
Application Designer

Appendices

Version 9.1.1

October 2018

This document applies to Application Designer Version 9.1.1 and all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2018 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors.

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://softwareag.com/licenses.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product
documentation, located at http://softwareag.com/licenses/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices, license terms, additional rights or re-
strictions, please refer to "License Texts, Copyright Notices and Disclaimers of Third-Party Products". For certain specific third-party
license restrictions, please refer to section E of the Legal Notices available under "License Terms andConditions for Use of Software AG
Products / Copyright and Trademark Notices of Software AG Products". These documents are part of the product documentation,
located at http://softwareag.com/licenses and/or in the root installation directory of the licensed product(s).

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your License Agreement with
Software AG.

Document ID: CIT-APPENDICES-911-20181006

Table of Contents

Preface .. v
1 About this Documentation .. 1

Document Conventions ... 2
Online Information and Support ... 2
Data Protection ... 3

2 Appendix A - Call Sequence for Adapter ... 5
Normal Call Sequence .. 6
Call Sequence when a Subsession is Destroyed ... 7
Call Sequence when a Session is Destroyed .. 8
Error/ Runtime Exceptions ... 8
Pay Attention when Overwriting .. 8

3 Appendix B - Usage of Methods Inherited from the Adapter Class 9
Access to Lookup Session Context ... 10
Access to Application Designer Session Context ... 11
Access to other Adapters ... 11
Error Output ... 11
Page Navigation ... 12
Opening of Pop-up Dialogs ... 12
Frame Communication .. 12
Closing of a Page .. 13
Multi Language Management .. 19

4 Appendix C - Data Types to be Used by Adapter Properties 15
Supported Data Types .. 16
Data Types for Managing Date and Time .. 16

5 Appendix D - Class Loader Concepts ... 17
Design Time - Runtime .. 22
Class Loader Hierarchy .. 18
Preparing for Runtime ... 21

6 Appendix E - StartCISPage Servlet .. 23
Normal Calling of a Page ... 24
Appending Application Parameters .. 24
Controlling the Session Life Cycle ... 24
Controlling the Session ID ... 25
Setting Default Parameters ... 25
Mixing Parameters ... 26
Setting Parameters with the HTTP Method POST ... 26

iii

iv

Preface

The following appendices are available:

Describes how an incoming request by the browser client
is processed inside an adapter.

Appendix A - Call Sequence for Adapter

Gives information about adapter classes and how to use
them.

Appendix B -Usage ofMethods Inherited from
the Adapter Class

Describes the various data types that can be used by
adapter properties.

AppendixC -Data Types to beUsedbyAdapter
Properties

Gives information about class loader management.Appendix D - Class Loader Concepts

Describes the StartCISPage servlet that is used to open
intelligent HTML pages.

Appendix E - StartCISPage Servlet

v

vi

1 About this Documentation

■ Document Conventions .. 2
■ Online Information and Support ... 2
■ Data Protection ... 3

1

Document Conventions

DescriptionConvention

Identifies elements on a screen.Bold

Identifies service names and locations in the format folder.subfolder.service,
APIs, Java classes, methods, properties.

Monospace font

Identifies:Italic

Variables for which you must supply values specific to your own situation or
environment.
New terms the first time they occur in the text.
References to other documentation sources.

Identifies:Monospace font

Text you must type in.
Messages displayed by the system.
Program code.

Indicates a set of choices from which you must choose one. Type only the information
inside the curly braces. Do not type the { } symbols.

{ }

Separates two mutually exclusive choices in a syntax line. Type one of these choices.
Do not type the | symbol.

|

Indicates one or more options. Type only the information inside the square brackets.
Do not type the [] symbols.

[]

Indicates that you can type multiple options of the same type. Type only the
information. Do not type the ellipsis (...).

...

Online Information and Support

Software AG Documentation Website

You can find documentation on the Software AG Documentation website at http://documenta-
tion.softwareag.com. The site requires credentials for SoftwareAG's Product Support site Empower.
If you do not have Empower credentials, you must use the TECHcommunity website.

Software AG Empower Product Support Website

If you do not yet have an account for Empower, send an email to empower@softwareag.comwith
your name, company, and company email address and request an account.

Once you have an account, you can open Support Incidents online via the eService section of
Empower at https://empower.softwareag.com/.

Appendices2

About this Documentation

http://documentation.softwareag.com
http://documentation.softwareag.com
https://empower.softwareag.com/

You can find product information on the Software AG Empower Product Support website at ht-
tps://empower.softwareag.com.

To submit feature/enhancement requests, get information about product availability, and download
products, go to Products.

To get information about fixes and to read early warnings, technical papers, and knowledge base
articles, go to the Knowledge Center.

If you have any questions, you can find a local or toll-free number for your country in our Global
Support Contact Directory at https://empower.softwareag.com/public_directory.asp and give us
a call.

Software AG TECHcommunity

You can finddocumentation and other technical information on the SoftwareAGTECHcommunity
website at http://techcommunity.softwareag.com. You can:

■ Access product documentation, if you have TECHcommunity credentials. If you do not, you
will need to register and specify "Documentation" as an area of interest.

■ Access articles, code samples, demos, and tutorials.
■ Use the online discussion forums, moderated by Software AG professionals, to ask questions,
discuss best practices, and learn how other customers are using Software AG technology.

■ Link to external websites that discuss open standards and web technology.

Data Protection

SoftwareAGproducts provide functionalitywith respect to processing of personal data according
to the EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are
documented in the respective administration documentation.

3Appendices

About this Documentation

https://empower.softwareag.com
https://empower.softwareag.com
https://empower.softwareag.com/Products/default.asp
https://empower.softwareag.com/KnowledgeCenter/default.asp
https://empower.softwareag.com/public_directory.asp
http://techcommunity.softwareag.com

4

2 Appendix A - Call Sequence for Adapter

■ Normal Call Sequence ... 6
■ Call Sequence when a Subsession is Destroyed ... 7
■ Call Sequence when a Session is Destroyed .. 8
■ Error/ Runtime Exceptions .. 8
■ Pay Attention when Overwriting ... 8

5

This chapter describes howan incoming request by the browser client is processed inside an adapter.
The request contains all the changes of properties that have been made at client side.

Normal Call Sequence

■ init()
This method is called only once - when creating the adapter inside a subsession. Before calling
this method, Application Designer makes sure that the adapter instance is properly registered
inside the Application Designer environment. Therefore - for example - you have access to the
session management: use the findSessionContext() or findSubSessionContext()method in
order to look for some values inside the init()method. It is not possible to use the
find...SessionContext()methods inside the constructor of an adapter - since the session is
not yet assigned to the adapter instance.

When navigating between pages (using the switchToPage() or openPopupPage()method), the
corresponding adapter objects are only created once. For example, if you navigate from page
"A" to page "B" and back to page "A", the adapter of page "A" does not change. The init()
method is only called once - at the time the adapter is instanciated.

■ activate(...)
This method is implemented by the Adapter class already. You only need to overwrite this
method if you want to passivate the state between requests. In this case, you can activate this
state inside your implemented method of your adapter class. If you use the adapter class to co-
operate, for example, with components running in a container of an application server, you
should synchronize the state passivation with the container's passivation.

■ reactOnDataTransferStart()
Thismethod is calledwhen the transfer of the changed properties starts. You can initialize some
internal members at this time. If you overwrite this method, do not forget to include themethod
of the super-class (Adapter.reactOnDataTransferStart()) into your method implementation!

■ setXxx(), setYyy(), ...
Now, the set methods of the changed properties of the browser client are transferred. It is very
important that your implemented set methods never cause an exception or an error.

■ reactOnDataTransferEnd()
Thismethod is called after setting the changed properties. Use thismethod to performoperations
you always want to execute when processing a request.

■ invoke()-Method
If the request has a method call inside, the method is invoked now.

■ processAsDefault()
If the request has no method call, this standard method is called.

Appendices6

Appendix A - Call Sequence for Adapter

■ reactOnDataCollectionStart()
Thismethod is calledwhen the transfer of adapter properties starts. Use thismethod, for example,
for performance improvements during the following get methods, for example, by building
temporary objects.

■ getXxx(), getYyy()
All get methods of the adapter - including array elements which may be passed back by - are
called.

■ reactOnDataColletionEnd()
This method is calledwhen data collection is finished. Temporary objects - which youmay have
created for performance reasons - can be released for garbage collection now.

■ passivate(...)
This method is the counterpart of the activate method.

Call Sequence when a Subsession is Destroyed

■ endProcess()
This method is called inside the adapter if the user decides to terminate the subsession. For ex-
ample, in the Application Designer workplace environment, this method is called whenever
the user chooses the close button of a page.

You can deny closing a subsession in your implemented method:

public class ABCAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void endProcess()
{

// veto the endProcess in case of unsaved data
if (changedDataNotSaved == true)
{

this.outputMessage("E","Please save data first");
return;

}
// close subsession
super.endProcess();

}
}

7Appendices

Appendix A - Call Sequence for Adapter

Call Sequence when a Session is Destroyed

If a session is removed from Application Designer - for example, if the user closes the browser or
if a system administrator removes the session - the adapter instances are informed in the following
way:

■ destroy()
In your implementedmethod, clean up all resources bound to your adapter instance. You cannot
deny the destroying of the session - but you can react.

Error/ Runtime Exceptions

Error and runtime exceptions occurring during the adapter request processing may be handled
centrally inside your adapter. For more details, see Binding between Page and Adapter in the Special
Development Topics.

Pay Attention when Overwriting

The methods named above are already implemented with default behavior inside the class
com.softwareag.cis.server.Adapter. Pay attention when overwriting these methods inside
your adapter and always include the super-class's processing into your own implementation. The
first statement inside your implementation should call the super-class method:

public class ABCAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void reactOnDataTransferStart()
{

super.reactOnDataTransferStart();
// now own implementation
...
...

}
}

Appendices8

Appendix A - Call Sequence for Adapter

3 Appendix B - Usage of Methods Inherited from the Adapter

Class
■ Access to Lookup Session Context ... 10
■ Access to Application Designer Session Context ... 11
■ Access to other Adapters .. 11
■ Error Output ... 11
■ Page Navigation .. 12
■ Opening of Pop-up Dialogs ... 12
■ Frame Communication ... 12
■ Closing of a Page .. 13
■ Multi Language Management ... 19

9

Inside the Application Designer management, adapters have to provide a defined interface to be
managed correctly by the system. This interface is declared by
com.softwareag.cis.Server.IAdapter. In order to have a high level of comfort during developing
adapters, you should derive your adapter classes from the super-class
com.softwareag.cis.Server.Adapter. This class already provides some useful methods.

Access to Lookup Session Context

As you know, session management defines sessions (corresponding to one browser instance) and
subsessions (corresponding to one process inside the Application Designer workplace). There is
the possibility to bind and look for parameters on both levels:

■ Adapter.findSessionContext() - returns the context which is on top of all subsessions. All
adapters inside one session refer to the same session context.

■ Adapter.findSubSessionContext() - returns the context which is held per subsession. Only
adapters - belonging to the same subsession - share this context.

The result is a context supporting the interface com.softwareag.cis.context.ILookupContext.
This interface provides two important methods:

public Object lookup(String s, boolean reactWithErrorIfNotExist);
public void bind(String s, Object o);

The session context is used, for example, to refer to the current user who is logged in, the chosen
language, etc. The subsession context is used to share data inside a subsession.

Do not use the context as global variable buffers in a very intensiveway. It will end up in programs
relying on a lot of context information to be available - and sooner or later no one knows what has
to be in the context when starting the program.

Via the methods

■ Adapter.findSessionId()

■ Adapter.findSubsessionId()

you can access the internally used representations of session ID and subsession ID.

Appendices10

Appendix B - Usage of Methods Inherited from the Adapter Class

Access to Application Designer Session Context

Application Designer uses its own lookup session management in order to store information of a
session. You can access and manipulate this information by calling your adapter's method:

■ Adapter.findCISessionContext() - returns a concrete session context object.

Inside the session context, the following parameters are kept:

■ date format
■ time format
■ language
■ style
■ decimal separator
■ and other information.

Have a look at the JavaDoc API documentation for more details.

Access to other Adapters

Access other adapters inside the same subsession by the methods:

■ Adapter.findAdapter(class) - returns the adapter instance for a given class. Method init()
is already called when passing back the instance - but only if the adapter was not used before.

Use thismethod before navigating between pages in order to prepare the adapter that will be used
by the next page.

Error Output

You can display error messages inside the status bar (if it is defined in the page layout) by using
the methods:

■ outputMessage(String, String (, String))

First, pass a string for the type of message. This is needed to display a corresponding icon inside
the status bar. There are constants defined inside the Adapter for specifying the type:

■ Adapter.MT_ERROR

11Appendices

Appendix B - Usage of Methods Inherited from the Adapter Class

■ Adapter.MT_WARNING

■ Adapter.MT_SUCCESS

The second string is the message being shown.

The third string - which is optional - is the long text description of the message. It becomes visible
by a dialog if the user clickswith themouse on themessage. If you do not specify a long description,
the normal message is used.

Page Navigation

Navigate to a page by using the method:

■ switchToPage(String pageName)

The "pageName" is the URL - either relative or absolute - of the next page.

Opening of Pop-up Dialogs

You can open a page inside a pop-up dialog by using the method:

■ openPopup(String pageName).

The "pageName" is the URL - either relative or absolute - of the page that is displayed inside the
dialog.

You can specify pop-up parameters of the pop-up you open with openPopup() by using the
methods:

■ setPopupTitle(String title)

■ setPopupPageFeatures(String pageFeatures)

Frame Communication

There are various methods to communicate to other frames:

■ openPageInTarget

■ openCISPageInTarget

■ invokeMethodInTarget

Appendices12

Appendix B - Usage of Methods Inherited from the Adapter Class

■ refreshTarget

■ sizeTarget

Closing of a Page

The default method used for closing a page is endProcess(). It is provided by the Adapter class.
The tasks performed by the endProcess()method are:

■ The current subsession is closed and de-registered inside the session management.
■ The current page is de-registered from the workplace management - if it was registered before.

Calling the endProcess()method ensures that all memory resources are released for the corres-
ponding subsession.

The endProcess()method is called by clicking inside the page on the close icon at the top right
corner of the page. You can also call it directly inside an adapter, e.g. if you want to close the
subsession as reaction to the user's entered data.

Multi Language Management

You can access the multi language management using the methods:

■ replaceLiteral(String application, String textid)

■ replaceLiteral(String application, String textid, String param1)

■ replaceLiteral(String application, String textid, String param1, String param2)

■ replaceLiteral(String application, String textid, String param1, String param2,
Stirng param3)

The application is the name for the abbreviation of a defined application area for which literals
are defined. In the file-based multi language management, it represents the name of a CSV file
that holds the text identified by a text ID.

13Appendices

Appendix B - Usage of Methods Inherited from the Adapter Class

14

4 Appendix C - Data Types to be Used by Adapter Properties

■ Supported Data Types .. 16
■ Data Types for Managing Date and Time .. 16

15

TheApplicationDesignermanagement is very flexible by allowing various data types for properties
of an adapter.

Supported Data Types

■ String
■ int, long, short, byte
■ float, double
■ BigDecimal
■ boolean
■ CDate
■ CTime
■ CTimeStamp

Data Types for Managing Date and Time

The java.util.Time class is very powerful, but also very complex to use for business applications.
Therefore, three classes are introduced to deal with date and time:

■ com.softwareag.cis.util.CDate

■ com.softwareag.cis.util.CTime

■ com.softwareag.cis.util.CTimeStamp

See the JavaDoc documentation for further details.

Dates and times are transferred as strings betweenApplicationDesigner and the intelligentHTML
page:

■ YYYYMMDD format for dates.
■ HHMMSS format for times.
■ YYYYMMDDHHMMSSMMM format for timestamps.

The interpretation and formatting of these strings to valid formats is done automatically.

Appendices16

Appendix C - Data Types to be Used by Adapter Properties

5 Appendix D - Class Loader Concepts

■ Design Time - Runtime ... 22
■ Class Loader Hierarchy .. 18
■ Preparing for Runtime .. 21

17

An explicit class loader management was introduced to support the following scenarios:

■ Classes are automatically found in the context of Application Designer without specifying a
CLASSPATH variable.

■ Classes can be stored inside an application project directory - separated from other application
projects.

■ During development time, easily run newpages togetherwith the latest classeswithout restarting
the server.

This chapter explains the class loader concepts used inside Application Designer.

Design Time - Runtime

The class loader concepts are designed to simplify the development of pages and their logical
representations on the server side: adapters.

At runtime, they should only be used if you are not running in a cluster - i.e. if you do not distribute
your application server on multiple nodes. When running in a cluster, classes should be located
exactly there, where the application server specifications allow them to be located. Inside the Ap-
plication Designer configuration, you can select which mode you are running in - for details, see
Design Time Mode and Runtime Mode in the Configuration documentation.

After explaining the class loader concepts in this chapter, at the endwe explainwhat to do in order
to change a design time environment into a runtime environment.

Class Loader Hierarchy

Application Designer runs as a web application inside a servlet engine - by default, the Tomcat
servlet engine is used. The class loader used by the servlet engine is called “web application
loader” in the following text.

The Application Designer environment itself is running in the context of the web application
loader. This class loader is looking for classes as specified by the servlet engine. Therefore the
Application Designer runtimemust be accessable by this class loader. For Tomcat, this is achieved
by placing the cis.jar file inside the <installdir>/tomcat/webapps/ROOT/WEB-INF/lib directory.

The following topics are covered below:

■ Application Class Loader
■ Initialisation of Your Application
■ Guidelines for Development
■ Classpath Extensions in cisconfig.xml

Appendices18

Appendix D - Class Loader Concepts

■ Loading Resource Files

Application Class Loader

The application classes (adapter classes) are loaded by the class loadermanagement of Application
Designer. This class loader looks for Java classes as follows:

■ All .class files inside the directory:

<webapp>/softwareag/appclasses/classes
■ All .jar files inside the directory:

<webapp>/softwareag/appclasses/lib
■ All .class files inside any application project under the directory:

<webapp>/<project>/appclasses/classes
■ All .jar files inside any application project under the directory:

/<webapp>/<project>/appclasses/lib
■ All classes that are referenced in the classpath extension that can be defined in the Application
Designer configuration (cisconfig.xml).

Unlike normal class loader hierarchies, the application class loader always tries to resolve a class
inside its application directories first. Only if the class is not found, the parent class loader is called
- the web application loader. The benefit is that application classes are totally separated from the
servlet engine classes - e.g. by using XMLparser libraries. You are not bound to the parser delivered
with the servlet engine.

Inside the Application Designer session management, a session is bound to an application class
loader instance. Therefore the application class loader - which was instanciated when the session
was created - is kept in the session during its whole life cycle. All objects created inside this session
use this instance of the class loader.

In case of changing classes inside the softwareag/appclasses or the corresponding application-project
subdirectories, you can force to create a new class loader used in all sessions which are created
afterwards. This means, that you can upgrade your system without disturbing running sessions.
Old sessions are still using their old classes; new sessions are using new classes.

The creation of a new instance of a class loader is triggered inside the monitoring tool. SeeMonit-
oring in the Development Workplace documentation.

By choosing the button Use latest Version of Applications for new Sessions, a new class loader
instance is generated.

A new class loader instance can also be created during development inside the Layout Painter.
See also the "Hello World!" example in the First Steps and its section If you Change the Adapter.

19Appendices

Appendix D - Class Loader Concepts

Initialisation of Your Application

Every time a new instance of a class loader generated, the initialisation process of your application
is also performed. This guarantees that, for example, all static variables you may use internally
can be correctly initialised by your initialisation procedure.

The initialisation of applications is described in the Becoming a Member of the Startup Process part
of the Special Development Topics.

Guidelines for Development

The guidelines you have to follow during development are quite simple:

■ Always put all your application/adapter classes inside the softwareag/appclasses directory or in
the corresponding project directories. When using the project management (which is strongly
recommended), store the classes in the project directories so that you can easily copy projects
as self-containing units between different Application Designer installations.

■ Do not put classes into the servlet engine's class loader's class path.
■ Avoid class duplicates (a .class file in the /classes subdirectory also contained in a jar file inside
the /lib subdirectory).

■ Reload the classes by creating a new class loader instance. To see the effects re-logon. (The re-
logon can be done by refreshing the browser.)

Classpath Extensions in cisconfig.xml

In the cisconfig.xml file, you can define the possibility to explicitly include defined directories or
jar/zip/etc. files in the application class loader. The following example shows a cisconfig.xml file
containing a class loader extension:

<cisconfig ...>
<classpathextension path="c:/development/centralclasses/classes/"/>
<classpathextension path="c:/development/centralclasses/libs/central.jar"/>

</cisconfig>

Consequence: you can also include classes that are located outside the web application's directory
structure into the application class loader of Application Designer.

Pay attention: if defining directories that contain .class files, then the path definition inside the
classpath extension must end with a slash (/).

Appendices20

Appendix D - Class Loader Concepts

Loading Resource Files

TheApplicationDesigner application class loader does only load classes to be loaded into the Java
virtual machine. It is not able to load resource files that you might access from your code.

Place resource files into the web application class loader, below the directory <webapps>/WEB-
INF/classes/ so that they are loaded in a correct way.

Preparing for Runtime

The following topics are covered below:

■ Basics
■ Example

Basics

As explained in the previous section, the Application Designer class loader concepts are very
useful for design time purposes. What is the price? The Application Designer class loader finds
its classes by accessing the file system. It uses for this reason the cis.home parameter inside the
<webapp>/WEB-INF/web.xml file in order to know the file root directory of the web application.

At runtime - especially if your application server distributes the load on several physical nodes -
this is dangerous: each node may have its own directory structure and you cannot specify one
root directory anymore in which the web application is located.

Consequence: for running in these scenarios, you have to prepare your application accordingly -
i.e. you have to place your classes at the places where the application server definition defines
them to be located.

The normal directories to put classes in are:

■ <webapp>/WEB-INF/lib for libraries (.jar files).
■ <webapp>/WEB-INF/classes for single class files (.class files).

In addition, youmust switch off the flag "useownclassloader" inside the cisconfig.xml. Consequently,
the Application Designer application class loader will not be used at all - all classes are loaded by
the web application loader.

21Appendices

Appendix D - Class Loader Concepts

Example

Example: let us assume that you have set up the Application Designer application project "pro-
jectxyz". The classes for this project are located in

■ <webapp>/projectxyz/appclasses/classes/*.class and
■ <webapp>/projectxyz/appclasses/lib/*.jar

so that the Application Designer class loader can reach them.

For changing to the runtime scenario, just copy the *.class and *.jar files from your project directory
into the corresponding standard directories.

Appendices22

Appendix D - Class Loader Concepts

6 Appendix E - StartCISPage Servlet

■ Normal Calling of a Page .. 24
■ Appending Application Parameters ... 24
■ Controlling the Session Life Cycle ... 24
■ Controlling the Session ID ... 25
■ Setting Default Parameters ... 25
■ Mixing Parameters ... 26
■ Setting Parameters with the HTTP Method POST .. 26

23

The StartCISPage servlet is the central servlet that is used in order to open intelligent HTMLpages.
It was already mentioned several times in this documentation. This chapter describes certain at-
tributes that you can pass inside the servlet call.

Normal Calling of a Page

A normal page is called in the following way:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html

The StartCISPage servlet creates a frameset page around the intelligent HTML page that provides
for specific functions that are internally required.

Appending Application Parameters

Application parameters can be passed by just appending the name and the value of the parameters
to the URL. Each parameter must be the name of a property that is provided for by the server side
adapter.

Example: the adapter provides for a property company. When opening a page via

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&company=softwareag

then the setCompanymethod of the adapter is called and the value "softwareag" is passed.

This is a very simple and powerful way to pass parameters through the URL.

Controlling the Session Life Cycle

A page relates to adapters living inside a session on server side. A session is opened by default
when referencing a page via StartCISPage. By default, it is closed when the initial StartCISPage
page is removed - either by closing the browser or by loading a different URL into it.

You can explicitly control this automated removal of sessionswith the parameter ONUNLOADBEHAVIOR.
If you call a page in the following way, the session is not removed when the page is removed:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&ONUNLOADBEHAVIOUR=NOTHING

Appendices24

Appendix E - StartCISPage Servlet

Controlling the Session ID

By default, a new session ID is internally generated when opening a page by StartCISPage. But
you can also pass the session ID and the subsession ID explicitly. This might be of interest if you
require to control the Application Designer session management from outside.

Calling a page in the following way

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&SESSIONID=4711&SUBSESSIONID=5

will internally open the session with ID 4711 - or use 4711 if it already exists. The same applies on
subsession level.

Pay attention: if you use this possibility, then you are responsible for managing session IDs in
such a way that they are unique.

Setting Default Parameters

Language

As described inMulti LanguageManagement, ApplicationDesigner internally holds a language per
session. This language can be set from outside:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&LANGUAGE=E

Default Style Sheet

By calling

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&SESSIONCSS=../softwareag/styles/CIS_PARROTT.css&DEFAULTCSS=../softwareag/styles/CIS_PARROTT.css

you define that the CIS_PARROTT style sheet is used instead of the default style sheet. Of course,
you can reference any style sheet of your own.

25Appendices

Appendix E - StartCISPage Servlet

Mixing Parameters

All parameters can be mixed without any restrictions.

Setting Parameters with the HTTP Method POST

Instead of adding the parameters to the URL, you can also use the HTTP method POST to set the
parameters in an HTML form.

Example (similar to the example under Appending Application Parameters, but with POST):

<html>
<head>
<title>Start Application Designer Demo Application</title>
<script type="text/javascript">
function submitStart() {
document.forms["myform"].submit();
}
</script>
</head>
<body>
<form id="myform" name="myform" action="servlet/StartCISPage" method="post">
<input type="hidden" name="PAGEURL" value="/<project>/<pagename>" />
Company: <input type="input" name="company" value="softwareag" />

</form>
Start Demo
<div id="status">Click on Start Demo</div>

</body>
</html>

Appendices26

Appendix E - StartCISPage Servlet

	Appendices
	Table of Contents
	Preface
	1 About this Documentation
	Document Conventions
	Online Information and Support
	Data Protection

	2 Appendix A - Call Sequence for Adapter
	Normal Call Sequence
	Call Sequence when a Subsession is Destroyed
	Call Sequence when a Session is Destroyed
	Error/ Runtime Exceptions
	Pay Attention when Overwriting

	3 Appendix B - Usage of Methods Inherited from the Adapter Class
	Access to Lookup Session Context
	Access to Application Designer Session Context
	Access to other Adapters
	Error Output
	Page Navigation
	Opening of Pop-up Dialogs
	Frame Communication
	Closing of a Page
	Multi Language Management

	4 Appendix C - Data Types to be Used by Adapter Properties
	Supported Data Types
	Data Types for Managing Date and Time

	5 Appendix D - Class Loader Concepts
	Design Time - Runtime
	Class Loader Hierarchy
	Application Class Loader
	Initialisation of Your Application
	Guidelines for Development
	Classpath Extensions in cisconfig.xml
	Loading Resource Files

	Preparing for Runtime
	Basics
	Example

	6 Appendix E - StartCISPage Servlet
	Normal Calling of a Page
	Appending Application Parameters
	Controlling the Session Life Cycle
	Controlling the Session ID
	Setting Default Parameters
	Language
	Default Style Sheet

	Mixing Parameters
	Setting Parameters with the HTTP Method POST

