documentation.

3. The time corresponds to the format PIC 9(15). The value contained has the form
YYYYMMDDHHIISST. This form corresponds to COBOL DATE/TIME functions.

4. When floating-point data types are used, rounding errors can occur, so that the values of senders
and receivers might differ slightly.

5. The length for IDL data type is given in bytes. For COBOL the length is in DBCS characters (2
bytes). IDL data type K is not supported under BS2000 because Fujitsu Siemens compilers do
not support DBCS.

6. To inspect the Boolean value of a data item of IDL type Logical, you can specify PIC X followed
by condition names (similar code is generated for scalar logical IDL types):

level-number data-name PIC X.
88 data-name-false value X'00'.
88 data-name-true value X'01' thru X'FF'.

■ IBM i
The SYMBOLIC CHARACTERS clause in the SPECIAL-NAMES paragraph is not supported. The
following COBOL statements demonstrate how you can define alternatively a character,
named HEX-00, with a value of hexadecimal zero to be used for comparison:

WORKING-STORAGE SECTION.
01 HEX-00-B PIC 9(4) BINARY VALUE 0.
01 HEX-00-H REDEFINES HEX-00-B.

02 FILLER PIC X.
02 HEX-00 PIC X.

7. To set the Boolean value of a Logical data item, specify the following hexadecimal values in a
one-byte data field (e.g. defined as PIC X.):
■ Case False: Move X'00' to data-name.
■ Case True: Move X'01' to data-name.

8. The length is given in Unicode code units following the Unicode standard UTF-16.

EntireX COBOL Wrapper90

Software AG IDL to COBOL Mapping

■ z/OS and IBM Compiler
Unicode requires the IBM Enterprise compiler.

Unicode is represented in UTF-16 big-endian format (CCSID 1200).
■ BS2000
Unicode requires a compiler that supports COBOL data type NATIONAL. See BS2000 Pre-
requisites.

Unicode is represented in UTF-16 big-endian format.
■ Micro Focus (UNIX and Windows)
Set the compiler directive NSYMBOL"NATIONAL".

For clients, Unicode can be represented in UTF-16 big-endian format (compiler directive
UNICODE(PORTABLE)) ormachine-dependent endianness UTF-16 big or little endian (compiler
directive UNICODE(NATIVE)).

For servers, Unicode can be represented in UTF-16 machine-dependent endianness (big or
little endian) format only. UNICODE(PORTABLE) is not upported.

■ Other Operating Systems or Compilers
Refer to your COBOL compiler documentation.

9. COBOL for operating systems z/OS, z/VSE, BS2000 and IBM i does not have a corresponding
data type for a compatible I1mapping. Themapping to COBOL PIC X data type should be seen
as a FILLER variable. If including an I1 data type into the interface is required, it is your respons-
ibility as application developer to process the content of this parameter provided (during receive)
and expected (during send) correctly. Negative values are given as the two's complement binary
number.

10. Supported for Micro Focus COBOL for operating systems UNIX and Windows only.

11. The value range for COBOL data type BINARY on z/OS, z/VSE, BS2000 and IBM i depends on
the COBOL compiler settings:
■ With COBOL 85 standard, the mapped COBOL data type BINARY is more restrictive than the
IDL data types I2 and I4. See IDL Data Types. This means that COBOL RPC clients cannot
send (and COBOL RPC servers cannot return) the full value range defined by the IDL types
I2 and I4. On the other hand, COBOL RPC clients and COBOL RPC servers may receive a
value range (from a non-COBOL RPC partner) outside of the value range of your COBOL
data type.

■ Without COBOL 85 standard, the value range of the COBOL data type BINARY depends on
the binary field size, thusmatches the IDLdata type exactly. In this case, there are no restriction
regarding value ranges.

■ To match the value range of IDL type I2 and I4 exactly, depending on the operating system,
the following compiler directive (option) is generated into the client interface objects and
server skeletons:

91EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

■ z/OS and z/VSE
the IBM compiler option TRUNC(BIN)

■ Other Operating Systems or Compilers
refer to your COBOL compiler documentation to seewhether compiler directives or options
exist.

12. COBOL does not have a corresponding data type for a compatible B/BVmapping. Thus the
mapping is to COBOL PIC X data type. EntireX RPC transports the (binary) data as it is: no
character conversion will be performed.

13. Supported for operating systems z/OS, z/VSE, BS2000 and IBM i only.

14.With variable length fields with maximum (AVn, BVn, KVn and UVn), connecting COBOL to
endpoints with a concept of real string types - such as Java, .NET, C, XML, Web services etc. -
is straightforward. The transfer of data in the RPC data stream depends on the actual length of
the data and not the field size, as seen in COBOL. For the COBOL side, the actual content length
of such fields is determined using a trim mechanism. For AVn, all trailing SPACEs are ignored
before send. After receive, the content is padded with trailing SPACEs up to the COBOL field
size. For BVn, HEX ZERO is used instead of SPACE; for UVn, Unicode code point U+0020. See also
the notes under IDL Data Types in the IDL Editor documentation. If your application relies on
trailing SPACEs, HEX ZEROs orUnicode code points U+0020, you cannot use amapping to variable
length fields with maximum (AVn, BVn, KVn and UVn); Use a mapping to fixed length types
instead: An, Bn, Kn and Un.

Mapping Library Name and Alias

Client Side

The IDL library name as specified in the IDL file (there is no 8-character limitation) is sent from a
client to the server. Special characters are not replaced. The library alias is neither sent to the
server nor used for other purposes on the COBOL client side.

Server Side

If you are using a so-called server mapping file, the target COBOL server program is located with
the help of this file. A server mapping file is a Designer file with extension .svm or .cvm. See
Server Mapping Files for COBOL. See also Locating and Calling the Target Server in the platform-spe-
cific administration or RPC server documentation.

If you are notusing a servermapping file, the IDL library name as specified in the IDLfile is ignored.

EntireX COBOL Wrapper92

Software AG IDL to COBOL Mapping

Mapping Program Name and Alias

Client Side

The IDL program name as specified in the IDL file (there is no 8-character limitation) is sent from
a client to the server. Special characters are not replaced. The program alias is not sent to the
server, but during wrapping it is used to derive the suggestion for the source file names of the
client interface objects (COBOL subprograms, copybooks) instead of using the IDLprogramnames,
see Customize Automatically Generated Client Names.

Server Side

If you are using a so-called server mapping file, the target COBOL server program is located with
the help of this file. A server mapping file is a Designer file with extension .svm or .cvm. See
Server Mapping Files for COBOL. This provides the following advantages:

■ IDL program names are not limited to 8 characters and do not have to match the target COBOL
server program names.

■ Target COBOL server program names (COBOL subprograms) can be customized during
wrapping. See Customize Automatically Generated Server Names.

If you are not using a server mapping file, the target COBOL server programmust match the IDL
program name. In this case:

■ The length of the IDL program names is limited by your COBOL system (often 8 characters).
■ The set of allowed characters for IDL program names is restricted by your COBOL system and
the underlying file system.

It is your responsibility as application developer to ensure that these requirements are met. See
Locating and Calling the Target Server in the platform-specific administration or RPC server docu-
mentation.

Mapping Parameter Names

The parameter names, as given in the parameter-data-definition under Software AG IDL
Grammar in the IDL Editor documentation of the IDL file, are mapped to fields within the LINKAGE
section of the generated COBOL client interface objects and COBOL server skeletons.

When building fields within the LINKAGE section, the special characters '#', '$', '&', '+', '-', '.', '/', '@'
and '_', allowed within names of parameters, are mapped to the character hyphen '-' valid for
COBOL names. Example:

93EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

HU$GO results in HU-GO

Trailing and preceding special characters are also removed. Example:

#HUGO$ results in HUGO

Subsequent special characters are replaced by one hyphen. Example:

HU$#$GO results in HU-GO

If the parameter name starts with a digit, e.g. '1', it is prefixed with the character 'P'. Example:

1HUGO results in P1HUGO

Mapping Fixed and Unbounded Arrays

Client and Server Side

■ Fixed Arrays
Fixed arrays within the IDL file are mapped to fixed COBOL tables. See the array-definition
under Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to de-
scribe fixed arrays within the IDL file and refer to fixed-bound-array-index.

■ IDL Unbounded Arrays with Maximum
IDL unbounded arrays with maximum are mapped to COBOL tables with the DEPENDING ON
clause. See COBOL Tables with Variable Size - DEPENDING ON Clause under COBOL to IDLMapping
in the IDL Extractor for COBOL documentation. Note the following:
■ The from-value of the DEPENDING ON clause is always 1.
■ ODOobjects for justification of the number of occurrences are generated into the client interface
objects and server skeletons.

■ When a 2/3 dimensional unbounded array is received from a partner, all vectors of the second
dimension must have the same length, i.e. the array forms a rectangle. The same applies to
the third dimension (all vectors must have the same length), the array forms a cuboid. If these
rules are violated, unexpected behavior occurs. For illustration, see picture under
array-definition under Software AG IDL Grammar in the IDL Editor documentation.

■ Sending a 2/3 dimensional unbounded array to a partner violating the rule above is not pos-
sible: COBOL does not allow you to set vector lengths differently.

■ Amaximumupper boundgivenwith the IDLunbounded array defines themaximumCOBOL
table size. The COBOL table can vary from 1 to this maximum. See array-definition under
Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe
unbounded arrays within the IDL file and refer to unbound-array-index.

■ Depending on your target COBOL compiler, 2- and 3-dimensional unbounded arrays may
not be supported (e.g. BS2000).

EntireX COBOL Wrapper94

Software AG IDL to COBOL Mapping

■ TheDesigner generates theCOBOL interface objects and server (skeletons)without considering
restrictions of the target COBOL compiler. See your COBOL compiler documentation for
possible workarounds, for example using compiler switches or compiler options.

Client Side

■ IDL Unbounded Arrays without Maximum
IDL unbounded arrays without a maximum are mapped to COBOL tables with the UNBOUNDED
keyword. There is no upper bound limitation also on the COBOL side. They are restricted to
clients on z/OSwith standard linkage calling convention (CICS | Batch | IMS) to its client interface
object. See Using IDL Unbounded Groups or Arrays without Maximum for more information.

Server Side

■ IDL Unbounded Arrays without Maximum
IDL unbounded arrays without a maximum are not supported by COBOLWrapper server
generation and EntireX RPC servers under z/OS (CICS, Batch, IMS) | z/VSE (CICS, Batch) |
BS2000 | Micro Focus | CICS ECI | IMS Connect | CICS Socket Listener.

Mapping Groups and Periodic Groups

Client and Server Side

■ Groups within the IDL file are mapped to COBOL structures using level numbers. See the
group-parameter-definitionunder Software AG IDLGrammar in the IDLEditor documentation
for the syntax on how to describe groups within the IDL file.

■ For groups with an array definition (including fixed, maximum upper bound or without upper
bound) the same applies as for arrays, seeMapping Fixed and Unbounded Arrays. Additionally
note the following:
■ If unbounded groups are nested, and depending on your target COBOL compiler, they may
not be supported (e.g. BS2000).

■ There is a restriction on the number of indices. Most COBOL compilers support a maximum
of 7 indices.

TheDesigner generates theCOBOL interface objects and server (skeletons)without considering
restrictions of the target COBOL compiler. See your COBOL compiler documentation for
possibilities to work round the restrictions, for example using compiler switches or compiler
options.

95EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

Mapping Structures

Client and Server Side

Structures within the IDL file are dissolved at the location where they are used. They are mapped
to COBOL structures like groups. See the structure-definition under Software AG IDLGrammar
in the IDL Editor documentation for the syntax on how to describe structures within the IDL file.

Mapping the Direction Attributes In, Out, InOut

The IDL syntax allows you to define parameters as In parameters, Out parameters, or InOut
parameters (which is the default if nothing is specified). See the attribute-list under Software
AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe attributes
within the IDL file and refer to direction-attribute.

Client Side

This direction specification is reflected in the generated COBOL interface object as follows:

■ Direction attributes do not change the COBOL call interface because parameters are always
treated as “called by reference”.

■ Usage of direction attributes may be useful to reduce data traffic between RPC client and RPC
server.

■ Parameters with the In attribute are sent from the RPC client to the RPC server.
■ Parameters with the Out attribute are sent from the RPC server to the RPC client.
■ Parameters with the In and Out attribute are sent from the RPC client to the RPC server and
then back to the RPC client.

Note that only the direction information of the top-level fields (level 1) is relevant. Group fields
always inherit the specification from their parent. A different specification is ignored.

See the attribute-list under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Server Side

If you are using a server mapping file, the RPC server considers the direction attribute found in
the server mapping file. A server mapping file is a Designer file with extension .svm or .cvm. See
Server Mapping Files for COBOL.

EntireX COBOL Wrapper96

Software AG IDL to COBOL Mapping

If your RPC server is generated with a previous version of EntireX without a server mapping file,
the RPC server considers the direction attribute sent from anyRPC client, for example Java, DCOM,
C, COBOL, .NET, XML and PL/I.

Mapping the ALIGNED Attribute

See the attribute-list under Software AG IDL Grammar in the IDL Editor documentation for the
syntax on how to describe attributes within the IDL file and refer to direction-attribute.

Client and Server Side

This attribute corresponds to the SYNCHRONIZED clause. If it is specified, data will be mapped ac-
cording to the following rules:

NotesAlignmentCOBOL Data TypeSoftware AG IDL

1+4USAGE COMP-1 SYNCF4

1+8USAGE COMP-2 SYNCF8

1+2PIC S9(4) BINARY SYNCI2

1+4PIC S9(8) BINARY SYNCI4

Notes:

1. On IBM i, specify the compiler option *SYNC in the commands CRTCBLMOD or CRTBNDCBL for the
usage of the SYNCHRONIZED clause.

Calling Servers as Procedures or Functions

Client and Server Side

The COBOL 85 standard does not support a concept of functions like the programming languages
C or PL/I. Any SoftwareAG IDLprogramdefinition ismapped to a COBOLprogram. SeeMapping
Program Name and Alias.

97EntireX COBOL Wrapper

Software AG IDL to COBOL Mapping

98

III Writing Applications with the COBOL Wrapper

■ Writing Standard Call Interface Clients
■ Writing EXEC CICS LINK Clients
■ Using the Generated Copybooks
■ Using Broker Logon and Logoff
■ Using Conversational RPC
■ Using IDL Unbounded Groups or Arrays without Maximum
■ Using RPC Authentication (Natural Security, Impersonation, Integration Server)
■ Using the COBOLWrapper with Non-secure Natural RPC Server
■ Using SSL/TLS
■ Using Internationalization with the COBOLWrapper

See also Scenarios and Programmer Information in the respective RPC Server documentation.

99

100

8 Writing Standard Call Interface Clients

■ Step 1: Declare and Initialize the RPC Communication Area ... 102
■ Step 2: Declare the IDL Data Structures for Client Interface Objects ... 104
■ Step 3: Required Settings in the RPC Communication Area ... 104
■ Step 4: Optional Settings in the RPC Communication Area .. 105
■ Step 5: Issue the RPC Request and Check for Success .. 105

101

This chapter describes in five steps how to write your first COBOL RPC client program. It uses
the standard call interface: CICS | Batch | IMS |Micro Focus.

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

Step 1: Declare and Initialize the RPC Communication Area

The RPC Communication Area is your interface (API) to RPC communication and the generic
RPC service module COBSRVI.

How to declare the communication area in your RPC client program depends on the generation
option External Clause, Linkage Section or Copybook (see RPC Communication Area under
Generation Settings - Properties) and whether only copybook ERXCOMM is used, or both copybooks
ERXCOMM and ERXVSTR are used.
The optional ERXVSTR copybook is an extension to the ERXCOMM copybook. It enables an RPC client
to specify long data strings (e.g. passwords). For usage see ERXVSTR Copybook under Using the
Generated Copybooks.

See the following code snippets:

■ Only Copybook ERXCOMM is Used
■ Both Copybooks ERXCOMM and ERXVSTR are Used

Only Copybook ERXCOMM is Used

■ For External Clause Option

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA EXTERNAL.

COPY ERXCOMM.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.

* Set version (see Note 2)
MOVE "2000" to COMM-VERSION.

■ For Linkage Section option

EntireX COBOL Wrapper102

Writing Standard Call Interface Clients

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.

* Set version (see Note 2)
MOVE "2000" to COMM-VERSION.

Both Copybooks ERXCOMM and ERXVSTR are Used

■ For External Clause option

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA EXTERNAL.

COPY ERXCOMM.
01 ERX-COMMUNICATION-VSTR EXTERNAL.

COPY ERXVSTR.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.
INITIALIZE ERX-COMMUNICATION-VSTR.

* Set version (see Note 2)
MOVE "4000" to COMM-VERSION.

■ For Linkage Section option

* Declare RPC communication area
01 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.
01 ERX-COMMUNICATION-VSTR.

COPY ERXVSTR.

* Initialize RPC communication area (see Note 1)
INITIALIZE ERX-COMMUNICATION-AREA.
INITIALIZE ERX-COMMUNICATION-VSTR.

* Set version (see Note 2)
MOVE "4000" to COMM-VERSION.

■ For Copybook option
This step is obsolete in the client application and is omitted. Default values for the RPC commu-
nication area are retrieved from Designer preferences or IDL-specific properties. If required,
those default values can be overwritten in the COBINIT Copybook.

Notes:

103EntireX COBOL Wrapper

Writing Standard Call Interface Clients

1. The RPC communication area copybook ERXCOMM and - if used - its extension copybook ERXVSTR
must be correctly initialized with the data formats. Do not move SPACES to them! Use, for ex-
ample, a COBOL INITIALIZE statement.

2. If the copybook ERXCOMM only is used, COMM-VERSION is set to "2000". If both copybooks are used
(ERXCOMM and its extension ERXVSTR), COMM-VERSION is set to "4000".

Step 2: Declare the IDL Data Structures for Client Interface Objects

For every program definition of the IDL file, the COBOLWrapper generates an IDL interface
copybookwith the description of the customer's interface data as a COBOL structure. For ease of
use you can include these structures into your RPC client program as shown below.

* Declare customer data to generated RPC Stubs
01 CALC-AREA.

COPY CALC.

However, as an alternative, you can use your own customer data structures. In this case the COBOL
data types and structures must match the interfaces of the generated client interface objects, oth-
erwise unpredictable results may occur.

* Declare customer data to generated RPC Stubs
01 CALC-AREA.

10 PARAMETER.
15 OPERATOR PIC X.
15 OPERAND1 PIC S9(9) BINARY.
15 OPERAND2 PIC S9(9) BINARY.
15 RESULT PIC S9(9) BINARY.

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOLWrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into the client interface objects.

* assign the broker to talk with ...
MOVE "localhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with ...
MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.

* assign the user id to the broker ...
MOVE "ERXUSER" to COMM-USERID.

EntireX COBOL Wrapper104

Writing Standard Call Interface Clients

Step 4: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the COBOLWrapper,
for example:

MOVE "EXAMPLE" to COMM-LIBRARY.
MOVE "00000300" to COMM-ETB-WAIT.
MOVE "PASSWORD" to COMM-PASSWORD. (Note 1)

Notes:

1. For Implicit Logon, if required in your environment, the client password can be given here. It is
provided then through the client interface object. If you have to issue an Explicit Logon, seeUsing
Broker Logon and Logoff.

Step 5: Issue the RPC Request and Check for Success

How to issue the request in your RPC client program depends on the generation option External
Clause, Linkage Section or Copybook (seeRPCCommunicationArea) and usage of the copybooks
ERXCOMM and ERXVSTR. See following code snippets:

■ External Clause option

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT
ON EXCEPTION

* Perform error-handling
NOT ON EXCEPTION

IF COMM-RETURN-CODE = ZERO
* Perform success-handling

ELSE
* Perform error-handling (See Note 1)

END-IF
END-CALL.

■ Linkage Section option; copybook ERXCOMM is used only

105EntireX COBOL Wrapper

Writing Standard Call Interface Clients

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT
ERX-COMMUNICATION-AREA

ON EXCEPTION
* Perform error-handling

NOT ON EXCEPTION
IF COMM-RETURN-CODE = ZERO

* Perform success-handling
ELSE

* Perform error-handling (See Note 1)
END-IF

END-CALL.

■ Linkage Section option; both copybooks ERXCOMM and ERXVSTR are used

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT
ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR

ON EXCEPTION
* Perform error-handling

NOT ON EXCEPTION
IF COMM-RETURN-CODE = ZERO

* Perform success-handling
ELSE

* Perform error-handling (See Note 1)
END-IF

END-CALL.

■ Copybook option

CALL "CALC" USING OPERATOR OPERAND1 OPERAND2 RESULT
ON EXCEPTION

* Perform error-handling
NOT ON EXCEPTION

IF RETURN-CODE = ZERO
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.

Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

2. Because theRPC communication area is not used for data exchange between the client application
and the client interface objects, the COMM-RETURN-CODE field in the RPC communication area
cannot be checked directly upon return from RPC calls. Therefore, the COBOL mechanism
RETURN-CODE special register is used to provide errors from client interface objects to the client

EntireX COBOL Wrapper106

Writing Standard Call Interface Clients

application. For IBM compilers, errors can be adapted in the COBEXIT copybook (see folder in-
clude).

107EntireX COBOL Wrapper

Writing Standard Call Interface Clients

108

9 Writing EXEC CICS LINK Clients

■ Step 1: Declare IDL Structures and RPC Communication Area ... 110
■ Step 2: Initialize the RPC Communication Area .. 111
■ Step 3: Required Settings in the RPC Communication Area ... 112
■ Step 4: Optional Settings in the RPC Communication Area .. 113
■ Step 5: Issue the RPC Request and Check for Success .. 113

109

This chapter describes in five steps how to write your first COBOL RPC client program for an
EXEC CICS LINK interface. You can alsowrite an RPC client for CICSwith a standard call interface,
seeUsing the COBOLWrapper for CICSwith DFHCOMMAREACalling Convention (z/OS and z/VSE).

The example given here does not use function calls as described under Using Broker Logon and
Logoff. It demonstrates an implicit broker logon (because no broker logon/logoff calls are imple-
mented), where it is required to switch on the AUTOLOGON feature in the broker attribute file.

Step 1: Declare IDL Structures and RPC Communication Area

For every program definition of the IDL file, the COBOLWrapper generates an IDL interface
copybookwith the description of the customer's interface data as a COBOL structure. For ease of
use you can include these structures togetherwith the RPC communication area copybook ERXCOMM
into your RPC client program. The RPC communication area is your interface (API) to RPC com-
munication and the Generation and Usage of Generic RPC Service Module COBSRVI.

Definition is physically in a specific order (see code snippet below):

■ A parent label on COBOL level 01 (here label CALC-AREA) is followed by the IDL interface
copybook (here copybook CALC).

■ Then comes a COBOL label with the RPC communication area below (here label
RPC-COMMUNICATION-AREA together with copybook ERXCOMM).

Label names could be different in your application, but the physical sequence of labels and copy-
books are important. See following code snippets:

See following code snippets:

* Declare customer data to generated client interface objects
01 CALC-AREA.
COPY CALC

* Declare RPC communication area
03 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.

However, as an alternative, you can use your own customer data structures. In this case the COBOL
data types and structures must match the interfaces of the generated client interface objects, oth-
erwise unpredictable results may occur.

EntireX COBOL Wrapper110

Writing EXEC CICS LINK Clients

* Declare customer data to generated client interface objects
01 CALC-AREA.

03 OPERATOR PIC X.
03 OPERAND1 PIC S9(8) COMP.
03 OPERAND2 PIC S9(8) COMP.
03 RESULT PIC S9(8) COMP.

* Declare RPC communication area
03 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.

Step 2: Initialize the RPC Communication Area

. . .

* Call subprogram to initialize the RPC Communication Area (see Note 1)
CALL "INIT-RPC" USING ERX-COMMUNICATION-AREA.

* Set version (see Note 2)
MOVE "2000" to COMM-VERSION.
. . .

* Subprogram to initialize the RPC communication area
IDENTIFICATION DIVISION.
PROGRAM-ID. INIT-RPC.
DATA DIVISION.
LINKAGE SECTION.
01 RPC-COMMUNICATION-AREA.

COPY ERXCOMM.
PROCEDURE DIVISION USING RPC-COMMUNICATION-AREA.
MAIN SECTION.

* Initialize the RPC Communication Area (see Note 3)
INITIALIZE RPC-COMMUNICATION-AREA.
EXIT PROGRAM.

END PROGRAM INIT-RPC.

Notes:

1. If your generated IDL interface copybook contains a COBOL table with an OCCURS DEPENDING
ON clause, originating from an IDL unbounded array, it is important to set the ODO object to
the required value for upper-bound before you call the initialization subprogram. (Refer to
Fixed and Unbounded Arrays in the IDL Editor documentation.) See the following code snippet:

111EntireX COBOL Wrapper

Writing EXEC CICS LINK Clients

. . .
01 IDL-AREA.

03 IDL-FIELD1 PIC X(8).
03 IDL-FIELD2 PIC X(32).
03 . . .
03 ODO-OBJECT PIC 9(8) BINARY.
03 ODO-SUBJECT OCCURS 1 TO 24 DEPENDING ON ODO-OBJECT.

04 ODO-FIELD1 PIC X(5).
04 ODO-FIELD1 PIC X(1).
04 . . .

03 ERX-COMMUNICATION-AREA.
COPY ERXCOMM.

. . .
* Set the ODO object to required value for input

MOVE <upper-bound> TO ODO-OBJECT.
MOVE . . .

* Initialize RPC communication area
CALL "INIT-RPC" USING ERX-COMMUNICATION-AREA.

. . .

2. Because only copybook ERXCOMM is used, COMM-VERSION is set to "2000".

3. The RPC communication area copybook ERXCOMMmust be correctly initialized with the data
formats. Do not move SPACES to it! Use, for example, a COBOL INITIALIZE statement.

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOLWrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into the client interface objects.

* assign the broker to talk with ...
MOVE "localhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with ...
MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.

* assign the user id to the broker ...
MOVE "ERXUSER" to COMM-USERID.

EntireX COBOL Wrapper112

Writing EXEC CICS LINK Clients

Step 4: Optional Settings in the RPC Communication Area

Here you specify optional settings to the RPC communication area used by the COBOLWrapper,
for example:

MOVE "EXAMPLE" to COMM-LIBRARY.
MOVE "00000300" to COMM-ETB-WAIT.
MOVE "PASSWORD" to COMM-PASSWORD. (Note 1)

Notes:

1. For Implicit Logon, if required in your environment, the client password can be given here. It is
provided then through the client interface object. If you have to issue an Explicit Logon, seeUsing
Broker Logon and Logoff.

Step 5: Issue the RPC Request and Check for Success

See following code snippets:

MOVE LENGTH OF CALC-AREA TO COMLEN.
EXEC CICS LINK PROGRAM("CALC") COMMAREA(CALC-AREA)

LENGTH(COMLEN) RESP(WORKRESP)
END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 1)

END-IF
ELSE
* Perform error-handling
END-IF.

Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

113EntireX COBOL Wrapper

Writing EXEC CICS LINK Clients

114

10 Using the Generated Copybooks

■ IDL Interface Copybooks ... 116
■ ERXCOMM Copybook .. 117
■ ERXVSTR Copybook ... 117
■ COBINIT Copybook ... 118
■ COBEXIT Copybook .. 118

115

This chapter explains how clients built with the COBOLWrapper use the generated copybooks.

IDL Interface Copybooks

The IDL interface copybooks (see folder include) are theAPI of the COBOL client application using
client interface objects. You can customize the Starting COBOLLevel for Data Items in Generated
Copybooks according to your needs.

If IDL unbounded groups without maximum (/V) or arrays without maximum (for example
(A100/V)) are contained in the IDL, these are mapped with keyword UNBOUNDED. In this case:

■ cut and paste the top-level COBOL groups where
■ anywhere deeper the keyword UNBOUNDED is contained into the LINKAGE SECTION

■ no keyword UNBOUNDED is contained into the WORKING STORAGE SECTION

For details see Using IDL Unbounded Groups or Arrays without Maximum.

For all other IDLs, a starting level greater than one allows you to

■ embed (include) the generated copybook into other existing COBOL structures:

1 MYGROUP.
10 . . .
10 . . .
10 MYIDL.
COPY MYIDL.

■ specify usage clauses such as EXTERNAL, GLOBAL etc.:

1 MYIDL1 GLOBAL.
COPY MYIDL1.

■ use multiple generated copybooks with duplicate parameter names on IDL level 1 in the same
COBOL program:

1 MYIDL1.
COPY MYIDL1.

1 MYIDL2.
COPY MYIDL2.

More information:

■ For IDL unbounded groups or arrays without maximum, see the array-definition under
Software AG IDL Grammar in the IDL Editor documentation for the syntax on how to describe

EntireX COBOL Wrapper116

Using the Generated Copybooks

unbounded arrayswithin the IDLfile and refer to unbound-array-index. For COBOLmappings,
seeMapping Fixed and Unbounded Arrays andMapping Groups and Periodic Groups.

■ For writing a standard call interface client according to scenario CICS | Batch | IMS |Micro
Focus, seeWriting Standard Call Interface Clients.

■ Forwriting a client according to scenarioUsing the COBOLWrapper for CICSwith DFHCOMMAREA
Calling Convention (z/OS and z/VSE), seeWriting EXEC CICS LINK Clients.

ERXCOMM Copybook

The ERXCOMM copybook (see folder include) holds RPCmetadata for RPC clients. Here you provide
parameters that are needed to communicate with the broker and are not specific to client interface
objects. Upon return from an RPC request it provides, for example, the error code. In this way it
defines a context for RPC clients.

For usage, refer to the following sections:

■ Copybook ERXCOMM under The RPC Communication Area (Reference)
■ Step 1: Declare and Initialize the RPC Communication Area in sectionWriting Standard Call
Interface Clients

ERXVSTR Copybook

The ERXVSTR copybook (see folder include) is an extension to the ERXCOMM copybook for RPC clients.
It enables an RPC client to specify long broker passwords, and long user IDs/passwords for RPC
authorization. Its usage is optional.

The RPC communication area extension copybook ERXVSTR is generated for Target Operating
System z/OS and RPC clients using a call interface to its client interface object, meaning one of the
following Client Interface Types is selected:

■ CICS with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS BMP with Standard Linkage Calling Convention
■ IMS MPP with Standard Linkage Calling Convention

For usage, refer to the following sections:

■ Using Broker Logon and Logoff
■ Using RPC Authentication (Natural Security, Impersonation, Integration Server)

117EntireX COBOL Wrapper

Using the Generated Copybooks

■ Copybook ERXVSTR under The RPC Communication Area (Reference)
■ Step 1: Declare and Initialize the RPC Communication Area in sectionWriting Standard Call
Interface Clients

COBINIT Copybook

The COBINIT copybook (see folder include) is generated if option Copybook forRPCCommunication
Area is selected. Its purpose is to set communication parameters such as COMM-ETB-BROKER-ID,
COMM-ETB-SERVER-NAME etc. into the RPC Communication Area. You can set parameters made
available through ERXCOMM Copybook and also ERXVSTR Copybook.

COBEXIT Copybook

The COBEXIT copybook (see folder include) is generated if option Copybook forRPCCommunication
Area is selected. Its purpose is to check and map error codes. COBOL statements that have been
commented out are generated into the copybook as an example.

EntireX COBOL Wrapper118

Using the Generated Copybooks

11 Using Broker Logon and Logoff

■ Introduction .. 120
■ Logging on Using Short Broker Passwords (all Interface Types) .. 120
■ Logging on Using Long Broker Passwords (z/OS with Call Interface) .. 123

119

Introduction

This section explains how clients built with the COBOLWrapper use explicit broker logon and
logoff functions. The logon call is the first call to the broker, before any RPC call. The COMM-ETB-
USER-IDfield (and the COMM-ETB-TOKENfield,where provided)must not change from logon, through
all calls of client interface objects, until final logoff. The logoff call should be issued as soon as RPC
communication is no longer needed. This is similar to LOGON and LOGOFF, USER-ID and TOKEN and
AuthenticationunderWritingApplications using EntireX Security in theACI Programming document-
ation.

To use explicit broker logon and logoff you need the following components:

■ the Delivered Modules are provided to log on to and log off from the broker
■ the copybook ERXCOMM if a 32-byte broker password is sufficient; see RPC communication area
Copybook ERXCOMM

■ the copybook ERXVSTR to use a long broker password; see RPC communication area Copybook
ERXVSTR

■ We strongly recommend using SSL/TLS if you send an authentication as described here with
the COBOLWrapper to a secure partner. See also SSL/TLS Parameters for SSL Clients under
SSL/TLS andCertificates with EntireX in the Platform-independentAdministration documentation.

Logging on Using Short Broker Passwords (all Interface Types)

This approach allows amaximumof 32 bytes for the broker password. The code youwrite depends
on the interface type:

■ Call Interface
■ EXEC CICS LINK Interface

See Client Interface Types.

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS |Micro Focus.

To log on to the Broker with a short password

1 Declare and initialize the RPC communication area as described underOnly Copybook
ERXCOMM is Used under Step 1: Declare and Initialize the RPC Communication Area in sec-
tionWriting Standard Call Interface Clients.

EntireX COBOL Wrapper120

Using Broker Logon and Logoff

2 Log on to the brokerwith the logon function LO provided by the generic RPC servicesmodule,
using the Call Interface.

* Set function broker logon
MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.

* Optionally set broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call generic RPC service module to call broker (see Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (see Note 2)

END-IF
END-CALL.
* begin of application logic
...

3 Issue your RPC requests as usual, without using explicit logon and logoff.

To log off from the Broker with a short password

■ Log off from the broker with the log off function LF provided by the generic RPC services
module, using a CALL statement.

EXEC CICS LINK Interface

This interface type applies to the scenarioUsing the COBOLWrapper for CICSwith DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

To log on to the Broker with a short password

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in sectionWriting EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPCCommu-
nication Area underWriting EXEC CICS LINK Clients.

3 Log on to the brokerwith the logon function LO provided by the generic RPC servicesmodule,
using EXEC CICS LINK.

121EntireX COBOL Wrapper

Using Broker Logon and Logoff

. . .
MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.

* Optionally set broker password/kernelsecurity to use EntireX Security
MOVE "COB-PASS" TO COMM-ETB-PASSWORD.
MOVE "Y" TO COMM-KERNEL-SECURITY.

* Call generic RPC service module to call broker
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (see Note 2)

END-IF
ELSE
* Perform error-handling
END-IF.
* begin of application logic
...

4 Issue your RPC requests as usual, without using explicit logon and logoff.

To log off from the Broker with a short password

■ Log off from the broker with the log off function LF provided by the generic RPC services
module, using EXEC CICS LINK.

Notes:

1. If you are only using copybook ERXCOMM only, pass only the address of ERXCOMM to the generic
RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper122

Using Broker Logon and Logoff

Logging on Using Long Broker Passwords (z/OS with Call Interface)

This section applies to the scenarios CICS, Batch and IMSwith the CALL interface.

With this approach you can use long passwords. It requires the ERXVSTR copybook.

The RPC communication area extension copybook ERXVSTR is generated for Target Operating
System z/OS and RPC clients using a call interface to its client interface object, meaning one of the
following Client Interface Types is selected:

■ CICS with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS BMP with Standard Linkage Calling Convention
■ IMS MPP with Standard Linkage Calling Convention

To log on to the Broker with a long password

1 Declare and initialize the RPC communication area as described under Both Copybooks
ERXCOMM and ERXVSTR are Used under Step 1: Declare and Initialize the RPC Communication
Area in sectionWriting Standard Call Interface Clients.

2 Log on to the brokerwith the logon function LO provided by the generic RPC servicesmodule,
using the Call Interface.

* Set function broker logon
MOVE "LO" TO COMM-FUNCTION.
* Set broker user ID/kernelsecurity in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
MOVE "Y" TO COMM-KERNEL-SECURITY.
* set long broker password in RPC Variable String Area
INSPECT ETBPWD TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE 1 TO STR-OFFSET.
MOVE STR-OFFSET TO COMM-ETB-PASSWORD-OFFSET.
MOVE STR-LENGTH TO COMM-ETB-PASSWORD-LENGTH.
STRING ETBPWD DELIMITED BY SPACE INTO

COMM-STRING-AREA WITH POINTER STR-OFFSET.
* Call generic RPC service module to call broker

CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.

ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (see Note 2)

123EntireX COBOL Wrapper

Using Broker Logon and Logoff

END-IF
END-CALL.
. . .

To log off from the Broker with a long password

■ See the following code snippet:

. . .
* Set function broker logoff
MOVE "LF" TO COMM-FUNCTION.
* Set broker user ID in RPC Communication Area
MOVE "COB-USER" TO COMM-ETB-USER-ID.
* Call generic RPC service module to call broker (see Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA

ERX-COMMUNICATION-VSTR.
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (see Note 2)

END-IF
END-CALL.
. . .

Notes:

1. If both copybooks are used, you need to pass both addresses, first the address of ERXCOMM, then
the address of ERXVSTR to the generic RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper124

Using Broker Logon and Logoff

12 Using Conversational RPC

■ Call Interface .. 126
■ EXEC CICS LINK Interface .. 129

125

This chapter explains how clients built with the COBOLWrapper use conversational RPC.

RPC conversations are supported when communicating with an RPC server. It is further assumed
that you are familiar with the concepts of conversational RPC and non-conversational RPC. To
use conversational RPC, you need the following components:

■ the Delivered Modules are provided to open, close or abort conversations
■ the RPC Communication Area

The code you write depends on the interface type:

See Client Interface Types.

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS |Micro Focus.

To use conversational RPC

1 Declare and initialize the RPC communication area with one of the approaches described
under Step 1: Declare and Initialize the RPCCommunication Area in sectionWriting Standard
Call Interface Clients. Here you can use copybook ERXCOMM only, or both copybooks ERXCOMM
and ERXVSTR.

2 Open a conversation with the function Open Conversation OC provided by the generic RPC
servicesmodule. The code snippet below illustrates the variant where only copybook ERXCOMM
is used. If you are using both copybooks ERXCOMM and ERXVSTR, see Note 1.

MOVE "OC" TO COMM-FUNCTION.
* Call generic RPC service module to use conversational mode (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.

3 Issue yourRPC requests aswithin non-conversationalmodeusing the generated client interface
objects. Different client interface objects can participate in the same RPC conversation.

EntireX COBOL Wrapper126

Using Conversational RPC

To abort conversational RPC communication

■ Abort an unsuccessful RPC conversation with the function Close Conversation CB provided
by the generic RPC services module. The code snippet below illustrates the variant where
only copybook ERXCOMM is used. If you are using both copybooks ERXCOMM and ERXVSTR, see
Note 1.

MOVE "CB" TO COMM-FUNCTION.
* Call generic RPC service module to use conversational mode (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.

To close and commit a conversational RPC communication

■ Close the RPC conversation successfully with the function Close Conversation and Commit
CE provided by the generic RPC services module. The code snippet below illustrates the
variant where only copybook ERXCOMM is used. If you are using both copybooks ERXCOMM and
ERXVSTR, see Note 1.

MOVE "CE" TO COMM-FUNCTION.
* Call generic RPC service module to use conversational mode (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.

Notes:

1. If both copybooks ERXCOMM and ERXVSTR are used, you need to pass both parameters:

127EntireX COBOL Wrapper

Using Conversational RPC

CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper128

Using Conversational RPC

EXEC CICS LINK Interface

This interface type applies to the scenarioUsing the COBOLWrapper for CICSwith DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

To use conversational RPC

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in sectionWriting EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPCCommu-
nication Area underWriting EXEC CICS LINK Clients.

3 Open a conversation with the function Open Conversation OC provided by the generic RPC
services module:

MOVE "OC" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 1)

END-IF
ELSE
* Perform error-handling
END-IF.

4 Issue yourRPC requests aswithin non-conversationalmodeusing the generated client interface
objects. Different client interface objects can participate in the same RPC conversation.

To abort conversational RPC communication

■ Abort an unsuccessful RPC conversation with the function Close Conversation CB provided
by the generic RPC services module:

129EntireX COBOL Wrapper

Using Conversational RPC

MOVE "CB" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 1)

END-IF
ELSE
* Perform error-handling
END-IF.

To close and commit a conversational RPC communication

■ Close the RPC conversation successfully with the function Close Conversation and Commit
CE provided by the generic RPC services module:

MOVE "CE" TO COMM-FUNCTION.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 1)

END-IF
ELSE
* Perform error-handling
END-IF.

Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper130

Using Conversational RPC

13 Using IDLUnboundedGroups orArrayswithoutMaximum

This chapter explains how clients built with the COBOLWrapper use IDL unbounded groups or
arrays without maximum upper bounds. For illustration of IDL unbounded arrays, see Example
of Arrays with Variable Upper-bounds under Software AG IDL Grammar in the IDL Editor document-
ation.

Usage of IDL unbounded groups or arrays without maximum is supported for:

■ operating system z/OS with IBM Enterprise COBOL compiler for z/OS version 6.1 and above
■ RPC clients using a call interface to its client interface object, meaning one of the followingClient
Interface Types is selected:
■ CICS with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS BMP with Standard Linkage Calling Convention
■ IMS MPP with Standard Linkage Calling Convention

See alsoMapping Fixed and Unbounded Arrays.

The example below illustrates how IDL unbounded groups without maximum (/V) are used from
COBOL. The client interface objects are generated from the IDL as described in Using the COBOL
Wrapper (CICS with Call Interfaces | Batch | IMS). Storage allocation and pointer usage for un-
bounded arrayswithoutmaximum (for example (A100/V)) are the same as for unbounded groups.
Both are mapped to OCCURS DEPENDING ONwith keyword UNBOUNDED.

For writing the RPC client programs, the steps describedWriting Standard Call Interface Clients
are valid.Additionally theCOBOLgroup on level 1 containing OCCURS DEPENDING ONwith keyword
UNBOUNDED originating from an IDL unbounded group or array is

■ defined in the LINKAGE SECTION. If no keyword UNBOUNDED is contained in the COBOL group
on level 1, it is usually defined in the WORKING STORAGE SECTION. Compare (050) below and
Step 2: Declare the IDL Data Structures for Client Interface Objects

131

■ allocated and freed manually, see (070) and (140) below. We strongly recommend using the
IBM-specific COBOL ALLOCATE and FREE statements, because the storage is freed and reallocated
inside the client interface object using same ALLOCATE and FREE statements

■ passed with a pointer to the client interface object, see (110) below.

Sample IDL Program

program 'UnboundedTables' is
define data parameter
1 UT-TA1 (/V) In Out

2 UT-FST (A12)
2 UT-TA2 (/V)

3 UT-ELE (A05)
2 UT-LST (A12)

end-define

Sample COBOL RPC Client and Explanation of Statements

(010) IDENTIFICATION DIVISION.
PROGRAM-ID. UNBNDCLT.

DATA DIVISION.
. . .

WORKING-STORAGE SECTION.
. . .

(020) 01 SIZE-IN-BYTES PIC 9(4) BINARY.
(030) 01 ITERATION1 PIC 9(4) BINARY.

01 ITERATION2 PIC 9(4) BINARY.
(040) 01 UT-TA1A-PTR POINTER.

. . .

LINKAGE SECTION.
. . .

(050) 01 UT-TA1A.
02 UT-TA1-41 PIC 9(8) BINARY.
02 UT-TA2-61 PIC 9(8) BINARY.
02 UT-TA1X OCCURS 1 TO UNBOUNDED DEPENDING ON UT-TA1-41.
03 UT-FST PIC X(12).
03 UT-TA2X OCCURS 1 TO UNBOUNDED DEPENDING ON UT-TA2-61.
04 UT-ELE PIC X(5).
03 UT-LST PIC X(12).

. . .

PROCEDURE DIVISION.

. . .
* upper bound is 4 for UT-TA1-41 and 6 for UT-TA1-61

(060) COMPUTE SIZE-IN-BYTES = LENGTH OF UT-FST * 4
+ LENGTH OF UT-ELE * 4 * 6
+ LENGTH OF UT-LST * 4.

EntireX COBOL Wrapper132

Using IDL Unbounded Groups or Arrays without Maximum

(070) ALLOCATE SIZE-IN-BYTES CHARACTERS INITIALIZED RETURNING UT-TA1A-PTR.
(080) SET ADDRESS OF UT-TA1A TO UT-TA1A-PTR.
(090) MOVE 4 TO UT-TA1-41.

MOVE 6 TO UT-TA1-61.
(100) MOVE 0 TO ITERATION1.

PERFORM UT-TA1-41 TIMES
ADD 1 TO ITERATION1
MOVE ... TO UT-FST(ITERATION1)
MOVE 0 TO ITERATION2
PERFORM UT-TA2-61 TIMES

ADD 1 TO ITERATION2
MOVE ... TO UT-ELE(ITERATION1 ITERATION2)

END-PERFORM
MOVE ... TO UT-LST(ITERATION1)

END-PERFORM.
(110) CALL "UNBNDTAB" USING UT-TA1A-PTR ERX-COMMUNICATION-AREA.
(120) SET ADDRESS OF UT-TA1A TO UT-TA1A-PTR.
(130) MOVE 0 TO ITERATION1.

PERFORM UT-TA1-41 TIMES
ADD 1 TO ITERATION1
MOVE UT-FST(ITERATION1) TO ...
MOVE 0 TO ITERATION2
PERFORM UT-TA2-61 TIMES

ADD 1 TO ITERATION2
MOVE UT-ELE(ITERATION1 ITERATION2) TO ...

END-PERFORM
MOVE UT-LST(ITERATION1) TO ...

END-PERFORM.
(140) FREE UT-TA1A-PTR.

. . .
END PROGRAM UNBNDCLT.

Explanation of Statements

COBOL RPC client UNBNDCLT to demonstrate IDL unbounded groups without maximum.(010)

Variable to hold the result of the storage calculation in bytes for the COBOL structure
(050).

(020)

POINTER variable to access the COBOL structure (050) describing the IDL interface (010).(040)

COBOL structure describing the IDL interface (010) defined in LINKAGE SECTION.(050)

Storage calculation for COBOL structure (050) assuming upper bound is 4 for UT-TA1-41
and 6 for UT-TA1-61.

(060)

Storage allocation using the calculated SIZE-IN-BYTES (060)with IBM-specific COBOL
ALLOCATE statement; returned address is assigned to COBOL pointer UT-TA1A-PTR (040).

(070)

COBOL structure (050) is set to the address of the allocated storage (070).(080)

Upper bounds are assigned to ODO objects of COBOL structure (050).(090)

ODO subjects of COBOL structure (050) are filled with data.(100)

133EntireX COBOL Wrapper

Using IDL Unbounded Groups or Arrays without Maximum

Call to the client interface object; COBOLpointer UT-TA1A-PTR (040) is passed as parameter;
The COBOL name of the client interface object UNBNDTAB is customized, see Customize
Automatically Generated Client Names.

(110)

The client interface object may return a changed COBOL pointer UT-TA1A-PTR. So the
COBOL structure (050) is set to the address returned from the client interface object.

(120)

Processing of returned data.(130)

Storage allocated in (070) or returned by call to client interface object (110) is freed.(140)

EntireX COBOL Wrapper134

Using IDL Unbounded Groups or Arrays without Maximum

14 Using RPC Authentication (Natural Security,

Impersonation, Integration Server)
■ Introduction .. 136
■ RPC Authentication Using Short RPC User ID/RPC Password (all Interface Types) 137
■ RPC Authentication Using Long RPC User ID/RPC Password (z/OS with Call Interface) 139

135

Introduction

This section explains how clients built with the COBOLWrapper can communicate with the fol-
lowing:

■ Natural RPC Servers running under Natural Security
■ RPC servers running with impersonation. See Impersonation in the respective RPC Server
documentation.

■ EntireXAdapter Listenerwith enabled Execute ServicewithClient Credentials, seeConfiguring
Listeners in the EntireX Adapter documentation.

For this you will need the following components:

■ the Delivered Moduleswhich are provided to create and get a security token
■ the copybook ERXCOMM if an 8-byte RPC user ID, an 8-byte RPC password and an 8 byte RPC
library are sufficient. See ERXCOMM.

■ the copybook ERXVSTR to use a long RPC user ID, a long RPC password and, if required, to
override the IDL library with a long RPC library. See ERXVSTR.

■ We strongly recommend using SSL/TLS if you send an authentication as described here with
the COBOLWrapper to a secure partner. See Using SSL/TLS in this section and also SSL/TLS
Parameters for SSL Clientsunder SSL/TLS and Certificates with EntireX in the Platform-independent
Administration documentation.

EntireX COBOL Wrapper136

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

RPC Authentication Using Short RPC User ID/RPC Password (all Interface
Types)

This approach allows a maximum of 8 bytes for each of RPC user ID, RPC password and RPC
library. The code you write depends on the interface type:

■ Call Interface
■ EXEC CICS LINK Interface

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS |Micro Focus.

To use RPC authentication using short RPC user ID, RPC password and RPC library

1 Declare and initialize the RPC communication area as described underOnly Copybook
ERXCOMM is Used under Step 1: Declare and Initialize the RPC Communication Area in sec-
tionWriting Standard Call Interface Clients.

2 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

* Set function to create security token
MOVE "CT" TO COMM-FUNCTION.
* Set RPC userid and RPC password in RPC Communication Area
MOVE "RPC-USER" TO COMM-USERID.
MOVE "RPC-PSWD" TO COMM-PASSWORD.
* Optional set RPC library e.g. for Natural Security
MOVE "RPC-LIB" TO COMM-LIBRARY.
* Call generic RPC service module to create security token (see Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.
. . .

After successful return from creating the security token, the authentication fields in the RPC
communication area are properly set, so they can be used in subsequent RPC requests.

137EntireX COBOL Wrapper

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

EXEC CICS LINK Interface

This interface type applies to the scenarioUsing the COBOLWrapper for CICSwith DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

To use RPC authentication using short RPC user ID, RPC password and RPC library

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in sectionWriting EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPCCommu-
nication Area underWriting EXEC CICS LINK Clients.

3 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

MOVE "CT" TO COMM-FUNCTION.
* Set RPC userid and RPC password in RPC Communication Area
MOVE "RPC-USER" TO COMM-USERID.
MOVE "RPC-PSWD" TO COMM-PASSWORD.
* Optional set RPC library e.g. for Natural Security
MOVE "RPC-LIB" TO COMM-LIBRARY.
* Call generic RPC service module to create security token
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
ELSE
* Perform error-handling
END-IF.

After successful return from creating the security token, the authentication fields in the RPC
communication area are properly set, so they can be used in subsequent RPC requests.

Notes:

1. If you are only using copybook ERXCOMM only, pass only the address of ERXCOMM to the generic
RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper138

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

RPC Authentication Using Long RPC User ID/RPC Password (z/OS with Call
Interface)

This section applies to the scenarios CICS, Batch and IMSwith the CALL interface.

With this approach you can use a long RPC user ID, RPC password and RPC library. It requires
the ERXVSTR copybook.

The RPC communication area extension copybook ERXVSTR is generated for Target Operating
System z/OS and RPC clients using a call interface to its client interface object, meaning one of the
following Client Interface Types is selected:

■ CICS with Standard Linkage Calling Convention
■ Batch with Standard Linkage Calling Convention
■ IMS BMP with Standard Linkage Calling Convention
■ IMS MPP with Standard Linkage Calling Convention

To use RPC authentication with long RPC user ID, RPC password and RPC library

1 Declare and initialize the RPC communication area as described under Both Copybooks
ERXCOMM and ERXVSTR are Used under Step 1: Declare and Initialize the RPC Communication
Area in sectionWriting Standard Call Interface Clients.

2 Create a security token with the function Create Security Token CT provided by the generic
RPC services module.

* Set function to create security token
MOVE "CT" TO COMM-FUNCTION.
* Set long RPC userid in RPC Variable String Area
INSPECT RPCUID TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE 1 TO STR-OFFSET.
MOVE STR-OFFSET TO COMM-RPC-USERID-OFFSET.
MOVE STR-LENGTH TO COMM-RPC-USERID-LENGTH.
STRING RPCUID DELIMITED BY SPACE INTO

COMM-STRING-AREA WITH POINTER STR-OFFSET.
* Set long RPC password in RPC Variable String Area
INSPECT RPCPWD TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE STR-OFFSET TO COMM-RPC-PASSWORD-OFFSET.
MOVE STR-LENGTH TO COMM-RPC-PASSWORD-LENGTH.
STRING RPCPWD DELIMITED BY SPACE INTO

COMM-STRING-AREA WITH POINTER STR-OFFSET.
* Optional set long RPC library e.g. for Natural Security
INSPECT RPCLIB TALLYING STR-LENGTH FOR CHARACTERS BEFORE SPACE.
MOVE STR-OFFSET TO COMM-RPC-LIBRARY-OFFSET.
MOVE STR-LENGTH TO COMM-RPC-LIBRARY-LENGTH.

139EntireX COBOL Wrapper

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

STRING RPCLIB DELIMITED BY SPACE INTO
COMM-STRING-AREA WITH POINTER STR-OFFSET.

* Set CCSID for encoding of RPC userid/password and application data (Note 3)
MOVE "37" TO COMM-CCSID.
* Call generic RPC service module to create security token (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA

ERX-COMMUNICATION-VSTR.
ON EXCEPTION
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.
. . .

After successful return from creating the security token with a long RPC user ID/RPC password:

■ The authentication fields in the RPC communication area are properly set, so they can be used
in subsequent RPC requests.

■ The RPCprotocol is forced to 2050 as aminium. You need anRPC server supporting this protocol
level, see Supported RPC Protocols.

Notes:

1. If both copybooks are used, you need to pass both addresses, first the address of ERXCOMM, then
the address of ERXVSTR to the generic RPC service module.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

3. If a CCSID is provided:
■ It is used for conversion of the long RPC password and RPC user ID. If no CCSID is provided,
the codepage active during compilation applies. Refer to your compiler documentation.

■ It is used as the codepage name to tell the broker the encoding of your application data. See
Using Internationalization with the COBOLWrapper.

EntireX COBOL Wrapper140

Using RPC Authentication (Natural Security, Impersonation, Integration Server)

15 Using the COBOLWrapper with Non-secure Natural RPC

Server
■ Call Interface .. 142
■ EXEC CICS LINK Interface .. 144

141

This chapter explains how clients built with the COBOLWrapper set the Natural library used to
execute the RPC request programmatically when communicating to a non-secure Natural RPC
Server (not running with Natural Security). If the Natural RPC Server is running with Natural
Security, see Using RPC Authentication (Natural Security, Impersonation, Integration Server).

You will need the following components:

■ the Delivered Modules, which are provided to create and get a security token
■ the RPC communication area copybook ERXCOMM

The code you write depends on the interface type, Call Interface or EXEC CICS LINK Interface:

Call Interface

This interface type applies to the scenarios CICS | Batch | IMS |Micro Focus.

To set the Natural library when communicating to a non-secure Natural RPC server

1 Declare and initialize the RPC communication area with one of the approaches described
under Step 1: Declare and Initialize the RPCCommunication Area in sectionWriting Standard
Call Interface Clients. Here you can use copybook ERXCOMM only, or both copybooks ERXCOMM
and ERXVSTR.

2 Set the library in RPC Communication Area and call generic RPC service module to create a
security tokenwith the functionCreate Security Token CTprovided by the generic RPC services
module, using the Call interface. The code snippet below illustrates the variant where only
copybook ERXCOMM is used. If you are using both copybooks ERXCOMM and ERXVSTR, see Note 1.

. . .
MOVE "CT" TO COMM-FUNCTION.
* Set library in RPC Communication Area
MOVE "NAT-LIB" TO COMM-LIBRARY.
* Call generic RPC service module to create security token (Note 1)
CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
* Perform error-handling
NOT ON EXCEPTION

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 2)

END-IF
END-CALL.

EntireX COBOL Wrapper142

Using the COBOL Wrapper with Non-secure Natural RPC Server

After successful return from the generic RPC services module, the required fields in the RPC
communication area are properly set, so the non-secure Natural RPC server executes the RPC re-
quest in the library set.

Notes:

1. If both copybooks ERXCOMM and ERXVSTR are used, you need to pass both parameters:

CALL "COBSRVI" USING ERX-COMMUNICATION-AREA
ERX-COMMUNICATION-VSTR.

2. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

143EntireX COBOL Wrapper

Using the COBOL Wrapper with Non-secure Natural RPC Server

EXEC CICS LINK Interface

This interface type applies to the scenarioUsing the COBOLWrapper for CICSwith DFHCOMMAREA
Calling Convention (z/OS and z/VSE).

To set the Natural library when communicating to a non-secure Natural RPC server

1 Declare the RPC communication area as described under Step 1: Declare IDL Structures and
RPC Communication Area in sectionWriting EXEC CICS LINK Clients.

2 Initialize the RPC communication area as described under Step 2: Initialize the RPCCommu-
nication Area underWriting EXEC CICS LINK Clients.

3 Set the library in RPC Communication Area and call generic RPC service module to create a
security tokenwith the functionCreate Security Token CTprovided by the generic RPC services
module, using EXEC CICS LINK.

MOVE "CT" TO COMM-FUNCTION.
* Set library in RPC Communication Area

MOVE "NAT-LIB" TO COMM-LIBRARY.
EXEC CICS LINK PROGRAM ("COBSRVI")

RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.
IF WORKRESP = DFHRESP(NORMAL)

IF (COMM-RETURN-CODE = 0) THEN
* Perform success-handling

ELSE
* Perform error-handling (See Note 1)

END-IF
ELSE

* Perform error-handling
END-IF.

After successful return from the generic RPC services module, the required fields in the RPC
communication area are properly set, so the non-secure Natural RPC server executes the RPC re-
quest in the library set.

Notes:

1. The field COMM-RETURN-CODE in the RPC communication area contains the error provided by
the COBOLWrapper. For the error messages returned, see Error Messages and Codes.

EntireX COBOL Wrapper144

Using the COBOL Wrapper with Non-secure Natural RPC Server

16 Using SSL/TLS

■ z/OS ... 146
■ z/VSE .. 148
■ UNIX, Windows, BS2000 ... 150

145

RPC client applications can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the
transport medium. The term “SSL” in this chapter refers to both SSL and TLS. RPC-based clients
are always SSL clients. The SSL server can be either the EntireX Broker, Broker SSL Agent, or
Direct RPC in webMethods Integration Server (IS inbound). For an introduction see SSL/TLS and
Certificates with EntireX in the Platform-independent Administration documentation. This chapter
describes using SSL with the COBOLWrapper on z/OS and z/VSE.

z/OS

SSL delivered on a z/OSmainframewill typically use the ResourceAccess Control Facility (RACF)
as the certificate authority (CA). Certificates managed by RACF can only be accessed through the
RACF keyring container. A keyring is a collection of certificates that identify a networking trust
relationship (also called a trust policy). In an SSL client/server network environment, entities
identify themselves using digital certificates called through a keyring. Server applications on z/OS
that wish to establish network connections to other entities can use keyrings and their certificate
contents to determine the trustworthiness of the client or peer entity. Note that certificates can
belong to more than one keyring, and you can assign different users to the same keyring. Because
of the way RACF internally references certificates, they must be uniquely identifiable by owner
and label, and also unique by serial number plus data set name (DSN).

For establishing an SSL connection on z/OS, IBM's Application Transparent Transport Layer Se-
curity (AT-TLS) can be used, where the establishment of the SSL connection is pushed down the
stack into the TCP layer.

With the COBOLWrapper you can use IBM's Application Transparent Transport Layer Security
(AT-TLS), where the establishment of the SSL connection is pushed down the stack into the TCP
layer.

Using IBM's Application Transparent Transport Layer Security (AT-TLS)

Configure the AT-TLS rules for the policy agent (PAGENT) using an appropriate client and the
z/OS Management Facility (z/OSMF) . Together with SSL parameters (to provide certificates
stored in z/OS as RACF keyrings) define AT-TLS rules, for example by using the application
job name and remote TCP port number. If the rules match, the TCP connection is turned into an
SSL connection . Refer to your IBM documentation for more information, for example the IBM
Redbook Communications Server for z/OS VxRy TCP/IP Implementation Volume 4: Security and Policy-
Based Networking.

EntireX COBOL Wrapper146

Using SSL/TLS

Client to interact with z/OS Management Facility (z/OSMF).

AT-TLS rules are defined with z/OSMF policy management.

Policy Repository with AT-TLS rules stored as z/OS files.

Policy Agent, MVS task PAGENT, provides AT-TLS rules through a policy enforcement point
(PEP) to TCP/IP stack.
Application using TCP connection.

If AT-TLS rules match, the TCP connection is turned into an SSL connection.

Notes:

1. The client may vary per operating system, for example a Web browser for z/OS 2.1.

2. z/OSMF includes other administration andmanagement tasks in addition to policy manage-
ment.

3. Policy Management includes other rules, such as IP filtering, network address translation
etc.

To set up SSL with AT-TLS

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Set up the RPC component for a TCP/IP connection. On mainframe platforms, use Transport-
method-style Broker ID. Example:

147EntireX COBOL Wrapper

Using SSL/TLS

ETB024:1699:TCP

3 ConfigureAT-TLS to turn the TCP/IP connection to an SSL connection, using a client to interact
with the z/OS Management Facility (z/OSMF). The outcome of this configuration is a Policy
Repository with AT-TLS rules stored as z/OS files. This file is the configuration file for the
Policy Agent, MVS task PAGENT.

4 Make sure the SSL server to which the RPC component connects is prepared for SSL connec-
tions as well. The SSL server can be EntireX Broker, Broker SSL Agent, or Direct RPC in
webMethods Integration Server (IS inbound). See:

■ RunningBrokerwith SSL/TLSTransport in the platform-specificAdministrationdocumentation
■ Broker SSL Agent in the UNIX and Windows Administration documentation
■ Support for SSL/TLS in the EntireX Adapter documentation (for Direct RPC)

z/VSE

Establishing an SSL connection on z/VSE requires BSI's Automatic Transport Layer Security (ATLS).
This facility is similar to z/OS Application Transparent - Transport Layer Security (AT-TLS). ATLS
is supported by the BSI stack only.

Using BSI's Automatic Transport Layer Security (ATLS)

Together with SSL parameters (to provide certificates), define ATLS rules for socket interception
in the ATLS daemon startup job BSTTATLS . If the rules match, the socket connection is turned
into an SSL connection . Refer to your IBM documentation for further information. For an
overview, refer to the IBM Redbook Enhanced Networking on IBM z/VSE; for a more detailed de-
scription, refer to BSI SSL Installation, Programming and User's Guide.

BSI TCP/IP Stack, either BSTTINET (IPv4) or BSTT6NET (IPv6).

EntireX COBOL Wrapper148

Using SSL/TLS

ATLS rules are defined manually. See Sample ATLS Daemon Configuration below.

BSTTATLS is associated with a TCP/IP stack.

Application using TCP connection.

BSTTATLS intercepts outboundTCP connection and converts it to SSL connection. For inbound,
SSL connections can also be intercepted and converted to TCP connections.

To set up SSL with ATLS

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Set up the RPC component for a TCP/IP connection. On mainframe platforms, use Transport-
method-style Broker ID. Example:

ETB024:1699:TCP

3 Configure ATLS to turn the TCP/IP connection to an SSL connection, see above.

4 Make sure the SSL server to which the RPC component connects is prepared for SSL connec-
tions as well. The SSL server can be EntireX Broker, Broker SSL Agent, or Direct RPC in
webMethods Integration Server (IS inbound). See:

■ RunningBrokerwith SSL/TLSTransport in the platform-specificAdministrationdocumentation
■ Broker SSL Agent in the UNIX and Windows Administration documentation
■ Support for SSL/TLS in the EntireX Adapter documentation (for Direct RPC)

Sample ATLS Daemon Configuration

* Converting inbound EntireX Broker connection
* Converts listen port 1971 to SSL listen port 1972
OPTION SERVER
ATTLS 1971 AS 2071 SSL
*
* Converting outbound client connection
* Converts connect to 192.168.2.100:1972:TCP to 192.168.2.100:2072:SSL
OPTION CLIENT
ATTLS 1972 TO 192.168.2.100 AS 2072 SSL

Note: We recommend setting SETPARM value SUBTASK to a value greater than 0 in the ATLS
daemon startup job (valid values 0-16, default=0). For example:

149EntireX COBOL Wrapper

Using SSL/TLS

// SETPARM SUBTASK=8

See also BSI SSL Installation, Programming and User's Guide.

UNIX, Windows, BS2000

RPC client applications built with the COBOLWrapper do not support Secure Sockets Layer/Trans-
port Layer Security (SSL/TLS) as the transport medium under UNIX, Windows or BS2000.

EntireX COBOL Wrapper150

Using SSL/TLS

17 Using Internationalization with the COBOL Wrapper

RPC clients generated with the COBOLWrapper do not convert your application data (in RPC
IDL type A, K, AV and KV fields) before it is sent to the broker. The application's data is shipped
as given by the RPC client program.

■ For Operating System z/OS
■ By default, no codepage is transferred to the broker. It is assumed the broker's locale string
defaults match. See Broker's Locale String Defaults.

■ You can provide the CCSID in the field COMM-CCSID of copybook ERXCOMM to tell the broker
the encoding of your application data. Do this before issuing broker andRPC calls, for example
in Step Optional Settings in the RPC Communication Area (Call Interface | CICS).

Example:

MOVE 37 TO COMM-CCSID.

■ If a CCSID is provided, it is sent as CP<number> to the broker. It must be a codepage supported
by the broker and follow the rules described under Locale String Mapping.

■ For Operating SystemWindows
■ The Generic RPC Service module assumes the data is given in the encoding of the Windows
ANSI codepage configured for your system. A codepage identifier of this Windows ANSI
codepage is automatically transferred to tell the broker how the data is encoded.

■ If you want to adapt theWindows ANSI codepage, see the Regional Settings in theWindows
Control Panel and your Windows documentation.

■ For all other Operating System
■ No codepage is transferred to the broker. It is assumed the broker's locale string defaults
match. See Broker's Locale String Defaults.

151

Enable character conversion in the broker by setting the service-specific attribute CONVERSION to
"SAGTRPC". See also Configuring ICU Conversion under Configuring Broker for Internationalization in
the platform-specific Administration documentation.More information can be found under Inter-
nationalization with EntireX.

EntireX COBOL Wrapper152

Using Internationalization with the COBOL Wrapper

IV Reliable RPC for COBOL Wrapper

153

154

18 Reliable RPC for COBOL Wrapper

■ Introduction to Reliable RPC .. 156
■ Writing a Client .. 157
■ Writing a Server .. 162
■ Broker Configuration .. 162

155

Introduction to Reliable RPC

In the architecture of modern e-business applications (such as SOA), loosely coupled systems are
becomingmore andmore important. Reliablemessaging is one important technology for this type
of system.

Reliable RPC is the EntireX implementation of a reliable messaging system. It combines EntireX
RPC technology and persistence, which is implemented with units of work (UOWs).

■ Reliable RPC allows asynchronous calls (“fire and forget”)
■ Reliable RPC is supported by most EntireX wrappers
■ Reliable RPC messages are stored in the Broker's persistent store until a server is available
■ Reliable RPC clients are able to request the status of the messages they have sent

Reliable RPC is used to send messages to a persisted Broker service. The messages are described
by an IDL program that contains only IN parameters. The client interface object and the server
interface object are generated from this IDL file, using the EntireX COBOLWrapper.

Reliable RPC is enabled at runtime. The client has to set one of two different modes before issuing
a reliable RPC request:

■ AUTO_COMMIT

■ CLIENT_COMMIT

EntireX COBOL Wrapper156

Reliable RPC for COBOL Wrapper

While AUTO_COMMIT commits eachRPCmessage implicitly after sending it, a series of RPCmessages
sent in a unit of work (UOW) can be committed or rolled back explicitly using CLIENT_COMMIT
mode.

The server is implemented and configured in the same way as for normal RPC.

Writing a Client

The following steps describe how towrite a COBOL reliable RPC client programwith the scenario
Using the COBOLWrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
and Linkage access to RPC communication.

Reliable RPC requires an explicit broker logon. See Using Broker Logon and Logoff.

Step 1: Declare the Data Structures for RPC Client Interface Objects

For every program definition in the Software AG IDL file, the templates will generate a copybook
file that describes the customer data of the interface as a COBOL structure. For ease of use, the
copybook can be embedded into the RPC client program.

However, if more appropriate, customer data structures can be used. In this case the COBOL data
types and structures must match the interfaces of the generated client interface objects, otherwise
unpredictable results will occur.

* Declare the customer data of the generated RPC interface
01 SENDMAIL.

02 SM-COMA.
03 SM-TOADDRESS PIC X(60).
03 SM-SUBJECT PIC X(20).
03 SM-TEXT PIC X(100).

Step 2: Declare and Initialize the RPC Communication Area

The RPC communication area must be declared and initialized in your RPC client program as
follows:

* Declare RPC communication area
02 ERX-COMMUNICATION-AREA.

COPY ERXCOMM.
.

* Initialize RPC communication area
INITIALIZE ERX-COMMUNICATION-AREA.
MOVE "2000" to COMM-VERSION.

157EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

Step 3: Required Settings in the RPC Communication Area

The following settings to the RPC communication area are required as a minimum to use the
COBOLWrapper. These settings have to be applied in your RPC client program. It is not possible
to generate any defaults into your client interface objects:

* assign the broker to talk with
MOVE "localhost:1971" to COMM-ETB-BROKER-ID.

* assign the server to talk with
MOVE "RPC" to COMM-ETB-SERVER-CLASS.
MOVE "SRV1" to COMM-ETB-SERVER-NAME.
MOVE "CALLNAT" to COMM-ETB-SERVICE-NAME.

* assign the user ID for Broker logon
MOVE "ERXUSER" to COMM-USERID.
MOVE "PASSWORD" to COMM-PASSWORD.

Step 4a: Perform a Broker Logon

MOVE "LO" TO COMM-FUNCTION.
EXEC CICS LINK

PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)

END-EXEC.

Step 4b: Examine the Error Code

Check whether the logon call was successful or not.

Step 5: Enable Reliable RPC with CLIENT_COMMIT

Before reliable RPC can be used, the reliable statemust be set to either ERX_RELIABLE_CLIENT_COMMIT
or ERX_RELIABLE_AUTO_COMMIT.

■ "C" - CLIENT_COMMIT
■ "A" - AUTO_COMMIT

EntireX COBOL Wrapper158

Reliable RPC for COBOL Wrapper

* Set the reliable RPC mode
MOVE "C" TO COMM-RELIABLE-STATE.

Step 6a: Send the RPC Message

The RPC message is sent using the EXEC CICS LINK interface.

* Send the RPC message
MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("SENDMAIL")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (SENDMAIL)
LENGTH (LENGTH OF SENDMAIL)

END-EXEC.

Step 6b: Examine the Error Code

When the RPC message is returned, it needs to be checked whether it was successful or not:

IF COMM-RETURN-CODE IS = ZERO
Perform success-handling

ELSE
Perform error-handling

END-IF.

The field COMM-RETURN-CODE in the RPC communication area contains the error provided by the
COBOLWrapper. For the error messages returned, see Error Messages and Codes.

Note: After successful call (Step 6a) the UOWID is available in the RPC communication area
field COMM-ETB-UOW-ID. See The RPC Communication Area (Reference).

Step 7a: Check the Reliable RPC Message Status

To determine that reliable RPC messages are delivered, the reliable RPC message status can be
queried. See Understanding UOW Status and Broker UOW Status Transition for more information.

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)

159EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

Note: After successful call the UOW status is available in the RPC communication area field
COMM-RELIABLE-STATUS. See The RPC Communication Area (Reference).

Step 7b: Examine the Error Code

Check whether the check status call was successful or not.

Step 8: Send a Second RPC Message

Send a second reliable RPC message. See Step 6a and Step 6b.

Step 9: Check the Reliable RPC Message Status

Check the reliable RPC message before the commit call. See Step 7a and Step 7b.

Step 10a: Commit both Reliable RPC Messages

Now both reliable RPC messages are committed. This will deliver all reliable RPC messages to
the server if it is available.

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RC" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK
PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

Step 10b: Examine the Error Code

Check whether the commit call was successful or not.

EntireX COBOL Wrapper160

Reliable RPC for COBOL Wrapper

Step 11: Send a Third RPC Message

Send a third reliable RPC message. See Step 5a and Step 5b.

Step 12: Check the Reliable RPC Message Status

Check the reliable RPC message before the rollback call. See Step 6.

Step 13a: Roll Back the Third RPC Message

Roll back the current reliable RPC message.

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RR" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

Step 13b: Examine the Error Code

When the rollback call is returned, checkwhether it was successful or not. If the rollback call failed,
an explicit EOC needs to be sent:

MOVE DFHRESP(NORMAL) TO CICS-RESP1.
MOVE DFHRESP(NORMAL) TO CICS-RESP2.
MOVE "RS" TO COMM-FUNCTION.
MOVE ZEROES TO COMM-RETURN-CODE.
EXEC CICS LINK

PROGRAM ("COBSRVI")
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)

END-EXEC.

161EntireX COBOL Wrapper

Reliable RPC for COBOL Wrapper

Step 14a: Perform a Broker Logoff

MOVE "LF" TO COMM-FUNCTION.
EXEC CICS LINK

PROGRAM ("COBSRVI")
COMMAREA (ERX-COMMUNICATION-AREA)
LENGTH (LENGTH OF ERX-COMMUNICATION-AREA)
RESP (CICS-RESP1)
RESP2 (CICS-RESP2)

END-EXEC.

Step 14b: Examine the Error Code

Check whether the logoff call was successful or not.

Writing a Server

There are no server-side methods for reliable RPC. The server does not send back a message to
the client. The server can run deferred, thus client and server do not necessarily run at the same
time. If the server fails, it returns an error code greater than zero. This causes the transaction (unit
of work inside the Broker) to be cancelled, and the error code is written to the user status field of
the unit of work. For writing reliable RPC servers, see Using the COBOLWrapper for the Server
Side.

To execute a reliable RPC service with an RPC server, the parameter logon (LOGN under CICS)
must be set to YES. See logon in the relevant sections of the documentation.

Broker Configuration

ABroker configurationwith PSTORE is recommended. This enables the Broker to store themessages
formore than one Broker session. Thesemessages are still available after Broker restart. The attrib-
utes STORE, PSTORE, and PSTORE-TYPE in the Broker attribute file can be used to configure this
feature. The lifetime of themessages and the status information can be configuredwith the attributes
UOW-DATA-LIFETIME and UOW-STATUS-LIFETIME. Other attributes such as MAX-MESSAGES-IN-UOW,
MAX-UOWS and MAX-UOW-MESSAGE-LENGTHmay be used in addition to configure the units of work.
See Broker Attributes.

The result of the generic RPC function call "RS" - get reliable status depends on the configuration
of the unit of work status lifetime in the EntireX Broker configuration. See COMM-FUNCTION. If the
status is not stored longer than the message, the function call returns the error code 00780305 (no
matching UOW found).

EntireX COBOL Wrapper162

Reliable RPC for COBOL Wrapper

V Delivered Examples for the COBOL Wrapper

This chapter describes the following examples provided for the COBOLWrapper:

■ Client and Server Examples for z/OS Batch
■ Client and Server Examples for z/OS CICS
■ Client and Server Examples for z/OS IMS BMP
■ Server Examples for z/OS IMS MPP
■ Client and Server Examples for IBM i
■ Client and Server Examples for BS2000
■ Client and Server Examples for z/VSE Batch
■ Client and Server Examples for z/VSE CICS
■ Client and Server Examples for Micro Focus (UNIX and Windows)

163

164

19 Client and Server Examples for z/OS Batch

■ Basic RPC Client Examples - CALC, SQUARE .. 166
■ Basic RPC Server Examples - CALC, SQUARE ... 168

165

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. They are also
available as a z/OS data set, see Installing RPC Examples.

Basic RPC Client Examples - CALC, SQUARE

■ CALC Client
■ SQUARE Client

CALC Client

For z/OS Batch, the CALC client is built with COBOLWrapper "Batch with standard linkage calling
convention" interface type. See Client Interface Types for more information.

NotesDescriptionData SetTypeName

1Client interface object for IDL program CALC.EXP105.CCCOCOBOL source codeCALC

2A client application calling the remote procedure
(RPC service) CALC, with associated example.idl.

EXP105.CCCOCOBOL source codeCALCCLT

3Job (JCL) to build the RPC client CALCCLT.EXP105.CCCOJCLCALCIGY

3Job (JCL) to execute the RPC client CALCCLT.EXP105.CCCOJCLCALCRUN

1Client interface object copybook for IDL program
CALC.

EXP105.CICOCOBOL copybookCALC

4Generic RPC service module for Batch.EXP105.CCCOCOBOL source codeCOBSRVI

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the Designer.

2. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

3. Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

Formore information refer to the readmefile in EntireX directory examples/RPC/CobolClient/zosBatch
under UNIX or Windows.

EntireX COBOL Wrapper166

Client and Server Examples for z/OS Batch

SQUARE Client

For batch under operating system z/OS, the SQUARE client is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

4Generic RPC service module for Batch.EXP105.CCCOCOBOL source codeCOBSRVI

1A client application calling the remote procedure
(RPC service) SQUARE,with associated example.idl.

EXP105.CCCOCOBOL source codeSQRECLT

2Job (JCL) to build the RPC client SQRECLT.EXP105.CCCOJCLSQREIGY

2Job (JCL) to execute the RPC client SQRECLT.EXP105.CCCOJCLSQRERUN

3Client interface object for IDL program SQUARE.EXP105.CCCOCOBOL source codeSQUARE

3Client interface object copybook for IDL program
SQUARE.

EXP105.CICOCOBOL copybookSQUARE

Notes:

1. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. Adapt the JCL to your needs.

3. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the Designer.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, see the readme file in EntireX directory examples/RPC/CobolClient/zosBatch
under UNIX or Windows.

167EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

Basic RPC Server Examples - CALC, SQUARE

■ CALC Server
■ SQUARE Server

CALC Server

For batch under operating system z/OS, the CALC server is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

1A server application providing the remote procedure
CALC (RPC service), with associated example.idl.

EXP105.CVCOCOBOL source codeCALC

2Job (JCL) to build the remote procedure CALC (RPC
service).

EXP105.CVCOJCLCALCIGY

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. Adapt the JCL to your needs.

Formore information, refer to the readmefile in EntireXdirectory examples/RPC/CobolServer/zosBatch
under UNIX or Windows.

SQUARE Server

For batch on operating system z/OS, the SQUARE server is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

2Job (JCL) to build the remote procedure SQUARE
(RPC service)

EXP105.CVCOJCLSQREIGY

1a server application providing the remote procedure
SQUARE (RPC service), with associated example.idl

EXP105.CVCOCOBOL source codeSQUARE

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

EntireX COBOL Wrapper168

Client and Server Examples for z/OS Batch

2. Adapt the JCL to your needs.

Formore information, refer to the readmefile in EntireXdirectory examples/RPC/CobolServer/zosBatch
under UNIX or Windows.

169EntireX COBOL Wrapper

Client and Server Examples for z/OS Batch

170

20 Client and Server Examples for z/OS CICS

■ Basic RPC Client Examples - CALC, SQUARE .. 172
■ Basic RPC Server Examples - CALC, SQUARE ... 176
■ Advanced CICS Channel Container RPC Server Example ... 177

171

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. They are also
available for z/OS, if this is installed. See Installing RPC Examples.

Basic RPC Client Examples - CALC, SQUARE

■ CALC Client using DFHCOMMAREA
■ CALC Client using Call Interface
■ SQUARE Client using DFHCOMMAREA
■ SQUARE Client using Call Interface

CALC Client using DFHCOMMAREA

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

CSD Definition for RPC client CALC1CLT.EXP105.DCCOCICS CSDCALC1DFH

2Job (JCL) to build the RPC client CALC1CLT.EXP105.DCCOJCLCALC1IGY

CICSMapdefinition for RPC client andCALC1CLT.EXP105.DCCOCICS MapCALC1MAP

1Client interface object for IDLprogramCALC1, alias
of CALC.

EXP105.DCCOCOBOL source codeCALC1

3An RPC client application calling the remote
procedure (RPC service) CALC.

EXP105.DCCOCOBOL source codeCALC1CLT

Description of input and output fields of map
CALC1MAP.

EXP105.DICOCOBOL copybookCALC1MAP

1Client interface object copybook for IDL program
CALC1, alias of CALC.

EXP105.DICOCOBOL copybookCALC1

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the Designer.

2. Adapt the JCL to your needs.

3. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL file exampleWithPgmAlias.idl, delivered under UNIX and Windows in
EntireX directory examples/RPC/CobolClient/zosCICS/DFHCOMMAREA.

EntireX COBOL Wrapper172

Client and Server Examples for z/OS CICS

c. client interface object name CALC1 different from remote procedure name CALC (RPC ser-
vice).

d. CALC1CLT and client interface objects CALC1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

CALC Client using Call Interface

For CICS under operating system z/OS, the following CALC client is implemented with interface
type "CICSwith standard linkage calling convention". SeeClient Interface Types for more inform-
ation.

NotesDescriptionData SetTypeName

1Client interface object for IDL program CALC.EXP105.DCCOCOBOL source codeCALC

2An RPC client application calling the remote
procedure (RPC service) CALC.

EXP105.DCCOCOBOL source codeCALCCLT

CSD Definition for RPC client CALCCLT.EXP105.DCCOCICS CSDCALCDFH

3Job (JCL) to build the RPC client CALCCLT.EXP105.DCCOJCLCALCIGY

CICS Map definition for RPC client CALCCLT.EXP105.DCCOCICS MapCALCMAP

1Client interface object copybook for IDL program
CALC.

EXP105.DICOCOBOL copybookCALC

Description of input and output fields of map
CALCMAP.

EXP105.DICOCOBOL copybookCALCMAP

4Generic RPC service module for CICS with call
interface.

EXP105.DICOCOBOL source codeCOBSRVI

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the Designer.

2. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE)

b. associated with IDL file example.idl

c. CALCCLT uses CICS Map definition CALCMAP

d. CALCCLT and client interface object CALC are linked together

e. CALCCLT installed as single CICS program

3. Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

173EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-
CICS/Callinterface under UNIX or Windows.

SQUARE Client using DFHCOMMAREA

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICS with DFHCOMMAREA calling convention". See Client Interface Types for more in-
formation.

NotesDescriptionData SetTypeName

CSD Definition for RPC client SQRE1CLT.EXP105.DCCOCICS CSDSQRE1DFH

2Job (JCL) to build the RPC client SQRE1CLT.EXP105.DCCOJCLSQREI1GY

CICS Map definition for RPC clients SQRE1CLT.EXP105.DCCOCICS MapSQRE1MAP

1Client interface object for IDLprogramSQRE1, alias
of SQUARE.

EXP105.DCCOCOBOL source codeSQRE1

3An RPC client application calling the remote
procedure (RPC service) SQUARE.

EXP105.DCCOCOBOL source codeSQRE1CLT

Description of input and output fields of map
SQRE1MAP.

EXP105.DICOCOBOL copybookSQRE1MAP

1Client interface object copybook for IDL program
SQRE1, alias of SQUARE.

EXP105.DICOCOBOL copybookSQRE1

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the Designer.

2. Adapt the JCL to your needs.

3. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

b. associated with IDL exampleWithPgmAlias.idl.

c. client interface object name SQRE1 different from remote procedure name SQUARE (RPC
service).

d. SQRE1CLT and client interface object SQRE1 installed as separate CICS programs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

EntireX COBOL Wrapper174

Client and Server Examples for z/OS CICS

SQUARE Client using Call Interface

For CICS on operating system z/OS, the following SQUARE client is implemented with interface
type "CICSwith standard linkage calling convention". SeeClient Interface Types for more inform-
ation.

NotesDescriptionData SetTypeName

4Generate RPC service module for CICS with call
interface.

EXP105.DCCOCOBOL source codeCOBSRVI

2An RPC client application calling the remote
procedure (RPC service) SQUARE.

EXP105.DCCOCOBOL source codeSQRECLT

CSD Definition for RPC client SQRECLT.EXP105.DCCOCICS CSDSQREDFH

3Job (JCL) to build the RPC client SQRECLT.EXP105.DCCOJCLSQREIGY

CICS Map definition for RPC client SQRECLT.EXP105.DCCOCICS MapSQREMAP

1Client interface object for IDL program SQUARE.EXP105.DCCOCOBOL source codeSQUARE

Description of input and output fields of map
SQREMAP.

EXP105.DICOCOBOL copybookSQREMAP

1Client interface object copybook for IDL program
SQUARE.

EXP105.DICOCOBOL copybookSQUARE

Notes:

1. Under z/OS, client interface objects are deliveredwith the installation; underUNIX andWindows,
generate these objects with the Designer.

2. Application

a. built according to the client-side build instructions, seeUsing the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE).

b. associated with IDL file example.idl.

c. SQRECLT uses CICS Map definition SQREMAP.

d. SQRECLT and client interface object SQUARE are linked together.

e. SQRECLT installed as single CICS program.

3. Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolClient/zos-
CICS/CallInterface under UNIX or Windows.

175EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

Basic RPC Server Examples - CALC, SQUARE

■ CALC Server
■ SQUARE Server

CALC Server

For CICS under operating system z/OS, the CALC server is built with COBOLWrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Server Interface Types for more
information.

NotesDescriptionData SetTypeName

1A server application providing the remote procedure
CALC (RPC service), with associated example.idl.

EXP105.DVCOCOBOL source codeCALC

CSD Definition for remote procedure CALC (RPC
service).

EXP105.DVCOCICS CSDCALCDFH

2Job (JCL) to build the remote procedure CALC (RPC
service).

EXP105.DVCOJCLCALCIGY

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

SQUARE Server

For CICS under operating system z/OS, the SQUARE server is built with COBOLWrapper "CICS
with DFHCOMMAREA calling convention" interface type. See Client Interface Types for more
information.

NotesDescriptionData SetTypeName

CSDDefinition for remote procedure SQUARE (RPC
service).

EXP105.DVCOCICS CSDSQREDFH

2Job (JCL) to build the remote procedure SQUARE
(RPC service).

EXP105.DVCOJCLSQREIGY

1A server application providing the remote procedure
SQUARE (RPC service), with associated example.idl.

EXP105.DVCOCOBOL source codeSQUARE

EntireX COBOL Wrapper176

Client and Server Examples for z/OS CICS

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Adapt the JCL to your needs.

For more information, refer to the readme file in EntireX directory examples/RPC/CobolServer/zos-
CICS/DFHCOMMAREA under UNIX or Windows.

Advanced CICS Channel Container RPC Server Example

For CICS on operating system z/OS, the TWOC server is built with COBOLWrapper "CICS with
Channel Container calling convention" interface type. See Server Interface Types for more inform-
ation.

NotesDescriptionData SetTypeName

1A server application providing the remote procedure
TWOC (RPC service), with associated
CICSChannelContainer.idl.

EXP105.DVCOCOBOL source codeTWOC

CSD Definition for remote procedure TWOC (RPC
service).

EXP105.DVCOCICS CSDTWOCDFH

2Job (JCL) to build remote procedure TWOC (RPC
service).

EXP105.DVCOJCLTWOCIGY

1. Application built according to the server-side build instructions. SeeUsing the COBOLWrapper
for CICS with Channel Container Calling Convention (z/OS).

2. Adapt the JCL to your needs.

For more information, see the readme file in EntireX directory examples/RPC/CobolServer/zos-
CICS/ChannelContainer under UNIX or Windows.

177EntireX COBOL Wrapper

Client and Server Examples for z/OS CICS

178

21 Client and Server Examples for z/OS IMS BMP

The delivered client examples for z/OS batch can be used as a basis for use in BMPmode, but they
have to be adapted.

The delivered server examples for z/OS batch can also be used in BMP mode. See Client and
Server Examples for z/OS Batch. Using IMS PCB pointers to access IMS databases in this context
is described in IMS PCB Pointer IDL Rules under Using the COBOLWrapper for IMS BMP
(z/OS).

179

180

22 Server Examples for z/OS IMS MPP

■ CALC Server .. 182
■ SQUARE Server .. 182

181

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. They are also
available as a z/OS data set, see Installing RPC Examples.

CALC Server

The CALC server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using RPC Server for IMS Connect or the
EntireX Adapter.

NotesDescriptionData SetTypeName

Aserver application providing the remote procedure
CALC (RPC service) with associated example.idl.

EXP105.MVCOCOBOL source codeCALC

1Job (JCL) to build the remote procedure CALC (RPC
service).

EXP105.MVCOJCLCALCIGY

1IMS first stage generation definition for TNCALCP
transaction.

EXP105.MVCOIMS definitionCALCSTG

Notes:

1. Adapt the JCL to your needs.

Formore information, refer to the readmefile in EntireXdirectory examples/RPC/CobolServer/zosIMS-
MPP under UNIX or Windows.

SQUARE Server

The SQUARE server is an IMS message processing program (MPP) for the TP system IMS under
operating system z/OS. It is accessible with IMS Connect using the RPC Server for IMS Connect or
the EntireX Adapter.

NotesDescriptionData SetTypeName

Aserver application providing the remote procedure
SQUARE (RPC service), with associated example.idl.

EXP105.MVCOCOBOL source codeSQUARE

1Job (JCL) to build the remote procedure SQUARE
(RPC service).

EXP105.MVCOJCLSQREIGY

1IMS first stage generation definition for TNSQREP
transaction.

EXP105.MVCOIMS definitionSQRESTG

Notes:

EntireX COBOL Wrapper182

Server Examples for z/OS IMS MPP

1. Adapt the JCL to your needs.

Formore information, refer to the readmefile in EntireXdirectory examples/RPC/CobolServer/zosIMS-
MPP under UNIX or Windows.

183EntireX COBOL Wrapper

Server Examples for z/OS IMS MPP

184

23 Client and Server Examples for BS2000

■ Basic RPC Client Examples - CALC, SQUARE .. 186
■ Basic RPC Server Examples - CALC, SQUARE ... 189

185

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. The basic
RPC server example CALC is also delivered on BS2000 in the LMS library EXP103.COBS.

Basic RPC Client Examples - CALC, SQUARE

■ CALC
■ SQUARE

CALC

NotesCommentTypeElement

2S-procedure to generate the CALC COBOL sample client application. It
makes use of RUN-COBOL-COMPILER and BIND-CALC-CLIENT.

JCREATE-CALC-CLIENT

S-procedure to bind the CALC COBOL sample client application.JBIND-CALC-CLIENT

2S-procedure to run the COBOL2000 / COBOL85 compiler.JRUN-COBOL-COMPILER

7S-procedure to run the CALC COBOL sample client application.JRUN-CALC-CLIENT

1Main program source of the CALC COBOL example.SCALCCLT.COB

3COBOL RPC client interface object.SCALC.COB

3COBOL RPC interface copybook.SCALC

4Generic RPC service.SCOBSRVI.COB

3Layout of the RPC communication area. See The RPC Communication
Area (Reference).

SERXCOMM

5Adabas ADALNK IDTNAME parameter required when using the NET
transport method. It is shared by all clients.

SCLIENT-ADAPARM

6CALC client input parameters.SCLIENT-INPARM-CALC

1. For applications built according to the client-side build instructions, see Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The default configuration expects a COBOL2000 environment. Depending on your installation
itmight be necessary to change the COMPILERparameterwithin the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOL85 syntax.

3. Generate these objects with the Designer.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

5. Optional. If NET is chosen as transport method, specify the name of the ID table to which the
broker is connected: ADALNK IDTNAME=ADAxxxxx.

6. Set up the BROKER-ID in one of two formats depending on the transport method:

EntireX COBOL Wrapper186

Client and Server Examples for BS2000

■ TCP Transport Method

ip:port:TCP

is the address or DNS host name,ipwhere
is the port number that EntireX Broker is listening on, andport

is the protocol nameTCP

■ NET Transport Method

ETBnnn:SVCmmm:NET

is the ID under which EntireX Broker is connected to the Adabas ID table,nnnwhere
is the SVC number under which the Adabas ID table can be accessed, andmmm

is the protocol nameNET

7. Enter the following command to run the CALC COBOL sample client:

/CALL-PROCEDURE *LIB(LIB=EXP103.COBC,ELE=RUN-CALC-CLIENT)

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

SQUARE

NotesCommentTypeElement

2S-procedure to generate the SQUARE COBOL sample client
application. It makes use of RUN-COBOL-COMPILER and
BIND-SQUARE-CLIENT.

JCREATE-SQUARE-CLIENT

S-procedure to bind the SQUARE COBOL sample client application.JBIND-SQUARE-CLIENT

2S-procedure to run the COBOL2000 / COBOL85 compiler.JRUN-COBOL-COMPILER

7S-procedure to run the SQUARE COBOL sample client application.JRUN-SQUARE-CLIENT

1Main program source of the SQUARE COBOL example.SSQRECLT.COB

3COBOL RPC client interface object.SSQUARE.COB

3COBOL RPC interface copybook.SSQUARE

4Generic RPC service.SCOBSRVI.COB

3Layout of the RPC communication area. See The RPC
Communication Area (Reference).

SERXCOMM

5Adabas ADALNK IDTNAME parameter required when using the
NET transport method. It is shared by all clients.

SCLIENT-ADAPARM

187EntireX COBOL Wrapper

Client and Server Examples for BS2000

NotesCommentTypeElement

6SQUARE client input parameters.SCLIENT-INPARM-SQUARE

1. For applications built according to the client-side build instructions, see Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The default configuration expects a COBOL2000 environment. Depending on your installation
itmight be necessary to change the COMPILERparameterwithin the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOL85 syntax.

3. Generate these objects with the Designer.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

5. Optional. If NET is chosen as transport method, specify the name of the ID table to which the
broker is connected: ADALNK IDTNAME=ADAxxxxx.

6. Set up the BROKERID in one of two formats depending on the transport method:
■ TCP Transport Method

ip:port:TCP

is the address or DNS host name,ipwhere
is the port number that EntireX Broker is listening on, andport

is the protocol nameTCP

■ NET Transport Method

ETBnnn:SVCmmm:NET

is the ID under which EntireX Broker is connected to the Adabas ID table,nnnwhere
is the SVC number under which the Adabas ID table can be accessed, andmmm

is the protocol nameNET

7. Enter the following command to run the SQUARE COBOL sample client:

/CALL-PROCEDURE *LIB(LIB=EXP103.COBC,ELE=RUN-SQUARE-CLIENT)

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

EntireX COBOL Wrapper188

Client and Server Examples for BS2000

Basic RPC Server Examples - CALC, SQUARE

■ CALC
■ SQUARE

CALC

NotesCommentTypeElement

2S-procedure to generate the CALC COBOL example server. It makes
use of RUN-COBOL-COMPILER.

JCREATE-CALC-SERVER

2S-procedure to run the COBOL2000 / COBOL85 compiler.JRUN-COBOL-COMPILER

1,3Server program source of CALC COBOL example.SCALC.COB

1. For applications built according to the server-side build instructions, see Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The default configuration expects a COBOL2000 environment. Depending on your installation
itmight be necessary to change the COMPILERparameterwithin the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOL85 syntax.

3. When executing:
■ make sure the RPC server runs as COBOL RPC server (refer to parameter marshalling in
the RPC-CONFIG S-element in library EXP103.JOBS)

■ make sure that library EXP103.COBS is included as PROGRAM-LIB in the startup procedure
START-RPC-SERVER

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

SQUARE

NotesCommentTypeElement

2S-procedure to generate the SQUARE COBOL example server. It
makes use of RUN-COBOL-COMPILER.

JCREATE-SQUARE-SERVER

2S-procedure to run the COBOL2000 / COBOL85 compiler.JRUN-COBOL-COMPILER

1,3Server program source of SQUARE COBOL example.SSQUARE.COB

1. For applications built according to the server-side build instructions, see Using the COBOL
Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The default configuration expects a COBOL2000 environment. Depending on your installation
itmight be necessary to change the COMPILERparameterwithin the parameter declaration section
of the procedures. The delivered procedures support both COBOL2000 and COBOL85 syntax.

189EntireX COBOL Wrapper

Client and Server Examples for BS2000

3. When executing:
■ make sure the RPC server runs as COBOL RPC server (refer to parameter marshalling in
the RPC-CONFIG S-element in library EXP103.JOBS)

■ make sure that library EXP103.COBS is included as PROGRAM-LIB in the startup procedure
START-RPC-SERVER

For more information refer to the file README.TXT in the EntireX directory examples/RPC/Co-
bolServer/bs2000 under UNIX or Windows.

EntireX COBOL Wrapper190

Client and Server Examples for BS2000

24 Client and Server Examples for IBM i

■ Overview of Client and Server Examples for IBM i .. 192
■ Installing and Running the Client Examples for IBM i ... 193
■ Installing and Running the Server Examples for IBM i ... 193

191

This chapter describes the examples provided for the COBOLWrapper for z/OS Batch.

Overview of Client and Server Examples for IBM i

The following examples are delivered for IBM i in the library EXAMPLE:

NotesDescriptionWindows File NameSource fileModule

1COBOL client display file (source)- not delivered here -QCBLLESRCCALCMENU

1COBOL client dialog program (source)- not delivered here -QCBLLESRCCALCMAIN

1client interface object (generated)- not delivered here -QCBLLESRCCCALC

1generic RPC service module- not delivered here -QCBLLESRCRPCSRVI

2RPC server calc (source)- not delivered here -QCBLLESRCCALC

Module

The name of the delivered module.

Source file

The name of the source file where the modules are delivered.

Windows File Name

IBM i examples are not delivered in the Windows installation.

Description

The purpose of the module

Notes:

1. The client application is built by the source members: CALCMENU, CALCMAIN, CCALC and RPCSRVI.
You can find the associated IDL file example.idl in the Windows installation.

2. The server application.

EntireX COBOL Wrapper192

Client and Server Examples for IBM i

Installing and Running the Client Examples for IBM i

To run the client examples for IBM i

1 The EntireX product library EXXmust be in your library list. It contains the Broker ACI service
program EXA.

2 Confirm that the broker and the RPC server are active.

3 Start the client application CALCCLIENT that you built, see Using the COBOLWrapper for
Batch (z/OS, BS2000, z/VSE and IBM i).

4 A menu similar to the following will be displayed:

Calculator Menu

Operation: + (type + - * / to calculate or
type . to terminate)

Operand 1: _____

Operand 2: _____

Result: ___________

Broker-ID: localhost:1971 Server: SRV1

Specify the ID of the remote Broker and the name of the server that provides the CALC program.
Specify the numbers youwant to compute and press ENTER. If the Broker connection fails, youwill
get an appropriate error message.

Installing and Running the Server Examples for IBM i

To install and run the server examples for IBM i

1 For IBM i, the delivered program CALC in QCBLLESRC source file must be provided to the RPC
server under IBM i.

2 Confirm that the broker is active.

3 Start the RPC server under IBM i.

193EntireX COBOL Wrapper

Client and Server Examples for IBM i

194

25 Client and Server Examples for z/VSE Batch

■ Basic RPC Client Examples - CALC, SQUARE .. 196
■ Basic RPC Server Examples - CALC, SQUARE ... 198

195

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC.

Basic RPC Client Examples - CALC, SQUARE

■ CALC Client
■ SQUARE Client

CALC Client

The CALC client is built with COBOLWrapper interface type "Batch with standard linkage calling
convention". See Client Interface Types for more information.

NotesDescriptionSublibrary(3)TypeName

Client build instructions and description.EXAMPLE.COBCLTBText documentREADME1.TXT

2A client application calling the remote
procedure (RPC service) CALC, with
associated example.idl.

EXAMPLE.COBCLTBCOBOL source codeCALCCLT.C

1Client interface object for IDL program
CALC.

EXAMPLE.COBCLTBCOBOL source codeCALC.C

1Client interface object copybook for IDL
program CALC.

EXAMPLE.COBCPYBCOBOL copybookCALC.C

1RPC Communication Area copybook.EXAMPLE.COBCPYCOBOL copybookERXCOMM.C

4Generic RPC Service for Batch.EXAMPLE.COBCLTBCOBOL source codeCOBSRVIB.C

3Job control to build theRPC clientCALCCLT.EXAMPLE.COBCLTBJCLCALCCLT.J

3Job control to execute the RPC client
CALCCLT.

EXAMPLE.COBCLTBJCLCALCRUN.J

Notes:

1. Generate these objects with the Designer.

2. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

3. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information refer to the file README1.TXT in EntireX directory examples/RPC/CobolCli-
ent/vseBatch under UNIX or Windows.

EntireX COBOL Wrapper196

Client and Server Examples for z/VSE Batch

SQUARE Client

For batch under operating systemz/VSE, the SQUARE client is builtwithCOBOLWrapper interface
type "Batchwith standard linkage calling convention". SeeClient Interface Types formore inform-
ation.

NotesDescriptionSublibrary (2)TypeName

Client build instructions and descriptionEXAMPLE.COBCLTBText documentREADME1.TXT

1A client application calling the remote
procedure (RPC service) SQUARE, with
associated example.idl.

EXAMPLE.COBCLTBCOBOL source codeSQRECLT.C

3Client interface object for IDL program
SQUARE.

EXAMPLE.COBCLTBCOBOL source codeSQUARE.C

3Client interface object copybook for IDL
program SQUARE.

EXAMPLE.COBCPYBCOBOL copybookSQUARE.C

3RPC Communication Area copybook.EXAMPLE.COBCPYCOBOL copybookERXCOMM.C

4Generic RPC Service for Batch.EXAMPLE.COBCLTBCOBOL source codeCOBSRVIB.C

2Job control to build theRPC clientSQRECLT.EXAMPLE.COBCLTBJCLSQRECLT.J

2Job control to execute the RPC client
SQRECLT.

EXAMPLE.COBCLTBJCLSQRERUN.J

Notes:

1. Application built according to the client-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

3. Generate these objects with the Designer.

4. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the file README1.TXT in EntireX directory examples/RPC/CobolCli-
ent/vseBatch under UNIX or Windows.

197EntireX COBOL Wrapper

Client and Server Examples for z/VSE Batch

Basic RPC Server Examples - CALC, SQUARE

■ CALC Server
■ SQUARE Server

CALC Server

For batch under operating system z/VSE, the CALC server is built with COBOLWrapper "Batch
with standard linkage calling convention" interface type. See Server Interface Types for more in-
formation.

NotesDescriptionSublibrary (2)TypeName

CALC server build instructions and
description

EXAMPLE.COBSRVBText fileREADME1.TXT

1A server application providing the remote
procedure CALC (RPC service), with
associated example.idl.

EXAMPLE.COBSRVBCOBOL source
code

CALC.C

2Job control to build the remote procedure
CALC (RPC service).

EXAMPLE.COBSRVBJCLCALC.J

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information refer to the file README1.TXT in EntireX directory examples/RPC/CobolServ-
er/vseBatch under UNIX or Windows.

SQUARE Server

For Batch on operating system z/VSE, the SQUARE server is built with COBOLWrapper interface
type "Batchwith standard linkage calling convention". SeeClient Interface Types formore inform-
ation.

EntireX COBOL Wrapper198

Client and Server Examples for z/VSE Batch

NotesDescriptionSublibrary(2)TypeName

SQUARE server build instructions and
description

EXAMPLE.COBSRVBText fileREADME1.TXT

1A server application providing the remote
procedure SQUARE (RPC service), with
associated example.idl

EXAMPLE.COBSRVBCOBOL source
code

SQUARE.C

2Job control to build the remote procedure
SQUARE (RPC service)

EXAMPLE.COBSRVBJCLSQUARE.J

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for Batch (z/OS, BS2000, z/VSE and IBM i).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information refer to the file README1.TXT in EntireX directory examples/RPC/CobolServ-
er/vseBatch under UNIX or Windows.

199EntireX COBOL Wrapper

Client and Server Examples for z/VSE Batch

200

26 Client and Server Examples for z/VSE CICS

■ Basic RPC CALC Example .. 202
■ Basic RPC SQUARE Example ... 204

201

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC. This chapter
covers the following topics.

Basic RPC CALC Example

■ CALC Client using Call Interface (CALCCLT)
■ CALC Client using DFHACOMMAREA (CALC1CLT)
■ CALC Server (CALC)

CALC Client using Call Interface (CALCCLT)

The CALC CICS client example CALCCLT is implemented with interface type "CICS with standard
linkage calling convention". See Client Interface Types for more information.

NotesDescriptionSublibrary (4)TypeName

Client build instructions and description.EXAMPLE.COBCLTCText fileREADME1.TXT

1An RPC client application calling the
remote procedure (RPC service) CALC.

EXAMPLE.COBCLTCCOBOL source codeCALCCLT.C

2Client interface object for IDL program
CALC.

EXAMPLE.COBCLTCCOBOL source codeCALC.C

2Client interface object copybook for IDL
program CALC.

EXAMPLE.COBCPYCCOBOL copybookCALC.C

2RPC Communication Area copybook.EXAMPLE.COBCPYCOBOL copybookERXCOMM.C

5Generic RPC Servicemodule for CICSwith
call interface.

EXAMPLE.COBCLTCCOBOL source codeCOBSRVID.C

CICS map for RPC client CALCCLT.EXAMPLE.COBCLTCCICS mapCALCMAP.A

3Generated CICS Map COBOL Definitions.EXAMPLE.COBCPYCCOBOL copybookCALCMAP.C

4Job control to build theRPC clientCALCCLT.EXAMPLE.COBCLTCJCLCALCLT.J

CICS CSD definitions job control for RPC
client CALCCLT.

EXAMPLE.COBCLTCJCLCALCDFH.J

Notes:

1. Built according to the client-side build instructions, see Using the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE).

2. Generate these objects with the Designer.

3. Generated from CALCMAP.A during execution of CALCCLT.J.

4. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

EntireX COBOL Wrapper202

Client and Server Examples for z/VSE CICS

5. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the README1.TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows.

CALC Client using DFHACOMMAREA (CALC1CLT)

The CALCCICS client example CALC1CLT is implementedwith interface type "CICSwithDFHCOM-
MAREA calling convention". See Client Interface Types for more information.

NotesDescriptionSublibrary (4)TypeName

Client build instructions and description.EXAMPLE.COBCLTCText fileREADME3.TXT

1An RPC client application calling the
remote procedure (RPC service) CALC.

EXAMPLE.COBCLTCCOBOL source codeCALC1CLT.C

2Client interface object for IDL program
CALC.

EXAMPLE.COBCLTCCOBOL source codeCALC1.C

2Client interface object copybook for IDL
program CALC.

EXAMPLE.COBCPYCCOBOL copybookCALC1.C

2RPC Communication Area copybook.EXAMPLE.COBCPYCOBOL copybookERXCOMM.C

5Generic RPC Service with EXEC CICS
LINK interface.

EXAMPLE.COBCLTCCOBOL source codeCOBSRVIC.C

CICS map for RPC client CALC1CLT.EXAMPLE.COBCLTCCICS mapCALC1MAP.A

3Generated CICS Map COBOL Definitions.EXAMPLE.COBCPYCCOBOL copybookCALC1MAP.C

4Job control to build the RPC client
CALC1CLT.

EXAMPLE.COBCLTCJCLCALC1CLT.J

CICS CSD definitions job control for RPC
client CALC1CLT.

EXAMPLE.COBCLTCJCLCALC1DFH.J

Notes:

1. Built according to the client-side build instructions, see Using the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Generate these objects with the Designer.

3. Generated from CALC1MAP.A during execution of CALC1CLT.J.

4. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

5. Built as COBSRVI.PHASE by CALC1CLT.J. See Generation and Usage of Generic RPC Service
Module COBSRVI.

For more information, refer to the README3.TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows.

203EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

CALC Server (CALC)

The CALCCICS server example is builtwithCOBOLWrapper interface type "CICSwithDFHCOM-
MAREA calling convention". See Server Interface Types for more information.

NotesDescriptionSublibrary (2)TypeName

CALC server build instructions and description.EXAMPLE.COBSRVCText fileREADME1.TXT

1A server application providing the remote
procedure CALC (RPC service), with associated
example.idl.

EXAMPLE.COBSRVCCOBOL source
code

CALC.C

2Job control to build the remote procedure CALC
(RPC service).

EXAMPLE.COBSRVCJCLCALC.J

CICS CSD definitions job control for remote
procedure CALC (RPC service).

EXAMPLE.COBSRVCJCLCALCDFH.J

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information, refer to the README1.TXT file in EntireX directory examples/RPC/CobolServ-
er/vseCICS under UNIX or Windows.

Basic RPC SQUARE Example

■ SQUARE Client using Call Interface (SQRECLT)
■ SQUARE Client using DFHACOMMAREA (SQRE1CLT)
■ SQUARE Server (SQUARE)

SQUARE Client using Call Interface (SQRECLT)

The SQUARE CICS client example SQRECLT is implemented with interface type "CICS with
standard linkage calling convention". See Client Interface Types for more information.

EntireX COBOL Wrapper204

Client and Server Examples for z/VSE CICS

NotesDescriptionSublibrary (4)TypeName

Client build instructions and description.EXAMPLE.COBCLTCText fileREADME1.TXT

1An RPC client application calling the
remote procedure (RPC service) SQUARE.

EXAMPLE.COBCLTCCOBOL source codeSQRECLT.C

2Client interface object for IDL program
SQUARE.

EXAMPLE.COBCLTCCOBOL source codeSQUARE.C

2Client interface object copybook for IDL
program SQUARE.

EXAMPLE.COBCPYCCOBOL copybookSQUARE.C

2RPC Communication Area copybook.EXAMPLE.COBCPYCOBOL copybookERXCOMM.C

2,5Generic RPC Service for CICS with call
interface.

EXAMPLE.COBCLTCCOBOL source codeCOBSRVID.C

CICS map for RPC client SQRECLT.EXAMPLE.COBCLTCCICS mapSQREMAP.A

3Generated CICS Map COBOL Definitions.EXAMPLE.COBCPYCCOBOL copybookSQREMAP.C

4Job control to build theRPC clientSQRECLT.EXAMPLE.COBCLTCJCLSQRECLT.J

CICS CSD definitions job control for RPC
client SQRECLT.

EXAMPLE.COBCLTCJCLSQREDFH.J

Notes:

1. Built according to the client-side build instructions, see Using the COBOLWrapper for CICS
with Call Interfaces (z/OS and z/VSE).

2. Generate these objects with the Designer.

3. Generated from SQREMAP.A during execution of SQRECLT.J.

4. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

5. See Generation and Usage of Generic RPC Service Module COBSRVI.

For more information, refer to the README1.TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTC.

SQUARE Client using DFHACOMMAREA (SQRE1CLT)

The SQUARE CICS client example SQRE1CLT is implemented with interface type "CICS with DFH-
COMMAREA calling convention". See Client Interface Types for more information.

205EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

NotesDescriptionSublibrary (4)TypeName

Client build instructions and description.EXAMPLE.COBCLTCText fileREADME3.TXT

1An RPC client application calling the
remote procedure (RPC service) SQUARE.

EXAMPLE.COBCLTCCOBOL source codeSQRE1CLT.C

2Client interface object for IDL program
SQUARE.

EXAMPLE.COBCLTCCOBOL source codeSQRE1.C

2Client interface object copybook for IDL
program SQUARE.

EXAMPLE.COBCPYCCOBOL copybookSQRE1.C

2RPC Communication Area copybook.EXAMPLE.COBCPYCOBOL copybookERXCOMM.C

2,5Generic RPC Service.EXAMPLE.COBCLTCCOBOL source codeCOBSRVIC.C

CICS map for RPC client SQRE1CLT.EXAMPLE.COBCLTCCICS mapSQRE1MAP.A

3Generated CICS Map COBOL Definitions.EXAMPLE.COBCPYCCOBOL copybookSQRE1MAP.C

4Job control to build the RPC client
SQRE1CLT.

EXAMPLE.COBCLTCJCLSQRE1CLT.J

CICS CSD definitions job control for RPC
client SQRE1CLT.

EXAMPLE.COBCLTCJCLCALC1DFH.J

Notes:

1. Built according to the client-side build instructions, see Using the COBOLWrapper for CICS
with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. Generate these objects with the Designer.

3. Generated from SQRE1MAP.A during execution of SQRE1CLT.J.

4. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

5. Built as COBSRVI.PHASE by SQRE1CLT.J. See Generation and Usage of Generic RPC Service
Module COBSRVI.

For more information, refer to the README3.TXT file in EntireX directory examples/RPC/CobolCli-
ent/vseCICS/Callinterface under UNIX or Windows, or the downloaded example sublibrary
EXAMPLE.COBCLTC.

EntireX COBOL Wrapper206

Client and Server Examples for z/VSE CICS

SQUARE Server (SQUARE)

The SQUARE CICS server example is built with COBOLWrapper interface type "CICS with DFH-
COMMAREA calling convention". See Server Interface Types for more information.

NotesDescriptionSublibrary (2)TypeName

CALC server build instructions and description.EXAMPLE.COBSRVCText fileREADME1.TXT

1A server application providing the remote
procedure SQUARE (RPC service), with
associated example.idl.

EXAMPLE.COBSRVCCOBOL source
code

SQUARE.C

2Job control to build the remote procedure
SQUARE (RPC service).

EXAMPLE.COBSRVCJCLSQUARE.J

CICS CSD definitions job control for remote
procedure SQUARE (RPC service).

EXAMPLE.COBSRVCJCLSQREDFH.J

Notes:

1. Application built according to the server-side build instructions, seeUsing the COBOLWrapper
for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE).

2. The delivered JCL requires the sources, copybooks etc. to be placed in the documented sublibrary.
Adapt the JCL to your needs.

For more information, refer to the README1.TXT file in EntireX directory examples/RPC/CobolServ-
er/vseCICS under UNIX or Windows.

207EntireX COBOL Wrapper

Client and Server Examples for z/VSE CICS

208

27 Client and Server Examples for Micro Focus (UNIX and

Windows)
■ Basic RPC Client Examples - CALC, SQUARE .. 210
■ Basic RPC Server Examples - CALC, SQUARE ... 210

209

This chapter describes the RPC examples provided. After installation of the EntireX Development
Tools package, all examples here can be found in the EntireX directory examples/RPC.

Basic RPC Client Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE clients are built with COBOLWrapper
"Micro Focus with standard linkage calling convention" interface type. See Client Interface Types
for more information.

NotesDescriptionTypeName

1A client application calling the remote procedure (RPC service)
CALC, with associated example.idl.

COBOL source codeCALCCLT.cbl

1A client application calling the remote procedure (RPC service)
SQUARE, with associated example.idl.

COBOL source codeSQRECLT.cbl

Notes:

1. Application built according to the client-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

Formore information, see the readme file in EntireX directory examples/RPC/CobolClient/MicroFocus
under UNIX or Windows.

Basic RPC Server Examples - CALC, SQUARE

For Micro Focus environments, the CALC and SQUARE servers are built with COBOLWrapper
"Micro Focus with standard linkage calling convention" interface type. See Server Interface Types
for more information.

NotesDescriptionTypeName

1A server application providing the remote procedure CALC (RPC
service), with associated example.idl.

COBOL source codeCALC.cbl

1A server application providing the remote procedure SQUARE
(RPC service), with associated example.idl.

COBOL source codeSQUARE.cbl

Notes:

1. Application built according to the server-side build instructions under Using the COBOL
Wrapper for Micro Focus (UNIX and Windows).

EntireX COBOL Wrapper210

Client and Server Examples for Micro Focus (UNIX and Windows)

Formore information, see the readmefile in EntireX directory examples/RPC/CobolServer/MicroFocus
under UNIX or Windows.

211EntireX COBOL Wrapper

Client and Server Examples for Micro Focus (UNIX and Windows)

212

VI
■ 28 The RPC Communication Area (Reference) .. 215
■ 29 Delivered Modules ... 221

213

214

28 The RPC Communication Area (Reference)

■ Copybook ERXCOMM .. 216
■ Copybook ERXVSTR ... 219

215

The RPC communication area is used to specify parameters that are needed to communicate with
the broker and are not specific to client interface objects. These are, for example, the Broker ID,
client parameters such as user ID, password and the server address such as class/servername/service
etc. See the tables below for a complete listing.

The RPC communication area is provided with the generated copybook ERXCOMM and optionally
with its extension copybook ERXVSTR in the folder include for RPC client generation. SeeGenerating
COBOL Source Files from Software AG IDL Files.

Copybook ERXCOMM

The ERXCOMM copybook enables an RPC client to specify and retrieve data for RPC communication.
For usage refer to ERXCOMM Copybook under Using the Generated Copybooks.

Notes
In/
Out

Req/
Opt/
AutoExplanationRPC Communication Area Field

---Label.ERXCOMM-HEADER

---Label.COMM-REQUEST

7IRVersion of RPC communication area. Possible values:
2000 or 4000.

COMM-VERSION

1IOLO - log on to the BrokerCOMM-FUNCTION

1LF - log off from the Broker

2OC - open conversation

2CE - close conversation with commit

2CB - close conversation with backout

3CT - create Natural Security token

5RC - do reliable RPC commit

5RR - do reliable RPC rollback

5RS - get reliable status

-EC - end of conversation

-O-Message class and message code returned by COBOL
Wrapper.

COMM-RETURN-CODE

-O-Message text provided by COBOLWrapper (long
versions).

COMM-MESSAGE-TEXT-EX

-O-Deprecated. Use COMM-MESSAGE-TEXT-EX instead.COMM-MESSAGE-TEXT

---Label.ERXCOMM-AREA1

---Label.COMM-USERID

3IORPC user ID (8 characters) for RPC authentication.COMM-USERID1

EntireX COBOL Wrapper216

The RPC Communication Area (Reference)

Notes
In/
Out

Req/
Opt/
AutoExplanationRPC Communication Area Field

-IODeprecated - do not use.COMM-USERID2

3IORPC password (8 characters) for RPC authentication.COMM-PASSWORD

3,4IORPC library name (8 characters) for RPC authentication
or to log on to a specific library.

COMM-LIBRARY

6I/OALength of Natural Security token.COMM-SECURITY-TOKEN-LENGTH

6I/OANatural Security token.COMM-SECURITY-TOKEN

6I/OAControl variable used internally by generic RPC
services and client interface objects. If set to Y, RPC

COMM-IN-CONVERSATION

requests will use COMM-ETB-CONV-ID for
conversationality.

6I/OAControl variable used internally by generic RPC
services and client interface objects for reliable RPC. If

COMM-IN-ACTIVE-UOW

set to Y, RPC requests will use COMM-ETB-UOW-ID for
reliability.

5I/ORControl variable used by the application to determine
whether standard RPC requests or reliable RPC
messages are used. Valid values:

COMM-RELIABLE-STATE

normal RPC requests' ' (blank)

reliable RPC in AUTO-COMMITmodeA

reliable RPC in CLIENT-COMMITmodeC

5OAResult of a “get reliable status” call to generic RPC
services, see field COMM-FUNCTION above. Values
correspond to broker ACI field UOWSTATUS.

COMM-RELIABLE-STATUS

1IOCorresponds to Broker ACI field KERNELSECURITY.COMM-KERNEL-SECURITY

-IOThis field is available for operating system z/OS only.
Specify the CCSID for the following tasks:

COMM-CCSID

■ to convert the codepage of the long RPC password
and RPC user ID; see RPC Authentication Using Long
RPC User ID/RPC Password (z/OS with Call Interface)

■ to tell the broker the encoding of your application
data; see Using Internationalization with the
COBOLWrapper

-IRCorresponds to Broker ACI field BROKER-ID.COMM-ETB-BROKER-ID

-IRCorresponds to Broker ACI field SERVER-CLASS.COMM-ETB-SERVER-CLASS

-IRCorresponds to Broker ACI field SERVER-NAME.COMM-ETB-SERVER-NAME

-IRCorresponds to Broker ACI field SERVICE.COMM-ETB-SERVICE-NAME

1IOCorresponds to Broker ACI field USER-ID.COMM-ETB-USER-ID

217EntireX COBOL Wrapper

The RPC Communication Area (Reference)

Notes
In/
Out

Req/
Opt/
AutoExplanationRPC Communication Area Field

1IOCorresponds to Broker ACI field PASSWORD.COMM-ETB-PASSWORD

-I/OOCorresponds to Broker ACI field TOKEN.COMM-ETB-TOKEN

6I/OACorresponds to Broker ACI field SECURITY-TOKEN.COMM-ETB-SECURITY-TOKEN

6I/OACorresponds to Broker ACI field CONV-ID.COMM-ETB-CONV-ID

-IOCorresponds to Broker ACI field WAIT. Default: 60
seconds.

COMM-ETB-WAIT

6I/OACorresponds to Broker ACI field API-VERSION.COMM-ETB-APIVERS

5I/OOCorresponds to Broker ACI field UOWID.COMM-ETB-UOW-ID

5I/OOCorresponds to Broker ACI field STORE.COMM-ETB-STORE

6I/OAFields are used internally to support Application
Monitoring and for accounting purposes. SeeAccounting

COMM-ETB-PROGRAM-OFFSET

6I/OACOMM-ETB-LIBRARY-OFFSET
in EntireXBroker in the platform-specificAdministration
documentation.

-OACorresponds to Broker ACI field MESSAGE-ID.COMM-ETB-MESSAGE-ID

-OACorresponds to Broker ACI field CORRELATION-ID.COMM-ETB-CORRELATION-ID

6I/OAFields are used internally to support Application
Monitoring

APPMON-SUPPORT

6I/OAAPPMON-VERIFY

6I/OAAPPMON-TIMEVALUE

6I/OAAPPMON-TRANSPORT-BUFFER

6I/OAAPPMON-LEN-TRANSPORT-BUFFER

6I/OAAPPMON-RECEIVE-BUFFER

6I/OAAPPMON-LEN-RECEIVE-BUFFER

6I/OAAPPMON-LEN-DATA

6I/OAAPPMON-RETURN-CODE

Key

Req/Opt/Auto
Indicates for input fields whether they have to be given by the RPC client (required) or may
be given by the user (optional). Fields marked with "Auto" are managed internally by theDe-
livered Modules themselves.

In/Out
Indicates whether the field is an input field (to be given by the RPC client) or an output field
(returned to your RPC client).

Notes:

1. See Using Broker Logon and Logoff.

EntireX COBOL Wrapper218

The RPC Communication Area (Reference)

2. For RPC conversations. See Using Conversational RPC.

3. See Using RPC Authentication (Natural Security, Impersonation, Integration Server).

4. If you are communicatingwith a non-secureNatural RPC Server you can set theNatural library.
See Using the COBOLWrapper with Non-secure Natural RPC Server.

5. See Reliable RPC for COBOLWrapper.

6. Control variable used internally by generic RPC services and client interface objects. Thismeans
the field is managed internally by the Delivered Modules themselves.

7. For a standard call interface client, see Step 1: Declare and Initialize the RPCCommunication
Area in sectionWriting Standard Call Interface Clients.

■

■ For an EXEC CICS LINK client refer to Step 1: Declare IDL Structures andRPCCommunication
Area in sectionWriting EXEC CICS LINK Clients.

Copybook ERXVSTR

The optional ERXVSTR copybook is an extension to the ERXCOMM copybook. It enables an RPC client
to specify long data strings (e.g. passwords). For usage see ERXVSTR Copybook under Using the
Generated Copybooks.

This table describes the fields in the RPC Variable String Area.

Notes
In/
Out

Req/
Opt/
AutoExplanationRPC Variable String Area Field

---Label.ERXCOMM-AREA2

---Label.COMM-STRING-HEADER

1IOCOMM-ETB-PASSWORD-OFFSET

1IOCOMM-ETB-PASSWORD-LENGTH

2IOCOMM-RPC-USERID-OFFSET

2IOCOMM-RPC-USERID-LENGTH

2IOCOMM-RPC-PASSWORD-OFFSET

2IOCOMM-RPC-PASSWORD-LENGTH

2IOCOMM-RPC-LIBRARY-OFFSET

2IOCOMM-RPC-LIBRARY-LENGTH

1,2IOCOMM-STRING-AREA

Notes:

1. See Using Broker Logon and Logoff.

219EntireX COBOL Wrapper

The RPC Communication Area (Reference)

2. See Using RPC Authentication (Natural Security, Impersonation, Integration Server).

EntireX COBOL Wrapper220

The RPC Communication Area (Reference)

29 Delivered Modules

■ Delivered Modules for z/OS ... 222
■ Delivered Modules for z/VSE ... 223
■ Delivered Modules for BS2000 ... 223
■ Delivered Modules for IBM i ... 224

221

This section covers the following topics:

Delivered Modules for z/OS

NotesDescriptionData SetModule

2CICS generic RPC services with EXEC CICS LINK interface.EXP105.SRCECOBSRVI

2CICS CSD definitions of CICS generic RPC services COBSRVIwith EXEC
CICS LINK interface.

EXP105.SRCECOBDFH

1RPC communication area.EXP105.INCLERXCOMM

4RPC communication area extension copybook.EXP105.INCLERXVSTR

3C main module for application errors.EXP105.SRCEERXRCSRV

3Ready-to-use ERXRCSRVmodule for application errors.EXP105.LD00ERXRCSRV

2JCL to compile the CICS generic RPC service module COBSRVIwith EXEC
CICS LINK interface.

EXX105.JOBSEXPCSRVI

■ EXP105.INCL
TheGeneric RPC includedata setmay be delivered as a patchwith a different nameEXP105.INnn,
where nn is the patch level number. Make sure you install the highest patch level available. The
data set is required to SYSLIB input for the COBOL compiler.

■ EXP105.SRCE
TheGeneric RPC source data setmay be delivered as a patchwith a different name EXP105.S0nn,
where nn is the patch level number. Make sure you install the highest patch level available. The
data set is required to SYSLIB input for the COBOL compiler.

Notes:

1. The ERXCOMM copybook enables anRPC client to specify and retrieve data for RPC communication.
For usage refer to ERXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. See Returning Application Errors in the RPC Server for CICS documentation.

4. The optional ERXVSTR copybook is an extension to the ERXCOMM copybook. It enables an RPC
client to specify long data strings (e.g. passwords). For usage see ERXVSTR Copybook under
Using the Generated Copybooks.

EntireX COBOL Wrapper222

Delivered Modules

Delivered Modules for z/VSE

NotesDescriptionSublibraryFile

1,3RPC Communication area.EXP960ERXCOMM

2,3Batch generic RPC services with call interface (source).EXP960COBSRVIB.C

2,3Batch generic RPC services with call interface (object).EXP960COBSRVIB.OBJ

2,3CICS generic RPC services with EXEC CICS LINK interface (source).EXP960COBSRVIC.C

2,3CICS generic RPC services with EXEC CICS LINK interface (object).EXP960COBSRVIC.OBJ

2,3CICS generic RPC services with call interface (source).EXP960COBSRVID.C

2,3CICS generic RPC services with call interface (object).EXP960COBSRVID.OBJ

Notes:

1. The ERXCOMM copybook enables anRPC client to specify and retrieve data for RPC communication.
For usage refer to ERXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. Do not use the modules delivered with your z/VSE installation. Use the modules generated by
the Designer instead. Refer to Generating COBOL Source Files from Software AG IDL Files.

Delivered Modules for BS2000

NotesDescriptionData SetModule

1,3RPC communication area.EXP103.COBCERXCOMM

2, 3Batch generic RPC services with call interface.EXP103.COBCCOBSRVI.COB

Notes:

1. The ERXCOMM copybook enables anRPC client to specify and retrieve data for RPC communication.
For usage refer to ERXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. Do not use the modules delivered with your BS2000 installation. Use the modules generated
by the Designer instead. Refer toGenerating COBOL Source Files from Software AG IDL Files.

223EntireX COBOL Wrapper

Delivered Modules

Delivered Modules for IBM i

NotesDescriptionSource fileModule

1,3RPC communication area.QCBLLESRCERXCOMM

2, 3Batch generic RPC services with call interface.QCBLLESRCRPCSRVI

Notes:

1. The ERXCOMM copybook enables anRPC client to specify and retrieve data for RPC communication.
For usage refer to ERXCOMM Copybook under Using the Generated Copybooks.

2. See Generation and Usage of Generic RPC Service Module COBSRVI.

3. Do not use the modules delivered with your IBM i installation. Use the modules generated by
the Designer instead. Refer to Generating COBOL Source Files from Software AG IDL Files.

EntireX COBOL Wrapper224

Delivered Modules

	EntireX COBOL Wrapper
	Table of Contents
	EntireX COBOL Wrapper
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Introduction to the COBOL Wrapper
	2 Introduction to the COBOL Wrapper
	Description
	Generic RPC Services Module
	COBOL Client Applications
	COBOL Server Application
	COBOL Server Interface Types
	CICS with DFHCOMMAREA Calling Convention
	CICS with Channel Container Calling Convention
	CICS with DFHCOMMAREA Large Buffer Interface
	Micro Focus with Standard Linkage Calling Convention
	Batch with Standard Linkage Calling Convention
	IMS BMP with Standard Linkage Calling Convention
	Compatibility between COBOL Interface Types and RPC Server
	Compatibility between COBOL Interface Types and EntireX Adapter Connection Types

	II Using the COBOL Wrapper
	3 Using the COBOL Wrapper for the Client Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Call Interfaces (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)
	Using the COBOL Wrapper for IMS (z/OS)
	Using the COBOL Wrapper for IDMS/DC with Call Interfaces (z/OS)
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

	4 Using the COBOL Wrapper for the Server Side
	Using the COBOL Wrapper for CICS with DFHCOMMAREA Calling Convention (z/OS and z/VSE)
	Using the COBOL Wrapper for CICS with Channel Container Calling Convention (z/OS)
	Introduction
	CICS Channel Container IDL Rules
	Restrictions
	Example 1: Same Container for Direction In and Out
	Example 2: Different Container for Direction In and Out
	Example 3: Multiple Containers
	Example 4: Variable Number of Containers (Direction Out Only)
	Steps

	Using the COBOL Wrapper for CICS with DFHCOMMAREA Large Buffer Interface (z/OS and z/VSE)
	Using the COBOL Wrapper for Batch (z/OS, BS2000, z/VSE and IBM i)
	Using the COBOL Wrapper for IMS BMP (z/OS)
	Using the COBOL Wrapper for Micro Focus (UNIX and Windows)

	5 Generating COBOL Source Files from Software AG IDL Files
	Select an IDL File and Generate RPC Client or RPC Server
	Generation Settings - Properties
	Introduction
	Target Operating System
	Characters Used for String Literals
	IDL-specific Output Folder
	Client Interface Types
	Customize Automatically Generated Client Names
	z/OS and z/VSE
	IBM i
	UNIX and Windows with Micro Focus
	BS2000

	Starting COBOL Level for Data Items in Generated Copybooks
	RPC Communication Area
	Generation and Usage of Generic RPC Service Module COBSRVI
	Customize Automatically Generated Server Names
	Server Interface Types
	IMS PSB List
	Channel Name

	Generation Settings - Preferences

	6 Using the COBOL Wrapper in Command-line Mode
	Command-line Options
	Generate a COBOL RPC Client from IDL File
	Generate a COBOL RPC Server from IDL File

	Example Generating an RPC Client
	Example Generating an RPC Server
	Further Examples
	Windows
	Example 1
	Example 2
	Example 3
	Example 4

	Linux
	Example 1
	Example 2
	Example 3

	7 Software AG IDL to COBOL Mapping
	Mapping IDL Data Types to COBOL Data Types
	Mapping Library Name and Alias
	Client Side
	Server Side

	Mapping Program Name and Alias
	Client Side
	Server Side

	Mapping Parameter Names
	Mapping Fixed and Unbounded Arrays
	Mapping Groups and Periodic Groups
	Mapping Structures
	Mapping the Direction Attributes In, Out, InOut
	Mapping the ALIGNED Attribute
	Calling Servers as Procedures or Functions

	III Writing Applications with the COBOL Wrapper
	8 Writing Standard Call Interface Clients
	Step 1: Declare and Initialize the RPC Communication Area
	Only Copybook ERXCOMM is Used
	Both Copybooks ERXCOMM and ERXVSTR are Used

	Step 2: Declare the IDL Data Structures for Client Interface Objects
	Step 3: Required Settings in the RPC Communication Area
	Step 4: Optional Settings in the RPC Communication Area
	Step 5: Issue the RPC Request and Check for Success

	9 Writing EXEC CICS LINK Clients
	Step 1: Declare IDL Structures and RPC Communication Area
	Step 2: Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4: Optional Settings in the RPC Communication Area
	Step 5: Issue the RPC Request and Check for Success

	10 Using the Generated Copybooks
	IDL Interface Copybooks
	ERXCOMM Copybook
	ERXVSTR Copybook
	COBINIT Copybook
	COBEXIT Copybook

	11 Using Broker Logon and Logoff
	Introduction
	Logging on Using Short Broker Passwords (all Interface Types)
	Call Interface
	EXEC CICS LINK Interface

	Logging on Using Long Broker Passwords (z/OS with Call Interface)

	12 Using Conversational RPC
	Call Interface
	EXEC CICS LINK Interface

	13 Using IDL Unbounded Groups or Arrays without Maximum
	14 Using RPC Authentication (Natural Security, Impersonation, Integration Server)
	Introduction
	RPC Authentication Using Short RPC User ID/RPC Password (all Interface Types)
	Call Interface
	EXEC CICS LINK Interface

	RPC Authentication Using Long RPC User ID/RPC Password (z/OS with Call Interface)

	15 Using the COBOL Wrapper with Non-secure Natural RPC Server
	Call Interface
	EXEC CICS LINK Interface

	16 Using SSL/TLS
	z/OS
	Using IBM's Application Transparent Transport Layer Security (AT-TLS)

	z/VSE
	Using BSI's Automatic Transport Layer Security (ATLS)

	UNIX, Windows, BS2000

	17 Using Internationalization with the COBOL Wrapper

	IV Reliable RPC for COBOL Wrapper
	18 Reliable RPC for COBOL Wrapper
	Introduction to Reliable RPC
	Writing a Client
	Step 1: Declare the Data Structures for RPC Client Interface Objects
	Step 2: Declare and Initialize the RPC Communication Area
	Step 3: Required Settings in the RPC Communication Area
	Step 4a: Perform a Broker Logon
	Step 4b: Examine the Error Code
	Step 5: Enable Reliable RPC with CLIENT_COMMIT
	Step 6a: Send the RPC Message
	Step 6b: Examine the Error Code
	Step 7a: Check the Reliable RPC Message Status
	Step 7b: Examine the Error Code
	Step 8: Send a Second RPC Message
	Step 9: Check the Reliable RPC Message Status
	Step 10a: Commit both Reliable RPC Messages
	Step 10b: Examine the Error Code
	Step 11: Send a Third RPC Message
	Step 12: Check the Reliable RPC Message Status
	Step 13a: Roll Back the Third RPC Message
	Step 13b: Examine the Error Code
	Step 14a: Perform a Broker Logoff
	Step 14b: Examine the Error Code

	Writing a Server
	Broker Configuration

	V Delivered Examples for the COBOL Wrapper
	19 Client and Server Examples for z/OS Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	20 Client and Server Examples for z/OS CICS
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client using DFHCOMMAREA
	CALC Client using Call Interface
	SQUARE Client using DFHCOMMAREA
	SQUARE Client using Call Interface

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	Advanced CICS Channel Container RPC Server Example

	21 Client and Server Examples for z/OS IMS BMP
	22 Server Examples for z/OS IMS MPP
	CALC Server
	SQUARE Server

	23 Client and Server Examples for BS2000
	Basic RPC Client Examples - CALC, SQUARE
	CALC
	SQUARE

	Basic RPC Server Examples - CALC, SQUARE
	CALC
	SQUARE

	24 Client and Server Examples for IBM i
	Overview of Client and Server Examples for IBM i
	Installing and Running the Client Examples for IBM i
	Installing and Running the Server Examples for IBM i

	25 Client and Server Examples for z/VSE Batch
	Basic RPC Client Examples - CALC, SQUARE
	CALC Client
	SQUARE Client

	Basic RPC Server Examples - CALC, SQUARE
	CALC Server
	SQUARE Server

	26 Client and Server Examples for z/VSE CICS
	Basic RPC CALC Example
	CALC Client using Call Interface (CALCCLT)
	CALC Client using DFHACOMMAREA (CALC1CLT)
	CALC Server (CALC)

	Basic RPC SQUARE Example
	SQUARE Client using Call Interface (SQRECLT)
	SQUARE Client using DFHACOMMAREA (SQRE1CLT)
	SQUARE Server (SQUARE)

	27 Client and Server Examples for Micro Focus (UNIX and Windows)
	Basic RPC Client Examples - CALC, SQUARE
	Basic RPC Server Examples - CALC, SQUARE

	VI
	28 The RPC Communication Area (Reference)
	Copybook ERXCOMM
	Copybook ERXVSTR

	29 Delivered Modules
	Delivered Modules for z/OS
	Delivered Modules for z/VSE
	Delivered Modules for BS2000
	Delivered Modules for IBM i

