§ software

webMethods EntireX

EntireX Java ACI

Version 10.5

October 2019

WEBMETHODS

This document applies to webMethods EntireX Version 10.5 and all subsequent releases.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2019 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AG USA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product names mentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-ACI-105-20220422JAVA

Table of Contents

ENHTEX JAVA ACT ..ttt sstnnes v
1 About this Documentationcc.cocoiiiiiiiiiiiiiii 1
Document CONVeNtioNSccoiiiiiiiiiiiiiiiiicccce e 2
Online Information and SUPPOTtc.ccieiiiiiiiiiii 2
Data Protectionc..ooooiiiiiiiiiic 3
2 Using EntireX Java ACTccooiiiiiiiic 5
3 Writing Applications - EntireX Java ACIccccooiiiiiiiiiiiiiiiececceeee e 7
INtrodUCHON ..eooiiiic 8
Required Stepsccoiviiiiiiiiic 8
4 Writing Advanced Applications - EntireX Java ACIccccccciiiiiiiiiniiiiiiiiiiiics 9
Using COMPTESSIONoouiiiiiiiiiiiiiiceiie ettt 10
Using EntireX Security with Java-based EntireX Applicationscccccecuvvneennn. 11
Setting Transport Methodsccooiiiiiiiiii 12
TIACINE oo 17
Using Internationalization with Java ACIcccooiiiiiiiiiiii 18

EntireX Java ACI

EntireX Java ACl is a Java class library that provides access to the EntireX Broker ACI for Java
programmers. It covers the whole EntireX Broker ACI which enables you to write both client and
server applications in Java. Any of these can then interact with each other and with other
applications written in other languages on the same network using EntireX Broker. The EntireX
Java ACI also contains the framework necessary for Java RPC requests.

Related Literature

For a description of classes, see EntireX Java ACI (Javadoc).

EntireX Java Wrapper

For a description of error messages see Message Class 0013 - EntireX Java.

Broker HTTP(S) Agent in the UNIX and Windows Administration documentation.

vi

1 About this Documentation

B DOCUMENT CONVENTIONS ...ttt e e e e e e e
= Online Information and SUPPOMcoiiiiiiiiiii e
B DAt PrO OO ON . oo e

About this Documentation

Document Conventions
Convention Description
Bold Identifies elements on a screen.

Monospace font

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Italic

Identifies:

Variables for which you must supply values specific to your own situation or
environment.

New terms the first time they occur in the text.

References to other documentation sources.

Monospace font

Identifies:

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-

wareag.com.

EntireX Java ACI

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

About this Documentation

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

® Browse through our vast knowledge base.

" Ask questions and find answers in our discussion forums.

Get the latest Software AG news and announcements.

Explore our communities.
® Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

® Download products, updates and fixes.

® Search the Knowledge Center for technical information and tips.

" Subscribe to early warnings and critical alerts.

Open and update support incidents.

Add product feature requests.

Data Protection

Software AG products provide functionality with respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

EntireX Java ACI 3

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

2 Using EntireX Java ACI

EntireX Java ACl is a Java class library (Java package) that provides access to the EntireX Broker
ACI for Java programmers. You can visualize it as the Java “language binding” for the EntireX
Broker ACI. In this way, it is related to, for example, the C and Natural language interfaces.

EntireX Java ACI comes as a single Java package: com.softwareag.entirex.aci. All of the EntireX Broker
ACI functionality is wrapped in a system of collaborating classes. Thus, it should appeal equally
well to both the experienced Java programmer and to those familiar with the EntireX Broker ACIL.
The package also contains the framework for RPCs.

The class library is packaged in the entirex.jar file which can be found in the classes subdirectory
of the EntireX installation.

Since EntireX Java ACI is only a thin interface layer to communicate with EntireX Broker, little
“local” knowledge is implemented in it. All essential information will be passed to and received
from EntireX Broker itself.

Documentation of the classes consists of the documentation generated by Javadoc and the docu-
mentation of the core API shipped with the JDK. This provides quick recognition for those famil-
iar with this format.

3 Writing Applications - EntireX Java ACI

B OAUCH ON .ot e e e e
B REGUITEA SEEPS . iiii ittt et e ettt e e e e e e e e e e e e r e e e e e e e e e e e eaa e

Writing Applications - EntireX Java ACI

Introduction

Interaction with the API occurs through instantiating objects of different classes, invoking their
methods and manipulating their inner state. Not all features are necessary for all applications,
depending on whether you are writing a client or a server application. The following is a general
list of basic steps you have to perform.

Required Steps

® Instantiate a Broker object. This is the central object you will work with. One object instance
represents one session to an EntireX Broker on your network. If you want to work with multiple
EntireX Brokers or with multiple sessions, create one object for each session to an EntireX Broker.

® Use the Broker object to log on the application to EntireX Broker.

* Instantiate a BrokerService object. If you are writing a server application, use the BrokerService
object to register your service with the EntireX Broker.

® Declare a BrokerMessage variable. If you want to send a message, instantiate a new
BrokerMessage object, complete it with your message and send it using one of the send methods.
Messages received from the Broker are received in a newly created BrokerMessage object.

* Non-conversational communication is handled by the BrokerService and BrokerMessage objects.
Use the send, sendReceive and receive methods of BrokerService for synchronous and
asynchronous non-conversational communication. When writing a server, you can use the reply
method of BrokerMessage.

® Conversational communication is handled by the Conversation and BrokerMessage objects.
® Unit-of-work communication is handled by the UnitofWork and BrokerMessage objects.
® Perform all your business logic processing on the message contents.

® When finished, end your conversations, deregister your service (if you are writing a server) and
log off from EntireX Broker.

8 EntireX Java ACI

4 Writing Advanced Applications - EntireX Java ACI

= Using Compressionccccvvvveeeen.

= Using EntireX Security with Java-based

= Setting Transport Methods
B TRACING .o

= Using Internationalization with Java ACI

EntireX Applicationsccovvviiiiiiii

Writing Advanced Applications - EntireX Java ACI

Using Compression

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) may compress the messages sent to and received from the Broker. There are two ways
to enable compression:

= Use the method setCompressionLevel () of the Broker object.

® Use a Broker ID with the parameter compressievel=<value>.
Using setCompressionLevel()

Add the compression level to the method setCompressionlLevel () as an integer or a string argu-
ment.

You can use the constants defined in class java.util.zip.Deflater.
If the string

= starts with Y, compression is turned on with level 6,

= starts with N, compression is turned off (level 0).

Permitted values are the integers 0 - 9 and the corresponding strings:

BEST_COMPRESSION level 9
BEST_SPEED level 1
DEFAULT_COMPRESSION|level 6
DEFLATED level 8
NO_COMPRESSION level 0

Using Broker ID

You may append the keyword COMPRESSLEVEL with one of the values above to the Broker ID.

10 EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

Examples
= Jocalhost:1971%compresslevel=BEST_COMPRESSION

= Jocalhost?poolsize=4&compresslevel=9

Both examples set the compression level to 9.

Using EntireX Security with Java-based EntireX Applications

Java-based EntireX applications that require security can use EntireX Security. Use one of the
supported methods of useEntireXSecurity() within class Broker. See also Introduction to EntireX
Security for additional prerequisites. The auto mode specifies that the broker object uses EntireX
Security as needed by the broker kernel. If the broker kernel is set up with security, the Broker
object uses EntireX Security. If the broker kernel is not set up with EntireX Security, it is not used.

] Notes:

1. For encrypted transport we strongly recommend using the Secure Sockets Layer/Transport
Layer Security protocol. See SSL/TLS and Certificates with EntireX.

2. Existing user-written security exits created for earlier versions of EntireX will continue to be
supported.

EntireX Java ACI 11

Writing Advanced Applications - EntireX Java ACI

Setting Transport Methods

= Socket Pooling Parameters for TCP and SSL/TLS Communication
= Using the Broker ACI with SSL/TLS

= Using HTTP(S) Tunneling

= Setting the Transport Timeout

Socket Pooling Parameters for TCP and SSL/TLS Communication

Socket connections for EntireX Java ACI applications and applications using classes generated by
the Java Wrapper are assigned dynamically to instances of Broker objects. They are closed auto-
matically when they are not used for a certain period of time. The behavior of the socket pooling
can be controlled by two parameters (poolsize and pooltimeout) specified as part of the Broker
ID. They are used for both TCP and SSL communications.

You can

" specity the maximum number of socket connections which are kept in the socket pool
" disable socket pooling

® control the automatic closing of socket connections

~ To specify the maximum number of socket connections

m Specify the parameter poolsize as part of the Broker ID.

If the number entered is reached, further Broker calls going through a Broker instance will
be delayed until a socket becomes available. If a multithreaded application uses blocking
sendReceive or Receive calls with a longer waiting time, the poo1size parameter must be at
least equal to the number of threads. The value of entirex.timeout (in seconds) is used to
terminate the wait time for free sockets. If all sockets in the pool are in use, the calls will be
delayed at the most by the period of time specified by this timeout. Afterwards, the call returns
with error code 0013 0333. This is to prevent applications from hanging up if all sockets are
in use and never become available due to network problems.

The default for poolsize is 32. The default can be changed with a Java system property. Set
the property entirex.socket.poolsize to specify a different value. Values that are not nu-
meric or less than 1 are ignored.

~ To disable socket pooling

m Set the parameter poolsize (as part of the Broker ID) to "0".

12 EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

~ To control the automatic closing of socket connections

m Specify the parameter pooltimeout (as part of the Broker ID).

If a socket connection has not been used for the specified number of seconds, it will be closed
automatically.

The default for pooltimeout is 300 seconds.

Example of a maximum number of 10 socket connections and a timeout of 60 seconds:

Broker broker = new Broker("yourbroker?poolsize=10&pooltimeout=60","userID");

Using the Broker ACI with SSL/TLS

AClI applications can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the transport
medium. The term “SSL” in this section refers to both SSL and TLS. ACI-based clients or servers
are always SSL clients. The SSL server can be either the EntireX Broker or the Broker SSL Agent.

For an introduction see SSL/TLS and Certificates with EntireX in the Platform-independent Admin-
istration documentation.

> To use SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides default certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Specify Broker ID and SSL parameters.

SSL transport will be chosen if the Broker ID starts with the string ss1://. Example of a typ-
ical URL-style Broker ID:

Broker broker = new Broker("ssl://yourbroker:10000?trust_store=castore","userID");
If no port number is specified, port 1958 is used as default.

If the SSL client checks the validity of the SSL server only, this is known as one-way SSL. The
mandatory trust_store parameter specifies the file name of a keystore that must contain the
list of trusted certificate authorities for the certificate of the SSL server. By default a check is
made that the certificate of the SSL server is issued for the hostname specified in the Broker
ID. The common name of the subject entry in the server's certificate is checked against the
hostname. If they do not match, the connection will be refused. You can disable this check
with SSL parameter verify_server=no.

EntireX Java ACI 13

Writing Advanced Applications - EntireX Java ACI

If the SSL server additionally checks the identity of the SSL client, this is known as two-way
SSL. In this case the SSL server requests a client certificate (the parameter verify_client=yes
is defined in the configuration of the SSL server). Two additional SSL parameters must be
specified on the SSL client side: key_store and key_passwd. This keystore must contain the
private key of the SSL client. The password that protects the private key is specified with
key_passwd.

The ampersand (&) character cannot appear in the password.
SSL parameters are separated by ampersand (&). See also SSL/TLS Parameters for SSL Clients.

Example of one-way SSL:

Broker broker = new <«
Broker("ssl://yourbroker:10000?trust_store=castore&verify_server=no","userID");

Example of two-way SSL:

Broker broker = new <
Broker("ss1://yourbroker:100007trust_store=castore&key_store=keystore&key_passwd=pwd", "userID");

Make sure the SSL server to which the ACI application (client or server) connects is prepared
for SSL connections as well. The SSL server can be EntireX Broker or Broker SSL Agent. See:

® Running Broker with SSL/TLS Transport in the platform-specific Administration documentation

® Broker SSL Agent in the UNIX and Windows Administration documentation

Using HTTP(S) Tunneling

When communicating with EntireX Broker over the internet, direct access to the EntireX Broker's
TCP/IP port is necessary. This access is often restricted by proxy servers or firewalls. Java-based
EntireX applications can pass communication data via HTTP or HTTPS. This means that a running
EntireX Broker in the intranet is made accessible by a Web server without having to open additional
TCP/IP ports on your firewall (HTTP tunneling). This section covers the following topics:

= How the Communication Works
= Enabling HTTP Support

14

EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

= Enabling HTTPS Support
How the Communication Works

The Broker HTTP(S) Agent builds the bridge between Web server and EntireX Broker in the intranet.

Java | > Web Server
Client '~ (with Serviet
Engine)

Broker

: HTTP(S) Agent

SR » (formerly
Tunnel Serviet)

. . A

EntireXx

EBroker
1 1

v

EntireXx,
Server

The figure above shows how the communication works. In this scenario, a Java client program
communicates via HTTP and EntireX Broker with an EntireX server. By using a Broker ID starting
with "http://" (passing the URL of the installed Broker HTTP(S) Agent) each Broker request is sent
to a Web server, which immediately processes the Broker HTTP(S) Agent, passes the contents to
EntireX Broker, receives the answer and sends it back via HTTP. For the two partners (client and
server) it is transparent that they are communicating through the Web. Java server programs can
also communicate via HTTP if necessary.

For the configuration, see Broker HTTP(S) Agent in the UNIX and Windows Administration
documentation.

EntireX Java ACI 15

Writing Advanced Applications - EntireX Java ACI

Enabling HTTP Support

~ To enable HTTP support

= Pass the URL of your Broker HTTP(S) Agent installation as Broker ID to your Broker objects.

For Example:

import com.softwareag.entirex.aci.Broker;

// "http://www.yourhost.com/servlets/tunnel" is the URL to reach your broker <
over HTTP

Broker broker = new Broker("http://www.yourhost.com/servlets/tunnel","userID");

// other code not affected

The Broker HTTP(S) Agent optionally accepts parameters as part of the URL. It is possible to define
values for Broker and log that override the corresponding values in the configuration of the Broker
HTTP(S) Agent.

> To enforce logging of the Broker HTTP(S) Agent
» Type, e.g. the following:

Broker broker = new <«
Broker("http://www.yourhost.com/servliets/tunnel?log=yes","userID");

Enabling HTTPS Support

> To use HTTPS instead of HTTP

m Replace "http://" by "https://" at the beginning of the Broker ID.

Using HTTPS requires a Web server with SSL support enabled. Check your Web server's
documentation for information on how to configure SSL support.

Many Java implementations do not support HTTPS. If this is the case, your application will
receive a BrokerException with error code 00130325.

16 EntireX Java ACI

Writing Advanced Applications - EntireX Java ACI

Setting the Transport Timeout

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) can set a transport timeout to abort socket connections when not receiving any reply.

> To specify a TCP or SSL transport timeout

1 Use the system property entirex.timeout.
The default is 20 seconds.
A numeric value of 1 or greater indicates the transport timeout in seconds.

Setting the value to 0 results in a potentially infinite wait (i.e. until the Broker returns a reply
or the socket connection is closed).

If the Broker call is a send call with wait or a receive call, the transport timeout is added to
the Broker wait time specified as part of the Broker call.

The value of entirex.timeout is used as a timeout for waiting for free sockets in the socket
pools. If the application does not get a free socket during this timeout period, an exception
will be thrown.

2 Use the static method Broker.setTransportTimeout(int timeout) in your application.

This method sets the socket timeout value in seconds. It is used for TCP/IP, but not with HTTP.
The timeout value is used for new sockets, it does not change the timeout for sockets in use.

To query the current setting, use the method Broker.getTransportTimeout().

Tracing

Java-based EntireX applications (including applications using classes generated by the Java
Wrapper) can use tracing to log program flow and locate problems.

~ To specify the trace level
m Usethe setTrace() method of class Broker.
Or:

Use the Java system property entirex.trace. The system property uses the same values as
the setTrace method call.

EntireX Java ACI 17

Writing Advanced Applications - EntireX Java ACI

Trace level | Explanation

0 no tracing, default.

trace all Broker calls and other major actions

1
2 dump the send and receive buffer
3

dump the buffers sent to the Broker and received from the Broker

Using Internationalization with Java ACI

The encoding configured for the Java virtual machine (JVM) is used to convert the Unicode (UTF-
16) representation within Java to the encoding sent to or received from the broker by default. This
encoding is also transferred as the codepage to the broker to tell the broker the encoding of the
data. Changing the default encoding of the JVM has the side effect that the encoding for terminal
and file 1O is affected too. This may be undesired.

With the codepage parameter you can override the encoding without the need to change the default
encoding of the JVM. The codepage must be supported by your JVM. For a list of valid encodings,
see Supported Encodings in your Java documentation.

Note: See your JVM documentation for how to change the default encoding of the JVM. On

some JVM implementations, it can be changed with the file.encoding property. On some
UNIX implementations, it can be changed with the LANG environment variable.

With the setCharacterEncoding(enc) method of the BrokerService (EntireX Java ACI) you can
override the encoding used for the payload sent to / received from the broker without affecting
the default encoding of your JVM.

Methods of the Java ACI are inherited by the Java Wrapper when programming RPC clients. Thus,
regarding character conversion, most of what is valid for the Java ACl is also valid for Java-based
RPC clients, but EntireX Broker configuration is different: use the service-specific attribute CONVER-
SION to enable correct character conversion in the broker.

® For Java-based RPC clients communicating with RPC-based components and Reliable RPC, set
CONVERSION=SAGTRPC.

® For Java ACI clients and servers using ACI-based programming, set CONVERSION=SAGTCHA.
See also Configuring ICU Conversion under Configuring Broker for Internationalization in the platform-

specific Administration documentation. More information can be found under Internationalization
with EntireX.

18 EntireX Java ACI

	EntireX Java ACI
	Table of Contents
	EntireX Java ACI
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Using EntireX Java ACI
	3 Writing Applications - EntireX Java ACI
	Introduction
	Required Steps

	4 Writing Advanced Applications - EntireX Java ACI
	Using Compression
	Using setCompressionLevel()
	Using Broker ID
	Examples

	Using EntireX Security with Java-based EntireX Applications
	Setting Transport Methods
	Socket Pooling Parameters for TCP and SSL/TLS Communication
	Using the Broker ACI with SSL/TLS
	Using HTTP(S) Tunneling
	How the Communication Works
	Enabling HTTP Support
	Enabling HTTPS Support

	Setting the Transport Timeout

	Tracing
	Using Internationalization with Java ACI

