
webMethods EntireX

EntireX RPC-ACI Bridge

Version 10.9

April 2023

This document applies to webMethods EntireX Version 10.9 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1997-2023 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: EXX-ACI-109-20230403BRIDGE

Table of Contents

1 About this Documentation .. 1
Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Introduction to the EntireX RPC-ACI Bridge .. 5
Overview .. 6
Worker Models ... 7

3 Administering the RPC-ACI Bridge .. 9
Customizing the RPC Server .. 10
Configuring the RPC Server Side ... 12
Configuring the ACI Client Side .. 15
Starting the RPC-ACI Bridge ... 16
Stopping the RPC-ACI Bridge ... 16
Using SSL/TLS with the RPC-ACI Bridge .. 17
Running an EntireX RPC Server as a Windows Service .. 18
Application Identification .. 19

4 Writing ACI Servers for the RPC-ACI Bridge in COBOL ... 21
Tasks ... 22
Data Types .. 23
Declaring the Variables for the Data Types .. 24

5 Writing ACI Servers for the RPC-ACI Bridge in Natural ... 27
Tasks ... 28
Data Types .. 29
Declaring the Variables for the Data Types .. 30

6 Writing RPC Clients for the RPC-ACI Bridge with the C Wrapper 33
7 Writing RPC Clients for the RPC-ACI Bridge in Java ... 35

iii

iv

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Product Documentation

You can find the product documentation on our documentation website at https://documenta-
tion.softwareag.com.

In addition, you can also access the cloud product documentation via https://www.software-
ag.cloud. Navigate to the desired product and then, depending on your solution, go to “Developer
Center”, “User Center” or “Documentation”.

Product Training

You can find helpful product training material on our Learning Portal at https://knowledge.soft-
wareag.com.

EntireX RPC-ACI Bridge2

About this Documentation

https://documentation.softwareag.com/
https://documentation.softwareag.com/
https://www.softwareag.cloud/
https://www.softwareag.cloud/
https://knowledge.softwareag.com/
https://knowledge.softwareag.com/

Tech Community

You can collaborate with Software AG experts on our Tech Community website at https://tech-
community.softwareag.com. From here you can, for example:

■ Browse through our vast knowledge base.
■ Ask questions and find answers in our discussion forums.
■ Get the latest Software AG news and announcements.
■ Explore our communities.
■ Go to our public GitHub and Docker repositories at https://github.com/softwareag and ht-
tps://hub.docker.com/publishers/softwareag and discover additional Software AG resources.

Product Support

Support for Software AG products is provided to licensed customers via our Empower Portal at
https://empower.softwareag.com. Many services on this portal require that you have an account.
If you do not yet have one, you can request it at https://empower.softwareag.com/register. Once
you have an account, you can, for example:

■ Download products, updates and fixes.
■ Search the Knowledge Center for technical information and tips.
■ Subscribe to early warnings and critical alerts.
■ Open and update support incidents.
■ Add product feature requests.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3EntireX RPC-ACI Bridge

About this Documentation

https://techcommunity.softwareag.com/
https://techcommunity.softwareag.com/
https://github.com/softwareag/
https://hub.docker.com/publishers/softwareag/
https://hub.docker.com/publishers/softwareag/
https://empower.softwareag.com/
https://empower.softwareag.com/register/

4

2 Introduction to the EntireX RPC-ACI Bridge

■ Overview ... 6
■ Worker Models ... 7

5

Overview

The RPC-ACI Bridge acts on one side as an RPC server and on the other side as an ACI client. In
this documentation we distinguish between the Broker for RPC, which sends the RPCs from the
client to the server side of the RPC-ACI Bridge and the Broker for ACI, which sends the messages
to the ACI server. These two brokers can be the same instance. Use distinct CLASS/SERVER/SERVICE
broker attributes for the RPC requests and ACI messages.

The RPC-ACI Bridge can connect to ACI servers written in programming languages where the
ACI is supported, such as Natural | Assembler | C | COBOL | Java | PL/I. More detailed inform-
ation is given on writing ACI servers for the RPC-ACI Bridge in COBOL andNatural.

For existing server programs, use an extractor to generate the Software AG IDL File in the IDL Ed-
itor documentation for the RPC clients.

■ For COBOL, use the IDL Extractor for COBOL
■ For PL/I, use the IDL Extractor for PL/I

EntireX RPC-ACI Bridge6

Introduction to the EntireX RPC-ACI Bridge

Worker Models

RPC requests are worked off inside the RPC server in worker threads. If you are using RPC con-
versations, each RPC conversation requires its own thread during the lifetime of the conversation.
The RPC-ACI Bridge can adjust the number of worker threads to the number of parallel requests.
The RPC-ACI Bridge provides two worker models:

■ FIXED
The fixedmodel creates a fixed number of worker threads. The number of worker threads does
not increase or decrease during the lifetime of an RPC server instance.

■ DYNAMIC
The dynamicmodel creates worker threads depending on the incoming load of RPC requests.

For configuration and technical details, see property entirex.server.fixedserversunderAdmin-
istering the RPC-ACI Bridge.

7EntireX RPC-ACI Bridge

Introduction to the EntireX RPC-ACI Bridge

8

3 Administering the RPC-ACI Bridge

■ Customizing the RPC Server ... 10
■ Configuring the RPC Server Side ... 12
■ Configuring the ACI Client Side .. 15
■ Starting the RPC-ACI Bridge .. 16
■ Stopping the RPC-ACI Bridge .. 16
■ Using SSL/TLS with the RPC-ACI Bridge ... 17
■ Running an EntireX RPC Server as a Windows Service .. 18
■ Application Identification ... 19

9

The EntireX RPC-ACI Bridge allows standard RPC clients to communicate with an ACI server.
The RPC-ACI Bridge transforms RPC requests from clients into ACI messages.

Customizing the RPC Server

The following elements are used to set up the RPC-ACI Bridge:

■ Configuration File
■ Start Script

Configuration File

The default name of the configuration file is entirex.rpcacibridge.properties. The RPC-ACI Bridge
searches for this file in the current working directory.

You can set the name of the configuration file with -Dentirex.server.properties=<your file
name>with “/” as file separator.

The configuration file contains the configuration for both parts of the RPC-ACI Bridge.

Configuring more than one RPC-ACI Bridge

If you configure more than one RPC-ACI Bridge that connect to the same EntireX Broker, the fol-
lowing items must be distinct:

■ The user for the ACI client side (property entirex.rpcacibridge.userid).
■ The trace output file (property entirex.server.logfile).
■ The log for the Windows Service (property entirex.server.serverlog).

EntireX RPC-ACI Bridge10

Administering the RPC-ACI Bridge

Start Script

The start script for the RPC-ACI Bridge is called jrpcacibridge.bsh (Linux) or jrpcacibridge.bat (Win-
dows) and is provided in the bin folder of the installation directory. You may customize this file.
The RPC-ACI Bridge itself is contained in the file entirex.jar.

11EntireX RPC-ACI Bridge

Administering the RPC-ACI Bridge

Configuring the RPC Server Side

The RPC-ACI Bridge uses the properties that start with “entirex.server” for configuring the
RPC server side.

Alternatively to the properties, you can use the command-line options. These have a higher priority
than the properties set as Java systemproperties, and these have higher priority than the properties
in the configuration file.

ExplanationDefault
Command-line
OptionProperty Name

Broker ID.localhost-brokerentirex.server.
brokerid

Specify the encoding which corresponds to
theACI server the RPC-ACI Bridge is talking

-codepageentirex.server.
codepage

to. The codepage is used for both sides of the
communication:When communicating as an
RPC server to receive incoming requests from
RPC clients and asACI client to transfer them
to the ACI server.

Enable character conversion in the broker by
setting the service-specific attribute
CONVERSION to "SAGTRPC". See also
Configuring ICUConversionunderConfiguring
Broker for Internationalization in the
platform-specific Administration
documentation. More information can be
found under Internationalization with EntireX.

Enter the text or the numeric value:0 (no compression)-compresslevelentirex.server.
compresslevel

9BEST_COMPRESSION

1BEST_SPEED

-1
6)

DEFAULT_COMPRESSION
(mapped to

8DEFLATED

0NO_COMPRESSION

0N

8Y

noentirex.server.
fixedservers The number ofworker threads balances

between what is specified in
NO

EntireX RPC-ACI Bridge12

Administering the RPC-ACI Bridge

ExplanationDefault
Command-line
OptionProperty Name

entirex.server.minservers and
what is specified in entirex.server.
maxservers. This is done by a so-called
attach thread. At startup, the number
of worker threads is the number
specified in entirex.server.
minservers. A new worker thread
starts if the broker has more requests
than there are worker threads waiting.
If more than the number specified in
entirex.server.
minservers are waiting for requests,
a worker thread stops if its receive call
times out. The timeout period is
configured with entirex.server.
waitserver.
See worker model DYNAMIC.

The number ofworker threads specified
in entirex.server.minservers is

YES

started and the server can process this
number of parallel requests.
See worker model FIXED.

Display usage of the command-line
parameters.

-help

Name of the log file.standard output-logfileentirex.server.
logfile

Minimum number of server threads.1entirex.server.
minservers

Maximum number of server threads.32entirex.server.
maxservers

Server name.entirex.server.
name

The password for secured access to the
broker. The password is encrypted and

yes-passwordentirex.server.
password

written to the property
entirex.server.password.e.

■ To change the password, set the new
password in the properties file.

■ To disable password encryption, set
entirex.server.passwordencrypt=no.
Default=yes.

13EntireX RPC-ACI Bridge

Administering the RPC-ACI Bridge

ExplanationDefault
Command-line
OptionProperty Name

The name of the property file.entirex.
rpcacibridge.
properties

-propertyfileentirex.server.
properties

Number of restart attempts if the Broker is
not available. This can be used to keep the

15-restartcyclesentirex.server.
restartcycles

RPC-ACI Bridge running while the Broker is
down for a short time.

Valid values:
no | yes | auto | name of BrokerSecurity
object.

no-securityentirex.server.
security

Server address.RPC/SRV1/CALLNAT-serverentirex.server.
serveraddress

Name of the file where start and stop of the
worker threads is logged. Used by the
Windows RPC Service.

-serverlogentirex.server.
serverlog

The user ID for access to the broker.JavaServer-userentirex.server.
userid

Wait timeout for the attach server thread.600Sentirex.server.
waitattach

Wait timeout for the worker threads.300Sentirex.server.
waitserver

TCP/IP transport timeout.20-timeoutentirex.timeout

Trace level.0-traceentirex.trace

No tracing, default.0

Trace all broker calls and other major
actions.

1

Dump the send and receive buffer.2

Dump the buffers sent to the broker and
received from the broker.

3

EntireX RPC-ACI Bridge14

Administering the RPC-ACI Bridge

Configuring the ACI Client Side

These properties are used to configure the connection to the Broker for ACI.

Alternatively, you can use the command-line option. The command-line options have a higher
priority than the properties set as Java system properties and these have higher priority than the
properties in the configuration file

ExplanationDefault ValueCommand-line OptionName

Broker ID of the Broker for ACI. See
URL-style Broker ID.

localhost-acibrokerentirex.rpcacibridge.
brokerid

Enter the text or the numeric value:0 (no compression)-acicompresslevelentirex.rpcacibridge.
compresslevel

9BEST_COMPRESSION

1BEST_SPEED

-1
6)

DEFAULT_COMPRESSION
(mapped to

8DEFLATED

0NO_COMPRESSION

0N

8Y

This is for arrays of groups. Set this property
to "cobol" if the ACI server is a COBOL

-acimarshallingentirex.rpcacibridge.
marshalling

program. Set this property to "natural" if the
ACI server is a Natural program.

The password of the Broker for ACI. The
password is encrypted and written to the
property entirex.server.password.e.
To change the password, set the new
password in the properties file (default is
entirex.rpcacibridge.properties).
To disable password encryption set
entirex.server.passwordencrypt=no.
Default: yes.

-acipasswordentirex.rpcacibridge.
password

no/yes/auto/Name of BrokerSecurity object.auto-acisecurityentirex.rpcacibridge.
security

Server Address for the Broker for ACI.ACLASS/ASERVER/
ASERVICE

-aciserverentirex.rpcacibridge.
serveraddress

The user ID of the Broker for ACI. Use
different user IDs for different RPC-ACI
Bridges on the same Broker.

Value of system
property
user.name.

-aciuserentirex.rpcacibridge.
userid

15EntireX RPC-ACI Bridge

Administering the RPC-ACI Bridge

ExplanationDefault ValueCommand-line OptionName

Thewait time to receive requests. Permitted
values are nS|nM|nH, where n is the number
of seconds or minutes or hours.

60Sentirex.rpcacibridge.
waittime

Starting the RPC-ACI Bridge

To start the RPC-ACI Bridge

■ Use the Start Script.

Or:

Under Windows you can use the RPC-ACI Bridge as a Windows Service. See Running an
EntireX RPC Server as a Windows Service.

Stopping the RPC-ACI Bridge

To stop the RPC-ACI Bridge

■ Use the command stopService. See Stop Running Services in Command Central's Command-
line Interface.

Or:

Stop the service using Command Central's Graphical User Interface. See Stopping a Service.

Or:

Use the command-line utility etbcmd. See ETBCMD under Broker Command-line Utilities in the
platform-specific Administration documentation.

Or:

Use CTRL-C in the session where you started the RPC server instance.

Or:

Under Linux, enter command kill -process-id.

EntireX RPC-ACI Bridge16

Administering the RPC-ACI Bridge

Using SSL/TLS with the RPC-ACI Bridge

To use SSL with RPC-ACI Bridge, you need to configure two sides, the RPC server side and the
ACI client side.

■ For the ACI client side
ACI applications can use Secure Sockets Layer/Transport Layer Security (SSL/TLS) as the
transport medium. The term “SSL” in this section refers to both SSL and TLS. ACI-based clients
or servers are always SSL clients. The SSL server can be either the EntireX Broker or the Broker
SSLAgent. For an introduction see SSL/TLS,HTTP(S), and Certificates with EntireX in the platform-
independent Administration documentation.

■ For the RPC server side
The same is true for the RPC server side. Additionally, Direct RPC in webMethods Integration
Server (IS inbound) can be used as the SSL server.

To set up SSL

1 To operate with SSL, certificates need to be provided and maintained. Depending on the
platform, Software AG provides sample certificates, but we strongly recommend that you
create your own. See SSL/TLS Sample Certificates Delivered with EntireX in the EntireX Security
documentation.

2 Set up the ACI side and RPC side for an SSL connection.

For both sides, use the URL-style Broker IDwith protocol ssl:// for the Broker ID. If no port
number is specified, port 1958 is used as default. Example:

ssl://localhost:22101?trust_store=C:\SoftwareAG\EntireX\etc\ExxCACert.p12&trust_passwd=ExxCACert&verify_server=no

If the SSL client checks the validity of the SSL server only, this is known as one-way SSL. Two
SSL parametersmust be specified on the SSL client side: trust_store and trust_passwd. The
mandatory trust_store parameter specifies the file name of a PKCS#12 certificate store that
must contain the certificate chain of the trusted certificate authority (CA) that issued the SSL
server's certificate.
To unlock this certificate store, the password has to be set with SSL parameter trust_passwd.
By default a check is made that the certificate of the SSL server is issued for the hostname
specified in the Broker ID. The common name of the subject entry in the server's certificate is
checked against the hostname. If they do not match, the connection will be refused.
You can disable this check with SSL parameter verify_server=no.

If the SSL server additionally checks the identity of the SSL client, this is known as two-way
SSL. In this case the SSL server requests a client certificate (the parameter verify_client=yes
is defined in the configuration of the SSL server). Two additional SSL parameters must be
specified on the SSL client side: key_store and key_passwd. This keystore must contain the

17EntireX RPC-ACI Bridge

Administering the RPC-ACI Bridge

private key of the SSL client. The password that protects the private key is specified with
key_passwd.

The ampersand (&) character cannot appear in the password.

SSL parameters are separated by ampersand (&). See also SSL/TLS Parameters for SSL Clients.

3 Make sure the SSL server to which the ACI side connects is prepared for SSL connections as
well. The SSL server can be EntireX Broker or Broker SSL Agent. See:

■ RunningBrokerwith SSL/TLSTransport in the platform-specificAdministrationdocumentation
■ Broker SSL Agent in the platform-specific Administration documentation

4 Make sure the SSL server to which the RPC side connects is prepared for SSL connections as
well. The SSL server can be EntireX Broker, Broker SSL Agent, or Direct RPC in webMethods
Integration Server (IS inbound). See:

■ RunningBrokerwith SSL/TLSTransport in the platform-specificAdministrationdocumentation
■ Broker SSL Agent in the platform-specific Administration documentation
■ Support for SSL/TLS in the EntireX Adapter documentation (for Direct RPC)

Running an EntireX RPC Server as a Windows Service

For general information see Running an EntireX RPC Server as a Windows Service in the Windows
Administration documentation.

To run the RPC-ACI Bridge as a Windows Service

1 Customize the Start Script according to your system installation.

Note: The script must pass external parameters to the RPC server and use the reduced
signaling of the JVM (option -Xrs):

java -Xrs com.softwareag.entirex.rpcbridge.RPCACIBridge %*

If -Xrs is not used, the JVM stops and an entry 10164002 is written to the event log
when the user logs off fromWindows.

See also Starting the RPC Server.

2 Test your RPC server to see whether it will start if you run your script file.

3 Use the EntireX RPC Service Tool and install the RPCServicewith somemeaningful extension,
for example MyServer. If your Start Script is jrpcacibridge.bat, the command will be

EntireX RPC-ACI Bridge18

Administering the RPC-ACI Bridge

RPCService -install -ext MyServer ↩
-script install_path\EntireX\bin\jrpcacibridge.bat

The log file will be called RPCservice_MyServer.log.

4 InWindows Servicesmenu (Control Panel > Administrative Tools > Services) select the
service: Software AG EntireX RPC Service [MyServer] and change the property Startup
Type from "Manual" to "Automatic".

Application Identification

The application identification is sent from the RPC-ACI Bridge to the Broker. It is visible with
Broker Command and Info Services.

The identification consists of four parts: name, node, type, and version. These four parts are sent
with each Broker call and are visible in the trace information.

For the RPC-ACI Bridge these values are:

ANAME=RPC ACI BridgeApplication name:

ANODE=<host name>Node name:

ATYPE=JavaApplication type:

AVERS=10.9.0.0Version:

19EntireX RPC-ACI Bridge

Administering the RPC-ACI Bridge

20

4 Writing ACI Servers for the RPC-ACI Bridge in COBOL

■ Tasks .. 22
■ Data Types .. 23
■ Declaring the Variables for the Data Types ... 24

21

The RPC-ACI Bridge is prepared for ACI servers written in COBOL.

Tasks

Writing an ACI server consists of two tasks:

■ implement the Broker calls
■ implement the processing of the received buffer and the response for the send buffer

Using Arrays of Groups

If your programs use arrays of groups, you have to adjust the marshalling.

To adjust the marshalling for arrays of groups

1 Use the property entirex.rpcacibridge.marshalling for the configuration.

2 Set the property to "cobol".

If your programs do not use arrays of groups, you do not need to set
entirex.rpcacibridge.marshalling.

EntireX RPC-ACI Bridge22

Writing ACI Servers for the RPC-ACI Bridge in COBOL

Data Types

NoteFormatDescriptionData Type

number bytes, encoding the characters.AlphanumericAnumber

1Bytes up to the end of the buffer.Alphanumeric variable lengthAV

1Bytes up to the end of the buffer, maximum
length number.

Alphanumeric variable length
with maximum length

AV[number]

Same as data type A.KanjiKnumber

1Same as data type AV.Kanji variable lengthKV

1Same as data type AV[number].Kanji variable length with
maximum length

KV[number]

sign (+, -) and 3 bytes (digits).Integer (small)I1

sign (+, -) and 5 bytes (digits).Integer (medium)I2

sign (+, -) and 10 bytes (digits).Integer (large)I4

sign (+, -), number1 bytes (digits) [number2]
bytes (digits), no decimal point.

Unpacked decimalNnumber1[.number2]

number1 bytes (digits) [number2] bytes
(digits), no decimal point.

Unpacked decimal unsignedNUnumber1[.number2]

sign (+, -), number1 bytes (digits)
[number2] bytes (digits), no decimal point.

Packed decimalPnumber1[.number2]

number1 bytes (digits) [number2] bytes
(digits), no decimal point.

Packed decimal unsignedPUnumber1[.number2]

1 byte: X for true, all other false.LogicalL

2YYYYMMDD.DateD

3YYYYMMDDhhmmssS.TimeT

Notes:

1. Only as last value.

2. YYYY year, MMmonth, DD day.

3. YYYY year, MMmonth, DD day, hh hour, mmminute, ss second, S tenth of a second.

Data Types not supported:

■ Binary (B[n],BV, BV[n])
■ Floating point (F4, F8)

23EntireX RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in COBOL

Declaring the Variables for the Data Types

This section describes how to declare the variables for the data types. Use these declarations to
map the receive buffer and the send buffer to variables.

Declaration and MarshallingDescriptionData Type

Declaration for receive and send buffer: PIC X(n)AlphanumericAnumber

Declaration for receive and send buffer: PIC X(n)Alphanumeric variable
length

AV

Declaration for receive and send buffer: PIC X(n)Alphanumeric variable
length with maximum
length

AV[number]

Declaration for receive and send buffer: PIC X(n)KanjiKnumber

Declaration for receive and send buffer: PIC X(n)Kanji variable lengthKV

Declaration for receive and send buffer: PIC X(n)Kanji variable lengthwith
maximum length

KV[number]

Declaration for receive and send buffer: PIC S9(3)Integer (small)I1

Declaration for receive and send buffer: PIC S9(5)Integer (medium)I2

Declaration for receive and send buffer: PIC S9(10)Integer (large)I4

Declaration for receive and send buffer:
PIC S9(number1)V(number2) SIGN LEADING
SEPARATE

Unpacked decimalNnumber1[.number2]

Declaration for receive and send buffer:
PIC 9(number1)V(number2)

Unpacked decimal
unsigned

NUnumber1[.number2]

Declaration for receive and send buffer:
PIC S9(number1)V(number2) SIGN LEADING
SEPARATE
Declare local variable PIC S9(number1)V(number2)
PACKED DECIMAL
Move from receive buffer to local variable before
computation and from local variable to send buffer
afterwards.

Packed decimalPnumber1[.number2]

Declaration for receive and send buffer:
PIC 9(number1)V(number2)
Declare local variable
PIC 9(number1)V(number2)PACKED DECIMAL
Move from receive buffer to local variable before
computation and from local variable to send buffer
afterwards.

Packed decimal unsignedPUnumber1[.number2]

Declaration for receive and send buffer: PIC X(1)LogicalL

Declaration for receive and send buffer: PIC X(8)DateD

EntireX RPC-ACI Bridge24

Writing ACI Servers for the RPC-ACI Bridge in COBOL

Declaration and MarshallingDescriptionData Type

Declaration for receive and send buffer: PIC X(15)TimeT

25EntireX RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in COBOL

26

5 Writing ACI Servers for the RPC-ACI Bridge in Natural

■ Tasks .. 28
■ Data Types .. 29
■ Declaring the Variables for the Data Types ... 30

27

The RPC-ACI Bridge is prepared for ACI servers written in Natural.

Tasks

Writing an ACI server consists of two tasks:

■ implement the Broker calls
■ implement the processing of the received buffer and the response for the send buffer

Using Arrays of Groups

If your programs use arrays of groups, you have to adjust the marshalling.

To adjust the marshalling for arrays of groups

1 Use the property entirex.rpcacibridge.marshalling for the configuration.

2 Set the property to "natural".

If your programs do not use arrays of groups, you do not need to set
entirex.rpcacibridge.marshalling.

EntireX RPC-ACI Bridge28

Writing ACI Servers for the RPC-ACI Bridge in Natural

Data Types

NoteFormatDescriptionData Type

number bytes, encoding the characters.AlphanumericAnumber

1Bytes up to the end of the buffer.Alphanumeric variable lengthAV

1Bytes up to the end of the buffer, maximum
length number.

Alphanumeric variable length
with maximum length

AV[number]

Same as data type A.KanjiKnumber

1Same as data type AV.Kanji variable lengthKV

1Same as data type AV[number].Kanji variable length with
maximum length

KV[number]

sign (+, -) and 3 bytes (digits).Integer (small)I1

sign (+, -) and 5 bytes (digits).Integer (medium)I2

sign (+, -) and 10 bytes (digits).Integer (large)I4

sign (+, -), number1 bytes (digits) [number2]
bytes (digits), no decimal point.

Unpacked decimalNnumber1[.number2]

sign (+, -), number1 bytes (digits)
[number2] bytes (digits), no decimal point.

Packed decimalPnumber1[.number2]

1 byte: X for true, all other false.LogicalL

2YYYYMMDD.DateD

3YYYYMMDDhhmmssS.TimeT

Notes:

1. Only as last value.

2. YYYY year, MMmonth, DD day.

3. YYYY year, MMmonth, DD day, hh hour, mmminute, ss second, S tenth of a second.

Data Types not supported:

■ Binary (B[n],BV, BV[n])
■ Floating point (F4, F8)

29EntireX RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in Natural

Declaring the Variables for the Data Types

This section describes how to declare the variables for the data types. Use these declarations to
map the receive buffer and the send buffer to variables. For some data types, the values have to
be moved to a local variable before computation.

Example:

* Declaration
DEFINE DATA LOCAL
1 PNUMERIC (A012)
1 #NUMERIC (N8.3)
1 REDEFINE #NUMERIC
2 #NUMERIC1 (N11)
* Computation

MOVE EDITED RCVE-DATA.PNUMERIC TO #NUMERIC1 (EM=S9(11))
#NUMERIC := #NUMERIC + 1
MOVE EDITED #NUMERIC1 (EM=S9(11)) to SEND-DATA.PNUMERIC

Declaration and MarshallingDescriptionData Type

Declaration for receive and send buffer: (An)AlphanumericAnumber

Declaration for receive and send buffer: (A) DYNAMICAlphanumeric variable
length

AV

Declaration for receive and send buffer: (A) DYNAMICAlphanumeric variable
length with maximum
length

AV[number]

Declaration for receive and send buffer: (An)KanjiKnumber

Declaration for receive and send buffer: (A) DYNAMICKanji variable lengthKV

Declaration for receive and send buffer: (A) DYNAMICKanji variable length
with maximum length

KV[number]

Declaration for receive and send buffer:
(A4)MOVE EDITED to I1 variable with (EM=S9(3))

Integer (small)I1

Declaration for receive and send buffer:
(A6)MOVE EDITED to I2 variable with (EM=S9(5))

Integer (medium)I2

Declaration for receive and send buffer:
(A11)MOVE EDITED to I4 variable with (EM=S9(10))

Integer (large)I4

Declaration for receive and send buffer:
(An), where n = number1 + number2 + 1 (one byte
for the sign).
Redefine Nnumber1+number2 variable as
Nnumber1.number2 variable.
MOVE EDITED to Nnumber1+number2 variable with
(EM=S9(number1 + number2))

Unpacked decimalNnumber1[.number2]

EntireX RPC-ACI Bridge30

Writing ACI Servers for the RPC-ACI Bridge in Natural

Declaration and MarshallingDescriptionData Type

Declaration for receive and send buffer:
(An), where n = number1 + number2 + 1 (one byte for
the sign).
Redefine Pnumber1+number2 variable as
Pnumber1.number2 variable.
MOVE EDITED to Pnumber1+number2 variable with
(EM=S9(number1 + number2))

Packed decimalPnumber1[.number2]

Declaration for receive and send buffer:
(A1)

LogicalL

Declaration for receive and send buffer:
(A8)MOVE EDITED toDatevariablewith(EM=YYYYMMDD)

DateD

Declaration for receive and send buffer:
(A15)MOVE EDITED to Time variable with
(EM=YYYYMMDDHHIISST)

TimeT

31EntireX RPC-ACI Bridge

Writing ACI Servers for the RPC-ACI Bridge in Natural

32

6 Writing RPC Clients for the RPC-ACI Bridge with the

C Wrapper

The EntireX RPC-ACI Bridge allows standard RPC clients to communicate with an ACI server.
The RPC-ACI Bridge transforms RPC requests from clients into ACI messages.

To write a C client

■ Follow the instructions under Using the C Wrapper for the Client Side.

The RPC-ACI Bridge reports errors from the RPC server side and the ACI side to the RPC clients.
Errors from the ACI side include errors by the Broker for ACI.

The RPC-ACI Bridge reports the same error classes and error codes for the RPC server side as the
RPC Server for Java. The RPC-ACI Bridge reports errors of the ACI side in a client-specific way
as error 10010007 (internal error of the RPC protocol). The detailed message of the error has the
form aci-rpc: < text >, where text indicates the cause of the error. SeeMessage Class 1018 -
EntireX RPC-ACI Bridge for additional information.

33

34

7 Writing RPC Clients for the RPC-ACI Bridge in Java

The EntireX RPC-ACI Bridge allows standard RPC clients to communicate with an ACI server.
The RPC-ACI Bridge transforms RPC requests from clients into ACI messages.

The EntireX RPC-ACI Bridge reports errors from the RPC server side and the ACI side to the RPC
clients. Errors from theACI side include errors by the Broker forACI. The RPC-ACI Bridge reports
the same error classes and error codes for the RPC server side as the RPC Server for XML/SOAP.
The RPC-ACI Bridge reports errors of the ACI side in a client-specific way as described below.

To write a Java client

1 Generate the Java RPC client stub from the IDL file as described in Using the Java Wrapper.

2 Implement the client with this stub.

All errors are reported as BrokerExceptions. Errors on the ACI side of the RPC-ACI Bridge are
BrokerExceptions in class 1018. SeeMessage Class 1018 - EntireX RPC-ACI Bridge.

35

36

	EntireX RPC-ACI Bridge
	Table of Contents
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Introduction to the EntireX RPC-ACI Bridge
	Overview
	Worker Models

	3 Administering the RPC-ACI Bridge
	Customizing the RPC Server
	Configuration File
	Start Script

	Configuring the RPC Server Side
	Configuring the ACI Client Side
	Starting the RPC-ACI Bridge
	Stopping the RPC-ACI Bridge
	Using SSL/TLS with the RPC-ACI Bridge
	Running an EntireX RPC Server as a Windows Service
	Application Identification

	4 Writing ACI Servers for the RPC-ACI Bridge in COBOL
	Tasks
	Using Arrays of Groups

	Data Types
	Declaring the Variables for the Data Types

	5 Writing ACI Servers for the RPC-ACI Bridge in Natural
	Tasks
	Using Arrays of Groups

	Data Types
	Declaring the Variables for the Data Types

	6 Writing RPC Clients for the RPC-ACI Bridge with the C Wrapper
	7 Writing RPC Clients for the RPC-ACI Bridge in Java

