
webMethods Application Platform User’s Guide

Version 10.11

October 2021

This document applies to webMethods Application Platform 10.11 and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2014-2021 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
https://softwareag.com/licenses/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or
restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms and Conditions for Use of Software
AG Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at https://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

Document ID: AP-UG-1011-20211015

https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html
https://www.softwareag.com/licenses/default.html

Table of Contents

About this Guide..5
Document Conventions...6
Online Information and Support...6
Data Protection...7

Application Platform Deprecation..9

1 About Application Platform...11
Architecture and Components...12
Publishing and Deploying Bundles...15

2 Developing with Application Platform in Designer..17
Getting Started with Application Platform Development...18
About the Application Platform Perspective..23
About Creating Application Platform Projects..26
Configuring a Designer Project for Application Platform..35
About Developing Web Applications for Integration Server...37
Developing Web Archive (WAR) Projects...41
Developing Web Application Bundle (WAB) Projects..41
About Adding Single Sign-on Authentication in Application Platform Projects...................41
About the Application Platform Integration Test Framework..45
Managing Servers...47
About Publishing Projects...60
About Viewing Dependency Graphs..64
About Managing Project Dependencies..69
Configuring Application Platform...75
About Using Services in Application Platform..82
Application Platform Tutorial..90

3 Working with Application Platform Projects..93
About Deploying Projects...94
About Configuring Published Projects...97

4 Administering Application Platform Using Command Central..99
Managing Application Platform Projects Using Command Central......................................100
Monitoring KPI Data for WAR Projects Using Command Central...100

5 Diagnostics and Troubleshooting..103
Useful Logs for Application Platform...104
Increasing Tomcat Debug Logging..104
Using Log4j in WAR projects..106
JSP Validation in WmAppPlat..107

webMethods Application Platform User’s Guide 10.11 iii

Diagnosing Bundles with the OSGi Console..107
Considerations When Publishing Projects to Servers...107
Common Project Issues..108

A Differences Between WmTomcat and WmAppPlat...111

iv webMethods Application Platform User’s Guide 10.11

Table of Contents

About this Guide

■ Document Conventions .. 6

■ Online Information and Support ... 6

■ Data Protection ... 7

webMethods Application Platform User’s Guide 10.11 5

This guide provides information about working with webMethods Application Platform aimed
at application developers. It explains common tasks, such as building Java applications using
Application Platform projects in Software AG Designer, packaging the applications in OSGi
bundles, and deploying them to an Integration Server instance.

To use this guide effectively, you should be familiar with webMethods Integration Server and
Software AG Designer. You should understand the concepts and procedures in the webMethods
Integration Server Administrator’s Guide and the Software AG Designer Online Help. You should also
have basic knowledge of OSGi and its concepts.

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service, APIs,
Java classes, methods, properties.

Narrowfont

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the
information inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these
choices. Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square
brackets. Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at https://
documentation.softwareag.com.

6 webMethods Application Platform User’s Guide 10.11

https://documentation.softwareag.com
https://documentation.softwareag.com

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

You can find product information on the Software AG Empower Product Support website at
https://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.aspx and give us
a call.

Software AG Tech Community

You can find documentation and other technical information on the SoftwareAGTechCommunity
website at https://techcommunity.softwareag.com. You can:

Access product documentation, if you have Tech Community credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

Access articles, code samples, demos, and tutorials.

Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

webMethods Application Platform User’s Guide 10.11 7

mailto:empower@softwareag.com
https://empower.softwareag.com/
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.aspx
https://techcommunity.softwareag.com

8 webMethods Application Platform User’s Guide 10.11

Application Platform Deprecation
webMethodsApplication Platform is deprecated. To build Java services for your newdevelopment
projects, use webMethods Service Development instead. For more information, see webMethods
Service Development Help.

webMethods Application Platform User’s Guide 10.11 9

10 webMethods Application Platform User’s Guide 10.11

1 About Application Platform

■ Architecture and Components .. 12

■ Publishing and Deploying Bundles ... 15

webMethods Application Platform User’s Guide 10.11 11

webMethods Application Platform complements the webMethods product line by allowing you
to create custom business applications. You can use Application Platform together with other
Software AG products to create entire business solutions. Application Platform provides a user
friendly way for building custom business logic.

Application Platform enables you to create custom business applications in a Java-friendly way.
It is based on OSGi and provides development tools and run-time components for building Java
applications using Software AG Designer. You can use standard Designer tools for debugging
and you can directly deploy your project bundles to a webMethods runtime without using a
third-party application server. Project bundles are deployed to webMethods Integration Server
in exactly the sameway, as in otherwebMethods products. You can also integrate yourApplication
Platform projects with Integration Server (IS) services.

With Application Platform you can complete the following tasks:

1. Develop business logic applications in Designer by using standard POJOs and Spring Beans.

2. Integrate your applications with Enterprise Service Bus (ESB) services through bi-directional
invocation.

3. Deploy and run the applications on your existingwebMethods servers alongside your existing
webMethods assets.

4. Expose your applications to users in various ways by using web applications.

Architecture and Components

The Software AGDesigner architecture consists of a development layer, which resides in Designer,
and a server layer, which is responsible for the runtime operations.

The following diagram displays the Software AG Designer development components, which
include the Designer workspace to the left, the Eclipse Equinox OSGi container in the middle, and
the project bundles component to the right. Theworkspace contains the project folders. The Eclipse
Equinox OSGi container has the Application Platform Eclipse features in the upper section,
containing core plug-ins and server extension plug-ins, and the Eclipse core runtime component
in the lower section.

12 webMethods Application Platform User’s Guide 10.11

1 About Application Platform

The following diagram displays the server components, which include the server profile to the
left, the Equinox OSGi container in the middle, and the project bundles to the right. The server
profile contains configuration files, project repositories, and log files. The EquinoxOSGi container
section consists of customer deployments in the upper part, containing core plug-ins and server
extension plug-ins, and the following components in the lower part: Application Platform,
Software AG Product Server, third-party bundles, Software AG Common Platform, Common
Platform third-party extensions, and the OSGi Equinox container.

For further explanation, see the sections for each component that follow the diagram.

Software AG Common Platform
The architecture of Application Platform is based on Software AG Common Platform. Common
Platform isOSGi-based and it enables you to dynamically construct executable instances of various
products.

webMethods Application Platform User’s Guide 10.11 13

1 About Application Platform

In CommonPlatform, a deploymentmodule is typically a Java jar file, called a bundle, that contains
a META-INF/manifest.mf file with additional headers. When you install bundles to a server, the
OSGi container of the server uses the metadata, provided in the additional headers. The OSGi
container implementation used in Application Platform-supported servers is Eclipse Equinox.

With Application Platform, you create and install OSGi bundles to a server. Third-party jar files
should also be OSGi bundles. Alternatively, you can use Application Platform to create bundles
from simple jar files. You can also embed plain jar files by placing them in the Application
Platform project's lib folder.

For information about creating plain jar files, see “IncludingNon-OSGi Jars in Projects” on page 35.

Software AG Designer
Application Platform uses Designer as an integrated development environment for building
components. InDesigner, youuse theApplication Platformperspective and the following functions:

Project wizards for creating Java and web applications

Integration with server tools for publishing and debugging projects to the server

Dialog wizards for creating Java bindings to server components

Options for customizing your perspective and views

Various utilities for developing projects on the Software AG Common Platform

For more information about the functions of Designer, seeWorking with Software AG Designer.

For more information about developing services in Designer, see webMethods Service Development
Help.

Software AG Servers
Application Platform projects are published or deployed to a Software AG server, that meets the
following requirements:

The server is based on OSGi runtime containers.

The server supports Software AG Common Platform.

The server is managed by a set of scripts for cross-cutting control. Examples of such scripts
include:

logging scripts

configuration scripts

lifecycle scripts

For more information about Software AG servers, see Software AG Infrastructure Administrator's
Guide.

14 webMethods Application Platform User’s Guide 10.11

1 About Application Platform

webMethods Deployer
When you have completed your projects in Application Platform, you can deploy them to the
required servers by using command line scripts in webMethods Deployer. Deployed projects are
built and packaged as assets by using webMethods Asset Build Environment. You can deploy all
assets to one or more target systems with Deployer.

For more information about Deployer and Asset Build Environment, see the webMethods Deployer
User’s Guide.

Publishing and Deploying Bundles

In this guidewe differentiate between the terms publish and deploy. Project bundles are published
when the deployment activities are performed from the integrated development environment,
which is Designer for Application Platform, to webMethods Integration Server. Project bundles
are deployedwhen the deployment activities are performed outside ofDesigner.WhenApplication
Platform projects are deployed, project assets found in an asset build environment repository are
deployed to Integration Server via webMethods Deployer.

For information about deploying assets using Deployer, see “About Deploying Projects” on
page 94.

When you publish project bundles in Designer, your bundles are published to a server on the
same physical machine or a remote server. Each component that is involved in the publishing
process requires a Java Virtual Machine (JVM). The following diagram illustrates the work flow
for publishing bundles to a dedicated server. You create your projects in Designer, which contains
the artifacts directory for your projects. Projects are published or unpublished from the server
through a JavaManagement Extensions (JMX) protocol. When you publish a project to the server,
it is stored in a dedicated repository directory on the server.

When you deploy project bundles using Asset Build Environment (ABE) and Deployer, your
bundles are published to a remote server, which is on a different physicalmachine. Each component

webMethods Application Platform User’s Guide 10.11 15

1 About Application Platform

that is involved in the deployment process also requires a JVM. The following diagram illustrates
the work flow for deploying bundles using Deployer. Deployer uses project bundles, created
through the Asset Build Environment. The required files are stored in a repository directory on
your local machine, which Deployer uses to deploy or undeploy projects on the server through
HTTP.

16 webMethods Application Platform User’s Guide 10.11

1 About Application Platform

2 Developing with Application Platform in Designer

■ Getting Started with Application Platform Development ... 18

■ About the Application Platform Perspective ... 23

■ About Creating Application Platform Projects .. 26

■ Configuring a Designer Project for Application Platform .. 35

■ About Developing Web Applications for Integration Server .. 37

■ Developing Web Archive (WAR) Projects ... 41

■ Developing Web Application Bundle (WAB) Projects ... 41

■ About Adding Single Sign-on Authentication in Application Platform Projects 41

■ About the Application Platform Integration Test Framework ... 45

■ Managing Servers .. 47

■ About Publishing Projects .. 60

■ About Viewing Dependency Graphs ... 64

■ About Managing Project Dependencies ... 69

■ Configuring Application Platform .. 75

■ About Using Services in Application Platform .. 82

■ Application Platform Tutorial ... 90

webMethods Application Platform User’s Guide 10.11 17

This topic describes the features added to Designer to support developing with Application
Platform.

Getting Started with Application Platform Development

The following sections describe tasks that you should perform after you install Application Platform
in order to start building projects.

Opening the Application Platform Perspective
Application Platform has a dedicated Designer perspective. This perspective contains the basic
views you need in order to develop applications.

To open the Application Platform perspective

1. In Designer, go to Window menu, select Perspective > Open Perspective, and then click
Other.

2. Click App Platform and then click OK.

If you have not created a runtime environment for Application Platform, a warning message
will be displayed after opening the App Platform perspective.

After you open the App Platform perspective for the first time, it is cached in the upper right
corner of Designer for quick access.

3. Optionally, if a warningmessage is displayed after you execute step 2, click Yes and configure
a runtime environment.

Designer redirects you to the App Platform Runtime configuration view.

Adding a Server Runtime Environment
When you first install Application Platform, you must add a server runtime for Application
Platform, so that your projects can reference their runtime container. For the runtime configuration,
use an absolute path to the product installation. Runtime containers are Designer configuration
elements that define a set of product libraries that are included in project classpaths.

To add a server runtime environment for Application Platform

1. In Designer, go to Window menu and click Preferences.

2. In the Preferences dialog box, click Server, and then click Runtime Environments.

3. In the Server Runtime Environments dialog box click Add.

18 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

4. In the New Server Runtime Environment dialog box, select an Application Platform server,
and then click Next.

The available server is Integration Server, so you can select Application Platform Integration
Server, or Application Platform Integration Server (Remote).

5. In theDesigner installation root directory field, enter the path to the SoftwareAG installation
folder.

Depending on the type of server you are using, keep in mind the following:

If you are configuring Integration Server runtime with a local Integration Server, the
installation folder must reside in a Software AG_directory , which contains a profiles
directory.

If you are configuring Integration Server runtime with a remote Integration Server, you
must also have an Integration Server instance installed on the machine where Designer is
installed. In this way Designer can access the server runtime's libraries when building
projects.

Important:
The installation root directory of Designer is stored in the Eclipse workspacemetadata area.
If you install another instance of Designer on the samemachine, you must not use the same
workspace directory. Using the same workspace directory for more than one instance of
Designer can lead to errors, since both instances will share the same runtime configuration
and will communicate to the same server.

6. Click Finish.

After adding the server, you must configure it for your Application Platform projects.

For more information about configuring Integration Server, see “Configuring Integration Server
for Application Platform Projects” on page 47.

Creating a Server Definition
After you configure a runtime environment, youmust create a server definition in order to publish
projects. Application Platform supports webMethods Integration Server.

When you have a runtime environment and a server configuration, you will be able to manage
the development server in Application Platform. For information about using the server tools, see
theWeb Tools Platform User Guide in Software AG Designer Online Help.

Note:
As prompted during the server installation, SoftwareAG recommends that you install the server
as an application, as opposed to a service. When you start a server as a service, the server does
not run in debug mode. This prevents Designer from remotely debugging the server instance.

For information about the issues, related to installing a server as a service, see “Considerations
When Publishing Projects to Servers” on page 107.

webMethods Application Platform User’s Guide 10.11 19

2 Developing with Application Platform in Designer

Creating an Integration Server Definition

This section describes the steps for creating an Integration Server definition inApplication Platform.

To create an Integration Server definition

1. Go to the Servers view at the bottom of the App Platform perspective.

2. Click the link for creating a new server or right-click anywhere in the Servers view, selectNew,
and click Server.

3. In the Define a New Server page of the New Server dialog box, specify values in the provided
fields.

The following table describes what you have to specify for each setting.

SpecifyFor this setting

The type of server to be added. For Integration Server selectwebMethods
Integration Server under the Software AG directory.

Select the server
type

The host name or address of the Integration Server, towhich you publish
projects. If you have created a runtime with a local Integration Server,
keep the value of this field to localhost.

Server’s host
name

Default: localhost

The name of the Integration Server, to which you publish projects.Server name

Default: webMethods Integration Server at host_name

The server runtime environment to be used by the Integration Server.
All server runtime environments that you have added for Application
Platform are listed here.

Server runtime
environment

4. Click Next.

5. If you have changed the server properties during installation, specify the values for the provided
settings. Otherwise, keep the default values.

The following table describes what you have to specify for each setting.

SpecifyFor this setting

The instance name of the Integration Server on the specified address.
Integration Server allows multiple instances on the same machine. The
default value of this field is default.

Instance name for
Integration Server

The port number of the primary port of Integration Server.Server Port

20 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

SpecifyFor this setting

Default: 5555

The port number that is used by Integration Server when you debug an
Application Platform project in Designer.

Server Debug Port

Default: 9191

The port number that is used formonitoring Integration Server remotely
using a JMX agent.

Server JMX RMI
Port

Default: 8075

The connection mode to be used when connecting to the Integration
Server. The following modes are available:

Server Connection
Mode

Debug - Default. This mode depends on your runtime environment,
as follows:

If you have configured a runtime environment with a local
Integration Server, Designer will automatically start debugging
the servers in the Servers view. For example, if you restart
Designer, the server instance in the Servers view will
automatically start debugging.

If you have configured a runtime environment with a remote
Integration Server, youmust start the server in debugmode from
the machine, where the server is installed.

No Action - In this mode Designer will not synchronize the state of
the Servers view with the server. If Designer is started and a server
is running, the Servers view will indicate the server is stopped. In
this case you must execute the Start or Debug action in the Servers
view. Additionally, if the status of the server changes while Designer
is still running, the change will not be indicated in Designer.

Run - In this mode Designer will automatically set the server status
to “started” and youwill not be able to debug applications remotely,
while Designer is connected to the server.

6. Click Next.

7. To add the projects that you want to configure on the server, select the name of a project in
the Available field and click Add.

8. Click Finish.

webMethods Application Platform User’s Guide 10.11 21

2 Developing with Application Platform in Designer

Configuring a Server for Publishing Bundles
If you want to publish your Application Platform projects to Integration Server, you must ensure
a functional environment for publishing bundles to the server. Verify that the SoftwareAGRuntime
component is available for Integration Server .

For detailed steps, see “Verifying That Software AG Runtime Is Available” on page 22.

Verifying That Software AG Runtime Is Available

Application Platform uses a Software AG Common Platform component called Software AG
Runtime. This component is enabled by default after installing Application Platform.

Software AG Runtime uses the following default ports for Integration Server:

HTTP: 8072

HTTPS: 8074

To verify that Software AG Runtime is available after you install Application Platform

1. Depending on the server type you are using, start the Integration Server instance.

2. In a web browser enter http://localhost:8072.

If you can successfully load the server log-on page, this indicates that Software AG Runtime
is available.

Performing Optional Configurations
This section describes optional configurations, which you can perform after installingApplication
Platform.

Disabling Natural Language Support (NLS) Warnings in Designer

Designer produces warning messages for localized messages (NLS messages). NLS warning
messages do not indicate installation problems, but that a localized message is not used. NLS
warning messages are in the following format:
Warning: NLS unused message: {resource key} in: {file reference}

Displaying such messages can lead to situations when too many log messages are generated.

To disable the generation of NLS messages

1. Go to the Software AG_directory \Designer\eclipse directory and open the eclipse.ini file in
a text editor.

22 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

2. Add the following property at the end of the file: -Dosgi.nls.warnings=ignore.

Note:
You can also add this property to the server configuration file, located here:
Software AG_directory \profiles\server_default\configuration\config.ini. Make sure
you restart the server when you update server configurations.

3. Save the file.

Enabling the OSGi Console

If you are familiar with OSGi, or you want to expand your knowledge about it, you can use the
OSGi console while working with Application Platform. The OSGi console can be useful for
troubleshooting. It is available in the Terminal view of Designer. However, in order to use the
Terminal view in the App Platform perspective, you must first enable the OSGi console.

CAUTION:
The OSGi console uses unsecured telnet. Make sure that the OSGi console is disabled on
production systems.

To enable the OSGi Console

1. Go to the Software AG_directory \profiles\IS_default\configuration\config.ini directory
and open the config.ini file in a text editor.

2. In the config.ini file, enter osgi.console=[port_number]. Save the file.

Specify an unused value for the port number.

3. If the Integration Server server is running, stop and restart the server to apply the changes.

4. In Designer, configure the Terminal view to connect to the port specified in step 2.

5. Open the Terminal view and press Enter.

An osgi> prompt appears.

6. To view the OSGi console help, type help in the console.

About the Application Platform Perspective

Designer uses perspectives to organize a set of editors and views in the workbench, which are
provided for specific development tasks. Application Platformprovides the customApp Platform
perspective for developing Application Platform projects. The App Platform perspective contains
a collection of default views. Many of the views in the App Platform perspective are core Eclipse
components. For information about the Eclipse views, see the Eclipse documentation at http://
help.eclipse.org.

webMethods Application Platform User’s Guide 10.11 23

2 Developing with Application Platform in Designer

http://help.eclipse.org
http://help.eclipse.org

Note:
You can customize the App Platform perspective by using core Eclipse tooling. To return to the
default state of the perspective click the App Platform button, and then click Reset.

Application Platform Designer Views
The default layout of the App Platform perspective contains the following views:

Project Explorer. Access projects.

Package Explorer.Display the Java element hierarchy of the Java projects in your workbench.

Main Code Editor. Edit selected resources.

Outline. Display an outline of the current resource in the code editor window.

Note:
Not every resource will have content in the Outline view.

Properties. Display properties of the current resource in the active view.

Note:
Not every resource will have content in the Properties view.

Servers. Start or stop the server and to publish or unpublish Application Platform projects.

Problems. Resolve errors, such as compilation errors in project source files.

Javadoc. Display Javadoc source documentation for the selected Java source file in the code
editor window.

Console. Display content, written to the system IO streams, stdout and stderr, or read from
the process input, stdin.

Error Log. Display messages, written to the Designer’s log file, which is located here:
workspace_directory/.metadata/.log.

Bundle Publisher. Publish additional bundles to the server, or to unpublish bundles from the
server.

For more information, see “Configuring Bundle Publisher View” on page 76.

Bundle Manager. Create or delete wrapper bundles that wrap non-OSGi jars.

For more information, see “Configuring Bundle Manager View” on page 77.

Terminal. Open a telnet connection to the OSGi console of the server profile.

Note:
This view requires additional configuration.

For information about configuring the OSGi console, see “Enabling the OSGi Console” on
page 23.

24 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

For more information about the different views, see theWorkbench User Guide in Software AG
Designer Online Help.

Application Platform Context Menu
Application Platform has its own context menu for executing wizards and utilities. The tools in
the menu are divided in the following categories:

Core Tools. These tools are available regardless of the server product used. TheCreate Project
Bundle and the Create Bnd template menu items are listed here.

Product-Specific Tools. These tools are available for specific server products. For example,
the product-specific tools for Integration Server are located in the IS Tools submenu.

Creating Project Bundles

You can createOSGi bundles for yourApplication Platformprojects from theApp Platform context
menu. The new bundles are located in an artifacts folder, which resides in the current Designer
workspace. For example, if you are creating a bundle for a project named MyJavaProject, it will
be created in the following location:

workspace_directory/.metadata/.plugins/com.softwareag.ide.eclipse.pld.bundle.builder.ui/
MyJavaProject/artifacts/.

Note:
You can create project bundles as a diagnostic tool without defining a server configuration and
publishing your project to a server. It is not required to publish bundles to a server.

To create a project bundle

1. Go to the Package Explorer view and right-click the required project.

2. Select the App Platform context menu and click Create Project Bundle.

Creating and Customizing Bundle Tool Templates for Projects

You can create Bundle Tool (Bnd) template files for your Application Platform projects. The Bnd
template files are located in the src/main/resources/OSGI-OPT directory. Bnd template files are
useful when the default manifest file produced during bundle creation requires additional
customization.

For information about Bnd templates in Application Platform, see “Bundle Tool Templates for
Projects” on page 34.

For information about the syntax and supported options of Bnd templates, see https://
bnd.bndtools.org/.

Important:

webMethods Application Platform User’s Guide 10.11 25

2 Developing with Application Platform in Designer

https://bnd.bndtools.org/
https://bnd.bndtools.org/

Make sure that all Java package names in your Application Platform web project begin with a
lowercase character. If the name of a package begins with an uppercase character, the Asset
Build Environment does not move the package to the WEB-INF\classes directory when you
build your project and the package is not available at runtime.

To create and customize a Bnd template for a project

1. Go to the Package Explorer view and right-click the required project.

2. Select the App Platform context menu and click Create Bnd template.

3. Go to the Package Explorer view and double-click the Bnd template file, located here:
project_name/src/main/resources/OSGI-OPT/bnd.bnd.

Designer loads the bnd.bnd file.

4. Edit the bnd.bnd file by adding the required custom values.

5. Save the bnd.bnd file.

About Creating Application Platform Projects

Application Platform includes two project wizards in the App Platform perspective. The wizards
create projects that meet the requirements for publishing projects to the server.

Web Project. Create servlet-based projects.

Java Project. Create all other projects.

You can use other project wizards for developing Application Platform projects. To do this, you
must first select additional Application Platform project facets.

For more information about using other project wizards for developing Application Platform
projects, see “Configuring a Designer Project for Application Platform ” on page 35.

Selecting Project Facets
Application Platform project wizards utilize project facets to capture additional configuration
required for publishing projects to the server. In the Project Facets wizard page you can view a
list of all project facets registered inDesigner.When you select a project facet, it performs validation
for its specific requirements. For example, youmust first select the Application PlatformCore and
Java facets before selecting any other Application Platform facets.

Note:
Some project facets have their own wizard pages that supports additional configuration. The
order and number ofwizard pages displayed inDesignerwill vary based on the selected project
facets.

26 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

To select Application Platform project facets

1. In the Project Explorer view of the App Platform perspective, right-click your project and then
click Properties.

2. In the Properties dialog box click Project Facets.

Designer lists the available facets for the selected project, together with the facet version
numbers.

3. Select the check boxes next to the facets you want to add to your project.

4. Click Apply, and then click OK.

Selecting an Application Platform Runtime Environment
Before you publish your project to the server, you must select a server runtime environment.

To select the server runtime

1. In Designer, go to the Project Explorer or Package Explorer view and right-click your project.

2. Click Properties.

3. In the Properties dialog box click Targeted Runtimes.

4. Select the check box next to the required runtime environment.

All runtime environments that you have created for Application Platform are listed here.

For detailed steps for creating a runtime environment, see “Adding a Server Runtime
Environment” on page 18.

5. Click Apply, and then click OK.

Creating Java Projects
The App Platform perspective has its own Java Project wizard, which is different from the Java
Project wizard of the Java perspective. You can use the Java Project wizard for creating application
components that do not require servlet support.

To create a Java project in Application Platform

1. In Designer, go to File menu and select New.

webMethods Application Platform User’s Guide 10.11 27

2 Developing with Application Platform in Designer

Designer displays a context menu with all available wizards. The upper section lists the
Application Platform wizards.

2. In the upper section of the context menu, click Java Project.

3. Specify the settings on the App Platform Core Service Template page.

The following table describes what you have to specify for each setting.

SpecifyFor this setting

The name of your Java project.Project name

Clear this check box if you want to specify a custom location for your
project. If you keep this check box selected, your project will be stored
in the default location.

Use default
location

Default: check box is selected

4. Click Next.

5. On the Project Facets page, select the Application Platform project and core Java project facets
required for your Java project.

The Java facet is the core project facet, which is required for Java projects.

6. Go to the Project Facet list, expandSoftwareAG Application Platform, and select Integration
Server Extensions.

7. Click Next.

8. Optionally, on the Java page, modify the project’s folder structure and default output folder.

Application Platform requires the Java source directory to follow theMaven 2 convention. The
Designer project wizard automatically updates the default directory of the Java facet from src
to src/main/java.

9. If you have selected Integration Server Extensions in step 6, click Next and continue to the
next step. Otherwise, click Finish.

10. On the App Platform IS Facet page, enter a source path in Generated Source Path.

This source path will be added to the Application Platform project’s classpath.

11. If the specified source path does not exist on the file system, select the Include Generated
Source Path check box.

Important:

28 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

If you are deploying the project to a project environment using Asset Build Environment
and Deployer, verify that the source path is src/main/java.

12. Click Finish.

Folder Structure of Java Projects

When you create a Java project, Application Platform creates a folder structure that contains the
following folder types:

Source Folders. The source folders contain the Java source files and unit test source code. The
location path of the source folders must follow the Maven convention to be compatible with
the Application Platform. The required location path structure for the source folders is src/
main/java.

Note:
If you add your unit tests in the source folders, they will be included in the project bundle
when you publish your project from Designer.

Config Folder. The src/main/config directory contains the property files with configuration
data to be passed to the server. When you publish your project bundle to the server, the files
in this directory are extracted from the bundle and installed to a common directory on the
server, which contains all configuration files for that server.

Formore information about configuring projects dynamically, see “Using the Project Dynamic
Configuration” on page 97.

Resource Folder. The resource folder contains all non-Java source files. Files and folders that
you define in this directory are included in the root directory path of the project bundle.

Lib Folder.The lib folder contains all non-OSGi jar files that youwant to include in the classpath
of your Application Platform project.

For detailed steps for including non-OSGi jar files in Application Platform projects, see
“Including Non-OSGi Jars in Projects” on page 35.

Creating Web Projects
The Web Project wizard enables you to create servlet-based application components. To create
web projects, you must configure the Application PlatformWeb facet.

To create a web project in Application Platform

1. In Designer, go to File menu and select New.

Designer displays a context menu with all available wizards. The upper section lists the
Application Platform wizards.

2. In the upper section of the context menu, click Web Project.

webMethods Application Platform User’s Guide 10.11 29

2 Developing with Application Platform in Designer

3. Enter a name for your web project.

4. On the App Platform Core Web UI Template page, specify the following:

a. In the Project name field, enter a name for your web project.

b. To create the project at the default location, select the Use default location check box.

c. To create the project at a different location, clear the Use default location check box and
browse to the location you require.

5. Click Next.

6. On the project facets page, expandSoftwareAG Application Platform and selectApplication
Platform Web.

7. Optionally, select other project facets and click Next.

8. Optionally, on the Java page, modify the project’s folder structure and default output folder.

9. Click Next.

10. On the App PlatformWeb Facet page, specify web context information in the Web Context
field.

By default, this field is populated with the name of your project.

Note:
When you build projects with Asset Build Environment in order to deploy them with
Deployer, you must define the web context with the Web-ContextPath: OSGi manifest
header property.

Formore information about defining theweb context, see “ConfiguringApplication Platform
Projects” on page 79.

11. To complete the web project configuration, click Finish.

Folder Structure of Web Projects

When you create a web project, Application Platform creates a folder structure for the project. The
folder structure contains all folder types, which are created for Java Projects.

For information about the folder types contained in Java Projects, see “Folder Structure of Java
Projects” on page 29.

Additionally, a src/main/webapp directory is created for web projects. Use this directory for
web-related content, such as HTML, JSP, JavaScript, and CSS.

30 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Creating a Dynamic Web Project for Integration Server
This section describes the steps you must execute to create a core Designer Dynamic Web Project
and configure it for Application Platform and Integration Server.

To create a Dynamic Web Project for Integration Server

1. In Designer, go to File menu and select New.

Designer displays a context menu with all available wizards.

2. In the lower section of the context menu, under the Web folder, click Dynamic Web Project.

3. Enter a name for your web project.

4. Under Project location, do one of the following:

a. To create the project at the default location, select the Use default location check box.

b. To create the project at a different location, clear the Use default location check box and
browse to the location you require.

5. Under Target runtime select Application Platform Integration Server.

6. Under Configuration select the App Platform Web Archive (WAR) Preset.

Important:
If you are deploying the project using Asset Build Environment and Deployer, you must
set the generated source directory to src/main/java.

7. To complete the web project configuration, click Finish.

Classpath Containers
The classpath containers are a collection of libraries, that you can add to the classpath of your
project. The following classpath containers are available for Application Platform:

Application Platform API Libraries - contains a Software Development Kit (SDK) with core
and server-specific features. By default, Designer automatically adds this classpath container
when you create an Application Platform project.

The Application Platform API Libraries container includes the following:

Application PlatformCore - the core annotations related to publishing POJOs as OSGi and
Integration Server services, for example @Service, @ServiceReference, and @ExposeToIS.

Application Platform IS - the Integration Server SDK bundles.

webMethods Application Platform User’s Guide 10.11 31

2 Developing with Application Platform in Designer

Third party bundles, provisioned for use with Software AG products.

Application Platform Shared Bundles - contains the shared bundles of Application Platform
for a project. You can configure a different set of shared bundles (or libraries) for each project.

Configuring the Application Platform API Libraries Container

Designer automatically adds the Application Platform API Libraries container to the build path
of every Application Platform project you create or import. By default, the Application Platform
API Libraries container initializes with the Integration Server profile, but contains only the
Application Platform Core libraries.

Selecting a profile doesn't require using server-specific libraries in your project. You can add only
the Application Platform Core library, or third-party features to the Application Platform API
Libraries container.

You can add the Application Platform API Libraries container to any project as a library
dependency. However, not all classes provided by this container work for all projects, created in
Designer. Some of the SDK functionality, like the service publishing annotation functionality, is
only available forApplication Platformprojects. Formore information, see theApplication Platform
API Guide.

To configure the Application Platform API Libraries container for your project:

1. In the Package Explorer view, right click the Application Platform API Libraries container for
your project and then click Build Path.

2. ClickRemove from Build Path. ApplicationPlatform removes the defaultApplicationPlatform
API Libraries container.

3. Right-click your project, and then click Build Path.

4. Click Add Libraries....

5. In the Add Library dialog box, select Application Platform API Libraries, and click Next.

6. Select the IS_default server profile, and click Next.

7. On theSDK Features List page, select the libraries to addwith the container and click Finish.

Adding Libraries to the Application Platform API Libraries Container

The default Application Platform API Libraries container has only the Application Platform Core
features. Use the following procedure to add more features, or individual libraries in a feature, to
the Application Platform API Libraries container that you configure for your project.

To add libraries to the Application Platform API Libraries container:

32 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

1. In the Package Explorer view, right click the Application Platform API Libraries container for
your project and then click Properties.

2. On the SDK Features List page, do one of the following:

Select the features to add to the Application Platform API Libraries container for your
project.

Expand a feature and select individual libraries to add to the Application Platform API
Libraries container for your project.

3. Click OK to confirm your selection.

Adding the Application Platform Shared Bundles Container

The Application Platform Shared Bundles container has a collection of libraries, which you can
add to the classpath of your project. You can use this container for shared bundle dependencies.
Each project can define its own classpath container for the Application Platform shared bundles
container. The classpath container enables you to specify the location of the shared bundles in
your file system.Make sure that you keep only validOSGi bundles in the shared bundles directory.
Any non-OSGi jars that are contained in the shared bundles directory will not be included in the
library entry.

Formore information about bundle dependencies, see “AboutManaging Project Dependencies” on
page 69.

To add the Application Platform Shared Bundles container

1. In Designer, go to the Package Explorer view, right-click your project, and select Build Path.

2. Click Add Libraries.

3. In the Add Library dialog box, select Application Platform Shared Bundles, and then
click Next.

4. In the Edit Variable Entry dialog box, specify values in the provided fields.

The following table describes what you have to specify for each field.

SpecifyIn this field

The name of the classpath variable. Keep the default value.Name

Default: BUILD_EXTERNAL_DIR

Note:
The BUILD_EXTERNAL_DIR variable points to the folder location that
contains your project’s external dependencies.

webMethods Application Platform User’s Guide 10.11 33

2 Developing with Application Platform in Designer

SpecifyIn this field

The file path to the shared bundles container in your local directory. To
specify the path, click Folder, navigate to the directory that contains the

Path

bundles, and clickOK. All bundles in the selected directorywill be added
to the classpath of your project.

When you specify a path here, you can select the folder structure under
that path.Make sure that the selected directories contain valid third-party
or external OSGi bundles that are added to the project as library
dependencies for compilation purposes. Note that the jars in the selected
directories are not included within the project bundle when it is built
and deployed to the configured server runtime.

The directories that you configure in this step are added in the project assetBuild.properties
file in the component.dependencies.external property. This value is used by the Asset Build
Environment when building assets to resolve the external dependencies used by the project.
The equivalent property in the Asset Build Environment that points to the global external
build directory is called build.external.dir and is configured in the master build properties
file of the Asset Build Environment.

Formore information about the assetBuild.propertiesfile, see “Application PlatformProject
Configuration for Asset Build Environment ” on page 95.

5. In the Edit Variable Entry dialog box, click OK.

6. Click Finish.

The bundles that are located in the selected directories relative to the BUILD_EXTERNAL_DIR
folder value are listed as library dependencies for the project.

If you add, remove, or change bundles in your local directory, refresh your project and build it to
ensure that the classpath of your project is updated.

Important:
If you update the BUILD_EXTERNAL_DIR classpath variable to a different location on the file system,
youmust also update the projects that use this shared classpath container and select the correct
folder(s) that contain the libraries to be added to the classpath.

Bundle Tool Templates for Projects
When you publish a project to a server, anOSGi-compliantmanifest file is automatically generated
for the project in the src/main/resources/META-INF directory. Thismanifest contains default values
for theminimal set of requiredOSGi headers. If you need additional values, youmust dynamically
customize the manifest file. For this purpose, you must create a Bnd template file for your project
and include it in your project’s source control.When you create a Bnd template, the default template
is added in the src/main/resources/OSGI-OPT directory of your project. You can customize the
default Bnd templatewith a text editor.When yourApplication Platformproject directory contains
a Bnd template, the contents of the projectmanifest file are dynamically updatedwith the contents

34 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

of the template every time you publish the project. If no Bnd template exists for a project,
Application Platform uses the default contents of the manifest file when you publish the project.

For information about how to create a Bnd template and add values to it, see “Creating and
Customizing Bundle Tool Templates for Projects” on page 25.

Note:
Use different package names for different projects, because Application Platform exports all
packages by default. When you are working on more than one project, Application Platform
may export the same package and version to different bundles. In such cases you can use split
packages to avoid runtime errors.

Including Non-OSGi Jars in Projects
You can include libraries in your project’s lib folder. The libraries that you add in this folder will
be included in the classpath of your project bundle. In this way you can include non-OSGi jars in
your project bundle’s classpath. The jars you add in the lib folder will be available only to your
project’s classes. To include non-OSGi jars in your project, navigate to your project’s lib folder and
add the files you require in it.

For example, if you add the jfind.jar in the lib folder, the generated project bundle will contain
the jfind.jar and the OSGi Bnd template will contain the following header attribute:
Bundle-ClassPath: .,lib/jfind.jar. The OSGi container will include the classes of your jar file
in your project bundle’s classpath when you publish the bundle. However, the packages of the
jar file will not be exported and will be resolved only by classes inside the bundle.

For more information, see “About Managing Project Dependencies” on page 69.

Configuring a Designer Project for Application Platform

This section describes the steps you must execute, for the most common cases, in order to import
a Designer project that was not created with an Application Platform project wizard.

Note:
You can safely change the selected Application Platform project facets for a project. No files are
deleted when you uninstall one of the project facets.

Configuring an Application Platform Java Project
This section describes the steps you must execute for a project that was created in Designer using
the basic Java Project wizard from the Java perspective.

To configure an Application Platform Java Project

1. In Designer, go to the Package Explorer or Project Explorer view, right-click your project, and
then click Properties.

2. In the Properties dialog box click Project Facets, and then click Convert to faceted form....

webMethods Application Platform User’s Guide 10.11 35

2 Developing with Application Platform in Designer

3. Verify that the Java project facet for the appropriate version is selected.

4. Expand SoftwareAG Application Platform and select Application Platform Core.

5. Optional. Select Integration Server Extensions.

You need this project facet if you are using the IS Service wizard.

6. Optional. Click Further configuration available to provide additional configuration.

For information about the additional configuration, see “Creating Java Projects” on page 27.

7. After you are done with the configurations in the Properties dialog box, click OK.

8. Verify that the following modifications on your project are successfully executed:

a. The source code folder ismoved from src to /src/main/java and it is selected in the project's
Build Paths dialog box.

b. A src/main/resources folder is created and it is selected in the project’s
assetBuild.properties file.

c. A /lib folder is created.

d. A src/main/config folder is created.

Configuring an Application Platform Dynamic Web Project
This section covers the steps you must execute for a servlet-based project that was created using
the Dynamic Web Project.

To configure an Application Platform Dynamic Web Project

1. Go to the settings folder in the project’s directory in the workspace of Designer.

2. Open org.eclipse.wst.common.project.facet.core.xml in a text editor.

3. Remove the fixed element for the jst.web facet and save the file.

4. Go to the Package Explorer or Project Explorer view, right-click your project and clickRefresh.

5. Right-click your project again and click Properties.

6. Click Project Facets.

7. Verify that the Java project facet for the appropriate version is selected.

36 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

8. Clear the Dynamic Web Module check box.

9. Expand SoftwareAG Application Platform and select Application Platform Core and
Application Platform Web.

10. Optional. Select Integration Server Extensions.

You need this project facet if you are using the IS Service wizard.

11. Optional. Click Further configuration available… to provide additional configuration.

12. After you are done with the configurations in the Properties dialog box, click OK.

13. Verify that the following modifications on your project are successfully executed:

a. The source code folder ismoved from /src to /src/main/java and is selected in the project's
Build Paths dialog box.

b. A /lib folder is created.

c. An src/main/config folder is created.

d. An src/main/webapp/WEB-INF folder is created.

14. In Designer, move the project’s servlet content, for example JSP, CSS, JavaScript, or HTML,
from its current location to src/main/webapp/.

For example, if the images of the servlet-based project are located in the C:\WebContent\images\
directory, you should move the images folder to C:\src\main\webapp\images\.

About Developing Web Applications for Integration Server

Application Platform provides the WmAppPlat package, which enables you to develop new web
and service applications and create IS services in your projects. You can then deploy these
Application Platform applications to Integration Server. The WmAppPlat package supports the
webMethods tag library for JSP, which was formerly supported by the WmTomcat package.

For more information about invoking IS services and the webMethods tag library for JSP, see
Getting Started with the Application Platform API.

The WmAppPlat package is installed together with Application Platform Server. Before you start
developingApplication Platform applications for Integration Server, add theWmAppPlat package
to the required Integration Server instance and verify that the package is loadedwithout any errors
or warnings. For more information about the WmAppPlat package and updating packages in
Integration Server, see webMethods Integration Server Administrator’s Guide.

webMethods Application Platform User’s Guide 10.11 37

2 Developing with Application Platform in Designer

You canmigrate existingweb applications, developed using theWmTomcat package toApplication
Platform. For information about migrating web applications to Application Platform, see Using
Software AG Update Manager.

Processing Web Applications in Application Platform
Application Platform supports Tomcat requests through theWmAppPlat package. By default, the
WmAppPlat package is installed with Application Platform. The WmAppPlat package uses
Software AG Runtime. Application Platform processes Tomcat requests as follows:

1. The user sends a request to an HTTP port listener hosted by Tomcat that runs in an OSGi
container on Software AG Runtime.

2. The HTTP port listener receives and processes the user request.

3. If the JSP page contains a webm custom tag, theApplication Platform fragment bundle processes
the request and parses and provides the tag attributes to anotherApplication Platform bundle,
responsible for processing IS service invocations.

4. The Application Platform bundle sends the parsed tag attributes to the IS core bundle.

5. The IS core bundle creates a bridge between the OSGi bundles and the Integration Server
classloader and sends the IS service invocations to the Integration Server service manager.

6. The WmAppPlat package processes all webm tag declarations through a tag processor using a
collection of IS services.

7. The tag processor directly invokes the service requests to the Integration Server reporting
engine.

8. The Integration Server reporting engine returns the results of the service requests back to the
tag processor.

9. The HTTP response is sent back through the Integration Server classloader and the OSGi
container layers to the Application Platform web.is fragment bundle.

10. The Application Platform web.is fragment bundle sends the response content to the Tomcat
catalina response stream.

11. The Tomcat connector returns the response to the user.

The following diagram visualizes this workflow:

38 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Administering Web Applications
In Application Platform you can administer web applications in the following ways:

Production Deployment

When you deploy your web applications to a production environment, use the Asset Build
Environment and Deployer. For more information, see “About Deploying Projects” on page 94.

Tomcat Manager Application

webMethods Application Platform User’s Guide 10.11 39

2 Developing with Application Platform in Designer

If you have Apache Tomcat and you want to use the Tomcat Manager Application in Application
Platform, you must install it under Software AG_directory
/profiles/IS_instance/workspace/webapps/directory. Formore information, see theApache Tomcat
documentation.

After you install the Tomcat Manager Application, Software AG recommends that you remove
the security constraints that the application provides from the web.xml configuration file and
replace them with the security constraints that the Application Platform META-INF/context.xml
configuration file provides.

JMX

Application Platform supports Java Management Extensions (JMX). It is registered under the
Catalina root domain Mbean. You can view the JMX attributes of your WAR projects deployed to
Integration Server in the Properties view of Designer.

Class Loading in WmAppPlat
The following diagram displays how classes are loaded for web applications, running on
WmAppPlat. From top to bottom, the OSGi host bundle (org.apache.catalina) is extended by a set
of fragment bundles, including the pls-web-is bundle, which are parent to the Tomcat
WebAppClassLoader, which is parent to your web applications.

The following table describes each classloader:

DescriptionClassloader

This classloader is created for the org.apache.catalina bundle.OSGi host bundle

40 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

DescriptionClassloader

A composite set of fragment bundles extends the complete
classpath of the OSGi host bundle. The pls-web-is bundle is
part of this bundle set.

fragment bundles

This classloader is parent to the deployed web applications.org.apache.catalina.loader.

WebappClassLoader

Each web application has its own classloader, which resolves
resources in its context.

webappN

Fragment bundles have the following declaration in the manifest.mf file: Fragment-Host:
org.apache.catalina. You can share third-party libraries across yourweb applications by creating
awrapper bundlewith this declaration. This will ensure that any code that is executed in theOSGi
host bundle or any fragment bundle will have access to the package imports and exports.

For information about the manifest.mf file, see “Manifests and Bnd Templates for Software AG
Common Platform” on page 63.

For information about creating wrapper bundles, see “Creating Wrapper Bundles” on page 73.

Developing Web Archive (WAR) Projects

You can use webMethods Application Platform to develop traditional Java servlet Web Archive
(WAR) projects. You can deploy the WAR applications you build with Application Platform to
Apache Tomcat servlet container.

For more information about developing traditionalWAR applications, see Oracle documentation.

Developing Web Application Bundle (WAB) Projects

You can usewebMethodsApplication Platform to developWebApplication Bundle (WAB) projects.
While the WAB projects you develop are servlet applications, they are in essence OSGi bundle
jars.

About Adding Single Sign-on Authentication in Application
Platform Projects

Application Platform enables you to set up security configurations to your servlet-based web
applications. Depending on your project and requirements, you can use the available security
filter, class, or annotation in your Application Platform projects. The class and the annotation are
available in the Application Platform API Libraries classpath container. For more information
about theApplication PlatformAPI Libraries container, see “Configuring theApplication Platform
API Libraries Container” on page 32.

You can enable SSO authentication and authorization in your Application Platform projects by
adding SSO:

webMethods Application Platform User’s Guide 10.11 41

2 Developing with Application Platform in Designer

To the web application layer of an Application Platform web project by using the standard
Java EE approach of configuring a security filter in the web.xml file, which is the deployment
descriptor of your project. With the security filter you can add a SSO functionality to your web
applications.

To the OSGi service layer of an Application Platform Java or web project. You can implement
SSO to OSGi services that are:

Exposed as Integration Server (IS) services and invoked through HTTP(S) calls.

Exposed as POJO OSGi services.

Invoked from the Application Platform web layer. This layer consists of web applications
that run on Tomcat and are deployed to Integration Server via HTTP(S).

For detailed information about the security filter, class, and annotation you can use for adding
SSO, see Getting Started with the webMethods Application Platform API.

Securing Web Application Bundle (WAB) Projects
The following procedure describes the steps youmust execute to secure the web application layer
of WAB projects by using the web security filter. This function is available only for Application
Platform web projects.

To secure the web application layer of your Application PlatformWAB project

1. In Designer, go to the Project Explorer or Package Explorer and right-click your project.

2. Double-click the web.xml file, located here: project_name/WebContent/WEB-INF/web.xml.

3. Edit the web.xml file by adding the following entry:
com.softwareag.applatform.pls.security.filter.AppPlatformSecurityFilterConfigure the
filter by specifying one or more of its parameters.

For information about the security filter and its parameters, see Getting Started with the
Application Platform API.

4. Optional. If the project does not have a Bnd template:

a. Go to the Project Explorer or Package Explorer and select App Platform.

b. Click Create Bnd template.

5. Optional. If your project is deployed to Integration Server, edit the Require-Bundle key from
the bnd.bnd file by adding the following entry:

com.softwareag.applatform.pls.security, com.softwareag.applatform.
pls.security.is

42 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

The com.softwareag.applatform.pls.security entry is a security bundle, which ensures that the SSO
support can be enabled for this POJO service and resolves the AppPlatformSecurityFilter class.

6. Optional. If you are configuring an Application Platform project created in version 9.9 or
earlier, redeploy your project to a runtime, configured in a later release of Application Platform
than version 9.9.

Securing Web Archive (WAR) Projects
The following procedure describes the steps youmust execute to secure the web application layer
of WAR projects by using security constraints. This function is available only for Application
Platform web projects.

Note:
You can also secureWAR projects by using the annotations, provided by Application Platform.
For information about using annotations, see “Securing the OSGi Service Layer” on page 44.

To secure the web application layer of your Application PlatformWAR project

1. In Designer, go to the Project Explorer or Package Explorer and right-click your project.

2. Double-click the web.xml file, located here: project_name/WebContent/WEB-INF/web.xml.

3. Edit the web.xml file by adding the required security constraints.

For information about the security constraints, see Getting Started with the Application Platform
API.

4. Optional. If the project does not have a Bnd template:

a. Go to the Project Explorer or Package Explorer and select App Platform.

b. Click Create Bnd template.

5. Optional. If your project is deployed to Integration Server, edit the Require-Bundle key from
the bnd.bnd file by adding the following entry:

com.softwareag.applatform.pls.security, com.softwareag.applatform.
pls.security.is

The com.softwareag.applatform.pls.security entry is a security bundle, which ensures that the SSO
support can be enabled for this POJO service and resolves the AppPlatformSecurityFilter class.

6. Optional. If you are configuring an Application Platform project created in version 9.9 or
earlier, redeploy your project to a runtime, configured in a later release of Application Platform
than version 9.9.

webMethods Application Platform User’s Guide 10.11 43

2 Developing with Application Platform in Designer

Securing the OSGi Service Layer
The following procedure describes the steps youmust execute in order to secure the OSGi service
layer of your Application Platform Java or web project.

To Secure the OSGi Service Layer of your Application Platform project

1. In Designer, go to the Project Explorer or Package Explorer and right-click your project.

2. Create the required Java class to be published as an OSGi service.

For information about creating classes, see the Software AG Designer Online Help.

3. Add the @Service annotation to the class, created in step 2.

4. Add the @Secure annotation to the class, created in step 2.

5. Optional. To enable declarative security, add the @AclAllowed annotation at the class or
method level to define an Access Control List (ACL) parameter.

6. Optional. To enable dynamic runtime security, associate the class, created in step 2 with the
SecurityContext class.

For information about the SecurityContext class, seeGetting Started with the webMethods Application
Platform API.

7. Optional. If the project does not have a Bnd template:

a. Go to the Project Explorer or Package Explorer and select App Platform.

b. Click Create Bnd template.

8. Double-click the Bnd template file, located here:
project_name/src/main/resources/OSGI-OPT/bnd.bnd.

9. Edit the bnd.bnd file by adding the following entry:

Require-Bundle:com.softwareag.applatform.pls.security

Note:
This entry is a security bundle, which ensures that the SSO support can be enabled for this
POJO service.

Important:
If your Application Platform project was created in version 9.8 and you are using a custom
MANIFEST.MF file instead of a bnd.bnd file, you must add the entry to the MANIFEST.MF
file.

44 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

10. Optional. If you are configuring an Application Platform project created in version 9.9 or
before, redeploy your project to a runtime, configured in a later release of Application Platform
than version 9.9.

About the Application Platform Integration Test Framework

Application Platform enables you to write regular JUnit tests for your projects and execute them
in Designer. When you execute a test, Designer provides you with immediate feedback for the
test run.

TheApplication Platform integration test framework uses the samedevelopment-time deployment
mechanism to publish the test project bundle to the server and to execute the test class and its
methods on the server. Application Platform publishes and executes the tests through a JMX call
on a JMXMBean service on the configured runtime. The core project code and the JUnit tests run
in the same OSGi environment and access the same libraries and Application Programming
Interfaces (API). The JUnit test code can use the deployed project POJO instances and other OSGi
services that are available in the container, without mocking or stubbing any interactions.

Note:
If required, your test can still mock certain method calls by using the available Mockito bundle
in the runtime.

You can develop JUnit tests by using the custom JUnit classes, provided by Application Platform.

For information about developing JUnit tests for Application Platform projects, see the Getting
Started with the webMethods Application Platform API.

Creating a JUnit Test for an Application Platform Project
Before you start developing JUnit tests for an Application Platform project, verify the following
conditions:

1. The Application Platform project you are testing exists.

2. Integration Server is configured for this project.

3. The project is successfully published to the configured server.

When you develop JUnit tests for your Application Platform projects, you must use the dedicated
classes, available in the Application Platform API Libraries container.

For information about the Application Platform API Libraries container, see “Configuring the
Application Platform API Libraries Container” on page 32.

For information about the classes, provided for theApplication Platform integration test framework,
see the Getting Started with the webMethods Application Platform API.

To create a JUnit test for an Application Platform project

1. In Designer, go to the Project Explorer or Package Explorer view and right-click your project.

webMethods Application Platform User’s Guide 10.11 45

2 Developing with Application Platform in Designer

2. Create a source folder for your JUnit tests.

For example, src/test/java.

For information about creating source folders, see the Software AG Designer Online Help.

3. Optional. Create a source folder for your JUnit test resources.

For example, src/test/resources.

4. Associate your JUnit test with theApplication Platform integration test framework. Depending
on the type of your JUnit test, do one of the following:

If your JUnit test does not extend from another class, create a new package and add a new
test class, which extends from the
com.softwareag.applatform.sdk.test.framework.AppPlatformIntegrationTest class. For information about
creating packages and classes, see the Software AG Designer Online Help.

If your JUnit test already extends from another class and cannot use the
AppPlatformIntegrationTest class as its superclass, add the class type annotation@RunWith from
the com.softwareag.applatform.sdk.test.framework.IntegrationTestRunner class. This will ensure that
the custom Application Platform JUnit runner is responsible for running your test.

5. Add the @TestBundle annotation to the test class, created in step 4, and do the following:

a. Specify the bundle symbolicName property.

b. If you have specified a version for your project, different from 1.0.0, update the value of
the version property with the correct project version.

6. Add one or more JUnit test methods and annotate them with the @Test method.

7. Optional. Specify the details of the configured server by using the @RunOnServer annotation.

Executing a JUnit Test for an Application Platform Project
You can execute your JUnit tests in Designer. When you execute JUnit tests, Designer publishes
them to the server, together with the core Application Platform project code.

To execute JUnit tests for an Application Platform project

1. In Designer, go to the Project Explorer or Package Explorer view and expand the project, where
your JUnit test is located.

2. Locate and select your JUnit test.

3. Go to Run menu and select Run As.

46 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

4. Click JUnit Test.

Designer reports the success and failure messages from the JUnit test in the JUnit view and in
the Console view.

Managing Servers

This section describes tasks for configuring Application Platform servers. Server management in
Application Platform is based on the Eclipse Server Tools Project. For information about the server
tools, see theWeb Tools Platform Guide in Designer's Help Contents.

Configuring Integration Server for Application Platform Projects
Use the following procedure to configure an Integration Server for your Application Platform
projects.

Important:
Always stop the server before changing its configurations. Otherwise, unpredictable results
may occur.

To configure an Integration Server for an Application Platform project

1. In Designer, go to the Servers view and double-click the Integration Server you want to
configure.

2. In the General Information section, specify values in the provided fields.

The following table describes what you have to specify for each field.

SpecifyIn this field

The name of the Integration Server, to which you publish projects.Server name

Default: webMethods Integration Server at host_name .

The host name or address of the Integration Server, towhich you publish
projects. If you have created a runtime with a local Integration Server,
keep the value of this field to localhost.

Host name

Default: localhost.

3. Select a Runtime Environment.

Note:
The runtime environment includes an absolute directory path to the Application Platform
installation, togetherwith the relative paths to the platform bundles that represent the server
libraries available in your project’s classpath. Designer uses this absolute path to locate the
server profile when you attempt to start or stop the server.

webMethods Application Platform User’s Guide 10.11 47

2 Developing with Application Platform in Designer

4. To edit the settings used when Designer executes operating system scripts that start or stop
the server, click the Open Launch Configuration link.

For information about the launch configuration properties, see “Configuring Launch
Configuration Settings for Integration Server ” on page 50.

5. After you complete the launch configuration, click OK.

6. In the Publishing section, select one of the provided publishing settings.

The following table describes the options you can select.

ToSelect this option

Default. If you select this option, you must publish your project to the
server manually.

Never publish
automatically

If you select this option, your projects will be published automatically
with a predefined time interval, in seconds, every time you update a
project resource. You can configure the time interval of this setting.

Automatically
publish when
resources change

Default: 15

Note:
This option requires a lot of resources.

If you select this option, your projects will be published automatically
after any project build event (for example clean, full, or incremental
project build).

Automatically
publish when
resources change

Note:
This option requires a lot of resources.

7. In the Server Properties section, specify values in the provided fields.

The following table describes what you have to specify for each setting.

SpecifyFor this setting

This field matches the instance name of Integration Server.Instance name for
Integration Server

Default: default

The HTTP port for the configured Integration Server. This port is used
to verify the server startup sequence. Based on the port number you

Server Port

configure here, Designer uses the corresponding default user credentials
to connect to Integration Server.

Important:

48 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

SpecifyFor this setting

If you change the user credentials in Integration Server, youmust also
update them in Designer.

For information about editing the credentials used by Designer, see
“Editing the Credentials Used for Connecting to Integration Server ” on
page 56.

Default: 5555

The Java Platform Debugger Architecture (JPDA) debugger port
configured for the JVM that Integration Server uses. The port value is

Server Debug Port

sent to the startup scriptswhen Integration Server is started byDesigner.
During the server startup sequence if Designer cannot connect to the
configured debugger port, the server still starts. However, any
breakpoints will be ignored. For more information about JPDA, see the
Oracle documentation.

Default: 9191

The JavaManagement Extensions Remote Method Invocation port used
to execute a service for publishing bundles to the OSGi container. This

Server JMX RMI
Port

port number is configured in Integration Server in a property file, located
in the Software AG_directory \
profiles\Instance_Name_for_Integration_Server\configuration\
com.softwareag.platform.config.propsloader directory.

For more information about the server configuration, see “
Software AG Servers” on page 14. For more information about JMX, see
the Oracle documentation.

Note:
If the port number is in use while installing Application Platform, the
port number may change in the server configuration. If you are
uncertain of the server state, use an operating system utility to see if
the JMX port is in LISTEN mode.

Note:
The default value matches JMX RMI port value, configured in
Integration Server.

Default: 8075

Select an option for synchronizing the Servers view with the state of the
external servers when you start Designer, or when a server is stopped
or started outside of Designer. This list box has the following options:

Server Connection
Mode

Debug - Default. If you select Debug, Designer will automatically
start debugging the servers in the Servers view. For example, if you

webMethods Application Platform User’s Guide 10.11 49

2 Developing with Application Platform in Designer

SpecifyFor this setting

restart Designer, the server instance in the Servers view will
automatically start debugging.

No Action - If you select No Action, Designer will not synchronize
the state of the Servers view with the server. If Designer is started
and a server is running, its Servers view will indicate the server is
stopped. In this case you must execute the Start or Debug action in
the Servers view. Also, if the server status changes while Designer
is still running, the change will not be indicated in Designer.

Run - If you select Run, Designer will automatically set the server
status to started and you will not be able to debug applications
remotely, while Designer is connected to the server.

Note:
Since the server states are synchronized with a polling mechanism,
there may be a short delay when the Servers view is updated.

8. In the Timeouts section, specify values in the following fields:

The following table describes what you have to specify for each field.

SpecifyIn this field

Configure how long Designer should wait for the server to start before
assuming failure. If the timeout is exceeded, youwill see an errormessage
in Designer.

Start

For more information, see “Server Start Action” on page 59.

The default Start value is 300 seconds.

Configure how long Designer should wait for the server to stop before
assuming failure. If the timeout is exceeded, youwill see an errormessage
in Designer.

Stop

For more information, see “Server Stop Action” on page 60.

The default Stop value is 60 seconds.

Configuring Launch Configuration Settings for Integration Server

Use the following procedure to configure the launch configuration settings for Integration Server.

To configure the launch configuration settings for Integration Server

50 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

1. In Designer, go to the Servers view and double-click the Integration Server you want to
configure.

2. In the General Information section, click Open Launch Configuration.

3. On the Server tab of the Edit Configuration dialog box, select the server to configure from the
Server list box.

4. Optionally, click the Arguments tab and define the arguments to be passed to the application
and to the virtual machine, if any.

For information about the Integration Server configurations on the Arguments tab, see
“Configuring Integration Server Arguments” on page 51.

5. Optionally, click the Source tab and define the location of source files that Designer uses to
display the source when debugging your Java applications.

For information about the Integration Server configurations on the Source tab, see “Configuring
the Integration Server Source” on page 52.

6. Optionally, click the Environment tab and define the environment variables to use when
running or debugging your Java applications.

For information about the Integration Server configurations on the Environment tab, see
“Configuring Integration Server Environment” on page 53.

7. Optionally, click the Common tab and define general information about the launch
configuration.

For information about the Integration Server configurations on the Common tab, see
“Configuring Common Integration Server Settings” on page 54.

8. Click Apply, and then click OK.

Configuring Integration Server Arguments

On the Arguments tab of the launch configuration properties for Integration Server, you can
configure the Program andVMarguments. The Program arguments are processed by the Equinox
OSGi Framework. The VM arguments modify the settings of the Java Virtual Machine (JVM).

To configure the Integration Server arguments

1. In Designer, go to the Servers view and double-click the Integration Server you want to
configure.

2. In the General Information section, click Open Launch Configuration.

3. In the Edit Configuration dialog box click the Arguments tab.

webMethods Application Platform User’s Guide 10.11 51

2 Developing with Application Platform in Designer

4. In theProgram argumentsfield specify programarguments for the EquinoxOSGi Framework.

Important:
Do not modify or delete the existing program arguments!

Tip:
Click the Variables button to select a variable from the list, or to define your own variables.

5. In the VM arguments field specify VM arguments for the JVM.

Important:
Do not modify or delete the existing VM arguments!

Tip:
Click the Variables button to select a variable from the list, or to define your own variables.

6. Select the working directory thatIntegration Server uses for the launched process by clicking
one of the provided options.

The following table describes the options you can select from.

ToSelect this option

Use the root directory of the Designer installation:
Software AG_directory \Designer\eclipse.

Default

Change the default directory. You can set as a working directory
any directory to which you have write privileges. To set a working
directory, click one of the following buttons:

Other

Workspace - select a Designer workspace as a working
directory.

File System - select a working directory from your file system.

Variables - set a variable for the working directory. For
instructions about how to set a variable, see the tip in step 5.

Default: Software AG_directory \profiles\IS_default\bin

7. Click Apply, and then click OK.

Configuring the Integration Server Source

On the Source tab of the launch configuration properties for Integration Server, you can define
the location of source files used to display the source when debugging a Java application. By
default, the location is derived from the build path of the associated project.

To define a new source lookup path

52 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

1. In Designer, go to the Servers view and double-click the Integration Server you want to
configure.

2. In the General Information section, click Open Launch Configuration.

3. In the Edit Configuration dialog box, click the Source tab.

4. To add a new source lookup path, click Add.

5. In the Add Source dialog box, select the required source files by using one of the provided
options.

The following table describes the options you can select from.

To addSelect this option

A jar or zip in the workspace containing source files.Archive

A jar or zip in the local file system containing source files.External Archive

A directory in the local file system.File System Directory

A workspace folder, a local directory, or an archive
referenced by a variable path.

Java Classpath Variable

A collection of binary archives with the source attached.Java Library

Source folders in a Java Project.Java Project

A folder in the workspace.Workspace Folder

6. Optionally, select the Search for duplicate source files on the path check box to search the
source lookup path and include duplicate entries. By default, this check box is cleared.

7. Click Apply, and then click OK.

Configuring Integration Server Environment

You can configure environment variables on the Environment tab of the launch configuration
properties for Integration Server. Designer uses the environment variable values when it runs an
application. By default, the environment is inherited from the Designer runtime.

1. In the General Information section, click Open Launch Configuration.

2. In the Edit Configuration dialog box, click the Environment tab.

3. Click New to define a new environment variable.

Important:

webMethods Application Platform User’s Guide 10.11 53

2 Developing with Application Platform in Designer

Do not modify or delete the existing environment variables!

Tip:
Click the Variables button in the New Environment Variable dialog box to select a variable
from the list, or to define your own variables.

4. Click Select to select one or more native environment variables from a list and add them to
your Integration Server launch configuration.

5. Select one of the provided options for the launch configuration environment.

The following table describes the options you can select from.

ToSelect this option

Default. Append to the native environment.Append environment to
native environment

Designer seeds the launched environment with the native
environment, after which the variables configured in the
Environment tab replace or augment the set of environment
variables.

Replace the native environment.Replace native
environment with
specified environment Designer creates the launched environment only from the variables

configured on the Environment tab.

6. Click Apply, and then click OK.

Configuring Common Integration Server Settings

On the Common tab of the launch configuration properties for Integration Server, you can define
general settings of the launch configuration.

To define common launch configuration settings for Integration Server

1. In Designer, go to the Servers view and double-click the Integration Server you want to
configure.

2. In the General Information section, click Open Launch Configuration.

3. In the Edit Configuration dialog box, click the Common tab.

4. Set the physical location where the launch will be saved by selecting one of the provided
options.

The following table describes the options you can select from.

54 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

ToSelect this option

Default. Save the launch file in the local workspace metadata.Local file

Move the launch file to a custom location in the workspace. Use
to share the launch configuration using a version control system.

Shared file

5. In theDisplay in favorites menu field, select one ormoremenuswhere youwant your launch
configuration to appear.

6. Set the encoding youwant to use for the launch configuration by selecting one of the provided
options.

The following table describes the options you can select from.

ToSelect this option

Default. Use the default encoding.Default - inherited
(Cp1252)

To select from the supported encoding standards:Other

ISO-8859-1 - Default.

US-ASCII

UTF-16

UTF-16BE

UTF-16LE

UTF-8

7. Define where to provide input and output data by using the provided check boxes.

The following table describes the check boxes you can select.

ToSelect this check box

Select the check box to allocate a separate console in Designer.
Clear the check box if you do not require a separate console
for the input data.

Allocate console (necessary
for input)

Default: check box is selected.

Select the check box to specify an input file, in which you can
configure the launch configuration. Clear the check box if you

Input File

do not require an input file to configure the launch
configuration.

webMethods Application Platform User’s Guide 10.11 55

2 Developing with Application Platform in Designer

ToSelect this check box

Default: check box is cleared.

Select the check box to specify an output file, in which you can
configure the launch configuration. Clear the check box if you

Output File

do not require an output file to configure the launch
configuration.

Default: check box is cleared.

Select the check box to append newly added launch
configuration data to the output file. Clear the check box to

Append

have new data that you add to the output file override the
existing configurations.

Default: check box is cleared.

Note:
You can select this check box only when Output File is
selected.

8. Use the Launch in background check box to set background launching.

If this check box is selected, Designer launches the configuration in the background, with a
separate job. If this check box is cleared, you will not be able to use Designer until the launch
operation is complete. Default: check box is selected.

9. Click Apply, and then click OK.

Editing the Credentials Used for Connecting to Integration Server

If you configure an Integration Server connection in Designer, Designer stores the credentials that
are used for connecting to the server instance. However, if you change those credentials in
Integration Server, you must also update them in Designer.

To edit the credentials used by Designer for connecting to Integration Server

1. In Designer, go to Window menu, and then click Preferences.

2. In the Preferences dialog box, expand Software AG and select Integration Servers.

3. Select the Integration Server instance to update based on the Port number.

4. Click Edit.

5. In the Edit Integration Server dialog box, update the provided fields, as required.

56 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

The following table describes what you have to specify for each field.

SpecifyIn this field

The name of the selected Integration Server instance.Name

Default: Default

The host name or address of the selected Integration Server instance.Host

Default: localhost

The HTTP port for the selected Integration Server instance. This port is
used to verify the server startup sequence.

Port

Default: 5555

The user name used to connect to the selectedIntegration Server instance.User

Default: Administrator

The password used to connect to the selectedIntegration Server instance.Password

Default: manage

6. Optional. Set the provided check boxes to define connection settings.

The following table describes the check boxes you can set.

ToSet this check box

When this check box is selected, Designer connects immediately to
the Integration Server instance after you complete the connection

Connect immediately

configuration. When this check box is cleared, Designer connects
to the configured Integration Server instance after you start the
connection manually.

Default: check box is selected

When this check box is selected,Designer connects to the configured
Integration Server instance on startup. When this check box is

Connect at startup

cleared, Designer connects to the configured Integration Server
instance after you start the connection manually.

Default: check box is selected

When this check box is selected,Designer connects to the configured
Integration Server instance through HTTPS. When this check box

Secure connection

is cleared, Designer connects to the configured Integration Server
instance through HTTP.

Default: check box is cleared

webMethods Application Platform User’s Guide 10.11 57

2 Developing with Application Platform in Designer

7. In the Edit Integration Server dialog box, click OK.

8. In the Preferences dialog box, click OK.

Creating a New Integration Server Instance with the Application Platform Support
Package

You can create a new Integration Server instance and install the Application Platform Support
package to it by using the Integration Server instance script.

To create a new Integration Server instance with the Application Platform Support package

1. Navigate to the followingdirectory: Software AG_directory / Integration Server_directory /instances.

2. Run the is_instance script with the create command and specify the following additional
JVM parameter:

-Dpackage.list=WmAppPlat

Important:
When you add the WmAppPlat package, which is used for Application Platform, the new
Integration Server instance includes a configured instance of Tomcat. This Tomcat instance
uses ports 8072 and 8074 as the default HTTP and HTTPS ports, respectively. These default
ports conflict with the ports used by Tomcat on the default instance of Integration Server .
You must use Command Central to change the default HTTP and HTTPS port numbers for
Tomcat on the new instance of Integration Server.

Formore information about the is_instance script, includingdetails about the create command
and the remaining additional JVMparameters, seewebMethods Integration Server Administrator’s
Guide.

Managing Server Status
The Servers view is an Eclipse component. In Designer it is customized for Software AG servers
and it allows you to manage the status of your servers. You can perform the provided server
lifecycle operations from the actions toolbar in the Servers view. The following table describes the
use of each server lifecycle operation.

ToUse this action

Start the server

Stop the server

Debug the server

Publish or unpublish projects

58 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Note:
The toolbar action Starting the server in profile mode is not supported.

To manage the status of a server

1. Go to the Servers view.

2. Select a server.

3. To change the status of the selected server:

Click one of the available actions in the upper right corner.

Right-click the server and click one of the available actions.

Important:
If you have configured a remote Integration Server, you cannot start and stop the server in
Designer. You must directly start and stop it through the machine, where the server is
installed.

For information about Integration Server, see “ Integration Server LifecycleActions” on page 59.

Integration Server Lifecycle Actions

This section describes the behavior of Integration Serverwhen different server actions are triggered
in Designer. For more detailed information, see the webMethods Integration Server Administrator’s
Guide.

For troubleshooting information, see “Considerations When Publishing Projects to Servers” on
page 107.

Server Start Action

When you start the server, a shell script is executed. The script must be blocked when the server
is started. The runtime environment for the server includes an environment variable that ensures
the script is blocked. If the script is not blocked and the server is started asynchronously, Designer
will report an error immediately after you attempt to start the server.

When you click the start icon, Designer changes the server status from Stopped to Starting.
Designer uses a polling mechanism to periodically ping the server. When the server starts and
responds to the HTTP request, the server status changes from Starting to Started.

When you start Integration Server, Designer uses the server connection details defined inWindow
>Preferences >Software AG > Integration Servers settings to connect to the Integration Server.
Designer executes a GET request by using basic authentication. If the server returns the expected
response codewithin the configured timeout period, the state of the server is changed fromStarting
to Started.

webMethods Application Platform User’s Guide 10.11 59

2 Developing with Application Platform in Designer

Server Stop Action

When you stop the server, a shell script is executed. If the server fails to stopwithin the configured
timeout period, you can terminate the stop action in Designer.

Note:
Terminating the action does not affect the state of the server but it resets the Servers view in
Designer.

When you initiate the stop action, Designer uses a polling mechanism to verify the execution of
the server shutdown. After the stop action is complete, the server state changes from Stopping
to Stopped.

Server Debug Action

You can start the server by using the debug action. However, there is a difference between the
start and the debug action.WhenDesigner updates the state of the server after executing the debug
action, it opens a socket connection to the JPDA port. This allows for debugging the source code,
which is not possible when you use the start action.

Note:
If you launch the server outside of Designer, make sure that you launch it in debug mode.
Otherwise, Designer will not be able to connect to the server because the JPDA port will be
closed. To check the state of the server, use an OS utility and verify that the JPDA port is in
LISTEN mode.

Server Restart Action

You can restart the server by using the restart, or the restart-in-debug action. The restart action
will execute the stop action, and then the start action. The restart-in-debug action will execute the
stop action, and then the debug action.

About Publishing Projects

This section describes the processes that are involvedwhen you buildApplication Platformprojects
inDesigner andpublish them to the server. Themajor phases of project publishing are the following:

Building the project

Deploying the project to the server

Assembling the project to a module

Building Projects
You must validate and compile an Application Platform project before you can publish it. During
the build phase, Application Platform compiles the project source code and produces additional
files, for example metadata files. However, Application Platform does not perform any additional
bundle-related activities when building a project.

60 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

You can build your project either with one of the standard project builders in Designer, or with
one of the customproject builders forApplication Platformprojects.However, Application Platform
projects are buildwith all of the project builders that are automatically configuredwhen you apply
the Application Platform Core project facet.

Building Projects with Designer Project Builders

You can use some of the Designer project builders to build your Application Platform projects.

To build your project with one of the standard build actions in Designer

1. In Designer, go to Project menu, and then click Build Project.

2. Select one of the build actions supported for Application Platform projects.

The following table describes the actions you can select.

ToSelect this action

Purge transient files in your project.Clean

Build only the resources you modified after the latest build.Incremental Build

Build or rebuild the entire project, regardless of the state of the
current build.

Full Build

For more information about the build actions, see theWorkbench User Guide in Software AG
Designer Online Help.

Building Projects with Custom Application Platform Project Builders

You can use custom project builders to build your Application Platform projects. The custom
builders execute the Designer clean build, incremental build, and full build actions, and at the
same time perform Application Platform tasks in the background.

The customproject builders for Application Platform are installed after you enable theApplication
Platform Core facet for your project.

To build a project with one of the custom build actions

1. In Designer, go to Project menu, and then click Build Project.

2. Select one of the custom builders supported for Application Platform projects.

The following table describes the builders you can select.

webMethods Application Platform User’s Guide 10.11 61

2 Developing with Application Platform in Designer

ToSelect this builder

Pass additional context information that is captured while your
project is compiled to the Project Publisher.

Application Platform
Builder

Create additional files that are necessary to publish your project’s
services in the OSGi container.

Application Platform
Service Publishing
Builder

Note:
Do not disable or remove the Application Platform project builders from your project.

Publishing Projects to the Server
Before you can publish your project to the OSGi container of a server, you must add your project
to the server from the Servers view.

Before you can add and publish a project to the server, make sure that the project is opened in
Designer and that it has at least one Application Platform Core project facet.

To add and publish projects to a server

1. In Designer, go to the Servers view, right-click the required server, and then click Add and
Remove.

2. Click the required project in the list of available projects, and then lick Add.

3. Optional. Remove one or more of the configured projects. In the list of configured projects,
click the project you want to remove, and then click Remove.

Important:
If you delete a project that is already published to the server, the published project becomes
an orphan and you have to remove it manually from the server.

For information about themanual steps, see “Manually Uninstall a Bundle from the Server” on
page 109.

4. Optional. Select the If server is started, publish changes immediately check box if youwant
Designer to immediately publish all configured projects after you click Finish.

5. Click Finish.

6. To publish the configured projects, go to the Servers view and right-click the server to which
you want to publish.

7. Select one of the supported publish commands.

62 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

The following table describes the commands you can select.

ToSelect this command

Assemble a project bundle from the project files from the
most recent build.

Publish

Fully rebuild all configured projects.Clean

Manifests and Bnd Templates for Software AG Common
Platform
Before you can create bundles for your project, your project must have amanifest. If a manifest.mf
file exists in your project's src/main/resources folder, themanifest file serves as a template during
bundle creation. Otherwise, Application Platform automatically creates a manifest when you
publish your project. However, in some cases you need to customize the default manifest. You
can customize manifests dynamically using a Bnd template. The following examples describe
cases when custom manifests are required:

Indirect Package Imports. The default manifest is created with a list of package imports after
analyzing the project classes' imports and locating external package dependencies found in
the bundle. Because the project is compiled against is also a bundle, the analysis can match
package imports to specific bundle versions. Sometimes dependencies are declared in additional
metadata, such as XML files and class references, and are invoked indirectly. These additional
dependencies must be exported by another bundle in the container and the manifest must be
customized, so that the additional packages can be imported.

Reduced Scope of Package Exports. By default, all packages defined in the project bundle are
exported. If you want to customize the package exports, you must declare an alternative set
of exports. You can do this by customizing the defaultmanifest. For example, you can configure
Application Platform to only export packages that represent a public API, and keep your
implementation packages in the bundle.

For information about customizingmanifest dynamically using a Bnd template, see “Creating and
Customizing Bundle Tool Templates for Projects” on page 25.

Assembling Project Bundles

After you build your project, you must assemble it into a module. To assemble the project to a
module, you must create an OSGi bundle. The following major steps are involved in this process:

Using the default project manifest or creating a Bnd template for Software AG Common
Platform.

You can create a custom Bnd template or you can use the default project manifest, provided
by Application Platform.

For information about cases when you need to create a Bnd template, see “Manifests and Bnd
Templates for Software AG Common Platform ” on page 63.

webMethods Application Platform User’s Guide 10.11 63

2 Developing with Application Platform in Designer

Creating and staging the jar in an Artifacts directory.

After Designer compiles your project, it inserts the contents of the project into a bundle jar and
copies the contents to an Artifacts directory out of the project's workspace. The contents are
moved out of the project’s workspace because Designer locks the entire workspace while
buildingprojects. The artifactsdirectory is locatedhere: User_Workspace/.metadata/.plugins/
com.softwareag.ide.eclipse.pld.bundle.builder.ui/Project_Name/artifacts/.

Project bundles you create are also added in the Artifacts directory. After Designer executes
a successful clean build action of your project, the associated bundles are removed from the
Artifacts directory.

Copying the jar to the bundle repository.

After you publish your project to a server, a JMX service transfers the project bundle from the
artifacts directory to the following temporary directory, located in the server’s profile:
Software AG_directory \profiles\server_instance\workspace\temp\app-platform\deployer\
bundles. If this transfer is successful, then the project bundle is copied to the following location
of the server’s repository directory: Software AG_directory \profiles\server_instance\
workspace\app-platform\deployer\bundles. After the project bundle is successfully copied,
the server’s publisher service is invoked to install the project bundle into the container’s OSGi
runtime. When you unpublish the project, Designer removes the project bundle from the
server's repository directory and the publisher service removes it from the OSGi runtime.

When you assemble project bundles, the server uses an OSGi service provided by the Common
Platform. This service is used for installing and uninstalling bundles from the repository directory.
Any errors that occur in this process are added in Designer's error view.

Note:
You cannot add or remove bundles from the server by adding or removing files from the
repository directory.

To assemble the project bundles into a module

1. Create a manifest or use the default manifest, provided by Application Platform.

For detailed steps, see “Creating and Customizing Bundle Tool Templates for Projects” on
page 25.

2. Compile your project.

3. Right-click your project and select App Platform.

4. Click Create Project Bundle.

About Viewing Dependency Graphs

Application Platform enables you to view a graphic representation of different dependencies. You
view dependency graphs in the Visual Navigator view.

64 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

The Visual Navigator renders the dependencies as graphs based on different object attributes.
Each attribute forms the basis of a dimension. Dimensions provide the information necessary to
produce a collection of graph nodes and connections between these nodes that illustrate a
relationship for a given attribute. A dimension displays node relationships based on one or all of
the following relationship types:

Parent-child composition

Reference dependencies

A collection of dimensions is called a universe. EachDesigner perspective can have a single universe
registered to it. For example, the App Platform perspective has its own universe, named the App
Platform universe. The App Platform universe supports the following dimensions:

Project - Displays an open project from the current Designer workspace. This dimension is
useful if you want to see project dependencies.

Resources - Displays composition relationships for a selected resource. The default node depth
of this dimension is 1. Increasing the node depth shows more project resources.

For information about node depth, see “Visual Navigator Node Depth Levels” on page 67.

Java Packages - Displays the composition relationships for a selected package. Package graph
nodes are rendered in this dimension only if they contain resources, such as files, binary or
source classes, or non-class resources. Empty packages are not displayed in this dimension.

Classes & Interfaces - Displays relationships between Java classes and interfaces, as well as
ICompilationUnit objects, which construct the Designer JDT (Java Development Tooling)
models. ICompilationUnit objects are visible in the Package Explorer and Project Explorer
views in Designer. They act as a container for source references.

JavaMethods - Displays relationships between the Java methods, used in the selected project.

Metadata - Reserved for internal use.

Opening a Project in the Visual Navigator
You can open your Designer projects in the Visual Navigator view.

To open your Designer projects in the Visual Navigator

1. In Designer, go to the Project Explorer or Package Explorer view.

2. Right-click the required project.

3. Select Show In and click Visual Navigator.

The Visual Navigator view opens and renders a graph of the selected project.

webMethods Application Platform User’s Guide 10.11 65

2 Developing with Application Platform in Designer

Using the Visual Navigator
The Visual Navigator provides several functions, which enable you to render the required graph
and nodes.

To use the Visual Navigator

1. Open a project in the Visual Navigator view.

For information about how to open a project in the Visual Navigator, see “Opening a Project
in the Visual Navigator” on page 65.

2. To view the required graph and nodes, perform one or more of the available actions.

The following table describes the actions you can perform.

Do thisTo

Click the drop-down list box and select one of the available dimensions.Select a dimension

The list of available dimensions depends on the currently selected object.
The list displays all dimensions that can represent this object.

For information about the available dimensions, see “About Viewing
Dependency Graphs” on page 64.

Use the slider, available in the upper part of the Visual Navigator.Configure the
graphic depth

The positions of the slider represent the available node depth levels,
starting from level 0 in the leftmost part.

For information about the different node depth levels, see “Visual
Navigator Node Depth Levels” on page 67.

Enter the required filter text in the text box and click .Filter the displayed
nodes

Right-click a node or anywhere in the graph view and click the required
command.

Use a context menu
command

For information about the context menu commands, see “Visual
Navigator Context Menu Commands” on page 67.

Use the required keyboard shortcut.Zoom in or out or
reposition the port
view For information about the available keyboard shortcuts, see “Visual

Navigator Keyboard Shortcuts” on page 69.

Double-click the node.Open a node in an
editor

66 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Do thisTo

To open a node in an editor, the Visual Navigator invokes the default
editor for the associated resource, defined inDesigner. If no default editor
is defined for the resource, nothing happens. To view the default editors
for different resources, navigate to Window > Preferences > General >
Editors > File Associations.

Visual Navigator Node Depth Levels

The Visual Navigator uses node depth levels from 0 to 5 to render the depth of the graphs. You
can use these levels to control the scope of information that is displayed on a graph. At level 0, no
relationships are displayed between a selected object and its references. Level 5 represents the
most complex object relationships.

For example, if you have classes A, B, C, and D, with the following relationship: A > B > C > D,
and you want to render graphs at different levels, the following table shows the classes that will
be displayed at the different node depth levels you select.

Visible ClassesNode Depth LevelSelected Class

A0A

A, B1A

A, B, C2A

A, B, C, D3A

B0B

A, B, C1B

A, B, C, D2B

A, B, C, D3B

Visual Navigator Context Menu Commands

The Visual Navigator context menu contains the following submenus and commands:

Show In

The following table describes the commands from the Show In submenu.

DescriptionCommand

Opens the currently selected node in the Terminal view.Terminal

webMethods Application Platform User’s Guide 10.11 67

2 Developing with Application Platform in Designer

DescriptionCommand

Opens the currently selected node in the Package Explorer view.Package Explorer

Opens the currently selected node in the Project Explorer view.Project Explorer

Opens the currently selected node in the System Explorer view.System Explorer

Opens the currently selected node in the Properties view.Properties

Other Dimensions

The following table describes the commands from the Other Dimensions submenu.

DescriptionCommand

Renders the Resources dimension, if available.Resources

Renders the Java Packages dimension, if available.Java Packages

Renders the Classes & Interfaces dimension, if available.Classes & Interfaces

Renders the Java Methods dimension, if available.Java Methods

Renders the previous dimension, if available.Previous Dimension

Navigator Global Actions

The following table describes the commands from the Navigator Global Actions submenu.

DescriptionCommand

Renders a graph for the currently selected dimension.Refresh view for current
dimension

Clears the graph from the Visual Navigator.Clear view of all graph
items

Renders a graph for the currently selected node.Render view on this
selected object

App Platform Universe Actions

The following table describes the commands from theApp Platform Universe Actions submenu.

DescriptionCommand

Renders a graph that displays all projects that are currently available in
the Designer workspace.

Show Open Projects

68 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

DescriptionCommand

This command is reserved for internal use.Navigator Metadata

Visual Navigator Keyboard Shortcuts

You can use keyboard shortcuts in the Visual Navigator view. The following table lists the available
keyboard shortcuts and the action they perform.

ActionKeyboard Shortcut

Zoom out.Ctrl + -

Zoom in.Ctrl + =

Move the view port to the left.Left Arrow

Move the view port up.Up Arrow

Move the view port down.Down Arrow

Move the view port to the right.Right Arrow

Reposition the view port to the left with the width of the view port.Ctrl + Left Arrow

Reposition the view port to the right with the width of the view port.Ctrl + Right Arrow

Reposition the view port down with the width of the view port.Ctrl + Down Arrow

Reposition the view port up with the width of the view port.Ctrl + Up Arrow

About Managing Project Dependencies

Applications you develop inDesignermay have contents, different from source projects developed
in Designer. Application Platform handles such contents as project dependencies. Application
Platform supports the following types of dependencies:

Dependencies with bundles. Projects can have dependencies on other bundles. For example,
a project can depend on third-party bundles or bundles that are developed by another team.

Dependencies with jars that are not bundles. Projects can have dependencies on plain jar
files. Such files can reside in an external location, which under version control or is present in
a repository library, such as an artifactory or a Maven repository. You can use plain jar files
that are not bundles in the following ways:

Include the plain jar files in your project as a local dependency when you publish the
project. The common jars are included in your project’s lib directory andwill be duplicated
in different projects during publishing.

webMethods Application Platform User’s Guide 10.11 69

2 Developing with Application Platform in Designer

Publish the plain jar files as a bundle in the runtime, so that they can be shared with other
published projects. The common jars are wrapped as bundles and published once to the
runtime. Projects that require one of the common jars refer to the jar’s bundle.

For more information about wrapping common jars as bundles, see “Creating Wrapper
Bundles” on page 73.

Important:
When you include common jars as bundles, they are not packaged with your project.
The common jars are only used for compiling dependencies and for computing the
Import-Package OSGi header values of the project manifest or Bnd template while
building the project bundle. Youmust add the referenced bundles in the runtime before
you use them. To ensure that bundles can be installed and resolved, set the imports to
be required.

Application Platform provides the following views, which you can use for such dependencies:

Bundle Publisher View.Use this view to publish or unpublish a bundle to or from a container.

Bundle Manager View. Use this view to create bundles from non-OSGi jars.

Bundle Publisher View
You can use the Bundle Publisher view to install additional bundles to the server from Designer.
You can also uninstall bundles from the server. However, you cannot use the Bundle Publisher
view to publish project bundles to the server. You must use the Servers view for publishing.

The Bundle Publisher lists items from the following locations:

The classpath of the selected project.

The directory, which is configured in the settings of the Bundle Manager view.

Formore information about the settings of the BundleManager view, see “Configuring Bundle
Manager View” on page 77.

The server runtime container.

The Bundle Publisher uses different icons in order to distinguish between plain Java jars andOSGi
bundles. Depending on the configurations of the Bundle Publisher view, certain items can be
excluded from the view, based on the item category.

For more information about the Bundle Publisher, see “Configuring Bundle Publisher View” on
page 76.

Publishing and Unpublishing Bundles

You can publish or unpublish bundles by selecting or clearing the bundle check boxes. The Bundle
Publisher performs the following operations depending on the check box statuses:

Installs selected bundles to the server.

70 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Uninstalls cleared bundles from the server.

You can simultaneously send several publish and unpublish commands to the server.

To publish or unpublish bundles from the server

1. In Designer, go to the Bundle Publisher view.

2. Select the bundles you want to publish to the server.

3. Clear the check boxes for the bundles you want to unpublish from the server.

4. Click .

The selected bundles are published to the server. Published bundles remain selected in the
Bundle Publisher view. The bundleswith cleared check boxes are unpublished from the server
and the newly selected bundles are published to the server.

Bundle Publisher Dependency Graphs

The Bundle Publisher provides you with a dialog, which displays potential warnings and errors
that are discovered when validating a collection of bundles. The Bundle Publisher determines the
dependencies between the bundles by examining all of the OSGi manifests and Bnd templates in
the group of bundles. Based on the examination, the Bundle Publisher forms a dependency graph.
When you start the server, all active bundles are also included in the graph, unless you have
removed them.

When creating a dependency graph for a group of bundles, the Bundle Publisher validates the
attempts for:

Publishing a bundle that exports the same package and version.

Publishing a bundle that imports a package that is not exported. Note that you can configure
the Bundle Publisher to ignore optional missing imports, like bundles with package imports
that contain the following qualifier: resolution:=optional.

Unpublishing a bundle that exports a package imported by another bundle.

Unpublishing a bundle that is required by one or more published bundles.

Publishing a bundle that produces a circular dependency.

The following table describes the message types that the Bundle Publisher can display.

DescriptionMessage Type

Status messages that provide information.Information

Messages that indicate dependency issues thatmay prevent bundles from
reaching an active state.

Warning

webMethods Application Platform User’s Guide 10.11 71

2 Developing with Application Platform in Designer

DescriptionMessage Type

Messages that indicate invalid bundles.Error

For example, an error message can indicate that there is a corrupt file or
a jar with an invalid OSGi manifest.

Examples of Dependency Validation

The following examples describe cases, in which dependency validation is useful:

Publishing a BundlewithMissingDependency.Assume that you have the following bundles
in the Bundle Publisher view:MyProject-A andMyProject-B. Neither of the bundles has been
published to the server.MyProject-B has a dependency onMyProject-A andMyProject-A has a
dependency on a package (com.softwareag.demo.c). The package is not exported by the project,
nor by any bundle on the server. This represents a missing dependency. Attempts to publish
MyProject-Awill fail with an error message, because the package import is required.

The following table shows the imports package and the exports package for each bundle.

Exports PackageImports Package

com.softwareag.demo.acom.softwareag.demo.cMyProject A

com.softwareag.demo.bcom.softwareag.demo.aMyProject B

Removing aBundle that Provides aDependency.Assume that you have the following bundles
in the Bundle Publisher view:MyProject-A andMyProject-B.MyProject-B has a dependency on
MyProject-A and both bundles are published to the server.

The following table shows the imports package and the exports package for each bundle.

Exports PackageImports Package

com.softwareag.demo.aMyProject A

com.softwareag.demo.bcom.softwareag.demo.aMyProject B

If you clearMyProject-A for unpublishing from the server and perform validation, you will
see a warning message. The warning states that the bundle you are attempting to remove has
a dependency onMyProject-B.

Circular Dependencies.Assume that you have the following bundles in the Bundle Publisher
view:MyProject-A,MyProject-B, andMyProject-C. None of the bundles has been published to
the server.MyProject-A has a dependency onMyProject-B andMyProject-B has a dependency
onMyProject-C.MyProject-C has a dependency onMyProject-A. This represents a circular
dependency. Attempts to publish these bundles will fail. If you select the bundles and perform
validation, you will see a warning message, describing the following circular dependency:
MyProject-Chas a dependency onMyProject-B, which depends onMyProject-A, andMyProject-A
depends onMyProject-B.

72 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

The following table shows the imports package and the exports package for each bundle.

Exports PackageImports Package

com.softwareag.demo.acom.softwareag.demo.bMyProject A

com.softwareag.demo.bcom.softwareag.demo.cMyProject B

com.softwareag.demo.ccom.softwareag.demo.aMyProject C

Refreshing the Bundle Publisher View

To refresh the contents of the Bundle Publisher view

1. In Designer, go to the Bundle Publisher view.

2. Click .

Validating Bundles

In the Bundle Publisher view, you can perform a dependency check on a selection of bundles. The
dependency check ensures that you catch potential errors before you attempt to publish a group
of bundles to the server. When you perform a dependency check, Application Platform produces
a dependency graph for the selected bundles based on the bundles’ declared package imports and
exports. If the server is started, the dependency check will also include the items, which are
currently published to the server. This enables you to check the potential impact of unpublishing
bundles from the server.

To validate bundles in the Bundle Publisher view

1. In Designer, go to the Bundle Publisher view.

2. Verify that the Project field is cleared.

3. Click .

Bundle Manager View
You can use the BundleManager view in order to create bundles from non-OSGi jars, that is, plain
jars. When you create a bundle from one or more plain jars, you need an OSGi bundle to host the
plain jar. An OSGi bundle that hosts a plain jar, is called a wrapper bundle. A single wrapper
bundle is used for publishing one or more plain jars to the server. The Bundle Manager uses
different icons to distinguish between plain jars and OSGi bundles.

Creating Wrapper Bundles

webMethods Application Platform User’s Guide 10.11 73

2 Developing with Application Platform in Designer

Before you can publish plain jar files to the server, you must create one or more wrapper OSGi
bundles for the plain jar files.

To create a wrapper bundle for one or more plain jar files

1. In Designer, go to the Bundle Manager view.

2. Select the plain jar or jars for which you want to create a wrapper bundle.

If you attempt to create a wrapper bundle for an OSGi bundle file, you will receive an error.
You can only create wrapper bundles for plain jar files.

For information about how to add more plain jar files to the Bundle Manager view, see
“Configuring Bundle Manager View” on page 77.

3. Click .

4. In the Create an OSGi bundle page of the Create Bundle for Selected Jars dialog specify the
provided settings.

The following table describes what you have to specify for each setting.

SpecifyFor this setting

One of the following:Bundle Type

Unwrapped - to unwrap the contents of selected jar(s) in the root
directory of generated bundle.

Embedded - to embed the selected jar(s) in the generated bundle.

Important:
If you have selected more than one jar file, make sure that
each jar contains a set of files with unique names to prevent
files from one jar to be overwritten by files from the other jar.

If you are converting a signed jar file, Software AG recommends
that you use the Embedded option to ensure that the integrity of
the signed jar is maintained when wrapping the jar as a bundle.

A symbolic name for the bundle.Bundle Symbolic Name

A bundle version.Bundle Version

Select the required directory from the drop-down list box. If the
required directory is not available, add the directory from the Bundle
Manager settings.

Directory

For information about adding a directory, see “Configuring Bundle
Manager View” on page 77.

74 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

5. Optional. Click Next. On the Bnd Classpath Settings page select one or more jars to be added
to the classpath when building the bundle.

The selected jars are added to the -classpath Bnd directive as absolute URIs.

6. Optional. Click Next. On the Bnd Template Settings page edit the bundle manifest content
before building the bundle.

For information about the syntax and supported options of Bnd templates, see https://
bnd.bndtools.org/.

7. Optional. Click Next. On the OSGi bundle manifest page update the contents of the bundle
manifest, if required.

The manifest contents must comply with the general specification for jar manifest files. For
information about the jar manifest specification, see the Oracle documentation.

8. Click Finish.

Deleting Bundles and Jars

You can use the Bundle Manager view in order to remove OSGi bundle files and plain jar files.

To delete bundles or jars from the Bundle Manager view

1. In Designer, verify that the bundles or jars you want to delete are not published to the server.

2. If there are bundles or jars, which are published to the server, go to the Bundle Publisher view
and unpublish them.

You can only unpublish bundles or jars when the relevant server is started in the Servers view
of Designer.

For information about unpublishing bundles from the server, see “Publishing andUnpublishing
Bundles” on page 70.

3. Click .

Configuring Application Platform

Application Platform configuration is supported for the following elements:

Bundle Publisher View

Bundle Manager View

Eclipse Capabilities

Servers View

webMethods Application Platform User’s Guide 10.11 75

2 Developing with Application Platform in Designer

https://bnd.bndtools.org/
https://bnd.bndtools.org/

Project Configuration

Customer Applications

Configuring Bundle Publisher View
The configuration of the Bundle Publisher view is divided in separate sections.

Use the View Contents section to configure what items to show in the Bundle Publisher view.
Note that user bundles are always displayed and you cannot hide them from this section.

Use the Bundle Dependency Validation section to limit the amount of content that is returned
during bundle validation, or to convey bundle changes to the server.

To configure the Bundle Publisher view

1. In Designer, go to the Bundle Publisher view, click , and then click Settings. Alternatively,
go to Window menu and click Preferences.

2. In the Preferences dialog box, expand Software AG.

3. Expand Application Platform, and then click Bundle Publisher.

4. In the Bundle Publisher page set the provided settings.

The following table describes the check boxes you can set.

ToSet this check box

Select to display plain jars in the Bundle Publisher view.WhenPlain
Jars (not OSGi) is cleared, plain jars are not displayed.

Plain Jars (not OSGi)

Note:
Plain jars cannot be published, so you cannot select them in the
Bundle Publisher view.

Default: check box is cleared

Select to display the platform server bundles, which are delivered
with the server profile, in the Bundle Publisher view.WhenPlatform

Platform Server
Bundles

Server Bundles is cleared, the platform server bundles are not
displayed.

If you display the platform server bundles, make sure that you do
not remove any platform server bundles from the server.

Default: check box is cleared

Display all user bundles in the Bundle Publisher view.User Bundles

76 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

ToSet this check box

Default: check box is always selected

Select to view theOSGimanifestwarnings for active server bundles.
WhenShow Warnings for server bundles is cleared,OSGimanifest
warnings are not displayed.

Show Warnings for
server bundles

Note:
Selecting this check boxmayproduce excessivewarningmessages
in unrelated bundles when publishing or validating bundles.

Default: check box is cleared

Select to view warning messages when imported packages for a
bundle are not included. When Show warnings for missing

Show warnings for
missing optional
imports optional imports is cleared,warningmessages formissing imported

packages for bundles are not displayed.

These warning messages are displayed when the Bundle Publisher
is validating bundles or applying updates to the server. For example,
if one of the bundles in the set has a manifest.mf file containing an
Import-Package header with the resolution := optional qualifier,
and no active bundle exports exist for this package, a warning
message will be returned if this check box is selected.

Note:
In some cases a missing package does not result in a warning
message, for example when you are performing imports to a test
framework.

Default: check box is cleared

Configuring Bundle Manager View
Use the Bundle Manager view to define one or more directories that contain additional bundles
to be published to the server. You can share bundles that reside in one of these directories across
your projects.

To configure a directory for additional bundles in the Bundle Manager view

1. In Designer, go to the Bundle Manager view, click , and then click Settings. Alternatively,
go to Window menu and click Preferences.

2. In the Preferences dialog box expand Software AG, then expand Application Platform, and
then click Bundle Manager.

3. Click Add Directory.

webMethods Application Platform User’s Guide 10.11 77

2 Developing with Application Platform in Designer

4. Select the directory you require and click OK.

5. Click Apply, and then click OK.

Defining Application Platform Capabilities
Use the Eclipse capabilities to associate a collection of views or activities to a specific purpose.
After you define a capability, you can use it to quickly hide those related items. Application
Platform also provides custom capabilities.

To configure Application Platform capabilities

1. In Designer, go to Window menu and click Preferences.

2. In the Preferences dialog box, expand the General menu and click Capabilities.

3. On the Capabilities page, specify values in the provided fields.

The following table describes what you have to specify for each field.

SpecifyIn this field

When this check box is selected, youwill be prompted to confirmenabling
the capabilities.

Prompt when
enabling
capabilities

By default, this check box is cleared.

The list of the groups of capabilities you can configure. Here you can
enable or disable the Software AG App Platform capability.

Capabilities

By default, the Software AG App Platform capability is enabled.

A description for the selected capability.Description

If the selected capability, requires enabling other capabilities, they are
listed here.

Requires

4. Click Advanced… to select the next configuration view.

5. Expand Software AG App Platform and configure the provided Application Platform
capabilities.

The following table describes the capabilities that you can configure.

DescriptionCapability

The core development features of Application Platform, used for
developing Java projects.

App Platform Core

78 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

DescriptionCapability

By default, this capability is enabled.

The web development features of Application Platform, used for
developing web projects.

App Platform Web

By default, this capability is enabled.

All Integration Server-related features of Application Platform.Integration Server
Extensions

By default, this capability is enabled.

6. In the Advanced Capabilities Settings dialog box, click OK.

7. On the Capabilities page click Apply, and then click OK.

Configuring Servers View
You can update the configuration of the Servers view.

To configure the Servers view

1. In Designer, go to Window menu, click Preferences.

2. In the Preferences dialog box, click Server.

3. Select the Show Servers view when server state changes check box if youwant the Servers
view to be activatedwhenever there is a server activity, including startup, shutdown, or project
changes.

4. In the Navigation panel, expand the Server menu and click Launching. Use this page to
configure the server launching settings.

For information about the launching configurations, see theWeb Tools Platform User Guide in
Software AG Designer Online Help.

Configuring Application Platform Projects
Projects that you create in Designer contain project-specific properties. Application Platform
projects contain the Application Platform Core project facet and an Application Platform project
property configuration.

You configure the properties of your Application Platform projects in Designer.

To configure Application Platform projects

webMethods Application Platform User’s Guide 10.11 79

2 Developing with Application Platform in Designer

1. Right-click the required project and click Properties.

2. In the Properties dialog box, expand Application Platform.

3. Click Project Version.

4. In the Version field enter the project version.

The version string must be valid for the OSGi standard and it must include three numeric
values, separated by periods. Bundles you create for this project will adopt the same value for
the Bundle Versionmanifest header.

Note:
If you have created a custom Bnd template using the Create Bnd template tool from the
project context menu, you must update the Bnd template with the updated project version.
This will ensure that the Bundle Version header is up to date.

Important:
If you are deploying your project using Deployer, you must create a project manifest in
order to use the Project Version property. Youmust include themanifest with other project
files that you commit to source control, so that the manifest is available when using the
Asset Build Environment. This will ensure that the bundle produced by the Asset Build
Environment contains the expected Bundle Version property.

5. Optional. If you are configuring a web project, go to the Navigation panel and click Project
Bundle. Fill in the Web Context Path field.

You can update the web context path of projects, created with the Application PlatformWeb
project facet, after creating the project.

Developing Custom Applications
Applications you develop may include properties files, which contain key-value pairs that allow
you to configure the values on each server where your application is deployed. Application
Platform expects these key-value pairs to be implemented as properties files. This section explains
how the properties files are created and installed on the server.

The following rules apply to the properties files:

You must include all properties files in the src/main/config folder of the associated project.

You must add a unique name to each properties file.

Youmust name the files following a reverse domain name convention. For example, company
XYZ might have a com.xyz.demo.dataSource.properties file.

You must begin the names of the files for internal use with “com.softwareag.”. These files are
not deployed to the server.

80 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

You must not share properties files across projects because all properties files are removed
when a project is unpublished.

The following diagram illustrates the steps for managing configuration data while in Designer.
The steps are as follows:

1. Create project service and configuration properties file. This step is executed in Designer.

2. Publish the project. This step is executed in Designer.

3. Application Platform extracts properties from the bundle. This step is executed on the server.

4. Any changes to the properties file are detached and the service is notified. This step is executed
on the server.

To develop custom applications

1. Open Designer and create a properties file in the src/main/config directory. Implement a Java
class to use these configuration properties.

Note:
When you unpublish your project from the server using the Servers view in Designer, the
affected properties file will be removed from the server.

2. Publish the project to the server.

When you publish the project in Designer, a bundle is created and the contents from the src/
main/config folder are included in the bundle. When the project bundle is created, a special
AP-Bundle-ConfigFilesheader is inserted into the projectmanifest. The configuration properties
files contained in the project override any properties files that reside on the server. The server
responds to any subsequent edits in the properties file by notifying the managed service. For
more information, see Getting Started with the Application Platform API.

When a project bundle is created, Application Platform checks the bundle for the special
AP-Bundle-ConfigFiles header. If Application Platform finds this header, it extracts all listed
properties files and installs them to the server profile's directory for dynamic configuration,
located here: Software AG_directory \profiles\server_instance\configuration\
com.softwareag.platform.config.propsloader.

Important:

webMethods Application Platform User’s Guide 10.11 81

2 Developing with Application Platform in Designer

Do not remove the AP-Bundle-ConfigFiles property header from the bundle. This header
is only produced when projects are published in Designer. The Asset Build Environment
tool does not create this header when it produces a project bundle.

About Using Services in Application Platform

This section describes how you can browse and expose services from your Application Platform
projects.

You can browse services from your Application Platform projects by using the Service Browser
view, available in the Application Platform perspective.

You can expose services from and to Application Platform projects. Currently, the following
scenarios are available:

Calling Integration Server services from Application Platform projects.

Calling Application Platform services from Integration Server services.

You can generate Java service wrappers in Application Platform projects, using native Integration
Server data structures. Currently the following scenarios are available:

Using Integration Server Document Types in the input and output signatures of a service.

Using Integration Server Specifications in the input and output signatures of a service.

Service Browser View
You can use the Service Browser view in order to browse the services used in your project bundles.
When you publish a project to the server, all the services that are used in that bundle are listed in
the Service Browser view. The Service Browser view displays all services that are published to the
currently selected server in the Servers view. To switch between servers, you must change the
selection in the Servers view. You can filter the services by service name or project bundle. You
can also customize the Service Browser view by selecting the filters to be used and the content it
displays.

Searching in the Service Browser View

In the Service Browser view you can search for services by using the search bar.

To search for services in the Service Browser view

1. In Designer, go to the Service Browser view.

2. Type the required text in the search bar.

You can search by service name, service details, bundle name, or bundle details.

3. Press Enter.

82 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Grouping Services by Bundle Name

By default, the services displayed in the Service Browser view are grouped by service name. You
can also group the services by the name of the bundle that has registered the service.

To group services by bundle name

1. In Designer, go to the Service Browser view.

2. Click .

3. Optional. Click again to group the services by name.

Refreshing Services and Bundle Information

In the Service Browser view you can refresh the services and the bundle information that is
published to your runtime environment.

To refresh services and bundle information

1. In Designer, go to the Service Browser view.

2. Click .

Filtering Services Displayed in the Service Browser View

You can filter the services displayed in the Service Browser view by using the available custom
filters.

To filter the services displayed in the Service Browser view

1. In Designer, go to the Service Browser view.

2. Click .

3. Click Customize View.

4. In the Filters tab set the provided check boxes to define the customizing filters to be used.

The following table describes what services you can filter by setting the available check boxes.

To filterSet this check box

Services that start with org.apache.Apache namespace services

webMethods Application Platform User’s Guide 10.11 83

2 Developing with Application Platform in Designer

To filterSet this check box

Services that are registered by POJO classes annotated
with both @Secure and @Service.

App Platform Secure Services

Services that are registered by POJO classes annotated
with @Service.

App Platform Services

Services that are exposed to Integration Server with the
@ExposeToIS annotation.

App Platform Services
published to Integration Server

OSGi services that start with org.eclipse.Eclipse Services

OSGi services that start with java or javax.Java namespace services

OSGi services that start with org.osgi.OSGi Services

OSGi services that are registered by internal Software AG
product bundles. The parent bundles of these services have
symbolic names that start with com.softwareag.

Platform Services (registered by
Software AG bundles)

OSGi services that start with com.softwareag.Software AG Platform Services

Customizing Content Displayed by the Service Browser View

You can customize the content that the Service Browser view displays.

To customize content, displayed by the Service Browser view

1. In Designer, go to the Service Browser view.

2. Click .

3. Click Customize View.

4. Click the Content tab.

5. Set the provided check boxes to define the content to be displayed.

The following table describes what you can display by setting the available check boxes.

To displaySet this check box

The full list of services that are published to the runtime.
If you disable this check box when services are grouped
by service name, you will hide all services .

Runtime services

Details about each bundle when the services are grouped
by bundles. The following details are displayed:

Bundle details

84 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

To displaySet this check box

Bundle headers

Export package details

Import package details

If you disable this check box when services are grouped
by bundles, you will hide all bundle details.

Details about each service when services are grouped by
service name. The following details are displayed:

Service details

Service properties

Name and version of the bundle that has registered
the service

If you disable this check box when services are grouped
by service name, you will hide all service details.

The bundles that have registered the services. If youdisable
this check boxwhen services are grouped by bundles, you
will hide all services.

Runtime bundles

Calling Application Platform Services from Integration Server
Services
Integration Server allows you to have Integration Server (IS) services that call Java source files in
Application Platform by attaching annotations to methods in Application Platform. When you
publish projects that contain these annotated methods to Integration Server, IS service bindings
are created, which can be invoked in Integration Server flow services, or executed by Integration
Server Java services.

When you expose Java methods to Integration Server, you must use annotations in order to mark
the specific method(s) to expose. This section provides an overview of the required functional
steps.

For more information, see Getting Started with the webMethods Application Platform API.

To call Application Platform services from IS services

1. Annotate a method by marking the class and method with the necessary annotations.

The following table describes the available methods.

webMethods Application Platform User’s Guide 10.11 85

2 Developing with Application Platform in Designer

DescriptionMethod

Use the @Service class annotation to identify the class as a service, so
that it can be included in the server's OSGi service registry.

@Service

Use the @ExposeToIS class annotation to provide additional details for
Integration Server.

@ExposeToIS

Use the @ExposedMethodmethod annotation to identify the method to be
used when creating an IS service.

@ExposedMethod

Example:
@Service(name=”OrdersService”, interfaces =
{“com.softwareag.demo.orders.api.OrdersService”})
@ExposeToIS(packageName=”OrdersService”)
public class OrdersServieImpl implements OrdersService {

Method
@Override
@ExposedMethod
public String createReceiptEntry(LineItem inItem) {

2. Publish your project.

When the project's bundle is assembled, it will contain additional metadata to be used by
Integration Server when creating IS service bindings.

3. Verify that the Integration Server package you provided in step 1 with the @ExposeToIS
annotation exists, and that it contains the proper service signatures.

Coding Considerations

There are some architectural differences between coding with Java and coding with Integration
Server. You must keep the following points in mind when you call Application Platform services
from IS services:

IS services are stateless operations on a pipeline. Holding references to Java objects in the
Integration Server pipeline is not supported. Make sure that the exposed operations do not
depend on a Java objects’ holding state.

Application Platform and Integration Server use different class loaders, so object references
are not transferred between them. Java objects that you use in a method signature must be
Java Beans. The IS services that are generated will include signatures that use objects of type
Document in order to represent the Java Bean objects.

86 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Calling Integration Server Services from Application Platform
Projects
You can expose your Integration Server Java services and Integration Server flow services to your
Application Platform projects. Java source file binding classes are code-generated to facilitate
calling the IS services.

In Application Platform, you can create Java source files that are essentially client stubs used to
invoke Integration Server Java services and Integration Server flow services from an Application
Platform project.

For more information, see Getting Started with the webMethods Application Platform API.

To call Integration Server services from your Application Platform project:

1. Right-click your project and select App Platform, and then select IS Tools.

2. Click IS Service Wizard.

Note:
You can also launch the IS Service Wizard by pressing Ctrl+Shift+Z.

3. Select a destination project from the Project drop-down list box.

You can select only projects with an enabled IS Service Extensions project facet.

4. Select the required IS services. If you see no IS services, or less IS services than you expect, try
one of the following:

Right-click the required node and click .

Right-click the required node and click Refresh tree contents.

You can select one or more IS services. You must use only user-developed services with valid
IO specifications.

Note:
None of the Integration Server product services, contained in packages that begin with Wm*,
are visible in the wizard. Therefore, you will see no services for selection before you have
created at least one custom service.

5. Click Finish.

Java bindings are created for the selected IS services. You can find the source files in the source
directory, as defined for the IS Service Extensions project facet. The default location is genSource.
The package name is determined from the IS service and its parent folder name(s). Each IS
service you select has its own dedicated Java package. This ensures that there is no overlap
with the generated input and output classes.

webMethods Application Platform User’s Guide 10.11 87

2 Developing with Application Platform in Designer

Important:
If you deploy a project that calls IS services to the production server, you must set the
generated source directory to src/main/java.

Coding Considerations

There are some architectural differences between coding with Java and coding with IS services.
You must keep the following points in mind when you call IS services from your Application
Platform projects:

While Java is Object-Oriented, IS services are stateless operations on a pipeline. When you
generate a Java class to represent an IS service, the class has a singlemethod to represent service
invocation. The IS pipeline is essentially a collection of name/value pairs, or a map.

While Java methods are defined in classes which are in packages, IS services are defined in
folders and in Integration Server packages. Java packages and Integration Server packages are
different concepts. A class's Java package path uniquely represents the class in the Java class
namespace. An Integration Server package is a unit of packaging but it is not part of the service
namespace. In the Integration Server namespace, the folder and service name uniquely identify
a service. The folder name in the Integration Server namespace is usually a dot-separated list
of words, for example: this.is.my.folder.name. Also, it is not uncommon that Integration Server
folders include capital letters, while Java packages are almost always lowercase. Application
Platform combines the Integration Server folder and service names to create a Java package
name.

Java and Integration Server use different data types. Java's data type system is very rich, it
includes primitive types and every class ever created. Integration Server has a much smaller
data type system. Integration Server supports String and Java primitive wrapper types.
However, complex structures in IS services are typically modeled using the Document data
type. A Document is essentially a map where each element associates a name with a value.
The values can be String, primitive wrapper, or Document. An IS document with nested
Document elements is similar to a map that represents properties in a Java Bean. Application
Platform takes advantage of this similarity. The input and output classes it generates are simple
Java Beans with a property that represents each input or output value. If the IS service input
signature includes a Document type, then a Java (Bean) class is generated to represent the
Document structure.

The following table shows the data type mapping between Java data types and Integration
Server data types.

Integration Server Data TypeJava Data Type

Stringjava.lang.String

Object->Primitive Wrapper; Integer, Float, and otherPrimitives; int, float,
and other

Object->Primitive Wrapper; Integer, Float, and otherPrimitive Wrappers;

java.lang.Integer,

88 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Integration Server Data TypeJava Data Type

java.lang.Float, and
other

Object->Primitive Wrapper; Datejava.util.Date

DocumentJava Bean class

A map of property name => property value, where String and
primitive properties are represented as described here, and other
types are represented as nested Documents.

Application Platform and Integration Server use different class loaders, so object references
are not transferred between them. Only String, Date, primitive wrappers, and arrays of these
elements have the same representation in both Integration Server and Java. More complex
object structures are represented by Java Beans in Java and by IS documents in Integration
Server. The list of elements with similar representation includes a byte array, so you can pass
serialized objects if you handle serialization inApplication Platformand ensure that appropriate
classes are available on both sides.

Java and Integration Server recognize differentwords as having specialmeaning. For example,
an IS service can have an input parameter named class but class is a reserved word in Java.
Also, a reservedword in Javamay be a valid IS service or folder name. TheApplication Platform
code generator adds PLS_ or pls_ in front of generated class and property names. However,
there still can be cases when the generated code does not compile properly. In such cases, try
to use flow mapping in Application Platform in order to change parameter or service names.

Java and Integration Server recognize different sets of characters as having special meaning.
An IS service and parameter names can use @, *, or other characters that are not allowed in
Java class names and variable names. You should avoid such conflicts by changing service
names and property names in Integration Server.

The Application Platform code generator relies on the IS service to have an explicit service
signature that defines all input and output elements. Such a signature is not required in
Integration Server. If you want to call an IS service without a signature from Java and it is not
possible to add a signature to this IS service, you must create a flow wrapper that has an
appropriate signature and invokes the service.

Generating POJO Wrappers for IS Document Types and
Specifications
When using Integration Server services with Application Platform projects, Application Platform
generates the input and output signatures of the services inline. Instead of using these inline
references with individual services, you can generate Plain Old Java Object (POJO) classes that
wrap Integration Server native data structures, such as IS document types and specifications, and
publish the generated wrapper packages to Integration Server. With POJOs, multiple Application
Platform projects can reference those packages as dependencies.

webMethods Application Platform User’s Guide 10.11 89

2 Developing with Application Platform in Designer

To generate POJO wrappers for IS document types and specifications:

1. In the Package Explorer view, right-click your project and select App Platform > IS Tools >
IS Service Wizard.

Tip:
You can start the IS Service Wizard by pressing Ctrl+Shift+Z.

2. Select a destination project from the Project drop-down list.

You can select only projects for which the IS Service Extensions project facet is enabled.

3. Select the required IS document type or specification reference.

4. Click Finish.

Application Platform creates a package that contains the generated POJO wrapper for the IS
document type or specification. You can find the package in the source directory, defined for
the IS Service Extensions project facet. The default location is /genSource. The name of the
package is: pub.parent_folder_name.reference_name.

Coding Considerations

You must keep the following points in mind when generating POJO wrappers for IS document
types and specifications:

You cannot generate service wrappers for product services fromWm packages, but you can
generate POJO wrappers for IS document types and specifications, residing in Wm packages
and then reference these data structures from custom services.

You can use nested document types, but you cannot generate a servicewrapper for a document
type that includes a recursive reference, for example, when a field in an IS document type
refers to itself.

You can use document types and specifications that contain object references only to String,
Date and primitive data types. You cannot generate a service wrapper for a document or
specification that contains a reference to an IS IData object.

The valid identifiers for field and record names in Integration Server differ from valid Java
identifiers. To address this when generating identifiers for Java services, Application Platform
substitutes characters, that are illegal in Java with underscores.

Application Platform Tutorial

In addition towebMethods Application Platform User’s Guide andGetting Started with the webMethods
Application Platform API, there is also a webMethods Application Platform Tutorial. The webMethods
Application Platform Tutorial provides step-by-step examples for performing common tasks in
Application Platform. It also provides sample projects, which allow you to practice developing in

90 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

Application Platform. You can download the webMethods Application Platform Tutorial, together
with the code samples, from the Software AG TECHcommunity.

webMethods Application Platform User’s Guide 10.11 91

2 Developing with Application Platform in Designer

92 webMethods Application Platform User’s Guide 10.11

2 Developing with Application Platform in Designer

3 Working with Application Platform Projects

■ About Deploying Projects ... 94

■ About Configuring Published Projects .. 97

webMethods Application Platform User’s Guide 10.11 93

This topic describes the tasks, which you can execute after your Application Platform project is
implemented and you want to deploy the project to the server.

About Deploying Projects

You can deploy yourApplication PlatformprojectswithwebMethodsDeployer. Deployer ensures
that reproducible builds of your developed projects are produced outside ofDesigner. This section
provides a high-level description of the steps you need to execute in order to deploy a project. For
more information, see webMethods Deployer User’s Guide.

Before using Deployer, you must prepare your project bundles with the Asset Build Environment
command line tool.With Asset Build Environment you can create bundles from the source of your
Application Platform projects. Deployer then uses the generated bundles for deploying your
projects. In Deployer the bundle files are referred to as assets. For more information about Asset
Build Environment and Deployer, see webMethods Deployer User’s Guide.

Before you can create bundles for anApplicationPlatformprojectwith theAsset Build Environment,
you must do the following configurations:

Configure a properties file for the Asset Build Environment.

Configure a properties file for your Application Platform project.

Configuring Asset Build Environment
Asset Build Environment has its own properties file, which includes properties that control which
products are included, the location of the project source files, and so on.

To configure the Asset Build Environment properties file for your Application Platform
project

1. Go to the Software AG_directory \common\AssetBuildEnvironment\master_build directory.

2. Open the build.properties file.

3. Add the necessary configurations for your Application Platform project.

Configuring Application Platform Projects for Asset Build
Environment
Designer creates a properties file for each Application Platform project. Designer adds this file to
the project’s root folder.

To configure the Application Platform project properties file for Asset Build Environment

1. Go to the root directory of your Application Platform project.

94 webMethods Application Platform User’s Guide 10.11

3 Working with Application Platform Projects

2. Open the assetBuild.properties file in a text editor.

For a detailed description of the contents of the assetBuild.properties file, see “ Application
Platform Project Configuration for Asset Build Environment ” on page 95.

3. Commit the assetBuild.properties file, together with the remaining project source files, to
the Asset Build Environment.

Application Platform Project Configuration for Asset Build Environment

The following table describes the property names, contained in the assetBuild.properties,
generated by Designer. The table contains the property names, their value type and description,
and it states if the property is required.

RequiredDescriptionValue TypeProperty Name

YesThis name is used for the
bundle file name and the

Stringcomponent.name

following manifest
headers:

Bundle-Name:

YesFor Application Platform
this valuemust always be
bundle.

Stringcomponent.type

No, Asset Build
Environmentwill assume
that a project with

The path to the project
source.

Stringcomponent.home

component. name

is located in

master_build/
build.properties

build.source. projects

NoA list of component
names to be included on

Comma
delimited
String

component. dependencies

the classpath when
building this project.

No, the web context path
defaults to the project

This property is reserved
for future use.

component. webcontext

name but it can be
overridden by the

Web-ContextPath: OSGi

webMethods Application Platform User’s Guide 10.11 95

3 Working with Application Platform Projects

RequiredDescriptionValue TypeProperty Name

manifest header.

No, specify the bundle
version in the project's
bnd.bnd file with the

This property is reserved
for future use.

component.version

Bundle-Version:

header.

No, all source files must
be in thesrc/main/java
directory.

This property is reserved
for future use.

component. src.dirs

NoThis property is a
reserved value that is

Stringcomponent. dependencies.
external

automatically generated
in the project’s

assetBuild.properties

file. Its value is a file
pattern relative to the
configured

BUILD_EXTERNAL_

DIR

classpath variable in
Designer and relative to
the

build.external.dir

Ant property defined in
the master build
properties file of Asset
Build Environment. For
example, this value can be

com/springsource/3.2.3/*.jar.

Creating Assets with Asset Build Environment
To deploy bundles with Asset Build Environment and create assets, you must embed the bundles
in the project. For this purpose, you must include the bundles in the lib directory of the project.
In this way the bundles are part of that project bundle's classpath. When you do this, make sure
that every project that has a dependency on one or more bundles, includes the bundles in its own
directory.

96 webMethods Application Platform User’s Guide 10.11

3 Working with Application Platform Projects

Deploying Assets in Deployer
After you create assets using the Asset Build Environment, you can use Deployer to install the
assets to the target servers. For information about deploying assets, seewebMethodsDeployer User’s
Guide.

About Configuring Published Projects

Your Application Platform projects can contain configuration data, which is included when you
publish a project to the server. After a project is on the server, you can modify this configuration
data dynamically during runtime.

Using the Project Dynamic Configuration
TheApplication Platform runtime allows you to configure project properties dynamically through
the ConfigurationAdmin service of Software AG Common Platform.

Before you start using the project dynamic configuration, keep in mind that in traditional Java
projects configuration files, such as properties files, are loaded using the class/classloader of the
currently executing method or thread. The configuration files are present in the classpath of the
running program and they are accessible during runtime either with the project bundle that is
published, or globally as part of the runtime container. However, if you are using this approach,
you have to republish the project bundle, or restart the runtime container before you can update
dynamically the properties file with an external service, for example the ConfigurationAdmin service
of Software AG Common Platform.

To support dynamic updates in Application Platform project configuration, ensure the following
during project development:

Keep the project’s properties file in the src/main/config directory of the project.

Add a unique name to the project’s properties file. This name is used as a persistent identifier
(PID) that identifies the properties file.

For more information about the properties file, see “Developing Custom Applications” on
page 80.

Ensure that classes that need to dynamically update the properties file implement the OSGi
org.osgi.service.cm.ManagedService interface and the associated updated Map properties callback
method.

Ensure that classes that need to dynamically update the properties file are published asmanaged
services, so that they can receive notifications about configuration file changes. For this purpose,
youmust use the @Service annotation, which allows you to publish a class as an OSGi service.
In the annotation, specify the following type as one of the exported interfaces:
org.osgi.service.cm.ManagedService.

Note that the project’s properties file is packaged with the published bundle in the container but
it is extracted and stored in the following location of the common configuration store of the installed

webMethods Application Platform User’s Guide 10.11 97

3 Working with Application Platform Projects

runtime: Software AG_directory \profiles\IS_default\configuration\
com.softwareag.platform.config.propsloader.

For more information, see Getting Started with the Application Platform API.

98 webMethods Application Platform User’s Guide 10.11

3 Working with Application Platform Projects

4 Administering Application Platform Using

Command Central

■ Managing Application Platform Projects Using Command Central 100

■ Monitoring KPI Data for WAR Projects Using Command Central 100

webMethods Application Platform User’s Guide 10.11 99

Managing Application Platform Projects Using Command
Central

Software AG Platform Manager and Software AG Command Central provide a common
infrastructure for managing your product configuration and monitoring your product statuses.
Application Platform is also managed in this common infrastructure by a dedicated server, called
PlatformManager. You canmonitor Application Platform by using CommandCentral. Command
Central allows you to administer Software AG products across networked servers through a
command line interface or through a web-based user interface.

The following diagram illustrates the configuration, monitoring, andmanagement of Application
Platform projects using Software AGCommand Central and Software AG PlatformManager. The
diagram consists of three components: a workstation component and two server components. The
workstation component contains client tools and it communicates to the first server component
through HTTP. The first server component contains a Command Central server. It also
communicates throughHTTP to the second server component. Finally, the second server component
contains Platform Manager, which depends on a product server.

For more information about PlatformManager and Command Central, see Software AG Command
Central Help.

For information about migrating Application Platform projects using Command Central, see the
Upgrading Software AG Products On Premises guide.

Monitoring KPI Data for WAR Projects Using Command Central

You can use Command Central to monitor KPI data for your WAR projects that are developed in
Application Platform and deployed to Integration Server. You can view the KPI data through the
Command Central CLI.

For example, to get the run-time status and run-time state for a component with ID
"OSGI-IS_default-AppPlatform" running on the local installation, and all its dependent components:

100 webMethods Application Platform User’s Guide 10.11

4 Administering Application Platform Using Command Central

sagcc get monitoring state nodeAlias=local
runtimeComponentId=OSGI-IS_default-AppPlatform

webMethods Application Platform User’s Guide 10.11 101

4 Administering Application Platform Using Command Central

102 webMethods Application Platform User’s Guide 10.11

4 Administering Application Platform Using Command Central

5 Diagnostics and Troubleshooting

■ Useful Logs for Application Platform .. 104

■ Increasing Tomcat Debug Logging ... 104

■ Using Log4j in WAR projects .. 106

■ JSP Validation in WmAppPlat ... 107

■ Diagnosing Bundles with the OSGi Console .. 107

■ Considerations When Publishing Projects to Servers .. 107

■ Common Project Issues ... 108

webMethods Application Platform User’s Guide 10.11 103

This topic describes how you can diagnose and troubleshoot Application Platform issues in
Designer and on the server.

Useful Logs for Application Platform

You can use the following logs to diagnose Application Platform issues:

Designer Log Files. The Designer log file is located here: Workspace_Directory\.metadata\
.log

Designer Trace Logging. Designer includes a tracing convention for capturing additional
content when something goes wrong. Application Platform supports this convention too. In
order to use trace loggingwithApplicationPlatform, youmust performadditional configuration
steps. For information about trace logging configuration for Application Platform, see the
Workbench User’s Guide in Software AG Designer Online Help.

Server Log Files. The server produces several log files. The log files for Integration Server's
default instance are located here: Software AG_directory \profiles\IS_default\logs\. The
available log files are wrapper.log and sag-osgi.log.

Configure Server Debug Output. You can configure additional debug output for the server.
For Integration Server's default instance, use the following location: Software AG_directory \
profiles\IS_default\configuration\logging\log4j2.properties. In the log4j2.properties
file add the following lines:
logger.n.name=com.softwareag.applatform.pls.is.web
logger.n.additivity=true
logger.n.level=debug

where n is the next available key number.

Restart the server after updating the log4j2.propertiesfile. This formatter capturesApplication
Platform debug messages.

For more information, see “ Software AG Servers” on page 14.

Increasing Tomcat Debug Logging

When you are debugging issues related to theWmAppPlat package, it might be useful to increase
the Tomcat debug logging levels. Software AG recommends that you add the following trace log
level groups:

Tomcat Container Startup
<!-- server startup -->

<logger name="org.apache.catalina.core.StandardServer" additivity="true">
<level value="debug" />

</logger>

<logger name="org.apache.catalina.core.StandardContainer" additivity="true">
<level value="debug" />

</logger>

104 webMethods Application Platform User’s Guide 10.11

5 Diagnostics and Troubleshooting

<logger name="org.eclipse.gemini.web.tomcat.internal.OsgiAwareEmbeddedTomcat"
additivity="true">

<level value="debug" />
</logger>

<logger name="org.eclipse.gemini.web.tomcat.internal.StandardWebApplication"
additivity="true">

<level value="debug" />
</logger>

War Deployment
<!-- war deployment -->

<logger name="org.apache.catalina.core.StandardContext" additivity="true">
<level value="debug" />

</logger>

<logger name="org.eclipse.gemini.web.tomcat.internal.ExtendedStandardContext"
additivity="true">

<level value="debug" />
</logger>

<logger name="org.apache.catalina.core.ContainerBase" additivity="true">
<level value="debug" />

</logger>

<logger name="org.apache.catalina.startup.ContextConfig" additivity="true">
<level value="debug" />

</logger>

<logger name="org.apache.catalina.core.StandardContext" additivity="true">
<level value="debug" />

</logger>

Security
<!-- security -->

<logger name="com.softwareag.platform.catalina.auth" additivity="true">
<level value="debug" />

</logger>
<logger name="org.apache.catalina.realm" additivity="true">

<level value="debug" />
</logger>

<logger name="com.softwareag.security.sin.jaas.util.JaasConfigUtil"
additivity="true">

<level value="debug" />
</logger>
<logger name="com.softwareag.security.authz.shiro.AuthorizationServiceImpl"
additivity="true">

<level value="debug" />
</logger>
<logger name="com.softwareag.security.jaas.login.modules.SAMLAssertionLoginModule"

additivity="true">

webMethods Application Platform User’s Guide 10.11 105

5 Diagnostics and Troubleshooting

<level value="debug" />
</logger>
<logger name="com.softwareag.platform.wab.filter.saml.SAMLAssertionFilter"

additivity="true">
<level value="debug" />

</logger>
<logger name="org.apache.shiro.subject.support.DelegatingSubject" additivity="true">

<level value="debug" />
</logger>
<logger name="org.apache.catalina.authenticator.BasicAuthenticator"

additivity="true">
<level value="debug" />

</logger>

<logger name="com.softwareag.platform.catalina.auth.SINRealm" additivity="true">
<level value="debug" />

</logger>

JSP Invocation
<!-- jsp invocation and AP listeners -->

<logger name="org.apache.jasper.servlet.JspServlet" additivity="true">
<level value="debug" />

</logger>
<logger name="com.softwareag.applatform.pls.is.web" additivity="true">

<level value="debug" />
</logger>

Tag Library
<!-- tag library processing -->

<!-- Produces debug messages to stdout in wrapper.log for the WmAppPlat IS package
-->
<logger name="com.softwareag.applatform.pls.is.web" additivity="true">

<level value="debug" />
</logger>
<logger name="org.apache.jasper.servlet.TldScanner" additivity="true">

<level value="debug" />
</logger>
<logger name="org.apache.jasper.servlet.TldScanner" additivity="true">

<level value="debug" />
</logger>
<logger name="org.apache.tomcat.util.scan.StandardJarScanner" additivity="true">

<level value="debug" />
</logger>

For more information about debug logging in Tomcat, see the Apache Tomcat documentation.

Using Log4j in WAR projects

AllWARprojects developed inApplication Platformhave access to theApacheCommons Logging
1.2 jar, since it is included in the classpath of the Application Platform web-is.jar bundle. You can
provide a log4j.properties file with yourWAR projects to control logging in the Integration Server
log file, located in SoftwareAG_directory/profiles/IS_instance/logs/sag-osgi.log.

106 webMethods Application Platform User’s Guide 10.11

5 Diagnostics and Troubleshooting

You can control logging by providing category loggers, for example:
<logger name="com.softwareag.war.greet.web"additivity="true"><level
value="debug"/></logger>

You can add category loggers by:

Adding them to the profile logging configuration, located in
SoftwareAG_directory/profiles/IS_instance/configuration/logging/log4j.properties.

Providing them directly with the deployed WAR project by including a log4j.properties file
in WEB-INF/classes.

For more information about the log4j.properties file, see the Apache Tomcat documentation.

JSP Validation in WmAppPlat

When performing JSP validation, theWmAppPlat ignores customwebMethods tagswithmissing
required attributes and logswarningmessages for eachmissing attribute. You can enable exception
messages to be logged formissing attributes by adding the following line to SoftwareAG_directory/
profiles/IS_instance/configuration/config.ini:
com.softwareag.applatform.pls.web.is.strictValidation = "true"

This configuration enables javax.servlet.jsp.JspException exceptionswhen a required attribute
is missing.

Diagnosing Bundles with the OSGi Console

Designer provides a host OSGi console in the Console view. You can use this console to examine
the status of bundles installed to the JVM. You can also configure the server to allow access to an
OSGi console.

For detailed steps about enabling the OSGi console in the Terminal view, see “Enabling the OSGi
Console” on page 23.

Considerations When Publishing Projects to Servers

This section describes common problems that may occur when you publish your Application
Platform projects to the server. The following points describe common server issues and
recommendation for troubleshooting each issue:

Server is installed as a service. SoftwareAG recommends thatwhen you set up a development
environment with Application Platform, you install the server as an application, as opposed to
a service. This is required because the service wrapper scripts do not start the server with the
expected configuration, which can lead to a mismatched configuration between Designer and
the server.

For example, the service is started without a configured and opened JPDA debugging port. If
this happens, try to resolve the problem by stopping the server and restarting it in Designer.

webMethods Application Platform User’s Guide 10.11 107

5 Diagnostics and Troubleshooting

Server immediately fails to start. If the server fails with an error in the Servers view inDesigner
immediately after startup, confirm that the server startup script is running synchronously.
Also, check the server’s runtime environment and verify that BLOCKING_SCRIPT is not set to
yes.

Server fails to start after the timeout. If the server fails to start after the timeout, verify that
the primary HTTP port number, configured in the Servers view, matches the port number,
configured for the server instance. For Integration Server, also verify that valid user credentials
exist for thematching Integration Server port configuration found inDesigner, underWindow
> Preferences > Software AG > Integration Servers.

Common Project Issues

This section describes some of themore common issues that can occurwhen you create and publish
project bundles.

Unable to Add a Project to the Server
If you cannot add a project to the server, check if any of the Application Platform project facets
are missing. The Application Platform core facet is required for adding a project to the server.
Make sure that you use the Application Platform project wizards when you are building a new
project.

Unable to Create a Bundle
If you are unable to create a bundle, verify that your project does not contain Java source files in
the default package. Currently, such projects are not supported. Make sure that your source files
have a qualified package name.

References to Local Resources
Keep inmind that if your projects use traditional Java programming techniques that rely on access
to metadata files, you cannot reference your projects remotely across bundle boundaries. Such
techniques are Java service provider and thread context classloader.

Unable to Publish Any Project Bundle
If you are unable to publish any project bundle, verify the following conditions:

The Runtime Environment configuration is stored in a file under the workspace. If you use
multiple workspaces with multiple installations of Application Platform, this can lead to
confusion. Verify that the Runtime Environment directory path is correct for the current
workspace. If Designer is installed in C:\SoftwareAG, for example, and its workspace is in C:\
dev\workspace_98, make sure that the Runtime Environment configuration indicates C:\
SoftwareAG for the installation home.

108 webMethods Application Platform User’s Guide 10.11

5 Diagnostics and Troubleshooting

The port number, defined for the server configuration in Designer matches the port number,
defined in the server profile configuration.

The server and the JMX service in the server are started successfully. Verify that the JMX port
is in LISTEN mode for the server. If it is not in LISTEN mode, restart the server and check if
this issue is resolved.

The Application Platform components are installed for each server. If the components are not
installed, install the missing components and restart the server.

Manually Uninstall a Bundle from the Server
If you delete a project published to the server fromDesigner, the project bundle will be orphaned.
You must remove orphaned bundles manually from the server.

To manually uninstall a bundle from the server

1. While the server is started, delete the orphaned file from the repository directory, located here:
Software AG_directory \profiles\IS_default\workspace\app-platform\deployer\bundles.

This will ensure that the bundle is not re-deployed the next time you restart the server.

2. Open an OSGi console to the server and uninstall the bundle using its bundle ID.

For information about configuring an OSGi console, see “Enabling the OSGi Console” on
page 23.

Class Loader Issues in Published Projects
Careful inspection of the stack trace can provide youwith helpful hints about Application Platform
issues. The following points describe the most common cases:

ClassNotFoundException.A java.lang.ClassNotFoundException usually indicates that a class
within the bundle fails to instantiate a class, for example, Class.forName, for one of the following
reasons:

The class is not in the bundle that is raising the exception.

The class is not exported by any other bundle on the server.

The class is exported by a bundle on the server but the bundle that is raising the exception
does not import the class.

Usually, this issue will not be caught when your project is published, as long as there is a
source code reference to the class.

For more information, see “Assembling Project Bundles” on page 63.

Note:

webMethods Application Platform User’s Guide 10.11 109

5 Diagnostics and Troubleshooting

Jars that are added to a project's classpath through its \lib directory do not have its
packages exportedwith the project bundle. This feature is intended as ameans to extend
a project bundle's classloader by including additional classes that are private to the
project.

NoClassDefFoundError. A java.lang.NoClassDefFoundError usually indicates that a class that is
loaded in the bundle's classloader fails to reference another class while executing.

LinkageError and ClassCastException. These errors usually indicate classloader pollution.
Under normal circumstances, a collection of related bundles can be represented by adependency
graph based upon the chain of package imports and exports formed between these bundles.
You must ensure that within a specific graph only one instance of a class type is loaded and
accessed across the graph. If there are multiple versions of the same class in the graph, then a
java.lang.LinkageError or a java.lang.ClassCastException is produced.

Software AG Common Platform supports loading multiple versions of class instances in the
JVM. However, you must ensure that one execution thread consistently uses the same class
type. The OSGi Export-Package: header supports a uses directive to provide clarity in such
cases.

For example, in the diagram below, bundle A imports a package from bundle B. One of the
imported packages contains a class with a method signature that includes parameters found
in bundle C version 1.1. At the same time, bundle A has dependencies to another version of
bundle C, version 1.0, which leads to an invalid classloader graph.

Note:
If you are adding jars to a project's classpath through its \lib directory, make sure that
containing classes are not already exported by another, similarly to the provided example.

110 webMethods Application Platform User’s Guide 10.11

5 Diagnostics and Troubleshooting

A Differences Between WmTomcat and WmAppPlat

The following table compares the WmTomcat package and the WmAppPlat package based on
how each package uses key Tomcat-specific components:

WmAppPlatWmTomcatComponent

Apache Tomcat 8.5.35Apache Tomcat 6.5Tomcat version

Note:
This is the Tomcat version used
in the first WmAppPlat

Note:
This is the Tomcat version used
in the last WmTomcat

implementation, available from
Application Platform 10.3.

implementation, available in
Integration Server 9.12.

URL of deployed
resources

uses the port number of a
Tomcat connector

uses the port number of an
Integration Server HTTP
listener

does not contain the web
directorycontains the web directory

Only what is declared for servlet
and filter mapping in the WAR file
is accessible.

Everything under web/ is visible by
default.

docbase

Software AG Spring BoardWmTomcat package home pageROOT

Clients are connecting directly to
Tomcat HTTP listeners and use the
typical Tomcat buffering methods.

Integration Server does not support
incremental buffering of HTTP
responses.

buffer restriction

All files in the org.apache.catalina
host bundle classpath graph.

All files in ServerClassloader,
including common/lib and common/
lib/ext.

shared jars

You must remove the WAR project
from the Software AG_directory /

Unloading the IS web package
removes theWARapplication from
the container.

undeployment

profiles/IS_default/workspace/
webapps/ directory path.

webMethods Application Platform User’s Guide 10.11 111

WmAppPlatWmTomcatComponent

Software AG_directory /profiles/
IS_default/configuration/tomcat/
conf/

Integration Server_directory /web/
conf/

server configuration path

Software AG_directoryIntegration Server Administratorport configuration path

/profiles/IS_default/

configuration/

com.softwareag.platform.

config.propsloader/

Leverages the Integration Server
JAAS-based configuration.

Automatically bridges to the
Integration Server security.

security-constraints

Software AG_directory /profiles/
IS_default/configuration/tomcat

Integration Server_directory /
instances/ instance_name/web/

tomcat.base path

Fully supported.Filtering happens at a late stage,
afterWmTomcat sends a request to
the embedded Tomcat.

Tomcat filter support

WmAppPlat bridges logs to Log4j
and writes them to the sag-

You must copy the commons-
logging.properties file to the

logging

osgi.log and wrapper.logs files for
your web application container.

directory where the package
containing your web application
that uses the Jakarta
commons-logging API is located.

Not included in WmAppPlat. You
can install it separately. For more

Included in WmTomcat.Tomcat Manager
Application

information about installing the
Tomcat Manager Application, see
“Administering Web
Applications” on page 39.

By default, the
org.apache.catalina.

The Integration Server realm is
used.

security realm

realm.LockoutRealm

is used. You can also add a custom
AppPlatformRealm.

For information about adding the
AppPlatformRealm, see Getting
Started with the webMethods
Application Platform API .

112 webMethods Application Platform User’s Guide 10.11

A Differences Between WmTomcat and WmAppPlat

WmAppPlatWmTomcatComponent

Software AG_directory /profiles/
IS_default/workspace/work/

WmTomcat uses the
Integration Server_directory \
instances\instance_name\web\work

working directory

directory as a working directory
and Apache Tomcat administers
this directory.

webMethods Application Platform User’s Guide 10.11 113

A Differences Between WmTomcat and WmAppPlat

114 webMethods Application Platform User’s Guide 10.11

A Differences Between WmTomcat and WmAppPlat

	Table of Contents
	About this Guide
	Document ​Conventions
	Online ​Information ​and ​Support
	Data ​Protection

	Application Platform Deprecation
	1 About Application ​Platform
	Architecture ​and ​Components
	Publishing ​and ​Deploying ​Bundles

	2 Developing ​with Application ​Platform ​in Designer
	Getting ​Started ​with Application ​Platform Development
	About ​the Application ​Platform ​Perspective
	About ​Creating Application ​Platform Projects
	Configuring ​a Designer ​Project ​for Application ​Platform
	About ​Developing ​Web ​Applications ​for ​Integration ​Server
	Developing ​Web ​Archive ​(WAR) ​Projects
	Developing ​Web ​Application ​Bundle ​(WAB) ​Projects
	About ​Adding ​Single ​Sign-​on ​Authentication ​in Application ​Platform ​Projects
	About ​the Application ​Platform ​Integration ​Test ​Framework
	Managing ​Servers
	About ​Publishing ​Projects
	About ​Viewing ​Dependency ​Graphs
	About ​Managing ​Project ​Dependencies
	Configuring Application ​Platform
	About ​Using ​Services ​in Application ​Platform
	Application ​Platform ​Tutorial

	3 Working ​with Application ​Platform ​Projects
	About ​Deploying ​Projects
	About ​Configuring ​Published ​Projects

	4 Administering Application ​Platform ​Using Command ​Central
	Managing Application ​Platform ​Projects ​Using Command ​Central
	Monitoring ​KPI ​Data ​for ​WAR ​Projects ​Using ​Command ​Central

	5 Diagnostics ​and ​Troubleshooting
	Useful ​Logs ​for ​Application ​Platform
	Increasing ​Tomcat ​Debug ​Logging
	Using ​Log4j ​in ​WAR ​projects
	JSP ​Validation ​in ​WmAppPlat
	Diagnosing ​Bundles ​with ​the ​OSGi ​Console
	Considerations ​When ​Publishing ​Projects ​to ​Servers
	Common ​Project ​Issues

	A Differences ​Between ​WmTomcat ​and ​WmAppPlat

