§ software

webMethods EntireX

Broker

Version 10.5

October 2019

WEBMETHODS

This document applies to webMethods EntireX Version 10.5 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-BROKER-105-20220422

Table of Contents

1 About this DocumMentationcccccueiiiiiiiiiiiiiiiiiiiciccecee e 1
Document CONVENtIONSociiiiiiiiiiiiiiiiiii e 2
Online Information and SUPPOTtc.ccceiiiiiiiiiiiiiiiiiiii e, 2
Data Protectioncoouiiiiiiiiiiiiic 3

I Concepts and Facilities of EntireX Brokerccccoooiiiiiiiiiiiiiiiiiiiiccicicces 5
2 Concept of Interoperabilitycccoiiiiiiiiiiiii 7

Interoperability and EntireX Brokerc..ccoccoeiiiiiiiiiniiiniiiiiiccieeee, 8
Messaging Model and Interoperabilitycccccooviiiiiiiiiiiiiiiiiii, 8
Communication Models and Interoperabilitycccoccoiiiiii 11
3 General Architecture of EntireX Brokercccccovviiiiiiiiiiiiiiiiiiiiee 13
Introduction to EntireX Broker Architectureccccocciiiiiiiiiiiniininn. 14
Client Server Communication Modelccocoiiiiiiiiiiiiiiiiiiice 15
Architecture of Broker Stub ... 18
Architecture of Broker Kernelccociiiiiiiiiiiiiiiiiieccecccee 20
4 Functionality of EntireX Brokerccccoviiiiiiiiiiiiiiiiiiiiiicc 23
Application Bindings (Stubs) ... 24
Character CONVETSIONcccuiiiuiiiiiiiiiiii i 25
Command and Information Servicescccccviiiiiiiiiiiiiiiiiiiiiiiie 25
ACCOUNLING ..vvviiiiiiiiiiii e 26
Data COMPIeSSIONcuviiiiiiiiiiiiiiiiciiic e 26
Persistent StOTecccooiiiiiiiiiiiiiiiii 27
Units of WOTKoooiiiiiiiiiiiii 28
SECUTIEY et 29
5 Broker QUIck RefErenCeuuueviiiiiiiiiiieeee e e 31
ACI Syntax of Messaging Modelcccocooviiiiiiiniiiic, 32
Location of Broker Kernel and Stubscccccciiiiiiiiiiiiiiiiiie 33
Transport: Broker Stubs and APIs ..o, 34

IT Broker Attributes ..o 37

6 Broker Attributesoociiiiiiiiiiiiiii 39
Name and Location of Attribute Fileccccoccoiiiiiii 41
Aribute SYNtax ...c.oooviiiiiiiiiiiii 41
Broker-specific Attributescoccooiiiiiiiiii 43
Service-specific AttribULEScoceiiiiiiiiiiiiii 63
Codepage-specific Attributesccccovviiiiiiiiiiiii 74
Adabas SVC/Entire Net-Work-specific Attributesccocoovveiiiiiininn, 77
Security-specific AtribULeSc.cocviiiiiiiiiiiiiii 80
TCP/IP-specific Attributesccooiiiiiiiiii 86
c-tree-specific Attributescccoooiiiiiiiiiiiii 89
SSL/TLS-specific Attributesccccocviviiiiiiiiiiiiiiii 91
DIV-specific Attributescccccoeviiiiiiiiiiiiiiii 97
Adabas-specific Attributesccoccoiiiiiiiiii 99
Application Monitoring-specific Attributesc..ccooii 101
Authorization Rule-specific Attributesc.ccocooiiiiiiiiiiii 102

Broker

Variable Definition Fileccocciiiiiiiiiiiiiiiiiicccc e 103

III Broker Command and Information Servicescccccocvviiiiiiiiiiiiiiiiiiiice 105
7 Broker Command and Information Servicescccccceviiiiiniiiiiiiniiniiinnenn. 107

CIS Overview Tablecccociiiiiiiiiiiiiii 108

Modes of Requesting the Servicesc.cccccvivviiiiiiiiiiiiiiiiiiicee, 109
ETBCMD: Executable Command Requestsc.cccooeeviiiiiiiiiiiiiiic, 111
ETBINFO: Returnable Information Requestscccocoeviiiiiiniiiiiiinicinenn, 116

IV EntireX Broker Reportingcccoceiviiiiiiiiiiiiiiiiiiiiiiicciciccccc 117
8 Command Logging in EntireX ... 125
Introduction to Command Loggingccccevviiiiiiiiiiiiiiiiiiiiiiccicceen 126
Command Log Filtering using Command-line Interface ETBCMD 128
ACI-driven Command LOggiNgcccoevuiviiiiiiiiiiiiiiiiiiiciicccccec e 130

Dual Command Log Filesccccccooviiiiiiiiiiiii, 130

V Building an EntireX Broker Imageccccooiiiiiiiiiiiiiii 133
9 Building an EntireX Broker Imageccccocevviiiiiiiiiiiiiiiiiiiiic, 135
Prerequisites ... 136

Building and Running the EntireX Broker Imagecccccoviiiiiiiinninn. 136
Verifying the Build ... 140
Healthcheck for EntireX Brokercccocoviiiiiiiiiiiiiiii 141

iv Broker

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOIcooiiiiiiiiie e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-

wareag.com.

Broker

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

About this Documentation

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

® Browse through our vast knowledge base.

" Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.
® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

Broker 3

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

I Concepts and Facilities of EntireX Broker

EntireX Broker is a middleware infrastructure that allows application components in a distributed
processing environment to communicate with each other. EntireX Broker provides access through
the client and server communication model. Message queues are employed to provide verifiable
delivery of message data in asynchronous communication.

Additionally, EntireX Broker allows each application component to use a different programming
interface. As a result, your application components can achieve highly flexible interoperability in
aloosely coupled way. EntireX Broker can be used where your application components are located
on distributed machines and where different operating systems and TP monitors are used on each
machine.

Concept of Interoperability Introduces the basic concept of EntireX Broker: achieving highly
flexible interoperability of distributed application components.

General Architecture of EntireX Broker|Describes the components and transport mechanisms of EntireX
Broker within the context of EntireX.

Functionality of EntireX Broker Provides a brief overview of the functionality provided by EntireX
Broker.
Broker Quick Reference Quick Reference to Broker features and functions.

2 Concept of Interoperability

= |nteroperability and EntireX Broker

= Messaging Model and INteroperabilityooriiiiiiii e 8
= Communication Models and Interoperabilityccueiiiiiiiii e 11

Concept of Interoperability

Interoperability and EntireX Broker

This section introduces the basic concept of EntireX Broker: achieving highly flexible interoperab-
ility of application components in a distributed processing environment. This concept is described
from the perspectives of

" a messaging model

" communication models

* application programming interfaces

® EntireX components

in order to give you a comprehensive, high-level view of how EntireX Broker enables flexible in-
teroperability between distributed application components.

Messaging Model and Interoperability

Introduction

In a distributed processing environment that uses EntireX Broker, communication occurs through
application components exchanging messages. An application component offering a service registers
it with EntireX Broker (see REGISTER); this makes the service available to other application com-
ponents able to communicate with EntireX Broker. An application component intending to access
a service issues its request through EntireX Broker, which then routes the request to the specific
application component offering the service.

The following concepts help describe how message exchange is structured in EntireX Broker:

® Synchronicity
The application initiating the request either waits for the result to return, whereby it suspends
all processing (synchronous); or it does not wait for the result to return, whereby it is freed to
do other processing (asynchronous).

® Conversationality
The request can either be a single pair of messages comprising request/reply (non-conversational);
or it can be a sequence of multiple messages which are all part of the same request (conversa-
tional).

8 Broker

Concept of Interoperability

Overview Diagram

The following diagram shows the two major concepts of EntireX Broker's messaging model: syn-
chronicity and conversationality. See ACI Syntax of Messaging Model below for a description of
the messaging syntax.

Messaging Model in webMethods EntireX

‘ messaging model
‘ ACI and other programming interfaces

Broker 9

Concept of Interoperability

ACI Syntax of Messaging Model

The table below describes the messaging terms mentioned in the diagram above from the viewpoint
of the application component initiating the request, as expressed in ACI syntax.

The ACI (Advanced Communication Interface) is the lowest level application programming interface
that interacts with EntireX Broker. The ACI is common to all of the messaging models and com-
munication models (see Communication Models and Interoperability) of EntireX.

Messaging Term Client Server

SEND @ = RECEIVE
B WATIT=YES @ |® WATT=YES

Synchronicity Synchronous

Asynchronous ? = SEND = RECEIVE
= WAIT=NO = WAIT=NO
= WAIT=YES

Conversationality | Conversational ? = SEND = RECEIVE

® CONV-ID=NEW

SEND = RECEIVE
= CONV-ID=NONE

. 2
Non-conversational @

] Notes:

1. The synchronous SEND, WAIT=YES command contains an implied RECEIVE command.

2. Persistence available. See Concepts of Persistent Messaging.

10 Broker

Concept of Interoperability

Communication Models and Interoperability

The EntireX Broker uses the communication model client-and-server. This model is based on the
connection between exactly two partners: client and server. This model covers the requirements
of conversational communication and asynchronous processing.

Client and Server Communication Model

Synchronous
[SEND; WAIT=YES, implied RECEIVE]

————

|—_| messaging madel

Asynchronous
[SEND; WAIT=ND; RECEIVE, WAIT=NO]

. client and server communication

. ACI and aother programming interfacas

Broker 11

12

3

General Architecture of EntireX Broker

Introduction to EntireX BroKer ArChItECIUIEovee e
Client Server CommuniCation MOGEIveee e

Architecture of Broker Stub ..

Architecture of Broker Kernel

13

General Architecture of EntireX Broker

Introduction to EntireX Broker Architecture

Client Kemel Server
Application Stub of Stub Application
Component EntireX, Broker Component

This section describes the command process flows within the Broker kernel and stubs when two
application components communicate with each other using EntireX Broker. The Broker consists
of the following components:

® astub (application binding), which resides within the process space of each application compon-
ent

® a Broker kernel, which resides in a separate process space, managing all the communication
between application components

The details of the transport protocols remain transparent to the application components because
they reside within EntireX Broker (stubs and kernel). The EntireX Broker kernel and the location
of the transport protocols are the architectural aspects of EntireX Broker that distinguish it from
other messaging middleware.

14 Broker

General Architecture of EntireX Broker

Client Server Communication Model

The EntireX Broker uses the communication model client and server. See Writing Client and Server
Applications for details.

Broker 15

General Architecture of EntireX Broker

Example Scenario 1: Client and Server Messaging (Synchronous)

Scenario 1: Client and Server Messaging

SendRecelve Entirex Receive

Client -
Broker Send

This is a synchronous messaging scenario: send request and wait for a response.

- [3 Server

16

Broker

General Architecture of EntireX Broker

Example Scenario 2: Client and Server Messaging (Asynchronous)

This is

Scenario 2: Client and Server Messaging

Send | Recsive
Client » EntireX

o [Server

an asynchronous messaging scenario: put message in service queue.

Note: Client and server have specific meanings within the context of EntireX.

Term

Description

Client

An application component intending to access a service makes its request via EntireX Broker which
routes the request to the specific application component offering this service.

The request can be a single pair of messages comprising request/reply; or it can be a sequence of
multiple, related messages containing one or more requests and one or more replies, known as a
conversation. This enables EntireX Broker to be used for applications supporting different
programming interfaces. It also allows interoperability between types of application components
employing these different interfaces.

Server

An application component offering a service registers it with EntireX Broker. EntireX Broker makes
the registered service available to other application components capable of communicating with
EntireX Broker. The fact that a server has been registered and is available in this way defines it as
a service in terms of class/name/server within the context of EntireX.

Broker

17

General Architecture of EntireX Broker

Architecture of Broker Stub

The type of communication model described in this section and in the section Architecture of
Broker Kernel is client and server.

Overview of Broker Stub
The EntireX Broker stub is another name for Software AG's ACI (Advanced Communication Inter-

face). The stub implements an API (application programming interface) that allows programs
written in various languages to access EntireX Broker.

Overview of Broker Stub
Broker Stub ‘
TCPIP Entire Net-Work SSL
Communicator Communicator Communicator

See also Administering Broker Stubs in the platform-specific Administration documentation.

18 Broker

General Architecture of EntireX Broker

Description of Command Process Flow within Broker Stub

The following table gives a step-by-step description of a typical command process flow from and
to a Broker stub. This example describes a SEND/RECEIVE command pair.

Step

Description

1

The originating application program calls the stub with a SEND/WAIT=YES command. The stub builds
the necessary information structures and communicates the message to the Broker kernel. Basic
validation is performed in the stub before the command is passed to the Broker kernel.

The stub uses one of the following transport mechanisms to transmit the command to the Broker
kernel: TCP, SSL or Entire Net-Work. The application does not have to recognize the details of the
transport protocol since all transport protocol processing resides entirely within the stub.

The application is suspended while the stub waits for a response. Since the application has issued
SEND, WAIT=YES it must wait for the message to travel via the Broker kernel to the partner application
which will satisfy the request.

After the request has been satisfied and the message returns from the partner application, via the
Broker kernel, the stub will pass control back to the originating application.

Broker 19

General Architecture of EntireX Broker

Architecture of Broker Kernel

The type of communication model described in this section and in the section Architecture of
Broker Stub is client and server.

20 Broker

General Architecture of EntireX Broker

Overview of Broker Kernel

Overview of Broker Kernel

TCRIF Entire Net-Work SSL
Communicator ‘ Communicator ‘ Communicator ‘ H RESTART Manager
]

TIMEQUT
Manager

Persistent Store
Diriver

)

Broker 21

General Architecture of EntireX Broker

Description of Command Process Flow within Broker Kernel

The following table gives a step-by-step description of a typical command process flow within
the Broker kernel. This example describes a SEND/RECEIVE command pair.

Step | Description

1 |The originating application program calls the Broker stub with a SEND command. The stub builds the
necessary information structures and transmits the message to the Broker kernel using TCP, SSL or
Entire Net-Work.

2 | The message is received by one of the communications subtasks running within the Broker kernel.
The communications subtask passes the message to the dispatcher.
The dispatcher schedules the processing of the message within a worker task inside the Broker kernel.

4 |Worker task processes the inbound message, performing any necessary character conversion and
security operations, and then determines the partner to which the message is to be routed. Any
necessary persistence operations are performed under control of the worker task.

5 |The outbound message is passed to the relevant communications subtasks within the Broker kernel
for transmission to the partner application component.

6 |The partner application component which hasissued a RECEIVE command via the broker stub obtains
the message from the originating application program.

7 |The partner application component then processes the message and normally makes a reply.

Notes:

1. Application components can exchange successive related message pairs. This action constitutes
a conversation.

2. Clean-up processing of timed-out commands is performed asynchronously by the Broker kernel
Timeout Manager which acts upon in-memory data structures as well as data within the per-
sistent store.

3. The communications restart manager is able to restart any communications subtasks which
may have become temporarily disabled, for example by restarting the machine's TCP/IP driver.

22

Broker

4 Functionality of EntireX Broker

= Application BiNdiNGS (STUDS)ceiveeiiieii e
B CNATACIET CONVEISION ...t e e
® Command and INfOrmMation SEIVICEScveeee e

= Accounting ...

B DAtA COMPIESSION ...ttt e e ettt ettt e e oo et e e e e e e e e et e e e e e e e e e e bbbt s e e e e e e e e e et baareaeeeeaaaas
B PEISISIENE STOME L..iiiiiiiiit i

= Units of Work

= Security

23

Functionality of EntireX Broker

This chapter gives an overview of the major value-added services provided by EntireX Broker.
These services relieve the administrator or application builder of the task of providing the desired
functionality.

Application Bindings (Stubs)

Application bindings allow applications developed in different programming languages and ex-
ecuting on various different platforms to be enabled by using EntireX Broker, see Architecture of
Broker Stub. Specifically, Java, Natural and other programs are easily enabled using EntireX
Broker. These bindings are available on all major mainframe, UNIX and Windows platforms.

The application binding is the glue between the application and the EntireX Broker kernel (see
Architecture of Broker Kernel, allowing your application to leverage all the functionality of EntireX
regardless of

" programming language

" operating system

® hardware platform

" transport mechanism and

® choice of programming interfaces.

This binding capability enables various different application components to be integrated in a

loosely coupled manner. See EntireX Java ACI and EntireX Broker ACI for Assembler | C | COBOL |
Natural | PL/T | RPG.

Applications on z/OS, UNIX, Windows etc. communicating with each other using stubs:

24 Broker

Functionality of EntireX Broker

Installable Components of EntireX Broker

Client Environment Server Environment
e B;':::' Middleware Environment B;':::' F—

o0 0

b bed bl

- Indicates access to Applications Middleware components
: * any user application (provided by user) (provided by Software AG)
on any depicted
operating system
Character Conversion

. Operating
system

Character conversion within the EntireX Broker means the incoming data is converted to the en-
coding of the target platform, using the codepages of the caller and receiver. See Internationalization

with EntireX.

Command and Information Services

EntireX Broker includes a set of monitoring and control functions that enable you to monitor system
resource utilization and view the current activities of the clients and servers on the system. These
services are available through a Web-based interface, in addition to a command-line tool. An in-

terface exists to allow program access to these facilities.

Broker

25

Functionality of EntireX Broker

Accounting

EntireX Broker provides accounting information based upon the flow of message sequences (or
conversations). On z/OS, this information is written to standard accounting (SMF) records; on
other platforms it is written to a file. The information can be used for:

" application chargeback: apportioning EntireX resource consumption on the conversation and/or
the application level

® performance measurement: analyzing application throughput (bytes, messages, etc.) to determine
overall performance

" trend analysis: using data to determine periods of heavy and/or light resource and/or application
usage

Data Compression

EntireX allows compression of messages passed between application components so as to consume
less network bandwidth. This is done independently of transport mechanism by compressing the
message in the application binding before it is transmitted to the Broker Kernel. The Broker kernel
decompresses the message to enable security and data conversion to be applied.

The following graphic illustrates the sequencing of data compression within the stub and Broker
kernel:

26 Broker

Functionality of EntireX Broker

Persistent Store

The persistent store stores units of work for client and server applications.

Persistent message delivery ensures that messages sent between client and server (or server and
client) application components can reach their target even in the event of application or system
failures. The user application programs units of work to achieve persistent messaging. EntireX
Broker provides persistent message delivery by grouping messages into units of work (UOWs)
that are committed in one atomic operation by the sender. See also Units of Work.

Persistence is implemented centrally within the Broker Kernel. Therefore, the consistency of all
the stored messages is guaranteed independently of the different application components and
platforms from which the messages are derived.

Broker 27

Functionality of EntireX Broker

Persistent Store Types

A persistent store driver is an executable, or a load module, which implements access to the
physical persistent store. EntireX Broker allows the choice of three persistent store repositories:
Adabas (DBMS), Data In Virtual (DIV) for z/OS, and native file system. The following table gives
an overview of the persistent store options:

Persistent
Store Type Description Operating System Notes
Adabas Uses Adabas database. UNIX, Windows, Adabas, Software AG's ADAptable
z/OS, BS2000, z/VSE |dataBASe, is a high-performance,
multithreaded, database management
system.
DIV Uses IBM Data In Virtual z/OS This persistent store option is
facility on z/OS. implemented as a VSAM linear data set.
CTREE c-tree© is an embedded local |UNIX and Windows |c-tree© is the fast and reliable embedded
database that can be used as database of FairCom Corporation®.
your persistent store.

Units of Work

Units of work inform the sender of messages about their past and current status. Specifically,
UOWs are used to:

® commit the sending of messages
® acknowledge the receipt of messages

" track the progress of sent messages at any point in time

Units of work are also the vehicle for achieving persistent messaging, although UOWSs can be used
without persistence.

See also Using Units of Work.

28 Broker

Functionality of EntireX Broker

Security

EntireX Security enables distributed application components running with Broker to be executed
securely. EntireX Security is located centrally in the kernel of EntireX Broker giving it an overview
of all messages sent between application components and therefore providing complete control
over the authentication and authorization of each component.

Security checks are performed using a choice of security repositories, including;:

= RACF
= CA ACF2
® CA Top Secret

UNIX and Windows security systems

The security repository chosen depends on the location of the Broker kernel. Because EntireX was
designed to operate together with a security system, there is no additional application programming
necessary.

This diagram depicts the location of the security components of the kernel and stubs of EntireX
Broker:

EntireX Security

Broker Environment Client/Server Environment
Repository Enlh'e":{v Middleware Client/S E:cm
| Keme! module —
USRSECE Stub module
et started task/ — SECUEXIT
senvice (zZVSE)} —
Local [—p
Secu Kernel module
> USRSEC& > SelexT
LDAP dasmon e
Local —
Security p Kemel module) Stub module
USRSEC SECUEXIT
LDAP & >
§ » Indicates access to |— Security repository I Security componerts . Applications
» Aany user application (operating system (provided by Software AG) (provided by user)

on any depicted or LDAP repository)

aperating system ;
. o ting system . Middleware components

{provided by Software AG)

See also EntireX Security.

Broker 29

30

5 Broker Quick Reference

= ACI Syntax of Messaging Model ..

m Location of Broker KErMel @nd STUDScoovmeieei e

= Transport: Broker Stubs and APIs

31

Broker Quick Reference

ACI Syntax of Messaging Model

This table provides the ACI syntax used in EntireX Broker's communication model Client and
Server.

Messaging Term Client Server

Synchronicity Synchronous = SEND @ = RECEIVE
= WAIT=YES ™ |= WAIT=YES

Asynchronous ? = SEND = RECEIVE
= WAIT=NO = WAIT=NO
B WAIT=YES
Conversationality | Conversational © = SEND = RECEIVE

= CONV-ID=NEW

2

SEND = RECEIVE
= CONV-ID=NONE

Non-conversational

] Notes:

1. The synchronous SEND, WAIT=YES command contains an implied RECEIVE command.

2. Persistence available. See Concepts of Persistent Messaging.

32 Broker

Broker Quick Reference

Location of Broker Kernel and Stubs

This graphic shows the locations where the broker kernel and broker stubs can be installed. See
Architecture of Broker Kernel and Architecture of Broker Stub.

Installable Components of EntireX Broker

ey

Client Environment Server Environment
e B;':::' Middleware Environment B;':::' F—
—
—
—
—
—
—
—
>
—
Indicates access to Applications Middleware components Operating
any user application (provided by user) (provided by Software AG) . systam

on any depicted
operating system

Broker

33

Broker Quick Reference

Tr

ansport: Broker Stubs and APls

Th

is table gives an overview of the transport methods supported by EntireX Broker stubs.

Transport to Broker
Operating System |Environment Module TCP[SSL[NET "HTTP(S) ©|
z/OS Adabas Replication Services | ARFETB x | @] x
Batch, TSO, IMS (BMP) BROKER x | @] x
Com-plete COMETB x | @ X
CICS CICSETB x | @] x
IMS (MPP) MPPETB x | @1 x
IDMS/DC @ IDMSETB x | @
Natural NATETB23 x | @] x
Natural RPC Server NATETBZ x | @] x
UNIX System Services EntireX Java ACI| x | x X
UNIX broker.so X | x
EntireX Java ACI| x | X X
Windows broker.dll x | x
EntireX Java ACI| x | x X
BS2000 Batch, Dialog (formerly TIAM)[BROKER e X
z/VSE Batch BKIMB x| @ x
CICS BKIMC x| 9 x
IBM i EXA X
] Notes:
1. NET is available for transport to a broker running under mainframe platforms only; not to a

broker running under UNIX or Windows.

. Under z/OS, use IBM's Application Transparent Transport Layer Security (AT-TLS). Refer to

the IBM documentation for more information. See also SSL/TLS and Certificates with EntireX.

. Tracing and transport timeout are not supported in this environment.

. Stub broker32.dll is supported for reasons of backward compatibility. The functionality is

identical to broker.dll.

. Via EntireX Broker HTTP(S) Agent; see Broker HTTP(S) Agent in the UNIX and Windows Ad-

ministration documentation.

. Under z/VSE, use BSI's Automatic Transport Layer Security (ATLS). Refer to the BSI SSL Install-

ation, Programming and User’s Guide. See also SSL/TLS and Certificates with EntireX.

34

Broker

Broker Quick Reference

See also:

= Transport Methods for Broker Stubs in the platform-specific broker stub Administration document-
ation

= Setting Transport Methods under Writing Advanced Applications - EntireX Java ACI

Broker 35

36

I1

Broker Attributes

37

38

6 Broker Attributes

= Name and Location of AtrDULE Fileooveeiiii e 41
B AADUIE SYNMIAX 1.t 41
® Broker-Specific AtIDUIESooi s 43
B Service-SPECific ARTDULIES ... e 63
B Codepage-Specific AfHDULESiiiiiiii e 74
= Adabas SVC/Entire Net-Work-specific ARFDULESooiiiiiiiiii e 77
B SeCUrity-SPECIfiC AIMDULESvviiiiiie e 80
B TCP/IP-SPECIfiC AIIDULESvvieiiieeeee e e e e e e e e 86
B C-tree-SPECIfiC AHIIDULESeeiiiiee e 89
B SSL/TLS-SPECIfIC ATDULESvvvieiiie e e e 91
B DIV-SPECfic ALIDULES ... e 97
B Adabas-Specific ALHDUIES ... 99
= Application Monitoring-specific AFDUIESvvveiiii e 101
= Authorization Rule-specific AtHDULESoooiiiiiiii e 102
B Variable DEfiNItION FlEcooiiiiiie e 103

39

Broker Attributes

| Note: This section lists all EntireX Broker parameters. Not all parameters are applicable to

all supported operating systems.

The Broker attribute file contains a series of parameters (attributes) that control the availability
and characteristics of clients and servers, as well as of the Broker itself. You can customize the
Broker environment by modifying the attribute settings.

40 Broker

Broker Attributes

Name and Location of Attribute File

The name and location of the broker attribute file is platform-dependent.

Platform |File Name/Location

z/OS Member EXBATTR in the EntireX Broker source library.

UNIX File etbfile in directory <InstD1ir>/EntireX/config/etb/<BrokerName> (default) *

Windows |File <BrokerName>.atr in directory <InstD7r>\EntireX\ config\etb\<BrokerName> (default) *
BS2000 |File ETB-ATTR in library EXX103.JOBS.

z/VSE Library member ETBnnn.ATR, where nnnis a placeholder specifying the broker instance (e.g.nnn=
the assigned broker ID).

* When starting a broker manually, name and location of the broker attribute file can be overwrit-
ten with the environment variable ETB_ATTR.

Attribute Syntax

Each entry in the attribute file has the format:

ATTRIBUTE-NAME=value
The following rules and restrictions apply:

® A line can contain multiple entries separated by commas.

® Attribute names can be entered in mixed upper and lowercase.

" Spaces between attribute names, values and separators are ignored.
" Spaces in the attribute names are not allowed.

® Commas and equal signs are not allowed in value notations.

® Lines starting with an asterisk (*) are treated as comment lines. Within a line, characters following
an * or # sign are also treated as comments.

® The CLASS keyword must be the first keyword in a service definition.

® Multiple services can be included in a single service definition section. The attribute settings
will apply to all services defined in the section.

" Attributes specified after the service definition (CLASS, SERVER, SERVICE keywords) overwrite
the default characteristics for the service.

= Attribute values can contain variables of the form ${variable name} or $variable name:

Broker 41

Broker Attributes

Due to variations in EBCDIC codepages, braces should only be used on ASCII (UNIX or
Windows) platforms or EBCDIC platforms using the IBM-1047 (US) codepage.

The variable name can contain only alphanumeric characters and the underscore (_) character.
The first non-alphanumeric or underscore character terminates the variable name.

Under UNIX and Windows, the string ${variable name} is replaced with the value of the
corresponding environment variable.

On z/OS, variable values are read from a file defined by the DD name ETBVARS. The syntax
of this file is the same as the attribute file.

If a variable has no value: if the variable name is enclosed in braces, error 00210594 is given,
otherwise $variable name will be used as the variable value.

If you encounter problems with braces (and this is quite possible in a z/OS environment), we
suggest you omit the braces.

42

Broker

Broker Attributes

Broker-specific Attributes

The broker-specific attribute section begins with the keyword DEFAULTS=BROKER. It contains attrib-
utes that apply to the broker. At startup time, the attributes are read and duplicate or missing
values are treated as errors. When an error occurs, the broker stops execution until the problem

is corrected.

¢ Tip: To avoid resource shortages for your applications, be sure to specify sufficiently large

values for the broker attributes that define the global resources.

opt/ Operating System
Attribute Values Req z/0S UNIX |Windows| z/VSE | BS2000
ABEND-LOOP-DETECTION YES I NO O z u w v b

YES Stop broker if a task terminates abnormally twice, that is, the same abend
reason at the same abend location already occurred. This attribute prevents
an infinite abend loop.

NO Use only if requested by Software AG Support. This setting may make sense
if a known error leads to an abnormal termination, but a hotfix solving the
problem has not yet been provided. Reset to YES when the hotfix has been
installed.

ABEND-MEMORY -DUMP

YES | NO ‘O‘Z‘U‘W‘V‘b

YES Print all data pools of the broker if a task terminates abnormally. This dump
is needed to analyze the abend.

NO If the dump has already been sent to Software AG, you can set to NO to avoid
the extra overhead.

ACCOUNTING

NO 1 '128-255 @) z

NOIYESLSEPARATOR=char] @) u w v b

Determines whether accounting records are created.

NO Do not create accounting records.
nnn The SMF record number to use when writing the accounting records.

YES Create accounting data.
char=separator character(s). Up to seven separator characters can be specified
using the SEPARATOR suboption, for example:
ACCOUNTING = (YES, SEPARATOR=;)
If no separator character is specified, the comma character will be used.

See also Accounting in EntireX Broker in the platform-specific Administration
documentation.

Broker

43

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX |Windows| z/VSE | BS2000
ACCOUNTING-VERSION 112131415 @) z u w v b

Determines whether accounting records are created.

1 Collect accounting information. This value is supported for reasons of
compatibility with EntireX Broker 7.2.1 and below.

2 Collect extended accounting information in addition to that available with optio
1.

=)

3 Create accounting records in layout of version 3.
4 Create accounting records in layout of version 4.

5 Create accounting records in layout of version 5.

This parameter applies when ACCOUNTING is activated.

ACI-CONVERSION

YES | NO ‘O‘z‘u‘w‘v‘b

Determines the handling of ACI request and response strings of USTATUS.

YES Convert ACI request and response strings with ICU. See ICU Conversion in
the Internationalization documentation.

NO Translate ACI request and response with internal translation table without
support of national characters. See Translation User Exit in the
Internationalization documentation.

Note: This attribute was undocumented in earlier EntireX versions and had default

value NO. This meant that a translation user exit was used instead; this is no longer
recommended.

APPLICATION-MONITORING

YES | NO ‘O‘Z‘U‘W‘V‘b

or Enable application monitoring in EntireX Broker.
APPMON

YES Enable application monitoring.

NO Disable application monitoring.

See Application Monitoring.
AUTOLOGON YES | NO o | z | u | w [v | b

YES LOGON occurs automatically during the first SEND or REGISTER.

NO The application has to issue a LOGON call.
AUTOSTART NO | YES | o | IERES |

This attribute defines the autostart behavior of a broker.

NO Broker is not started automatically with the next system start.

YES Broker is restarted automatically with the next system start.
44 Broker

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ‘Windows’ zIVSE ‘BSZOOO
Note: Prior to EntireX version 10.5 this was handled by the Broker Administration
Service.
BLACKLIST-PENALTY-TIME [5m | n | nS | nM 1 nH | R [2z | u | w | v | b

Define the length of time a participant is placed on the PARTICIPANT-BLACKLIST
to prevent a denial-of-service attack.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific broker
Administration documentation.

BROKER-ID

A32 ‘ R ‘ z ‘ u ‘ w ‘ v ‘ b

Identifies the broker to which the attribute file applies. The broker ID must be
unique per machine.

Note: The numerical section of the BROKER- ID is no longer used to determine the
DBID in the EntireX Broker kernel with Entire Net-Work transport (NET). To
determine the DBID, use attribute NODE in the DEFAULTS=NET section of the attribute
file.

CLIENT-NONACT

15MInltnST nAM 1 nH ‘R‘z‘u‘w‘v‘b

Define the non-activity time for clients.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

A client that does not issue a broker request within the specified time limit is treated
as inactive and all resources for the client are freed.

CMDLOG

NO | YES ‘O‘Z‘U‘W‘V‘b

NO Command logging will not be available in the broker.

YES Command logging features will be available in the broker.

CMDLOG-FILE-SIZE

1024 | n ‘O‘z‘u‘w‘v‘b

Defines the maximum size of the file that the command log is written to, in kilobytes.
The value must be 1024 or higher. The default value is 1024. When one command
log file grows to this size, broker starts writing to the other file. For more details,
see Command Logging in EntireX.

Broker

45

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX |Windows| z/VSE | BS2000
CONTROL-INTERVAL 60s I nlnSt Ml nH I @) z u w v b

Defines the time interval of time-driven broker-to-broker calls.

1. It controls the time between handshake attempts.

2. The standby broker will check the status of the standard broker after the elapsed
CONTROL-INTERVAL time.

n Same as nS.
nS Interval in seconds (max. 2147483647).
nM Interval in minutes (max. 35791394).

nH Interval in hours (max. 596523).

The minimum value is 16 seconds. We strongly recommend the default value (60
seconds), except for very slow machines.

CONV-DEFAULT

UNLIM | n ‘O‘z‘u‘w‘v‘b

Default number of conversations that are allocated for every service.

UNLIM The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of NUM-CONVERSATION.

n Number of conversations.

This value can be overridden by specifying a CONV-LIMIT for the service.
A value of 0 (zero) is invalid.

DEFERRED

NO | YES ‘O‘Z‘U‘W‘V‘b

Disable or enable deferred processing of units of work.

NO Units of work cannot be sent to the service until it is available.

YES Units of work can be sent to a service that is not up and registered. They will
be processed when the service becomes available.

DYNAMIC-MEMORY -
MANAGEMENT

YES | NO ‘O‘Z‘U‘W‘V‘b

YES An initial portion of memory is allocated at broker startup based on defined
NUM-* attributes or internal default values if no NUM- * attributes have been
defined. More memory is allocated without broker restart if there is a need
to use more storage. Unused memory is deallocated. The upper limit of
memory consumption can be defined by the attribute MAX-MEMORY. See
Dynamic Memory Management under Broker Resource Allocation.

NO All memory is allocated at broker startup based on the calculation from the
defined NUM-* attributes. Size of memory cannot be changed. This was the
known behavior of EntireX 7.3 and earlier.

46

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

If you run your broker with attribute DYNAMIC-MEMORY -MANAGEMENT=YES, the
following attributes are not needed:

= CONV-DEFAULT = NUM-SERVER

= HEAP-SIZE = NUM-SERVICE-EXTENSION
® | ONG-BUFFER-DEFAULT = NUM-SERVICE

= SERVER-DEFAULT B NUM-SHORT[-BUFFER]
= SHORT-BUFFER-DEFAULT = NUM-UQW |MAX-UQWS |MUOW
® NUM-CLIENT = NUM-WQE

® NUM-CMDLOG-FILTER

= NUM-COMBUF

B NUM-CONVLERSATION]
® NUM-LONG[L-BUFFER]

Caution: However, if one of these attributes is defined, it determines the allocation

size of that particular broker resource.

DYNAMIC-WORKER-
MANAGEMENT

NO | YES ‘O‘z‘u‘w‘ ‘b

NO All worker tasks are started at broker startup. The number of worker tasks
is defined by NUM-WORKER. After this initial step, no further worker tasks can
be started. This is default and simulates the behavior of EntireX version 8.0
and earlier.

YES As above, the initial portion of worker tasks started at broker startup is
determined by NUM-WORKER. However, if there is a need to handle an increased
workload, additional worker tasks can be started at runtime without restarting
broker. Conversely, if a worker task remains unused, it is stopped. The upper
and lower limit of running worker tasks can be defined by the attributes
WORKER-MIN and WORKER-MAX.

If you run broker with DYNAMIC - WORKER -MANAGEMENT=Y ES, the following attributes
are useful to optimize the overall processing:

= WORKER-MAX

® WORKER-MIN

= WORKER-NONACT

® WORKER-QUEUE-DEPTH

= WORKER-START-DELAY

The attribute NUM-WORKER defines the initial number of worker tasks started during
initialization. See Dynamic Worker Management under Broker Resource Allocation.

Broker

47

Broker Attributes

opt/ Operating System

Attribute Values Req z/0S UNIX |Windows| z/VSE | BS2000
ETBCOM YES I NO (@) b

Bundles the output of the various broker tasks in task ETBCOM.
FORCE NO I YES (@) u

NO Go down with error if IPC resources still exist.

YES Clean up the left-over IPC resources of a previous run.

Note:

1. If broker is started twice, the second instance will kill the first by removing the

IPC resources.

2. For z/OS, z/VSE and BS2000, see separate attribute FORCE under DEFAULTS=NET.

HEAP-STZE 1024 | n o | z | u | w | v | b

Defines the size of the internal heap in KB. Not required if you are using
DYNAMIC-MEMORY -MANAGEMENT. If you are not using dynamic memory management,
we strongly recommend specifying - as a minimum - the default value of 1024 KB.

ICU-CONVERSION

YES | NO ‘O‘Z‘U‘W‘V‘b

Disable or enable ICU conversion. Default for z/VSE is NO; other platforms YES.

YES ICU is loaded and available for conversion. It is a prerequisite for
CONVERSION=SAGTCHA and CONVERSION=SAGTRPC.

NO ICU is not loaded and not available for conversion. CONVERSION=SAGTCHA
and CONVERSTON=SAGTRPC cannot be used.

If any of the broker service definitions uses the character conversion approach ICU
Conversion, that is, CONVERSTON=SAGTCHA or CONVERSION=SAGTRPC,
ICU-CONVERSION must be set to YES. If you are using only a user exit (see User
Exits) or CONVERSION=NO as character conversion approach for all your broker
service definitions, ICU-CONVERSION can be set to NO.

ICU requires additional storage to run properly. If ICU conversion is not needed,
setting ICU-CONVERSION to NO will help to avoid unnecessary storage consumption.

ICU-DATA-DIRECTORY

Folder or directory name in @) z u w
quotes.

The location where the broker searches for ICU custom converters. See Building
and Installing ICU Custom Converters in the platform-specific Administration
documentation.

I[CU-SET-DATA-DIRECTORY

YES I NO ‘O‘z‘u‘w‘ ‘

Disable or enable ICU custom converter usage.

48

Broker

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ‘Windows ’ zIVSE ‘ BS2000
YES The broker tries to locate ICU custom converters with the mechanism defined
by the platform, see Building and Installing ICU Custom Converters in the
platform-specific Administration documentation.
NO Use of ICU custom converters is not possible.
IPV6 YES I NO ‘ (@) ‘ z ‘ u ‘ w ‘ ‘ b

YES Establish SSL and TCP/IP transport in IPv6 and IPv4 networks according to
the TCP/IP stack configuration.

NO Establish SSL and TCP/IP transport in IPv4 network only.

This attribute applies to EntireX version 9.0 and above.

LONG-BUFFER-DEFAULT

UNLIM | n ‘O‘z‘u‘w‘v‘b

Number of long buffers to be allocated for each service.

UNLIM The number of long message buffers is restricted only by the number of
buffers globally available. Precludes the use of NUM-LONG-BUFFER.

n Number of buffers.

This value can be overridden by specifying a LONG-BUFFER-LIMIT for the service.
A value of 0 (zero) is invalid.

MAX-MEMORY

QInInKInMInGIUNLIMI 0 ‘ z ‘ u | w | v ‘ b

Defines the upper limit of memory allocated by broker if
DYNAMIC-MEMORY -MANAGEMENT=YES has been defined.

0, UNLIM No memory limit.

others Defines the maximum limit of allocated memory. If limit is exceeded,
error 671 “Requested allocation exceeds MAX-MEMORY” is generated.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O‘Z‘u‘w‘v‘b

Maximum message size that the broker kernel can process. This value is
transport-dependent. The default value represents the highest positive number
that can be stored in a four-byte integer.

MAX-MESSAGES-IN-UQOW

161 n ‘O‘Z‘U‘W‘V‘b

Maximum number of messages in a UOW.

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-TRACE-FILES

(o[[[w] |

Defines the number of backup copies of the trace file ETB.LOG. Minimum number
is 1; maximum is 999. A new trace file is allocated when the value for
TRACE-FILE-SIZEisexceeded. These two attributes prevent a constantly growing

Broker

49

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

ETB.LOG file. See Trace File Handling in the UNIX and Windows Administration
documentation.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE-LENGTH.

MAX-UOWS

0ln ‘O‘Z‘U‘W‘V‘b

The maximum number of UOWSs that can be concurrently active broker-wide. The
default value is 0 (zero), which means that the broker will process only messages
that are not part of a unit of work. If UOW processing is to be done by any service,
a MAX-UOWS value must be 1 or larger for the broker.

The MAX - UOWS value for the service will default to the value set for the broker.
NUM-UOW is an alias of this parameter.

MESSAGE-CASE

NONE | UPPER | LOWER ‘ o ‘ z ‘ u ‘ w ‘ v ‘ b

Indicates if certain error message texts returned by the broker to its clients or written
by the broker to its log file are to be in mixed case, uppercase, or lowercase.

NONE No changes are made to message case.
UPPER Messages are changed to uppercase.

LOWER Messages are changed to lowercase.

MUOW

See NUM-UOW.

NEW-UOW-MESSAGES

YES | NO ’O‘Z‘u‘wlv‘b

YES New UOW messages are allowed.

NO New UOW messages are not allowed.

This applies to UOW when using Persistence and should not be used for
non-persistent UOWSs. A usage example could be the following:

The broker persistent store reaches capacity and the broker shuts down. You can
set NEW-UOW-MESSAGES to NO to prevent new UOW messages from being added
after a broker restart. This action allows only consumption (not production) of
UOWs to occur after broker restart. After the persistent store capacity has been
sufficiently reduced, the EntireX Broker administrator can issue a CIS command,
see ALLOW-NEWUOWMSGS. This action allows new UOW messages to be sent to the
broker. Reset attribute NEW-UOW-MESSAGES to YES, which permits new UOW
messages to be produced in subsequent broker sessions.

NUM-BLACKLIST-ENTRIES

256 1n ‘O‘Z‘U‘W‘V‘b

Number of entries in the participant blacklist. Default value is 256 entries. Together
with BLACKLIST-PENALTY-TIME and PARTICIPANT-BLACKLIST, this attribute is
used to protect a broker running with SECURITY=YES against denial-of-service
attacks. See Protecting a Broker against Denial-of-Service Attacks in the platform-specific
broker Administration documentation.

NUM-CLIENT

n ‘ R ‘ z ‘ u ‘ w ‘ v ‘ b

50

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

Number of clients that can access the broker concurrently. A value of 0 (zero) is
invalid.

NUM-CMDLOG-FILTER

i [0 [2 [uw [w v |

Maximum number of filters that can be specified simultaneously.

Tip: We recommend you limit this value to the number of services that are being

monitored. Minimum value is 1. A value of zero is invalid when the attribute
CMDLOG is set to YES. See Command Logging in EntireX for more information.

NUM-COMBUF

1024 11-999999 IR‘z‘ulwlv‘b

Determines the maximum number of communication buffers available for processing
commands arriving in the broker kernel. The size of one communication buffer is
usually 16 KB split into 32 slots of 512 bytes, but it ultimately depends on the
hardware architecture of your CPU. A value of 0 (zero) is invalid.

NUM-CONVERSATION or
NUM-CONV

nl AUTO ‘R‘z‘u‘w‘v‘b

Defines the number of conversations that can be active concurrently. The number
specified should be high enough to account for both conversational and
non-conversational requests. (Non-conversational requests are treated internally
as one-conversation requests.)

n Number of conversations.

AUTO Uses the CONV-DEFAULT and the service-specific CONV-LIMIT values to
calculate the number of conversations. The values used in the calculation
must not be set to UNLIM.

Note:

1. Avalue of 0 (zero) is invalid. If a wildcard service is defined in the service-specific
section of the attribute file, the value of AUTO is invalid.

2. See Wildcard Service Definitions.

NUM-LONG-BUFFER or
NUM-LONG

4096 | n 1 AUTO ‘R‘z‘u‘w‘v‘b

Defines the number of long message containers. Long message containers have a
fixed length of 4096 bytes and are used to store requests that are larger than 2048
bytes. Storing a request of 8192 bytes, for example, would require two long message
containers.

n Number of buffers.

AUTO Uses the LONG-BUFFER-DEFAULT and the service-specific
LONG-BUFFER-LIMIT values to calculate the number of long message buffers.
The values used in the calculation must not be set to UNLIM.

A value of 0 (zero) is invalid.

Broker

51

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

In non-conversational mode, message containers are released as soon as the client
receives a reply from the server. If no reply is requested, message containers are
released as soon as the server receives the client request.

In conversational mode, the last message received is always kept until a new one is
received.

Note:

1. If a catch-all service is defined in the service-specific section of the attribute file,
the value of AUTO is invalid.

2. See Wildcard Service Definitions.

NUM-PARTICIPANT-

n ‘O‘Z‘U‘W‘V‘b

EXTENSION Defines the number of participant extensions to link participants as clients and
servers.
n Number of participant extensions.
not specified If this attribute is not set, the default value is calculated based on
NUM-CLIENT and NUM-SERVER.
A value of 0 (zero) is invalid.
NUM-SERVER n1 AUTO | R [z | u | w | v | b

Defines the number of servers that can offer services concurrently using the broker.
This is not the number of services that can be registered to the broker (see
NUM-SERVICE).

n Number of servers.

AUTO Uses the SERVER-DEFAULT and the service-specific SERVER- LIMIT values
to calculate the number of servers. The values used in the calculation must
not be set to UNLIM.

Note:

1. Setting this value higher than the number of services allows the starting of server
replicas that provide the same service.

2. Avalue of 0 (zero) is invalid. If a wildcard service is defined in the service-specific
section of the attribute file, the value of AUTO is invalid.

3. See Wildcard Service Definitions.

NUM-SERVICE

52

Broker

Broker Attributes

Attribute

Opt/ Operating System
Values Req | z/0S ‘ UNIX ‘Windows’ zIVSE ‘Bszooo

Defines the number of services that can be registered to the broker. This is not the
number of servers that can offer the services (see NUM-SERVER). A value of 0 (zero)
is invalid.

NUM-SERVICE-EXTENSION

nl1 AUTO ‘O‘z‘u‘w‘v‘b

Defines the number of service extensions to link servers to services.

n Number of service extensions.
AUTO Uses the value specified or calculated for NUM-SERVER + NUM-CLIENT,

plus an extra cushion.

not specified If this attribute is not set, the default value is NUM- SERVER multiplied
by NUM-SERVICE.

The minimum value is NUM- SERVER.
The maximum value is NUM- SERVER multiplied by NUM-SERVICE.

Caution is recommended with this attribute:

® Set this attribute only if the storage resources allocated for service extensions
need to be restricted.

= Note that the value n allows only the specified number of server instances of n
to be used.
= Value AUTO will calculate the number of allowed server instances from

NUM-SERVER, which itself might be set to AUTO. In this case, this also considers
the value of SERVER-DEFAULT and even the individual SERVER-LIMIT for each

service definition.

NUM-SHORT-BUFFER or
NUM-SHORT

n 1 AUTO | R [z | u | w | v | b
Defines the number of short message containers. Short message containers have a
fixed length of 256 bytes and are used to store requests of no more than 2048 bytes.
To store a request of 1024 bytes, for example, would require four short message
containers.

n Number of buffers.

AUTO Uses the SHORT-BUFFER-DEFAULT and the service-specific
SHORT-BUFFER-LIMIT values to calculate the number of short message
buffers. The values used in the calculation must not be set to UNLIM.

Note:

1. In non-conversational mode, message containers are released as soon as the client
receives a reply from the server. If no reply is requested, message containers are

released as soon as the server receives the client request.

Broker

53

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

2. In conversational mode, the last message received is always kept until a new one
is received.

3. If a wildcard service is defined in the service-specific section of the attribute file,
the value of AUTO is invalid.

4. See Wildcard Service Definitions.

NUM-UOW

0ln ‘O‘z‘u‘w‘v‘b

The maximum number of UOWSs that can be concurrently active broker-wide. The
default value is 0 (zero), which means that the broker will process only messages

that are not part of a unit of work. If UOW processing is to be done by any service,
a NUM-UOW value must be 1 or larger for the broker. (MAX-UOWS is an alias for this

attribute.)

The NUM-UOW value for the service will default to the value set for the broker.

NUM-WORKER

1| n(max.10) ‘ R ‘ z ‘ u ‘ w ‘ \4 ‘ b

Number of worker tasks that the broker can use. The number of worker tasks
determines the number of functions (SEND, RECETVE, REGISTER, etc.) that can be
processed concurrently. At least one worker task is required; this is the default
value.

NUM-WQE

1-32768 ‘R‘z‘u‘w‘v‘b

Maximum number of requests that can be processed by the broker in parallel, over
all transport mechanisms.

Each broker command is assigned a worker queue element, regardless of the
transport mechanism being used. This element is released when the user has
received the results of the command, including the case where the command has
timed out.

PARTICIPANT-BLACKLIST

YES | NO ’R‘z‘u‘w’v‘b

Determines whether participants attempting a denial-of-service attack on the broker
are to be put on a blacklist.

YES Create a participant blacklist.

NO Do not create a participant blacklist.

See Protecting a Broker against Denial-of-Service Attacks in the platform-specific broker
Administration documentation.

PARTNER-CLUSTER-ADDRESS

A32 ‘R‘z‘u‘w‘v‘b

This is the address of the load/unload broker in transport-method-style. Transport
methods TCP and SSL are supported. See Transport-method-style Broker ID for more
details. This attribute is required if the attribute RUN-MODE is specified.

PERCENTAGE- FOR- 901 1-100 ‘ o ‘ z ‘ u ‘ w ‘ v ‘ b
CONNECTION-
54 Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S UNIX |Windows| z/VSE | BS2000

SHORTAGE-MESSAGE

Broker will issue a message if the defined percentage value of TCP/IP connections
(available file descriptors) is exceeded. Default is 90 percent of the available file
descriptors.

POLL

YES | NO ‘O‘Z‘u‘ ‘V‘

In earlier EntireX versions, the maximum number of TCP/IP connections per
communicator was limited; see Maximum TCP/IP Connections per Communicator
under Broker Resource Allocation for platform-specific list. With attribute POLL
introduced in EntireX version 9.0, this restriction can be lifted under z/OS, UNIX
and z/VSE.

NO This setting is used to run the compatibility mode in Broker. The po11()
system call is not used. The limitations described under Maximum TCP/IP
Connections per Communicator under Broker Resource Allocation apply.

YES The pol1() system call is used to lift the resource restrictions with select ()
in multiplexing file descriptor sets.

Note: The maximum number of file descriptors per process is a hard limit that
cannot be exceeded by POLL=YES.

Setting this attribute to YES increases CPU consumption. POLL=YES is only useful
if

= you need more than the maximum number of TCP/IP connections per
communicator, as described under Maximum TCP/IP Connections per Communicator
under Broker Resource Allocation, and

= this maximum number is less than the maximum number of file descriptors per
process

We recommend POLL=NO to reduce CPU consumption.

PSTORE

NO | HOT | COLD @) z u w v b

Defines the status of the persistent store at broker startup, including the condition
of persistent units of work (UOWSs). With any value other than NO, PSTORE-TYPE
must be set.

NO No persistent store.
HOT Persistent UOWs are restored to their prior state during initialization.

COLD Persistent UOWs are not restored during initialization, and the persistent
store is considered empty.

Note: For a hot or cold start, the persistent store must be available when your

broker is restarted.

PSTORE-REPORT

NO | YES ‘O‘z‘u‘w‘v‘b

Determines whether PSTORE report is created.

Broker

95

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

NO Do not create the PSTORE report file.
YES Create the PSTORE report file.

See also Persistent Store Report.

PSTORE-TYPE

DIV (z/OS) | @) z u w \% b
CTREE (UNIX, Windows) |
ADABAS (all platforms) |
FILE (UNIX, Windows)

Describes the type of persistent store driver required.

DIV Data in Virtual. z/OS only, and default on this platform. See DIV-specific
Attributes below and Implementing a DIV Persistent Store under Managing
the Broker Persistent Store.

CTREE c-tree database. UNIX and Windows only. See c-tree-specific Attributes
and c-tree Database as Persistent Store in the UNIX and Windows
Administration documentation.

ADABAS Adabas. All platforms. See also Adabas-specific Attributes (below) and
Managing the Broker Persistent Store in the platform-specific Administration
documentation.

FILE B-Tree database. UNIX and Windows only. No longer supported.

PSTORE-VERSION

213|415 IO‘z‘ulwlv‘b

Determines the version of the persistent store. PSTORE=COLD is not needed to
upgrade the PSTORE to version 3. Any broker restart with PSTORE-VERSION=3
will upgrade the PSTORE version.

PSTORE-VERSION=3 is needed for ICU support.
The DIV PSTORE requires PSTORE-VERSION=4.

PSTORE-VERSION=5 was added in EntireX version 10.1 to support 64-bit time
values on z/OS, and unique message IDs on all platforms. See Unique Message ID.
PSTORE - VERSION=5 significantly improvement Adabas PSTORE performance on
all platforms. We strongly recommend you use this version.

Caution:

= If you go back to PSTORE-VERSION=2 after upgrading to PSTORE-VERSION=3,
the broker will only process data previously created with version 2. No version
3 data will be accessible.

= If you change the DIV PSTORE from version 3 to 4, perform a COLD restart for
the change to take effect, or run PSTORE UNLOAD/LOAD first.

= If you change to PSTORE - VERSION=5, perform a COLD restart for the change to
take effect.

56

Broker

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ‘Windows ’ zIVSE ‘ BS2000
RUN-MODE STANDARD | STANDBY | @) z u w v b
PSTORE-LOAD |
PSTORE-UNLOAD
Determines the initial run mode of the broker.
STANDARD Default value. Normal mode.
STANDBY Deprecated. Supported for compatibility reasons.
PSTORE-LOAD Broker will run as load broker to write Persistent Store data to
a new persistent store. See also Migrating the Persistent Store.
PSTORE-UNLOAD Broker will run as unload broker to read an existing persistent
store and pass the data to a broker running in PSTORE - LOAD
mode. See also Migrating the Persistent Store.
SECURITY NO I'YES (@) z u w \ b

Determines whether EntireX Security is activated.

NO EntireX Security is not activated.

YES EntireX Security is activated.

See EntireX Security.

SERVER-DEFAULT

n | UNLIM ‘O‘z‘u‘w‘v‘b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers globally
available. Precludes the use of NUM- SERVER=AUTO.

This value can be overridden by specifying a SERVER-LIMIT for the service. A
value of 0 (zero) is invalid.

SERVICE-UPDATES

YES I NO ‘O‘Z‘U‘W‘V‘b

Switch on/off the automatic update mode of the broker.

YES The broker reads the attribute file whenever a service registers for the first
time. This allows the broker to honor modifications in the attribute file without
a restart. The attribute file is read only when the first server registers for a
particular service; it is not reread when a second replica is activated.

NO The attribute file is read only once during broker startup. Any changes to the
attribute file will be honored only if the broker is restarted.

SHORT-BUFFER-DEFAULT

UNLIM | n IO‘z‘ulwlv‘b

Number of short buffers to be allocated for each service.

Broker

of

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

UNLIM The number of short message buffers is restricted only by the number of
buffers globally available. Precludes the use of NUM- SHORT -BUF FER=AUTO.

n Number of buffers.

This value can be overridden by specifying a SHORT -BUFFER- LIMIT for the service.
A value of 0 (zero) is invalid.

STORAGE-REPORT

NO | YES ‘O‘z‘u‘w‘v‘b

Create a storage report about broker memory usage.

NO Do not create the storage report.

YES Create the storage report.

See Storage Report.

STORE

OFF | BROKER ‘O‘z‘u‘w‘v‘b

Sets the default STORE attribute for all units of work. This attribute can be overridden
by the STORE field in the Broker ACI control block.

OFF Units of work are not persistent.

BROKER Units of work are persistent.

TRACE-DD

A255 @) z

A string containing data set attributes enclosed in quotation marks. These attributes
describe the trace output file and must be defined if you are using using a GDG
(generation data group) as output data set. See Flushing Trace Data to a GDG Data
Set under Tracing EntireX Broker.

The following keywords are supported as part of the TRACE - DD value:

= DATACLAS = MGMTCLAS

= DCB including BLKSIZE, DSORG, LRECL, = SPACE
RECFM = STORCLAS

= DISP = UNIT

= DSN

Refer to your JCL Reference Manual for a complete description of the syntax.

Example:

58

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

TRACE-DD = "DSNAME=EXX.GDG,
DCB=(BLKSIZE=1210,DSORG=PS,LRECL=121,RECFM=FB),
DISP=(NEW,CATLG,CATLG),

SPACE=(CYL, (100,10)),
STORCLAS=SMS™"

Note: If you specify TRACE -DD, you must also specify TRMODE=WRAP and a value
for TRBUFNUM for the setting to take effect.

TRACE-FILE-SIZE

nlnkKlnMl nG | O ‘ ‘ u l w | ‘

Defines the size of one trace file in kilobytes, megabytes or gigabytes. If this size is
exceeded, a new trace file is allocated until the maximum number of trace files
specified with MAX-TRACE - FILES is reached. There is no default value. These two
parameters help prevent a constantly growing ETB.LOG file. See Trace File Handling
in the UNIX and Windows Administration documentation.

TRACE-LEVEL

0-4 ‘O‘Z‘U‘W‘V‘b

The level of tracing to be performed while the broker is running.

0 No tracing. Default value.

1 Traces incoming requests, outgoing replies, resource usage and conversion
errors.

2 All of trace level 1, plus all main routines executed.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus Broker ACI control block displays.

Trace levels 2, 3 and 4 should be used only when requested by Software AG support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE - LEVEL without a broker restart,
use Command Central or the EntireX Broker command-line utility ETBCMD.

TRANSPORT

TCP-NET|TCP|SSL|NET | O z v b
ICP | SSL (@) u w

The broker transport may be specified as any combination of one or more of the
following methods:

TCP TCP/IP is supported.
SSL SSL/TLS is supported.

NET Entire Net-Work is supported. This value is not supported for a broker under
UNIX or Windows.

Examples:

TRANSPORT=NET specifies that only the Entire Net-Work transport method will be
supported by the broker.

Broker

59

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

TRANSPORT=TCP-NET specifies that both the TCP/IP and Net-Work transport
methods will be supported by the broker.

TRANSPORT=TCP-SSL-NET specifies that the TCP/IP, SSL/TLS, and Entire Net-Work
transport methods will be supported by the broker.

The parameters for each transport method are described in the respective section:
TCP | SSL | NET.

TRAP-ERROR

nnnn IO‘z‘ulwl ‘b

Where nnnn is the four-digit API error number that triggers the trace handler, for
example 0007 (Service not registered). Leading zeros are not required. There is no
default value.

See Deferred Tracing in the platform-specific Broker Administration documentation.

TRBUFNUM

’ | 0l = Juw]w] |

Changes the trace to write trace data to internal trace buffers. 1 is the size of the
trace buffer in 64 KB units. There is no default value.

TRMODE

WRAP ‘O‘Z‘U‘W‘ ‘b

Changes the trace mode. WRAP is the only possible value. This value instructs broker
to write the trace buffer (see TRBUFNUM) if an event occurs. This event is triggered
by a matching TRAP - ERROR during request processing or when an exception occurs.

UMSG

See MAX-MESSAGES-IN-UOW.

UOW-DATA-LIFETIME

DI nSInM I nH 1 nD O z u w v b

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

If the UOW is inactive - that is, is not processed within the time limit - it is deleted
and given a status of TIMEQUT. This attribute can be overridden by the UWTIME
field in the Broker ACI control block.

See Timeout Considerations for EntireX Broker.

UOW-MSGS

See MAX-MESSAGES-IN-UOW.

UOW-STATUS-LIFETIME

novalueln[S]IannHlnD‘ @) ‘ z ‘ u ‘ w ‘ v ‘ b

The value to be added to the UOW-DATA-LIFETIME (lifetime of associated UOW).
If a value is entered, it must be 1 or greater; a value of 0 will result in an error. If
no value is entered, the lifetime of the UOW status information will be the same as
the lifetime of the UOW itself.

60

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX ‘Windows’ z/VSE ‘BSZOOO

nS Number of seconds the UOW status exists longer than the UOW itself (max.
2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).
nD Number of days (max. 24855).

This attribute is ignored if PSTORE=NO is defined.

The lifetime determines how much additional time the UOW status is retained in
the persistent store and is calculated from the time at which the associated UOW
enters any of the following statuses: PROCESSED, TIMEOUT, BACKEDOUT, CANCELLED,
DISCARDED. The additional lifetime of the UOW status is calculated only when
broker is executing. Value in UOW-STATUS- LIFETIME supersedes the value (if
specified) in attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not have to
be identical to the unit specified for UOW-DATA-LIFETIME.

UWSTAT-LIFETIME

Alias for UOW-STATUS-LIFETIME.

UWSTATP 0ln o | z | u | w | v | b
Contains a multiplier used to compute the lifetime of a persistent status for the
service. The UNSTATP value is multiplied by the UOW-DATA-LIFETIME value (the
lifetime of the associated UOW) to determine the length of time the status will be
retained in the persistent store.

0 The status is not persistent.
1-254 Multiplied by the value of UOW-DATA-LIFETIME to determine how long
a persistent status will be retained.
Note: This attribute has not been supported since EntireX version 7.3. Use
UOW-STATUS-LIFETIME instead.
UWTIME Alias for UOW-DATA-LIFETIME.

WAIT-FOR-ACTIVE-PSTORE

NO | YES ‘O‘Z‘U‘W‘V‘b

Determines whether broker should wait for the Adabas Persistent Store to become
active, or until c-tree PSTORE files become available.

NO If broker should start with a PSTORE-TYPE=ADABAS and the database is not
active or is not accessible, broker will stop.

If broker should start with a PSTORE-TYPE=CTREE and the c-tree files are
still in use, broker will stop.

YES If broker should start with a PSTORE-TYPE=ADABAS and the database is not
active or is not accessible, broker will retry every 10 seconds to initiate

Broker

61

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX ‘Windows ’ zIVSE ‘ BS2000
communications with the PSTORE. Broker will reject any user requests until
it is able to contact the Adabas database.
If broker should start witha PSTORE - TYPE=CTREE and the c-tree files are still
in use, broker will retry every 10 seconds to rebuild the persistent data. Broker
will reject any user requests until it is able to rebuild the persistent data.
WORKER-MAX 32 | n (min. 1, max. 32) | 0 ‘ z ‘ u | w | ‘ b
Maximum number of worker tasks the broker can use.
WORKER-MIN 11 n(min. 1, max. 32) @) z u w b

Minimum number of worker tasks the broker can use.

WORKER-NONACT

70S 1 nlnStaMl nH] 0 ‘ z ‘ u \ w] ‘ b

Non-activity time to elapse before a worker tasks is stopped.

n Same as ns.
nS Non-activity time in seconds (default 70, max. 2147483647).
nM Non-activity time in in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

Caution: A value of 0 (zero) is invalid. If you set this value too low, additional

overhead is required for starting and stopping worker tasks. The default and
recommended value is 70S.

WORKER-QUEUE-DEPTH

11 n(min. 1) ‘ @) ‘ z ‘ u ‘ w ‘ ‘ b

Number of unassigned user requests in the input queue before another worker
task gets started. The default and recommended value is 1. A higher value will
result in longer broker response times.

WORKER-START-DELAY

internal-value | n | O ‘ z ‘ u l w | ‘ b

n Delay is extended by n seconds.

Delay after a successful worker task invocation before another worker task can be
started to handle current incoming workload. This attribute is used to avoid the
risk of recursive invocation of worker tasks, because starting a worker task itself
causes workload increase.

If no value is specified, an internal value calculated by the broker is used to optimize
dynamic worker management. This calculated value is the maximum time required
to start a worker task.

62

Broker

Broker Attributes

Service-specific Attributes

Each section begins with the keyword DEFAULTS=SERVICE. Services with common attribute values
can be grouped together. The attributes defined in the grouping apply to all services specified
within it. However, if a different attribute value is defined immediately following the service
definition, that new value applies. See also the sections Wildcard Service Definitions and Service
Update Modes below the table.

APPMON

opt/ Operating System
Attribute Values Req {z/OS [UNIX Windows | z/VSE [BS2000
APPLICATION-MONITORING or|YES I NO O z u w A b

YES Enable application monitoring for the specified services.

NO Disable application monitoring for the specified services.

See Application Monitoring.

APPLICATION-MONITORING-
NAME

or

APPMON-NAME

A100 |O‘z|u|w|v|b

Specifies the application monitoring name. Used to set the value of the
ApplicationName KPI.

If omitted, the default value from the APPLICATION-MONITORING section is
used. If this value is also not specified, the corresponding CLASS/SERVER/SERVICE
names are used.

See Application Monitoring.

CLASS

A32 (case-sensitive) ‘ R ‘ z | u ‘ w ‘ \% ‘ b

Part of the name that identifies the service together with the SERVER and SERVICE
attributes. CLASS must be specified first, followed immediately by SERVER and
SERVICE.

Classes starting with any of the following are reserved for use by Software AG
and should not be used in customer-written applications: BROKER, SAG, ENTIRE,
ETB, RPC, ADABAS, NATURAL. Valid characters for class name are letters a-z, A-Z,
numbers 0-9, hyphen and underscore. Do not use dollar, percent, period or
comma. See also the restriction for SERVICE attribute names.

CLIENT-RPC-AUTHORIZATION

o[[| [¢

Determines whether this service is subject to RPC authorization checking.

N No RPC authorization checking is performed.

Y RPC library and program name are appended to the authorization check
performed by EntireX Security. Specify YES only to RPC-supported services.

Broker

63

Broker Attributes

opt/ Operating System
Attribute Values Req [z/0S | UNIX ‘Windows ‘zNSE ‘ BS2000
To allow conformity with Natural Security, the CLIENT-RPC-AUTHORIZATION
parameter can optionally be defined with a prefix character as follows:
CLIENT-RPC-AUTHORIZATION= (YES,<prefix-character>).
CONV-LIMIT

UNLIM | n ‘O‘z|u‘w‘v‘b

Allocates a number of conversations especially for this service.

UNLIM The number of conversations is restricted only by the number of
conversations globally available. Precludes the use of
NUM-CONVERSATION=AUTO in the Broker section of the attribute file.

n Number of conversations.

A value of 0 (zero) is invalid.

If NUM-CONVERSATION=AUTO is specified in the Broker section of the attribute
file, CONV-LIMIT=UNLIM is not allowed in the service section. A value must be
specified or the CONV - LIMIT attribute must be suppressed entirely for the service
so that the default (CONV-DEFAULT) becomes active.

CONV-NONACT

SMInltnSInMI nH ‘R‘z|u‘w ’V‘b

Non-activity time for connections.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

A value of 0 (zero) is invalid. If a connection is not used for the specified time,
that is, a server or a client does not issue a broker request that references the
connection in any way, the connection is treated as inactive and the allocated
resources are freed.

CONVERSION

A255 O z u w A b

(SAGTCHAL, TRACE=n]L, OPTION=5] |
SAGTRPCL, TRACE=n]1[, OPTION=s1 |
namel, TRACE=n] |
NO)

Defines ICU conversion or SAGTRPC user exit for character conversion. See
Internationalization with EntireX.

SAGTCHA ' Conversion using ICU Conversion for ACI-based Programming.

SAGTRPC @ Conversion using ICU Conversion for RPC-based Components and
Reliable RPC.

name ® Name of the SAGTRPC user exit for RPC-based components and
Reliable RPC. See also Configuring SAGTRPC User Exits under

64

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req |2/0S | UNIX ‘Windows ‘zNSE ‘ BS2000

Configuring Broker for Internationalization in the platform-specific
Administration documentation and Writing SAGTRPC User Exits
under Configuring Broker for Internationalization in the
platform-specific Administration documentation.

NO If conversion is not to be used, either omit the CONVERSION attribute
or specify CONVERSION=NO, for example for binary payload.

The CONVERSION attribute overrides the TRANSLATION attribute when defined
for a service. That is, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

Note:

1. See also Configuring ICU Conversion under Configuring Broker for
Internationalization in the platform-specific Administration documentation.

2. SAGTRPC is not supported on BS2000. For conversion with single-byte code
pages, use SAGTCHA on BS2000 for RPC-based Components and Reliable RPC.

3. SAGTRPC user exit is not supported on z/VSE and BS2000.
TRACE

If tracing is switched on, the trace output is written to the broker log file. The
following trace levels are available:

0 No tracing

1 STANDARD This level is an "on-error" trace. It provides information on
conversion errors only. For RPC calls this includes the IDL library,
IDL program and the data. Please note that if 0PTI0N Values for
Conuversion are set, errors are ignored.

2 ADVANCED Tracing of incoming, outgoing parameters and the payload.

3 SUPPORT This trace level is for support diagnostics and should only be
switched on when requested by Software AG support.

OPTION

See table of possible values under 0PTI0N Values for Conversion.

DEFERRED

WO 1 VES [0[z]u] w [v] b

NO Units of work cannot be sent to the service until it is available.

YES Units of work can be sent to a service that is not up and registered. The
units of work will be processed when the service becomes available.

LOAD-BALANCING

YES I NO ‘O‘z|u‘w’v‘b

Broker

65

Broker Attributes

Attribute

Opt/ Operating System

Values Req |2/0S | UNIX ‘Windows ‘zNSE ‘ BS2000

YES When servers that offer a particular service are started, new conversations
will be assigned to these servers in a round-robin fashion. The first waiting
server will get the first new conversation, the second waiting server will
get the second new conversation, and so on.

NO A new conversation is always assigned to the first server in the queue.

LONG-BUFFER-LIMIT

UNLIM | n lO‘z|u|w|v|b

Allocates a number of long message buffers for the service.

UNLIM The number of long message buffers is restricted only by the number
of buffers globally available. Precludes the use of
NUM-LONG-BUFFER=AUTO in the Broker section of the attribute file.

n Number of long message buffers.

A value of 0 (zero) is invalid. If NUM- LONG-BUFFER=AUTO is specified in the
Broker section of the attribute file, LONG-BUFFER-LIMIT=UNLIM is not allowed
in the service section. A value must be specified or the LONG-BUFFER-LIMIT
attribute must be suppressed entirely for the service so that the default
(LONG-BUFFER-DEFAULT) becomes active.

MAX-MESSAGES-IN-UOW

161 n ‘O‘Z|U‘W‘V‘b

Maximum number of messages in a UOW.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O‘z|u| w ‘ ‘ b

Maximum message size that can be sent to a service.

This is transport-dependent. The default value represents the highest positive
number that can be stored in a four-byte integer.

MAX-MSG

See MAX-MESSAGE-LENGTH.

MAX-UOW-MESSAGE-LENGTH

See MAX-MESSAGE-LENGTH.

MAX-UOWS

017 [0 zJu] w [v]

0 The service does not accept units of work, i.e. it processes only messages that
are not part of a UOW. Using zero prevents the sending of UOWs to services
that are not intended to process them.

n Maximum number of UOWs that can be active concurrently for the service.
If you do not provide a MAX -UOWS value for the service, it defaults to the
MAX-UOWS setting for the broker. If you provide a value that exceeds that of
the broker, the service MAX-UOWS is set to the broker's MAX -UOWS value and
a warning message is issued.

Specify MAX -UOWS=0 for Natural RPC Servers. This restriction will be removed
with a later release.

MUOW

See MAX-UOWS.

66

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req |z/0S |UNIX |Windows |z/VSE | BS2000

NOTIFY-EOC

NO I YES O | z u w v b

Specifies whether timed-out conversations are to be stored or discarded.

NO Discard the EOC notifications if the server is not ready to receive.

YES Store the EOC notifications if the server is not ready to receive and then
notify the server if possible.

If a server is not ready to receive an EOC notification, it can be stored or
discarded. If it is stored, the server is notified, if possible, when it is ready to
receive.

Caution: The behavior activated by this parameter can be relied upon only

during a single lifetime of the broker kernel. Specifically, conversations containing
units of work, whose lifetime can span multiple broker kernel sessions, cannot
be assumed to show this behavior, even with NOTIFY-EQC=YES.

NUM-UQOW

Alias for MAX-UOWS.

POSTPONE-ATTEMPTS

o[+ o] v [|

Defines the number of attempts putting a received unit of work (UOW) due to
SYNCPOINT option CANCEL on the postpone queue for later processing.

0 All UOWs rejected by the receiver (SYNCPOINT option CANCEL) will be
cancelled immediately. Attribute POSTPONE-DELAY is ignored.

n Defines the number of postpone attempts that are performed instead of
considering the UOW finished due to SYNCPOINT option CANCEL; the UOW
will be moved to the postpone queue and the UOW status will be changed
to POSTPONED. These UOWSs will be delivered to the receiver when the time
specified with POSTPONE-DELAY has elapsed.

The default value is 0. See Postponing Units of Work.

POSTPONE-DELAY

QlnlnSlnaMlnH ‘O‘z|u‘ w ‘ ‘

The length of time a UOW is kept in status POSTPONED.

0 The postpone feature is disabled. Attribute POSTPONE-ATTEMPTS is ignored.

nS Number of seconds the UOW stays unreadable in the postpone queue with
status POSTPONED (max. 2147483647).

nM Number of minutes the UOW stays unreadable in the postpone queue with
status POSTPONED (max. 35791394).

nH Number of hours the UOW stays unreadable in the postpone queue with
status POSTPONED (max. 596523).

nD Number of days the UOW stays unreadable in the postpone queue with
status POSTPONED (max. 24855).

Broker

67

Broker Attributes

opt/ Operating System
Attribute Values Req [z/0S | UNIX ‘Windows ‘zNSE ‘ BS2000
The status of the UOW will be changed from POSTPONED to ACCEPTED after
elapsed POSTPONE-DELAY. This delay time does not affect the
UOW-DATA-LIFETIME. The POSTPONE-DELAY must be less than
UOW-STATUS-LIFETIME in order to make the UOW receivable again.
Note: By default, the postpone feature is disabled. However, if any value is
specified, the minimum delay is 30 seconds. Any value entered that is less than
30 seconds will be increased to this value.
SERVER A32 (case-sensitive) ‘ R ‘ z | u ‘ w ’ \% ‘ b

Part of the name that identifies the service together with the CLASS and SERVICE
attributes.

CLASS must be specified first, followed immediately by SERVER and SERVICE.

Valid characters for server name are letters a-z, A-Z, numbers 0-9, hyphen and
underscore. Do not use dollar, percent, period or comma.

SERVER-DEFAULT

n 1 UNLIM ‘O‘z|u‘w‘v‘b

Default number of servers that are allowed for every service.

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM-SERVER=AUTO.

A value of 0 (zero) is invalid.

This value can be overridden by specifyinga SERVER-LIMIT for the service.

SERVER-LIMIT

n 1 UNLIM ‘O‘z|u‘w‘v‘b

Allows a number of servers especially for this service.

n Number of servers.

UNLIM The number of servers is restricted only by the number of servers
globally available. Precludes the use of NUM- SERVER=AUTO in the Broker
section of the attribute file.

A value of 0 (zero) is invalid.

If NUM-SERVER=AUTO is specified in the Broker section of the attribute file,
SERVER-LIMIT=UNLIM is not allowed in the service section. A value must be
specified or the SERVER-LIMIT attribute must be suppressed entirely for the
service so that the default (SERVER-DEFAULT) becomes active.

Note: UNIX and Windows: This limit also includes any attach server you are

using. Make sure you increase the number by one for each attach server you
use.

68

Broker

Broker Attributes

opt/ Operating System
Attribute Values Req |z/OS [UNIX|Windows |z/VSE |BS2000
SERVER-NONACT SMInlnS 1 nMI nH R|z | u w v b

Non-activity time for servers. A server that does not issue a broker request within
the specified time limit is treated as inactive and all resources for the server are
freed.

n Same as nS.
nS Non-activity time in seconds (max. 2147483647).
nM Non-activity time in minutes (max. 35791394).

nH Non-activity time in hours (max. 596523).

If a server registers multiple services, the highest value of all the services
registered is taken as non-activity time for the server.

SERVICE

A32 (case-sensitive) ‘ R ‘ z | u ‘ w ’ \Y ‘ b

Part of the name that identifies the service together with the CLASS and SERVER
attributes.

CLASS must be specified first, followed immediately by SERVER and SERVICE.

The SERVICE attribute names EXTRACTOR and DEPLOYMENT are reserved for
Software AG internal use and should not be used in customer-written
applications. Valid characters for service name are letters a-z, A-Z, numbers 0-9,
hyphen and underscore. Do not use dollar, percent, period or comma. See also
the restriction for CLASS attribute names.

SHORT-BUFFER-LIMIT

UNLIM | n O | z u w v b

Allocates a number of short message buffers for the service.

UNLIM The number of short message buffers is restricted only by the number
of buffers globally available. Precludes the use of
NUM-SHORT-BUFFER=AUTO in the Broker section of the attribute file.

n Number of short message buffers.

If NUM-SHORT-BUFFER=AUTO is specified in the Broker section of the attribute
file, SHORT-BUFFER-LIMIT=UNLIMis not allowed in the service section. A value
must be specified or the SHORT-BUFFER-LIMIT attribute must be suppressed
entirely for the service so that the default (SHORT-BUFFER-DEFAULT) becomes
active.

STORE OFF | BROKER ‘O‘Z|u| w ‘v‘b
Sets the default STORE attribute for all units of work sent to the service.
OFF Units of work are not persistent.
BROKER Units of work are persistent.

Broker 69

Broker Attributes

Attribute

Opt/ Operating System

Values Req |2/0S | UNIX ‘Windows ‘zNSE ‘ BS2000

This attribute can be overridden by the STORE field in the Broker ACI control
block.

TRANSLATION

NO | name (A255) | C)‘ z | u | w | v | b

Activates translation user exit for character conversion.

NO Iftranslationisnot to be used - e.g., for binary payload (broker messages)
- either omit the TRANSLATION attribute or specify TRANSLATION=NO.

name Name of Translation User Exit. See also Configuring Translation User Exits
under Confiquring Broker for Internationalization in the platform-specific
Administration documentation or Writing Translation User Exits under
Configuring Broker for Internationalization in the platform-specific
Administration documentation.

The CONVERSION attribute overrides the TRANSLATION attribute when defined
for a service; that is, when TRANSLATION and CONVERSION are both defined,
TRANSLATION will be ignored.

UMSG

Alias for MAX-MESSAGES-IN-UOW.

UOW-DATA-LIFETIME

1D 1 nS 1AM 1 nH 1 nD ‘ 0 ‘ z | u ‘ w ‘ v ‘ b

Defines the default lifetime for units of work for the service.

nS Number of seconds the UOW can exist (max. 2147483647).
nM Number of minutes the UOW can exist (max. 35791394).
nH Number of hours the UOW can exist (max. 596523).

nD Number of days the UOW can exist (max. 24855).

This attribute is ignored if PSTORE=NO is defined.

If the unit of work (UOW) is inactive, that is, not processed within the time limit,
it is deleted and given a status of TIMEQUT. This attribute can be overridden by
the UWT IME field in the Broker ACI control block.

UOW-MSGS

Alias for MAX-MESSAGES-IN-UOW.

UOW-STATUS-LIFETIME

novalue | n[S1 I nM | nH | nD ‘O‘z|u‘ w ’V‘ b

The value to be added to the UOW-DATA-LIFETIME (lifetime of associated UOW).
If a value is entered, it must be 1 or greater; a value of 0 will result in an error.
If no value is entered, the lifetime of the UOW status information will be the
same as the lifetime of the UOW itself.

nS Number of seconds the UOW status exists longer than the UOW itself (max.
2147483647).

nM Number of minutes (max. 35791394).
nH Number of hours (max. 596523).

70

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req |2/0S | UNIX ‘Windows ‘zNSE ‘ BS2000

nD Number of days (max. 24855).

The lifetime determines how much additional time the UOW status is retained
in the persistent store and is calculated from the time at which the associated
UOW enters any of the following statuses: PROCESSED, TIMEOUT, BACKEDQOUT,
CANCELLED, DISCARDED. The additional lifetime of the UOW status is calculated
only when broker is executing. Value in UOW-STATUS-LIFETIME supersedes
the value (if specified) in attribute UNSTATP.

Note: If no unit is specified, the default unit is seconds. The unit does not have
to be identical to the unit specified for UOW-DATA-LIFETIME.

UWSTATP

Qln ‘O‘Z|U‘W‘V‘b

Contains a multiplier used to compute the lifetime of a persistent status for the
service. The UNSTATP value is multiplied by the UOW-STATUS - LIFETIME value
(the lifetime of the associated UOW) to determine the length of time the status
will be retained in the persistent store.

0 The status is not persistent.

1 - 254 Multiplied by the value of UOW-DATA-LIFETIME to determine how long
a persistent status will be retained.

This attribute is ignored if PSTORE=NO is defined.

Note: This attribute has not been supported since EntireX version 7.3. Use
UOW-STATUS-LIFETIME instead.

UWSTAT-LIFETIME

Alias for UOW-STATUS-LIFETIME.

UWTIME

Alias for UOW-DATA-LIFETIME.

Wildcard Service Definitions

The special names of CLASS = *, SERVER = * and SERVICE = * are allowed in the service-specific
and authorization rule-specific sections of the broker attribute file. These are known as "wildcard"
service definitions. If this name is present in the attribute file, any service that registers with the
broker and does not have its own entry in the attribute file will inherit the attributes that apply to
the first wildcard service definition found.

For example, a server that registers with CLASS=ACLASS, SERVER=ASERVER and SERVICE=ASERVICE
can inherit attributes from any of the following entries in the attribute file (this list is not necessarily

complete):

Broker

7"

Broker Attributes

CLASS *, SERVER = ASERVER, SERVICE = ASERVICE
CLASS ACLASS, SERVER = *, SERVICE = *
CLASS = *, SERVER = *, SERVICE = *

Of course, if there is a set of attributes that are specifically defined for CLASS=ACLASS, SERVER=ASERV -
ER, SERVICE=ASERVICE, then all of the wildcard service definitions will be ignored in favor of the
exact matching definition.

Service Update Modes

EntireX has two modes for handling service-specific attributes. See broker-specific attribute SER-
VICE-UPDATES.

* Inservice update mode (SERVICE-UPDATES=YES), the service configuration sections of the attribute
file are read whenever the first replica of a particular service registers.

® In non-update mode (SERVICE-UPDATES=NO), the attribute file is not reread. All attributes are
read during startup and the broker does not honor any changes in the attribute file. This mode
is useful if

* there is a high frequency of REGISTER operations, or
* the attribute file is rather large and results in a high I/O rate for the broker.
The disadvantage to using non-update mode is that if specific attributes are modified, the broker

must be restarted to effect the changes. Generally, this mode should be used only if the I/O rate
of the broker is considerably high, and if the environment seldom changes.

OPTION Values for Conversion

The different option values allow you to either handle character conversion deficiencies as errors,
or to ignore them:

1. Do not ignore any character conversion errors and force an error always (value STOP). This is
the default behavior.

2. Ignore if characters cannot be converted into the receiver's codepage, but force an error if sender
characters do not match the sender's codepage (value SUBSTITUTE-NONCONV).

3. Ignore any character conversion errors (values SUBSTITUTE and BLANKOUT).

Situations 1 and 2 above are reported to the broker log file if the TRACE option for CONVERSION is
set to level 1.

72 Broker

Broker Attributes

Report Situation in Broker Log File

if TRACE Option for
OPtions Supported for CONVERSION is setto 1
Bad Input Non-convertible
Characters Characters
(Sender's (Receiver's
Value Description SAGTCHA [SAGTRPC |Codepage) Codepage)
SUBSTITUTE Substitutes both YES YES No message. |No message

non-convertible characters
(receiver's codepage) and bad
input characters (sender's
codepage) with a
codepage-dependent default
replacement character.

SUBSTITUTE-NONCONV

If a corresponding code point
isnot available in the receiver's
codepage, the character cannot
be converted and is substituted
with a codepage-dependent
default replacement character.
Bad input characters in sender's
codepage are not substituted
and result in an error.

YES

YES

Write detailed
conversion
error message.

No message.

BLANKOUT

Substitutes non-convertible
characters with a
codepage-dependent default
replacement; blanks out the
complete RPC IDL field
containing one or more bad
input characters.

NO

YES

No message.

No message.

STOP

Signals an error on detecting a
non-convertible or bad input
character. This is the default
behavior if no option is
specified.

YES

YES

Write detailed
conversion
error message.

Write detailed
conversion
error message.

Broker

73

Broker Attributes

Codepage-specific Attributes

The codepage-specific attribute section begins with the keyword DEFAULTS=CODEPAGE as shown
in the sample attribute file. You can use the attributes in this section to customize the broker's
locale string defaults and customize the mapping of locale strings to codepages for character
conversion with ICU conversion and SAGTRPC user exit. See Internationalization with EntireX for

more information.

opt/ Operating System
Attribute Values Req z/0S UNIX [Windows | z/VSE | BS2000
DEFAULT_ASCII Any ICU converter (@) z u w v b
name or alias. See also
Additional Notes
below.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker’s Locale String Defaults. This
value is used instead of the broker's locale string defaults if

® the calling component does not send a locale string itself, and

® the calling component is running on an ASCII platform (UNIX, Windows, etc.)

Example:

DEFAULTS=CODEPAGE
* Broker Locale String Defaults
DEFAULT_ASCII=windows-950

For more examples, see Configuring Broker’s Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

DEFAULT_EBCDIC_IBM

Any ICU converter @) z u w \Y b
name or alias

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker’s Locale String Defaults. This
value is used instead of the broker's locale string defaults if

B the calling component does not send a locale string itself and

B the calling component is running on an IBM mainframe platform (z/OS, z/VSE

etc.)

Example:

74

Broker

Broker Attributes

Attribute

Opt/ Operating System
Values Req z/0S ‘ UNIX |Windows| zIVSE ‘Bszooo

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_IBM=ibm-937

For more examples, see Configuring Broker’s Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

DEFAULT_EBCDIC_SNI

Any ICU converter (@) z u w v b
name or alias.

Customize the broker's locale string defaults by assigning the default codepage
for EntireX components (client or server). See Broker’s Locale String Defaults. This
value is used instead of the locale string defaults if

B the calling component does not send a locale string itself, and

B the calling component is running on a Fujitsu EBCDIC mainframe platform

(BS2000)

Example:

DEFAULT=CODEPAGE
DEFAULT_EBCDIC_SNI= bs2000-edf03drv

For more examples, see Configuring Broker’s Locale String Defaults in the
Internationalization documentation and also Additional Notes below.

locale-string

Any ICU converter @) z u w \
name or alias. See also
Additional Notes
below.

Customize the mapping of locale strings to codepages and bypass the broker's
locale string processing mechanism. See Broker’s Locale String Processing. This is
useful:

= if the broker's locale string processing fails - i.e. leads to no codepage or to the
wrong codepage - you can explicitly assign the codepage which meets your
requirements.

= if you want to install user-written ICU converters (codepages) into the broker,
see Building and Installing ICU Custom Converters in the platform-specific
Administration documentation.

The attribute (locale string) is the locale string sent by your EntireX component
(client or server) and the value is the codepage that you want to use in place of
that locale string. In the first line of the example below, the client or server
application sends ASCII as a locale string; the broker maps this to the codepage
ISO 8859_1. In the same way EUC_JP_LINUXis mapped to ibm-33722_P12A-1999.
All other locale strings are mapped by the broker's mapping mechanism, see
Broker's Built-in Locale String Mapping. Example:

Broker

75

Broker Attributes

Opt/ Operating System
Attribute Values Req z/0S ‘ UNIX |Windows| zIVSE ‘Bszooo

DEFAULTS=CODEPAGE
* Broker Locale String Codepage Assignments
ASCII=1S08859
EUC_JP_LINUX=ibm-33722_P12A-1999
* Customer-written ICU converters
CP1140=myebcdic
CP0819=myascii

For more examples, see Bypassing Broker’s Built-in Locale String Mapping and also
Additional Notes below.

Additional Notes

® Locale string matching is case insensitive when bypassing the broker's built-in mechanism, that
is, when the broker examines the codepages section in the attribute file.

® If ICU is used for character conversion and the style in not known by ICU, e.g. _<cc> etc.,
the name will be mapped to a suitable ICU alias. For more details on the mapping mechanism,
see Broker’s Built-in Locale String Mapping. For more details on ICU and ICU converter name
standards, see ICU Resources.

® If SAGTRPC user exit is used for the character conversion, we recommend assigning the codepage
in the form CP<nnnnn>. To determine the number given to SAGTRPC user exit, see Broker's
Built-in Locale String Mapping.

" See CONVERSION on this page for the character conversion in use.

76 Broker

Broker Attributes

Adabas SVC/Entire Net-Work-specific Attributes

The Adabas SVC/Entire Net-Work-specific attribute section begins with the keyword DEFAULTS=NET
as shown in the sample attribute file. The attributes in this section are needed to execute the
Adabas SVC/Entire Net-Work communicator of the EntireX Broker kernel.

| Note: This section applies to mainframe platforms only. It does not apply to UNIX and

Windows.
Opt/ Operating System
Attribute Values Req z/0S UNIX [Windows| z/VSE | BS2000
ADASVC nnn R 2 .

Sets the Adabas SVC number for EntireX Broker access.

The Adabas SVC is used to perform various internal functions, including
communication between the caller program and EntireX Broker.

Not supported on BS2000.

EXTENDED-ACB-SUPPORT

NO | YES ‘o‘z‘ | ‘v|b

Determines whether extended features of Adabas version 8 (or above) are
supported.

NO No features of Adabas version 8 or above will be used.

YES Informs broker kernel to provide Adabas/WAL version 8 transport
capability. This parameter is required for sending/receiving more than
32 KB data over Adabas [NET] transport. This value should be set only if
you have installed Adabas/WAL version 8, Adabas SVC, and included
Adabas/WAL version 8 load libraries into the steplib of broker kernel;
otherwise, unpredictable results can occur.

FORCE

WO T VES o[- | | v v

Determines whether DBID table entries can be overwritten.

NO Overwrite of DBID table entries not permitted.

YES Overwrite of DBID table entries permitted. This is required when the DBID
table entry is not deleted after abnormal termination.

Caution: Overwriting an existing entry prevents any further communication

with the overwritten node. Use FORCE=YES only if you are absolutely sure that
no target node with that DBID is active.

IDTNAME

fdtname(AS)lADABASSB‘ 0 ‘ ‘ | ‘ | b

If an ID table name is specified with the appropriate ADARUN parameter for
Entire Net-Work, Adabas or Natural, the same name must be specified here.

Broker

77

Broker Attributes

Attribute

Opt/ Operating System
Ll Req | 705 | UNX |Windows| ZVSE | BSZ000

The ID table is used to perform various internal functions, including
communication between the caller program and the EntireX Broker. Only
supported under BS2000.

TUBL

800 1 7 o[[[~ v

This parameter sets the maximum length (in bytes) of the buffer that can be
passed from the caller to EntireX Broker. The maximum size of IUBL is the same
as the maximum value of the Adabas parameter LU (see the Adabas Operations
Manual).

[UBL must be large enough to hold the maximum send-length plus receive-length
required for any caller program plus any administrative overhead for Adabas
and Entire Net-Work control structures.

LOCAL

NO I YES ‘O‘z‘ | ‘V|b

For remote nodes accessed via Entire Net-Work, the attribute LOCAL specifies
whether the target ID defined with the NODE attribute can be accessed only
locally, or also remotely.

NO DBID is global and can be accessed from remote nodes via Entire Net-Work.

YES DBID is local and cannot be accessed from remote nodes via Entire
Net-Work.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O‘z‘u|w‘v|b

Maximum message size that the broker kernel can process using transport
method NET. The default value represents the highest positive number that can
be stored in a four-byte integer.

NABS 101n | o | z | | | v | b
The number of attached buffers to be used (max. 524287).
An attached buffer is an internal buffer used for interprocess communication.
An attached buffer pool equal to the NABS value multiplied by 4096 will be
allocated. This buffer pool must be large enough to hold all data (IUBL) of all
parallel calls to EntireX Broker.
The following formula can be used to calculate the value for NABS:
NABS = NCQE *IUBL / 4096.

NCQE 101 n (@) z v b

NCQE defines the number of command queue elements which are available for

processing commands arriving at the broker kernel over Adabas SVC / Net-Work
transport mechanism. Sufficient NCQE should be allocated to allow this transport
mechanism to process multiple broker commands concurrently. Each command
queue element requires 192 bytes, and the element is released when either the

user (client or server) has received the results of the command, or if the command
is timed out.

78

Broker

Broker Attributes

Attribute

Opt/ Operating System
Values Req | 705 | UNX |Windows| ZVSE | BSZ000

The number of command queue elements required to handle broker calls depends
on the number of parallel active broker calls that are using the transport
mechanism Adabas SVC / Entire Net-Work. For example, all broker commands
issued by client or server components using this transport mechanism:

NODE

1-65534 ‘R‘z‘ | ‘v|b

Defines the unique DBID for EntireX Broker.

Used for internode Adabas/Entire Net-Work communication. There is no default;
the value of NODE must be a value greater than or equal to 1 or less than or equal
to 65534. If you set the parameter LOCAL=YES, you can use the same node number
for different installations of EntireX Broker in an Entire Net-Work environment.

TIME

301 n ‘O‘z‘ | ‘v|b

This parameter sets the timeout value for broker calls in seconds. The results of
a broker call must be received by the caller within this time limit.

TRACE-LEVEL

0-4 ‘O‘z‘ | ‘v|b

The level of tracing to be performed while the broker is running with transport
method NET. It overrides the global value of trace level for all NET routines.

0 No tracing. Default value.

1 Display invalid Adabas commands.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG
support.

If you modify the TRACE- LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without a broker
restart, use the EntireX Broker command-line utility ETBCMD.

Broker

79

Broker Attributes

Security-specific Attributes

The security-specific attribute section begins with the keyword DEFAULTS=SECURITY as shown in
the sample attribute file. This section applies only if broker-specific attribute SECURITY=YES is

specified.

opt/ Operating System
Attribute Values Req z/0S UNIX Windows | z/VSE BS2000
ACCESS-SECURITY- [NO | YES @) b

SERVER

Determines where authentication is checked.

NO Authentication is checked in the broker tasks. This requires broker to be running
under TSOS in order to execute privileged security checks.

YES Authentication is checked in the EntireX Broker Security Server for BS2000. This
does not require broker to be running under TSOS. See EntireX Broker Security Server
for BS2000.

APPLICATION-NAME

e | o | = | | | |

Specifies the name of the application to be checked if FACILITY -CHECK=YES is defined.
In RACEF, for example, an application BROKER with read permission for user DOE is defined
with following commands:

RDEFINE APPL BROKER UACC(NONE)
PERMIT BROKER CLASS(CAPPL) ID(DOE) ACCESS(READ)
SETROPTS CLASSACT(APPL)

See attribute FACILITY -CHECK for more information.

AUTHORIZATION-
DEFAULT

YES | NO ‘o‘ ‘u|w‘ ‘

Determines whether access is granted to a specified service if the specified service could
not be found listed in the repository of authorization rules or in section
DEFAULTS=AUTHORIZATION-RULES of the attribute file.

YES Grant access.

NO Deny access.

Applies only when using EntireX Security under UNIX and Windows. Authorization
rules can be stored within a repository. When an authorization call occurs, EntireX Security
uses the values of this parameter to perform an access check for a particular broker
instance against an (authenticated) user ID and list of rules.

See also Authorization Rules.

CHECK-IP-ADDRESS

YES I NO ‘O‘z‘ | ‘ ‘

Determines whether the TCP/IP address of the caller is subject to a resource check.

80

Broker

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX Windows | z/VSE BS2000
ERRTXT-MODULE NA2MSGO | NA2MSGT | @) z
NA2MSG2 | ModuleName

Specifies the name of the security error text module. Default is NA2MSGO, English messages.
For instructions on how to customize messages, see Build Language-specific Messages
(Optional) under Installing EntireX Security under z/OS.

FACILITY-CHECK

NO | YES ‘o‘z‘ | ‘ ‘

It is possible to check whether a particular user is at all allowed to use an application
before performing a password check. The advantage of this additional check is that when
the user is not allowed to use this application, the broker returns error 00080013 and does
not try to authenticate the user. Failing an authentication check may lead to the user's
password being revoked; this situation is avoided if the facility check is performed first.
See attribute APPLICATION-NAME for further details.

Note: This facility check is an additional call to the security subsystem and is executed

before each authentication call.

IGNORE-STOKEN

NO | YES O z u w b

Determines whether the value of the ACI field SECURITY - TOKEN is verified on each call.

INCLUDE-CLASS

TG (o[- [[[|

Determines whether the class name is included in the resource check.

INCLUDE - NAME YES | NO | o | =z | | | |
Determines whether the server name is included in the resource check.
INCLUDE-SERVICE |YES I NO | o | =z | | | |

Determines whether the service name is included in the resource check.

LDAP- IdapUrl @) u w
GEIH ENTICATION- Authentication is performed against the LDAP repository specified under /dapUr].
= TCP
Specify repository URL:
LDAP-AUTHENTICATION-URL="1dap://HostName[:PortNumber]"
= SSL/TLS
Specify repository URL with ldaps:
LDAP-AUTHENTICATION-URL="1daps://HostName[:PortNumber]"
If no port number is specified, the default is the standard LDAP port number 389 for TCP
transport. Examples for TCP and SSL/TLS:
Broker 81

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S ‘ UNIX |Windows’ zIVSE ‘ BS2000
LDAP-AUTHENTICATION-URL="Tdap://myhost.mydomain.com"
LDAP-AUTHENTICATION-URL="Tdaps://myhost.mydomain.com:636"
LDAP- TdapUri ‘ 0 ‘ ‘ u | w ‘ ‘
/SLQIH ORIZATION- Authorization is performed against the LDAP repository specified under TdapUr].

= TCP
Specify repository URL:

LDAP-AUTHORIZATION-URL="1dap://HostName[:PortNumber]"

If no port number is specified, the default is the standard LDAP port number 389 for TCP
transport.
Example for TCP:

LDAP-AUTHORIZATION-URL="Tdap://myhost.mydomain.com:389"

This attribute replaces the parameters host, port and protocol in the xds.ini file of
EntireX version 9.10 and below.

LDAP-AUTH-DN

authDN]o‘ ‘u|w’ ‘

For authenticated access to the LDAP server. Specifies the DN of the user. Default value:

cn=admin,dc=software-ag,dc=de

This attribute replaces parameter authDN in the xds.ini file of EntireX version 9.10 and
below.

LDAP-AUTH-PASSWD-
ENCRYPTED

authPass ‘ @) ‘ ‘ u | w ‘ ‘

For authenticated access to the LDAP server. Specifies the encrypted value of the user
password. Use program etbnattr to get the encrypted password:

etbnattr -x clear_text_password -echo_password_only
This writes the encrypted password to standard output.

This attribute replaces parameter authPass in the xds.ini file of EntireX version 9.10 and
below.

LDAP-
AUTHORIZATION-RULE

a2 | © | | v [w | |

List of authorization rules. Multiple sets of rules can be defined, each set is limited to 32
chars. The maximum number of LDAP-AUTHORIZATION-RULE entries in the attribute
file is 16.

Applies only when using EntireX Security under UNIX or Windows and
SECURITY-SYSTEM=TdapUr]. Authorization rules can be stored in an LDAP repository.
When an authorization call occurs, EntireX Security uses the values of this parameter

82

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values

Req z/0S ‘ UNIX |Windows’ z/VSE ‘ BS2000

and AUTHORIZATION-DEFAULT to perform an access check for a particular broker instance
against an (authenticated) user ID and list of rules.

See also Authorization Rules.

LDAP-BASE-DN

baseDN ‘ @) ‘ ‘ u | w ‘ ‘

Specifies the base distinguished name of the directory object that is the root of all objects
for authorization rules. Default value:

dc=software-ag,dc=de

This attribute replaces parameter baseDN in the xds.ini file of EntireX version 9.10 and
below.

LDAP-PERSON-BASE-
BINDDN

IdapDn ‘ @) ‘ ‘ u | w ‘ ‘

Used with LDAP authentication to specify the distinguished name where authentication
information is stored. This value is prefixed with the user ID field name (see below).
Example:

LDAP-PERSON-BASE-BINDDN="cn=users,dc=mydomain,dc=com"

LDAP-REPOSITORY -
TYPE

OpenlDAP | O u w
ActiveDirectory |

SunOneDirectory |
Tivolil Novelll
ApacheDS

Use predefined known fields for the respective repository type. Specify the repository
type that most closely matches your actual repository. In the case of Windows Active
Directory, the user ID is typically in the form domainName\ userlId.

LDAP-SASL-
AUTHENTICATION

NO | YES ‘o‘ ‘ |w‘ ‘

Specifies whether or not Simple Authentication and Security Layer (SASL) is to perform
the authentication check. In practice, this determines whether or not the password supplied
by the user is passed in plain text between the broker kernel and the LDAP server. If
SASL is activated, this implies that the password is encrypted.

NO Password is sent to LDAP server in plain text.

YES Password is sent to LDAP server encrypted.

LDAP-USERID-FIELD

cn l uidFieldName ‘

°_| | v [w] |

Used with LDAP authentication to specify the first field name of a user in the
Distinguished Name, for example:

LDAP-USERID-FIELD=uid

MAX-SAF-PROF-
LENGTH

1-256 ‘o‘z‘ | | ‘

This parameter should be increased if the length of the resource checks - that is, the length
of the profile comprising “<class>.<server>.<service>" - is greater than 80 bytes.

Broker

83

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX |Windows’ z/VSE ‘ BS2000

This parameter defaults to 80 if a value is not specified.

PASSWORD-TO-
UPPER-CASE

WO T YES o0 [- | | v

Determines whether the password and new password are converted to uppercase before
verification.

PRODUCT

RACF IACF2 1 @) z
TOP-SECRET

Specifies the name of the installed security product. This attribute is used to analyze
security-system-specific errors. The following systems are currently supported:

ACF2 Security system ACF2 is installed.
RACF Security system RACF is installed. Default.
TOP-SECRET Security system TOP-SECRET is installed.

The default value is used if an incorrect or no value is specified.

PROPAGATE -
TRUSTED-USERID

TG (o[« [[[|

Determines whether a client user ID obtained by means of the trusted user ID mechanism
is propagated to a server using the ACI field CLIENT-USERID.

SAF-CLASS

SAF-CLASS-IP

NBKSAG | @) z

SAFCTassName

Specifies the name of the SAF class/type used to hold the EntireX-related resource profiles.
NBKSAG | O z

SAFClassName

Specifies the name of the SAF class/type used when performing IP address authorization
checks.

SECURITY-LEVEL

AUTHORIZATION @) z u w v b
AUTHENTICATION

Specifies the mode of operation.

AUTHORIZATION Authorization and authentication (not under BS2000 or z/VSE).
AUTHENTICATION Authentication.

Note: In version 8.0, the default value for this parameter was AUTHORIZATION.

SECURITY-NODE

YES | name O z

This parameter can be used to specify a prefix that is added to all authorization checks,
enabling different broker kernels, in different environments, to perform separate
authorization checks according to each broker kernel. For example, it is often important
to distinguish between production, test, and development environments.

YES This causes the broker ID to be used as a prefix for all authorization checks.

84

Broker

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S ‘ UNIX |Windows’ z/VSE ‘ BS2000

name This causes the actual text (maximum 8 characters) to be prefixed onto all
authorization checks.

Note: By not setting this parameter, no prefix is added to the resource check (the default

behavior).

SECURITY-SYSTEM

0S | LDAP ‘O‘Z‘u|w‘ ‘b

0S Authentication is performed against the local operating system. Default if
SECURITY=YES is specified and section DEFAULTS=SECURITY is omitted from the
attribute file.

LDAP Authentication and authorization are performed against the LDAP repository
specified under LDAP-AUTHENTICATION-URL and LDAP-AUTHORIZATION-URL.

TRACE-LEVEL

0-4 @) z u w v b

Trace level for EntireX Security. It overrides the global value of trace level in the attribute
file.

0 No tracing. Default value.
1 Log security violations and access denied/permitted.
2 All of trace level 1, plus internal errors.

3 All of trace level 2, plus function entered/exit messages with argument values and
some progress messages.

4 All of trace level 3, plus some selected data areas for problem analysis.

Trace levels 2, 3 and 4 should be used only when requested by Software AG support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE - LEVEL without a broker restart, use the
EntireX Broker command-line utility ETBCMD.

Note: Setting this value also affects tracing for authorization rules.

TRUSTED-USERID

e (o [+ [[

Activates the trusted user ID mechanism for broker requests arriving over the local
Adabas IPC mechanism.

USERID-TO- NO | YES | o | z | | v

UPPER-CASE Determines whether user ID is converted to uppercase before verification.

UNIVERSAL NO I YES o | z | | | |
Determines whether access to undefined resource profiles is allowed.

WARN -MODE NO | YES o | 2z | u | w | B

Determines whether a resource check failure results in just a warning or an error.

Broker

85

Broker Attributes

TCP/IP-specific Attributes

The TCP/IP-specific attribute section begins with the keyword DEFAULTS=TCP as shown in the
sample attribute file. It contains attributes that apply to the TCP/IP transport communicator. The
transport is activated by TRANSPORT=TCP in the Broker-specific section of the attribute file. A max-
imum of five TCP/IP communicators can be activated by specifying up to five HOST/PORT pairs.

opt/ Operating System
Attribute Values Req | z/OS | UNIX |Windows | z/VSE |BS2000
CONNECTION-NONACT |nl nS1 nM 1 nH @) z u w v b

Non-activity of the TCP/IP connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker will
close the connection only when the application (or the network itself) terminates
the connection.

n Same as nS.
nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).

nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled. On the stub side,
non-activity can be set with the environment variable ETB_NONACT. See Limiting
the TCP/IP Connection Lifetime in the platform-specific Stub Administration sections
of the EntireX documentation.

HOST

0.0.0.0l HostNamel IP addr‘ess‘ @) ‘ z ‘ u l w ‘ v ‘ b

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of the
system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of broker's TCP/IP transport communicator.

MAX-MESSAGE-LENGTH

2147483647 | n ‘O‘Zlulw‘v‘b

Maximum message size that the broker kernel can process using transport method
TCP/IP. The default value represents the highest positive number that can be stored
in a four-byte integer.

PORT

1025-65535 ‘O‘z‘ulw‘v‘b

86

Broker

Broker Attributes

Attribute

Opt/ Operating System
Values Req | Z10S | UNIX Windows| Z/VSE [BS2000

The TCP/IP port number on which the broker will listen for connection
requests.

If not specified, the broker will attempt to find its TCP/IP port number
from the TCP/IP services file, using getservbyname. If it cannot find the
number here, the default value of 1971 is used.

A maximum of five HOST/PORT pairs can be specified to start multiple
instances of broker's TCP/IP transport communicator.

Example for multiple ports on z/OS:

HOST=localhost,PORT=3930
HOST=0.0.0.0,P0ORT=3931

® Port 3930 is used for local TCP/IP communication only and is not visible
outside the z/OS host.

® Port 3931 is used for global TCP/IP communication. With IBM's AT-TLS
this port is turned into a TLS port, see Running Broker with SSL/TLS
Transport in the z/OS Administration documentation.

With this configuration you can reach the broker from outside the z/OS
host via the secure TLS connection only (port 3931). The TCP connection
(port 3930) can only be used from inside the z/OS host.

RESTART

YES I NO ‘O‘Z‘U‘W‘Vb

YES The broker kernel will attempt to restart the TCP/IP communicator.
NO The broker kernel will not try to restart the TCP/IP communicator.

This setting applies to all TCP/IP communicators.

RETRY-LIMIT

201 n | UNLIM ‘O‘z‘ulw‘v‘b

Maximum number of attempts to restart the TCP/IP communicator. This setting
applies to all TCP/IP communicators.

RETRY-TIME

3MInlnS|aMI nH ‘Olzlulw‘v‘b

Wait time between stopping the TCP/IP communicator due to an unrecoverable
error and the next attempt to restart it.

n Same as nS.

nS Wait time in seconds (max. 2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

Minimum wait time is 1S.

Broker

87

Broker Attributes

Attribute

REUSE-ADDRESS

opt/ Operating System
Values Req | z/0S ‘ UNIX ‘Windows‘ z[VSE ‘BSZOOO
This setting applies to all TCP/IP communicators.
YES I NO @) z u v b
YES | NO @) w

YES The TCP port assigned to the broker can be taken over and assigned to other
applications (this is the default value on all non-Windows platforms).

NO The TCP port assigned to the broker cannot be taken over and assigned to
other applications. This is the default setting on Windows, and we strongly
advise you do not change this value on this platform.

Note:

This setting might be required at your site when restarting broker immediately
after stopping it. This is due to the inherent latency of the TCP/IP stack when
closing connections.

STACK-NAME

StackName ‘ @) ‘ V4 ‘ ‘ ‘ ‘

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

0 [0 z[u] w [v]o%

The level of tracing to be performed while the broker is running with transport
method TCP/IP. It overrides the global value of trace level for all TCP/IP routines.

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing error
responses.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without a broker
restart, use the EntireX Broker command-line utility ETBCMD.

88

Broker

Broker Attributes

c-tree-specific Attributes

The c-tree-specific attribute section begins with the keyword DEFAULTS = CTREE. The attributes
in this section are optional. This section applies only if PSTORE-TYPE = CTREE is specified.

Not available under z/OS, BS2000, z/VSE.

opt/ Operating System

Attribute Values Req z/0S UNIX | Windows | z/VSE BS2000

COMPATIBILITY|NO I YES O u w
Determines whether the following c-tree parameters are set:
= COMPATIBILITY PREV610A_FLUSH
= COMPATIBILITY FDATASYNC
® SUPPRESS_LOG_FLUSH YES
= PREIMAGE_DUMP YES
See your FairCom documentation for a description of these parameters.

NO The c-tree parameters listed above are not set. Default.
YES The c-tree parameters listed above are set. This provides compatibility with c-tree
behavior prior to EntireX Broker 10.5.

FLUSH-DIR YES I NO ©) u w
Controls whether metadata is flushed to disk immediately after creates, renames, and
deletes of transaction log files and transaction-dependent files.

YES Metadata is flushed to disk.

NO Metadata is not flushed to disk. This provides compatibility with c-tree behavior
prior to EntireX Broker version 10.5. See COMPATIBILITY NO_FLUSH_DIR in the
FairCom documentation for a description of this parameter.

MAXSTZE A | o | | | oW |
Defines the maximum size of c-tree data files. Broker allocates one data file for control
data and another data file for message data:

n Maximum size in MB.
nM Maximum size in MB.
nG Maximum size in GB.
PAGESIZE nlnK | o | | u | ow] |

Determines how many bytes are available in each c-tree node. PSTORE COLD start is
required after changing this value.

Broker

89

Broker Attributes

Attribute

Opt/ Operating System
Values Req zZ/0S ‘ UNIX ’Windows’ z/VSE | BS2000

n Same as nK

nK PAGESIZE in KB.

The default and minimum value is 8 KB.

If PSD Reason Code = 527 is returned during UOW write processing, increase the
PAGESIZE value and restart broker with PSTORE=COLD, or migrate the existing PSTORE
to a new PSTORE with an increased PAGESIZE value. See Migrating the Persistent Store
and define the increased PAGESIZE value for the load broker.

PATH

A255 |o‘ ‘u‘w‘ |

Path name of the target directory for c-tree index and data files.

SYNCIO

NO I YES |o‘ ‘u’w’ |

Controls the open mode of the c-tree transaction log.

NO c-tree transaction log is not opened in synchronous mode. Default.

YES c-tree transaction log is opened in synchronous mode to improve data security. It
may degrade performance of PSTORE operations, but offers the highest level of
data security. See c-tree Database as Persistent Store in the UNIX and Windows
Administration documentation.

TRACE-LEVEL

a-4 | © | | v [w] |

Trace level for c-tree persistent store. It overrides the global value of trace level in the
attribute file.

0 No tracing. Default value.
1 Log memory allocation failures and errors during close of files.
2 n/a

3 All of trace level 1, plus UOWID in use for the various ctree requests and function
entered/exit mesages.

4 All of trace level 3, plus returned function values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE- LEVEL without a broker restart, use the
EntireX Broker command-line utility ETBCMD.

90

Broker

Broker Attributes

SSL/TLS-specific Attributes

The Broker can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. RPC-based clients and servers,
as well as ACI clients and servers, are always SSL clients. The broker is always the SSL server. For
an introduction see SSL/TLS and Certificates with EntireX.

Your operating system and, for z/OS, the approach you use determine whether this section of the
attribute file is required:

= 7z/0S

= AT-TLS
This is the approach we recommend. IBM's Application Transparent Transport Layer Security
(AT-TLS) does not require the SSL-specific attribute section.

® Direct SSL
For direct SSL/TLS support, the SSL-specific attribute section is required. It begins with the
keyword DEFAULTS=SSL as shown in the sample attribute file.

| Note: Direct SSL/TLS support (using GSK) inside the Broker under z/OS will be dropped

in the next version. We strongly recommend using IBM's Application Transparent
Transport Layer Security (AT-TLS) instead.

See Running Broker with SSL/TLS Transport in the z/OS Administration documentation.

® UNIX and Windows
The SSL-specific attribute section is required, and begins with the keyword DEFAULTS=SSL as
shown in the sample attribute file.

The attributes in this section are needed to execute the SSL. communicator of the EntireX Broker
kernel.

See Running Broker with SSL/TLS Transport.

= z/VSE
The SSL-specific attribute section is not used. You can use BSI's Automatic Transport Layer Se-
curity (ATLS). See Running Broker with SSL/TLS Transport in the z/VSE Administration document-
ation.

Broker 91

Broker Attributes

opt/ Operating System
Attribute Values Req z/0S UNIX [Windows| z/VSE | BS2000
CIPHER-SUITE string O z u w b

String that is passed to the underlying SSL/TLS implementation. SSL/TLS is a
standardized protocol that uses different cryptographic functions (hash functions,
symmetric and asymmetric encryption etc.). Some of these must be implemented
in the SSL/TLS stack; others are optional. When an SSL/TLS connection is created,
both parties agree by "handshake" on the cipher suite, that is, the algorithms
and key lengths used. In a default scenario, this information depends on what
both sides are capable of. It can be influenced by setting the attribute
CIPHER-SUITE for the SSL/TLS server side (the broker always implements the
server side). Thus stubs connect to the broker and thereby become the SSL/TLS
clients.

Under UNIX, Windows and BS2000, the OpenSSL implementation is used; under
z/OS it is GSK.

The SSL protocol is obsolete. It is no longer available. The TLS protocol is the
successor of SSL and is readily available in OpenSSL and GSK. The following
examples show how to configure the available cipher suites:

® OpenSSL
The default configuration uses FIPS 140-2 approved cipher suites, eligible for
TLS v1.2, but without anonymous Diffie-Hellman (ADH) and pre-shared key
(PSK) algorithms. The resulting set of cipher suites provides for authentication
and strong encryption:

CIPHER-SUITE=FIPS+TLSv1.2:!ADH: IPSK:@STRENGTH

See https://www.openssl.org/docs/manl.1.1/manl/ciphers.

= GSK
Default configuration:

CIPHER-SUITE=9F9D9E9C6B673D3C39383332352F

This list of FIPS 140-2 approved cipher suites starts with a strong '256-bit AES
in Galois Counter Mode encryption with 128-bit AEAD authentication and
ephemeral Diffie-Hellman key exchange signed with an RSA certificate' (9F)
and ends with a relatively weak '128-bit AES encryption with SHA-1 message
authentication and RSA key exchange' (2F).

See the IBM documentation z/OS V2R3 Cryptographic Services System Secure
Sockets Layer Programming, SC14-7495-30, Appendix C: Cipher Suite Definitions.

CONNECTION-NONACT

nltnS1nMI nH ‘ @) | z | u ‘ w ‘ ‘ b

Non-activity of the SSL connection, after which a close is performed and the
connection resources are freed. If this parameter is not specified here, broker
will close the connection only when the application (or the network itself)
terminates the connection.

92

Broker

https://www.openssl.org/docs/man1.1.1/man1/ciphers

Broker Attributes

Attribute

Opt/ Operating System
Values Req zI0S | UNIX ‘Windows‘ zIVSE lBszooo

n Same as nS.
nS Non-activity time in seconds (min. 600, max. 2147483647).
nM Non-activity time in minutes (min. 10, max. 35791394).

nH Non-activity time in hours (max. 596523).

If not specified, the connection non-activity test is disabled.

HOST

hostname |O|z|u‘w| lb

The address of the network interface on which broker will listen for connection
requests.

If HOST is not specified, broker will listen on any attached interface adapter of
the system (or stack).

A maximum of five HOST/PORT pairs can be specified to start multiple instances
of EntireX Broker's TCP/IP transport communicator.

KEY-LABEL

name | o | 2z | | | |

The label of the key in the RACF keyring that is used to authenticate the broker
kernel (see also TRUST-STORE parameter).

Example: ETBCERT.

KEY-FILE

filename ‘ R | | u ‘ w ‘ ‘ b

File that contains the broker's private key (if not contained in KEY - STORE). For
test purposes, EntireX delivers certificates for use on various platforms. See
SSL/TLS Sample Certificates Delivered with EntireX.

Example for UNIX and Windows: MyAppKey . pem.

Note: EntireX Broker does not support Java certificates (keystore files of type
jks).

KEY-PASSWD

password (A32) ‘ R | | u ‘ w ’ ‘ b

Password used to protect the private key. Unlocks the KEY - FILE, for example
MyAppKey . pem. Deprecated. See KEY-PASSWD-ENCRYTPED below.

KEY-PASSWD-ENCRYPTED

encrypted value R u w b
(A64)

Password used to protect the private key. Unlocks the KEY - FILE, for example
MyAppKey . pem. This attribute replaces KEY -PASSWD to avoid a clear-text
password as attribute value. If KEY-PASSWD and KEY-PASSWD-ENCRYTPED are
both supplied, KEY-PASSWD-ENCRYTPED takes precedence.

Use program etbnattr to get the encrypted password:

Broker

93

Broker Attributes

opt/ Operating System
Attribute Values Req zI0S | UNIX ‘Windows ‘ zIVSE | BS2000
etbnattr -w ssl_key_password --echo_password_only
This writes the encrypted password to standard output.
KEY-STORE file name | R | IERER | b

SSL certificate; may contain the private key. For test purposes, EntireX delivers
certificates for use on various platforms. See SSL/TLS Sample Certificates Delivered
with EntireX.

Example for UNIX and Windows: ExxAppCert.pem.

Note: EntireX Broker does not support Java certificates (keystore files of type
jks).

MAX-MESSAGE-LENGTH

2147483647 | n ‘ 0 | z | u ‘ w ‘ ‘ b

Maximum message size that the broker kernel can process using transport
method SSL. The default value represents the highest positive number that can
be stored in a four-byte integer.

PORT

1025-65535 |O|z|u‘w| |b

The SSL port number on which the broker will listen for connection requests. If
not changed, this parameter takes the standard value as specified in the example
attribute file.

If the port number is not specified, the broker will use the default value of 1958.

RESTART

YES I NO ‘O|z|u‘w‘ ‘b

YES The broker kernel will attempt to restart the SSL communicator (this is
the default value).

NO The broker kernel will not attempt to restart the SSL. communicator.

RETRY-LIMIT 201 n 1 UNLIM o [2z | u | w | | b
Maximum number of attempts to restart the SSL communicator.
RETRY-TIME MintnSiowinh | O | z | u | w | | b

Wait time between suspending SSL. communication due to unrecoverable error
and the next attempt to restart it.

n Same as nS.

nS Wait time in seconds (max.2147483647).
nM Wait time in minutes (max. 35791394).
nH Wait time in hours (max. 596523).

Minimum: 1S

REUSE-ADDRESS

YES I NO ‘O|z|u‘w‘ ‘b

94

Broker

Broker Attributes

Attribute

Opt/ Operating System
VLD Req | 0S| UNX |Windows| zVSE | BS2000

YES The SSL port assigned to the broker can be taken over and assigned to
other applications (this is the default value).

NO The SSL port assigned to the broker cannot be taken over and assigned to
other applications.
Note:
This setting might be required at your site when restarting broker
immediately after stopping it. This is due to the inherent latency of the
TCP/IP stack when closing connections.

STACK-NAME

(o [[[w] |

Name of the TCP/IP stack that the broker is using.

If not specified, broker will connect to the default TCP/IP stack running on the
machine.

TRACE-LEVEL

0 o0 [2 [w [w] o

The level of tracing to be performed while the broker is running with transport
method SSL/TLS. It overrides the global value of trace level for all SSL/TLS
routines.

0 No tracing. Default value.

1 Display IP address of incoming request, display error number of outgoing
eITor responses.

2 All of trace level 1, plus errors if request entries could not be allocated.
3 All of trace level 2, plus all routines executed.

4 All of trace level 3, plus function arguments and return values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG
support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the
change to take effect. For temporary changes to TRACE - LEVEL without a broker
restart, use the EntireX Broker command-line utility ETBCMD.

TRUST-STORE

f7’7ename|keyr7’ng‘ R | z | u ‘ w ‘ ‘ b

Location of the store containing certificates of trust Certificate Authorities (or
CAs).

= z/OS
Specify the RACF keyring using the following format: [USER- 1D/ 1RING-NAME.
If no value for USER- 1D is provided, the keyring is assumed to be associated
with the user ID that the broker kernel is running under.

Broker

95

Broker Attributes

Opt/ Operating System
Attribute Values Req z/0S | UNIX ‘Windows’ zIVSE lBszooo

= UNIX/Windows/BS2000

Specify the file name of the CA certificate store. Examples: EXXCACERT . PEM,
C:\Certs\ExxCACert.pem

VERIFY-CLIENT NO | YES ‘ 0 | z |

YES Additional client certificate required.

NO No client certificate required (default).

Broker

Broker Attributes

DIV-specific Attributes

These attributes define a persistent store that is implemented as a VSAM linear data set (LDS) ac-
cessed using Data In Virtual (DIV). This DIV persistent store is a container for units of work. The
DIV-specific attribute section begins with the keyword DEFAULTS = DIV. The attributes in this
section are required if PSTORE-TYPE = DIV is specified.

| Note: All attributes except the deprecated DIV were introduced with EntireX version 9.12.

They replace the Format Parameters of earlier versions, which are deprecated but still sup-
ported for compatibility reasons.

Opt/ Operating System
Attribute Values Req z/0S UNIX | Windows | 2z/VSE | BS2000
DIV A511 o 5

"

The VSAM persistent store parameters, enclosed in double quotes (""). The value can

span more than one line.

Note: Deprecated. This attribute is applicable only if you are supplying the persistent

store parameters using Format Parameters of earlier versions. We recommend you use
the attributes below that were introduced with EntireX 9.12 instead.

DATASPACE-NAME

8 o] -1 1 | |

Defines the name of the dataspace that will be used to map the persistent store.

Default value is DSPSTORE.

DATASPACE-PAGES

126-524284 ‘ O ‘ z ‘ ‘ | ‘

Defines the size of the dataspace used to map the persistent store
(size=DATASPACE-PAGES * 4 KB). We recommend using the maximum value.

Default value is 2048.
DDNAME A8 | R | z | | | |
Defines the JCL DDNAME that will be used to access the persistent store.
STORE A8 | R | z | | | |

Defines an internal name that is used to identify the persistent store.

TRACE-LEVEL

L4 | o | = | | | |

Trace level for DIV. It overrides the global value of trace level in the attribute file.

0 No tracing. Default value.

1 Log selected DIV SAVE calls taking longer than 2 seconds elapsed time.
2 n/a

3 All of trace level 1, plus UOWID in use for the various DIV requests.

4 n/a

Broker

97

Broker Attributes

Attribute

Values

Opt/
Req

Operating System

z/0S ‘ UNIX ‘Windows| zIVSE ‘BSZOOO

Trace levels 2, 3 and 4 should be used only when requested by Software AG support.

If you modify the TRACE- LEVEL attribute, you must restart the broker for the change
to take effect. For temporary changes to TRACE - LEVEL without a broker restart, use
the EntireX Broker command-line utility ETBCMD.

98

Broker

Broker Attributes

Adabas-specific Attributes

The Adabas-specific attribute section begins with the keyword DEFAULTS = ADABAS. The attributes
in this section are required if PSTORE-TYPE = ADABAS is specified. In previous versions of EntireX,
these Adabas-specific attributes and values were specified in the broker-specific PSTORE-TYPE at-

tribute.
opt/ Operating System

Attribute Values Req z/0S UNIX Windows | z/VSE BS2000

BLKSIZE 126-20000 @) z u A4 v b
Optional blocking factor used for message data. If not specified, broker will split the message
data into 2 KB blocks to be stored in Adabas records. The maximum value depends on the
physical device assigned to data storage. See the Adabas documentation.

For reasons of efficiency, do not specify a BLKSIZE much larger than the actual total size
of the UOW data to be written. The total UOW size is the sum of all messages in the UOW
plus 41 bytes of header information. This takes effect only after COLD start.

The BLKSIZE parameter applies only for a cold start of broker; subsequently the value of
BLKSIZE is taken from the last cold start.

Default value is 2000.

DBID 1-32535 | R | oz | u [w | v | b
Database ID of Adabas database where the persistent store resides.

FNR 1-32535 | R | oz | u | w | v [b
File number of broker persistent store file.

FORCE-COLD [N 1Y | o | z | u | w | v | b
Determines whether a broker cold start is permitted to overwrite a persistent store file that
has been used by another broker ID and/or platform.

Specify Y to allow existing information to be overwritten.

MAXSCAN — [0-n | o | z | u | w | v | b
Limits display of persistent UOW information in the persistent store through Command
and Information Services.

Default value is 1000.

OPENRQ [N Y | o | z | u [w | v | b
Determines whether driver for Adabas persistent store is to issue an OPEN command to
Adabas.

svC 200-255 | R | oz | | v
Use this parameter to specify the Adabas SVC number to be used by the Adabas persistent
store driver.

Broker 99

Broker Attributes

Attribute

Opt/ Operating System

Values Req z/0S UNIX Windows zIVSE BS2000

TRACE-LEVEL

0-4 O z u w v b

Trace level for Adabas persistent store. It overrides the global value of trace level in the
attribute file.

0 No tracing. Default value.
1 Log selected Adabas CB fields (command code, response code, subcode, ISN, additions).
2 n/a

3 All of trace level 1, plus UOWID in use for the various Adabas requests and function
entered/exit mesages.

4 All of trace level 3, plus more Adabas CB fields for successful requests and returned
function values.

Trace levels 2, 3 and 4 should be used only when requested by Software AG support.

If you modify the TRACE - LEVEL attribute, you must restart the broker for the change to
take effect. For temporary changes to TRACE - LEVEL without a broker restart, use the EntireX
Broker command-line utility ETBCMD.

100

Broker

Broker Attributes

Application Monitoring-specific Attributes

The application monitoring-specific attribute section begins with the keyword
DEFAULTS=APPLICATION-MONITORING. It contains attributes that apply to the application monitoring
functionality. At startup time, the attributes are read if the Broker-specific attribute
APPLICATION-MONITORING=YES is specified. Duplicate or missing values are treated as errors. When
an error occurs, application monitoring is turned off and EntireX Broker continues execution. See

Application Monitoring.

APPMON-NAME

opt/ Operating System
Attribute Values Req | z/OS | UNIX [Windows |z/VSE [BS2000
APPLICATION-MONITORING-NAME or|{A100 O z u w v b

Specifies a default application monitoring name. Used to set the
value of the ApplicationName KPL

COLLECTOR-BROKER-ID

AG4 Rz | u] w [v]ob®

Identifies the Application Monitoring Data Collector. Has the format
host_name:port_number, where host_name is the host where the
Application Monitoring Data Collector is running and port_number

is the port number of the Application Monitoring Data Collector.
The default port is 57900.

TRACE-LEVEL

0-4 | (@) ‘ z | u ’ w ‘ v ‘ b
The level of tracing to be performed while the broker is running
with application monitoring.

0 No tracing. Default value.
1 Display application monitoring errors.

2 All of trace level 1, plus measuring points for application
monitoring.

3 All of trace level 2, plus function entered/exit messages with
argument values and monitoring buffers.

4 All of trace level 3, plus returned function values.

Trace levels 2, 3 and 4 should be used only when requested by
Software AG support.

If you modify the TRACE - LEVEL attribute, you must restart the
broker for the change to take effect. TRACE - LEVEL cannot be changed
dynamically for application monitoring.

Broker

101

Broker Attributes

Authorization Rule-specific Attributes

The authorization rule-specific attribute section begins with the keyword
DEFAULTS=AUTHORIZATION-RULES. It contains attributes that enhance security-related definitions.
At startup time, the attributes are read if the following conditions are met:

" Broker-specific attribute SECURITY=YES

" Security-specific attributes SECURITY-SYSTEM=0S and SECURITY-LEVEL=AUTHORIZATION

When an error occurs, the EntireX Broker stops. See Authorization Rules.

Opt/ Operating System
Attribute Values Req z/0S UNIX Windows | z/VSE BS2000
RULE-NAME A32 R u w
Specifies a rule name. A rule is a container for a list of services and a list of client and
server user IDs. All users defined in a rule are authorized to use all services defined in
this rule. See example under Rules Stored in Broker Attribute File.
CLASS A32 | R | | u [oW |
ggg ;:EE These three attributes together identify the service. CLASS must be specified first,

followed immediately by SERVER and SERVICE. Wildcard Service Definitions are
allowed.

CLIENT-USER-ID

a2 I I N A |

Defines an authorized client user ID.

SERVER-USER-ID

A32 R u w

Defines an authorized server user ID.

102

Broker

Broker Attributes

Variable Definition File

The broker attribute file contains the configuration of one EntireX Broker instance. In order to
share attribute files between different brokers, you identify the attributes that are unique and
move them to a variable definition file. This file enables you to share one attribute file among
different brokers. Each broker in such a scenario requires its own variable definition file.

The following attributes are considered unique for each machine:

® BROKER-ID (in Broker-specific Attributes)

® NODE (in Adabas SVC/Entire Net-Work-specific Attributes)

® PORT (in SSL/TLS-specific Attributes and TCP/IP-specific Attributes)

How you use the variable definition file will depend upon your particular needs. For instance,

some optional attributes may require uniqueness - for example, DBID and FNR in DEFAULTS=ADABAS
- so that you may specify the persistent store.

Broker 103

104

I I I Broker Command and Information Services

105

106

7 Broker Command and Information Services

CIS OVEIVIEW TADIE ...t e et e et e e e e ettt e e e e e e e e eraeeeeas
Modes 0f ReQUESHING the SEIVICESeiiiiiiiiie e
ETBCMD: Executable Command REQUESEScciiiriiiiiiiiieiie e
ETBINFO: Returnable Information REQUESESeviiiiiiiiiii e

107

Broker Command and Information Services

EntireX Broker provides two internal services: Command Service and Information Services that
can be used administer and monitor the EntireX Broker. The command service allows you to issue
a set of Broker commands; the information services provide you with various statistics to better
administer and tune your Broker. Because these services are implemented internally, nothing has
to be started or configured. You can use these services immediately after starting EntireX Broker.

See also Broker CIS Data Structures.

CIS Overview Table

EntireX Broker provides these predefined internal services:

* Command Service
Provides a facility to issue commands against the Broker (e.g. SHUTDOWN etc.).

* Information Services
Provides a query mechanism to obtain various types of information on the Broker, which is
helpful for administration and tuning.

Since these services are implemented internally, nothing has to be started, configured or defined
in the Broker attribute file. You can use them immediately after starting the Broker. They can be
requested as follows:

Mode of Request Tools Services Requirements
User-Written Interface |application program|= INFO " request structures
® USER-INFO
= CMD

® PARTICIPANT-SHUTDOWN
® SECURITY-CMD

Command-line Utilities | ETBINFO utility = INFO = profile
= USER-INFO ® command-line
parameters
ETBCMD utility = CMD = command-line

= PARTICIPANT-SHUTDOWN| Parameters
= SECURITY-CMD

Applicable operating systems: z/OS, UNIX, Windows and z/VSE.

108 Broker

Broker Command and Information Services

Description of Services

INFO and USER-INFO

" INFOis the full information service. Specify it for the full information service. All clients, servers
and conversations are listed.

" USER-INFO0islimited to your user-specific information. Specify it for limited information service.
Only the user's own resources are listed.

CMD, PARTICIPANT-SHUTDOWN and SECURITY

® CMD is the full command service.
® PARTICIPANT-SHUTDOWN is limited to shutting down participants.
® SECURITY-CMD is limited to EntireX Security-related commands.

Modes of Requesting the Services

Use one of these three modes to request a service:

= Command-line Utilities
= Graphical User Interface
= User-Written Interface

The method for requesting these services is the same as the method for requesting any other service.
For both types of services, an application issues a SEND command with appropriate data and re-
trieves a reply. The request itself is specified within the SEND buffer; the reply - if there is one - is
specified in the RECEIVE buffer.

For Information Services requests, RECEIVE operations must be repeated until the Information
Service indicates the end of data with an EOC return message.

Command-line Utilities

Software AG provides three command-line utility programs for use with EntireX Broker. All
utility programs use command-line parameters that specify various options and information to
be built into a request. These utility programs are:

® ETBINFO
Queries the Broker for different types of information, generating an output text string with basic
formatting. This text output can be further processed by script languages (or elsewhere). ETBINFO
uses data descriptions called profiles to control the type of data that is returned for a request.
ETBINFO is useful for configuring and administering EntireX Broker efficiently - e.g., how many

Broker 109

Broker Command and Information Services

users are to run concurrently and whether the number of specified message containers is large
enough.

See ETBINFO under Broker Command-line Utilities in the platform-specific Administration docu-
mentation for profiles, examples and utility parameters.

® ETBCMD
Allows you to take actions - e.g., purge a unit of work, stop a server, shut down a Broker - against
EntireX Broker.

See ETBCMD under Broker Command-line Utilities in the platform-specific Administration docu-
mentation for utility parameters.

Version Information

® The ETBINFO and ETBCMD CIS command-line utilities are compatible with all versions of EntireX
Broker.

® Display keywords applying to a specific version of Broker will not be returned when a call is
made to any older version of Broker.

Graphical User Interface

Software AG provides a graphical user interface, Command Central, for displaying information
on the Broker and/or executing administrative functions. Software AG Command Central is a tool
that enables you to manage your Software AG products remotely from one location. Command
Central offers a browser-based user interface, but you can also automate tasks by using commands
to remotely execute actions from a terminal or custom script (for example CI servers such as Jenkins,
or generic configuration management tools such as Puppet or Chef).

Command Central can assist with the following configuration, management, and monitoring tasks:
* Infrastructure engineers can see at a glance which products and fixes are installed, where they

are installed, and compare installations to find discrepancies.

" System administrators can configure environments by using a single web user interface or
command-line tool. Maintenance involves minimum effort and risk.

" Release managers can prepare and deploy changes to multiple servers using command-line
scripting for simpler, safer lifecycle management.

" Operators can monitor server status and health, as well as start and stop servers from a single
location. They can also configure alerts to be sent to them in case of unplanned outages.

110 Broker

Broker Command and Information Services

User-Written Interface

If you access the Command and Information Services through a user-written application, you
must use a defined protocol. This protocol describes the structures needed to communicate with
the service(s) so that the request is correctly interpreted by the Broker.

See Writing Applications: Command and Information Services and Broker CIS Data Structures.

ETBCMD: Executable Command Requests

The following command requests can be issued, using ETBCMD. All the functions listed in this table
are applicable to all three request modes; see Modes of Requesting the Services.

] Note: Version numbers in this table refer to the interface version and not to the Broker ver-

sion.

DYNAMIC-WORKER-MANAGEMENT.
DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.

CIS
Interface
Command Request Comment Version
APPMON-OFF Turn off the Application Monitoring |11
feature in Broker. In addition to
changing the current status,
APPLICATION-MONITORING=NO is
written to the Broker attribute file.
APPMON-ON Turn on the Application Monitoring |11
feature in Broker. You must specify
the collector broker ID. In addition to
changing the current status,
APPLICATION-MONITORING=YES is
written to the Broker attribute file.
ALLOW-NEWUOWMSGS New UOW messages are allowed. |3
CLEAR-CMDLOG-FILTER Remove the specified command log |5
filter.
CONNECT-PSTORE Connects the persistent store. See 4
Awailability of Persistent Store.
DISABLE-ACCOUNTING Disables accounting. Accounting 5
records are discarded until accounting
is enabled.
DISABLE-CMDLOG Disable command logging.
DISABLE-DYN-WORKER Disable the 7

Broker

M

Broker Command and Information Services

Command Request

Comment

CIS
Interface
Version

The current number of active worker
tasks will not be changed until
DYNAMIC-WORKER-MANAGEMENT is
enabled again.

DISCONNECT-PSTORE

Disconnects the persistent store. See
Availability of Persistent Store.

ENABLE-ACCOUNTING

Enable accounting.

ENABLE-CMDLOG

Enable command logging.

Q1

ENABLE-DYN-WORKER

Enable the
DYNAMIC-WORKER-MANAGEMENT again.
DYNAMIC-WORKER-MANAGEMENT=YES
must be configured in the attribute file.
DYNAMIC-WORKER-MANAGEMENT has
been disabled before. Additional
worker tasks can be started again, or
stopped if not used.

FORBID-NEWUOWMSGS

New UOW messages are not allowed.

(€8]

PRODUCE-STATISTICS

Output current statistics to the broker
log.

PURGE

Remove a unit of work from the
persistent store.

RESET-USER

Clear all cached security information
for the specified user ID.

RESUME

Transport ID: NET | Snn|Tnn. Resume
a suspended transport communicator.
If the communicator was not
suspended before, an error message
will be returned.

SET-CMDLOG-FILTER

Add the specified command log filter.

SET-COLLECTOR

Set the collector broker ID in Broker.
COLLECTOR-BROKER-ID=valueis
written to the Broker attribute file. If
the APPLICATION-MONITORING
section is not already defined in the
attribute file, the section is added, that
is, a line containing DEFAULTS =
APPLICATION-MONITORING followed
by attribute
COLLECTOR-BROKER-ID=value.

11

12

Broker

Broker Command and Information Services

Command Request

Comment

CIS
Interface
Version

SET-UOW-STATUS

PSF

Set the status of postponed UOWs to
ACCEPTED or CANCELLED, for example:

etbcmd -b<broker_id> <«
-cSET-UOW-STATUS -dPSF «
-0ACCEPTED <
-n<class>/<server>/<service>

10

SHUTDOWN BROKER

Shutdown Broker immediately.

—_

CONVERSATION
<conversation-id>

Command applies to conversations without units of
work only. The security rights shutting down the
service are required for shutting down the

conversation.

IMMED

The specified conversation is
immediately removed. All messages
of the conversation are lost.

QUIESCE

An end of conversation is issued. The
conversation remains active.

SERVER

IMMED

Shutdown server immediately. The
server must be uniquely identified
using field P-USER-ID or SEQNO and
will be completely removed from the
broker environment.

The following steps will be performed:

= Error code 00100050 will be returned
to the server, if it is waiting.

= All existing conversations will be
finished with EOC.

= User will be logged off.

QUIESCE

Shutdown server but allow existing
conversations to continue.

The termination is signaled to the
server by error code 00100051. After
this, the next call issued must be a
DEREGISTER for all services
(SC=*,SN=*,SV=* if more than one
service is active).

SERVICE

Internal services cannot be shut down.

{class/server/service>

IMMED

Caution: All servers offering this
service will be deregistered and logged

Broker

13

Broker Command and Information Services

Command Request

Comment

CIS
Interface
Version

off. The following steps will be
performed:

® Error code 00100050 will be replied
to all servers, if they are waiting.

= All existing conversations will be
finished with EOC.

= Users will be logged off.

QUIESCE

All servers offering this service are
deregistered. Shutdown servers but
allow existing conversations to
continue. The termination is signaled
to the servers by error code 00100051.
After this, the next call issued must be
a DEREGISTER for the service.

PARTICIPANT

IMMED

Shutdown participant immediately.
The participant must be identified,
using fields P-USER-ID, UID TOKEN
or SEQNO and will be completely
removed from the Broker
environment. See Broker CIS Data
Structures.

The following steps will be performed:

® Error code 00100050 will be replied
to the participant, if it is waiting.

= All existing conversations will be
finished with EOC.

= User will be logged off.

Within EntireX Broker
nomenclature, a participant is an
application implicitly or explicitly
logged on to the Broker as a specific
user. See Implicit Logon and Explicit
Logon. A participant could act as
client or server.

QUIESCE

Shutdown participant but allow
existing conversations to continue. The
termination is signaled to the
participant by error code 00100051.

14

Broker

Broker Command and Information Services

CIS
Interface
Command Request Comment Version
START TRANSPORT Transport ID: |Start a transport communicator that |7
NET | Snn| Tnn|was previously stopped. If the
communicator was not stopped before,
an error message will be returned.
STATUS TRANSPORT Transport ID: |Check the current status of the 7
NET | Snn| Tnn|transport communicator.
STOP TRANSPORT Transport ID: |Stop an active or suspended transport |7
NET | Snn| Tnn|communicator. The transport
communicator will shut down. All
transport-specific resources will be
freed. User requests receive response
code 148.
SUSPEND TRANSPORT Transport ID: |Suspend an active transport 7
NET | Snn| Tnn|communicator.
SWITCH-CMDLOG Force a switch of command logging |5
output files.
TRACE-FLUSH|BROKER Flush all trace data kept in internal |7
trace buffers to stderr (DD: SYSOUT).
The broker-specific attribute
TRMODE=WRAP is required.
TRACE-OFF |BROKER Set TRACE-LEVEL off in Broker. 1
PSF Set TRACE-LEVEL off in persistent |5
store.
SECURITY Set TRACE-LEVEL off in EntireX 5
Security.
TRACE-ON BROKER Set TRACE-LEVEL onin Broker. Values: |1
1121314,
PSF Set TRACE-LEVEL on in persistent 5
store. Values: 1 12 | 3 | 4.
SECURITY Set TRACE-LEVEL on in EntireX 5
Security. Values: 1 12 1 3 | 4.
TRAP-ERROR [BROKER Error number:|Modifies the setting of the 7
nnnn broker-specific attribute TRAP - ERROR.

Broker

15

Broker Command and Information Services

ETBINFO: Returnable Information Requests

The following information requests can be returned. All the functions listed in this table are ap-
plicable to all three request modes (see Modes of Requesting the Services). The returned data is

described under Information Reply Structures in the ACI Programming documentation.

] Note: Version numbers in this table refer to the interface version and not to the Broker ver-

sion.

Interface
Information Request|Comment Version
BROKER Global information on this Broker. No additional selection criteria are needed. |1
Other selection criteria fields are ignored.
CLIENT Information on active clients. 1
CMDLOG-FILTER |Information on command log filters. 5
CONVERSATION |Information on active conversations. 1
NET Information on the Entire Net-Work communicator. 5
POOL Information on Broker pool usage and dynamic memory management. 7
PSF Information on a unit of work's status and Information for persistent store. |2
PSFDIV Global information on the DIV persistent store. 2
PSFADA Global information on the Adabas persistent store. 3
PSFCTREE Global information on the c-tree persistent store. 5
RESOURCE Information on Broker resource usage. 7
SECURITY Global information on EntireX Security. 5
SERVER Information on active servers. 1
SERVICE Information on active services. 1
SSL Information on the SSL communicator. 5
STATISTICS Statistics on selected Broker resources. 7
TCP Information on the TCP/IP communicator. 5
UOW-STATISTICS|Statistics on UOWs of selected services. 9
USER Information on all users of Broker regardless of the user type. 7
WORKER Global information on all workers. No additional selection criteria are needed. |1
Other selection criteria fields are ignored.
WORKER_USAGE |Information on usage of worker tasks and dynamic worker management. 7

116

Broker

IV EntireX Broker Reporting

This chapter details the reporting options of EntireX Broker.

Configuration Report

EntireX Broker reads configuration information from an attribute file during startup. In order to
reduce the number of different attribute files, you may define a global attribute file and specify
the individual settings within a variable definitions file. Thus unique attributes like BROKER-ID
and PORT are kept as part of the variable definitions file, while other parameters such as service
definitions can be shared among a group of Broker instances. This feature is described in detail
in Variable Definition File.

In the past there was a one-to-one relationship between Brokers and attribute files. To determine
your Broker configuration, you could reference your attribute file. Now that you may create a
global attribute file and substitute parameters at startup, it may not be clear what configuration
was used to start your Broker. To see the exact configuration used at startup, you can now view
the configuration report for each Broker. The configuration report will display exactly which values
were used for each attribute at startup.

Here is a sample configuration report:

EntireX 8.0.0.12 Configuration Report 2007-10-02 08:56:23 Page 1

Variable definitions file:
1: BID = ETB191

2: N =113

3: P = HOT

4: PCA = localhost:3938:SSL
5: PT = ADABAS

6: RM = STANDARD

7: SP = 3939

8: TP = 3930

9: TR = SSL-TCP-NET

"7

EntireX Broker Reporting

Entirex 8.0.0.0 Configuration Report 2007-10-02 08:56:23 Page

Attribute file:
1

O N O OB~ W

R RR R R R R b b R e b b R e S b b R e b R e b b b b e S b b e e b b R e e b R e e i b R e i b R R e b b e b b Y

. % *
g W EntireX Broker Attribute File %
. * ES

PR B b R e b R e b R R e e b b e b b e e b b e e b b R e e b i e e b b b S e b b S e S b b i e S b b S e e b b b e 4

o kkkkAhkkkhkkAhkAkhkAkAkAkhkA Ak AkAK G]Oba] Sectjon B R R R R B R B R R b e e e b e b e e e b e g

: DEFAULTS = BROKER

14

ABEND-MEMORY -DUMP = NO
ACCOUNTING = NO
AUTOLOGON = YES
BROKER-ID = ${BID}

- Substitution: ${BID} = ETB191
CLIENT-NONACT

15M

2

The contents of the variable definitions file and the contents of the attribute file are copied to this
configuration report. In addition, all variables in the attribute file will be appended by another

line reporting the effective value for the variable. Thus, it's possible to keep track of the substitution
procedure.

On UNIX and Windows, a file called CONFIG.REPORT is created in the current working directory
of Broker. The environment variable ETB_CONFIG_REPORT may contain an alternative location.
However, on z/OS, DDNAME ETBCREP is required to assign an output file for this report. Any failure
will trigger a diagnostic message in the Broker log.

Load Module Report

The Load Module Report is created during startup of EntireX Broker on z/OS. All modules in all
data sets concatenated to the STEPLIB chain for Broker execution are listed.

Operating System: z/0S 06.00

Node Name: DAEF

IPL Date: 2007-10-02

IPL Time: 07:19:21

CPU Model: 2096

EntireX 8.0.0.12 Load Module Report 2007-10-02 08:56:23 Page 1

Total Module Date Time VRSPP Build number Alias Level CurNo

Steplib level 0: SAG.EXB731.LO0OAD

1 ADAACK NO 0 1
2 ADABSP NO 0 2
3 ADACDC NO 0 3
4 ADACLU NO 0 4
5 ADACLX NO 0 5

118 Broker

EntireX Broker Reporting

6 ADACMO NO 0 6
7 ADACMP NO 0 7
8 ADACMR NO 0 8
9 ADACMU NO 0 9
10 ADACNS NO 0 10
11 ADACNV NO 0 11
156 ETBCMD 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 156
157 ETBINFO 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 157
158 ETBMISC NO 0 158
159 ETBNATTR 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 159
160 ETBNUC 2007-10-01 15.48 73012 2007-10-01 15:01 NO 0 160

This report provides STEPLIB level, date, and time stamps if a certain pattern is used for the
module structure. DDNAME ETBMREP must be assigned to get this report.

Storage Report

You can create an optional report file that provides details about all activities to allocate or to
deallocate memory pools. This section details how to create the report and provides a sample report.

= Creating a Storage Report
= Platform-specific Rules
= Sample Storage Report

See also Broker-specific attribute STORAGE - REPORT.
Creating a Storage Report

Use Broker's global attribute STORAGE - REPORT with the value YES. If attribute value YES is supplied,
all memory pool operations will be reported if the output mechanism is available. If the value NO
is specified, no report will be created.

Platform-specific Rules

z/OS
DDNAME ETBSREP assigns the report file. Format RECFM=FB, LRECL=121 is used.
UNIX and Windows

Broker creates a file with the name STORAGE.REPORT in the current working directory. If the
environment variable ETB_STORAGE_REPORT is supplied, the file name specified in the environment
variable will be used. If Broker receives the command-line argument - r, the token following argu-
ment - r will be used as the file name.

Broker 119

EntireX Broker Reporting

BS2000

LINK-NAME ETBSREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM

is used by default.

z/VSE

Logical unit SYS015 and logical file name ETBSREP are used. Format RECORD-FORMAT=FB,

RECORD-LENGTH=121 is used.

Sample Storage Report

The following is an excerpt from a sample STORAGE report.

EntireX 8.1.0.00 STORAGE Report 2009-06-26 12:28:58 Page 1
Identifier Address Size Total Date Time Action
KERNEL POOL 0x25E48010 407184 bytes 407184 bytes 2009-06-26 12:... Allocated
HEAP POOL 0x25EB4010 1050692 bytes 1457876 bytes 2009-06-26 12:... Allocated
Header Description
Identifier |[Name of the memory pool.
Address |Start address of the memory pool.
Size Size of the memory pool.
Total Total size of all obtained memory pools.
Date, Time |Date and time of the action.
Action The action of Broker. The following actions are currently supported:

Allocated: memory pool is allocated.

Deallocated: memory pool is deallocated.

Persistent Store Report

You can create an optional report file that provides details about all records added to or deleted
from the persistent store. This section details how to create the report and provides a sample report.

= Configuration

120

Broker

EntireX Broker Reporting

= Sample Report
Configuration

To create a persistent store report, use Broker's global attribute PSTORE-REPORT with the value YES.

When the attribute value YES is supplied, all created or deleted persistent records will be reported
if the output mechanism is available.

If the value NO is specified, no report will be created.
The report file is created using the following rules:
BS2000

LINK-NAME ETBPREP assigns the report file. Format REC-FORM=V, REC-SIZE=0, FILE-TYPE ISAM
is used by default.

UNIX

Broker creates a file with the name PSTORE.REPORT in the current working directory. The file
name PSTORE.REPORT.LOAD will be used if Broker is started with RUN-MODE=PSTORE - LOAD.

The file name PSTORE.LOAD.UNLOAD will be used if Broker is started with RUN-MODE =
PSTORE-UNLOAD.

If the environment variable ETB_PSTORE_REPORT is supplied, the file name specified in the envir-
onment variable will be used.

If Broker receives the command-line argument - p, the token following argument -p will be used
as the file name.

Windows

Same as UNIX.

z/OS

DDNAME ETBPREP assigns the report file. Format RECFM=FB, LRECL=121 is used.
z/VSE

Logical unit SYS003 and logical file name ETBPREP are used. Format RECORD- FORMAT=FB, RECORD-
LENGTH=121 is used.

Broker 121

EntireX Broker Reporting

Sample Report

The following is an excerpt from a sample PSTORE report.

Entirex 10.5

Identifier

0000000000000000
0010000000000001
0010000000000002
0010000000000003
0010000000000001
0010000000000001
0010000000000002
0010000000000002
0010000000000003
0010000000000003
0010000000000003
0010000000000003
0010000000000001
0010000000000002
0010000000000003

The following fields are provided in the report:

" Identifier provides the UOWID (record ID).

Elements
1

1
1
1

PSTORE Report

Total

2016-10-18 10:46:18

length
760
5022
5022
5022

Record Type
Master

Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation
Conversation

Page

Date

1

2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18. ..
2016-10-18...
2016-10-18. ..

Action
Created
Created
Created
Created
Postponed
Accepted
Postponed
Accepted
Postponed
Accepted
Postponed
Accepted
Delleted
Deleted
Deleted

" Elements gives the number of messages per UOW when creating or loading records.

" Total Length gives the size of the raw record when creating or loading records.

" Record Type describes the type of the data. Following types are currently supported:

" Cluster: a special record for synchronization purposes

® Conversation: a unit of work as part of a conversation

" Master: a special record to manage the persistent store

= Date and time of the action

" Action describes the action of Broker. The following actions are currently supported:

" Accepted: UOW status was changed from POSTPONED to ACCEPTED

® Created: record is created

B Deleted: record is deleted

" Postponed: UOW status was changed from DELIVERED to POSTPONED

" loaded: record is loaded (Broker instance with RUN-MODE = PSTORE - LOAD)

" Unloaded: record is unloaded (Broker instance with RUN-MODE = PSTORE - UNLOAD)

® Remaining postpone attempts.

122

Broker

EntireX Broker Reporting

License Report

The License Report is created during broker startup on the respective platform. It contains the
contents of the license file itself and some machine data.

z/0S

DDNAME ETBLREP must be assigned to get this report. See Step 2: Edit the Broker Startup Procedure.

BS2000

LINK-NAME ETBLREP must be assigned to get this report.

Broker 123

124

8 Command Logging in EntireX

= |ntroduction t0 COMMANA LOGGINGveeeiiiiiieeiiiie et 126
= Command Log Filtering using Command-line Interface ETBCMDcccoeviiiiiiiieiiiiiee e 128
= ACI-driven CommMand LOGUINGeeeiuiieieeaiiiie ettt et e et e e e e e 130
= Dual Command LOG FlESooiiiiie i 130

125

Command Logging in EntireX

Command logging is a feature to assist in debugging Broker ACI applications. A command in this
context represents one user request sent to the Broker and the related response of Broker.

Command logging is a feature that writes the user requests and responses to file in a way it is
already known with Broker trace and TRACE-LEVEL=1. But command logging works completely
independent from trace, and data is written to a file only if defined command trace filters detect
a match.

Broker stub applications send commands or requests to the Broker kernel, and the Broker kernel
returns a response to the requesting application. Developers who need to resolve problems in an
application need access to those request and response strings inside the Broker kernel. That's
where command logging comes in. With command logging, request and response strings from or
to an application are written to a file that is separate from the Broker trace file.

Introduction to Command Logging

This section provides an introduction to command logging in EntireX and offers examples of how
command logging is implemented. It covers the following topics:

= Qverview

= Command Log Files

= Defining Filters

= Programmatically Turning on Command Logging

Overview

Command logging is similar to a Broker trace that is generated when the Broker attribute TRACE -
LEVEL is set to 1. Broker trace and command logging are independent of each other, and therefore
the configuration of command logging is separate from Broker tracing.

The following Broker attributes are involved in command logging:

Attribute Description

CMDLOG Set this to "N" if command logging is not needed.

CMDLOG-FILE-SIZE |A numeric value indicating the maximum size of command log file in KB.

NUM-CMDLOG- FILTER|The maximum number of filters that can be set.

In addition to CMDLOG=YES, the Broker needs the assignment of the dual command logging files
during startup. If these assignments are missing, Broker will set CMDLOG=NO. See also Broker Attributes.

126 Broker

Command Logging in EntireX

Command Log Files

The Broker keeps a record of commands (request and response strings) in a command log file.

At Broker startup, you will need to supply two command log file names and paths. Only one file
is open at a time, however, and the Broker writes commands (requests and responses) to this file.

Under UNIX and Windows, the startup options -y and -z are evaluated by executable etbnuc.
These options are used to specify the command log file names. Startup script/service assign these
files by default.

Under z/OS, the file requirements are two equally sized, physical sequential files defined with a
record length of 121 bytes, i.e.

DCB=(LRECL=121,RECFM=FB,BLKSIZE=nnnn). We recommend you allocate files with a single
(primary) extent only. For example SPACE=(CYL, (30,0)). The minimum file size is approximately
3 cylinders of 3390 device. Alternatively, the dual command log files can be allowed in USS HFS
file system.

When the size of the active command log file reaches the KB limit set by CMDLOG-FILE-SIZE, the
file is closed and the second file is opened and becomes active. When the second file also reaches
the KB limit set by CMDLOG-FILE-SIZE, the first file is opened and second file is closed. Existing
log data in a newly opened file will be lost.

Defining Filters

In command logging, a filter is used to store and identify a class, server, or service, as well as a
user ID.

Use the command-line tool etbcmd to define a filter. During processing, the Broker evaluates the
class, server, service, and user ID associated with each incoming request and compares them with
the same parameters specified in the filters. If there is a match, the request string and response
string of the request is printed out to the command log file.

Programmatically Turning on Command Logging

Applications using ACI version 9 or above have access to the new field L0G-COMMAND in the ACI
control block.

If this field is set, the accompanying request and the Broker's response to this request is logged to
the command log file.

Note: Programmatic command logging ignores any filters set in the kernel.

Broker 127

Command Logging in EntireX

Command Log Filtering using Command-line Interface ETBCMD

The examples assume that Broker has been started with the attribute CMDLOG=Y.

= Setting Filters
= Deleting Filters
= Disabling and Enabling a Filter

Setting Filters

Filters need to be set before running the stub applications whose commands are to be logged.

UNIX and Windows

Command

Description

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE

This command sets filters on
ACLASS/ASERVER/ASERVICE. All ACI calls issued by
all users to this service will be logged.

etbcmd -blocalhost:1970:TCP
-cSET-CMDLOG-FILTER -dBROKER -xuser
-nACLASS/ASERVER/ASERVICE -Usaguserl

This command set filters on
ACLASS/ASERVER/ASERVICE anduserID saguserl.
All ACI calls to this service as well as those issued by
saguserl will be logged.

z/OS
Command Description
//ETBCMD EXEC PGM=ETBCMD, This command sets filters on

// PARM=('/-blocalhost:1970:TCP <
-CSET-CMDLOG-FILTER -xuser ',

[/ '-dBROKER «
-NACLASS/ASERVER/ASERVICE")

ACLASS/ASERVER/ASERVICE. All ACI calls
issued by all users to this service will be logged.

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP «
-cSET-CMDLOG-FILTER -xuser ',

-Usaguserl")

// '-dBROKER -nACLASS/ASERVER/ASERVICE <

This command sets filters on
ACLASS/ASERVER/ASERVICE and user ID
saguserl. All ACI calls to this service as well as
those issued by saguserl will be logged.

] Note: If more than one service is set as a filter, all ACI calls sent to any of these services will

be logged. Identical filters cannot be set. Attempts to set a second filter that matches an ex-
isting filter will be rejected. Similarly, the maximum number of filters that can be added is
defined in NUM-CMDLOG- FILTER. If the maximum number of filters is already being used,
delete an existing filter to make room for a new filter.

128

Broker

Command Logging in EntireX

Deleting Filters
The following provides an example of how to delete an existing filter on a service.

> To delete a filter

= Enter the following command.

Under UNIX:

etbcmd -d BROKER -b Tocalhost:1970:TCP -c¢ CLEAR-CMDLOG-FILTER «
-nACLASS/ASERVER/ASERVICE -U saguserl

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cCLEAR-CMDLOG-FILTER -xuser ',
!/ '-dBROKER -nACLASS/ASERVER/ASERVICE")

If the filter does not exist, the command will return an error.
Disabling and Enabling a Filter

Filters can be set and still be disabled (made inactive).

> To disable a filter

= Enter the following command.

Under UNIX:

etbcmd -blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -dBROKER -xuser <«
-nACLASS/ASERVER/ASERVICE -Usaguserl

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cDISABLE-CMDLOG-FILTER -xuser ',
// '-dBROKER -nACLASS/ASERVER/ASERVICE -Usaguserl')

| Note: A disabled filter will not bring down the count of filters in use.

> To enable a filter

= Enter the following command to enable the disabled filter.

Broker 129

Command Logging in EntireX

Under UNIX:

etbcmd -blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -dBROKER -xuser <«
-nACLASS/ASERVER/ASERVICE -Usaguserl

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cENABLE-CMDLOG-FILTER -xuser '
// '-dBROKER -nACLASS/ASERVER/ASERVICE -Usaguserl')

ACl-driven Command Logging

EntireX components that communicate with Broker can trigger command logging by setting the
field LOG-COMMAND in the ACI control block.

When handling ACI functions with command log turned on, Broker will not evaluate any filters.
Application developers must remember to reset the L0G-COMMAND field if subsequent requests are
not required to be logged.

Dual Command Log Files

Broker's use of two command log files prevents any one command log file from becoming too
large. What you need to specify depends on the operating system:

z/OS

When starting a Broker with command log support, you must therefore specify two data sets and
DD names - one for each of the two command log files. The sample started task EXBSTART de-
livered with the EXX105.JOBS data set uses DDCLOGR1 and DDCLOGR2 as default command
log file names.

UNIX

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The sample startup script installed with
the product uses file names CMDLOG1 and CMDLOG2 as the default command log file names.

Windows

When starting a Broker with command log support, you must therefore specify two file names
and paths - one for each of the two command log files. The keys ETB_CMDLOGI and ETB_CMDLOG2

130 Broker

Command Logging in EntireX

are entered in the Registry with values CMDLOGR1 and CMDLOGR2 for the default command log file
names.

At startup, Broker initializes both files and keeps one of them open. Command log statements are
printed to the open file until the size of this file reaches the value specified in the Broker attribute
CMDLOG-FILE-SIZE. This value must be specified in KB.

When the size of the open file exceeds the value specified in the Broker attribute CMDLOG- FILE -
SIZE, Broker closes this file and opens the other, dormant file. Because the Broker closes a log file
only when unable to print out a complete log line, the size of a full file may be smaller than CMDLOG-
FILE-SIZE.

~ To switch log files on demand, using etbcmd | ETBCMD

= An open command log file can be forcibly closed even before the size limit is reached. Enter
the following command.

Under UNIX:

etbcmd -blocalhost:1970:TCP -cSWITCH-CMDLOG -dBROKER -xuser

Under z/OS:

//ETBCMD EXEC PGM=ETBCMD,
// PARM=('/-blocalhost:1970:TCP -cSWITCH-CMDLOG -xuser ',
// '-dBROKER")

The command above will close the currently open file and open the one that has been dormant.

Broker 131

132

V Building an EntireX Broker Image

133

134

9 Building an EntireX Broker Image

B PIEIBQUISIEES ...vvviiiiiee et e ettt e e ettt e e e e e ettt e et e e e e et e e e e e e e ettt et e e e e ettt e e e e e e e e e 136
= Building and Running the EntireX BroKer IMagecooiiiiiiiiiiee e 136
B VErifying the BUIIAo 140
m Healthcheck for ENtIrEX BrOKEToiiiiiiiii et e e 141

135

Building an EntireX Broker Image

You can also build a Docker image and run the Docker container using Command Central. See
Building an EntireX Docker Image for more information.

Prerequisites

" Operating system Linux

® Docker installation 1.13.1 or compatible

" Software AG EntireX installation containing the packages
® EntireX > Broker

* EntireX > Adminstrating and Monitoring > Command Line Scripts
See EntireX Installation Packages for full list.

| Note: The current version of EntireX Broker Docker container supports only stateless

scenarios (no use of persistent store).

Building and Running the EntireX Broker Image

The scripts provided with EntireX support the following three methods of building a Docker image
and running the Docker container:

= Configuring with Modified Dockerfile
= Configuring during Image Start, using Default File Names
= Configuring during Image Start, using Custom File Names

Configuring with Modified Dockerfile

~ To copy the license and configuration files into the Docker image

1 Set your working directory to <install_dir>/EntireX/docker/Broker.

2 Create the TAR file containing all the necessary files with the following command:

136 Broker

Building an EntireX Broker Image

./CreateEntireXBrokerTar.sh

3 Provide your configuration files into the current working directory, for example:

Req/
File Opt
myLicense.xml R
myEtbfile @)
myExxAppCert.pem| O
myExxAppKey.pem | O
myExxCACert.pem | O

4 Update the Dockerfile, for example:

Possibility to add a valid license file already to the image instead of
providing it during start up

e.qg.:

ADD myLicense.xml $EXXDIR/config/license.xml

Possibility to add a different attribute file already to the image instead of
providing it during start up

i €0, ¢

ADD myEtbfile $EXXDIR/config/etb/$ETBIB/etbfile

J#F Possibility to add certificates for security broker
#e.qg.:
ADD *.pem $EXXDIR/config/etb/$ETBID/

5 Build the EntireX Broker image, for example:

docker build -t exx_broker_image_1 .

With this method, the Docker build copies the configuration into the image. You will need to
map your EntireX Broker ports during startup, for example:

docker run -d -p 2002:1971 -e ACCEPT_EULA=Y
--name exx_broker_container_1 exx_broker_image_1l

= Advantages
Configuration changes can be persistent; you can reuse the configuration when a new version
or fix is to be built. The complete configuration is in the image. For troubleshooting, Software
AG Support will require only the image and the command you entered.

Broker 137

Building an EntireX Broker Image

® Disadvantage

If the configuration changes, you will need to build a new image and rerun the container.

Configuring during Image Start, using Default File Names

~ To copy the license and configuration files into container, using default file names

1 Set your working directory to <install_dir>/EntireX/docker/Broker.

2 Create the TAR file containing all the necessary files with the following command:

./CreateEntireXBrokerTar.sh

3 Build the EntireX Broker image, for example:

docker build -t exx_broker_image_2 .

4 Provide your configuration files with the default file names, for example:

Req/
File Opt
license.xml R
etbfile (@)
exxAppCert.pem| O
exxAppKey.pem | O
exxCACert.pem | O

In this case the license and configuration files are mounted during startup. You will need to
map your EntireX Broker ports during startup, for example:

docker run -d -p 2004:1971

® Advantages

-e ACCEPT_EULA=Y

-v <my-license-dir>:/licenses

-v <my-config-dir>:/configs

--name exx_broker_container_2 exx_broker_image_2

Configuration changes can be persistent; if the configuration changes, you only need to rerun

the container.

® Disadvantage

The configuration is in the image and in the configuration files mounted to the container. For
troubleshooting, Software AG Support will require an image, configuration files and the com-

mand you entered.

138

Broker

Building an EntireX Broker Image

Configuring during Image Start, using Custom File Names

~ To copy the license and configuration files into container, using custom file names

1 Set your working directory to <install_dir>/EntireX/docker/Broker.

2 Create the TAR file containing all the necessary files with the following command:

./CreateEntireXBrokerTar.sh

3 Build the EntireX Broker image, for example:
docker build -t exx_broker_image_3 .

4 Provide your configuration files with the custom file names, for example:

Req/
File Opt
<my-license-dir>/mylLicense.xml R
<my-config-dir>/myEtbfile O
<my-config-dir>/myExxAppCert.pem| O
<my-config-dir>/myExxAppKey.pem | O
<my-config-dir>/myExxCACert.pem | O

In this case the license and configuration files are mounted during startup. License file and
etbfile will be renamed to match EntireX Broker naming conventions. You will need to map

your EntireX Broker ports during startup, for example:

docker run -d -p 2004:1971
-e ACCEPT_EULA=Y

-e "EXX_ATTRIBUTE=myEtbfile"

-e "EXX_LICENSE_KEY=mylLicense.xml"

-e "EXX_KEY_FILE=myExxAppKey.pem"

-e "EXX_KEY_STORE=myExxAppCert.pem"

-e "EXX_TRUST_STORE=myExxCACert.pem"

-v <my-license-dir>:/1icenses

-v <my-config-dir>:/configs

--name exx_broker_container_3 exx_broker_image_3

® Advantages

Configuration changes can be persistent; you are free to choose your own file names. If the
configuration changes, you only need to to rerun the container.

Broker

139

Building an EntireX Broker Image

® Disadvantage
The configuration is in the image and in the configuration files mounted to the container. For
troubleshooting, Software AG Support will require an image, configuration files and the com-
mand you entered.

Verifying the Build

~ To verify the build
1 Show the image with command
docker images
2 Start the docker image to be verified as described above, for example:

docker run -d -p 2001:1971 -e ACCEPT_EULA=Y <
--name exx_broker_container_1 exx_broker_image_1

3 Show thelog:
docker logs -f exx_broker_container_1
4 Show the containers:
docker ps
5 Stop the container:
docker stop exx_broker_container_1
6 Delete the container:
docker rm exx_broker_container_1

7 Remove the image:

140 Broker

Building an EntireX Broker Image

docker rmi exx_broker_image_1

Healthcheck for EntireX Broker

The docker directory for EntireX Broker contains a script healthcheck.sh. Execution of this script
pings the broker and returns the result of the ping command:

0 success

all other values ping failure

In the Docker context, this healthcheck. shis putinto the Docker container and enabled by setting
the HEALTHCHECK instruction in the Dockerfile.

You can also use the healthcheck. sh scriptin the context of an orchestration tool (e.g. Kubernetes)
to enable healthcheck functionality.

Broker 141

142

	Broker
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	I Concepts and Facilities of EntireX Broker
	2 Concept of Interoperability
	Interoperability and EntireX Broker
	Messaging Model and Interoperability
	Introduction
	Overview Diagram
	ACI Syntax of Messaging Model

	Communication Models and Interoperability

	3 General Architecture of EntireX Broker
	Introduction to EntireX Broker Architecture
	Client Server Communication Model
	Example Scenario 1: Client and Server Messaging (Synchronous)
	Example Scenario 2: Client and Server Messaging (Asynchronous)

	Architecture of Broker Stub
	Overview of Broker Stub
	Description of Command Process Flow within Broker Stub

	Architecture of Broker Kernel
	Overview of Broker Kernel
	Description of Command Process Flow within Broker Kernel

	4 Functionality of EntireX Broker
	Application Bindings (Stubs)
	Character Conversion
	Command and Information Services
	Accounting
	Data Compression
	Persistent Store
	Persistent Store Types

	Units of Work
	Security

	5 Broker Quick Reference
	ACI Syntax of Messaging Model
	Location of Broker Kernel and Stubs
	Transport: Broker Stubs and APIs

	II Broker Attributes
	6 Broker Attributes
	Name and Location of Attribute File
	Attribute Syntax
	Broker-specific Attributes
	Service-specific Attributes
	Wildcard Service Definitions
	Service Update Modes
	OPTION Values for Conversion

	Codepage-specific Attributes
	Adabas SVC/Entire Net-Work-specific Attributes
	Security-specific Attributes
	TCP/IP-specific Attributes
	c-tree-specific Attributes
	SSL/TLS-specific Attributes
	DIV-specific Attributes
	Adabas-specific Attributes
	Application Monitoring-specific Attributes
	Authorization Rule-specific Attributes
	Variable Definition File

	III Broker Command and Information Services
	7 Broker Command and Information Services
	CIS Overview Table
	Description of Services
	INFO and USER-INFO
	CMD, PARTICIPANT-SHUTDOWN and SECURITY

	Modes of Requesting the Services
	Command-line Utilities
	Version Information

	Graphical User Interface
	User-Written Interface

	ETBCMD: Executable Command Requests
	ETBINFO: Returnable Information Requests

	IV EntireX Broker Reporting
	Configuration Report
	Load Module Report
	Storage Report
	Creating a Storage Report
	Platform-specific Rules
	Sample Storage Report

	Persistent Store Report
	Configuration
	Sample Report

	License Report
	8 Command Logging in EntireX
	Introduction to Command Logging
	Overview
	Command Log Files
	Defining Filters
	Programmatically Turning on Command Logging

	Command Log Filtering using Command-line Interface ETBCMD
	Setting Filters
	Deleting Filters
	Disabling and Enabling a Filter

	ACI-driven Command Logging
	Dual Command Log Files

	V Building an EntireX Broker Image
	9 Building an EntireX Broker Image
	Prerequisites
	Building and Running the EntireX Broker Image
	Configuring with Modified Dockerfile
	Configuring during Image Start, using Default File Names
	Configuring during Image Start, using Custom File Names

	Verifying the Build
	Healthcheck for EntireX Broker

