
Developing Gadgets for webMethods Business
Console

Version 10.11

October 2021

This document applies to webMethods Business Console 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: SBP-DG-1011-20211015

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..7
Document Conventions...8
Online Information and Support...9
Data Protection...10

1 Introduction to Business Console..11
Overview...12
Pre-requisites...12
Using JavaScript for Gadget Development...12
Understanding AngularJS and Non-AngularJS Gadget Development....................................13
Using Model View Controller (MVC) in AngularJS..13
Organizing Gadget Files..14
Understanding Business Console Gadget Development..14

2 Getting Started...23
Understanding and Developing gadgets..24
Creating your First HelloWorld Gadget..24
Localizing a Gadget..27
Using RESTful Services with Gadgets...29
Invoking POST Calls..36
Using Forms with Gadgets...38
Communicating Between Two Gadgets..41
Using Third Party Libraries..44

3 Creating User Interface for Gadgets..51
Creating an User Interface..52
Using Bootstrap Components...52
Creating Responsive Gadgets...52
Using Form Layouts...52
Validating Fields in a Form...53
Adding Static or Dynamic Content..54
Styling Gadgets...54
Adding Styles in CSS...54
Enabling CSS Editor for .scss Files in Designer...55
Embedding a Gadget within Another Gadget...55

4 Programming Gadgets...57
About Programming Gadgets..58
Base Controller for Programming Gadgets..58
Defining Module Dependencies...59
Injecting Services, Factories, and Providers...61
Defining Angular $scope Object..61
Invoking RESTful Services..62

Developing Gadgets for webMethods Business Console 10.11 iii

Generating REST Connector Code for REST Services...69
Including Independent AngularJS Modules in Gadgets..73
Invoking JavaScript Functions with Same Name in Different Libraries..................................73
Using Third Party Libraries in Gadgets..74
Defining Success and Error Notification in Gadgets...75
Using Forms in Gadgets..75
Accessing Services and Functions in XHTML Files and Controller...77
Using Custom JS or CSS Files in Gadgets...78
Reusing JS Files and CSS Files Across Gadgets...79
Loading a Gadget or an AppSpace in a Modal Dialog Box...80

5 Communicating Between Gadgets..81
About Communication Between Gadgets..82
Communicating Between Gadgets Using Events..82
Adding Gadget Settings..85
Connecting Multiple Views with Controller..86

6 Using AppSpaces in Business Console...87
Creating Business Console AppSpaces Using Gadgets..88
Installing Sample Gadgets...89
Editing AppSpace Using Gadgets..89
Viewing an AppSpace in a Web Browser..90
Viewing Standalone AppSpaces..91
Exporting an AppSpace As a .cdp File..91
Exporting an AppSpace As an .xml File...92
Importing an AppSpace..92
Deploying an AppSpace using the File System...93
Deploying an AppSpace using the Install Option...93
Importing an AppSpace to My webMethods Server...93
Managing AppSpace Groups...94
Assigning Gadget Access Permissions..94
Assigning AppSpace and AppSpace Group Access Permissions...95

7 Improving Gadget Performance...97
Gadget Performance...98
Techniques for Improving Gadget Performance..98

8 Creating Offline Gadgets for Task Business Data..99
Creating Offline Gadgets for Task Business Data..100

9 Importing and Enhancing AgileApps Forms...103
Enhancing AgileApps Cloud Forms..104
Lifecycle of an AgileApps Cloud Form Gadget...104
New Files Generated on Importing AgileApps Cloud Forms...108
Importing an AgileApps Cloud Form into Software AG Designer..109
Modifying an AgileApps Cloud Form in Software AG Designer...110
Example: Use Case to Add New Business Logic...110

iv Developing Gadgets for webMethods Business Console 10.11

Table of Contents

10 Troubleshooting Gadgets..113
About Troubleshooting Gadgets..114
Testing a Gadget in a Browser..114
Handling Exceptions..114
Using a CSS URL Data Type in the CSS File of a Gadget...115

Developing Gadgets for webMethods Business Console 10.11 v

Table of Contents

vi Developing Gadgets for webMethods Business Console 10.11

Table of Contents

About this Guide

■ Document Conventions .. 8

■ Online Information and Support ... 9

■ Data Protection ... 10

Developing Gadgets for webMethods Business Console 10.11 7

This guide is for users of webMethods Business Console, a web and tablet friendly user interface
for administering, managing, and monitoring business processes.

Both user-oriented and administrator-oriented features are documented here; however, Business
Console features are available to users based on the privileges of their role.

To use this guide effectively, you should be familiar with:

Processmodel design and business processmonitoring. Formore information, see Software AG
Designer Online Help, webMethods Monitor User’s Guide, andWorking with Business Process
Dashboards.

AgileApps Cloud case management. For more information, see AgileApps Cloud
documentation.

Working with tasks in the My webMethods environment. For more information about
conceptual and procedural information, see the PDFpublicationwebMethods Task EngineUser’s
Guide.

General terminology and usage of My webMethods. For more information, see the PDF
publication Administering My webMethods Server andWorking with My webMethods.

Important:
If you have a lower fix level installed, some of the features described in this document might
not be available to you. For a cumulative list of fixes and features, see the latest fix readme on
the Empower website at https://empower.softwareag.com.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

8 Developing Gadgets for webMethods Business Console 10.11

https://empower.softwareag.com

DescriptionConvention

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Developing Gadgets for webMethods Business Console 10.11 9

https://documentation.softwareag.com
https://documentation.softwareag.com
mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

10 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

■ Overview .. 12

■ Pre-requisites ... 12

■ Using JavaScript for Gadget Development ... 12

■ Understanding AngularJS and Non-AngularJS Gadget Development 13

■ Using Model View Controller (MVC) in AngularJS ... 13

■ Organizing Gadget Files ... 14

■ Understanding Business Console Gadget Development ... 14

Developing Gadgets for webMethods Business Console 10.11 11

Overview

Business Console gadgets are independent pluggable components that can be rendered using the
Business Console gadget framework on aMywebMethods Server instance. The Business Console
gadget framework is a client-side JavaScript framework, which enables rendering of gadgets in
Business Console by using each gadget's metadata information. Business Console gadgets enable
you to customize dashboards in Business Console .

Business Console offers built-in gadgets for creating dashboards. However, you can create your
own gadgets and use them in Business Console dashboards.

Currently, the use of gadgets is limited to Business Console . This document provides guidelines
for creating gadgets for use inBusiness Console . You will learn to:

Program gadgets

Create the user interface for gadgets

Configure gadgets

Test gadgets

Pre-requisites

To use this guide effectively, you should have good knowledge of using:

JavaScript, XML, HTML, and CSS

RESTful services

AngularJS

Gadget, portlet, and web application projects

Composite Application Framework in Software AG Designer

New Business Console Gadget wizard in Designer

webMethods Business Console

For information about creating portlet andweb application project, seewebMethods CAF andOpenUI
Development Help and for creating gadget application project, seeWorking with Business Console
Gadgets Help.

For information about using gadgets in Business Console , seeWorking with webMethods Business
Console.

Using JavaScript for Gadget Development

Use JavaScript to program each gadget to handle business logic in an application. You can use
JavaScript to process the data received from the server (using the underlying JavaScript APIs),
perform data manipulation, and update the user interface of the gadget.

12 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

Gadgets can invoke RESTful services for:

Retrieving data

Updating the gadget user interface after receiving data

Firing event (limited to AngularJS gadgets only) and notifying any updates to other gadgets

Understanding AngularJS and Non-AngularJS Gadget
Development

AngularJS is a client-side web application framework supported by Google, enables you to create
Single Page Applications (SPA). AngularJS framework adapts and extends traditional HTML to
present dynamic content through two-way data-binding that allows automatic synchronization
of models and views.

AngularJS is built on a declarative programming model that places markers known as directives
on the Document Object Model (DOM). DOM element manipulation is against the construct of
AngularJS, but AngularJS allows DOMmanipulation with the use of custom directives.

Non-AngularJS frameworks that support imperative programming model such as JQuery, allow
remote selection of DOM elements, andmanipulation of DOM elements. However, using element
IDs for DOM selection and manipulation might not always be the best approach. For example, if
a single gadget is embeddedmultiple times in a page, and if you use element IDs forDOMselection,
only the first gadget in the DOMwould be selected, and would ignore other gadgets. When a
gadget is usedmultiple times in a single page, it helps to use AngularJS custom directives because
the custom directives automatically pass the respective element references to the directives link
function.

You should consider the differences betweenAngularJS framework andnon-AngularJS framework,
and choose either a non-AngularJS (imperative) approach or AngularJS (declarative) approach
for developing gadgets. If youdecide to use JQuery or any other alternatives forDOMmanipulation,
use AngularJS directives for DOM elements.

We recommend that you use AngularJS for developing gadgets.

Using Model View Controller (MVC) in AngularJS

AngularJS uses the followingModelViewController (MVC) architecture for organizing applications.

Model for managing data received from a database or from a JSON file.

View for displaying the model.

Controller for programming the interaction between the Model and View.

Use the MVC architecture for developing the user interface of a gadget. MVC architecture helps
in separating the gadget logic from gadget data and gadget view. For each gadget:

Create aModel tomanage the gadget data and respond to requests fromView and instructions
from Controller.

Developing Gadgets for webMethods Business Console 10.11 13

1 Introduction to Business Console

Create a View to display the gadget data.

Create a Controller to control the interactions betweenModel andView, receive input, validate
input, and perform operations to modify gadget data.

Organizing Gadget Files

Gadget information is organized in the following folderswhen you use theNewBusiness Console
Gadget wizard for creating a gadget in Designer. For information about the files in these folders,
see webMethods CAF and OpenUI Development Help.

Contains...Folder

Image files to be used by the gadget.Images

JavaScript files for programming the gadget.Scripts

HTMLor XHTMLfiles for defining the user interface of the gadget.Views

CSS files for defining the styles for the gadget.Styles

Understanding Business Console Gadget Development

The diagrambelow shows the SoftwareAGproducts required for developing and testing gadgets.

Steps you need to perform for creating, deploying, and testing gadgets:

1. Create a gadget, portlet, or web application project in the UI Development perspective in
Software AG Designer.

2. Create gadgets in the application project.

3. Define the user interface and business logic for the gadgets.

4. Add functions to the gadget controller.

14 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

5. Publish the application to deploy the gadgets to My webMethods Server.

6. View gadgets either by using the gadgets in a Business Console dashboard or by using gadget's
direct URL.

Creating an Application
The first step in creating gadgets for Business Console is to create a gadget, portlet, or web
application project for the gadgets to reside.

Use Composite Application Framework in Software AG Designer to create a gadget, portlet, or
web application project.

To create a gadget, web, or portlet application project in Designer

1. In the UI Development perspective, select one of the application projects:

File > New > Portlet Application Project

File > New > Web Application Project

File > New > Other > SoftwareAG > UI Development > Gadget Application Project

An application wizard appears.

2. Provide the project name and specify the necessary project details.

After creating the application project, you can create multiple gadgets for Business Console.

For more information about creating a portlet or web application project by using Composite
Application Framework (CAF) in Software AG Designer, see webMethods CAF and OpenUI
Development Help and for creating gadget application project, seeWorking with Business Console
Gadgets Help.

Generating a Gadget

To generate a new gadget in an application project

1. Select the UI Development perspective in Designer .

2. Select the gadget, web, or portlet application project where youwant to create the new gadget.

Developing Gadgets for webMethods Business Console 10.11 15

1 Introduction to Business Console

3. InSolutions view, expandUser Interfaces, right-click on the project where youwant to create
a new gadget, and select New Business Console Gadget.

4. In theNew Business Console Gadgetwizard that opens, provide the following specification
for the new gadget. The New Business Console Gadget wizard creates the configuration
files and definition file for the new gadget.

DescriptionField

Specify AngularJS for AngularJS based gadgets or Default
with empty stubs for non AngularJS gadgets.

Gadget Type

Specify a name for the folder in which the new gadget
should be stored under project's WebContent node

Gadget Root Directory

(optional) . If you do not specify a folder name, the new
gadget will be stored directly under project's WebContent
node.

Specify a name to identify the new gadget.Gadget Name

Specify the title to be displayed on the gadget.Gadget Title

Browse and select an icon in .png or .jpg format for the
gadget. The image size should not be more than 50KB, and
the recommended size for the image is 70 X 70.

Preview Image

Specify a name for the gadget settings dialog box.Settings Title

Provide a description for the new gadget.Description

This is an auto-generated identifier for the gadget.Gadget ID

SpecifyGadget Group Name

Use project name if you want to use the project name
as the gadget group name.

Use custom name if you want to enter the name for
the gadget group in the input field. The group name
provided here will be used to categorize gadgets in the
Add New Gadget dialog in Business Console.

Updating the User Interface of a Gadget (view.xhtml)
A new gadget will reside under a gadget, portlet, or web application project. If you have specified
the root directory during gadget creation, the gadget would be in the root directory.

To update the user interface of a gadget

16 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

1. Navigate to one of the following application project:

a. Portlet Application Project

b. Web Application Project

c. Gadget Application Project

2. Navigate to Gadget_root_directory > Gadget_name > views

3. Double-click view.xhtml and edit the file.

4. Provide the HTML code in view.xhtml to define the user interface of the gadget.

Adding Functions to a Gadget Controller (controller.js)
After you define the user interface for the gadget, add the business logic for the AngularJS based
gadgets in the controller.js file.

To define the business logic for an AngularJS based gadget

1. Navigate to one of the following application project:

a. Portlet Application Project

b. Web Application Project

c. Gadget Application Project

2. Navigate to Gadget_root_directory > Gadget_name > scripts

3. Open controller.js for edit and specify the client-side business logic for the gadget.

DescriptionCodeblock

This section is for specifying a JavaScript array of RESTful
service URLs for the gadget. You must provide relative
URLs. Server details can be provided at runtime.

URLS

Constructor block which initializes the core services with
the $scope object, including config (gadget configuration

init

object), restClient (AngularJS based service to invoke
the RESTful services), eventBus (AngularJS based object
to pass events to the listening controllers and also receive

Developing Gadgets for webMethods Business Console 10.11 17

1 Introduction to Business Console

DescriptionCodeblock

events fired from other controllers), and URLS (the URL
object mentioned in the URL section).

This section allows you to define the JavaScript functions
to be added to AngularJS $scope object. These functions

defineScope

can be invoked from any place where there is access to the
controller's $scope object, even from view.xhtml by using
appropriate AngularJS directives such as data-ng-click.

This section is for attaching the listeners to the AngularJS
eventBus object.

defineListeners

This section is for the event handling functions for every
event handler.

_handleEvents

This section gets invoked on controller unload. Use this
to clean up any used object including event registration.

destroy

Deploying Gadgets to My webMethods Server
After the gadgets are developed, deploy the gadget, portlet, or web application project to My
webMethods Server.

When you deploy a gadget, portlet, or web application project, the gadgets in the application
project are deployed to My webMethods Server, and the deployed gadgets are registered in
Business Console.

To manually deploy the gadgets from a gadget, portlet, or web application project to My
webMethods Server

1. Package the applications as a .war file.

2. Copy the .war file to the directory: Software AG_directory\MWS\server\server_name\deploy.

Configuring Global Servers for Gadgets
You can configure global server settings for gadgets which are available for the configuration
object.

To configure global server settings for gadgets

1. Log in as a sysadmin into My webMethods Server.

2. Navigate to <Folders> > Administrative Folders > Administration Dashboard >
Configuration > CAF Application Runtime Configuration.

18 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

3. Click Configure Global Defaults and open Environment Entries under web application.

4. Click Add New Entry and add the following entries for each of the servers:

DescriptionTypeField Name

The value should be
eitherMWSor IS orAA

Stringgadgets.config.servers.host1.serverType

or other appropriate
server type. Each of
these acronyms expand
to My webMethods
Server or Integration
Server or AgileApps
Cloud respectively.

localhostStringgadgets.config.servers.host1.host

(or appropriate host
name)

8585 (or appropriate
port)

Integergadgets.config.servers.host1.port

HTTP (or appropriate
protocol)

Stringgadgets.config.servers.host1.protocol

Viewing Gadgets
You can view a gadget by using either the direct URL of the gadget, or by using the gadget in a
Business Console dashboard.

Note:
You must be logged on in Business Console to view a gadget.

Viewing Gadgets in a Browser

To view a gadget in a browser

1. Log on to Business Console.

2. Open another browser window.

3. Specify URL of the gadget in the format:
http://Host:Port/business.console.gadgets#/applicationName/gadgetName.

4. View and test the gadget.

Developing Gadgets for webMethods Business Console 10.11 19

1 Introduction to Business Console

Viewing a Gadget in Business Console

To view a gadget in Business Console

1. Log on to Business Console.

2. Create a dashboard. For more information, see theWorking with webMethods Business Console
guide.

3. Add the gadget to the dashboard.

4. Configure the gadget settings.

5. Check the view and behavior of the gadget in the dashboard.

If youmake any further changes to a gadget, publish the updated gadgets toMywebMethods
Server, and refresh the dashboard to view the gadget changes.

Exporting Gadgets
You can export a gadget from a project to a local file system directory . After exporting, you can
import a gadget to another project. For information about importing a gadget, see “Importing
Gadgets” on page 21.

To export a gadget in an application project

1. Select the UI Development perspective in Software AG Designer.

2. Select the gadget, web, or portlet application project fromwhere youwant to export the gadget.

3. Right-click on a gadget and select Export.

4. In the Export wizard, navigate to Select an export destination > Software AG > and select
Export Business Console Gadget.

5. Click Next.

6. In the Export Business Console Gadget wizard, provide the following specifications to
export the gadget:

DescriptionField

Specify the project name of the gadget that you want to
export.

Project

20 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

DescriptionField

Specify the gadget name that you want to export.Gadget

Browse and select a folder in which the gadget should be
stored.

To directory

7. Click Finish.

An archive (.zip) file that contains the exported gadget is generated.

Importing Gadgets
You can import an exported gadget from a local file systemdirectory to any project. For information
about exporting a gadget, see “Exporting Gadgets” on page 20.

To import a gadget in an application project

1. Select the UI Development perspective in Software AG Designer.

2. Right-click on the gadget, web, or portlet application project where you want to import the
gadget and select Import.

3. In the Importwizard, navigate toSelect an import source >Software AG > and select Import
Business Console Gadget.

4. Click Next.

5. In the Import Business Console Gadget wizard, provide the following specifications to
import the gadget:

DescriptionField

Specify the project name for the gadget that you want to
import.

Project

Browse and select the folder where the gadget is located.Gadget Archive

6. Click Finish.

The gadget is imported into the application project.

Deleting Gadgets
You can delete a gadget from a local file system directory.

Developing Gadgets for webMethods Business Console 10.11 21

1 Introduction to Business Console

To delete a gadget in an application project

1. Select the UI Development perspective in Software AG Designer.

2. Navigate to the Solutions tab and right-click on the gadget in the gadget, web, or portlet
application project you want to delete and select Delete.

The gadget is deleted from the application project after you right-click the project again and
click Refresh.

22 Developing Gadgets for webMethods Business Console 10.11

1 Introduction to Business Console

2 Getting Started

■ Understanding and Developing gadgets .. 24

■ Creating your First HelloWorld Gadget ... 24

■ Localizing a Gadget .. 27

■ Using RESTful Services with Gadgets ... 29

■ Invoking POST Calls .. 36

■ Using Forms with Gadgets ... 38

■ Communicating Between Two Gadgets .. 41

■ Using Third Party Libraries ... 44

Developing Gadgets for webMethods Business Console 10.11 23

Understanding and Developing gadgets

The samples in this section explains how to understand and develop gadgets. You will first create
a simple gadget, and then add more features to create a complex gadget.

Creating your First HelloWorld Gadget

This section describes how to create and test your first HelloWorld gadget.

Creating an Application Project
The first step in creating gadgets for Business Console is to create a gadget, portlet, or web
application for the gadgets to reside.

To create a new application project in Software AG Designer

1. In the UI Development perspective, select one of the application projects:

File > New > Portlet Application Project

File > New > Web Application Project

File > New > Other > SoftwareAG > UI Development > Gadget Application Project

An application wizard appears.

2. Provide the project name, such as MyPortletAppProject, and specify the necessary project
details.

For more information about creating a portlet or web application project by using Composite
Application Framework (CAF) in Software AG Designer, see webMethods CAF and OpenUI
Development Help guide and to create a gadget application project, seeWorking with Business
Console Gadgets Help.

Creating HelloWorld Gadget

To create a new gadget in an application project

1. Select the UI Development perspective in Designer .

2. InSolutions view, expandUser Interfaces, right-click onMyPortletAppProjectprojectwhere
you want to create a new gadget, and select New Business Console Gadget.

3. In the New Business Console Gadget wizard, provide the following specification for the new
gadget. TheNewBusiness ConsoleGadgetwizard creates the configuration files and definition
file for the new gadget.

24 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

SpecifyField

AngularJSGadget Type

gadgets.Gadget Root Directory

Note:
The gadgets directory will be created directly under
MyPortletAppProjectproject, andwill hold the gadget
files.

HelloWorldGadget Name

HelloWorld!Gadget Title

My First GadgetDescription

MyGadgetsGadget Group Name

4. Click Next.

5. Click Finish.

Creating a view for HelloWorld Gadget

To create a view for HelloWorld gadget

1. Select the UI Development perspective in Designer.

2. In Solutions view, expand User Interfaces, right-click onMyPortletAppProject project.

3. Open the view.xhtml file located under MyPortletAppProject > gadgets > HelloWord >
views.

4. The view.xhtml file of the new HelloWorld gadget will contain only the basic HTML header
as shown below.

<html>
<h3> HelloWorld Gadget</h3>
</html>

5. Add content to the view as shown below.

<html>
<h3> HelloWorld Gadget</h3>

<div>
Hello World!

</div>
</html>

Developing Gadgets for webMethods Business Console 10.11 25

2 Getting Started

6. To style the text in the gadget, add a class as shown below.

<html>
<h3> HelloWorld Gadget</h3>

<div class="hello-world">
Hello World!

</div>
</html>

7. To add styling to the css file:

a. Expand the styles directory.

b. Double click on gadget.scss.

c. Add the following to gadget.scss.

.hello-world{
font-weight:bold;
color:#ff0000;}

Deploying HelloWorld Gadget

Publish the MyPortletAppProject application in Designer to My webMethods Server.

When you publish a gadget, portlet, or web application, the gadgets in the application project are
deployed toMywebMethods Server, and the deployed gadgets are registered in Business Console.

To manually deploy the gadgets from an application to My webMethods Server:

1. Package the application as a .war file.

2. Copy the .warfile to this directory: SoftwareAG_directory\MWS\server\server_name\deploy.

Testing HelloWorld Gadget
Test the HelloWorld gadget using following URL format:
http://<HOST>:<PORT>/business.console.gadgets#/<PROJECT_NAME>/<GADGET_NAME>

Type the followingURL in your browser by replacing <HOST>with the host nameofMywebMethods
Server.
http://<HOST>:8585/business.console.gadgets#/MyPortletAppProject/HelloWorld.

HelloWorld gadget displays as shown below.

26 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

The diagram below shows the structure of the gadget.

Localizing a Gadget

1. Create a Gadget. For more information, see “Creating HelloWorld Gadget ” on page 24.

2. Open the gadgetDefinition.xml file located at /WEB-INF/gadgets/<Gadget_ID>.

3. Select the Gadget Defintion Editor tab.

4. Add a new parameter locale in the Gadget Definition Editor and assign it the default value
en.

5. Save the gadgetDefinition.xml file.

6. Open the controller.js file located at /WebContent/<Gadget_name>/scripts.

7. Define one of the following functions inside the defineScope code block as follows:

restInvocation

this.$scope.restInvocation = function(locale) {

Developing Gadgets for webMethods Business Console 10.11 27

2 Getting Started

var $scope = this;
var REST_URL = {url:

'/wm_bc_gadgets_samples/samplerest/localize/'+locale,method:'GET', isArray:true}
$scope.restClient.invoke(

REST_URL,
function(response, status, headers, config, $scope) {

var data = response;

$scope.dictionary = new Object();

for(var key in data){
if(data.hasOwnProperty(key)){

$scope.dictionary[data[key].key]=data[key].value;
}

}

},
function(response, status, headers, config, $scope) {

console.log("Error calling the REST url");
},
null, null, $scope, null);

},

Update the REST_URL in the restInvocation function based on the RESTful APIs that you have
defined.

successCallback

this.$scope.successCallback=(function (data) {
// store the returned array in the dictionary
var $scope = this;

for(var key in data){
if(data.hasOwnProperty(key)){

$scope.dictionary[data[key].key]=data[key].value;
}

}

})

8. Inside the init code block of the controller.js file, do one of the following:

If you defined the restInvocation function, add:
this.$scope.locale = config.params.locale;
this.$scope.restInvocation(config.params.locale);

If you defined the successCallback function, add:
var url = '<url to the JavaScript file with Localized String constants>;
return.$http({ method:"GET", url:url,
cache:false }).success(_this.successCallback);

9. (Optional) You can create the localize RESTful service as shown in the following sample
LocalizationResource.java code.

@Path("localize")
public class LocalizationResource{

28 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

public static final String RESOURCE_BUNDLE_NAME = "java.util.ResourceBundle";
public static final String RESOURCE_TYPE_NAME =
"caf.bc.gadget.samples.resources";
@GET
@Produces(MediaType.APPLICATION_JSON)
public String getLocalizedData(@Context HttpServletRequest request) {

ResourceBundle bundle = ResourceBundle.getBundle(RESOURCE_TYPE_NAME +
".messages", Locale.ENGLISH);
return buildJson(bundle);

}
@GET
@Path("{locale}")
@Produces(MediaType.APPLICATION_JSON)
public String getLocalizedData(@Context HttpServletRequest request,
@PathParam("locale") String locale) {

ResourceBundle bundle = null;
try {

bundle = ResourceBundle.getBundle(RESOURCE_TYPE_NAME +
".messages_" + locale, new Locale(locale));

} catch (MissingResourceException mre) {
bundle = ResourceBundle.getBundle(RESOURCE_TYPE_NAME +
".messages", Locale.ENGLISH);

}
return buildJson(bundle);

}
private String buildJson(ResourceBundle bundle) {

Enumeration<String> keys = bundle.getKeys();
StringBuilder builder = new StringBuilder("[\n");
int c = 0;
while (keys.hasMoreElements()) {

String key = keys.nextElement();
if (c == 0) {

c = 1;
builder.append("\t\t{\"key\":\"" + key +
"\",\"value\":\"" + bundle.getString(key) + "\"}");
} else {

builder.append(",\n\t\t{\"key\":\"" + key +
"\",\"value\":\"" + bundle.getString(key) +

"\"}");
}

}
builder.append("\n]");
return builder.toString();

}
}

Sample content in the expected .js file when using the successCallback function is as follows:
“[

{"key":"greetings","value":"Hello"},
{"key":"inquiry","value":"How are you?"},
{"key":"farewell","value":"Goodbye"}

]”

Using RESTful Services with Gadgets

You can enhance the HelloWorld gadget to display data fromMywebMethods Server. To do this,
you would need to make a REST call to your My webMethods Server. Use an existing RESTful

Developing Gadgets for webMethods Business Console 10.11 29

2 Getting Started

API (<HOST>:<PORT>/rest) that showsMywebMethods Server node information, and display that
information in the gadget.

Defining the Server

1. Define the My webMethods Server from where the data must be fetched. If you have already
defined the My webMethods Server during gadget creation, skip this step.

a. Open the gadget-deninition.xml located underWEB-INF>gadget>Hello_World<ID>, for
example, ID is HelloWorld_AE96C3B0_0576_1034_A270_1.

30 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

b. On the right pane, click Gadget Defintion Editor.

c. Expand the Hosts section, and click Add.

d. Enter the following:

Fill...Field

MWS1Name

localhost (or appropriate host name)Host Name

8085 (or appropriate port)Port

MWSServer Type

e. Click OK.

f. Save the server changes.

g. Verify that the server is successfully added by checking the config.js located under
MyPortletAppProject > WebContent > gadgets > Hello_World > script . You will find
an auto-generated structure which shows the server details.

"config": {
"params": {

"servers": {
"MWS1": {

Developing Gadgets for webMethods Business Console 10.11 31

2 Getting Started

"serverType": "MWS",
"host": "localhost",
"port": "8585",
"protocol": "http"

}
},

},
"title": ""

}

Writing Business Logic to Invoke RESTful Services

To write the business logic to invoke the RESTful API

1. Open the gadgets > HelloWorld > scripts > controller.js in the editor.

2. Decide when the RESTful service should be invoked. To invoke the RESTful service on gadget
load, the call should bemade through the init block. By default, someRESTful API invocation
stubs are auto-generated when a gadget is created. You can enhance the generated stub or
create your own.

a. To invoke the RESTful service on gadget load, add the following code in the init section
of the gadget's controller.js file.

init : function($scope, restClient,eventBus,log,config) {
try{

.....
this.$scope.restInvocationCORS(config); //ADD THIS BLOCK IN
YOUR INIT

....
}

b. Replace the restInvocationCORS function auto generated under the defineScope blockwith
the following code.

this.$scope.restInvocationCORS = function(gadgetConfig) {
var $scope = this;
var selectedAlias = "MWS1";
$scope.Math=window.Math; // Enable the Javascript Math function
$scope.restClient.url("/rest") //Provide the server alias to connect
to

.serverAlias(selectedAlias)

.remote(true)

.cors(true)

.scope($scope)

.gadgetConfig(gadgetConfig)

.success(function(response, $scope) {
$scope.restData = response; // The RESPONSE will be
captured in a variable called restData

}).error(function(response, $scope, status, headers, config) {
$scope.eventBus.fireEvent(NotificationConstants.ERROR,
"Unable to invoke REST " + gadgetConfig.params.
servers[selectedAlias].host + ":" + gadgetConfig.params.
servers[selectedAlias].port +

32 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

"/rest for gadget MWS Remote");
}).invoke();

}

Note:
The server response is captured in a variable called restData. This object is then assigned
to the AngularJS $scope object. Assigning it to the $scope object will make the object
available for user interface rendering. A sample response for the RESTful API
(localhost:8585/rest), is of the following structure:

{
"host": "<HOST>",
"nodeName": "<HOST>-node<NUMBER>",
"httpPort": "8585",
"httpsPort": "0",
"frontEndUrl": "http://<HOST>:<PORT>",
"clusterRoles": "[notification, search, taskengine,
autodeploy]",
"uptime": "17461.0",
"freeMemory": "741135632",
"maxMemory": "954728448"

}

Adding User Interface Code to XHTML

To display information in a table

1. Use HTML table tag to create a table.

2. Add the HTML below to the gadget's view.xhtml file.

<table class="table table-bordered">
<thead>

<tr>
<th>Host</th>
<th>Port</th>
<th>Uptime (sec)</th>
<th>Free/Max Memory(MB)</th>

</tr>
</thead>
<tr>

<td>{{restData.host}}</td>
<td>{{restData.httpPort}}</td>
<td>{{restData.uptime}}</td>

<td>
{{Math.round(restData.freeMemory/1000000)}}/{{Math.round(restData.
maxMemory/1000000)}}

</td>
</tr>

</table>

Note:table, table-bordered from bootstrap enhances the look and feel of the table. You can
add more styles to the gadget.scss if required.

Developing Gadgets for webMethods Business Console 10.11 33

2 Getting Started

The restData object that was associated with $scope object is directly accessible in the user
interface. If restData is an Array, you can iterate restData by using an data-ng-repeat tag
of AngularJS to populate multiple rows of the table.

Deploying and Testing the Gadget

1. Publish the application to deploy the enhanced gadget.

2. Test the HelloWorld gadget using the following URL format:
http://<HOST>:<PORT>/business.console.gadgets#/<PROJECT_NAME>/<GADGET_NAME>.

The enhanced gadget is displayed as shown below.

Offline Caching of REST Services Data
Business Console gadgets access data from the server using the REST services. This mandates
network availability and causes network traffic. With the offline caching capability, the user can
configure the gadgets to store data offline and access the data from the cache without requesting
the server.

Every gadget in the AppSpace has a separate IndexedDB, <Gadget Name>_<Gadget ID> that
can contain multiple offline stores. Every store consists of Key and Value pairs.

Note:
The Key should be unique for each entry in the store, otherwise, the Value is overridden.

Configuring Gadgets to Cache Data Offline
The offline caching capability allows you to configure gadgets to store data offline.

34 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

1. Create a gadget. For information about creating a gadget, see “Creating HelloWorld Gadget
” on page 24.

2. Enable or disable the offline caching capability for gadgets as follows:

a. Navigate to gadgetDefinition.xml of a respective gadget.

b. Select the Gadget Definition Editor tab and expand Parameters.

c. Click Add.

d. Enter the following parameter in the Name and Value fields respectively:

ValueName

TrueOffline

3. Configure offline stores in the IndexedDB of gadgets by configuring the REST GET call URL
as follows:

Note:
You can configure multiple offline stores for a gadget.

a. Navigate to the gadget controller.

b. Define the REST service URL with the caching configuration as follows:

Ensure that the URL is accessible from $scope.url.
{

TASK_INBOX_GET:{url:'/rest/pub/opentasksearch', method:'GET'
isArray:true, serverType:SERVER_TYPES.TE,
headers : {"Content-Type": "application/json"

,"Accept":"application/json"},
caching : {name:'OfflineTaskInbox',

key : {value:'TaskInbox'},
strategy : 'CacheOnly'

}
}

}

where:

Name is the unique OfflineStore name of a gadget.

Key is the key value for which the data is stored. Key accepts the following variants as
values:

key:{value:'TaskInbox'} is the constant value configured as a key.

key:{requestKeyParamName:'cacheKey'} key is extracted from the request parameter.

Developing Gadgets for webMethods Business Console 10.11 35

2 Getting Started

key:{requestKeyPath:'payload.key'} key is extracted from the request payload using
the JSON path configured.

key:{responseKeyPath:'response.id'} key is extracted from each item in the response
array. The configuration for caching is:
caching : {name:'OfflineTaskInbox',

key:{responseKeyPath:'response.id'},
isArray:true
}

Strategy is the configuration that controls the lifecycle of the cached content. Strategy accepts
the following variants as values:

Note:
If no value is specified for Strategy, then NetworkFirst is specified as the default value.

strategy:'CacheOnly', where the data is fetched only from the cache. If the data is not
found in the cache, then fetch the data from the server and store it in the cache for the
first time.

strategy:'CacheFirst', where the data is first fetched from the cache and then receives
new data from the server and updates the cache.

strategy:'NetworkFirst', where the data is always fetched from the server. If the user
is offline then the data is fetched from the cache.

Invoking POST Calls

To understand how to make POST calls, let's use the Task Engine RESTful service for My
webMethods Server to create a task instance of a task type from a gadget. The examples below
describe how to accept a task type ID in the gadget, pass the task type ID as POST request, and
display the task instance in the gadget.

Adding a POST Call in Controller

1. Create a HelloWorldTask task type for the task application, and note the taskType ID.

2. In the defineScope block in controller, add the code in the try block as shown below.

defineScope: function(){
var _this=this;
....

_this.$scope.tasks= new Array();
// TAKING AN ARRAY OF TASK INSTANCES. THIS WILL BE DOUBLE BINDED TO THE UI

_this.$scope.createTaskInstance=function(){
//FUNCTION TO INVOKE FROM THE UI

var selectedAlias = "MWS1";
//SELECTED MWS SERVER ALIAS

var $scope=_this.$scope;
var requestData = {

//POST CALL REQUEST DATA
"taskTypeID":_this.$scope.config.params.taskTypeId,

36 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

// REPLACE THIS WITH THE TASK TYPE ID
"taskInfo":{
"name":"hello world1"

//YOU CAN GIVE ANY NAME TO THE TASK INSTANCE CREATED
}

};

_this.$scope.restClient.url("/rest/pub/opentask")
//Provide the server alias to connect to

.serverAlias(selectedAlias)

.method("POST")
//HTTP METHOD TO BE INVOKED

.requestData(requestData)

.remote(true)

.cors(true)

.scope($scope)

.gadgetConfig($scope.config)

Defining the User Interface

1. Open the view.xhtml file and add the following code.

<html>
<h3> HelloWorld Gadget</h3>
<label>Task Type ID</label>
<input type="text" ng-model="config.params.taskTypeId"></input>

<input class="btn bc-button" type = "button" ng-click="createTaskInstance()"
value="Create Task Instance"></input>
<p>Created Task</p>
<table class="table table-bordered table-responsive" width="100px">

<thead>
<tr>

<th>Task Id</th>
</tr>

</thead>
<tr ng-repeat="taskId in tasks">

<td>{{taskId}}</td>
</tr>

</table>
</html>

2. Deploy the gadget.

3. Access the gadget using the direct URL for the gadget.

4. Specify the task type ID.

5. Click Create Task Instance on the gadget.

Task instance of the specified task type will be created. The task IDs of the task instances will
be displayed in the gadget UI as shown below.

Developing Gadgets for webMethods Business Console 10.11 37

2 Getting Started

Using Forms with Gadgets

This section explains how to create a gadget with HTML forms and submit the form data.

Building the Gadget

1. Navigate toWebContent > WEB-INF > gadgets > HelloWorld_<ID> > gadgetDefinition.xml

2. Select the Gadget Definition Editor tab and expand Parameters.

3. Click Add.

4. Enter the following parameters in Name field and leave the Value field empty:

firstName

lastName

phone

5. Save the editor.

The added parameters are displayed as shown below.

38 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

Adding HTML User Interface Code to Show Form

1. Navigate to view.xhtml of the gadget.

2. Add the following HTML tag.

<html>
<body>
<h3>HelloWorld Gadget</h3>
...
<div class="container-full">
<form role="form" name="myForm">

<div class="form-group row">
<label for="firstName" class="col-md-4">First Name:</label>
<input type="text" class="col-md-8 remove-paddings" name="firstName"

id="firstName" data-ng-model="config.params.firstName"></input>
</div>
<div class="form-group row">

<label for="lastName" class="col-md-4">Last Name:</label>
<input type="text" class="col-md-8 remove-paddings" name="lastName"

id="lastName" data-ng-model="config.params.lastName"></input>
</div>
<div class="form-group row">

<label for="phone" class="col-md-4">Phone:</label>
<input type="text" class="col-md-8 remove-paddings" name="phone"

id="phone" data-ng-model="config.params.phone"></input>
</div>
<input class="btn bc-button row" type="button" value="Submit Form"

onclick="submitForm()"></input>
</form>
</div>

...
</body>
</html>

Adding JavaScript Code to Submit Form

To add the JavaScript logic to submit form

1. Get form values.

2. Construct the URL to submit form.

3. Create <head> tag under <html> tag.

4. Add the code block given below.

<head>
<script>

function submitForm(){
var firstName= document.getElementById("firstName").value;

Developing Gadgets for webMethods Business Console 10.11 39

2 Getting Started

var lastName= document.getElementById("lastName").value;
var phone= document.getElementById("phone").value;

var href ="";
if(window.location.href.indexOf("?")>0){

href = window.location.href.substring(0,
window.location.href.indexOf("?"));

}else{
href= window.location.href;

}

var actionUrl = href+"?firstName="+firstName;
actionUrl =actionUrl+"&lastName="+lastName;
actionUrl +="&phone="+phone;

window.location.href=actionUrl;
window.location.reload();

}
</script>
</head>

Deploying and Testing the Gadget

1. Publish the application to deploy the updated gadget.

2. Test the gadget using the direct URL:
http://<HOST>:<PORT>/business.console.gadgets#/MyPortletAppProject/HelloWorld.

The updated gadget is displayed as shown below.

Display Form Values in Another Gadget

1. Create a FormDisplay gadget with the following options:

Gadget Name: FormDisplay

40 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

Gadget Title: Form Display

2. Click Next and click Finish.

3. Edit the gadget-defintion.xml to add the parameters.

4. Enter the following parameters in Name field and leave the Value field empty:

firstName

lastName

phone

5. Change the view.xhml of the FormDisplay gadget to include the following code.

<form role="form">
<div class="form-group">

<label for="firstName">First Name:</label>
<label>{{config.params.firstName}}</label>

</div>
<div class="form-group">

<label for="lastName">Last Name:</label>
<label>{{config.params.lastName}}</label>

</div>
<div class="form-group">

<label for="lname">Phone:</label>
<label>{{config.params.phone}}</label>

</div>
</form>

6. Deploy the gadgets.

7. To test the gadgets, log on to Business Console using the URL format:
http://<HOST>:<PORT>/business.console.

8. Click on Dashboards > Plus icon.

9. Create a dashboard and add these two gadgets side by side.

10. Click Submit Form on the HelloWorld gadget.

HelloWorld gadget passes the form values to the FormDisplay Gadget through the URL.

Communicating Between Two Gadgets

Communication between gadgets is possible by using a custom JavaScript service called EventBus
provided by the gadget framework. Each gadget can act as an event subscriber or publisher or
both. This section provides basic information for using the EventBus service.

Developing Gadgets for webMethods Business Console 10.11 41

2 Getting Started

To make a gadget trigger events, the fireEventmethod of EventBus is used. The first argument is
the Event Name, the second argument is the payload or the data to be passed, and the third
argument is an optional context.
this.eventBus.fireEvent("SOME_EVENT_NAME", "Some Event!");

To make a gadget receive events, define the listener in the defineListener block in the controller
of the subscribing gadget and then put the handling logic in the _handleEvents block.
this.eventBus.addEventListener("SOME_EVENT_NAME",this._handleEvents.bind(this));
_handleEvents:function(eventType,payload,context){

/* Logic to handle events
*/
switch(eventType){
case "SOME_EVENT_NAME":

/* Add Event Handling Logic for GLOBAL_EVENT */
this.$scope.exampleHandleEventAction(payload); //ONCE EVENT

IS RECEIVED , INVOKE THE exampleHandleEventAction function on $scope.
break;

}
},

Implementing Communication Between Gadgets
Create a new HelloWorld2 gadget to trigger events, and pass information from HelloWorld2
gadget to the HelloWorld gadget.

1. Create HelloWorld2 gadget and provide the following to the new gadget.

Gadget Name: HelloWorld2

Gadget Title: Hello World 2

2. Open the view.xhtml file of HelloWorld2, and add the following code.

<input type="button" value="Click to Publish Data" ng-click="publishData()">
</input>

3. Open the controller.jsfile ofHelloWorld2, and add the following code under the defineScope
block.

defineScope : function() {
var _this=this;
this.$scope.publishData= function(){

_this.eventBus.fireEvent("PUBLISH_DATA", "Hello using Event");
}

}

4. Open the view.xhtml file of HelloWorld, and add the following code.

<h3>HelloWorld Gadget</h3>
<div class="hello-world">Hello World!</div>
{{data}}

42 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

5. Open the controller.jsfile inHelloWorld, and add the following code under defineListeners
block.

defineListeners:function(){
this._super();
this.eventBus.addEventListener("PUBLISH_DATA",this.
_handleEvents.bind(this));

}

6. In the same controller.js file ofHelloWorld, add the following code under defineScope block.

_handleEvents:function(eventType,payload,context){
if(eventType=="PUBLISH_DATA"){

this.$scope.data=payload;
}

},

7. Deploy both the gadgets.

8. To test the gadgets, log on to Business Console using URL format:
http://<HOST>:<PORT>/business.console.

9. Create a dashboard and add the two gadgets side by side.

10. Click Click to Publish Data in HelloWorld2 gadget.

HelloWorld gadget displays Hello using Event text as shown below.

Developing Gadgets for webMethods Business Console 10.11 43

2 Getting Started

Using Third Party Libraries

If you want a gadget to accept one or more locations as input and plot these locations in a Google
Map. The gadget must use Maps API

GoogleMaps is one of themost popular libraries, which provides amap implementation.However,
to use Google Maps in gadget, you need an API Key. You can use a standard API key or use a
premium Key if you have Maps license.

To generate your API key, use URL https://developers.google.com/maps/documentation/
javascript/get-api-key. Most of the third party libraries can be downloaded in your local system
and then these library files can be added under the scripts folder.

GoogleMaps restricts the use ofmaps by downloading. Gadget codemust directly refer to Google
maps library. This leads to synchronization issue as the gadget has to wait for the library to be
loaded from the URL. To achieve this, gadget framework includes a lazyLoader (ocLazyLoader)
module to load all the modules.

Writing User Interface Code for Using Third-party Libraries in
Gadget

1. Navigate to the view.xhtml file of the gadget.

2. Add the following code:

<div class="table">
<div class="row remove-margins table-row " ng-repeat="item in locations

track by $index">
<input type="text" ng-model="item.location" class=

"table-cell location-publish-text" placeholder="Enter city, country, zip
code etc."></input>

<div style="white-space: nowrap;" class="table-cell">
<!-- remove button should not be shown if it is a first entry -->
<button type="button" class="bc-button" data-ng-click="addRow()">

<i class="fa fa-plus"></i>
</button>
<button type="button" class="bc-button"

data-ng-click="removeRow($index)">
<i class="fa fa-minus"></i>

</button>
</div>

</div>
<div class="row remove-margins table-row ">

<input type="button"
value="Publish Locations" ng-click="publishLocation()" class=

"bc-button table-cell"></input>
<input type="button"
value="Clear" ng-click="clearLocation()" class="bc-button
table-cell"></input>

</div>
</div>

<div oc-lazy-load="['js!https://maps.googleapis.com/maps/api/js?key=

44 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

YOUR_API_KEY']">
<div class="row remove-margins">

<h4>Maps Gadget</h4>
<label class="location-maps-header"> Use this gadget to display
locations.
</label>
<googlemaps id="google_map_canvas" style="height: 760px;">

</googlemaps> <!--CONTAINER FOR THE MAP. CUSTOM DIRECITVE -->
</div>

</div>

a. Replace the YOUR_API_KEYwith the Maps API key you have retrieved from Google.

b. In the first <div>, add a textbox control with plus/minus buttons to add/remove one or
more locations.

c. In the second <div>, used a tag called <googlemaps .../>. This is not an HTML tag, but a
customAngularJS directive. By using this directive, we can get a reference to the container
and then place our Map pointers accordingly.

d. This <div> also contains a call to Angular lazy loader (oc-lazy-load) to load the Maps API
from aURL. The customdirective <googlemaps.../> should go inside the <div> containing
the oc-lazy-load attribute.

Styling the Gadget
Style the controls before writing the business logic.

1. Navigate to gadget.scss file located under WebContent > Gadget > HelloWorld > styles
of the application project.

2. Add the following code:

.location-publish-header{
font-size: 13px;
font-family: Arial;
font-weight: normal;
padding-left: 8px;
padding-top: 5px;

}
.table{

display:table;
}
.table-row{

display:table-row;
}
.table-cell{

display:table-cell;
padding: 3px;
margin-bottom: 3px;
margin-left: 5px;

}
.location-publish-text{

Developing Gadgets for webMethods Business Console 10.11 45

2 Getting Started

width:100%;
}

Writing Custom Maps Directive in custom.js File
To create a custom directive, follow the steps below. You need to replace <ID>with the one
generated by your gadget.

1. Open webapp > gadgets > HelloWorld > scripts > config.js and lookup the gadget module
name in the config.js file. In the code below, HelloWorld_<ID>_module refers to the gadget
module.

var HelloWorld_<ID>_module = angular.module(..... .

2. Add the code below in the custom.js file.

HelloWorld_<ID>_module.directive('googlemaps', function() {
return {

restrict: 'E',
//Restrict to HTML Tags only

replace: true,
//Replace existing content with the content from this directive

template: '<div></div>',
//Base Template for the tag

link: function($scope, element, attrs) {
//This function is invoke when the directive get linked to the DOM

var center = new google.maps.LatLng(50.1, 14.4);
//Taking a randon centre point in Map

var map_options = {
// Default Options for Maps

zoom : 2,
mapTypeId : google.maps.MapTypeId.ROADMAP,
center : center,

};

// Create a Map Object
var map = new google.maps.Map(document.getElementById

(attrs.id), map_options);
// Create a Marker Array. Each marker will correspond to a point in the map

$scope.markers = [];

//Function to be invoke from controller. This takes a an array of location
objects and points each location on the map

// a typical locations array would be something like this
[{"location":"Bangalore"},{"location":"Seattle"},{"location":"Reston"}]

$scope.locateInMap= function(locations){
$scope.hideMarkers();

// Hide existing markers and plot new ones
geocoder = new google.maps.Geocoder();
for(var key in locations){

if(locations.hasOwnProperty(key)){
geocoder.geocode({

'address' : locations[key].location
// Decode the location string to a specific geocode

}, function(results, status) {

46 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

if (status == google.maps.GeocoderStatus.OK)
{

//In this case it creates a marker, but you can get the lat and lng from
the location.LatLng

map.setCenter(results[0].geometry.
location);
var marker = new google.maps.Marker({

map : map,
position : results[0].geometry.
location

});
$scope.markers.push(marker);

} else {
alert("Geocode was not successful for the

following reason: " + status);
}

});
}

}

};
$scope.hideMarkers=function() {

/* Remove All Markers from the Map*/
while($scope.markers.length){

$scope.markers.pop().setMap(null);
}

}

window.setTimeout(function() {
google.maps.event.trigger(map, 'resize');

}, 100);

}
}

});

Coding the Gadget Controller
Provide appropriate logic in the gadget controller to invoke the locateInMap function.

Add the following code to the gadget controller file to receive location from the same gadget and
then plot the map.

1. Add an empty location variable and bind it to scope to add a text box in the user interface to
capture location.

init:function(){
.....
this.$scope.locations=[{location:''}];

2. Add the following code in the defineScope block of the gadget controller to add or remove
text box on the user interface when the + or - icon is clicked:

defineScope : function() {
var _this = this;
this.$scope.addRow=function(){

Developing Gadgets for webMethods Business Console 10.11 47

2 Getting Started

var row={location:''};
_this.$scope.locations.push(row);

}

this.$scope.removeRow=function($index){
_this.$scope.locations.splice($index, 1);

}

this.$scope.clearLocation=function(){
_this.$scope.hideMarkers();

}
}

3. Add the following code in the defineScope block to plot the locations on the map.

defineScope : function() {
.......
this.$scope.publishLocation=function(){

//Check to remove empty locations
var locations=[];
for(var key in _this.$scope.locations){

if(_this.$scope.locations.hasOwnProperty(key)){
if(_this.$scope.locations[key].location!==''){

locations.push(_this.$scope.locations[key]);
}

}
}

_this.$scope.locateInMap(locations);

};
}

Deploying and Testing Maps Gadgets

1. Deploy the map gadget to My webMethods Server.

2. Test the gadgets using the URL format:
http://<HOST>:8585/business.console.gadgets#/MyPortletAppProject/HelloWorld.

48 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

Developing Gadgets for webMethods Business Console 10.11 49

2 Getting Started

50 Developing Gadgets for webMethods Business Console 10.11

2 Getting Started

3 Creating User Interface for Gadgets

■ Creating an User Interface ... 52

■ Using Bootstrap Components .. 52

■ Creating Responsive Gadgets ... 52

■ Using Form Layouts ... 52

■ Validating Fields in a Form ... 53

■ Adding Static or Dynamic Content ... 54

■ Styling Gadgets .. 54

■ Adding Styles in CSS ... 54

■ Enabling CSS Editor for .scss Files in Designer ... 55

■ Embedding a Gadget within Another Gadget ... 55

Developing Gadgets for webMethods Business Console 10.11 51

Creating an User Interface

This section explains how to create an user interface for gadgets. Youwill create responsive gadgets,
use form layouts, add contents to the gadgets, and style gadgets.

Using Bootstrap Components

Gadget framework provides the following files for each gadget for defining the user interface:

view.xhtml

settings.xhtml

view.xhtml contains information about the user interface to be displayed when the gadget is
rendered on the web page.

settings.xhtml contains information about the user interface for configuring the gadget at run
time, if the gadget loading requires any runtime configuration.

view.xhtml and settings.xhtml files of each gadget are individually bootstrap enabled by default.
This means that the gadgets are already within a bootstrap container, and the use of Grid System
within a gadget is sufficient to make the layout responsive. If you are using AngularJS version of
the gadget, you can also use the AngularUI Bootstrap library that are already included as part of
the application.

Creating Responsive Gadgets

Using bootstrap styles for your gadgets would ensure that the gadgets are internally responsive.
However, there might be a situation where you need to use responsive large controls in the user
interface. For example, HTML tables are not responsive by default, and if you use a big table in a
gadget, the table in the gadget might overlap with other gadgets. The best solution for these
scenarios would be to use percentages (%) for defining widths.

Using Form Layouts

If you need to use a form in a gadget, you can use the form-horizontal class to style the form
controls.

Note:
Tooltips can be specified using the data-hint attribute, and the orientation can be controlled
using hint--top, hint--bottom, hint--left, and hint--right classes.

A typical example of a form is shown below:
<form class="form-horizontal">

<div class="control-group">
<label class="control-label hint--top" data-hint="Tooltip Message1"

for="">Control-1</label>
<div class="controls">

<<Add the form control>>
</div>

52 Developing Gadgets for webMethods Business Console 10.11

3 Creating User Interface for Gadgets

</div>

<div class="control-group">
<label class="control-label hint--top" data-hint="Tooltip Message2"

for="">Control-2</label>
<div class="controls">

<<Add the form control>>
</div>

</div>

</form>

Validating Fields in a Form

You can use the bc-validate directive to validate fields in a form. To validate a field, add the
bc-validate directive with one or more of the following options separated using commas.

DescriptionOption

Mandatorynon-empty

Text onlytext

Numeric onlynumeric

Numeric integer onlynumeric-int

Numeric float onlynumeric-float

Alpha-numeric onlyalpha-numeric

Email address onlyemail

Web links onlyurl

Port numbers onlyport

IP address onlyip-address

Minimum limitmin-value

Maximum limitmax-value

The field must be bound to an ng-model that is used for performing the validation. For example:
<input type="text" data-ng-model="binding_Attribute" bc-validate="non-empty,
numeric-int"/>

If you want to provide values dynamically at runtime without binding to a model, add the
non-scoped attribute to the field. The non-scoped attribute checks the runtime value of the field
instead of looking into a model. For example, use the non-scoped attribute when setting values
using methods such as jQuery or others. For example:
<input type="text" id=”textID” bc-validate="non-empty,
non-scoped, numeric-int"/>

Developing Gadgets for webMethods Business Console 10.11 53

3 Creating User Interface for Gadgets

You must validate all fields in a form again if it has a Save button. To validate all fields when the
Save button is clicked, define the Save button as shown in the following example:
<button type="button" id = "save-button" class="bc-button"
saveCallback="submitPage()" bc-validate="save">Save</button>

In this case, instead of calling ng-click="someFunction()", you must define it in saveCallBack.
The validation framework automatically initiates the callback after the form is validated.
Additionally, you must set bc-validate="save" in the Save button.

Adding Static or Dynamic Content

You can add your static content to the view.xhtml file.

You can build dynamic content in the view.xhtml file by using one of these methods:

Invoking services written in controller.js

Importing external Javascript libraries and using the function in the Javascript libraries

Note:
For importing JavaScript library, use <div oc-lazy-load="jsFileName.js"/> tag instead of the
<script import="jsFileName.js"/> tag. The normal <script import="jsFileName.js"/> tag
will not work. You should not import the internally generated.js JavaScript files such as
custom.js that are automatically available in the controller.js and view.xhtml files.

Styling Gadgets

For each gadget, you can provide your custom styles in the gadget.scss file of the gadget. You
also have the option to provide the style in-line in view.xhtml or settings.xhtml files under a
<style> tag.

Note:
From Designer 10.0 or later, Sass (Syntactically Awesome StyleSheets) is used as part of the
gadget styles. Sass is an extension of CSS that adds power and elegance to the basic language.
The file extension for gadgets using Sass is .scss.

Adding Styles in CSS

You can add styles for a gadget within a namespace in the gadget.scss file as follows:

1. Navigate to thegadget.scssfile under the styles folder of a respective gadget in the application
project.

2. Include your styles in the following code:

Note:
.gadget-container-<Gadget Name>-<Short Identifier> is the auto-generated namespace.

.gadget-container-<Gadget Name>-<Short Identifier> {

54 Developing Gadgets for webMethods Business Console 10.11

3 Creating User Interface for Gadgets

.gadget-header-text{
font-size: 20px;
padding: 10px 10px 0px 10px;
color: red

}
// write your styles here
}

Enabling CSS Editor for .scss Files in Designer

To open a .scss file in Designer:

1. Launch the Software AG Designer in the UI perspective.

2. Navigate to thegadget.scssfile under the styles folder of a respective gadget in the application
project.

3. Right-click custom.scss and select Open With > CSS Editor.

4. In the Unsupported Content Type wizard, click Content Types Preferences Page link.

5. In the Preferences wizard, navigate to General > Content Types and select the CSS content
type and click Add.

6. In the Add Content Type Association wizard, type *.scss in the Content type field.

7. Click OK.

Note:
This is one-time configuration that you need to perform in your workspace.

Embedding a Gadget within Another Gadget

You can embed a gadget inside another gadget by editing the bc-gadget tag as follows:

<bc-gadget widget-model="<GADGET_ID>" params="{ key1:value1, key2:value2 }" embed="true">
</bc-gadget>

where:

GADGET_ID is the unique identifier of the gadget.

key is the parameter key.

value is the parameter value.

Developing Gadgets for webMethods Business Console 10.11 55

3 Creating User Interface for Gadgets

56 Developing Gadgets for webMethods Business Console 10.11

3 Creating User Interface for Gadgets

4 Programming Gadgets

■ About Programming Gadgets ... 58

■ Base Controller for Programming Gadgets .. 58

■ Defining Module Dependencies ... 59

■ Injecting Services, Factories, and Providers .. 61

■ Defining Angular $scope Object ... 61

■ Invoking RESTful Services ... 62

■ Generating REST Connector Code for REST Services ... 69

■ Including Independent AngularJS Modules in Gadgets ... 73

■ Invoking JavaScript Functions with Same Name in Different Libraries 73

■ Using Third Party Libraries in Gadgets ... 74

■ Defining Success and Error Notification in Gadgets .. 75

■ Using Forms in Gadgets ... 75

■ Accessing Services and Functions in XHTML Files and Controller 77

■ Using Custom JS or CSS Files in Gadgets .. 78

■ Reusing JS Files and CSS Files Across Gadgets .. 79

■ Loading a Gadget or an AppSpace in a Modal Dialog Box .. 80

Developing Gadgets for webMethods Business Console 10.11 57

About Programming Gadgets

The business logic for programming the gadgets are defined in a base controller. The AngularJS
provides a framework to manage the business logic of the gadgets. This section gives information
about the functions and module dependencies defined in the controller file associated to gadget
module.

Base Controller for Programming Gadgets

AngularJS provides a MVC framework to manage the business logic of a gadget. The base logic
for programming a gadget should reside in the controller.js. The gadget framework binds the
controller to the view file dynamically at runtime so that you do not have tomention the controller
explicitly in the view using the data-ng-controller attribute.

In the gadget development framework, we have included a base controller (BaseController.js)
which wires some of the required services to the controller. As a best practice, all AngularJS
controller for a gadget should extend base controller. Though JavaScript does not provide
inheritance directly, you can use JavaScript prototype inheritance.

Extending base controller provides away to overload some of the functions defined in it. Functions
in base controller provide a structured coding approach.

Functions Defined in Base Controller

init

The init function can be considered as the constructor function of the controller class. init function
is invoked when the gadget is loading into the dashboard. Gadget loading occurs when a gadget
is added to a dashboard or when an existing dashboard is launched. All invocations or business
logic that are required for loading a gadgetmust be included in the init function. The init function
arguments must match the injected components in the controller. For example, code as shown
below.
....
init : function($scope, restClient,eventBus,log,config)
{
....
}
....

ExampleController.$inject = ['$scope', 'RestServiceProvider','EventBus','$log',
'config'];

The ExampleController controller is injected with $scope, RestServiceProvider, EventBus, $log,
and $config objects. These are the services that the gadget framework exposes for various business
logic. The order of the injection must match the order of the arguments in the init function to
receive the injected object in the init function. Once the objects are injected in the init function,
specify a call as shown below.
this._super($scope,eventBus,restClient);

58 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

This call registers the $scope, eventBus, and restClient objects with the BaseController.

defineScope

All functions required to be defined on the controller scope is defined here. The scope functions
are the main business logic of the gadget that are related to the user interface. Scope functions can
be invoked in the init function (after _super call) or through any other flow (for example, on event
handling).

As a best practice, all functions that are related to the user interface such as a button click should
be defined under the defineScope block. Since scope is an AngularJS object accessibly locallywithin
a gadget, any function defined the defineScope block makes the function available for invocation
from the user interface (for example, using ng-click=<function name>) or from any other place
that has access to the controller scope. However, generic business logic that is not tied to the user
interface should not be made a part of the controller and should be added to an AngularJS service
or factory. This allows the code, to be injectable as well as unit testable.

defineListeners

This function block is invoked once during controller load, and is used to define all the listeners
on the EventBus that are related to the controller. Event listeners are fined as shown below.
this.eventBus.addEventListener("EVENT_TYPE_NAME", this._handleEvents.bind(this));

The code above will register the controller as a listener for the type of event mentioned in the first
argument of addEventListener. For every listener added to the controller, a respective handling
block should be provided under the _handleEvents function block.

destroy

The destroy function is synonymous to the defineListeners block mentioned above.

Defining Module Dependencies

All AngularJS services, directives, and factories defined in controller.js or custom.js are
modularized for better code management as specified below.

1. Define a module for each angular directive, factory, or service as shown below.

var module_name = angular.module('MODULE_NAME',[DEPENDENCIES]);

2. Provide a dependency for the module in the gadget. This can be done using Software AG
Designer while creating the gadget or later while using the gadget definition editor.

3. Inject the module, services, or factories in the controller (in the $inject code) and use it
appropriately.

4. In case of providers:

Developing Gadgets for webMethods Business Console 10.11 59

4 Programming Gadgets

angular.module('MODULE_NAME',[DEPENDENCIES]).provider('PROVIDER_NAME',
function PROVIDER_FUNCTION(){

this.$get = [<INJECTABLES>,function (<INJECTED_OBJECTS>){
this.instance={};
this.instance.<providerFunction>= new function(){

//INJECTED OBJECTS CAN BE SET ON THE INSTANCE OBJECT
};
return this.instance;

}]
});

5. In case of factories:

angular.module('MODULE_NAME',[DEPENDENCIES]).factory(<INJECTABLES>,
[<INJECTED_OBJECTS>, function <FactoryFunction>() {

....
return <OBJECT>;

}]);

6. In case of services:

angular.module('MODULE_NAME',[DEPENDENCIES]).service('<SERVICE_NAME',
[<INJECTABLES>, new ServiceFunction(<INJECTED_OJECTS>){

//Service Code

}]);
In case of Directives,
module_name.directive('<DIRECTIVE_NAME>', function () {

return {
restrict: 'E, A, C',
link: function ($scope, element, attrs, controller) {

//Directive code goes here
}

};
});

An alternative way to create directive, services, or factories is by using modules to extend the
classes function, and use the function name to link them. For example, see the directive below.
var ExampleDirective= Classes.extend({

$scope : null,
$attrs:null,
$controller:null,

/**
* Initialize Directive
*
* @param $scope,
* current scope
*/

init : function(scope,element, attrs, controller,) {

},

60 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

/**
* Initialize listeners needs to be overrided by the subclass.

Don't forget
* to call _super() to activate
*/
defineListeners : function() {

his.$scope.$on('$destroy', this.destroy.bind(this));
},
/**
* Use this function to define all scope objects. Give a way to

instantaly
* view whats available publicly on the scope.
*/
defineScope : function() {

},

});
angular.module('MODULE_NAME',[DEPENDENCIES]).directive('<DIRECTIVE_NAME>',
function () {

return {
restrict: 'E, A, C',
link: function ($scope, element, attrs, controller) {

//Directive code goes here
return new ExampleDirective();

}
};

});

Injecting Services, Factories, and Providers

Asmentioned above all AngularJS services, factories, and providers should be created asAngularJS
modules, and then associated to the gadget module. Each gadget is by default created as an
AngularJS module, and the dependencies should be set to allow the services to be injected in the
controller. To inject any custom object use the $inject.
<CONTROLLER_FUNCTION>.$inject = ['$scope', 'RestServiceProvider','EventBus',
'$log','config'...];

Defining Angular $scope Object

Each controller for the gadget is injected with AngularJS $scope object in the init function and
then passed over to other functions such as defineScope and defineListeners. For functions that
are defined on the scope, for example, $scope.functionName=function(){}, the scope object is
accessiblewithin the function using this operator in JavaScript. However, the value of this changes
dynamically depends on how the function is invoked.

To get an instance of the $scope effectively inside a scope function, the $scope object needs to be
assigned to this operator, and then the object can be used throughout the function.
this.$scope.restInvocation = function(gadgetConfig){

var $scope = this;

Developing Gadgets for webMethods Business Console 10.11 61

4 Programming Gadgets

//depending on how the restInvocation function is invoked,
//'this' object inside the function will have an instance of the $scope object

....
}

Invoking RESTful Services

The gadget framework provides anAngularJS provider calledRestServiceProvider,which provides
several ways to invoke RESTful services.

Steps to Invoke RESTful Services

1. In the URLS object, define the URL required for invoking the RESTful service.

URLS:{
MY_REST_SERVICE1:{url: '/rest/rs/myRest1',method:'GET',
isArray:true},
MY_REST_SERVICE2:{url: '/rest/rs/myRest2',method:'GET',
isArray:true}

},

2. Define a function (for example, invokeMyRestFunction) inside the defineScope block thatmakes
the actual invocation.

this.$scope.invokeMyRestFunction= function(gadgetConfig) {
var $scope = this;

$scope.restClient.url($scope.URLS.MY_REST_SERVICE1)
//POINT TO THE RESTful SERVICE TO INVOKE

.serverAlias("IS1")
// POINT TO THE SERVER ALIAS FROM THE GADGET CONFIGURATION

.remote(true)
// IF LOCAL OR REMOTE CALL

.cors(true)
// IF CORS SUPPORTED FOR REMOTE CALLS ONLY

.scope($scope)

.gadgetConfig(gadgetConfig)

.success(function(response,$scope){
$scope.responseData = response;

// HANDLE THE RESPONSE IN A SCOPE OBJECT
}).error(function(response,$scope,status, headers, config){

$scope.eventBus.fireEvent(NotificationConstants.ERROR,
"Unable to invoke REST ");// HANDLE ANY ERROR IN INVOCATION

}).invoke();
}

There are two methods to invoke a RESTful service using URLs:

DescriptionMethod

Thismethod invokes the RESTful services using direct URL.
Formore information about Cross Origin Resource Sharing

CORS support for RESTful services

62 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

DescriptionMethod

(CORS), see “Using CORS Support for Invoking RESTful
Services ” on page 67

This method invokes the RESTful services using Business
Console proxy, in case the remote server cannot be

Business Console proxy for RESTful
services

configured to support the CORS headers. For more
information about Business Console proxy, see “Using
Business Console Proxy for Invoking RESTful Services ” on
page 68

3. Call the invokeMyRestFunction function from init (if the RESTful service needs to be called
on Gadget load) or from any other place depending on the business logic.

init : function($scope, restClient,eventBus,log,config) {
...
this.$scope.invokeMyRestFunction(config);
...

},

As a part of the gadget frame work, there are two methods to invoke a RESTful service:

DescriptionMethod

This method provides various parameters to the restClient
object to invoke RESTful services. For more information

Builder Style patternRESTful service
invocation

about the parameters for Builder Style pattern, see “Builder
Style Pattern for Invoking RESTful Services” on page 63

Thismethod uses the invokeREST function to invoke RESTful
services. Formore information about the invokeREST function,

Traditional RESTful service
invocation

see “Traditional Service for Invoking RESTful Services” on
page 65

Builder Style Pattern for Invoking RESTful Services
In this method, you can provide various parameters to the restClient object, and use the invoke
method.

Following are the parameters for Builder Style pattern:

DescriptionParameter

(REQUIRED) This is the relative URL for RESTful service
invocation. The serverAlias parameter picks the server to be

url

connected. In the gadget definition, you must define a list of
servers (alias) that this gadget must invoke.

Developing Gadgets for webMethods Business Console 10.11 63

4 Programming Gadgets

DescriptionParameter

(OPTIONAL) This can be GET, POST, PUT, DELETE, or any other
HTTP Request Method. Default method is GET.

method

(OPTIONAL) This can be GET, POST, PUT, DELETE, or any other
HTTP Request Method. Default method is GET.

requestData

(REQUIRED) This is the alias of the server the gadget must
connect to. The list of servers and their alias must be defined in

serverAlias

the gadget creation phase or by editing the gadget definition xml
file.

(REQUIRED) If this parameter is set to false, then the invocation
will always go to the local MWS server. If it is set to true, then

remote

the remote server will be evaluated based on the serverAlias
provided.

(OPTIONAL) If this parameter is set to true, then a Cross Origin
Request will be send to the remote server considering that the

cors

CORS headers are already set to allow the request to execute
successfully. If it is set to false, then the request will be routed
through a Business Console proxy URL to avoid Cross Origin
Requests. The default value is true.

(REQUIRED) This is the scope of a gadget under AngularJS
context. This will be passed back as part of the success callback
function so that further actions can be taken.

scope

(REQUIRED) The configuration of the gadget that is passed to
the controller is set here.

gadgetConfig

(REQUIRED) The response for the successful invocationswill be
send to the success callback function. The arguments passed
are:

success

response: The response object (JSON)

$scope: The $scope object associated with the gadget
controller

(REQUIRED) The response for the failed invocationswill be send
to error callback function. The arguments passed are:

failure

response: The response object from the invocation

$scope: The $scope object associated with the gadget
controller

status: HTTP status code of the response

headers: {function([headerName])} function retrieves the
header object

64 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

DescriptionParameter

config: The configuration object used to generate the request

This function must be invoked at the end after passing all
required parameters.

invoke

$scope.restClient.url($scope.URLS.MY_REST_
SERVICE1)

//POINT TO THE RESTful SERVICE TO INVOKE
.serverAlias("IS1")

// POINT TO THE SERVER ALIAS FROM THE GADGET
CONFIGURATION

.remote(true)

// IF LOCAL OR REMOTE CALL
.cors(true)

// IF CORS SUPPORTED FOR REMOTE CALLS ONLY
.scope($scope)
.gadgetConfig(gadgetConfig)
.success(function(response,
$scope){

$scope.responseData =
response;

// HANDLE THE RESPONSE IN A SCOPE OBJECT
}).error(function(response,

$scope,status, headers, config)
{
$scope.eventBus.fireEvent(NotificationConstants.
ERROR,
"Unable to invoke REST ");
// HANDLE ANY ERROR IN INVOCATION

}).invoke();

Traditional Service for Invoking RESTful Services
You can use the invokeREST function defined under the RestService Angular service to invoke
RESTful services.

invokeREST function signature:

invokeREST:function(URLobj,successCallback,errorCallback,parameters,data,
scope, pathParams, gadgetConfig, isCrossOriginRequest, serverAlias)

invokeREST function arguments:

URL job: The URL object should point to a local URL object created under your controller. This
can be defined under controller.
REST_URLS_OBJECT = {

REST_SVC_1: {url: '/rest/svc1',method:'GET', isArray:true},

Developing Gadgets for webMethods Business Console 10.11 65

4 Programming Gadgets

REST_SVC_2: {url: '/rest/svc2',method:'GET', isArray:true},
}

For example, to use REST_SVC_1, use REST_URLS_OBJECT.REST_SVC_1 as your URLobj.

Note:
All URLs defined here must be relative URLs without the host:port information. The
host:port information will be fetched based on the serverAlias argument of the function
call.

successCallback:

Success call back function signature:

var successFunc = function(response, status, headers, config,scope,
gadgetConfig){
// YOU SUCCESS HANDLER CODE GOES HERE

}

Success call back function arguments:

response: Function invocation success response

status: HTTP status code of the response

headers: {function([headerName])} to retrieve the header object

config: The configuration object used to generate the request

scope: The $scope object associated with the gadget controller

gadgetConfig: The gadget configuration object. It contains the server list and any
optional parameters that the gadget has been configured with

errorCallback: This is the error callback function where the response will be passed when the
invokeREST invocation fails. Arguments passed arguments to the error callback function:

response: Error response from the invocation

status: HTTP status code of the response

headers: {function([headerName])}. This can be a function to retrieve the header object

config: The configuration object used to generate the request

scope: The $scope object associated with the gadget controller

gadgetConfig: The gadget configuration object. It contains the server list and any optional
parameters that the gadget has been configured with

Parameters: JavaScript object to build the query parameters. Build the query as follows:
var parameters = new Array();
var param1 = new Object();

66 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

param1.name = "key1";
param1.value = value1;
parameters.push(param1);
param2.name = "key2";
param2.value = value2;
parameters.push(param2);

Query built: ?key1=value1&key2=value2

Data: Required in case of POST and PUT calls. The request data object that can be passed to
the server. It can be a String or a JSON object.

Scope: The scope of the gadget in the AngularJS context. This will be passed back as part of
the success callback function so that further actions can be taken

pathParams: The path parameters that are appended to theURL string. If pathParams is a string,
then it is directly appended to the end of the URL prior to the query parameters. If it is an
Array, then the params string is constructed as follows:
var pathParams= new Array();
pathParams.push("param1");
pathParams.push("param2");
pathParams.push("param3");

URL constructed: URL/param1/param2/param2?<Query Param>

gadgetConfig: The configuration of the gadget contains the server list and any optional
parameters that the gadget has been configured with.

isCrossOriginRequest: Set it to true in case of a Cross Origin Request to a server supporting
CORS headers. Otherwise, set it to false to use a proxy invocation to remote server.

serverAlias: The alias of the server to make the call to. The list of servers should be defined
in the gadget configuration file and the selected alias should be passed here.

Using CORS Support for Invoking RESTful Services
Business Console gadget supports direct invocation of URLs to a remote server, if the remote
server supports Cross-Origin Resource Sharing (CORS). To make a cross-origin request, ensure
that the remote server is configured with all the CORS settings.

For example, In Integration Server, provide the following in Extended Settings to support CORS
headers.
watt.server.cors.allowedOrigins=http://localhost:8585, (Please specify the URLs
from where the invocation is happening)
watt.server.cors.enabled=true
watt.server.cors.exposedHeaders=Set-Cookie,X-Frame-Options,Access-Control
-Allow-Origin
watt.server.cors.maxAge=1000000
watt.server.cors.supportedHeaders=samlassertion,accept,
withcredentials,content-type
watt.server.cors.supportedMethods=GET,POST,PUT,DELETE,OPTIONS,HEAD
watt.server.cors.supportsCredentials=true

Developing Gadgets for webMethods Business Console 10.11 67

4 Programming Gadgets

After configuring CORS settings, you can invoke a RESTful service with cors (true) and remote
(true) options.
$scope.restClient.url($scope.URLS.MY_REST_SERVICE1)
// POINT TO THE RESTful SERVICE TO INVOKE

.serverAlias("IS1")
// POINT TO THE SERVER ALIAS FROM THE GADGET CONFIGURATION

.remote(true)
// IF LOCAL OR REMOTE CALL

.cors(true)
// IF CORS SUPPORTED FOR REMOTE CALLS ONLY

.scope($scope)

.gadgetConfig(gadgetConfig)

.success(function(response,$scope){
$scope.responseData = response;

// HANDLE THE RESPONSE IN A SCOPE OBJECT
}).error(function(response,$scope,status, headers, config){
$scope.eventBus.fireEvent(NotificationConstants.ERROR,

"Unable to invoke REST ");
// HANDLE ANY ERROR IN INVOCATION

}).invoke();

Using Business Console Proxy for Invoking RESTful Services
In case the remote server cannot be configured to support CORSheaders, BusinessConsole provides
a proxy service to route the request through the host My webMethods Server.

To use this option, you need to make a local RESTful POST call to My webMethods Server using
/rest/bc/proxy URL. Provide the server options for fetching the data in the POST body. Provide
data in a JSON format with escaped quotes.
$scope.restClient.url($scope.URLS.BC_PROXY)
//POINT TO THE RESTful SERVICE TO INVOKE

.serverAlias("MWS1")
// POINT TO THE SERVER ALIAS FROM THE GADGET CONFIGURATION

.remote(false)
// IF LOCAL OR REMOTE CALL

.method("POST")

.scope($scope)

.requestData(data)
//JSON Structure of the Request data. See below

.gadgetConfig(gadgetConfig)

.success(function(response,$scope){
$scope.responseData = response;

// HANDLE THE RESPONSE IN A SCOPE OBJECT
}).error(function(response,$scope,status, headers, config){

$scope.eventBus.fireEvent(NotificationConstants.ERROR,
"Unable to invoke RESTful service");
// HANDLE ANY ERROR IN INVOCATION

}).invoke();
Following are the example of different invocations
GET CALL TO IS
var data = { "serverType":"IS",
"url":"/rest/rs/monitor/process/model",
"requestMethod":"GET"
, "requestHeaders:{'key1':'value1','key2':'value2'}"

68 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

}

POST call to Integration Server

var data = {"serverType":"IS",
"url":"/rest/rs/monitor/process/instanceSearch",
"host":"localhost",
"port":"5555",
"protocol":"http",
"requestMethod":"POST",
"data":"{\"instanceSearchQuery\":{\"processKey\":\"FeatureProject/Feature\",
\"pageNumber\":1,\"pageSize\":10,\"status\":\"2\",\"instanceId\":null,
\"customId\":null,\"businessConsoleRequest\":true}}"
"requestHeaders:{'key1':'value1','key2':'value2'}"
}

GET call to remote My webMethods Server

var data = { "serverType":"MWS",
"url":"/rest/bc/userpreferences",
"host":"localhost",
"port":"8585",
"requestMethod":"GET",
"protocol":"http" (optional)
"requestHeaders:{'key1':'value1','key2':'value2'}"
}

POST call to remote AgileApps Cloud

var data={
"serverType": "AA",
"url": "http://agileappsclound.info/networking/rest/login",
"requestMethod": "POST",
"data": "{\"platform\":{\"login\": {\"userName\":\"abc@softwareag.com\",
\"password\":\"test\"}}}"

}

GET call to remote AgileApps Cloud

var data={
"serverType": "AA",
"url": "http://agileappsclound.info/networking/rest/user/info",
"requestMethod": "GET"

}

Generating REST Connector Code for REST Services

You can generate UI elements by dragging and dropping the Rest API Descriptor to a gadget
project. This capability automatically generates the REST connector code for the associated REST
services. You can create a REST client UI which is a Business Console gadget. Currently, this use
case supports only the REST APIs from Integration Service that have the REST API Descriptors
(RAD) defined for them. TheRESTConnector codes are generated based on the signatures defined

Developing Gadgets for webMethods Business Console 10.11 69

4 Programming Gadgets

by the REST API Descriptors. See Working with REST API Descriptors in the webMethods Service
Development Help for more information.

Drag and Drop Existing REST Resources to Generate the
Gadget UI
The UI elements are generated by reading Integration Server REST API Descriptors. After the
REST API Descriptor code is generated in the gadget, you need to deploy it on My webMethods
Server to make it available on Business Console.

To drag and drop existing REST resources to generate the gadget UI

1. Launch Software AG Designer in the UI perspective.

2. In the Solutions tab, create a new gadget, portlet, or web application.

3. Under the newly created portlet project, create a new Business Console Gadget.

4. In the Package Navigator tab, create or identify the REST resource services in the project.

5. Create a REST API Descriptor and associate the identified REST resource services with the
REST API Descriptor.

6. Specify the REST API details.

7. Drag and drop the REST API Descriptor you created, into the view.xhtml page of the newly
created portlet project.

The New REST Connector wizard opens.

8. In the New REST Connector wizard, verify the gadget project details, and click Next.

9. Select the REST resource service and a method such as GET, POST, PUT, or DELETE and click
Finish.

10. Type a name in the Page Name field.

This name appears as form name on the web UI.

11. Select the services and fields for which you want to create the REST UI connector code.
Subsequently, configure the fields and click Next.

Actions you can performREST resource
type

Specify the following information:GET

70 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

Actions you can performREST resource
type

Input Parameters. You can modify the Display Label, Mandatory,
Validation, and UI Control fields. The Input Type field cannot be modified.
Only flat fields are accepted for GET; complex types are not supported.

Output Parameters. You canmodify theDisplay Label,Type, andUI Control
fields. The Input Type field can be modified only for String Array type. It
can be set either as StringArray or StringTable.

If the type is a StringTable type on the Integration Server, this has to be
selected as StringTable if it has to work properly. Else it is treated as
StringArray by default.

Select the column count for IN and OUT parameters.

Set pagination details by selecting Page Number, Page Size, Start Index,
End Index, and Total Records. Pagination is applicable only for array types.
The parameters shown in the list includes only path and query parameters.

The parameter list for Total Records column includes all the output
parameters of type text and numeric values.

Specify the following information:POST

Input Parameters. You can modify the Display Label, Mandatory,
Validation, and UI Control fields. The Input Type field cannot be modified.

Output Parameters. You canmodify theDisplay Label,Type, andUI Control
fields. Type can be modified only for String Array type. It can be set either
as StringArray or StringTable.

Select the column count for IN and OUT parameters.

Set pagination details by selecting Parameter Details, Page Size, and Total
Records.

Specify the following information:PUT

Input Parameters. You canmodify theDisplay Label,Mandatory,Validation
and UI Control fields. The Input Type field cannot be modified.

Output Parameters. You canmodify theDisplay Label,Type, andUI Control
fields. Type can be modified only for String Array type. It can be set either
as StringArray or StringTable.

Select the column count for IN and OUT parameters.

Set pagination details by selecting Parameter Details, Page Size, and Total
Records.

Specify the following information:DELETE

Developing Gadgets for webMethods Business Console 10.11 71

4 Programming Gadgets

Actions you can performREST resource
type

Input Parameters. You can modify the Display Label, Mandatory,
Validation, and UI Control fields.

Select the column count for IN and OUT parameters.

Set pagination details by selectingParameter Details, Type,Page Number,
Page Size, and Total Records.

12. Select the number of input and output parameters for the selected REST service and click
Finish.

The files view.xhtml, config.js, and controller.js are updated after the drag and drop
operation.

The following files are created: partial.xhtml, directive.js, and style.scss. The file naming
format is as follows:

<operation>-<servicename>-<shortID>.xhtml for partial.xhtml

<operation>_<servicename>_<shortID>.js for directive.js

<operation>_<servicename>_<shortID>.scss for style.scss

where, operation is the REST operation type such asGET, POST, PUT, or DELETE, servicename
is the complete namespace of the REST service, and shortID is an alpha-numeric ID.

The style.scss file allows you to customise the style of gadgets. For more information about
styling gadgets, see “Adding Styles in CSS” on page 54.

13. Make the desired changes to the gadget using Software AG Designer and deploy it to My
webMethods Server.

See “Deploy gadgets to My webMethods Server” on page 18 for instructions on deploying
the modified gadget in the My webMethods Server.

14. Alternatively to deploy the modified project in My webMethods Server, in the Server tab of
Designer, right-click on the My webMethods Server instance and select Add and Remove.
The Add and Remove dialog box appears.

15. Move the project from the available list to the configured list and click Finish.

This ensures that the gadget is deployed on My webMethods Server. See “Add/View
Gadgets” on page 70 for more information on adding the modified AgileApps Cloud form as
a gadget in Business Console.

16. Ensure that the same version of the modified gadget is deployed on the My webMethods
Server and imported as a gadget in an AppSpace on Business Console.

72 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

Including Independent AngularJS Modules in Gadgets

All business console gadgets are defined as independent AngularJS modules.

To customise designs for services, factories, and directories in gadgets as independent modules,
do the following:

1. Define services, factories, and directives as independent modules in custom.js.

2. Set the dependency for the independent modules.

For example, in custom.js, define a directive as a module.
angular.module("MY_GADGET_DIRECTIVE_MODULE", []).directive("myDirective",
function(){
// ADD DIRECTIVE CODE HERE
})

The myDirective directive above is defined in an independent MY_GADGET_DIRECTIVE_MODULE
module.

3. To use myDirective directive in your gadget or in any other gadget, in the
gadget-definition.xml file, set the dependency of the gadget to MY_GADGET_DIRECTIVE_MODULE.
The dependency of the gadget is shown below.

var myGadget = angular.module('myGadget-<ID>', ['adf.provider',
'MY_GADGET_DIRECTIVE_MODULE'])

Thismakes the gadget dependent on the MY_GADGET_DIRECTIVE_MODULEmodule, and the gadget
will be able to use all the services, factories, and directives from the new module.

4. If third party AngularJS libraries are used:

Save the library js files under the script directory of your gadget.

Include modules in your gadget by editing gadget definition file.

Specify modules as per Dependencies section.

Invoking JavaScript Functions with Same Name in Different
Libraries

For AngularJS gadget, JavaScript functions must be specifically defined in either controller.js
or as AngularJS services, which are singleton objects or single use classes. Duplicate functions
inside different services can be easily invoked by using the service injections. For non-AngularJS
based gadgets, because the functions can be directly defined on theWindowobject, functionswith
same might result in conflicts.

To resolve conflict between similarly named functions, it is recommended that you encapsulate
functions inside a binding function, and then use the binding functions to invoke the functions
inside.

Developing Gadgets for webMethods Business Console 10.11 73

4 Programming Gadgets

For example,
var GadgetOne_Controller = function($scope) {

this.userDefinedFunctionOne = function() {
console.log("from userDefinedFunctionOne function of mygadget");

}

this.userDefinedFunctionTwo = function() {
console.log("from userDefinedFunctionTwo function of mygadget"); }

}
}

var gadgetOne_Controller= new GadgetOne_Controller(); // NOTE THE
DIFFERENT CASES

In this case, you can invoke the gadgetOne_Controller.userDefinedFunctionOne() fromyour view
file.

Using Third Party Libraries in Gadgets

Including Third Party Libraries in Gadgets
To include third party libraries in gadgets:

1. Save the external libraries (js files) under the scripts directory in the gadget.

2. Update the gadget-defintion.xml file of the gadget to include the library.

a. Open the gadget-defintion.xml file under the Scripts and Styles section.

b. Click Add to add the scripts to the gadget.

3. Deploy the gadget to My webMethods Server.

The external scripts will be loaded as part of your gadget. You can now add the required
behavior to the gadget controller using the external scripts.

Loading External Libraries
Use OC Lazy Loader to load external libraries.

Some external JavaScript libraries cannot be used by saving a copy of the JavaScript files in a local
system. For example, you cannot store libraries of Google Maps in a local file system and add
reference to these libraries in the local folder. Such external libraries must be accessed directly in
the view.xhtml file. Referring to these libraries using the <script> tag inside the view.xhtmlwill
not work because the gadgets are AngularJS based, and for the controller to work, the external
JavaScript files must be completely loaded. Hence, use the ocLazyLoader provided by the gadget
framework to import the external JavaScript files in your view.xhtml file.

74 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

Following code snippet shows how to use ocLazyLoader to load external JS libraries.
<div oc-lazy-load="['..js/testModule1.js', '..js/testModule2.js']">
//YOU CAN PROVIDE DIRECT URL TO THE JAVASCRIPT SERVED THROUGH A CDN

//YOUR HTML CODE GOES HERE

</div>

If the link to the JavaScript file does not end with a .js extension, use a js! prefix to your URL as
shown below.
<div oc-lazy-load="['js!https://maps.googleapis.com/maps/api/js?key=YOUR
_API_KEY']">
<div class="row">

<map id="map_canvas" style="height: 760px;"></map>

</div>

You can get the API key from Google site: https://developers.google.com/maps/documentation/
javascript/get-api-key

You can also use external AngularJS libraries by directly including themodule through ocLazyLoad.

Defining Success and Error Notification in Gadgets

Use EventBus to trigger success and error notifications from a gadget.

To send success notifications, use the code below.
$scope.eventBus.fireEvent(NotificationConstants.SUCCESS,"PROVIDE YOUR
SUCCESS MESSAGE HERE");

To send error notifications, use the code below.
$scope.eventBus.fireEvent(NotificationConstants.ERROR,"PROVIDE YOUR
ERROR MESSAGE HERE");

You can send notifications to any place that is within the scope of the EventBus object. In the
controller init block, add the EventBus in the $scope object so that the EventBus is easily accessed
through the $scope object (such as directives).

Using Forms in Gadgets

Using gadgets, you can capture HTML form values and pass it to other gadgets by submitting the
form.

Use the following code in your gadget view.xhtml file, if you want to submit a form with three
fields: First Name, Last Name, and Phone.
<form role="form" name="myForm">

<div class="form-group row">
<label for="fname" class="col-md-4">First Name:</label>
<input type="text" class="col-md-8 remove-paddings" name="fname"

Developing Gadgets for webMethods Business Console 10.11 75

4 Programming Gadgets

https://developers.google.com/maps/documentation/javascript/get-api-key
https://developers.google.com/maps/documentation/javascript/get-api-key

id="fname" data-ng-model="config.params.fname"></input>
</div>
<div class="form-group row">

<label for="lname" class="col-md-4">Last Name:</label>
<input type="text" class="col-md-8 remove-paddings" name="lname"

id="lname" data-ng-model="config.params.lname"></input>
</div>
<div class="form-group row">

<label for="lname" class="col-md-4">Phone:</label>
<input type="text" class="col-md-8 remove-paddings" name="phone"

id="phone" data-ng-model="config.params.phone"></input>
</div>
<input class="btn bc-button row" type="button" value="Submit Form"

onclick="submitMyForm()"></input>
</form>

The code above provides a form with three fields. Each field can be data-bound to the config
parameters if required.

On clicking SUBMIT button on a form, a JavaScript function, submitForm is called. The code for
submitForm function is as shown below:
function submitForm(){

var fname= document.getElementById("fname").value;
var lname= document.getElementById("lname").value;
var phone= document.getElementById("phone").value;

var href ="";
if(window.location.href.indexOf("?")>0){

href = window.location.href.substring(0,
window.location.href.indexOf("?"));

}else{
href= window.location.href;

}

var actionUrl = href+"?fname="+fname;
actionUrl =actionUrl+"&lname="+lname;
actionUrl +="&phone="+phone;
window.location.href=actionUrl;
window.location.reload();

}

The code above will append the values to the URL as URL parameters that get bound to the
receiving gadget through the config object.

Note:
For parameters to work, add the parameter names to the gadget-definition.xml under the
parameters section. Only the parameters defined in the gadget-defintion.xmlwill be received
or bound to other gadgets.

To display the form parameters in another receiving gadget, use the code below:
<div class="form-group">

<label for="fname">First Name:</label>
<label>{{config.params.fname}}</label>

</div>
<div class="form-group">

76 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

<label for="lname">Last Name:</label>
<label>{{config.params.lname}}</label>

</div>
<div class="form-group">

<label for="lname">Phone:</label>
<label>{{config.params.phone}}</label>

</div>

Note:
To send multiple values (array of values) as part of a form field, you can send coma separated
values. An array of values can be parsed on the receiving gadget and rendered in a drop-down
list.

Accessing Services and Functions in XHTML Files and
Controller

Accessing Services and Functions in AngularJS Gadgets
You can define your services, factories, and providers in custom.js.

1. Attach the services, factories, and providers to the gadget module or define themwithin your
own module.

2. Set the dependency of the gadget module to the custom module. If you look up config.js of
your gadget, you would find the gadget module defined as below:

var myGadget = angular.module('<MY_GADGET_MODULE>', ['adf.provider',
'MY_GADGET_DIRECTIVE_MODULE'])
.config(){.....

Here MY_GADGET_MODULE refers to the gadget module.

3. Define services, factories, and providers:

Attach services, factories, and providers to MY_GADGET_MODULE:
MY_GADGET_MODULE.service('<SERVICE_NAME', [<INJECTABLES>,
new ServiceFunction(<INJECTED_OJECTS>){

//Service Code

}]);

Define customised modules:
angular.module("MY_CUSTOM_MODULE",[]).service('<SERVICE_NAME',
[<INJECTABLES>, new ServiceFunction(<INJECTED_OJECTS>){

//Service Code

}]);

Note:

Developing Gadgets for webMethods Business Console 10.11 77

4 Programming Gadgets

Set the dependency of the gadget to MY_CUSTOM_MODULE in the gadgetDefintion.xml to use
the service in your gadget. service can be injected into the Controller function using the
$injectmethod. Inject objects of services, factories, and providers in the initmethod of
the Controller in order.

Accessing Services and Functions in Non-AngularJS Gadgets
Non AngularJS Gadgets will not have access to AngularJS services, factories, and directives. If
you have custom functions defined in the custom.js, use them directly in your controller code or
in view.xhtml. It is always safer to make them unique to avoid potential conflicts.

For example:
var SomeUniqueFunction1 = function() {

this.userDefinedFunctionOne = function() {
console.log("from userDefinedFunctionOne function of mygadget");

}
this.userDefinedFunctionTwo = function() {

console.log("from userDefinedFunctionTwo function of mygadget");
}

}
var SomeUniqueFunctionId= new SomeUniqueFunction1();

In view.xhtml, call SomeUniqueFunctionId.userDefinedFunctionOne(). This will print from
userDefinedFunctionOne function of mygadget in the console.

Using Custom JS or CSS Files in Gadgets

To include your own JS or CSS files in gadgets, perform the following steps.

1. Copy the custom JS or CSS files to the respective directories under the gadget directory.

For JS files, copy to YOUR_PROJECT > WebContent > gadgetName > scripts.

For CSS files, copy to YOUR_PROJECT > WebContent > gadgetName > styles.

2. Navigate to the gadgetDefinition.xml located under YOUR_PROJECT > WebContent >
WEB-INF > gadgets > <Gadget_ID>.

3. Edit the gadget-definition.xml file to include the scripts or CSS.

4. Select the Gadget Defintion Editor tab.

5. Expand scripts and styles, and add the JS files or CSS files by navigating to the respective
directory. If your JS files contains one or more AngularJS modules you might want to add to
the gadget, specify the module names in the Dependencies section.

6. Directly invoke the custom functions from your own JS files directly in the controller. For CSS
files, the styles will be automatically applied to your gadget.

78 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

Note:
Styles under CSS files are applied universally to all the gadgets.Make sure you have applied
selectors in your CSS to apply it selectively to your gadgets. For example, if you use a style
shown below, this style will get applied to all elements having myStyle as class.

.myStyle{
border:solid 1px #FFF;

}

To ensure proper encapsulation, use style as shown below.

.myGadget .myStyle{
border:solid 1px #FFF;

}

7. Use myGagdet style in the class of the root element in your gadget's view file.

<div class="myGadget">
<div class="myStyle">

//STYLE GETS APPLIED HERE
</div>

</div>

Note:
Style will not be applied in myGadget2.

<div class="myGadget2">
<div class="myStyle">

//STYLE DOES NOT GET APPLIED HERE
</div>

</div>

Reusing JS Files and CSS Files Across Gadgets

The JS files and CSS files added to the gadgetDefintion.xml are also globally available for use in
other gadgets. All JS files are included in the common gadget-framework.js file, and the CSS files
are included in gadget-framework.scss file.

For AngularJS modules, to use modules of other gadgets, set the dependencies to the modules of
other gadgets.
var GadgetOne_Controller = function($scope) {

this.userDefinedFunctionOne = function() {
console.log("from userDefinedFunctionOne function of mygadget");

}

this.userDefinedFunctionTwo = function() {
console.log("from userDefinedFunctionTwo function of mygadget"); }

}
}

var gadgetOne_Controller= new GadgetOne_Controller(); // NOTE THE
DIFFERENT CASES

Developing Gadgets for webMethods Business Console 10.11 79

4 Programming Gadgets

Loading a Gadget or an AppSpace in a Modal Dialog Box

You can use a utility service to load a gadget or an AppSpace in a modal dialog box. This utility
service is included in the gadget framework.

Loading a Gadget in a Modal Dialog Box

1. Inject AppspaceUtilityService into the controller or service.

2. Use the service to load the gadget.

You can use the following code:
appspaceUtilityService

.newGadgetModal() //to ensure a new modal instance
//is opened by closing any exisiting one
.showHeader(false)//true or false depending on whether you
//want to show the header
.params(params)//Optional. If you want to pass parameters to
//the gadget, you can do so as shown below
.scope(this.$scope) //To pass the scope
.gadgetId("<GADGET_ID>") // The ID of the gadget to launch
.launchGadget();

If you want to pass paramters, create a variable as shown below
before calling the launchGadget method.
var params = {"KEY1":"VALUE1","KEY2":"VALUE2"};

Loading an AppSpace in a Modal Dialog Box

1. Inject AppspaceUtilityService into the controller or service.

2. Use the service to load the gadget.

You can use the following code:
appspaceUtilityService

.newAppspaceModal() //to ensure a new modal instance
//is opened by closing any exisiting one
.showHeader(false) //true or false depending on whether
//you want to show the header
.showRefreshIcons(true)//true or false depending on whether
//you want to show the refresh icon
.setRefreshEvent("<REFRESH_EVENT_NAME>") //Event to fire when
//the refresh icon is clicked
.params(params)//Optional. If you want to pass parameters to
//the gadget, you can do so as shown below
.scope(this.$scope) //To pass the scope
.appspaceAlias("<APPSPACE_ALIAS>") // The alias of the appspace to launch
.launchAppspace();

If you want to pass parameters, create a variable as shown below before
calling the launchGadget method.
var params = {"KEY1":"VALUE1","KEY2":"VALUE2"};

80 Developing Gadgets for webMethods Business Console 10.11

4 Programming Gadgets

5 Communicating Between Gadgets

■ About Communication Between Gadgets .. 82

■ Communicating Between Gadgets Using Events ... 82

■ Adding Gadget Settings ... 85

■ Connecting Multiple Views with Controller ... 86

Developing Gadgets for webMethods Business Console 10.11 81

About Communication Between Gadgets

This section provides information about variousmethods to allow communication between gadgets.
It also provides information about the services and settings required to enable communication
between the gadgets.

Communicating Between Gadgets Using Events

Communication between gadgets is necessary to allow information to be shared between one or
more gadgets. Gadget communication is possible only between AngularJS gadgets.

There are two ways to allow communication between gadgets:

JavaScript based EventBus

AngularJS events

AngularJS defined events are sometimes not favorable for communication between gadgets as we
need to decide the event flow (upwards or downwards) based on the logic. A more appropriate
way for communication is to provide publish-subscribe mechanism for communication.

Gadget framework provides another communicationmechanismusing a JavaScript based EventBus
that registers all the events from the controller when the controller is getting loaded.

Using EventBus
The gadget framework provides an AngularJS service called as EventBus to allow communication
between gadgets. The EventBus can effectively provide gadget communication using
publish-subscribe mechanism.

To use EventBus in your gadgets:

1. Inject the EventBus provider in the controller if not already included.

gadget_controller.$inject = ['$scope', 'RestServiceProvider','EventBus',
'$log','config'];
//INJECTING EVENTBUS IN CONTROLLER

2. Add the listener logic to the subscriber controller(s). In the defineListener block, invoke
addEventListener on the eventBuswith the event type name.

this.eventBus.addEventListener("SOME_EVENT_NAME",this.
_handleEvents.bind(this));

3. Provide the logic for handling the event in the _handeEvents block as shown below. Here, the
exampleHandleEventAction function is invoked after receiving the event. Define the
exampleHandleEventAction function on $scope inside the defineScope block.

_handleEvents:function(eventType,payload,context){
/* Logic to handle events
*/

82 Developing Gadgets for webMethods Business Console 10.11

5 Communicating Between Gadgets

switch(eventType){
case "SOME_EVENT_NAME":

/* Add Event Handling Logic for GLOBAL_EVENT */
this.$scope.exampleHandleEventAction(payload);

//ONCE EVENT IS RECEIVED, INVOKE THE exampleHandleEventAction
function on $scope.

break;
}

},

4. Clean up the listener on Controller unload. This is required to eliminate unnecessary event
calls when no controller is available on the view.

this.eventBus.removeEventListener("SOME_EVENT_NAME",this.
_handleEvents.bind(this));

5. Trigger the event from the publisher controller.

this.eventBus.fireEvent("SOME_EVENT_NAME", "Some Event!");

Using Angular Events
AngularJS provides three services to allow communication between gadgets:

$broadcast

$emit

$on

$broadcast

$broadcast service dispatches an event name downwards to all child scopes (and their children)
and notify to the registered $scope listeners. The event life cycle starts at the scope on which
$broadcastwas called. All listeners for the event on this scope get notified. Afterwards, the event
traverses downwards toward the child scopes and calls all registered listeners along the way. The
event cannot be canceled.
$scope.$broadcast('eventName', { message: msg });

$emit

$emit service dispatches an event name upwards through the scope hierarchy, and notifies the
registered $scope listeners. The event life cycle starts at the scope on which $emitwas called. The
event traverses upwards towards the root scope, and calls all the registered listeners along the
way. The event will stop propagating if one of the listeners cancels it.
$scope.$emit('eventName', { message: msg });

Developing Gadgets for webMethods Business Console 10.11 83

5 Communicating Between Gadgets

$on

$on service listens to the events of an event type. $on can catch the event dispatched by $broadcast
and $emit and handle the event accordingly.
$scope.$on('eventName', function (event, args) {
$scope.message = args.message;
console.log($scope.message);
});

Using HTML5 postMessage for Communication
Gadgets support Window.postMessage for inter-gadget communication across different domains.
Formore information about Window.postMessage()method, refer to https://developer.mozilla.org/
en-US/docs/Web/API/Window/postMessage.

To set up communication between a source gadget and target gadget

1. Open the controller.js file of the target gadget and add the following in the defineListeners
block:

this.eventBus.addHTML5EventListener(HTML5_EVENT_TYPE.MESSAGE,this.
_handleHTML5Events.bind(this), <TRANSFER>,<CONTEXT>);
<TRANSFER> (Optional): Is a sequence of Transferable objects that
are transferred with the message. The ownership of these objects
is given to the destination side and they are no longer usable
on the sending side.

<CONTEXT>(Optional): Any string context you want to associate the
event to.
For example, this.eventBus.addHTML5EventListener(HTML5_EVENT_TYPE
.MESSAGE,this._handleHTML5Events.bind(this),false, ‘MY_HTML5_EVENT’);

2. In the destroy block of the target gadget, add the following:

this.eventBus.removeHTML5EventListener(HTML5_EVENT_TYPE.MESSAGE,this.
_handleHTML5Events.bind(this),this,<CONTEXT>);

<CONTEXT>(Optional): Any string context you want to associate the
event to.
For example, this.eventBus.removeHTML5EventListener(HTML5_EVENT_TYPE
.MESSAGE,this._handleHTML5Events.bind(this),’MY_HTML5_EVENT’’);

3. Add a new block called _handleHTML5Events in the following format:

_handleHTML5Events: function(payload) {
...business logic is defined here....

},

4. Open the controller.js file of the source gadget and add the following to send a postMessage
event:

84 Developing Gadgets for webMethods Business Console 10.11

5 Communicating Between Gadgets

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage
https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

eventBus.dispatchHTML5Event(<payload>, <domain>)
<payload>: The data that you want to send as part of the event.
<domain>: The domain that you want to send the data to.
For example, http://example.org:8585.
If you do not want to send to a specific domain, use "*".

Adding Gadget Settings

The settings.xhtml file of a gadget provides specific configurations at run time to a gadget.

For example, in a gadget for charting, youmightwant to specify the chart type and other parameters
for charting. The communication between the gadget controller and the settings.xhtml settings
file is done through a config object injected to the controller as shown below.
//INJECTING CONFIG TO CONTROLLER
ExampleGadgetController.$inject = ['$scope', 'RestServiceProvider',
'EventBus','config'];

The config object injected in the code above is the gadget configuration service, which contains
the configuration information and is available at the init function in the controller, and is tied to
the controller scope so that the values can be two-way bound in the settings.xhtml file.

For example, the code to bind an input box to a config object, and handle the input box in the
controller is shown below.
settings.xhtml
<form class="form-horizontal">

<div class="control-group">
<label class="control-label hint--top">Gadget Configuration 1</label>
<div class="controls">

<input type="text" data-ng-model="config.params.config1">
</div>

</div>
<input type="button" data-ng-click="applySettings()"></input>

</form>

controller.js
....
init : function(scope, restClient,EventBus,config) {

...
//ADDING THE CONFIG OBJECT TO SCOPE TO BIND TO UI

scope.config = config;
....

}

...
defineScope : function() {

var _this=this;
this.$scope.applySettings:function(){

console.log(_this.config.params.config1)
// This would print the value from the settings.xhtml file

if(_this.config.params.config1==="SOME VALUE"){
//Handle Accordingly
}

}
}

Developing Gadgets for webMethods Business Console 10.11 85

5 Communicating Between Gadgets

Connecting Multiple Views with Controller

All AngularJS gadgets generated using Designer have a controller that is automatically bound to
view.xhtml. If you have multiple XHTML files to create the view, specify the sub-views in
view.xhtml file.

Defining a View with Sub-views in Multiple XHTML Files

1. Create the <file_name>.xhtml under the views directory.

2. Use data-ng-include attribute to tie up with the parent view.

If you have created view1.xhtml and view2.xhtml, edit view.xhtml as shown below.
<div data-ng-include="/<CONTEXT_ROOT_OF_APPLICATION/<GADGETS_DIRECTORY>
/views/view1.xhtml">
</div>
<div data-ng-include="/<CONTEXT_ROOT_OF_APPLICATION/<GADGETS_DIRECTORY>
/views/view2.xhtml">
</div>

Replace <CONTEXT_ROOT_OF_APPLICATION> and <GADGETS_DIRECTORY> accordingly. All views
specified under the view.xhtml are automatically bound to the controller.

Note:
You can use the data-ng-model or data-ng-bind attributes to setup two-way binding to the
controller scope variables.

Invoking a Function on a Controller

1. Define a scope function under the defineScope block in the controller.

defineScope : function() {
...
this.$scope.myFunction= function() {

//DO SOMETHING
}

....
},

2. Invoke the function on the scope directly on user action or based on some business logic.

<button data-ng-click="myFunction()"> value="CLICK ME!"
// INVOKES THE FUNCTION myFunction defined on $scope on user click
</button>

86 Developing Gadgets for webMethods Business Console 10.11

5 Communicating Between Gadgets

6 Using AppSpaces in Business Console

■ Creating Business Console AppSpaces Using Gadgets .. 88

■ Installing Sample Gadgets ... 89

■ Editing AppSpace Using Gadgets .. 89

■ Viewing an AppSpace in a Web Browser ... 90

■ Viewing Standalone AppSpaces .. 91

■ Exporting an AppSpace As a .cdp File ... 91

■ Exporting an AppSpace As an .xml File ... 92

■ Importing an AppSpace .. 92

■ Deploying an AppSpace using the File System ... 93

■ Deploying an AppSpace using the Install Option ... 93

■ Importing an AppSpace to My webMethods Server ... 93

■ Managing AppSpace Groups ... 94

■ Assigning Gadget Access Permissions .. 94

■ Assigning AppSpace and AppSpace Group Access Permissions 95

Developing Gadgets for webMethods Business Console 10.11 87

Creating Business Console AppSpaces Using Gadgets

Use built-in gadgets or the gadgets created in Designer to create AppSpaces. You can group
AppSpaces, and share an AppSpace group with other users.

By default, Business Console provides these example AppSpaces:

My Inbox Demo - This AppSpace provides the same functionality of My Inbox.

WHNDemo - This AppSpace provides the same functionality of the What’s Happening Now
tab.

In the AppSpace tab, use the procedure below to create customized AppSpaces.

To create a new AppSpace

1. In the AppSpace tab, click .

The New AppSpace Configuration dialog appears.

2. Specify the Title, Group Name, Internal type, and Alias for the AppSpace.

To select a different language or locale and provide a title, click . Only administrators can
view and use AppSpaces of internal type, and they do not appear in the AppSpace tab. Alias
is used to view an AppSpace in a web browser. For more information about viewing an
AppSpace in a web browser, see “Viewing an AppSpace in a Web Browser” on page 90.

3. Select the type of view. The available options are Desktop and Mobile.

4. Specify the layout for the AppSpace. You can use any of the existing layouts or create a new
layout. To create a new layout, do the following:

a. Click Create Custom Layout.

The Layout Designer dialog appears.

b. Click Add Container to add containers.

c. Drag the containers to create a custom layout for the AppSpace. You can also resize the
containers.

d. Click Save and Apply.

e. Specify a name for the custom layout, and then click Save.

5. Click Save in the AppSpace Configuration dialog.

88 Developing Gadgets for webMethods Business Console 10.11

6 Using AppSpaces in Business Console

6. Click Add Gadget in each container and select the gadgets listed in the Add New Gadget
dialog.

7. Configure each gadget in the AppSpace, see “Editing AppSpace Using Gadgets” on page 89.

8. To modify the AppSpace, click Configure.

9. Click Save to save the new AppSpace.

Installing Sample Gadgets

Install sample Business Console gadgets using the Install Administration page onMywebMethods.

To install sample gadgets

1. Log in to My webMethods Server as sysadmin.

2. Click Administration Dashboard > Configuration > Install Administration.

3. Expand MWS Component Directory > Samples > Business Console > Gadgets.

4. Select Wm_bc_gadgets_samples.war.

5. Click Install Selected and click Install.

Editing AppSpace Using Gadgets

Use the procedure below to edit an existing AppSpace.

To edit an AppSpace

1. In the AppSpace tab, select the AppSpace you want to edit.

2. Click and select Edit AppSpace.

3. Edit the AppSpace and configure the gadgets.

To add gadgets to the AppSpace, click Add Gadget in each container.

The Add New Gadget dialog displays the gadget categories on the left panel, and lists the
gadgets of the selected category on the right panel. Additionally, information about a
gadget appears on the dialog when you select the gadget.

Click Expand/Collapse, if you want to expand or collapse all gadgets in the AppSpace.

Developing Gadgets for webMethods Business Console 10.11 89

6 Using AppSpaces in Business Console

The names of all gadgets included in the AppSpace are displayed when gadgets are
collapsed. This action enables you to view all gadgets in the AppSpace without having to
scroll down to the end of the page.

To modify the AppSpace, click Configure.

To configure each gadget in the AppSpace, click corresponding to the gadget.

Select Gadget Settings to specify the gadget settings.

For configuring a user-created gadget, the parameters available for configuration
depends on the design of each gadget.

Select Server Settings to specify from which server the user-created gadget should
retrieve data. A user-created gadget can be configured to connect to:

My webMethods Server

Integration Server

AgileApps Cloud

Other SAML 2.0 authenticated server

This option is not available for built-in gadgets. All built-in gadgets use the same server
settings as configured for Business Console. You cannot change the server configuration
for individual built-in gadgets.

To remove a gadget, click corresponding to the gadget.

4. Click and select Set as Landing Page, if you want to set the AppSpace as the landing page
for Business Console.

5. Click and select Set as Landing Page for Specific Users, if you want to set the AppSpace
as the landing page for specific Business Console users.

6. Click and select Delete AppSpace, if you want to remove the AppSpace.

7. Click and select Clone AppSpace, if you want to clone the AppSpace. Cloning creates a
new AppSpace with the same layout and gadgets as in the existing AppSpace.

8. Click and select Export AppSpace, if you want to export the AppSpace. For more
information, see “Exporting an AppSpace As an .xml File” on page 92.

Viewing an AppSpace in a Web Browser

You can directly view anAppSpace in aweb browser if the AppSpace has an alias. You can specify
an alias for an AppSpace when creating it. For more information about the alias, see “Creating
Business Console AppSpaces Using Gadgets” on page 88. You can view an AppSpace in a web
browser to test the AppSpace after creating it.

90 Developing Gadgets for webMethods Business Console 10.11

6 Using AppSpaces in Business Console

To view an AppSpace in a web browser

1. Identify the alias of the appSpace that you want to view in the web browser.

2. Open an instance of a web browser and specify the URL in the following format:

http://host:port/business.console.gadgets#/appspace/AppSpaceAlias

where:

host is the host name of My webMethods Server.

port is the port number used by My webMethods Server.

AppSpaceAlias is the alias name of the AppSpace.

Viewing Standalone AppSpaces

You can view the AppSpace tab in webMethods Business Console as an individual standalone
application using the following URL:

http://localhost:8585/appspaces

Exporting an AppSpace As a .cdp File

You can export an AppSpace as a .cdp format file. After exporting, you can import an AppSpace
to aMywebMethods Server instance. Importing anAppSpace enables you to access theAppSpace
from other Business Console applications. For information about importing an AppSpace, see
“Importing an AppSpace” on page 92.

To export an AppSpace

1. As system administrator, log on to My webMethods Server.

2. Navigate to Folders > Administrative Folders > Administration Dashboard > Migration
> Content Import/Export.

3. In the Migration Source Type field, select Single Object.

4. In the Migration Mode field, select Export, and then click Next.

5. In the Export Name field, type a name for the export file.

6. In the Item to export field, click Browse.

The Browse dialog box appears.

7. Navigate to Folders > Custom Applications > Business Console Dashboard Container.

Developing Gadgets for webMethods Business Console 10.11 91

6 Using AppSpaces in Business Console

8. Select an AppSpace to export, and then click Select.

9. Select the following components to export:

Create Auto Deployable Component

Export Access Control Lists

Export User Scoped Preferences

10. Click Next.

Afile downloaddialog appears for downloading thewm_exportName.cdpfile,where exportName
is the name specified in the Export Name field.

Exporting an AppSpace As an .xml File

Only users with administrator privileges can export an AppSpace.

You can export an AppSpace as an .xml format file. After exporting, you can import an AppSpace
to aMywebMethods Server instance. Importing anAppSpace enables you to access theAppSpace
from other Business Console applications.

When you import an Appspace, the group associations of the Appspace are also imported.

To export an AppSpace

1. In the Appspace tab, select the AppSpace you want to export.

2. Click and select Export AppSpace. An .xml file is generated and downloaded
automatically.

Note:
You can import an .xml file into Business Console by deploying the xml file on My
webMethods Server. See Administering My webMethods Server for more information. The
Appspace gets deployed on My webMethods Server and is available on Business Console.
The same .xml file can be imported by deploying to My webMethods Server.

Importing an AppSpace

You can import an AppSpace to an instance of My webMethods Server. This action enables you
to access AppSpaces from other Business Console applications. For information about exporting
an AppSpace, see “Exporting an AppSpace As a .cdp File” on page 91.

You can import an AppSpace in one of the following ways:

Deploying an AppSpace using the File System. See “Deploying an AppSpace using the File
System” on page 93.

92 Developing Gadgets for webMethods Business Console 10.11

6 Using AppSpaces in Business Console

Deploying an AppSpace using the Install Option. See “Deploying an AppSpace using the
Install Option” on page 93.

Using the Content Import/Export option in My webMethods Server. See “Importing an
AppSpace to My webMethods Server ” on page 93.

Deploying an AppSpace using the File System

You can use the file system and deploy an AppSpace to an instance of My webMethods Server.

To deploy an AppSpace using the file system

1. Enable theAutoDeploy role for automatic deployment of portlets. Formore information about
the Auto Deploy role, see the Administering My webMethods Server guide.

2. Copy the .cdp file of the AppSpace to the Software AG_directory
\MWS\server\serverName\deploy directory. For more information about how to export an
AppSpace as a .cdp file, see “Exporting an AppSpace As a .cdp File” on page 91.

Deploying an AppSpace using the Install Option

You can use the install option and deploy an AppSpace to an instance of My webMethods Server.

To deploy an AppSpace using the installation UI

1. As system administrator, log on to My webMethods Server.

2. Navigate toFolders > Administrative Folders > Administration Dashboard > Configuration
> Install Administration.

3. Click Install New Component.

4. Click Choose File and select the .cdp file of the AppSpace.

For more information about how to export an AppSpace as a .cdp file, see “Exporting an
AppSpace As a .cdp File” on page 91.

5. Click Next, and then click Install.

Importing an AppSpace to My webMethods Server

You can import an AppSpace to an instance of My webMethods Server.

To import an AppSpace

1. As system administrator, log on to My webMethods Server.

Developing Gadgets for webMethods Business Console 10.11 93

6 Using AppSpaces in Business Console

2. Navigate to Folders > Administrative Folders > Administration Dashboard > Migration
> Content Import/Export.

3. In the Migration Source Type field, select Single Object.

4. In the Migration Mode field, select Import, and then click Next.

5. In the Install Destination field, click Browse.

The Browse dialog box appears.

6. Navigate to Folders > Custom Applications.

7. Select Business Console Dashboard Container, and then click Select.

8. In the Install Componentfield, clickChoose File, and then select the .cdp file of theAppSpace.

For more information about how to export an AppSpace as a .cdp file, see “Exporting an
AppSpace As a .cdp File” on page 91.

9. Click Next.

Managing AppSpace Groups

You can group AppSpaces. AppSpace groups are listed in the AppSpace tab.

You can do the following:

Group AppSpaces by specifying a group while configuring the AppSpace. See “Editing
AppSpace Using Gadgets” on page 89.

Move an AppSpace from one group to another by using the Configure option, and changing
the group name for the AppSpace.

Remove group association from an AppSpace by using the Configure option, and removing
the group name for the AppSpace.

Delete an AppSpace group. Deleting an AppSpace group also deletes the AppSpaces that are
in the AppSpace group.

You cannot rename an AppSpace group.

Assigning Gadget Access Permissions

For each gadget you need to use in Business Console, administratormust set the access permission
in My webMethods Server.

To assign gadget permissions

94 Developing Gadgets for webMethods Business Console 10.11

6 Using AppSpaces in Business Console

1. Log in as Administrator to My webMethods Server.

2. In My webMethods, navigate to Applications > Administration > System-Wide >
Permissions Management.

3. Select Business Console Gadgets from the Resource Type list.

4. Click Search.

5. Move the required gadgets to the Selected list, and click Next.

6. Click Edit corresponding to the user, group, or role. If the user is not listed, click Add to add
a user, group, or role.

7. Select Grant for Gadget > Basic > View Object.

8. Click Ok.

Assigning AppSpace and AppSpace Group Access Permissions

For users to view,modify, and delete AppSpaces and groups, the administratormust set the access
permission in My webMethods Server.

Note:
By default, My webMethods Server users have the view permission for AppSpaces. The
administrator can remove the view permission if necessary.

To assign permissions

1. Log in as Administrator to My webMethods Server.

2. Navigate to Applications > Administration > System-Wide > Permissions Management.

3. Select one of the following from the Resource Type list.

To select an AppSpace, select Business Console AppSpaces.

To select an AppSpace group, select Business Console AppSpace Group.

4. Click Search.

5. Move the required AppSpaces or AppSpace Groups to the Selected list, and click Next.

The list of users, groups, and roles appears.

Developing Gadgets for webMethods Business Console 10.11 95

6 Using AppSpaces in Business Console

6. Click Edit corresponding to the user, group, or role. If the user is not listed, click Add to add
a user, group, or role. For more information about user management, see the Administering
My webMethods Server guide.

7. Select Grant for each permission that you want to assign.

8. Click OK.

9. Click Apply.

96 Developing Gadgets for webMethods Business Console 10.11

6 Using AppSpaces in Business Console

7 Improving Gadget Performance

■ Gadget Performance .. 98

■ Techniques for Improving Gadget Performance ... 98

Developing Gadgets for webMethods Business Console 10.11 97

Gadget Performance

Business Console gadgets are built on top of AngularJS. Hence, improving gadget performance
would mean improving the way the gadgets are coded.

This section explains various techniques to improve the gadget performance.

Techniques for Improving Gadget Performance

Paginating

Ensure that all RESTful services that return huge data sets are well paginated on the server side.
For example, if you are trying to load a grid with 1000 records, paginate 10-20 records at a time.
You can have grid control, and lazy load data sets as and when users scroll through the grid. This
will ensure that less data is processed by the user interface, and will improve performance.

Minimizing the use of watchers

AngularJS scans and keeps track of all the changes in the application. Thismeans that everywatcher
is monitored for update requests (digest cycle). If one of the watchers relies on another watcher,
AngularJS re-runs the digest cycle to make sure that all of the changes are propagated. Digest
cycle runs continuously until all the watchers are updated and the application is stabilized. Even
though JavaScript execution is really fast in modern browsers, if you add too many watchers in
AngularJS, your gadgetmight slowdown.Although it is impossible to avoidwatchers,minimizing
watchers will definitely help performance.

For example,when use bind once where possiblewatchers are set, AngularJS adds the :: notation
to allow one time binding. AngularJS will wait for a value to stabilize after the first series of digest
cycles, and will use that value to render the DOM element. After that, AngularJS will remove the
watcher and forget about that binding. You can use this to bind constant values which do not
change throughout the application.
$scope.$watch
{{ }} type bindings
Most directives (i.e. ng-show)
Scope variables scope: { bar: '='}
Filters {{ value | myFilter }}
ng-repeat

Using ng-if

Use ng-if instead of ng-showwherever possible. ng-showwill add the display:none style to your
HTML code depending on the condition. So your HTML will always be part of the DOM even if
it is hidden. ng-ifwill not add the HTML code to your DOM if the condition is not satisfied, thus
minimizing the size of the DOM object. Make sure that your use case is satisfied by ng-if.

98 Developing Gadgets for webMethods Business Console 10.11

7 Improving Gadget Performance

8 Creating Offline Gadgets for Task Business Data

■ Creating Offline Gadgets for Task Business Data .. 100

Developing Gadgets for webMethods Business Console 10.11 99

Creating Offline Gadgets for Task Business Data

You can create gadgets that support the offline mode in Mobile Business Console. These offline
gadgets are used in Mobile Business Console for displaying task business data.

To create an offline task gadget

1. Enable the gadget to cache data offline as follows:

a. Navigate to gadgetDefinition.xml of the gadget.

b. Select the Gadget Definition Editor tab and expand Parameters.

c. Click Add.

d. Specify the following parameter in the Name and Value fields respectively:

ValueName

TrueOffline

2. Configure the caching as follows:

a. Navigate to the gadget controller.

b. Define the REST service URL with the caching configuration as follows:

Ensure that the URL is accessible from $scope.
URLS : {
TASK_DETAILS_GET : {
url : '/rest/pub/opentask',
method : 'GET',
serverType : SERVER_TYPES.TE,
caching :
{

name : 'MBC_OFFLINE_TASK_DATA',
key : {requestKeyParamName : 'taskID'},
strategy : 'CacheFirst',
autoSynch : {
synchurl : '/rest/pub/opentask',
method : 'PUT',
queryParams : [{name : 'taskID',

valueKeyPath : 'taskInfo.taskID'}]
}

}
},
TASK_DETAILS_POST : {
url : '/rest/pub/opentask',
method : 'PUT',
serverType : SERVER_TYPES.TE,

100 Developing Gadgets for webMethods Business Console 10.11

8 Creating Offline Gadgets for Task Business Data

caching : {
name : 'MBC_OFFLINE_TASK_DATA',
key : {
requestKeyParamName : 'taskID',
updateReadKeyPath : 'taskData',
updateWriteKeyPath : 'taskData'
}
}

}
}

3. Set the scope and parameter values.

In case of REST service execution by passing parameters to the invoke() function:
var parameter = [{"name" :"includeTaskData","value":"true"},

{"name": "taskID" ,"value" : _$scope.config.params.taskID}];
$scope.restClient.invoke($scope.URLS.TASK_DETAILS_GET,
function(response){
console.log("Success");
},
function(response, status, header, config, _$scope){
console.log("Error");
},
parameter,
null,
_$scope,
null,null);

In case of UI generated using Integration Server REST drag and drop:
var parameter = [{"name" :"includeTaskData","value":"true"},

{"name": "taskID" ,"value" : _$scope.config.params.taskID}];
_$scope.restClient.url(<IS REST EndPoint with parameter>)

.remote(true)

.scope(_$scope)

.serverAlias("HostEntry1")

.gadgetConfig(_$scope.config)
.method("GET")

.header("Accept","application/json")

.caching(_$scope.URLS.TASK_DETAILS_GET.caching)

.parameter(parameter)

.success()

.error()

.invoke();

REST wrapper input and output must exactly match the corresponding Task Engine REST
API rest/pub/opentask. For more information, see webMethods Task Engine API and Service
Reference.

4. Fetch the details again to synch the task instance version numberwith the cache after a business
data update.

//Task data updates success call back
function(response,status) {
/*
Custom logic
*/

Developing Gadgets for webMethods Business Console 10.11 101

8 Creating Offline Gadgets for Task Business Data

if ((status && status != "CACHE")){
//Re-fetch the task data

}
}

5. Verify if the response received is of type String and then convert it to JSON format.

//Task data gets success call back
function(response,status) {
if (response.taskData){
if (jQuery.type(response.taskData) === 'string') {
_$scope.restData = JSON.parse(response.taskData);

} else {
_$scope.restData = response.taskData;

}
}

/*
Custom logic
*/

}

6. Configure the task type to use the offline gadget to display the business data in Designer.

102 Developing Gadgets for webMethods Business Console 10.11

8 Creating Offline Gadgets for Task Business Data

9 Importing and Enhancing AgileApps Forms

■ Enhancing AgileApps Cloud Forms .. 104

■ Lifecycle of an AgileApps Cloud Form Gadget ... 104

■ New Files Generated on Importing AgileApps Cloud Forms .. 108

■ Importing an AgileApps Cloud Form into Software AG Designer 109

■ Modifying an AgileApps Cloud Form in Software AG Designer 110

■ Example: Use Case to Add New Business Logic ... 110

Developing Gadgets for webMethods Business Console 10.11 103

Enhancing AgileApps Cloud Forms

AgileApps Cloud forms are built either with database objects or case objects. In AgileApps Cloud,
these forms have limited capabilities to allow you to modify the UI controls, business logic, and
styles. A new capability allows you to import the AgileApps Cloud forms as plain HTML and
JavaScript into Software AG Designer and enhance the imported forms. In conjunction with this,
you can use the UI generated by the REST connector code along with imported AgileApps Cloud
form. See “ Drag and Drop Existing REST Resources to Generate the Gadget UI” on page 70.

Limitations

The following limitations are observed while importing the AgileApps Cloud forms:

The layout rules are not imported from the AgileApps Cloud form.

Components such as attachments and time are imported but do not function as intended.

On theAgileAppsCloud form, after business logic and new controls are added in the Software
AG Designer and deployed on My webMethods Server, these new controls do not reflect in
the AgileApps Cloud form on AgileApps Cloud. In the interim, if you add new controls in the
AgileApps Cloud form, those controls do not reflect in the gadget generated in Software AG
Designer automatically. But you can manually add the new controls and business logic in the
imported AgileApps Cloud form gadget. See “Example: Use Case to Add New Business
Logic” on page 110 for more information on how to add new business logic in Software AG
Designer.

Lifecycle of an AgileApps Cloud Form Gadget

The lifecycle of an AgileApps Cloud form gadget is depicted in the flow diagrams and the details
of each stage is available in the following table:

Update ModeCreate ModeStages

Initializes the UI model
by retrieving the record

Initializes the UI model with
default values.

initData()

from the AgileApps
Cloud server using either
the AgileApps Cloud
object name or object
type Id and record ID.

This stage does not apply
to update mode.

A new object is created with the
specified values for the object name
or object type.

saveNewObjectRecord()

Updates an existing
record with the specified
values.

This stage does not apply to create
mode.

updateObjectRecord()

104 Developing Gadgets for webMethods Business Console 10.11

9 Importing and Enhancing AgileApps Forms

Update ModeCreate ModeStages

Converts the data from
the back end service

Converts the data from the back
end service response to the UI

preProcessData()

response to the UImodelmodel format. For example, time
format. For example, timefield on the UI requires a complete
field on the UI requires adataTime value but the back end

service returns only the timestamp. complete dataTime value
but the back end service
returns only the
timestamp.

Converts the data from
UI model format to

Converts the data from UI model
format to match the back end

postProcessData()

match back end serviceservice requirements. For example,
requirements. Formulti check box on the UI needs an
example,multi check boxArray, but the back end service
on theUI needs anArray,requires a string with commas as a

separator. but the back end service
requires a string with
commas as a separator.

Forms the REST URL
with the required path
and query parameters.

Forms the REST URL with the
required path and query
parameters.

buildPathParams ()

The following flow diagram depicts the control flow in the create mode:

Developing Gadgets for webMethods Business Console 10.11 105

9 Importing and Enhancing AgileApps Forms

The following flow diagram depicts the control flow in the update mode:

106 Developing Gadgets for webMethods Business Console 10.11

9 Importing and Enhancing AgileApps Forms

Inherited Event Subscriptions

On importing an AgileApps Cloud form into Software AG Designer, a few event subscriptions
are inherited along with all the required parameters. The gadgetdefinition.xml contains this
information.

The gadget generated with the AgileApps Cloud form subscribes to AA_RECORD_CHANGE_EVENT and
AA_MODE_CHANGE_EVENT by default. A few events such as GEO_LOCATION and LOOKUP are published
by the generated gadget based on the actions you perform.

Payload for both the events are expected in a certain format. The payload for
AA_RECORD_CHANGE_EVENT needs to be in the following form:
"AA_OBJECT_RECORD_CHANGE":

payload = {AAObjectName:"",
AAObjectID:"",
AAObjectRecordID:""
}

The payload for AA_MODE_CHANGE_EVENT needs to be in the following form:
"AA_GADGET_MODE_CHANGE":

payload = {AAObjectName:"",
isNewMode:""

Developing Gadgets for webMethods Business Console 10.11 107

9 Importing and Enhancing AgileApps Forms

}

When the Workstream gadget is placed along with the generated AgileApps Cloud form gadget
in a single AppSpace, the gadgets interact seamlessly. In the Workstream gadget, if you select a
case instance, the AgileApps Cloud form is automatically refreshedwith the details of the selected
case instance.

If the generated gadget is placed alongwith the Business Consolemaps gadget, then theAgileApps
Cloud locations are identified and mapped automatically in the Business Console maps gadget.

Switching Between the Create and Update Modes

On clicking the Settings icon, the gadget settings model dialog appears. Select True in
isNewMode to make the form appear with create controls. Select False for the form to appear
with editing controls.

New Files Generated on Importing AgileApps Cloud Forms

A few files are generated anew when you import an AgileApps Cloud form. The following table
contains the list:

File DescriptionFile NamesFolder Names

Views

This file contains the parent view that is
visible on theUI. The aa_view_partial.xhtml

view.xhtml

file is linked to the view.xhtml page as an
angular partial directive.

This file contains the completeHTMLcontent
of the AgileApps Cloud form.

aa_view_partial.xhtml

Object name and object type fields selected
while importing the AgileApps Cloud form
are non-editable fields.

settings.xhtml

The RecordID field is used to retrieve the
AgileApps Cloud object instance details and
it is populatedwith a randomly chosen object
instance by default. This is an editable field.

Mode field controls the behavior of the
imported AgileApps Cloud form. It can be
used to either create or update a record.

Scripts

This file provides the model layer for the
view.xhtml page.

controller.js

108 Developing Gadgets for webMethods Business Console 10.11

9 Importing and Enhancing AgileApps Forms

File DescriptionFile NamesFolder Names

This file contains internal configurations used
by the gadgets framework. Anymodification

config.js

to this filemay result in unexpected behavior
of the generated gadget.

This file is the angular directive. It contains
all the business logic.

directive.js

This file remains blank on creation. You can
add custom business logic in this file.

custom.js

Importing an AgileApps Cloud Form into Software AG Designer

You can import an AgileApps Cloud form into Software AG Designer and make enhancements
such as change the theme, add business logic, and so on. Importing a form fromAgileApps Cloud
is unidirectional. Ensure that you configure theAgileAppsCloud host in theAdminister Business
Consolemenu of Business Console. After the required changes aremade to the AgileApps Cloud
forms in Software AG Designer, you need to deploy it on My webMethods Server to make it
available on Business Console.

To import AgileApps Cloud into Software AG Designer

1. Launch the Software AG Designer in the UI perspective.

2. Create a gadget, portlet, or web application project in the UI Development perspective in
Software AG Designer.

3. In the Solutions tab, right-click on the UI project and select Import AgileApps Forms From
Gadget. The New AgileApps Form wizard appears.

4. Type the AgileApps Cloud credentials and click Next.

5. Select the application, objects types, and forms you want to import in Software AG Designer
and click Finish. The imported AgileApps Cloud form appears as a UI Development project.

6. Configure the AgileApps Cloud host in theAdminister Business Consolemenu of Business
Console.

Ensure that you configure the same host you used for importing the AgileApps Cloud form
or ensure that the application is available in the configured AgileApps Cloud server.

7. Make the desired changes to the AgileApps Cloud form using Software AG Designer.

Developing Gadgets for webMethods Business Console 10.11 109

9 Importing and Enhancing AgileApps Forms

See “Deploying Gadgets to My webMethods Server ” on page 18 for instructions deploying the
imported AgileApps Cloud form in the My webMethods Server and consequently see “Viewing
Gadgets ” on page 19

Modifying an AgileApps Cloud Form in Software AG Designer

You can modify a form imported from AgileApps Cloud in the UI perspective of Software AG
Designer.

To modify AgileApps Cloud into Software AG Designer

1. Launch the Software AG Designer in UI perspective.

2. In the Solutions tab, navigate to the imported <gadget_name_project> > Views >
aa_view_partial.xhtml file. This file contains all the UI fields pertaining to AgileApps Cloud.

The view.xhtml file contains the code that renders the UI.

3. Open the aa_view_partial.xhtml file to edit it.

You can add or remove the fields using the HTML code.

4. Click Save.

See “Deploy gadgets to My webMethods Server” on page 18 for instructions on how to deploy
themodifiedAgileAppsCloud form in theMywebMethods Server and consequently see “Viewing
Gadgets ” on page 19 for information on adding the modified AgileApps Cloud form as a gadget
in Business Console.

Ensure that the same version of the modified AgileApps Cloud form is deployed on the My
webMethods Server and imported as an AppSpace on Business Console.

Example: Use Case to Add New Business Logic

The example use case lists instructions on how to add a new JavaScript function in the
aa_view_partial.xhtml file to enhance the business logic.

To add a new JavaScript function AgileApps Cloud using Software AG Designer

1. Launch the Software AG Designer.

2. In the Solutions tab, navigate to the imported <gadget_name_project> > Scripts >
aa_view_directive.js file. This file contains all the business logic.

3. Open the aa_view_directive.js file to edit it.

4. In the defineScope() function, add a custom function as follows:

110 Developing Gadgets for webMethods Business Console 10.11

9 Importing and Enhancing AgileApps Forms

$scope.custom=function(){
$scope._Data.customMessage = "hello world"
}

5. Navigate to the <gadget_name_project> > Views > aa_view_partial.xhtml file. This file
contains all the UI fields pertaining to AgileApps Cloud.

6. Add the new UI fields and controls to bind the function(custom) and model(_Data) variable
(customMessage) created previously.

The example code snippet is as follows:
<div class="form-group" style="margin-top: 10px;">
<button data-ng-click='custonFunc()'>Click Here</button>
<div class="col-sm-6 col-md-6">
<input type='text' class='bc-newci-text form-control'
data-ng-model='_Data.customMessage'/>
</div>

</div>

Developing Gadgets for webMethods Business Console 10.11 111

9 Importing and Enhancing AgileApps Forms

112 Developing Gadgets for webMethods Business Console 10.11

9 Importing and Enhancing AgileApps Forms

10 Troubleshooting Gadgets

■ About Troubleshooting Gadgets ... 114

■ Testing a Gadget in a Browser ... 114

■ Handling Exceptions ... 114

■ Using a CSS URL Data Type in the CSS File of a Gadget ... 115

Developing Gadgets for webMethods Business Console 10.11 113

About Troubleshooting Gadgets

This section explains how to test gadgets and how to troubleshoot the gadgets in case of exceptions.
The gadget code is included in a JavaScript file called gadget-framework.js. The
gadget-framework.js file of a gadget is used to test the gadget code.

Testing a Gadget in a Browser

Testing a gadget in the Chrome browser

1. Open the Developer Tools (Press F12).

2. In Sources tab, from the left hand side menu, expand wmbcgadgets > script.

3. Double-click on gadget-framework.js. This file contains all your gadget code.

4. Search for your controller function (Use Ctrl+F).

5. Set breakpoints accordingly

Handling Exceptions

The gadget framework in Designer handles all the compile-time errors in your gadget code. To
ensure that your gadget is free of syntax error, check the errors and warnings sections, and ensure
that no errors are listed. If there are any warnings, program the gadget to handle the warnings to
ensure that your gadget works properly. To handle runtime exceptions, you can encapsulate your
scope functions in a try/catch block, and log the errors appropriately.

114 Developing Gadgets for webMethods Business Console 10.11

10 Troubleshooting Gadgets

Using a CSS URL Data Type in the CSS File of a Gadget

You can use a CSS URL data type in the CSS file of the gadget.

To use a CSS URL data type in the CSS file of a gadget

Prefix the relative path with CONTEXT___ROOT followed by the relative path of the gadget.

CONTEXT___ROOT automatically resolves to the application context root value during runtime
by the gadget framework. For example:
@font-face {

font-family: 'My Glyphicons Halflings';
src: url(/CONTEXT___ROOT/FontCssGadget/styles/fonts/

glyphicons-halflings-regular.eot);
src:

url(/CONTEXT___ROOT/FontCssGadget/styles/fonts/
glyphicons-halflings-regular.eot?#iefix)
format('embedded-opentype'),
url(/CONTEXT___ROOT/FontCssGadget/styles/fonts/
glyphicons-halflings-regular.woff2)
format('woff2'),
url(/CONTEXT___ROOT/FontCssGadget/styles/fonts/
glyphicons-halflings-regular.woff)
format('woff'),
url(/CONTEXT___ROOT/FontCssGadget/styles/fonts/
glyphicons-halflings-regular.ttf)
format('truetype'),
url(/CONTEXT___ROOT/FontCssGadget/styles/fonts/
glyphicons-halflings-regular.svg#glyphicons_halflingsregular)
format('svg');

}
.imagecss-sample-gadget {

background-image: url('/CONTEXT___ROOT/FontCssGadget/images/logo.png');
height: 100px;
width: 150px;

}

Here CONTEXT___ROOT is replaced by the <application_name> that you provided while creating
the CAF portlet or web application.

Developing Gadgets for webMethods Business Console 10.11 115

10 Troubleshooting Gadgets

116 Developing Gadgets for webMethods Business Console 10.11

10 Troubleshooting Gadgets

	Table of Contents
	About this Guide
	Document Conventions
	Online Information and Support
	Data Protection

	1 Introduction to Business Console
	Overview
	Pre-requisites
	Using JavaScript for Gadget Development
	Understanding AngularJS and Non-AngularJS Gadget Development
	Using Model View Controller (MVC) in AngularJS
	Organizing Gadget Files
	Understanding Business Console Gadget Development

	2 Getting Started
	Understanding and Developing gadgets
	Creating your First HelloWorld Gadget
	Localizing a Gadget
	Using RESTful Services with Gadgets
	Invoking POST Calls
	Using Forms with Gadgets
	Communicating Between Two Gadgets
	Using Third Party Libraries

	3 Creating User Interface for Gadgets
	Creating an User Interface
	Using Bootstrap Components
	Creating Responsive Gadgets
	Using Form Layouts
	Validating Fields in a Form
	Adding Static or Dynamic Content
	Styling Gadgets
	Adding Styles in CSS
	Enabling CSS Editor for .scss Files in Designer
	Embedding a Gadget within Another Gadget

	4 Programming Gadgets
	About Programming Gadgets
	Base Controller for Programming Gadgets
	Defining Module Dependencies
	Injecting Services, Factories, and Providers
	Defining Angular $scope Object
	Invoking RESTful Services
	Generating REST Connector Code for REST Services
	Including Independent AngularJS Modules in Gadgets
	Invoking JavaScript Functions with Same Name in Different Libraries
	Using Third Party Libraries in Gadgets
	Defining Success and Error Notification in Gadgets
	Using Forms in Gadgets
	Accessing Services and Functions in XHTML Files and Controller
	Using Custom JS or CSS Files in Gadgets
	Reusing JS Files and CSS Files Across Gadgets
	Loading a Gadget or an AppSpace in a Modal Dialog Box

	5 Communicating Between Gadgets
	About Communication Between Gadgets
	Communicating Between Gadgets Using Events
	Adding Gadget Settings
	Connecting Multiple Views with Controller

	6 Using AppSpaces in Business Console
	Creating Business Console AppSpaces Using Gadgets
	Installing Sample Gadgets
	Editing AppSpace Using Gadgets
	Viewing an AppSpace in a Web Browser
	Viewing Standalone AppSpaces
	Exporting an AppSpace As a .cdp File
	Exporting an AppSpace As an .xml File
	Importing an AppSpace
	Deploying an AppSpace using the File System
	Deploying an AppSpace using the Install Option
	Importing an AppSpace to My webMethods Server
	Managing AppSpace Groups
	Assigning Gadget Access Permissions
	Assigning AppSpace and AppSpace Group Access Permissions

	7 Improving Gadget Performance
	Gadget Performance
	Techniques for Improving Gadget Performance

	8 Creating Offline Gadgets for Task Business Data
	Creating Offline Gadgets for Task Business Data

	9 Importing and Enhancing AgileApps Forms
	Enhancing AgileApps Cloud Forms
	Lifecycle of an AgileApps Cloud Form Gadget
	New Files Generated on Importing AgileApps Cloud Forms
	Importing an AgileApps Cloud Form into Software AG Designer
	Modifying an AgileApps Cloud Form in Software AG Designer
	Example: Use Case to Add New Business Logic

	10 Troubleshooting Gadgets
	About Troubleshooting Gadgets
	Testing a Gadget in a Browser
	Handling Exceptions
	Using a CSS URL Data Type in the CSS File of a Gadget

