
Application Designer

Layout Elements

Version 8.3.4

July 2014

This document applies to Application Designer Version 8.3.4.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: CIT-LAYOUTELEMENTS-834-20140722

Table of Contents

Preface ... xi
I Typical Page Layout ... 1

1 PAGE ... 3
Properties ... 4

2 TITLEBAR .. 11
Properties ... 12

3 HEADER .. 15
Properties ... 16

4 PAGEBODY ... 17
Properties ... 18

5 STATUSBAR/STATUSBARSSW .. 21
STATUSBAR ... 22
STATUSBARSSW ... 24
STATUSBAR Properties ... 26
STATUSBARSSW Properties .. 27

II Working with Containers ... 29
6 Positioning of Controls inside a Container ... 31

Row Types - TR and ITR .. 32
Some More Details on ITR ... 76
TR Properties .. 34
ITR Properties ... 36

7 Defining the Width of Controls inside a Container .. 39
Controlling the Width of Controls ... 40
HDIST and VDIST Controls ... 42
HDIST Properties ... 44
VDIST Properties .. 45
rowspan and colspan Definitions .. 46
CELLSPAN Control .. 46
CELLSPAN Properties ... 48
Rules for Positioning Controls inside Containers .. 50

8 Vertical Sizing of Containers and Controls ... 51
Vertical Pixel Sizing .. 52
Vertical Percentage Sizing .. 53
Finishing the Example .. 55

9 Overview of Different Containers ... 57
Different Kind of Containers .. 58
Row Containers .. 58
Column Containers .. 59
Row and Column Containers in Combination .. 60
Nesting Containers ... 61

10 ROWAREA and COLAREA .. 63
ROWAREA Properties ... 64
COLAREA Properties .. 70

iii

11 ROWAREAWITHHEADER ... 75
Simple Example .. 76
ROWAREAWITHHEADER Properties .. 77
ROWAREAHEADER Properties .. 80
ROWAREABODY Properties ... 81

12 ROWTABAREA and COLTABAREA .. 83
ROWTABAREA Properties .. 85
COLTABAREA Properties .. 202
TABPAGE Properties .. 132
The Most Common Error ... 133
Example: Controlling which Tab is displayed by the Server Adapter 133
Example: Controlling the Visibility of Tab Pages ... 135

13 ROWTABLE0 and COLTABLE0 .. 139
ROWTABLE0 Properties .. 141
COLTABLE0 Properties .. 143

14 ROWDYNAVIS and COLDYNAVIS .. 145
ROWDYNAVIS Properties ... 148
COLDYNAVIS Properties .. 149
Some Comments on Controlling the Visibility of Controls 151

15 ROWDIV and INNERDIV ... 153
When to Use ROWDIV and INNERDIV Containers 156
ROWDIV Properties ... 156
INNERDIV Properties .. 157

16 ROWSCROLLAREA .. 161
ROWSCROLLAREA Properties ... 163

17 HSPLIT and VSPLIT .. 167
Example for HSPLIT ... 168
Example for VSPLIT ... 169
HSPLIT Properties .. 170
VSPLIT Properties .. 172
SPLITCELL Properties ... 173
Defining the Split Size .. 174

18 HLINE and VLINE .. 175
VLINE Properties ... 177
HLINE Properties ... 178

19 Performance Optimization with Containers ... 179
III Working with Controls .. 183

20 Some Common Rules for all Controls ... 185
Name and Text ID .. 186
Table, Row, Column, Control ... 186
Explicit Alignment ... 186
Binding to Adapter Properties ... 187
Directly Influencing the Control Style ... 187
Dynamically Controlling the Visibility and the Display Status of
Controls .. 188

Layout Elementsiv

Layout Elements

Focus Management .. 190
Flushing of Inputs .. 193
Tab Sequence .. 193
Tooltips ... 195

21 BREADCRUMB ... 197
Example .. 198
Properties .. 200

22 BUTTON .. 201
Example: Simple Button ... 202
Example: Button with Image .. 203
Hiding and Disabling Buttons ... 203
Properties .. 203

23 BUTTONLIST .. 211
Example .. 212
Defining Outlook Bars by Using BUTTONLIST .. 213
Properties .. 214

24 CHECKBOX ... 217
Example .. 218
Properties .. 218

25 COMBODYN2 ... 223
Example .. 225
Typical Problems with COMBODYN2 ... 226
Properties .. 226

26 COMBOFIX .. 233
Example .. 235
Typical Problems with COMBOFIX ... 236
COMBOFIX Properties ... 236
COMBOOPTION Properties .. 240

27 DATEINPUT .. 241
Example .. 242
From-To Restrictions .. 243
Input of Date and Time .. 245
Properties .. 246

28 DROPICON ... 253
Example .. 254
Dragging and Dropping Information from DROPICON to
TREENODE3 .. 255
Dragging and Dropping Information from DROPICON to ICONLIST 255
Properties .. 256

29 FIELD ... 261
Example .. 263
Dynamically Defining the Input Status .. 263
Client Side Validation ... 265
Decimal Number Input .. 266
Value Help .. 266

vLayout Elements

Layout Elements

Value Help - Predefined Reaction Methods ... 268
Input-Sensitive Value Help .. 270
Touch Screen Support ... 270
Properties .. 273

30 FILEUPLOAD/FILEUPLOAD2 ... 285
FILEUPLOAD ... 286
FILEUPLOAD2 ... 289
FILEUPLOAD Properties ... 291
FILEUPLOAD2 Properties ... 295

31 ICON .. 297
Example .. 298
Hiding and Disabling Icons ... 298
Properties .. 299

32 ICONLIST .. 305
Example: Vertical Icon List ... 306
Example: Horizontal Icon List .. 308
Properties .. 309

33 IHTML ... 313
Example .. 314
Pros and Contras when Using the IHTML Control 315
Scripting in Generated HTML .. 316
Example: Building Download Links .. 316
Properties .. 321

34 IMAGEOUT ... 323
Example .. 324
Loading Images from a Database, the File System, or Any Other Data
Source ... 324
Properties .. 325

35 LABEL .. 327
Example .. 329
Aligning the Text .. 329
Properties .. 330

36 MENUBUTTON .. 335
Example .. 336
Building a Button Menu ... 337
MENUBUTTON Versus MENU ... 337
MENUBUTTON Properties .. 338
MENUITEM Properties .. 339

37 METHODLINK .. 341
Example .. 343
Properties .. 343

38 MULTISELECT .. 349
Example .. 350
Problems with MULTISELECT .. 352
Properties .. 352

Layout Elementsvi

Layout Elements

39 NEWSFEED ... 357
Example .. 359
Typical Problems .. 361
Properties .. 361

40 RADIOBUTTON .. 363
Example .. 364
Properties .. 365

41 SCHEDULELINE ... 371
Example .. 372
CSV Manager .. 374
Properties .. 375

42 SLIDER ... 381
Example .. 382
Properties .. 385

43 STRIPSEL ... 391
Example .. 392
Properties .. 394

44 SUBPAGE ... 397
Example .. 398
Typical Problem: Non-Refreshing Subpages ... 399
Properties .. 400

45 TABSEL .. 403
Example .. 404
Properties .. 406

46 TABSTRIP2 ... 407
Example .. 408
TABSTRIP2 - Usage with Other Controls .. 410
Properties .. 411

47 TAGCLOUD ... 415
Example .. 416
Properties .. 418

48 TEXT .. 421
Example .. 422
Properties .. 422

49 TEXTOUT .. 429
Example .. 430
Example: Dynamic Labels .. 430
Example: Dynamic Labels with Tooltips .. 431
Properties .. 431

50 TOGGLE .. 437
Example .. 438
Usage as a Triple Status Control .. 439
Properties .. 441

51 ACTIVEX ... 445
Example .. 446

viiLayout Elements

Layout Elements

Properties .. 449
52 GOOGLEMAP2 ... 451

Before You Start .. 452
Example .. 453
Typical Problems .. 459
Properties .. 460

53 HELPICON .. 463
54 LINECHART .. 465

Example .. 467
Properties .. 468

55 MACROMEDIAFLASH ... 471
Example .. 472
Creating the Action Script .. 473
Properties .. 474

56 NETMEETING ... 475
Example .. 476
Properties .. 477

57 REPORT ... 479
58 ROWCHARTAREA ... 481

Example .. 482
Properties .. 496

59 SKYPECALL .. 499
Example .. 501
Properties .. 502

60 TIMER .. 503
IV Working with Grids ... 505

61 Basics .. 507
62 TEXTGRID2 ... 509

A Simple Example .. 510
Selecting Rows in a TEXTGRID2 .. 512
Triggering Adapter Methods when Selecting a Row 514
TEXTGRID2 Properties .. 515
COLUMN Properties .. 521
Dynamic Setting of Text Styles in TEXTGRID2 .. 525
Example: Displaying an ASCII Protocol .. 527
Example: Using Images inside the TEXTGRID2 Control 530
Specifying the Width of a TEXTGRID2 Control .. 532
Change Index Management ... 532
Flexible Columns with CSVCOLUMN .. 535
CSVCOLUMN Properties .. 538

63 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling 541
Performance Considerations .. 542
Example .. 542
No Change in Adapter Code between TEXTGRID2 and
TEXTGRIDSSS2 .. 544

Layout Elementsviii

Layout Elements

Using rowcount and height .. 544
Setting the Client-Side Loading Behavior .. 544
TEXTGRIDSSS2 Properties ... 545

64 ROWTABLEAREA2 - The Flexible Control Grid .. 555
Example .. 556
Using rowcount and height .. 559
Making Grids Look like Grids .. 560
Special Events in ROWTABLEAREA2 Processing ... 561
ROWTABLEAREA2 Properties .. 565
STR Properties .. 570

65 COLINFOS Control - Show and Hide Single Columns 573
Example .. 574
COLINFOS Properties .. 577
COLINFO Properties .. 577

66 FLEXLINE - Flexible Columns in Control Grids ... 579
Example .. 580
FLEXLINE Properties ... 584
Increasing the Performance .. 585

67 MGDGRID - Managing the Grid ... 591
Example .. 592
MGDGRID Properties .. 594
ROWINSERT Properties .. 598
ROWCOPY Properties ... 599
ROWDELETE Properties .. 600

68 GRIDCOLHEADER - Flexible Column Headers .. 601
Flexible Column Sizing .. 602
Flexible Column Sorting ... 606
Flexible Column Sequence ... 607
GRIDCOLHEADER Properties .. 614
Smart Selection of Rows - SELECTOR Control .. 617
SELECTOR Properties .. 618

69 FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers 621
FLEXGRID Properties .. 624
Overriding FLEXGRIDInfo .. 626

70 Sorting Aspects with Grids .. 627
Default Sorting ... 628
Your Own Sorting ... 628
Special Consideration with CSVCOLUMN Controls 630

71 Background Information on Grids .. 635
V Working with Trees ... 637

72 Basics .. 639
Types of Trees ... 640
When to Use Which Type ... 641

73 TREENODE3 in Control Grid (ROWTABLEAREA2) .. 643
Example .. 644

ixLayout Elements

Layout Elements

Editing the Text of the Tree Node .. 646
Embedding Controls into TREENODE3 .. 648
Loading Large Trees - Step by Step .. 648
Drag-and-Drop Inside a TREENODE3 Tree .. 650
Dynamic Setting of Tree Icons .. 652
Properties .. 654

74 CLIENTTREE ... 659
Example .. 660
Properties .. 662

VI Working with Menus ... 667
75 Types of Menus .. 669
76 MENU .. 671

Example .. 672
Separators ... 674
Properties .. 675

77 DLMENU ... 677
Example .. 678
Properties .. 680

78 Context Menu .. 683
Example: Context Menu with a Text Grid .. 685
Context Menu with a Tree .. 687

Layout Elementsx

Layout Elements

Preface

This documentation gives an overview of the layout elements that are available in Application
Designer.

The information is divided into the following parts:

Describes the elements used for the layout of a page.Typical Page Layout

Shows you how to work with containers - containers are areas on the page that
can hold controls.

Working with Containers

Shows you how to work with the elements that are placed into containers - the
controls.

Working with Controls

Explains what grids are and how to use them.Working with Grids

Explains the basic types of trees and how to use them.Working with Trees

Shows you how to arrange a number of functions in a structured way.Working with Menus

xi

xii

I Typical Page Layout

The layout of a page typically contains the following elements:

This part describes these elements in more detail.

1

PAGE

TITLEBAR

HEADER

PAGEBODY

STATUSBAR/STATUSBARSSW

Layout Elements2

Typical Page Layout

1 PAGE

■ Properties .. 4

3

The PAGE control is always the top node of a page's layout definition. The page, on the one hand,
generates the visible container in which all the contained elements are placed; on the other hand,
some important logical settings are defined on page level:

■ The property model defines the name of the adapter class that is the logical counterpart on the
server side.

■ The property translationreference defines the name of the “text pool” that is used for trans-
lating literals into language-dependent texts.

Properties

Basic

ObligatoryThis is the name of the Java class that is the logical counter
part of the page on server side. The name must include
the full class name e.g. including the package name.

model

Example: if you have a class DemoAdapter inside the
package com.xyz.demo, the MODEL value is:
com.xyz.demo.DemoAdapter.

The classmust be a valid adapter class i.e. it must support
the interface "com.softwareag.cis.server.IModel". This is
implicitly done when deriving your adapter class from
"com.softwareag.cis.server.Model". The class source code
may be generated by using the Code Assistant - or may
be directly coded in a development environment of your
choice.

You may use the class "DummyAdapter" for testing your
layout - before specifying your "real" class.

Sometimes
obligatory

This is the "translation reference" that is passed to the
multi language management.

translationreference

The "tranlation reference" is a logical term representing a
group of textids together with their translation. If using
the standard file based multi language management that
comes with CIS as default then a "translation reference"
represents one file containing text-ids and translations in
a comma separated format.

Translation information is loaded by the multi language
management "per translation reference". I.e. if a page links
to a certain translation reference then all the translation
information that is avaible through this reference is loaded
in one step and is also buffered.

Layout Elements4

PAGE

You can set up different scenarios: either each page may
address an own translation reference. E.g. if your page is
named "abc.xml" then it references to "abc" - as
consequence there is (per language) one abc.csv file
holding translation information for this page. If you have
a second page "def.xml" then you may define "def"
accordingly. In this case each page is independent from
the other. - On the other side you are required to translate
certain "common text-ids" mulitple times.

If you on the other hand define one translation reference
formultiple pages then you can share text-ids throughout
the various pages.

Please set up a strategy for using translation references
when starting using themulti languagemanagement. The
strategy should also include a structured way of naming
text-ids. Text-ids may only be shared in an efficient way
if it is clear what they stand for. E.g. you may names of
buttons in the followingway: "btn_save" and "btn_saveas".

cssOptionalURL of a style sheet file used for control rendering.stylesheetfile

Typically the style sheet file used for control rendering is
set dynamically e.g. the style depends on the user who is
currently logged on.When defining the style sheet file by
this property, the style sheet file is not set dynamically
but defined in a fix way for this page.

The style sheet filemust be defined as URL, relative to the
generated page. A valid value may be
"../softwareag/styles/CIS_DEFAULT.css".

If not using the "hard setting" of the style sheet file via this
property then the style sheet is determined by the runtime
in the following way:

(1) The adapter object provides for a "String getStyle()"
method that return the URL. You can override the default
method and pass back your own URL.

(2) When using the default implementation derived from
com.softwareag.cis.server.Model then the getStyle()
method accesses the CIS session context. You can set the
session's style by calling "findCISessionContext()" in your
adapter and calling "setStyle()" in the session context's
object.

cssOptionalURL of an additional style sheet file.addstylesheetfile

5Layout Elements

PAGE

You may use this additional style sheet file in order to
definemore styles than are provided in the "normal" style
sheet file. Typical situations are:

(A) Some controls offer the possibility to render defined
content by style-class definitions (e.g. inside a TEXTGRID
you can dynamically define which style-class is used for
a certain cell).

(B) If you define own controls by using the control
extension framework and if these controls require own
style classes then these style classes may be provided
inside the additional style sheet file.

By using the additional style sheet file you are able to
avoid doing manipulations to the "normal" style sheet
files that come from CIS or that are generated inside the
tool "Style Sheet Editor".

OptionalSemicolon separated list of image-URLs that are directly
preloaded in an invisible area of the page. If images are

imagestopreload

used inside a tree or a text grid then they are loaded by
dynamically generated HTML that is placed into a
corresponding area of the page. In order to optimise the
loading you can preload such images by listing them in
this property.

TheURL of the imagesmust be relative to your generated
HTML page.

Example: if your page has a treewith certain node images
then you may define: "images/nodeopened.gif"
images/nodeclosed.gif; images/nodeendnode.gif".

trueOptionalNormally a page background is in light colour (white if
using CIS_DEFAULT style sheet). CIS style sheets also
have a dark(er) grey colour to be used.

darkbackground

false

If DARKBACKGROUND is set to true then the darker
background colour is chosen. This property typically is
used if using the SUBCISPAGE tag or
ROWTABSUBPAGES tag to seamlessly integrate inner
pages into darker container areas.

OptionalThis is the id that is passed into the help management for
the page.

helpid

If a user clicks F1 inside the page and if there is no specific
context sensitive control help available (e.g. help for field)
then the help for the page is popped up.

trueOptionalSeveral CIS controls support a VISIBLEPROP property.
The VISIBLEPROP contains the binding to an adapter

visiblevalueifundefined

false

Layout Elements6

PAGE

property that decides at runtime if a control is visible or
not.

This property defines how these controls behave if there
is no implementation available for the property.

Example: the VISIBLEPROP of a CHECKBOX is binding
to a property "cbvisible" but there is not corresponding
implementation "getCbvisible". If set to "true" then all
controls with undefined visibility are displayed. If set to
"false" then they are hidden.

OptionalName of an adapter method that is invoked if the user
clicks into the page with the right mouse button and no
other control (e.g. texgrid, tree,...) handled the click so far.

contextmenumethod

trueOptionalFlag that indicates if the screen is visible within the initial
loading phase. Default is false. When using the default

immediatedisplay

falseyou see a light HTML page showing a "just loading"
image. Use property "justloadingurl" to specify a page of
choice.

OptionalComma separated list of URLs of additional javascript
libraries. Example: "../yourproject/js/yourlib.js". Used to

addjavascriptlibs

include non-CIS javascript. Example of Usage: with the
DATEINPUT control you can run own rules to convert
and validate user input.

OptionalName of an adapter method that is invoked in case the
page loses the focus to another CIS page.

flushmethod

OptionalCommentwithout any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

OptionalSemicolon separated list of classes which connect to the
server side adapter processing as adapter listeners (each
one supporting the interface IAdapterListener).

adapterlisteners

trueOptionalAdds registration code into the page that registers globally
used objects / evets etc. to the Open AHAX Hub in order

openajaxsupport

falseto potencially synchronize the co-existance of different
toolsets within one page. Only used when being familiar
with OpenAJAX aspects.

0OptionalPriority (integer) that is used to manage the page within
the CIS frame buffer. Use value "-1" to indicate that the

framebufferpriority

-1page should not be buffered at all (typically used when
having a FILEUPLOAD2 control on the page). Default is
"0". Use any other integer value to indicate higher priority.

trueOptionalIf set to 'true' then the context menu is rendered in a
central frame. This central frame can be specified via the
"popupdivframe" setting in cisconfig.

centralcontextmenu

false

trueOptionalBy default CIS framework is using hidden frame
communication (asynchronous server communication).

usexmlhttprequest

7Layout Elements

PAGE

falseUse this attribute in order to use "XMLHTTPRequests".
Typical usage iswith timer pages (to avoid seeing ongoing
communication to server on browser's statusbar). msie

mozilla

trueOptionalIf set to "true" the page will be surrounded by an
additional border.

withownborder

false

OptionalProperty of the adapter which will have a value of "true"
if some userinput in the page or one of its subpages has
been done since the last server-roundtrip.

userinputprop

Popup

100pxOptionalEach CIS page can be opened as a popup dialog. This
properties define the pixel width preferred for the page.
- See the property "popupheight" for more information.

popupwidth

200px

300px

400px

100pxOptionalEach CIS page can be opened as a popup dialog. This
property defines the pixel height preferred for the page.

popupheight

200px
A popup is typically opened by calling the
"openPopup"-method in your adapter code. If no further 300px

400px
definition is done then the popup will open in the height
that is defined by this value. You can also dynamically
manipulate the size and position of the popup by using
the Model-method "setPopupFeatures" - please read
corresponding documentation inside the Java API
documentation.

dialogLeft:
200px

OptionalIn addition to POPUPWIDTH and POPUPHEIGHT you
can control the appearance of the popup dialog in which

popupfeatures

dialogTop:
100px

the current page may be displayed. You define a string to
maintain different feature aspects, separated by
semi-colon.

edge:
sunken

center:yes|no

edge:sunken|raised
resizable:
yesresizable:yes|no

status: noscroll:yes|no

status:yes|no (to display or hide a status bar)

An example string looks as follows: "dialogLeft:100px"

Layout Elements8

PAGE

There is one special function built in by which you can
position a popup relative to its caller's window (the
dialogLeft and dialogTop definition normally refer to
absolute coordinates of the screen): by specifying
"dialogLeft: SCRX(100)px" you define that the position is
100 pixels right from the left top corner of the current
window. -Use "dialogTop: SCRY(100)px" in the sameway
for vertical positioning.

Please also pay attention to themethods "setPopupTitle()"
and "setPopupPageFeatures()" in the
com.casabac.server.Model class. By using these method
you can define popupparameters in a dynamicway inside
your adapter implementation.

Occupied

OptionalURL of the image that is displayed to indicate that the
screen is just communicating to the server. This is the

occupiedimage

image that is located in the top left corner and which by
default is a flashing hour glass.

You can specify any image, e.g. also animated GIF files.
If you want your image not to be visible in the top left
corner but "somewhere" in the screen then draw an image
with some transparent area on the left and above the image
that you want to show.

OptionalWhen the screen is busy, because the client is exchanging
information with the server, an hour glass image is

occupiedpixelheight

displayed at the top left corner. With this property you
define the pixel height of this hour glass image.

OptionalWhen the screen is busy, because the client is exchanging
information with the server, an hour glass image is

occupiedpixelwidth

displayed at the top left corner. With this property you
define the pixel width of this hour glass image.

Hot Keys

OptionalComma separated list of hot keys. A hotkey consists of a
list of keys and a method name. Separate the keys by "-"
and the method name again with a comma

hotkeys

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot keys.
Method onCtrlAltA is invoked if the user presses
Ctrl-Alt-A. Method "onEnter" is called if the user presses
the ENTER key.

Use the popup help within the Layout Painter to input
hot keys.

Loading

9Layout Elements

PAGE

OptionalURL of the page that is displayed to indicate that screen
is just loading. Typically this is a light HTML page

justloadingurl

showing a loading image of choice. Use plainHTML - not
a generated CIS page.

Layout Elements10

PAGE

2 TITLEBAR

■ Properties .. 12

11

The title bar is typically placed at the top of a page. The text in the title bar can either be set statically
inside the layout definition, or it can be dynamically resolved by a property of the corresponding
adapter.

The title bar can have a close icon (cross at the top right) and an online help icon. The close icon
always calls the method endProcess of your adapter. This method is provided by the derived
adapter class. The default implementation of the endProcess()method in the adapter class forces
the session management to release the adapter for garbage collection.

You can overwrite the method in your adapter - but do not forget to call the superclass's method
as well.

Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

trueOptionalIn the right top corner of the titlebar there is by default a
close-icon. Define "false" in this property in order to hide
this icon.

withclose

false

The close-icon calls the method "endProcess" of your
adapter. "endProcess" is implemented in the class
"com.softwareag.cis.server.Model" and by default ends the
subsession the adapter is running in. - Override this
implementation if this default implementation does not fit
to your needs.

leftOptionalHorizontal alignment of the text that is shown.align

center

right

OptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does understand
is valid.

image

Use the following options to specify the URL:

Layout Elements12

TITLEBAR

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif" will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

OptionalId that is passed to the online help management.helpid

If this "helpid" is specified then a help-icon will be
displayed in the right top corner. If clicking on the icon
then the corresponding help will show up.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

titlestyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press rightmouse-button in your browser and
select the "View source" or "View frame's source" function.

1OptionalHeight of the control in pixels.pixelheight

2

3

int-value

trueOptionalIf the text of the control containsHTML tags then these are
by default interpreted by the browser. Specifiying

straighttext

falseSTRAIGHTTEXT as "true" means that the browser will
directly render the characterswithoutHTML interpretation.

Example: if you want to output the source of an HTML
text then STRAIGHTTEXT should be set to "true".

OptionalThe text that is entered here appears as tooltip on the
close-icon on the right top border of the titlebar.

closetitle

OptionalMulti language dependent text that displays the tooltip on
the close-icon. Do not specify a CLOSETITLE if you are
specifying a CLOSETITLEID.

closetitletextid

13Layout Elements

TITLEBAR

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Binding

OptionalProperty of the server side adapter fromwhich the titlebar
text is dynamically derived.

valueprop

In situations in which the titlebar should contain some
context dependent information you specify an adapter
property to provide the text for the control. Do not use
"name" or "textid" when using this "valueprop" property.

OptionalName of an adapter property that provides the information
if this control is displayed or not. As consequence you can
control the visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

OptionalName of adapter property that provides as value the URL
of the image that is shown inside the control.

imageprop

TheURLmust either be an absoluteURL or a relativeURL.

OptionalName of adapter property that indicates if the close icon
of the titlebar is visible.

withcloseprop

The server side property needs to be of type "boolean".

Layout Elements14

TITLEBAR

3 HEADER

■ Properties .. 16

15

The header is an area in which you can place buttons, icons andmenus. The area itself is grey and
has a dark grey line at its bottom (if using the standard style sheet). The header is used to display
buttons and icons that are valid for the whole page. Typically, it is placed directly under the title
bar.

Properties

Basic

trueOptionalFlag that indicates if there is space between controls within the the header
table. Default is FALSE.

nocellspacing

false

leftOptionalHorizontal alignment of the control's content. Default is "center".align

center

right

OptionalName of an adapter property that provides the information if this control
is displayed or not. As consequence you can control the visibility of the
control dynamically.

visibleprop

The server side property needs to be of type "boolean".

trueOptionalIf set to TRUE then an additional distance will be added at the bottom of
the header. Default is FALSE.

withdistance

false

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Layout Elements16

HEADER

4 PAGEBODY

■ Properties .. 18

17

The page body is the main area in which you place the body part of your layout. The body adapts
its height to the current window's height, while elements such as TITLEBAR, HEADER and
STATUSBAR keep a constant height. If the page body's size is too small to hold its content, you
scroll through the elements that are inside the PAGEBODY.

Properties

Basic

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if the content
is exceeding the control's area ("auto"). Or scrollbars can be

hiddenshown always ("scroll"). Or scrollbars are never shown - and
the content is cut ("hidden").

Default is "auto".

autoOptionalDefinition of the horizontal scrollbar's appearance.hscroll

scrollYou can define that the scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or scrollbars

hiddencan be shown always ("scroll"). Or scrollbars are never shown
- and the content is cut ("hidden").

Default is "auto".

trueOptionalIndicates if the content of the control's area gets the full
available height.

takefullheight

false
If you use percentage sizing inside the control's area then
this propertymust be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table inwhich you place rows (ITR/TR)which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content
as consequence. By specifying "takefullheight=true" the table
itself is sized to fill themaximumheight of the available area.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

pagebodystyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

Layout Elements18

PAGEBODY

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Padding

trueOptionalDefines if there is always a small horizontal distance kept
between the border of the PAGEBODY area and its content.

horizdist

falseSet to 'false' if youwant controls in the page body to directly
start at the very left and to end at the very end - without any
distance.

Default is 'true'.

1OptionalNumber of pixelswhich youwant to keep asmargin between
the pagebody's border and its content. If you want that all

paddingleft

2contents inside your page body keeps a horizontal distance
of 50 pixels on the left then specify:

3
PADDINGLEFT = 50

int-value
ThePADDINGLEFTandPADDINGRIGHTvalues are added
in addition to the small horizontal distance which is added
via the HORIZDIST property.

1OptionalNumber of pixelswhich youwant to keep asmargin between
the pagebody's border and its content. If you want that all

paddingright

2contents inside your page body keeps a horizontal distance
of 50 pixels on the right then specify:

3
PADDINGRIGHT = 50

int-value
ThePADDINGLEFTandPADDINGRIGHTvalues are added
in addition to the small horizontal distance which is added
via the HORIZDIST property.

1OptionalNumber of pixelswhich youwant to keep asmargin between
the pagebody's border and its content. If you want that all

paddingtop

2contents inside your page body keeps a vertical distance of
50 pixels on the top then specify:

3
PADDINGTOP = 50

int-value

1OptionalNumber of pixelswhich youwant to keep asmargin between
the pagebody's border and its content. If you want that all

paddingbottom

2contents inside your page body keeps a vertical distance of
50 pixels on the bottom then specify:

19Layout Elements

PAGEBODY

3PADDINGBOTTOM = 50

int-value

Logon Form

trueOptionalDefault value is false. If set to true all controls included in
the pagebody tag will be surrounded by a form tag - only in
the generatet html page.

withformtag

false

That makes it possible to save or transfer forms.

i.e. save username and password or a complete search form.

You will also need an 'submitbutton' - please have a look at
the button control.

Layout Elements20

PAGEBODY

5 STATUSBAR/STATUSBARSSW

■ STATUSBAR .. 22
■ STATUSBARSSW ... 24
■ STATUSBAR Properties ... 26
■ STATUSBARSSW Properties ... 27

21

STATUSBAR

Normally, the status bar is located at the bottom of a page. It is a grey area (if using the standard
style sheet) where status information can be seen. The status information is derived dynamically
from properties of the adapter class. The information consists of three parts:

■ Type of the status message - whether it is an error message, a warning or a success message.
Depending on the type, a small icon is displayed to the left of the message.

■ The status message itself - the text displayed within the status message.
■ A long text for the status - text shown in a dialog when clicking on the status message.

Adapter Implementation Details

The adapter class has to support properties which provide data that are passed to the status bar.
The get methods for the default property names are:

public String getMessageType() ...
public String getMessageShortText() ...
public String getMessageLongText() ...

They are already implemented by the adapter class: normally you do not have to overwrite these
methods.

There is a method outputMessage(String type, String shortText, String longText) that
can be used from the adapter class inside your adapter implementation.

Example: In the "HelloWorld!" application, youwant to display an error message if the user clicks
the Say Hello! button and has not yet entered a name. The sayHello()method looks as follows:

public void sayHello()
{
 if (m_name == null || m_name.trim().length()== 0)
 {
 this.outputMessage("E","Please enter a user name !"," ... space for a longer ↩
text ...");
 return;
 }
 m_result = "Hello World, " + m_name + "!";
}

The method outputMessage(String type, String shortText) does not need a long message
text. In this case, the sayHello()method looks as follows:

Layout Elements22

STATUSBAR/STATUSBARSSW

public void sayHello()
{

if (m_name == null || m_name.trim().length()== 0)
{

this.outputMessage("E","Please enter a user name !");
return;

}
m_result = "Hello World, " + m_name + "!";

}

The screen including the error message looks as follows:

Three message types are available:

■ "E" for errors.
■ "W" for warnings.
■ "S" for success and informational messages.

There are corresponding constants in the Adapter class:

■ Adapter.MT_ERROR

■ Adapter.MT_SUCCESS

■ Adapter.MT_WARNING

23Layout Elements

STATUSBAR/STATUSBARSSW

STATUSBARSSW

The STATUSBARSSW control is an extension to the normal STATUSBAR control. "SSW" in the
control name stands for “subsession-wide”.

The STATUSBARSSWcontrol allows you to outputmessages in the statusbar fromany subsession,
even from a SUBCISPAGE2 control. You place the STATUSBARSSW control once, and you can
call from anywhere.

Example

In this example, the SUBCISPAGE2 control sends an outputMessage() to the STATUSBARSSW
control of the parent page.

The XML layout definition is:

<pagebody takefullheight="true">
<itr takefullwidth="true" height="100%">
<subcispage2 subcispageprop="subcisPageInfo" width="100%" height="100%">
</subcispage2>
</itr>

</pagebody>
<statusbarssw>
</statusbarssw>

Layout Elements24

STATUSBAR/STATUSBARSSW

There is no need for any special coding in order to use the STATUSBARSSW control. Both controls
use the same server API.

public void onShowMessage()
{

outputMessage(MT_SUCCESS, m_message);
}

Advantage of the STATUSBARSSW Control

The following coding would be necessary with a normal STATUSBAR control:

public void onShowMessage() // old version
{

// find the 'Outer Adapter'
StatusbarSSWAdapter outer =

(StatusbarSSWAdapter)findAdapter(StatusbarSSWAdapter.class);
// output the message
outer.outputMessage(MT_SUCCESS, m_message);
// and refresh the parent page.
refreshParent();

}

This example shows only the code which is required for a page which is nested once. A lot of ad-
ditional code would be required for further nested pages. When using the STATUSBARSSW
control, you need not worry about nesting.

When to use the STATUSBARSSW Control

If you have many pages (maybe with several included SUBCISPAGE2 controls) and you want to
have a single status bar for all of your messages, you use the STAUSBARSSW control.

If you have only a fewpages (for example, 2 pages in a frameset) and youwant to output a different
message for each page, you have to use the normal STATUSBAR control. For example:

25Layout Elements

STATUSBAR/STATUSBARSSW

STATUSBAR Properties

Basic

OptionalName of the adapter property holding the information about the type of the
statusmessage. The type defines the image that is rendered at the beginning
of the message.

typeprop

Currently there are 3 supported values that can be passed back from the
property: E for error, W for warning, S for success.

The default property name is messageType provided by the Model-class,
from which you derive your adapter class.

Please pay attention: changing this property means that you also have to
override the "outputMessage(...)" methods inside your adapter accordingly.

OptionalName of the adapter property providing the message text that is visible
inside the status bar. The default property name is messageShortText and is
provided by the Model-class.

shorttextprop

Please pay attention: changing this property means that you also have to
override the "outputMessage(...)" methods inside your adapter accordingly.

OptionalName of the adapter property providing the long message text. The long
text pops up if clicking onto the short text mesage. The default property
name is messageLongText and is provided by the Model-class.

longtextprop

Please pay attention: changing this property means that you also have to
override the "outputMessage(...)" methods inside your adapter accordingly.

trueOptionalIf the text of the control contains HTML tags then these are by default
interpreted by the browser. Specifiying STRAIGHTTEXT as "true" means

straighttext

Layout Elements26

STATUSBAR/STATUSBARSSW

falsethat the browser will directly render the characters without HTML
interpretation.

Example: if you want to output the source of an HTML text then
STRAIGHTTEXT should be set to "true".

trueOptionalIf set to TRUE then an additional distance will be added at the top of the
statusbar. Default is FALSE:

withdistance

false

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later on used
within your test tool in order to do the object identification

testtoolid

STATUSBARSSW Properties

Basic

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later on usedwithin
your test tool in order to do the object identification

testtoolid

27Layout Elements

STATUSBAR/STATUSBARSSW

28

II Working with Containers

Containers are areas on your screen that can hold controls (such as fields, labels, etc.) or other
container(s). Containers are the preferred way to structure elements inside your page body.

You already saw the ROWAREA container in the "Hello World!" example.

The information provided in this part is organized under the following headings:

Positioning of Controls inside a Container

Defining the Width of Controls inside a Container

Vertical Sizing of Containers and Controls

Overview of Different Containers

ROWAREA and COLAREA

ROWAREAWITHHEADER

ROWTABAREA and COLTABAREA

ROWTABLE0 and COLTABLE0

COLDYNAVIS and ROWDYNAVIS

ROWDIV and INNERDIV

ROWSCROLLAREA

HSPLIT and VSPLIT

HLINE and VLINE

Performance Optimization with Containers

29

30

6 Positioning of Controls inside a Container

■ Row Types - TR and ITR ... 32
■ Some More Details on ITR .. 76
■ TR Properties ... 34
■ ITR Properties .. 36

31

Containers internally build an HTML table in which you place rows. Inside each row you place
the controls - or again container(s).

Row Types - TR and ITR

There are two types of rows:

■ The TR row is a normal table row. If you place more table rows - one under the other - inside
one container, the columns inside the table row are all synchronized. See the example below in
order to understand what “synchronized” means.

Since controls are placed into columns, all controls are positioned in a synchronized way.
■ The ITR row is a special table row. If you placemore ITR table rows - one under the other - inside
one container, each row has an independent set of columns; i.e. columns are not synchronized.

Have a look at the following XML layout description:

<rowarea name="With TR">
<tr>

<label name="First Name" width="100">
</label>
<field valueprop="fname" width="200">
</field>

</tr>
<tr>

<label name="Last Name" width="200">
</label>
<field valueprop="lname" width="200">
</field>

</tr>
</rowarea>
<rowarea name="With ITR">

<itr takefullwidth="true">
<label name="First Name" width="100px">
</label>
<field valueprop="fname" width="200">
</field>

</itr>
<itr takefullwidth="true">

<label name="Last Name" width="200">
</label>
<field valueprop="lname" width="200" length="20">
</field>

</itr>
</rowarea>

Layout Elements32

Positioning of Controls inside a Container

Note that each control (label, button, fields, etc.) is placed into one column of its own. If you have
many controls inside one row - and have several rows one below the other - synchronized columns
(using TR rows) sometimes cause funny results.

What is better, TR or ITR? Of course, it depends. The recommendation is:

■ Use ITR as default. Using ITR, each row is defined independently from other rows that are po-
sitioned in the same container. You can change the number of controls (i.e. you internally change
the number of managed columns) in one row without interdependencies to other rows.

■ Only use TR if you really want to synchronize columns. A typical area of usage is inside the
gridmanagement (ROWTABLEAREA2 control): in a grid you explicitly desire to have synchron-
ized columns inside the grid's table.

Some More Details on ITR

There are two ROWAREA containers. The first one uses TR rows, the second one uses ITR rows.
The label for First Name has a width of 100 pixels, the label for Last Name has a width of 200
pixels. Now look at the result:

Inside the TR rows, all columns are synchronized - while in the ITR rows, each row is individually
arranged.

How does the ITR control work internally? For each row, an individual table is opened with one
row. Example: you define the following area in the XML layout definition:

<area>
<itr>

...

...
</itr>
<itr>

...

...
</itr>

</area>

33Layout Elements

Positioning of Controls inside a Container

The generated HTML looks like this:

<table>
<tr>

<td colspan="100">
<table>

<tr>
...
...

</tr>
</table>

</td>
</tr>
<tr>

<td colspan="100">
<table>

<tr>
...
...

</tr>
</table>

</td>
</tr>

</table>

Inside each row there is a table definition of its own, holding exactly one row.

You can define a takefullwidth propertywith the ITRdefinition, defining thewidth of the internal
table of an ITR tag. If the takefullwidth property is set to "true", this means that the internal table
that is kept per row is internally opened to use 100% of the availablewidth.Without any definition,
the table will be as big as it is required by its content.

TR Properties

Basic

OptionalName of an adapter property that provides the
information if this control is displayed or not. As

visibleprop

consequence you can control the visibility of the control
dynamically.

The server side property needs to be of type "boolean".

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200

Layout Elements34

Positioning of Controls inside a Container

(A) You do not define a height at all. As consequence
the height of the control will follow the height of its
content.

250

300

250(B) Pixel sizing: just input a number value (e.g. "20").
Please note: the row content may overrule this setting.

400The height setting "100px" of an embedded textboxwill
beat a row height of "50px". 50%

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizingwill only bring

100%

up correct results if the parent element of the control
properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent elementmay itself define a height of "100%".
If the parent element does not specify a width then the
rendering result may not represent what you expect.

trueOptionalFlag that indicates if the grid line shows alternating
background color (like rowswithin a textgrids). Default

withalterbackground

falseis false. Please note: controls inside the rowmust have
transparent background. In case of the FIELD control
simply set property TRANSPARENTBACKGROUND
to true.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

trstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

35Layout Elements

Positioning of Controls inside a Container

ITR Properties

Basic

trueOptionalIf set to "true" then the control takes all available horizontal
width as its width. If set to "false" then the control does not
have a predefined width but grows with its content.

takefullwidth

false

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the height
of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines a
height this control can reference. If you specify this control to

100%have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does
not specify awidth then the rendering resultmay not represent
what you expect.

leftOptionalAlignment of the content of the ITR row.align

centerBackground: the ITR as independent table row renders a table
into its content area. Inside this table a row is opened in which
the controls are placed. right

This table normally is starting on the left of the ITR row. With
this ALIGN property you can explicitly define the alignement
of the table.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is
part of a row (e.g. ITR or TR). Sometimtes the size of the column

bottomis bigger than the size of the control. In this case the "align"
property specify the position of the control inside the column.

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it

fixlayout

falserequires to have specified the height and thewidth (if available
as property) of the control.

Layout Elements36

Positioning of Controls inside a Container

If setting fixlayout to "true" then the control's area is defined
as areawhich is not sized dependent on its content (as normally
donewith table rendering). Instead the size is predefined from
outside without letting the browser "look" into the content of
the area. If the content is not fitting into the area then it is cut.

You typically use this control if the content of the control's area
is flexibly sizable. E.g. if the content (e.g. a TEXTGRID control)
is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

OptionalCommentwithout any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Visibility

OptionalName of an adapter property that provides the information if
this control is displayed or not. As consequence you can control
the visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

Appearance

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

itrstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

OptionalCSS style class definition that is directly passed into this control.itrclass

The style class can be either one which is part of the "normal"
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet file
that you may reference via the ADDSTYLESHEET property
of the PAGE tag.

37Layout Elements

Positioning of Controls inside a Container

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

tablestyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

Binding

OptionalName of server side property/data element that directly
controls the style of the control.

itrstyleprop

Layout Elements38

Positioning of Controls inside a Container

7 Defining the Width of Controls inside a Container

■ Controlling the Width of Controls .. 40
■ HDIST and VDIST Controls ... 42
■ HDIST Properties .. 44
■ VDIST Properties .. 45
■ rowspan and colspan Definitions .. 46
■ CELLSPAN Control .. 46
■ CELLSPAN Properties .. 48
■ Rules for Positioning Controls inside Containers .. 50

39

As mentioned in the previous section, each control is automatically embedded into a column.
Consequently, the width of the control is, on the one hand, determined by the size of the control
itself - on the other hand, the column is part of a table row and also follows the table row's sizing.

Controlling the Width of Controls

Every control that allows width sizing offers a corresponding width property. In this property,
you put either an absolute pixel value (width="100") or a percentage value (width="50%"). The
rendering follows the strategy:

■ If the width of a control is specified as a pixel value, the width is fixed: if the browser screen is
too small to display all controls, the controls will not be reduced but keep their pixel size. De-
pending on your settings in the PAGEBODY tag (hscroll property), the displayed elements
will be cut off or will be accessible by a scroll bar.

■ If the width of a control is defined as a percentage value (width="50%"), HTML renders the
control accordingly. If the screen is too small to show all controls, the browser will try to reduce
elements according to the table rendering rules.

If you define the width of a control as a percentage value, the width relates to

■ the width of the area in case of using TR rows, or to
■ thewidth definition of the ITR row if using ITR rows. Thiswidth definition can either be absolute
or percentage-based.

The following example shows a page in which controls hold percentages values for the width:

<itr takefullwidth="true">
<label name="Factor1" width="20%">
</label>
<field valueprop="factor1" width="80%">
</field>

</itr>
<itr takefullwidth="true">

<label name="Factor2" width="20%">
</label>
<field valueprop="factor2" width="60%">
</field>
<hdist width="20%">
</hdist>

The HTML page looks as follows - the size of the controls changes according to their percentage
definition:

Layout Elements40

Defining the Width of Controls inside a Container

A similar screen is now built using absolutely defined pixel sizes:

<itr takefullwidth="false">
<label name="Factor1" width="100">
</label>
<field valueprop="factor1" width="200">
</field>

</itr>
<itr takefullwidth="true">

<label name="Factor2" width="100">
</label>
<field valueprop="factor2" width="150">
</field>

</itr>

In the ITR definition, there is no width specification - therefore, the controls will occupy exactly
the space they require. The result looks as follows - the size of the controls will not change when
changing the screen size:

Pay attention to what was said previously: Controls are placed into columns; columns are placed
into table rows; and table rows are placed into containers. If you place a control into a row and
define this control to have a width of 100%, then the elements “above” have to take care of
providing the space to which the control relates its "100%". More concrete: If you place a FIELD
control with a width of 100% into an ITR row that does not provide for a width of 100% itself
(using the property takefullwidth), then the result will be a minimum-width field (100% of
nothing).

Pixel sizing represents a bottom-up sizing approach: a control defines its width - all the other
controls around (e.g. the container in which the control is placed) have as a consequence to adapt
to the control's size: if the control is defined to occupymore space, then the container has to follow
and provide for the space.

Percentage sizing represents a top-down sizing approach: the inner control tells how many per-
centages of the space that is granted from the outer control is occupied. As a consequence the
outer control needs to define its size properly. Either the outer control itself defines a pixel size or
it itself defines a percentage size - thus passig the respsonsibility to the next higher level. This
might end up in a casacading defintion of “percentage sizing” - up to the PAGEBODY control,
which is the outer-most container of a page.

There are four commonly used properties for sizing:

41Layout Elements

Defining the Width of Controls inside a Container

■ width/height - this is the quite obvious definition as explained in this section.
■ takefullwidth/takefullheight - this is an equivalent to width="100%" and height="100%".

HDIST and VDIST Controls

HDIST means “horizontal distance”. VDIST means “vertical distance”.

HDIST Control

The HDIST control represents a distance to be placed between controls. The distance itself holds
a certain width that again can either be a pixel width or a percentage width.

The following example shows a table row into which a town and a zip code is put:

Between the two FIELD controls, you see a small distance that separates the fields fromone another.
The corresponding XML layout definition is:

<rowarea name="HDIST Example">
<itr>

<label name="Zip Code / Town" width="120">
</label>
<field valueprop="zipcode" width="80">
</field>
<hdist width="5">
</hdist>
<field valueprop="town" width="200">
</field>

</itr>
</rowarea>

The HDIST control is also very useful for percentage-based sizing of widths. If you want a control
to occupy 50% of the available width, you have to “fill the gap” in the following way:

The corresponding XML layout definition is:

Layout Elements42

Defining the Width of Controls inside a Container

<rowarea name="HDIST Example">
<itr height="100%">

<label name="First Name" width="120">
</label>
<field valueprop="fname" width="50%">
</field>
<hdist width="50%">
</hdist>

</itr>
</rowarea>

Pay attention: when using percentage sizing, then you should take care of filling the "100%" by
the controls inside the row. Otherwise, the browser will distribute the remaining space to its
columns - i.e. the controls will not be positioned the way you expect.

VDIST Control

The VDIST control is the counterpart of the HDIST control - in vertical direction. The following
example shows a scenario inwhich the line containing the BUTTONcontrol keeps a vertical distance
of 10 pixels from the lines containing the FIELD controls:

The layout definition is:

<rowarea name="VDIST Example">
<itr height="100%">

<label name="First Name" width="120">
</label>
<field valueprop="fname" width="200">
</field>

</itr>
<itr height="100%">

<label name="Last Name" width="120">
</label>
<field valueprop="lname" width="200">
</field>

</itr>
<vdist height="10">
</vdist>
<itr>

<hdist width="120">
</hdist>

43Layout Elements

Defining the Width of Controls inside a Container

<button name="Search" method="onSearch">
</button>

</itr>
</rowarea>

Note that an HDIST control is used in the line containing the BUTTON control to align the button
to the fields.

HDIST Properties

Basic

100OptionalWidth of the HDIST control, either in pixels or as percentage value.width

120If no width is defined then a default width of 2 pixels is assigned.

140

160

180

200

50%

100%

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of an adapter property that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

The server side property needs to be of type "boolean".

Layout Elements44

Defining the Width of Controls inside a Container

VDIST Properties

Basic

100OptionalHeight of the VDIST control, either in pixels or as
percentage value. If no width is defined then a default
width of 3 pixels is assigned.

height

150

200

250

300

250

400

50%

100%

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

backgroundstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press rightmouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

45Layout Elements

Defining the Width of Controls inside a Container

rowspan and colspan Definitions

Each control has a colspan and rowspan property that is "1" by default. This definition is directly
transferred to the column definition that is placed around the control.

Example:

<tr>
<control colspan="2">
</control>

</tr>

If you specify the above definition, the created HTML code looks like this:

<tr>
<td colspan="2" rowspan="1">

... control-specific HTML code ...
</td>

</tr>

The usage of rowspan and colspan only makes sense in scenarios in which you define multiple
rows inside one container and if you use TR rows at the same time. You do not have to pay attention
to them if working in ITR rows.

Again: first check if the TR way of arranging controls is really the best approach - compared to
the ITR approach. Using TR means you have to “fight” with colspan and rowspan definitions in
order to properly lay out your controls. With ITR, each row is independently defined from its
neighbor rows.

CELLSPAN Control

Inside one row, you can place controls or nested containers. Containers again allow you to specify
new rows inside the container.

There is a special control, the CELLSPAN control. With the CELLSPAN control, you can quickly
define one cell inside a row of a container to place other controls. The CELLSPAN control has a
width property to specify the width of its inner content.

Have a look at the following example:

Layout Elements46

Defining the Width of Controls inside a Container

<rowarea name="Cellspan Example">
<tr>

<label name="Factor 1" width="25%">
</label>
<field valueprop="factor1" width="25%">
</field>
<hdist></hdist>
<cellspan width="50%">

<label name="Factor 1" width="50%">
</label>
<field valueprop="factor1" width="50%">
</field>

</cellspan>
</tr>
<tr>

<label name="Factor 2" width="25%">
</label>
<field valueprop="factor2" width="25%">
</field>
<hdist></hdist>
<cellspan width="50%">

<checkbox valueprop="activated" width="10%">
</checkbox>
<label name="Activated" width="40%" asplaintext="true">
</label>
<checkbox valueprop="generated" width="10%">
</checkbox>
<label name="Generated" width="40%" asplaintext="true">
</label>

</cellspan>
</tr>

</rowarea>

Each TR row contains one CELLSPAN definition with a width of 50%. The inner content of the
CELLSPAN definitions is completely different between the rows:

You could add controls to theCELLSPANdefinition in the first rowwithout any implications inside
the second row. The CELLSPAN control internally operates similar to the ITR control: it builds a
table on its own and decouples its content from the surrounding table rendering.

47Layout Elements

Defining the Width of Controls inside a Container

CELLSPAN Properties

Basic

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow thewidth that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
awidth this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
controlwill be renderedwith its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

Layout Elements48

Defining the Width of Controls inside a Container

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

OptionalColspan property name.colspanprop

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

cellstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

49Layout Elements

Defining the Width of Controls inside a Container

OptionalCSS style class definition that is directly passed into this
control.

backgroundclass

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that youmaintain
with the style sheet editor) - or it can be one of an other
style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Rules for Positioning Controls inside Containers

This is a collection of rules you should consider when positioning controls inside containers:

■ Make up your mind where to use relative percentage values or absolute pixel definitions.
■ Do not mix percentage and pixel values inside one container.
■ Internally, ApplicationDesigner controls aremapped to theHTML tags TABLE, TR and TD. When
developing, you should have in mind the normal HTML table management.

■ Structure your container not as one big container holding one complex table, each row holding
a lot of controls. Instead, use the possibility to define nested containers or CELLSPAN controls
in order to structure your layout.

Layout Elements50

Defining the Width of Controls inside a Container

8 Vertical Sizing of Containers and Controls

■ Vertical Pixel Sizing ... 52
■ Vertical Percentage Sizing .. 53
■ Finishing the Example .. 55

51

Nearly all controls which can be sized offer vertical sizing by a corresponding height property.
You can set the value of this property either as a pixel value or as a percentage value.

Vertical Pixel Sizing

This is the default. Controls either occupy their standard height or the height is explicitly defined
in pixels. The whole page is sized from the bottom to the top.

Look at the following example:

<pagebody>
<rowarea name="Comment Input">

<itr>
<label name="Text" width="100">
</label>
<text valueprop="comment" width="200" height="200">
</text>

</itr>
<vdist>
</vdist>
<itr>

<hdist width="100">
</hdist>
<button name="Clear" method="onClear">
</button>

</itr>
</rowarea>

</pagebody>

The corresponding screen looks as follows:

Layout Elements52

Vertical Sizing of Containers and Controls

The vertical size of the ROWAREA is exactly as big as required by its content. The TEXT control
is defined to be 200 pixels high.

Vertical Percentage Sizing

Use the same example, but this time the size of the TEXT control should be as big as possible -
depending on the size of the browser window. It should take the full available height.

The XML layout definition looks as follows:

<pagebody takefullheight="true">
<rowarea name="Comment Input" height="100%">

<itr height="100%">
<label name="Text" width="100">
</label>
<text valueprop="comment" width="200" height="100%">
</text>

</itr>
<vdist>
</vdist>
<itr>

<hdist width="100">
</hdist>
<button name="Clear" method="onClear">

53Layout Elements

Vertical Sizing of Containers and Controls

</button>
</itr>

</rowarea>
<vdist>
</vdist>

</pagebody>

The TEXT control now occupies a height of 100%. However, the definition of the whole size of the
page is passed down from the PAGEBODY to the control:

■ In the PAGEBODY, the property takefullheight is set to "true". This means that the content
of the page body gets passed 100% of the available height.

■ On the next level, the ITR row - in which the TEXT control is placed - is defined to have a height
of "100%". This means it tries to grab as much height as possible. On the same level, there is also
a VDIST (vertical distance) control and another ITR row - with no height defined. This means
that these controls get as much height as they require due to their content - but the whole re-
maining vertical space is assigned to the first ITR row with the HEIGHT of "100%".

The result page looks as follows:

Layout Elements54

Vertical Sizing of Containers and Controls

By changing the size of the browser window, the height of the whole control arrangement will
follow accordingly.

You see that sizing by percentage values means that you have to think from top to bottom - just
the opposite direction as you think with pixel values. This is nothing new for you if you are used
to work with normal HTML tables - in fact, everything that is done below the diverse container
controls is done by table rendering.

Conclusion: The example shows you that the height property of controls can be defined as a
percentage value - but needs an outside reference to depend on. Some of the controls, such as the
PAGEBODY, do not offer explicitly a height property but only a property takefullheight that
can be set to "true". This is equivalent to a definition of HEIGHT="100%".

Finishing the Example

This has nothing to dowith vertical sizing, butwith horizontal sizing.We cannot finish the example
without having changed it also in a way that it occupies the full available horizontal width. The
layout definition now looks as follows:

<pagebody takefullheight="true">
<rowarea name="Comment Input" height="100%">

<itr takefullwidth="true" height="100%">
<label name="Text" width="100">
</label>
<text valueprop="comment" width="100%" height="100%">
</text>

</itr>
<vdist>
</vdist>
<itr>

<hdist width="100">
</hdist>
<button name="Clear" method="onClear">
</button>

</itr>
</rowarea>
<vdist>
</vdist>

</pagebody>

The width property of the TEXT control is set to "100%". Similar to the vertical heightmanagement,
the available width is passed from the ITR row definition above - which occupies 100% of the
availablewidth inside the ROWAREA. The ROWAREAalways occupies thewhole availablewidth
- it does not require an explicit width definition.

The result is now:

55Layout Elements

Vertical Sizing of Containers and Controls

Layout Elements56

Vertical Sizing of Containers and Controls

9 Overview of Different Containers

■ Different Kind of Containers ... 58
■ Row Containers .. 58
■ Column Containers .. 59
■ Row and Column Containers in Combination .. 60
■ Nesting Containers .. 61

57

Different Kind of Containers

Currently, there are the following types of containers:

■ ROWAREA and COLAREA
These are containers holding a title. The graphic area represented by the container is surrounded
by a border. The content of the area container can be reduced by clicking on the title - and resized
by clicking again on the title.

■ ROWTABAREA and COLTABAREA
These are containers holding different pages (TABPAGE elements) which can be toggled.

■ ROWTABLE0 and COLTABLE0
These are containers you do not see; i.e. a container does not have any borders or any special
coloring. Use it just for arranging elements inside the container.

■ ROWDYNAVIS and COLDYNAVIS
This is a container that is the same as the ROWTABLE0 or COLTABLE0 container but with an
additional feature: You can control the visibility of thewhole container dynamically by an adapter
property. Use this container if youwant to display or hide a certain area of your screen depending
on some business logic.

A typical example is an address management: the user enters an address located in the United
States. Therefore, an additional area has to appear inwhich the user enters the state information.
For other countries, this area is not required and should not be visible.

Row Containers

The containers have a row implementation and a column implementation.

Row containers occupy the whole available width they can obtain. They are placed directly in
other containers. You can place several row containers inside one container. Therefore, they are
arranged one below the other.

Example:

<pagebody>
<rowarea name="Area 1">
</rowarea>
<rowarea name="Area 2">
</rowarea>
<rowarea name="Area 3">
</rowarea>

</pagebody>

Layout Elements58

Overview of Different Containers

The above XML layout produces the following HTML page:

Column Containers

Column containers are placed inside rows, i.e. into TR rows or ITR rows. You can place several
column containers inside one row. Therefore, they are arranged in away that one column container
follows the other horizontally.

Example:

<pagebody>
<itr width="100%">

<colarea name="Area 1" width="33%">
</colarea>
<hdist>
</hdist>
<colarea name="Area 2" width="33%">
</colarea>
<hdist>
</hdist>
<colarea name="Area 3" width="33%">
</colarea>

</itr>
</pagebody>

The above XML layout produces the following HTML page:

With column containers, you have to specify the width (either as a pixel value or as a percentage
value) of the container. Note that - if using percentage widths - you have to place them into an
ITR row that itself occupies the whole available width (itr width="100%").

59Layout Elements

Overview of Different Containers

Row and Column Containers in Combination

It is possible to use row and column containers in combination. The following example combines
the two examples shown above.

<pagebody>
<rowarea name="Area1">
</rowarea>
<rowarea name="Area 2">
</rowarea>
<rowarea name="Area 3">
</rowarea>
<itr width="100%">

<colarea name="Area 1" width="33%">
</colarea>
<hdist>
</hdist>
<colarea name="Area 2" width="33%">
</colarea>
<hdist>
</hdist>
<colarea name="Area 3" width="33%">
</colarea>

</itr>
</pagebody>

The HTML page looks as follows:

Layout Elements60

Overview of Different Containers

Nesting Containers

It is possible to nest containers - one into another - in any way. Example:

<pagebody>
<rowarea name="Level 1">

<rowarea name="Level 2">
<rowarea name="Level 3">

<itr width="100%">
<colarea name="Left" width="50%">
</colarea>
<hdist>
</hdist>
<colarea name="Right" width="50%">
</colarea>

</itr>
</rowarea>

</rowarea>
</rowarea>

</pagebody>

The above XML code produces the following HTML page:

61Layout Elements

Overview of Different Containers

62

10 ROWAREA and COLAREA

■ ROWAREA Properties .. 64
■ COLAREA Properties ... 70

63

The ROWAREA or COLAREA container represents an area surrounded by a border and which
may have a title text. By clicking on the title of such a control, the inner content is hidden (the
ROWAREA or COLAREA is “folded”).

ROWAREA Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please
do not specify the name when using the multi

name

language management - but specify a "textid"
instead.

Sometimes
obligatory

Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

textid

Do not specify a "name" inside the control if
specifying a "textid".

OptionalNameof adapter property that provides as value
the text that is shown inside the control.

nameprop

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with

250its default height. If the control is a container

300
control (containing) other controls then the
height of the control will follow the height of its
content. 250

(B) Pixel sizing: just input a number value (e.g.
"20").

400

50%
(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a height
this control can reference. If you specify this
control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

Layout Elements64

ROWAREA and COLAREA

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Visibility

trueOptionalThe "folding"-function that is available by
clicking on the title of the area can be switched
off ("false"). "True" is the default.

foldable

false

OptionalName of adapter property that dynamically
controls whether clicking on the title of the area
will fold/unfoald this area.

foldableprop

Valid values provided by the adapter property
are TRUE (=foldable) and FALSE(=not foldable).

OptionalName of adapter property that controlswhether
the content of the ROWAREA is folded (true)
or displayed (false).

foldedprop

By using this property you can dynamically
control the "folded"-status of the control by your
adapter object.

OptionalName of an adapter property that provides the
information if this control is displayed or not.

visibleprop

As consequence you can control the visibility
of the control dynamically.

The server side property needs to be of type
"boolean".

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronizationwith
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You

65Layout Elements

ROWAREA and COLAREA

use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is
set to FLUSH="server" then you can specify an

flushmethod

explicit method to be called when the user
updates the content of the control. By doing so
you can distinguish on the server side from
which control the flush of data was triggered.

Appearance

OptionalURL of image that is displayed inside the
control. Any image type (.gif, .jpg, ...) that your
browser does understand is valid.

image

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

OptionalNameof adapter property that provides as value
the URL of the image that is shown inside the
control.

imageprop

The URL must either be an absolute URL or a
relative URL.

trueOptionalThe control by default renders some blank
vertical space (2 pixels) on top of its area.

withtoppadding

falseReason: if you vertically arrange one
ROW/COLAREA after the other then
automatically some distance is put between.

By specifying "false" you can avoid this
behaviour. "

trueOptionalThe control normally renders a black border
around its area. With the properties

withleftborder

falseWITHLEFTBORDER, WITHRIGHTBORDER
and WITHBOTTOMBORDER you can avoid
this.

Reason behing: somtimes you want a
ROWAREA/COLAREA to be used as

Layout Elements66

ROWAREA and COLAREA

"neighbour" of other ROWAERA/COLAREA
controls. In this case one of the "neighbours" has
to avoid the rendering of border lines -
otherwise two border lines will be rendered.

trueOptionalSee description of WITHLEFTBORDER
property.

withtopborder

false

trueOptionalSee description of WITHLEFTBORDER
property.

withrightborder

false

trueOptionalSee description of WITHLEFTBORDER
property.

withbottomborder

false

1OptionalNumber of pixels between the left border and
the area's content. Default is 5 pixels.

paddingleft

2

3

int-value

1OptionalNumber of pixels between the right border and
the area's content. Default is 5 pixels.

paddingright

2

3

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into
this control.

areastyle

color: #0000FFWith the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

67Layout Elements

ROWAREA and COLAREA

background-color:
#FF0000

OptionalCSS style definition that is applied to the content
part of the ROWAREA control.

contenttablestyle

color: #0000FF

font-weight: bold

trueOptionalThe title of the area by default can be used by
the user to hide/show the area's content. In order

notabstop

falseto also reach this title with the tab-key is is part
of the normal tab-sequence of a page.

Set this property to "true" if you do not want to
make the title reachable by tab-key. As
consequnece hiding/showing will only be
available by mouse-clicking on the title.

trueOptionalThe fixlayout property is important for saving
rendering performance inside your browser. To

fixlayout

falsebecome effective it requires to have specified
the height and the width (if available as
property) of the control.

If setting fixlayout to "true" then the control's
area is defined as area which is not sized
dependent on its content (as normally donewith
table rendering). Instead the size is predefined
from outsidewithout letting the browser "look"
into the content of the area. If the content is not
fitting into the area then it is cut.

You typically use this control if the content of
the control's area is flexibly sizable. E.g. if the
content (e.g. a TEXTGRID control) is following
the size of the container.

When using vertical percentage based sizing
you should pay attention to set the
fixlayout-property to "true" as often as possible.
- The browser as consequence will be much
faster in doing its rendering because a screen
consists out of "building blocks" with simple to
calculate sizes.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

Layout Elements68

ROWAREA and COLAREA

10

32767

trueOptionalThe control by default renders some blank
vertical space (3 pixels) on bottomof the content
area.

withcontenttoppadding

false

By specifying "false" you can avoid this
behaviour.

trueOptionalThe control by default renders some blank
vertical space (3 pixels) on bottomof the content
area.

withcontentbottompadding

false

By specifying "false" you can avoid this
behaviour.

trueOptionalThe animation of the controls can be switched
off! Please take a look in your cisconfig.xml file.

withfadedtoggling

falseSet animatecontrols="true" (default) if you
generally want to animate all of your controls.

The rowarea control has a seperate switch
(withfadedtoggling = true/false) to (de)activate
the 'FadedToggling' animation especially for
this single rowarea control.

Notice: Entering true or false into the
withfadedtoggling attribute overwrites the
general animatecontrols setting !

OptionalSome controls offer the possibility to define style
variants. By this style variant you can address

stylevariant

different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant"
property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

trueOptionalDefault value is 'true'. If set to 'false' the titlerow
is rendered at the bottom of this area.

titlerowontop

false

OptionalA text that is displayed as tooltip of the toggle
image.

toggleimgtitle

69Layout Elements

ROWAREA and COLAREA

OptionalMulti language dependent text that is displayed
as tooltip of the toggle image.

toggleimgtitletextid

Do not specify a "toogleimagetitle" inside the
control if specifying a "toggleimagetextid".

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

COLAREA Properties

The properties of COLAREA are very similar to those of ROWAREA.

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please
do not specify the name when using the multi

name

language management - but specify a "textid"
instead.

Sometimes
obligatory

Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

textid

Do not specify a "name" inside the control if
specifying a "textid".

OptionalNameof adapter property that provides as value
the text that is shown inside the control.

nameprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define thewidth:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow thewidth that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%

Layout Elements70

ROWAREA and COLAREA

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing

100%

will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

trueOptionalIndicates if the content of the control's area gets
the full available height.

takefullheight

false
If you use percentage sizing inside the control's
area then this property must be switched to
'true'. If you use no explicit vertical sizing at all
- or you use vertical pixel sizing for your
controls - the property must be switched to
'false'.

Background information: container control's
internally open up a table in which you place
rows (ITR/TR) which then hold controls (e.g.
LABEL/FIELD). The table that is opened up
normally has no explicit height and growswith
its content as consequence. By specifying
"takefullheight=true" the table itself is sized to
fill the maximum height of the available area.

OptionalURL of image that is displayed inside the
control. Any image type (.gif, .jpg, ...) that your
browser does understand is valid.

image

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

71Layout Elements

ROWAREA and COLAREA

OptionalNameof adapter property that provides as value
the URL of the image that is shown inside the
control.

imageprop

The URL must either be an absolute URL or a
relative URL.

trueOptionalThe fixlayout property is important for saving
rendering performance inside your browser. To

fixlayout

falsebecome effective it requires to have specified
the height and the width (if available as
property) of the control.

If setting fixlayout to "true" then the control's
area is defined as area which is not sized
dependent on its content (as normally donewith
table rendering). Instead the size is predefined
from outsidewithout letting the browser "look"
into the content of the area. If the content is not
fitting into the area then it is cut.

You typically use this control if the content of
the control's area is flexibly sizable. E.g. if the
content (e.g. a TEXTGRID control) is following
the size of the container.

When using vertical percentage based sizing
you should pay attention to set the
fixlayout-property to "true" as often as possible.
- The browser as consequence will be much
faster in doing its rendering because a screen
consists out of "building blocks" with simple to
calculate sizes.

trueOptionalThe control normally renders a black border
around its area. With the properties

withleftborder

falseWITHLEFTBORDER, WITHRIGHTBORDER
and WITHBOTTOMBORDER you can avoid
this.

Reason behing: somtimes you want a
ROWAREA/COLAREA to be used as
"neighbour" of other ROWAERA/COLAREA
controls. In this case one of the "neighbours" has
to avoid the rendering of border lines -
otherwise two border lines will be rendered.

trueOptionalSee description of WITHLEFTBORDER
property.

withtopborder

false

Layout Elements72

ROWAREA and COLAREA

trueOptionalSee description of WITHLEFTBORDER
property.

withrightborder

false

trueOptionalSee description of WITHLEFTBORDER
property.

withbottomborder

false

1OptionalNumber of pixels between the left border and
the area's content. Default is 5 pixels.

paddingleft

2

3

int-value

1OptionalNumber of pixels between the right border and
the area's content. Default is 5 pixels.

paddingright

2

3

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into
this control.

areastyle

color: #0000FFWith the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

background-color:
#FF0000

OptionalCSS style that is applied to the content are of
the COLAREA control.

contenttablestyle

color: #0000FF

font-weight: bold

73Layout Elements

ROWAREA and COLAREA

trueOptionalThe control by default renders some blank
vertical space (3 pixels) on bottomof the content
area.

withcontenttoppadding

false

By specifying "false" you can avoid this
behaviour.

trueOptionalThe control by default renders some blank
vertical space (3 pixels) on bottomof the content
area.

withcontentbottompadding

false

By specifying "false" you can avoid this
behaviour.

trueOptionalDefault value is 'true'. If set to 'false' the titlerow
is rendered at the bottom of this area.

titlerowontop

false

OptionalSome controls offer the possibility to define style
variants. By this style variant you can address

stylevariant

different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant"
property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

trueOptionalThe control by default renders some blank
vertical space (2 pixels) on top of its area.

withtoppadding

falseReason: if you vertically arrange one
ROW/COLAREA after the other then
automatically some distance is put between.

By specifying "false" you can avoid this
behaviour. "

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

Layout Elements74

ROWAREA and COLAREA

11 ROWAREAWITHHEADER

■ Simple Example .. 76
■ ROWAREAWITHHEADER Properties .. 77
■ ROWAREAHEADER Properties ... 80
■ ROWAREABODY Properties ... 81

75

This container represents an area surrounded by a border which may have a title text. By clicking
on the title, the inner content is hidden (the container is “folded”). You can place icons (ICON,
ICONLIST) into the header line (ROWAREAHEADER). Other content is placed into the
ROWAREABODY container.

Simple Example

<rowareawithheader>
<rowareaheader name="Note">

<hdist width="20">
</hdist>
<icon image="../HTMLBasedGUI/images/cut.gif" method="onCut">
</icon>
<hdist width="6">
</hdist>
<icon image="../HTMLBasedGUI/images/copy.gif" method="onCopy">
</icon>
<hdist width="6">
</hdist>
<icon image="../HTMLBasedGUI/images/paste.gif" method="onPaste">
</icon>

</rowareaheader>
<rowareabody>

<itr takefullwidth="true">
<text valueprop="text" width="100%" rows="5">
</text>

</itr>
</rowareabody>

</rowareawithheader>

The above XML layout produces a page which looks as follows:

There are three icons within the header line (ROWAREAHEADER). The text box is placed into
the body container (ROWAREABODY).

The adapter program looks as follows:

Layout Elements76

ROWAREAWITHHEADER

// property >text<
String m_text;
public String getText() { return m_text; }
public void setText(String value) { m_text = value; }

/** Method is called when clicking the Copy icon */
public void onCopy()
{

outputMessage(MT_SUCCESS, "Copy...");
}

/** Method is called when clicking the Cut icon */
public void onCut()
{

outputMessage(MT_SUCCESS, "Cut...");
}

/** Method is called when clicking the Paste icon */
public void onPaste()
{

outputMessage(MT_SUCCESS, "Paste...");
}

ROWAREAWITHHEADER Properties

Basic

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be renderedwith its default height. If the control is a container control

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50% then

100%the parent element (e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Visibility

77Layout Elements

ROWAREAWITHHEADER

trueOptionalThe "folding"-function that is available by clicking on the title of the
area can be switched off ("false"). "True" is the default.

foldable

false

OptionalName of adapter property that dynamically controlswhether clicking
on the title of the area will fold/unfoald this area.

foldableprop

Valid values provided by the adapter property are TRUE (=foldable)
and FALSE(=not foldable).

OptionalName of adapter property that controls whether the content of the
ROWAREA is folded (true) or displayed (false).

foldedprop

By using this property you can dynamically control the "folded"-status
of the control by your adapter object.

OptionalName of an adapter property that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server"means that directly after changing the input
a synchronizationwith the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones that
were changed before - are transferred to the adapter object, not only
the one that triggered the synchonization.

Setting FLUSH to "screen"means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the sameproperty inside one page and if youwant to pass one changed
value to all its representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to FLUSH="server"
then you can specify an explicit method to be called when the user

flushmethod

updates the content of the control. By doing so you can distinguish
on the server side fromwhich control the flush of data was triggered.

Appearance

(already explained above)height

trueOptionalThe control normally renders a black border around its area.With the
properties WITHLEFTBORDER, WITHRIGHTBORDER and
WITHBOTTOMBORDER you can avoid this.

withleftborder

false

Layout Elements78

ROWAREAWITHHEADER

Reason behing: somtimes you want a ROWAREA/COLAREA to be
used as "neighbour" of other ROWAERA/COLAREA controls. In this
case one of the "neighbours" has to avoid the rendering of border lines
- otherwise two border lines will be rendered.

trueOptionalSee description of WITHLEFTBORDER property.withtopborder

false

trueOptionalSee description of WITHLEFTBORDER property.withrightborder

false

trueOptionalSee description of WITHLEFTBORDER property.withbottomborder

false

trueOptionalThe control by default renders some blank vertical space (2 pixels) on
top of its area. Reason: if you vertically arrange one ROW/COLAREA
after the other then automatically some distance is put between.

withtoppadding

false

By specifying "false" you can avoid this behaviour. "

OptionalURL of image that is displayed inside the control. Any image type
(.gif, .jpg, ...) that your browser does understand is valid.

image

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

OptionalName of adapter property that provides as value theURL of the image
that is shown inside the control.

imageprop

The URL must either be an absolute URL or a relative URL.

OptionalName of adapter property that provides as value the text that is shown
inside the control.

nameprop

trueOptionalThe fixlayout property is important for saving rendering performance
inside your browser. To become effective it requires to have specified
the height and the width (if available as property) of the control.

fixlayout

false

If setting fixlayout to "true" then the control's area is defined as area
which is not sized dependent on its content (as normally done with
table rendering). Instead the size is predefined from outside without
letting the browser "look" into the content of the area. If the content
is not fitting into the area then it is cut.

79Layout Elements

ROWAREAWITHHEADER

You typically use this control if the content of the control's area is
flexibly sizable. E.g. if the content (e.g. a TEXTGRID control) is
following the size of the container.

When using vertical percentage based sizing you should pay attention
to set the fixlayout-property to "true" as often as possible. - The browser
as consequence will be much faster in doing its rendering because a
screen consists out of "building blocks" with simple to calculate sizes.

ROWAREAHEADER Properties

Basic

OptionalText that is displayed inside the control. Please do not specify the name when
using the multi language management - but specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed inside the control. The "textid"
is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

Appearance

leftOptionalHorizontal alignment of the controls inside the header line.align

center

right

trueOptionalThe title of the area by default can be used by the user to hide/show the area's
content. In order to also reach this title with the tab-key is is part of the normal
tab-sequence of a page.

notabstop

false

Set this property to "true" if you do not want to make the title reachable by
tab-key. As consequnece hiding/showing will only be available by
mouse-clicking on the title.

-1OptionalIndex that defines the tab order of the control. Controls are selected in increasing
index order and in source order to resolve duplicates.

tabindex

0

Layout Elements80

ROWAREAWITHHEADER

1

2

5

10

32767

ROWAREABODY Properties

Basic

1OptionalNumber of pixels between the left border and
the area's content. Default is 5 pixels.

paddingleft

2

3

int-value

1OptionalNumber of pixels between the right border and
the area's content. Default is 5 pixels.

paddingright

2

3

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into
this control.

bodystyle

color: #0000FFWith the style you can individually influence
the rendering of the control. You can specify any
style sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

81Layout Elements

ROWAREAWITHHEADER

trueOptionalThe control by default renders some blank
vertical space (3 pixels) on bottomof the content
area.

withcontenttoppadding

false

By specifying "false" you can avoid this
behaviour.

trueOptionalThe control by default renders some blank
vertical space (3 pixels) on bottomof the content
area.

withcontentbottompadding

false

By specifying "false" you can avoid this
behaviour.

Layout Elements82

ROWAREAWITHHEADER

12 ROWTABAREA and COLTABAREA

■ ROWTABAREA Properties .. 85
■ COLTABAREA Properties .. 202
■ TABPAGE Properties .. 132
■ The Most Common Error ... 133
■ Example: Controlling which Tab is displayed by the Server Adapter ... 133
■ Example: Controlling the Visibility of Tab Pages ... 135

83

The ROWTABAREA or COLTABAREA container is the representation of a tab control. A tab area
consists of the ROWTABAREA or COLTABAREA definition. Inside this definition, you define
TABPAGE containers representing the individual pages between which you can navigate.

Example:

<pagebody>
 <rowtabarea height="200" name1="Left Tab" page1="LEFT" name2="Right Tab" ↩
page2="RIGHT">
 <tabpage id="LEFT" takefullheight="true">
 </tabpage>
 <tabpage id="RIGHT" takefullheight="true">
 </tabpage>
 </rowtabarea>
</pagebody>

The above XML layout produces the following page:

Inside the ROWTABAREAdefinition, specify the name and the ID of each area youwant to display.
Pay attention to the naming of the page* properties: the name must not contain any blank spaces
or non-alphanumeric characeters. Start the page* values with a character, not with a number.

Specify the individual toggle areas - by the TABPAGE definition. Each TABPAGE holds an ID
which must be equal to the definition on ROWTABAREA level. Each TABPAGE has a display
property which is set to "none" for all TABPAGE definitions except the first one.

Each TABPAGE is a container itself - i.e. inside the TABPAGE, place controls (or containers) by
adding ITR or TR rows and place elements into these rows.

Layout Elements84

ROWTABAREA and COLTABAREA

ROWTABAREA Properties

Basic

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with

250its default height. If the control is a container

300
control (containing) other controls then the
height of the control will follow the height of its
content. 250

(B) Pixel sizing: just input a number value (e.g.
"20").

400

50%
(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizingwill 100%
only bring up correct results if the parent
element of the control properly defines a height
this control can reference. If you specify this
control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

1OptionalInserts a horizontal distance left of the first "tab"
and shifts the "tabs" to the right as consequence.

leftindent

2The value youmaydefine represents the number
of pixels that are inserted.

3

int-value

trueOptionalIf set to "true" then small icons will appear on
the right border of the control. If the size of the

scrollable

false"tabs" is too big and some tabs are cut as
consequence then you can use these icons for
scrolling left and right.

Sometimes
obligatory

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name1

Sometimes
obligatory

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid1

85Layout Elements

ROWTABAREA and COLTABAREA

ObligatoryId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page1

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose1

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name2

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid2

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page2

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose2

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Layout Elements86

ROWTABAREA and COLTABAREA

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name3

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid3

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page3

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose3

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name4

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid4

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page4

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose4

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

87Layout Elements

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name5

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid5

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page5

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose5

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name6

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid6

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page6

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Layout Elements88

ROWTABAREA and COLTABAREA

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose6

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name7

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid7

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page7

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose7

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name8

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid8

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page8

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

89Layout Elements

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose8

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name9

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid9

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page9

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose9

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name10

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid10

Layout Elements90

ROWTABAREA and COLTABAREA

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page10

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose10

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name11

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid11

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page11

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose11

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

91Layout Elements

ROWTABAREA and COLTABAREA

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name12

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid12

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page12

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose12

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name13

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid13

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page13

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose13

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

Layout Elements92

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name14

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid14

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page14

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose14

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name15

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid15

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page15

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

93Layout Elements

ROWTABAREA and COLTABAREA

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose15

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name16

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid16

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page16

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

trueOptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

withclose16

falsethe page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Binding

OptionalName of adapter property that represents the
index of the "tab" that is currently opened.

openedindexprop

There are twoways of using the property: either
you can define by the adapter property's value
which "tab" should be opened. Or you can react
inside your adapter object when the user does a
"tab" selection (also have a look onto the
property OPENMETHOD!).

Layout Elements94

ROWTABAREA and COLTABAREA

The property must be of type "int" or "Integer"
(or "String"). The left most "tab" represents index
"0", the next one "1", etc.

OptionalName of the adaptermethod that is invokewhen
the user does a "tab" selection. The index of the

openmethod

"tab" that is opened can be transferred to the
adapter by using the property
OPENEDINDEXPROP.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop1

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop2

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop3

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop4

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop5

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a

95Layout Elements

ROWTABAREA and COLTABAREA

value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop6

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop7

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop8

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop9

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop10

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop11

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute

Layout Elements96

ROWTABAREA and COLTABAREA

OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop12

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop13

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop14

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop15

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop16

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop1

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In

97Layout Elements

ROWTABAREA and COLTABAREA

COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop2

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop3

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop4

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop5

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop6

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop7

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop8

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop9

Layout Elements98

ROWTABAREA and COLTABAREA

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop10

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop11

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop12

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop13

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop14

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop15

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop16

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

99Layout Elements

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop1tabselectedstyleprop1

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop1tabunselectedstyleprop1

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop1tabdisabledstyleprop1

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop2tabselectedstyleprop2

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop2tabunselectedstyleprop2

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop2tabdisabledstyleprop2

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop3tabselectedstyleprop3

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop3tabunselectedstyleprop3

Layout Elements100

ROWTABAREA and COLTABAREA

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop3tabdisabledstyleprop3

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop4tabselectedstyleprop4

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop4tabunselectedstyleprop4

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop4tabdisabledstyleprop4

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop5tabselectedstyleprop5

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop5tabunselectedstyleprop5

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop5tabdisabledstyleprop5

color: #0000FF

font-weight: bold

101Layout Elements

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop6tabselectedstyleprop6

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop6tabunselectedstyleprop6

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop6tabdisabledstyleprop6

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop7tabselectedstyleprop7

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop7tabunselectedstyleprop7

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop7tabdisabledstyleprop7

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop8tabselectedstyleprop8

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop8tabunselectedstyleprop8

Layout Elements102

ROWTABAREA and COLTABAREA

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop8tabdisabledstyleprop8

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop9tabselectedstyleprop9

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop9tabunselectedstyleprop9

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop9tabdisabledstyleprop9

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop10tabselectedstyleprop10

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop10tabunselectedstyleprop10

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop10tabdisabledstyleprop10

color: #0000FF

font-weight: bold

103Layout Elements

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop11tabselectedstyleprop11

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop11tabunselectedstyleprop11

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop11tabdisabledstyleprop11

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop12tabselectedstyleprop12

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop12tabunselectedstyleprop12

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop12tabdisabledstyleprop12

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop13tabselectedstyleprop13

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop13tabunselectedstyleprop13

Layout Elements104

ROWTABAREA and COLTABAREA

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop13tabdisabledstyleprop13

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop14tabselectedstyleprop14

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop14tabunselectedstyleprop14

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop14tabdisabledstyleprop14

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop15tabselectedstyleprop15

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop15tabunselectedstyleprop15

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop15tabdisabledstyleprop15

color: #0000FF

font-weight: bold

105Layout Elements

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop16tabselectedstyleprop16

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop16tabunselectedstyleprop16

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop16tabdisabledstyleprop16

color: #0000FF

font-weight: bold

Appearance

trueOptionalIf specified as "false" then no left border will be
drawn.

withleftborder

false

trueOptionalIf specified as "false" then no right border will
be drawn.

withrightborder

false

trueOptionalIf specified as "false" then no bottom border will
be drawn.

withbottomborder

false

VAR1OptionalSome controls offer the possibility to define style
variants. By this style variant you can address

stylevariant

different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing them via the "stylevariant" property.
CIS currently offerst two variants "VAR1" and
"VAR2" but does not predefine any semantics
behind - this is up to you!

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

Layout Elements106

ROWTABAREA and COLTABAREA

1

2

5

10

32767

trueOptionalThe control by default renders some blank
vertical space (2 pixels) on top of its area. Reason:

withtoppadding

falseif you vertically arrange one ROW/COLAREA
after the other then automatically somedistance
is put between.

By specifying "false" you can avoid this
behaviour. "

1Sometimes
obligatory

Number of pixels between the left border and
the area's content. Default is 5 pixels.

tabpagepaddingleft

2

3

int-value

1OptionalNumber of pixels between the right border and
the area's content. Default is 5 pixels.

tabpagepaddingright

2

3

int-value

1OptionalNumber of pixels between the top border and
the area's content. Default is 5 pixels.

tabpagepaddingtop

2

3

int-value

1OptionalNumber of pixels between the bottom border
and the area's content. Default is 5 pixels.

tabpagepaddingbottom

2

3

int-value

OptionalAdds animation effects when the user uses the
control.

withflash

107Layout Elements

ROWTABAREA and COLTABAREA

Online Help

OptionalTooltip text that appears on the corresponding
tab.

title1

OptionalTooltip text that appears on the corresponding
tab.

title2

OptionalTooltip text that appears on the corresponding
tab.

title3

OptionalTooltip text that appears on the corresponding
tab.

title4

OptionalTooltip text that appears on the corresponding
tab.

title5

OptionalTooltip text that appears on the corresponding
tab.

title6

OptionalTooltip text that appears on the corresponding
tab.

title7

OptionalTooltip text that appears on the corresponding
tab.

title8

OptionalTooltip text that appears on the corresponding
tab.

title9

OptionalTooltip text that appears on the corresponding
tab.

title10

OptionalTooltip text that appears on the corresponding
tab.

title11

OptionalTooltip text that appears on the corresponding
tab.

title12

OptionalTooltip text that appears on the corresponding
tab.

title13

OptionalTooltip text that appears on the corresponding
tab.

title14

OptionalTooltip text that appears on the corresponding
tab.

title15

OptionalTooltip text that appears on the corresponding
tab.

title16

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid1

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid2

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid3

Layout Elements108

ROWTABAREA and COLTABAREA

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid4

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid5

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid6

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid7

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid8

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid9

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid10

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid11

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid12

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid13

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid14

109Layout Elements

ROWTABAREA and COLTABAREA

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid15

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid16

replaces the textid with a language dependent
literal.

Comment

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid1

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid2

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid3

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid4

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid5

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid6

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid7

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid8

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid9

Layout Elements110

ROWTABAREA and COLTABAREA

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid10

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid11

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid12

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid13

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid14

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid15

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid16

COLTABAREA Properties

The properties of COLTABAREA are very similar to those of ROWTABAREA.

Basic

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case
the width of the control will either be a default

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizingwill 100%
only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent

111Layout Elements

ROWTABAREA and COLTABAREA

element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

1OptionalInserts a horizontal distance left of the first "tab"
and shifts the "tabs" to the right as consequence.

leftindent

2The value youmaydefine represents the number
of pixels that are inserted.

3

int-value

trueOptionalIf set to "true" then small icons will appear on
the right border of the control. If the size of the

scrollable

false"tabs" is too big and some tabs are cut as
consequence then you can use these icons for
scrolling left and right.

Sometimes
obligatory

Text that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name1

Sometimes
obligatory

Text ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid1

ObligatoryId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page1

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name2

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid2

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page2

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -

Layout Elements112

ROWTABAREA and COLTABAREA

holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name3

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid3

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page3

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name4

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid4

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page4

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name5

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid5

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page5

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

113Layout Elements

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name6

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid6

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page6

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name7

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid7

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page7

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name8

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid8

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page8

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

Layout Elements114

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name9

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid9

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page9

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name10

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid10

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page10

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name11

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid11

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page11

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

115Layout Elements

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name12

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid12

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page12

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name13

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid13

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page13

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name14

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid14

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page14

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

Layout Elements116

ROWTABAREA and COLTABAREA

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name15

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid15

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page15

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

OptionalText that is shown in the corresponding "tab".
Either define the text as NAME or as language
dependent TEXTID.

name16

OptionalText ID that is transferred in a corresponding
literal at runtime by the multi language
management.

textid16

OptionalId of the TABPAGE that is defined as child of
the TABAREA. Use an id that is unique within

page16

the page and that is a "healthy" id: starting with
characters,without blanks andwithout "strange"
characters.

For each "tab" of the TABAREA you have to
create one corresponding TABPAGE below -
holding exactly the id that is defined in the
PAGE property.

Binding

OptionalName of adapter property that represents the
index of the "tab" that is currently opened.

openedindexprop

There are twoways of using the property: either
you can define by the adapter property's value
which "tab" should be opened. Or you can react
inside your adapter object when the user does
a "tab" selection (also have a look onto the
property OPENMETHOD!).

117Layout Elements

ROWTABAREA and COLTABAREA

The property must be of type "int" or "Integer"
(or "String"). The leftmost "tab" represents index
"0", the next one "1", etc.

OptionalNameof the adaptermethod that is invokewhen
the user does a "tab" selection. The index of the

openmethod

"tab" that is opened can be transferred to the
adapter by using the property
OPENEDINDEXPROP.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop1

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop2

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop3

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop4

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop5

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a

Layout Elements118

ROWTABAREA and COLTABAREA

value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop6

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop7

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop8

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop9

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop10

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop11

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute

119Layout Elements

ROWTABAREA and COLTABAREA

OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop12

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop13

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop14

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop15

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalName of property that defines if the
corresponding tag is visible or not. NOTICE: If

visibleprop16

you want the framework to automatically set
the focus to the first visible tab you also must
apply a name for the attribute
OPENEDINDEXPROP. You don't have to set a
value at runtime, but you need to specify a valid
name.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop1

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In

Layout Elements120

ROWTABAREA and COLTABAREA

COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop2

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop3

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop4

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop5

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop6

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop7

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop8

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop9

121Layout Elements

ROWTABAREA and COLTABAREA

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop10

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop11

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop12

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop13

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop14

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop15

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

OptionalNameof the adapter parameter that dynamically
defines if the control is disabled or enabled at

disabledprop16

runtime. If the value at runtime is set to TRUE
the control is visible but disabled. In
COLTABAREA controls this property is only
supported for IE.

Layout Elements122

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop1tabselectedstyleprop1

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop1tabunselectedstyleprop1

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop1tabdisabledstyleprop1

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop2tabselectedstyleprop2

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop2tabunselectedstyleprop2

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop2tabdisabledstyleprop2

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop3tabselectedstyleprop3

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop3tabunselectedstyleprop3

123Layout Elements

ROWTABAREA and COLTABAREA

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop3tabdisabledstyleprop3

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop4tabselectedstyleprop4

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop4tabunselectedstyleprop4

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop4tabdisabledstyleprop4

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop5tabselectedstyleprop5

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop5tabunselectedstyleprop5

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop5tabdisabledstyleprop5

color: #0000FF

font-weight: bold

Layout Elements124

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop6tabselectedstyleprop6

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop6tabunselectedstyleprop6

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop6tabdisabledstyleprop6

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop7tabselectedstyleprop7

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop7tabunselectedstyleprop7

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop7tabdisabledstyleprop7

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop8tabselectedstyleprop8

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop8tabunselectedstyleprop8

125Layout Elements

ROWTABAREA and COLTABAREA

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop8tabdisabledstyleprop8

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop9tabselectedstyleprop9

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop9tabunselectedstyleprop9

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop9tabdisabledstyleprop9

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop10tabselectedstyleprop10

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop10tabunselectedstyleprop10

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop10tabdisabledstyleprop10

color: #0000FF

font-weight: bold

Layout Elements126

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop11tabselectedstyleprop11

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop11tabunselectedstyleprop11

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop11tabdisabledstyleprop11

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop12tabselectedstyleprop12

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop12tabunselectedstyleprop12

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop12tabdisabledstyleprop12

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop13tabselectedstyleprop13

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop13tabunselectedstyleprop13

127Layout Elements

ROWTABAREA and COLTABAREA

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop13tabdisabledstyleprop13

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop14tabselectedstyleprop14

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop14tabunselectedstyleprop14

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop14tabdisabledstyleprop14

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabselectedstyleprop15tabselectedstyleprop15

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop15tabunselectedstyleprop15

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop15tabdisabledstyleprop15

color: #0000FF

font-weight: bold

Layout Elements128

ROWTABAREA and COLTABAREA

background-color:
#FF0000

Optionaltabselectedstyleprop16tabselectedstyleprop16

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabunselectedstyleprop16tabunselectedstyleprop16

color: #0000FF

font-weight: bold

background-color:
#FF0000

Optionaltabdisabledstyleprop16tabdisabledstyleprop16

color: #0000FF

font-weight: bold

Appearance

OptionalIf specified as "false" then no left border will be
drawn.

withleftborder

OptionalIf specified as "false" then no right border will
be drawn.

withrightborder

OptionalIf specified as "false" then no bottom borderwill
be drawn.

withbottomborder

VAR1OptionalSome controls offer the possibility to define style
variants. By this style variant you can address

stylevariant

different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing themvia the "stylevariant" property.
CIS currently offerst two variants "VAR1" and
"VAR2" but does not predefine any semantics
behind - this is up to you!

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

129Layout Elements

ROWTABAREA and COLTABAREA

10

32767

Online Help

OptionalTooltip text that appears on the corresponding
tab.

title1

OptionalTooltip text that appears on the corresponding
tab.

title2

OptionalTooltip text that appears on the corresponding
tab.

title3

OptionalTooltip text that appears on the corresponding
tab.

title4

OptionalTooltip text that appears on the corresponding
tab.

title5

OptionalTooltip text that appears on the corresponding
tab.

title6

OptionalTooltip text that appears on the corresponding
tab.

title7

OptionalTooltip text that appears on the corresponding
tab.

title8

OptionalTooltip text that appears on the corresponding
tab.

title9

OptionalTooltip text that appears on the corresponding
tab.

title10

OptionalTooltip text that appears on the corresponding
tab.

title11

OptionalTooltip text that appears on the corresponding
tab.

title12

OptionalTooltip text that appears on the corresponding
tab.

title13

OptionalTooltip text that appears on the corresponding
tab.

title14

OptionalTooltip text that appears on the corresponding
tab.

title15

OptionalTooltip text that appears on the corresponding
tab.

title16

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid1

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid2

Layout Elements130

ROWTABAREA and COLTABAREA

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid3

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid4

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid5

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid6

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid7

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid8

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid9

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid10

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid11

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid12

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid13

131Layout Elements

ROWTABAREA and COLTABAREA

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid14

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid15

replaces the textid with a language dependent
literal.

OptionalText ID for the tooltip of the corresponding "tab".
At runtime the multi language management

titletextid16

replaces the textid with a language dependent
literal.

Comment

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

TABPAGE Properties

Basic

ObligatoryId of the TABPAGE. Each page has an id that refers to the PAGE1 .. PAGE9
definition inside the ROW/COLTABAREA control that contains the

id

TABPAGE. Clicking a "tab"will display the TABPAGEwith the associated
id.

Sometimes
obligatory

Initial display status of the TABPAGE. The first TABPAGE inside the
ROW/COLTABAREA control must be set to "". All others need to be set

display

ot "none". - If a ROW/COLTABAREA should show up with two or more
pages being visible one below the other then check the setting of this
property!"

trueOptionalIndicates if the content of the control's area gets the full available height.takefullheight

falseIf you use percentage sizing inside the control's area then this property
must be switched to 'true'. If you use no explicit vertical sizing at all - or
you use vertical pixel sizing for your controls - the property must be
switched to 'false'.

Background information: container control's internally open up a table in
which you place rows (ITR/TR) which then hold controls (e.g.
LABEL/FIELD). The table that is opened up normally has no explicit height
and grows with its content as consequence. By specifying
"takefullheight=true" the table itself is sized to fill the maximum height of
the available area.

Layout Elements132

ROWTABAREA and COLTABAREA

trueOptionalThe fixlayout property is important for saving rendering performance
inside your browser. To become effective it requires to have specified the
height and the width (if available as property) of the control.

fixlayout

false

If setting fixlayout to "true" then the control's area is defined as areawhich
is not sized dependent on its content (as normally done with table
rendering). Instead the size is predefined from outsidewithout letting the
browser "look" into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's area is flexibly
sizable. E.g. if the content (e.g. a TEXTGRID control) is following the size
of the container.

When using vertical percentage based sizing you should pay attention to
set the fixlayout-property to "true" as often as possible. - The browser as
consequence will be much faster in doing its rendering because a screen
consists out of "building blocks" with simple to calculate sizes.

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

The Most Common Error

Do you receive JavaScript errors when clicking in the tabs? Then take a further look at the ID as-
signments in theROWTABAREAorCOLTABAREAcontrol on the one hand, and in the TABPAGE
control on the other hand: each page* property of a ROWTABAREA or COLTABAREA defines
an ID that must exactly match an id property of TABPAGE.

If you have more than one ROWTABAREA or COLTABAREA inside your page: do not use the
same IDs - each ID must be unique throughout one page.

Example: Controlling which Tab is displayed by the Server Adapter

The following example demonstrates the usage of the property openedindexprop on ROWTAB-
AREA level:

133Layout Elements

ROWTABAREA and COLTABAREA

The user selects the value of the property index using the combo control. The index property
controls also which tab is displayed inside the ROWTABAREA control.

The layout definition is as follows:

<pagebody>
<rowarea name="Dynamic setting of index in TABAREA">

<itr>
<label name="Index" width="100">
</label>
<combofix valueprop="index" size="1" flush="server">

<combooption name="First (=0)" value="0">
</combooption>
<combooption name="Second (=1)" value="1">
</combooption>
<combooption name="Third (=2)" value="2">
</combooption>

</combofix>
</itr>

</rowarea>
<rowtabarea height="200" openedindexprop="index"

name1="First" page1="FIRST"
name2="Second" page2="SECOND"
name3="Third" page3="THIRD">

<tabpage id="FIRST">
</tabpage>
<tabpage id="SECOND">
</tabpage>
<tabpage id="THIRD">
</tabpage>

</rowtabarea>
</pagebody>

The adapter class on the server side looks as follows:

Layout Elements134

ROWTABAREA and COLTABAREA

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class TabAreaIndexAdapter extends Adapter
{

// property >index<
int m_index;
public int getIndex() { return m_index; }
public void setIndex(int value) { m_index = value; }

}

Example: Controlling the Visibility of Tab Pages

For each individual tab page, you can control at runtimewhether it is visible or not. The following
example allows the user to control the visibility of tabs using check boxes:

The XML layout is:

<rowtabarea height="100" name1="Rich" page1="RICH" visibleprop1="page1Visibility"
 name2="User" page2="USER" visibleprop2="page2Visibility"
 name3="Intefaces" page3="INTERFACES" ↩
visibleprop3="page3Visibility"
 name4="for" page4="FOR" visibleprop4="page4Visibility"
 name5="Business" page5="BUSINESS" ↩
visibleprop5="page5Visibility"
 name6="Applications" page6="APPLICATIONS"
 visibleprop6="page6Visibility">
 <tabpage id="RICH">
 <vdist height="20">
 </vdist>
 <itr>
 <hdist width="60">
 </hdist>
 <label name="Rich" asplaintext="true" textalign="center">
 </label>
 </itr>

135Layout Elements

ROWTABAREA and COLTABAREA

 </tabpage>
 <tabpage id="USER">
 ...
 </tabpage>
 ...
 ...
 ...
<rowarea name="Visibility">
 <itr>
 <checkbox valueprop="page1Visibility" flush="server">
 </checkbox>
 <hdist>
 </hdist>
 <label name="Rich" asplaintext="true">
 </label>
 <hdist width="10">
 </hdist>
 <checkbox valueprop="page2Visibility" flush="server">
 </checkbox>
 <hdist>
 </hdist>
 <label name="User" asplaintext="true">
 </label>
 <hdist width="10">
 </hdist>
 <checkbox valueprop="page3Visibility" flush="server">
 </checkbox>
 <hdist>
 </hdist>
 <label name="Interfaces" asplaintext="true">
 </label>
 <hdist width="10">
 </hdist>
 <checkbox valueprop="page4Visibility" flush="server">
 </checkbox>
 <hdist>
 </hdist>
 <label name="for" asplaintext="true">
 </label>
 <hdist width="10">
 </hdist>
 <checkbox valueprop="page5Visibility" flush="server">
 </checkbox>
 <hdist>
 </hdist>
 <label name="Business" asplaintext="true">
 </label>
 <hdist width="10">
 </hdist>
 <checkbox valueprop="page6Visibility" flush="server">
 </checkbox>
 <hdist>

Layout Elements136

ROWTABAREA and COLTABAREA

 </hdist>
 <label name="Applications" asplaintext="true">
 </label>
 <hdist width="10">
 </hdist>
 </itr>
</rowarea>

You see that the definition of the properties that control the visibility of tab pages is done in the
ROWTABAREA (not on TABPAGE level). The check boxes reference the same adapter properties
as used on ROWTABAREA level.

In the adapter code, the corresponding boolean properties are provided:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class VisibilityOfTabPagesAdapter
extends Adapter

{
// property >page1Visibility<
boolean m_page1Visibility;
public boolean getPage1Visibility() { return m_page1Visibility; }
public void setPage1Visibility(boolean value) { m_page1Visibility = value; }

// property >page2Visibility<
boolean m_page2Visibility;
public boolean getPage2Visibility() { return m_page2Visibility; }
public void setPage2Visibility(boolean value) { m_page2Visibility = value; }

// property >page3Visibility<
boolean m_page3Visibility;
public boolean getPage3Visibility() { return m_page3Visibility; }
public void setPage3Visibility(boolean value) { m_page3Visibility = value; }

// property >page4Visibility<
boolean m_page4Visibility;
public boolean getPage4Visibility() { return m_page4Visibility; }
public void setPage4Visibility(boolean value) { m_page4Visibility = value; }

// property >page5Visibility<
boolean m_page5Visibility;
public boolean getPage5Visibility() { return m_page5Visibility; }
public void setPage5Visibility(boolean value) { m_page5Visibility = value; }

// property >page6Visibility<
boolean m_page6Visibility;
public boolean getPage6Visibility() { return m_page6Visibility; }
public void setPage6Visibility(boolean value) { m_page6Visibility = value; }

}

137Layout Elements

ROWTABAREA and COLTABAREA

Note: In the previous example, the openedindexprop property of the ROWTABAREA was
used. Be aware of the fact that each tab page still keeps its stable index position - no matter
whether it is displayed or not.

Layout Elements138

ROWTABAREA and COLTABAREA

13 ROWTABLE0 and COLTABLE0

■ ROWTABLE0 Properties ... 141
■ COLTABLE0 Properties .. 143

139

The ROWTABLE0 or COLTABLE0 container is not visible. Normally, it is just used for arranging
controls. The following example shows how to define two columns - inside a ROWAREA - to ar-
range controls:

<pagebody>
<rowarea name="Area 1">

<itr takefullwidth="true">
<coltable0 width="50%" takefullheight="true">

<itr>
<label name="Factor 1" width="100">
</label>
<field valueprop="factor1" length="5">
</field>

</itr>
</coltable0>
<coltable0 width="50%" takefullheight="true">

<itr>
<label name="Factor 2" width="100">
</label>
<field valueprop="factor2" length="5">
</field>

</itr>
</coltable0>

</itr>
</rowarea>

</pagebody>

The result looks as follows:

Inside the ROWAREA, two COLTABLE0 tags are placed - each occupying 50% of the width. Each
COLTABLE0 area builds - independently from the other - its own table rows (ITR rows in the ex-
ample).

All complex field arrangements should be done by using ROWTABLE0/COLTABLE0 tags as
shown in the example.

Layout Elements140

ROWTABLE0 and COLTABLE0

ROWTABLE0 Properties

Basic

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row)may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

leftOptionalAlignment of the content of the ITR row.align

centerBackground: the ITR as independent table row renders a table into
its content area. Inside this table a row is opened in which the
controls are placed. right

This table normally is starting on the left of the ITR row. With this
ALIGN property you can explicitly define the alignement of the
table.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimtes the size of the column is

bottombigger than the size of the control. In this case the "align" property
specify the position of the control inside the column.

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it requires

fixlayout

falseto have specified the height and thewidth (if available as property)
of the control.

If setting fixlayout to "true" then the control's area is defined as
areawhich is not sized dependent on its content (as normally done
with table rendering). Instead the size is predefined from outside
without letting the browser "look" into the content of the area. If
the content is not fitting into the area then it is cut.

141Layout Elements

ROWTABLE0 and COLTABLE0

You typically use this control if the content of the control's area is
flexibly sizable. E.g. if the content (e.g. a TEXTGRID control) is
following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as possible.
- The browser as consequence will be much faster in doing its
rendering because a screen consists out of "building blocks" with
simple to calculate sizes.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

tablestyle

color: #0000FF

border: 1px solid #FF0000 font-weight: bold

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

OptionalName of server side property/data element that triggers a "flashing"
of the area. "Flashing" means that the area is animated for a short

flashprop

point of time in order to make the user that e.g. some change of
data happened inside the area. The server side property/data
element is an index - whenever you change the index then a
flashing of the control is triggered on client side.

Pay attention: do not mix the "flashing" of an area with the
"flushing" of controls - "flushing" is the way an input control (e.g.
field) triggers server side updateswhen the user changed the value,
"flashing" is pure animation.

Layout Elements142

ROWTABLE0 and COLTABLE0

COLTABLE0 Properties

The properties for COLTABLE0 are very similar to those of ROWTABLE0.

Basic

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines a
width this control can reference. If you specify this control to
have awidth of 50% then the parent element (e.g. an ITR-row)
may itself define awidth of "100%". If the parent element does
not specify awidth then the rendering resultmay not represent
what you expect.

OptionalName of adapter property that dynamically defined the height
of the control. Must return a valid width.

widthprop

trueOptionalIndicates if the content of the control's area gets the full
available height.

takefullheight

false
If you use percentage sizing inside the control's area then this
property must be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content as
consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available area.

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it

fixlayout

falserequires to have specified the height and thewidth (if available
as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as

143Layout Elements

ROWTABLE0 and COLTABLE0

normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into the
area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

tablestyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

OptionalCommentwithout any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Layout Elements144

ROWTABLE0 and COLTABLE0

14 ROWDYNAVIS and COLDYNAVIS

■ ROWDYNAVIS Properties ... 148
■ COLDYNAVIS Properties .. 149
■ Some Comments on Controlling the Visibility of Controls ... 151

145

The ROWDYNAVIS or COLDYNAVIS container is used to add dynamic reaction to your layout.

The container is not visible - similar to the TABLE0 container. What is the difference? You control
the appearance of the container by an adapter property. Have a look at the following example.

If you enter "United States" as a country, the input line for the state will appear under the input
line for the country:

The XML code looks as follows:

<rowarea name="Address Input">
<itr>

<label name="Country" width="100">
</label>
<field valueprop="country" flush="true" length="30">
</field>

</itr>
<rowdynavis valueprop="visible">

<itr>
<label name="State" width="100">
</label>
<field valueprop="state" length="30">
</field>

</itr>
</rowdynavis>

</rowarea>

A ROWDYNAVIS container is placed inside the ROWAREA container. The ROWDYNAVIS con-
tainer is bound to the adapter class property visible.

The adapter class looks as follows:

Layout Elements146

ROWDYNAVIS and COLDYNAVIS

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class RowTable0Adapter
extends Adapter

{
// property >factor1<
String m_factor1;
public String getFactor1() { return m_factor1; }
public void setFactor1(String value) { m_factor1 = value; }

// property >factor2<
String m_factor2;
public String getFactor2() { return m_factor2; }
public void setFactor2(String value) { m_factor2 = value; }

// property >country<
String m_country;
public String getCountry() { return m_country; }
public void setCountry(String value) { m_country = value; }

// property >state<
String m_state;
public String getState() { return m_state; }
public void setState(String value) { m_state = value; }

// property >visible<
boolean m_visible = true;
public boolean getVisible()
{

if (m_country != null && m_country.equalsIgnoreCase("United States"))
return true;

else
return false;

}
public void setVisible(boolean value) { m_visible = value;}

}

The property visible depends on the user input of the country property. It returns a boolean
value. Since a ROWDYNAVIS area is a container, it can contain rows - with input lines - and
containers. Therefore, you can add dynamic reaction to your layout definitions in a very flexible
way.

147Layout Elements

ROWDYNAVIS and COLDYNAVIS

ROWDYNAVIS Properties

Basic

ObligatoryName of adapter property that defines if the area is visible
("true") or invisible ("false"). Must be of type "boolean" /
"Boolean".

valueprop

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a

250container control (containing) other controls then the height of
the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if 400

50%the parent element of the control properly defines a height this
control can reference. If you specify this control to have a height

100%of 50% then the parent element (e.g. an ITR-row) may itself
define a height of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

style

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to knowwhere direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it requires

fixlayout

false

Layout Elements148

ROWDYNAVIS and COLDYNAVIS

to have specified the height and the width (if available as
property) of the control.

If setting fixlayout to "true" then the control's area is defined as
area which is not sized dependent on its content (as normally
done with table rendering). Instead the size is predefined from
outside without letting the browser "look" into the content of
the area. If the content is not fitting into the area then it is cut.

You typically use this control if the content of the control's area
is flexibly sizable. E.g. if the content (e.g. a TEXTGRID control)
is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

COLDYNAVIS Properties

The properties of COLDYNAVIS are very similar to those of ROWDYNAVIS.

Basic

ObligatoryName of adapter property that defines if the area is visible
("true") or invisible ("false"). Must be of type "boolean" /
"Boolean".

valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

149Layout Elements

ROWDYNAVIS and COLDYNAVIS

trueOptionalIndicates if the content of the control's area gets the full
available height.

takefullheight

false
If you use percentage sizing inside the control's area then
this propertymust be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then
hold controls (e.g. LABEL/FIELD). The table that is opened
upnormally has no explicit height and growswith its content
as consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available
area.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

style

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it

fixlayout

falserequires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as
normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as often
as possible. - The browser as consequencewill bemuch faster

Layout Elements150

ROWDYNAVIS and COLDYNAVIS

in doing its rendering because a screen consists out of
"building blocks" with simple to calculate sizes.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Some Comments on Controlling the Visibility of Controls

ROWDYNAVIS and COLDYNAVIS are container controls that are explicitly defined to provide
an area which can be explicitly switched on and off. In addition you will later on see that many
controls can control their visiblity and their input status by themselves. For example, a FIELD
control can specify if it is invisible, editable, holding an error input etc. in a dynamic way. You
may also have noticed that an ITR rowdefinition has an associated visibleprop property - linking
to a data property that dynamically controls the visibility of the row at runtime.

Use ROWDYNAVIS and COLDYNAVIS for explicitly defining container areas to be switched
on/off. Use the control's binding to properties to do the fine-granular control of visibility inside
one container.

A bad example of usage would be if you place a COLDYNAVIS container around each FIELD
that you want to control in means of visibility. Use the FIELD's statusprop property instead.

151Layout Elements

ROWDYNAVIS and COLDYNAVIS

152

15 ROWDIV and INNERDIV

■ When to Use ROWDIV and INNERDIV Containers ... 156
■ ROWDIV Properties ... 156
■ INNERDIV Properties ... 157

153

The ROWDIV container represents an area with a defined size. Inside this area you can arrange
INNERDIV containers. The INNERDIV containers have a defined x-, y- and z-position inside the
ROWDIV area, and they have a defined width and height. INNDERDIV containers can overlap;
by using the z-position, you can define which INNERDIV container is on top of which other IN-
NERDIV container. Inside an INNERDIV container, you can arrange any other container or control
- just as with normal containers.

Have a look at the following example:

Inside a ROWAREA container, a ROWDIV container is arranged. Inside the ROWDIV container,
three INNERDIV containers are arranged - each one holding a ROWAREA.

The XML layout definition looks as follows:

Layout Elements154

ROWDIV and INNERDIV

<rowarea name="Example" height="100%">
 <rowdiv height="100%" style="background-color: #FFFFC0">
 <innerdiv width="200" height="200" zindex="99" left="150" top="150"
 style="background-color: #C0C0C0">
 <rowarea name="Row Area" height="100%" withtoppadding="false">
 </rowarea>
 </innerdiv>
 <innerdiv width="200" height="200" zindex="98" left="50" top="50"
 style="background-color: #C0C0C0">
 <rowarea name="Row Area" height="100%" withleftborder="true" ↩
withtopborder="true"
 withrightborder="true" withbottomborder="true" ↩
withtoppadding="false">
 </rowarea>
 </innerdiv>
 <innerdiv width="200" height="200" zindex="100" left="300" top="75"
 style="background-color: #C0C0C0">
 <rowarea name="Row Area" height="100%" withtoppadding="false">
 </rowarea>
 </innerdiv>
 </rowdiv>
</rowarea>

If the ROWDIV area is too small to hold the INNERDIV containers, then the ROWDIV area starts
scrolling:

155Layout Elements

ROWDIV and INNERDIV

When to Use ROWDIV and INNERDIV Containers

The typical usage scenarios of ROWDIV and INNERDIV containers is:

■ when you want to place a certain area at a certain position on the screen - without wanting to
explicitly define VDIST/HDIST elements;

■ when you want to explicitly work with overlapping areas.

Note that the parallel usage of pixel and percentage sizing is not supported with ROWDIV and
INNERDIV in the same way as supported with normal containers (for example, ROWAREA and
COLAREA).With normal containers, you can specify scenarios like the following: the left container
occupies 200 pixels, the right container occupies 100%. The table rendering is clever enough to
render the result accordingly. With INNERDIV containers, the percentage definitions are always
in relation to the height and width of the surrounding ROWDIV control.

Consequence: Do not use ROWDIV and INNERDIV for the basic structuring of containers inside
your page, but only use them for the two usage aspects mentioned before.

ROWDIV Properties

Basic

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will be
renderedwith its default height. If the control is a container control (containing)
other controls then the height of the controlwill follow the height of its content. 250

300(B) Pixel sizing: just input a number value (e.g. "20").

250(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of

400the control properly defines a height this control can reference. If you specify

50%this control to have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect. 100%

OptionalCSS style definition that is directly passed into this control.style

With the style you can individually influence the rendering of the control. You
can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

Layout Elements156

ROWDIV and INNERDIV

background-color: #808080

You can combine expressions by appending and separating them with a
semicolon.

Sometimes it is useful to have a look into the generated HTML code in order
to know where direct style definitions are applied. Press right mouse-button
in your browser and select the "View source" or "View frame's source" function.

OptionalCSS style class definition that is directly passed into this control.divclass

The style class can be either one which is part of the "normal" CIS style sheet
files (i.e. the ones that you maintain with the style sheet editor) - or it can be
one of an other style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

INNERDIV Properties

Basic

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have awidth of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a container

250control (containing) other controls then the height of the control will
follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

157Layout Elements

ROWDIV and INNERDIV

250(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

400parent element of the control properly defines a height this control

50%
can reference. If you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define a height of

100%"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

ObligatoryLeft position of control. Either define a pixel value ("100") or a
percentatge value ("30%").

left

ObligatoryTop position of control. Either define a pixel value ("100") or a
percentatge value ("30%").

top

1OptionalZ-index of the control. If two controls overlap then the one with the
higher z-index is drawn in front of the other one.

zindex

2

3

int-value

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to "true" then a small distance (3px) is kept between the left
border of the control and its content. Default is "false".

leftdistance

false

trueOptionalIf set to "true" then a small distance (3px) is kept between the right
border of the control and its content. Default is "false".

rightdistance

false

OptionalCSS style definition that is directly passed into this control.style

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

Binding

OptionalName of adapter property that dynamically defined the width of
the control. Must return a valid width.

widthprop

Layout Elements158

ROWDIV and INNERDIV

OptionalName of adapter property that dynamically defines the left position
of the control. Must return a valid value for 'left position'.

leftprop

OptionalName of the adapter property that dynamically defines the width
of the drop target.

dropwidthprop

OptionalName of the adapter property that dynamically defines the offset
used for the drop target.

dropoffsetprop

OptionalMethod of your adapter object that is executed when the user is
dragging another DROPICON control over this control and drops

dropmethod

it there. Do not use this attribute if this control should not accept
other DROPICON controls within a drag and drop process (i.e. is
not a drop target).

159Layout Elements

ROWDIV and INNERDIV

160

16 ROWSCROLLAREA

■ ROWSCROLLAREA Properties .. 163

161

TheROWSCROLLAREA represents a container areawith a certain size. The container is not visible.
If the contents of the container area exceed the size of the container area, then scroll bars are added
accordingly.

Have a look at the following example:

Inside a normal ROWAREA with the title "Test", a ROWSCROLLAREA is positioned. Inside the
ROWSCROLLAREA, a number of lines is arranged so that the total height of the lines exceeds the
height of the ROWSCROLLAREA. Consequently, a vertical scroll bar is shown on the right.

The XML layout looks as follows:

<rowarea name="Test" height="100">
<rowscrollarea height="100%">

<itr>
<label name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>
<itr>

<label name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>
<itr>

<label name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>
<itr>

<label name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>
<itr>

<label name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

Layout Elements162

ROWSCROLLAREA

</itr>
<itr>

<label name="Vorname" width="100">
</label>
<field valueprop="firstname" width="200">
</field>

</itr>
</rowscrollarea>

</rowarea>

ROWSCROLLAREA Properties

Basic

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be renderedwith its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

trueOptionalIndicates if the content of the control's area gets the full
available height.

takefullheight

false
If you use percentage sizing inside the control's area then
this propertymust be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then
hold controls (e.g. LABEL/FIELD). The table that is opened
upnormally has no explicit height and growswith its content
as consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available
area.

163Layout Elements

ROWSCROLLAREA

trueOptionalIf set to "true" then the control takes all available horizontal
width as its width. If set to "false" then the control does not
have a predefined width but grows with its content.

takefullwidth

false

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

areastyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalCSS style class definition that is directly passed into this
control.

areaclass

The style class can be either onewhich is part of the "normal"
CIS style sheet files (i.e. the ones that you maintain with the
style sheet editor) - or it can be one of an other style sheet
file that you may reference via the ADDSTYLESHEET
property of the PAGE tag.

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it

fixlayout

falserequires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as
normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into
the area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as often
as possible. - The browser as consequencewill bemuch faster
in doing its rendering because a screen consists out of
"building blocks" with simple to calculate sizes.

Layout Elements164

ROWSCROLLAREA

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

autoOptionalDefinition of the horizontal scrollbar's appearance.hscroll

scrollYou can define that the scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or scrollbars

hiddencan be shown always ("scroll"). Or scrollbars are never shown
- and the content is cut ("hidden").

Default is "hidden".

165Layout Elements

ROWSCROLLAREA

166

17 HSPLIT and VSPLIT

■ Example for HSPLIT ... 168
■ Example for VSPLIT ... 169
■ HSPLIT Properties ... 170
■ VSPLIT Properties ... 172
■ SPLITCELL Properties .. 173
■ Defining the Split Size .. 174

167

HSPLIT orVSPLIT allows to define a container area that is subdivided into two split cells. Between
the split cells there is a border. By dragging and dropping the border, you can change the size of
the split cells. Each split cell itself is a container that can be used just as normal.

While an HSPLIT control subdivides an area into two split cells by a horizontal line, VSPLIT uses
a vertical line.

Example for HSPLIT

The following example shows the usage of the HSPLIT control:

The split area is divided into two cells: a green cell and a red cell. In addition, there is a line at the
bottom in which you can provide the split factor.

The XML layout definition is:

<rowarea name="HSPLIT Control" height="100%">
 <hsplit height="100%" heighttopprop="heighttop" hsplitstyle="border:1 solid ↩
#000000">
 <splitcell takefullheight="true" cellstyle="background-color: #00FF00">
 <tr height="100%">
 <label name="Top Split Cell" asplaintext="true">
 </label>
 </tr>
 </splitcell>
 <splitcell takefullheight="true" cellstyle="background-color: #FF0000">
 <tr height="100%">
 <label name="Bottom Split Cell" asplaintext="true">

Layout Elements168

HSPLIT and VSPLIT

 </label>
 </tr>
 </splitcell>
 </hsplit>
 <vdist>
 </vdist>
 <itr>
 <hdist width="100%">
 </hdist>
 <label name="Set Top Height" width="100">
 </label>
 <field valueprop="heighttop" width="100" flush="server" validation="[0-9%]+"
 validationuserhint="100, 200, 500, 30%, 50%">
 </field>
 </itr>
</rowarea>

You see that the vertical split area consists of

■ one VSPLIT definition, and
■ two SPLITCELL definitions.

It is not allowed to have more than two split cells inside one HSPLIT container.

The sizing of the split cells can be done by using a property that is referenced by the HSPLIT
property heighttopprop. The property must return either a percentage value or a pixel value.
When the user changes the size by moving the line between the split cells, then the current new
pixel width of the left split cell is written back into the property.

Example for VSPLIT

The VSPLIT control is defined in the same way as the HSPLIT control - but now transferred to
vertical dimension. It looks like:

169Layout Elements

HSPLIT and VSPLIT

The VSPLIT part of the XML layout definition is:

<vsplit height="200" widthleftprop="widthleft" vsplitstyle="border: 1 solid #000000">
<splitcell takefullheight="true" cellstyle="background-color:#00FF00">

<itr>
<label name="Left Split Cell" asplaintext="true">
</label>

</itr>
</splitcell>
<splitcell takefullheight="true" cellstyle="background-color: #FF0000">

<itr>
<label name="Right Split Cell" asplaintext="true">
</label>

</itr>
</splitcell>

</vsplit>

HSPLIT Properties

Basic

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250

Layout Elements170

HSPLIT and VSPLIT

(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct

400

50%results if the parent element of the control properly defines a

100%
height this control can reference. If you specify this control to
have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does
not specify a width then the rendering result may not
represent what you expect.

1OptionalDefinition of the initial height of the top split area.heighttop

2The height either is a pixel value ("100") or a percentage value
("50%").

3
You can also define the height dynamically by your adapter
- see documentation for HEIGHTTOPPROP property. int-value

OptionalName of adapter property that specifies the height of the top
split area.

heighttopprop

The adapter property must return either a pixel value ("100")
or a percentatge value ("50%").

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

hsplitstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if the content
is exceeding the control's area ("auto"). Or scrollbars can be

hiddenshown always ("scroll"). Or scrollbars are never shown - and
the content is cut ("hidden").

Default is "auto".

171Layout Elements

HSPLIT and VSPLIT

VSPLIT Properties

Basic

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the control

250is a container control (containing) other controls then the height
of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines a
height this control can reference. If you specify this control to

100%have a height of 50% then the parent element (e.g. an ITR-row)
may itself define a height of "100%". If the parent element does
not specify awidth then the rendering resultmay not represent
what you expect.

OptionalName of adapter property that specifies the width of the left
split area.

widthleftprop

The adapter property must return either a pixel value ("100")
or a percentatge value ("50%").

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

vsplitstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

OptionalCommentwithout any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

autoOptionalDefinition of the vertical scrollbar's appearance.overflow

Layout Elements172

HSPLIT and VSPLIT

scrollYou can define that the scrollbars only are shown if the content
is exceeding the control's area ("auto"). Or scrollbars can be

hiddenshown always ("scroll"). Or scrollbars are never shown - and
the content is cut ("hidden").

Default is "auto".

SPLITCELL Properties

Basic

trueOptionalIndicates if the content of the control's area gets the full
available height.

takefullheight

false
If you use percentage sizing inside the control's area then this
property must be switched to 'true'. If you use no explicit
vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content as
consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available area.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

cellstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

OptionalCommentwithout any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

173Layout Elements

HSPLIT and VSPLIT

Defining the Split Size

The split size of HSPLIT and VSPLIT can be set in the following ways:

■ Fixed definition if initial split size: by using the HSPLIT property heighttop and the VSPLIT
property widthleft, you can preset the size in a “hardway”. The valuewill be used as the initial
size.

■ By using the HSPLIT property heighttopprop and the VSPLIT property widthleftprop, the
size can be defined by a server side property. Maybe you have some personalization in which
the size is kept for every split area - and proposed the next time the user visits the page.

Layout Elements174

HSPLIT and VSPLIT

18 HLINE and VLINE

■ VLINE Properties ... 177
■ HLINE Properties ... 178

175

Both controls are actually not container controls, but they are typically used for structuring content
- this is the reason why they are mentioned here. The controls are rather simple: they represent
lines. HLINE represents a horizontal line and VLINE represents a vertical line.

Have a look at this demo:

The corresponding XML layout definition is:

<rowarea name="HLINE">
 <itr>
 <label name="Now a horizontal line default attributes ..." asplaintext="true">
 </label>
 </itr>
 <hline>
 </hline>
 <itr>
 <label name="Now a horizontal line, 15px height, red color ..." ↩
asplaintext="true">
 </label>
 </itr>
 <hline height="15" color="#FF0000">
 </hline>
</rowarea>
<rowarea name="VLINE" height="150">
 <itr height="100%">
 <label name="Vertical line, default ..." width="150" asplaintext="true">
 </label>
 <vline>
 </vline>
 <label name="Vertical line, 15px width, green ..." width="150" ↩
asplaintext="true">
 </label>
 <vline width="15" color="#00FF00">
 </vline>

Layout Elements176

HLINE and VLINE

 </itr>
</rowarea>

For each line, you can define its width/height and its color.

VLINE Properties

Basic

OptionalWidth of the control.width

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of
the control properly defines a width this control can reference. If you specify
this control to have a width of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

#FF0000OptionalColor of the control. Value must follow format "#rrggbb", e.g. #000000 for
black.

color

#00FF00

#0000FF

#FFFFFF

#808080

#000000

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

177Layout Elements

HLINE and VLINE

HLINE Properties

Basic

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control will be rendered
with its default height. If the control is a container control (containing) other controls
then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention: percentage
sizing will only bring up correct results if the parent element of the control properly
defines a height this control can reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row)may itself define a height of "100%".
If the parent element does not specify a width then the rendering result may not
represent what you expect.

OptionalColor of the control. Value must follow format "#rrggbb", e.g. #000000 for black.color

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Layout Elements178

HLINE and VLINE

19 Performance Optimization with Containers

Containers internally use HTML table rendering for arranging their content: inside a container
there are rows, inside the rows there are columns and inside the columns there are controls.

HTML table rendering is very powerful: if you have already written pages on your own using an
HTML editor, then you know that you can size the container in the following way:

<table width='100%'>
<tr>

<td width='100'>Hallo</td>
<td width='100%'>Hello world!</td>
<td></td>

</tr>
</table>

During rendering time, the browser tries to optimize the table rendering. The browser knows that
inside the definitions there is one column that wants to occupy the whole width, one column that
wants to have awidth of 100 pixels and one column that holds an image. Consequently, it somehow
renders the table so that the best result is rendered. This optimization is quite expensive - especially
if you have tables nested in tables nested in tables etc.

In nested table scenarios, every little change in one table can have the consequence that the whole
HTML table is optimized again.

179

Since the optimization now happens on several levels, the browser uses a lot of resources to do
so. This can be noticed especially if you render pages with a height of 100%: the page is not built
by appending one information after the other - but you tell that the controls occupy a certain per-
centage based height of the whole page.

How can you find that out? If you have got the feeling that a page behaves in a slow way and you
are not sure whether it is your server side application or the browser side rendering, then there
are two ways to easily find out:

■ Look into the Application Designer log file. Each server side request is recorded with its con-
sumption of milliseconds on server side.

■ Resize the page in the browser: if this is not fast but takes time, then this is an indicator for bad
rendering performance - or in other words: for a lot of optimization that is happening behind
the curtain.

But: there are niceways to speed up the rendering - and to build optimization limits for the browser.
Internally, the ways are quite simple, but the consequence can be dramatic.

Most containers support a fixlayout property: the possible values are "true" or "false" - "false"
being the default. When switching the fixlayout property to "true", then the content area of the
container is internally arranged in such a way that the area always determines its size from its
own width and height specification. The browser does not look into the contents of the area in
order to try to optimize the size of the area, but always follows the width and height that you
define.

What happens if the controls inside your container area do not fit into the area? What does not fit
inside the container area, is cut.

Setting fixlayout to "true" means that the browser only optimizes table rendering inside the
container - but never outside - because the container has a certain size:

Layout Elements180

Performance Optimization with Containers

Follow the rules:

■ Every time the size of a container area is not determined by its content but is explicitly set by
you, switch the fixlayout flag to "true".

■ The flag only has consequences if you define thewidth and height of the corresponding container.
In cases in which the width is defined by the control (for example, ROWAREA always has a
width of 100%), you have to define the height. The height is either defined by a corresponding
height property or by a takefullheight property.

181Layout Elements

Performance Optimization with Containers

182

III Working with Controls

Controls are the elements that are placed inside containers. This part first gives some common
rules that are valid for all controls, then describes the controls in more detail.

The information provided in this part is organized under the following headings:

Some Common Rules for all Controls

BREADCRUMB

BUTTON

BUTTONLIST

CHECKBOX

COMBODYN2

COMBOFIX

DATEINPUT

DROPICON

FIELD

FILEUPLOAD/FILEUPLOAD2

ICON

ICONLIST

IHTML

IMAGEOUT

LABEL

MENUBUTTON

METHODLINK

MULTISELECT

NEWSFEED

RADIOBUTTON

SCHEDULELINE

SLIDER

183

STRIPSEL

SUBPAGE

TABSEL

TABSTRIP2

TAGCLOUD

TEXT

TEXTOUT

TOGGLE

Special Controls:

ACTIVEX

GOOGLEMAP2

HELPICON

LINECHART

MACROMEDIAFLASH

NETMEETING

REPORT

ROWCHARTAREA

SKYPECALL

TIMER

Layout Elements184

Working with Controls

20 Some Common Rules for all Controls

■ Name and Text ID .. 186
■ Table, Row, Column, Control .. 186
■ Explicit Alignment .. 186
■ Binding to Adapter Properties ... 187
■ Directly Influencing the Control Style ... 187
■ Dynamically Controlling the Visibility and the Display Status of Controls .. 188
■ Focus Management ... 190
■ Flushing of Inputs .. 193
■ Tab Sequence ... 193
■ Tooltips .. 195

185

Name and Text ID

Every time a control needs a static text definition (the name of a button or the name of a label),
there are always two possibilities to define this text:

■ Specify a name directly.
■ Specify a text ID. This is a literal replaced with a string that is determined inside the multi lan-
guage management at runtime. For more details, seeMulti Language Management.

Table, Row, Column, Control

Most controls that allow dynamic sizing offer the following properties:

■ colspan - number of columns occupied by the control.
■ rowspan - number of rows occupied by the control.
■ width - width.
■ height - height.

These properties influence the way how controls are placed into container rows.

For users of previous releases: the width property is deprecated. The rendering can be controlled
by COLSPAN and ROWSPAN now. In addition, there is the CELLSPAN control allowing you to
group your controls.

Explicit Alignment

Controls are put into table columns. If the column is wider or higher than the control itself, then
you can explicitly control the vertical and horizontal alignment of the control inside the columns.

Most controls offer two properties:

■ valign
Specifies the vertical alignment. Valid values are "top", "middle", "bottom". "middle" is the default
value.

■ align
Specifies the horizontal alignment. Valid values are "left", "center", "right". The default value
depends on the control. For example, labels are aligned "left" by default, the default for radio
buttons is "center".

Layout Elements186

Some Common Rules for all Controls

Pay attention: valign and align only affect the position of the control inside the column in which
it is positioned if the column is larger than the control. If the column is exactly as wide and high
as the control itself, which is the typical case, then they do not have any visual effects - and also
need not be defined.

align/valign do not affect the control's internal alignment.

Binding to Adapter Properties

Most controls provide properties to specify the binding to the adapter processing. There is a
naming convention, which is:

■ The names of the properties which specify the binding to a property end with "prop".
■ The names of the properties which specify the binding to a method end with "method".

The type of the property which is referenced by a control depends on the control itself:

■ Most controls directly bind to simple properties - i.e. properties returning a simple data type:
String, int, boolean, float, etc.

■ More complex controls bind to a complex data type - e.g. a text grid binds to a TEXTGRIDCol-
lection.

The type of the property is described with each control. See also Appendix C - Data Types to be Used
by Adapter Properties.

Directly Influencing the Control Style

All controls that incorporate textual information - such as labels, buttons or fields - offer the pos-
sibility to influence directly the style that is used for displaying the information.

The normal style is derived from the definition inside a cascading style definition file (file layout.css
inside the html/general directory of the server). Overwrite or enhance this style information for
your controls by passing the style information inside the corresponding style properties.

The properties specifying the style information end with the suffix "style", e.g. there is a property
labelstyle for the label tag. The value of the property can be any kind of a valid HTML style
specification. If youwant to change the display style of a label to be large and blue, define the label
in the following way:

187Layout Elements

Some Common Rules for all Controls

<label name="Test" width="150" labelstyle="font-size: 24pt; color: #0000FF">
</label>

See Adapting the Look & Feel in the Special Development Topics for information on how to change the
style of controls.

Dynamically Controlling the Visibility and the Display Status of Controls

It is possible to influence the visibility of all input controls (FIELD, BUTTON, etc.) by properties
of the adapter processing.

For some of these controls there is a property visibleprop, specifying an adapter property that
returns "true" or "false". By this, you can control whether you want to display the control within
the client or not.

Input controls support a property statusprop and aproperty displayprop. Using the corresponding
adapter properties, you can dynamically control the display status of the input control. The adapter
property for the statusprop can return the following values:

INVISIBLE
ERROR
ERROR_NO_FOCUS
FOCUS
FOCUS_NO_SELECT

The adapter property for the displayprop specifies whether the control is display-only (TRUE)
or whether it can be edited (FALSE). The adapter property can return the values "TRUE" and
"FALSE".

The combination of these two property values dynamically defines how the controls are rendered
at runtime (for an example, see 80_displayprop in the cisdemos project). The following table
defines the rendering of the control for the different combinations:

Control Status
statuspropdisplayprop

EDITFALSE (default)

EDITEDIT (deprecated) 1FALSE (default)

INVISIBLEINVISIBLEFALSE (default)

ERRORERRORFALSE (default)

ERROR_NO_FOCUSERROR_NO_FOCUSFALSE (default)

FOCUSFOCUSFALSE (default)

FOCUS_NO_SELECTFOCUS_NO_SELECTFALSE (default)

DISPLAYTRUE

Layout Elements188

Some Common Rules for all Controls

Control Status
statuspropdisplayprop

DISPLAYDISPLAY (deprecated) 1TRUE

INVISIBLEINVISIBLETRUE

ERROR_DISPLAYERRORTRUE

ERROR_DISPLAYERROR_NO_FOCUSTRUE

DISPLAYFOCUSTRUE

DISPLAYFOCUS_NO_SELECTTRUE

1 For statusprop, the above-mentioned deprecated values are still supported to ensure compatib-
ility with older versions. In case you use these deprecated values for statusprop, the values for
displayprop are ignored.

The literals used for the statusprop are available in the interface
com.softwareag.cis.util.IControlStatusConstants:

package com.softwareag.cis.util;

public interface IControlStatusConstants
{

public static final String CS_INVISIBLE = "INVISIBLE";
public static final String CS_ERROR = "ERROR";
public static final String CS_FOCUS = "FOCUS";
...

}

The Adapter class from which you inherit your adapters supports this interface - consequently,
you can directly use the CS_* constants inside your adapter implementations.

The generic com.softwareag.cis.server.Adapter class that you use as the base class for your
adapter implementation already implements the IControlStatusConstants interface: you can
directly use the constant definitions inside your adapter implementation.

The difference in behavior between "FOCUS" and "FOCUS_NO_SELECT" affects only the FIELD
and TEXT controls. For these controls, FOCUS set the focus and selects the complete text inside
the control. "FOCUS_NO_SELECT" sets the focus to the control, but does not select the text. For
all other controls, "FOCUS_NO_SELECT" behaves like "FOCUS".

For all other controls - and for more complex manipulations of what is visible and not - use the
possibility to be able to control the visibility of rows (ITR, TR) or containers (ROWAREA,
ROWTABLE0): these controls provide for a visibility property and consequently can be switched
on and off.

There is an extended management of what the control status "INVISIBLE" means. Most input
controls (FIELD, CHECKBOX, etc.) supporting a statusprop or a visibleprop also support a
property invisiblemode. The allowed values of invisiblemode are:

189Layout Elements

Some Common Rules for all Controls

■ invisible
The corresponding control is completely removed. The horizontal space it occupied before is
taken out.

■ cleared
The corrresponding control is not visible but still occupies its horizontal space.

■ disabled
The corresponding control is displayed with a disabled state. This state is only allowed with a
certain number of controls (e.g. button and icon).

Focus Management

Sometimes you want to control the keyboard focus inside a page. Here are the internal rules how
a page finds out where to put the focus on.

The default reaction is - if a page is displayed for the first time - to put the focus on the first input
control (FIELD, CHECKBOX, RADIOBUTTON, etc.) that is available inside a page. After that, you
can navigate through the input controls - and the focus is kept stable when interacting with the
server.

With statusprop - as mentioned in the previous section - you can interrupt this default reaction;
there are two possibilities:

■ If an input control is set to status "ERROR", it requests the focus automatically. The purpose is
to guide the user automatically to those fields that are not correctly entered.

■ If an input control is set to status "FOCUS", it is editable - just as normal - and also requests the
focus.

If several input controls are requesting the focus at the same time, the focus is put on the first
corresponding input control.

A demo page is available in the standard Application Designer workplace showing an example
of how to use the focus management:

The XML layout definition for the first area "Focus Demo for Fields" looks as follows:

Layout Elements190

Some Common Rules for all Controls

<rowarea name="Focus Demo for Fields">
<itr>

<label name="First Field" width="100">
</label>
<field valueprop="prop1" width="200" statusprop="prop1status">
</field>
<hdist width="30">
</hdist>
<button name="Set Focus" method="focus1">
</button>

</itr>
<itr>

<label name="Second Field" width="100">
</label>
<field valueprop="prop2" width="200" statusprop="prop2status">
</field>
<hdist width="30">
</hdist>
<button name="Set Focus" method="focus2">
</button>

</itr>
<itr>

<label name="Third Field" width="100">
</label>
<field valueprop="prop3" width="200" statusprop="prop3status">
</field>
<hdist width="30">
</hdist>
<button name="Set Focus" method="focus3">
</button>

</itr>
</rowarea>

In the demo, each field refers to a status property. The corresponding code of the adapter class
looks as follows:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class FocusManagementAdapter
extends Adapter

{
// property >first<
String m_first;
public String getFirst() { return m_first; }
public void setFirst(String value) { m_first = value; }

// property >second<
String m_second;
public String getSecond() { return m_second; }

191Layout Elements

Some Common Rules for all Controls

public void setSecond(String value) { m_second = value; }

// property >third<
String m_third;
public String getThird() { return m_third; }
public void setThird(String value) { m_third = value; }

// property >prop1<
String m_prop1;
public String getProp1() { return m_prop1; }
public void setProp1(String value) { m_prop1 = value; }

// property >prop1status<
String m_prop1status;
public String getProp1status() { return m_prop1status; }
public void setProp1status(String value) { m_prop1status = value; }

// property >prop2<
String m_prop2;
public String getProp2() { return m_prop2; }
public void setProp2(String value) { m_prop2 = value; }

// property >prop2status<
String m_prop2status;
public String getProp2status() { return m_prop2status; }
public void setProp2status(String value) { m_prop2status = value; }

// property >prop3<
String m_prop3;
public String getProp3() { return m_prop3; }
public void setProp3(String value) { m_prop3 = value; }

// property >prop3status<
String m_prop3status;
public String getProp3status() { return m_prop3status; }
public void setProp3status(String value) { m_prop3status = value; }

public void focus1() { m_prop1status = "FOCUS"; }
public void focus2() { m_prop2status = "FOCUS"; }
public void focus3() { m_prop3status = "FOCUS"; }

/** start of data transfer */
public void reactOnDataTransferStart()
{

super.reactOnDataTransferStart();
// set default status of fields
m_prop1status = "EDIT";
m_prop2status = "EDIT";
m_prop3status = "EDIT";

}
}

Layout Elements192

Some Common Rules for all Controls

Each time the page communicates with the adapter class, the focus information for all fields is
reset to "default" inside the method reactOnDataTransferStart(). This method is called prior to
any set/get operations by the Application Designer runtime.

By choosing a button, the corresponding focusmethod is called to set the status property to the
value "FOCUS".

Flushing of Inputs

Most input controls (FIELD, CHECKBOX, RADIOBUTTON,COMBOFIX, etc.) support a property
named flush. This property controls whether data input from a user causes an immediate syn-
chronisationwith the server orwhether data input from a user is stored internallywithin the client
and is synchronized with the next flushing event (e.g. when choosing a button).

There are three different values that can be specified with the flush property:

■ ""(blank)
The data is not synchroized after leaving the control. This is the default.

■ server
The data is synchronizedwith the server immediatelywhen the data has been entered, i.e. when
the user has left the corresponding input field.

■ screen
The data is synchronized within the controls of the screen. This means - if you have two fields
displaying the same property - you can synchronize the fields immediately, without interacting
with the server.

Tip: On the one hand, it is useful to flush information in a very fine granular way; you can
react on wrong entered data immediately - on the other hand, you have to remember that
each flush causes network traffic. The screen's data is sent to the server side processing and
the screenwaits for the response of the server. During this time, the page is blocked for input
and the user sees an hour glass popping up in the left top corner of the screen.

Tab Sequence

By default, the tab sequence of the controls of a page is defined by the order of the controls inside
the page's XML layout definition. Using the property tabindex, this order can be overridden and
the order of the tab index can be explicitly defined.

The following example shows a page with three fields and one button with an explicitly defined
tab sequence:

193Layout Elements

Some Common Rules for all Controls

The XML layout definition is:

<rowarea name="Simple Tab Sequence">
<itr takefullwidth="true">

<coltable0 width="50%">
<itr>

<label name="First" width="120">
</label>
<field valueprop="first" width="120" tabindex="1">
</field>

</itr>
<itr>

<label name="Third" width="120">
</label>
<field valueprop="third" width="120" tabindex="3">
</field>

</itr>
</coltable0>
<coltable0 width="50%">

<itr>
<label name="Second" width="120">
</label>
<field valueprop="second" width="120" tabindex="2">
</field>

</itr>
<itr>

<hdist width="120">
</hdist>
<button name="OK" method="onOK" tabindex="4">
</button>

</itr>
</coltable0>

</itr>
</rowarea>

According to the sequence of controls inside the layout definition, the default tab sequence would
be: field First, field Third, field Second and buttonOK.

Due to explicitly defining the tabindex property for the fields and the button, the tab sequence is
now correct: field First, field Second, field Third and buttonOK.

Pay attention:

Layout Elements194

Some Common Rules for all Controls

■ Once having started to explicitly set the tab index in a page, you must consequently continue
with all controls of the page. Adding new controls without tab index, is internally interpreted
as if these controls were defined with tab index "0".

■ Equal tab indices in controls are allowed. In this case, the sequence of the controls inside the
layout definition defines the tab sequence among the controls with an equal index.

■ Moving controls from one location to the other within a page typically means that you have to
adapt the tab sequence accordingly.

The tab index usually is a positive integer value. Youmay define tab index "-1" for excluding certain
controls from the tab sequence at all. In this case, the corresponding controls may only be reached
by mouse clicking.

Conclusion:

■ In typical pages, you do not have to take care of the tab sequence at all because the default (tab
sequence by order of controls in page layout) is adequate to the user's experience.

■ Only use the explicit definition of the tab sequence if really it is required - the effort formaintaing
each tab index with each control should not be underestimated.

Tooltips

Tooltips can be applied to many controls. If the user hovers with the mouse cursor over a control
for some seconds, a small yellow box appears showing some more detailed explanation.

The corresponding controls offer two properties:

■ title
Here you can specify a hard-coded text that is used as the tooltip.

■ titletextid
Here you specify a text ID that is passed to the multi language management..

195Layout Elements

Some Common Rules for all Controls

196

21 BREADCRUMB

■ Example .. 198
■ Properties .. 200

197

The BREADCRUMB control represents a horizontal list of method links. The number of links and
the name of each link is dynamically derived from the adapter.

The control always occupies 100% of the given width.

Example

The XML layout definition is:

<rowarea name="Bread Crumbs...">
<breadcrumb breadcrumbprop="items">
</breadcrumb>

</rowarea>

The Java code of the adapter is:

package com.softwareag.cis.test21;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.BREADCRUMBInfo;
import com.softwareag.cis.server.util.BREADCRUMBItem;

public class BreadcrumbAdapter extends Adapter
{
 // --
 // inner classes
 // --

 // class >MyBCItem<
 public class MyBCItem extends BREADCRUMBItem
 {
 public MyBCItem(BREADCRUMBInfo info, String text)
 {
 super(info, text);
 }

 public void execute()
 {
 Object itemsInfo[] = m_items.getItems();
 MyBCItem items = this;
 m_items.clear();
 m_items = new BREADCRUMBInfo();

Layout Elements198

BREADCRUMB

 if (((MyBCItem)itemsInfo[0]).equals(items))
 {
 new MyBCItem(m_items, "Books");
 }
 else if (((MyBCItem)itemsInfo[1]).equals(items))
 {
 new MyBCItem(m_items, "Books");
 new MyBCItem(m_items, "Computers");
 }
 else if (((MyBCItem)itemsInfo[2]).equals(items))
 {
 new MyBCItem(m_items, "Books");
 new MyBCItem(m_items, "Computers");
 new MyBCItem(m_items, "Ajax");
 }
 outputMessage(MT_SUCCESS, "Breadcrumb item: " + getText() + " was ↩
pressed!");
 }
 }

 // --
 // properties
 // --

 // property >infoText<
 String m_infoText;
 public String getInfoText() { return m_infoText; }

 // property >items<
 BREADCRUMBInfo m_items = new BREADCRUMBInfo();
 public BREADCRUMBInfo getItems() { return m_items; }

 // --
 // public usage
 // --

 /**
 */
 public void init()
 {
 m_infoText = "Please click on the breadcrumbs and see the result on the ↩
statusbar";
 new MyBCItem(m_items, "Books");
 new MyBCItem(m_items, "Computers");
 new MyBCItem(m_items, "Ajax");
 }
}

The list of items can be changed inside the adapter; the breadcrumb list will react accordingly on
the client side. When the user clicks a link on the client side, the execute()method will be called
in the object of the BREADCRUMBInfo collection which represents the link.

199Layout Elements

BREADCRUMB

Properties

Basic

ObligatoryName of the adapter property that represents the control
on adapter side.

breadcrumbprop

The property must be of name BREADCRUMBInfo.
Please view the Java API Documentation for more
information.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

breadcrumbstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press rightmouse-button in your
browser and select the "View source" or "View frame's
source" function.

1OptionalPixel distance between the links that are rendered.pixeldistance

2

3

int-value

OptionalCommentwithout any effect on rendering andbehaviour.
The comment is shown in the layout editor's tree view.

comment

Layout Elements200

BREADCRUMB

22 BUTTON

■ Example: Simple Button .. 202
■ Example: Button with Image .. 203
■ Hiding and Disabling Buttons ... 203
■ Properties .. 203

201

The BUTTON control represents a button. Within the definition, specify a method that is called
in the adapter when choosing the button.

Example: Simple Button

The XML layout definition is:

<rowarea name="Buttons">
<itr>

<button name="Save As ..." method="saveAs">
</button>
<hdist>
</hdist>
<button name="Refresh" method="refresh">
</button>

</itr>
</rowarea>

Layout Elements202

BUTTON

Example: Button with Image

The XML layout definition is:

<rowarea name="Buttons">
 <itr>
 <button name="Save" method="onSave" image="../HTMLBasedGUI/images/save.gif">
 </button>
 <hdist>
 </hdist>
 <button name="Remove" method="onRemove" ↩
image="../HTMLBasedGUI/images/remove.gif">
 </button>
 </itr>
</rowarea>

Hiding and Disabling Buttons

Buttons (like many other controls) can be dynamically hidden by using the visibleprop property
- and referencing to a server side property that decides whether to hide a button or not.

There are two modes of hiding that can be controlled by using the property invisiblemode:

■ If set to "disabled", the button is grayed and is not selectable anymore.
■ If set to "invisible", the button is hidden.

Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please
do not specify the name when using the multi

name

language management - but specify a "textid"
instead.

Sometimes
obligatory

Multi language dependent text that is displayed
inside the control. The "textid" is translated into
a corresponding string at runtime.

textid

203Layout Elements

BUTTON

Do not specify a "name" inside the control if
specifying a "textid".

ObligatoryName of the adapter object's method that is
called when the user presses the button.

method

Following JAVA coding conventions a method
name typically starts with a non-capital
character, e.g. "onSave" instead of "ONSave".

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

(already explained above)name

(already explained above)textid

gifOptionalURL of image that is displayed inside the
control. Any image type (.gif, .jpg, ...) that your
browser does understand is valid.

image

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

invisibleOptionalThis property has three possible values:invisiblemode

disabled(1) "invisible": the button is not visible without
occupying any space.

cleared
(2) "disabled": the button is deactivated: it is
"grayed" and does not show any roll over effects
any more.

(3)"cleared": the button is not visible but it still
occupies space.

trueOptionalIf set to TRUE, the visibleprop is automatically
switched to TRUE in case of user input to any
input control in this page. The default is FALSE.

switchvisibleproponuserinput

false

100OptionalWidth of the control.width

120There are three possibilities to define thewidth:

140

Layout Elements204

BUTTON

(A) You do not define a width at all. In this case
the width of the control will either be a default

160

180width or - in case of container controls - it will
follow thewidth that is occupied by its content.

200
(B) Pixel sizing: just input a number value (e.g.
"100"). 50%

100%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with

250its default height. If the control is a container

300
control (containing) other controls then the
height of the control will follow the height of its
content. 250

(B) Pixel sizing: just input a number value (e.g.
"20").

400

50%
(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a height
this control can reference. If you specify this
control to have a height of 50% then the parent
element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

10OptionalPixel height of image inside button.imageheight

20

40

100

300

205Layout Elements

BUTTON

10OptionalPixel width of image inside button.imagewidth

20

40

100

300

background-color:
#FF0000

OptionalCSS style definition that is directly passed into
the text of this control.

textstyle

color: #0000FFWith the style you can individually influence
the text of the button. You can specify any style
sheet expressions. Examples are: font-weight: bold

font-weight: bold

color: #FF0000

background-color:
#FF0000

OptionalCSS style definition that is directly passed into
this control.

buttonstyle

color: #0000FFWith the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

VAR1OptionalSome controls offer the possibility to define style
variants. By this style variant you can address

stylevariant

VAR2different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the
style sheet defintion and use them multiple
times by addressing them via the "stylevariant"
property. CIS currently offerst two variants

Layout Elements206

BUTTON

"VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. Inmost cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than
the size of the control. In this case the "align"
property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may
sometimes want to control the number of

3columns your control occupies. By default it is

4
"1" - but you may want to define the control to
span over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may
sometimes want to control the number of rows

3your control occupies. By default it is "1" - but

4
youmaywant to define the control to span over
more than one columns.

5

207Layout Elements

BUTTON

The property only makes sense in table rows
that are snychronized within one container (i.e.

50

int-valueTR, STR table rows). It does not make sense in
ITR rows, because these rows are explicitly not
synched.

gifOptionalURL of image that is displayed if the control is
disabled. Use properties VISIBLEPROP and
INVISIBLEMODE to disable the control.

imagedisabled

jpg

jpeg

trueOptionalSet this property to true and the button will
work as an 'Submitbutton', that is neccessary if
you want to transfer and/or save form values.

submitbutton

false

i.e. password and username or complete search
forms

Default value is false.

You should only use a 'Submitbutton' if the
withformtag option of the pagebody tag is set
true.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Binding

(already explained above)method

OptionalName of an adapter property that provides the
information if this control is displayed or not.

visibleprop

As consequence you can control the visibility
of the control dynamically.

The server side property needs to be of type
"boolean".

OptionalName of adapter property that provides the text
to be displayed inside the button. Typically

nameprop

buttons have static texts either defined by the
property "name" or "textid". Via "nameprop"

Layout Elements208

BUTTON

you can dynamically set the button's text by
your application. Use the nameprop in cases the
button's text should change dependent on your
logic.

Example: you may want to define the button's
text to reflect the next status the user can set to
a business object.

OptionalProperty of adapter that dynamically defines
the title of the control. The title is displayed as

titleprop

tool tip when ther user moves the mouse onto
the control.

OptionalNameof adapter property that provides as value
the URL of the image that is shown inside the
control.

imageprop

The URL must either be an absolute URL or a
relative URL.

OptionalNameof adapter property that provides as value
the URL of the image that is shown when the
control is disabled.

imagedisabledprop

OptionalName of property that indicates if the control
should receive focus.

focusedprop

Must be of type "boolean"/ "Boolean"

Online help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

(already explained above)titleprop

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid

209Layout Elements

BUTTON

210

23 BUTTONLIST

■ Example .. 212
■ Defining Outlook Bars by Using BUTTONLIST ... 213
■ Properties .. 214

211

The button list represents a vertical arrangement of buttons. The number of buttons and the name
on each button are dynamically derived from the adapter.

The controls always occupy 100%of the givenwidth and occupy the height required by the buttons.

Example

The XML layout definition is:

<pagebody>
<buttonlist buttonlistprop="buttonlist">
</buttonlist>

</pagebody>

The Java code of the adapter is:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.BUTTONLISTInfo;
import com.softwareag.cis.server.util.BUTTONLISTItem;

// This class is a generated one.

public class TabSelAdapter
extends Adapter

{
// class >MyBLItem<
public class MyBLItem extends BUTTONLISTItem
{

public MyBLItem(BUTTONLISTInfo info, String text)
{

super(info, text);
}

public void execute()
{

outputMessage("S","Button " + getText() + " was pressed!");
}

}

// property >buttonlist<

Layout Elements212

BUTTONLIST

BUTTONLISTInfo m_buttonlist = new BUTTONLISTInfo();
public BUTTONLISTInfo getButtonlist() { return m_buttonlist; }

/** initialisation - called when creating this instance*/
public void init()
{

// Fill Buttomlist
MyBLItem item;
item = new MyBLItem(m_buttonlist,"Hello");
item = new MyBLItem(m_buttonlist,"this");
item = new MyBLItem(m_buttonlist,"is");
item = new MyBLItem(m_buttonlist,"CIS");

}
}

The list of items can be changed inside the adapter. The button list will react accordingly on the
client side.

If the user clicks a button on the client side, the execute()method will be called in the object of
the BUTTONLISTInfo collectionwhich represents the button. Your reaction can be added accordingly.

Defining Outlook Bars by Using BUTTONLIST

Sorry for the naming, but this seems to be the most common way to make you understand what
is meant: inmany applications, you find the following arrangement of controls in order to arrange
a set of functions to be called by a user:

213Layout Elements

BUTTONLIST

The way to build this control is to combine the following:

■ One BUTTONLIST at the top of the page.
■ One tree control in the middle (seeWorking with Trees).
■ One BUTTONLIST at the bottom of the page.

Depending on the clicking of the user, the two BUTTONLIST controls change the number of con-
tained buttons in a way that they “mirror one another”.

Properties

Basic

ObligatoryName of the adapter property that rerpesents the control
on adapter side.

buttonlistprop

The property must be of name BUTTONLISTInfo. Please
view the Java API Documentation for more information.

1OptionalPixel distance between the buttons that are rendered.pixeldistance

Layout Elements214

BUTTONLIST

2

3

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

buttonstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

10OptionalPixel height of image inside button.imageheight

20

40

100

300

10OptionalPixel width of image inside button.imagewidth

20

40

100

300

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

215Layout Elements

BUTTONLIST

10

32767

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can
be later on used within your test tool in order to do the
object identification

testtoolid

Layout Elements216

BUTTONLIST

24 CHECKBOX

■ Example .. 218
■ Properties .. 218

217

TheCHECKBOX control displays a check box. It represents a boolean value of an adapter property.

Example

The XML layout definition is:

<rowarea name="Checkboxes">
<itr>

<checkbox valueprop="marked">
</checkbox>
<label name="Marked" asplaintext="true">
</label>

</itr>
</rowarea>

The corresponding Java code of the adapter is:

// property >marked<
boolean m_marked;
public boolean getMarked() { return m_marked; }
public void setMarked(boolean value) { m_marked = value; }

Properties

Basic

ObligatoryName of adapter property that is represented by checkbox.valueprop

The property must be of type "boolean" or "Boolean" (or
"String").

OptionalCommentwithout any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

Layout Elements218

CHECKBOX

160container controls - it will follow thewidth that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizingwill only bring up correct 50%

100%
results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

trueOptionalIf set to true, the FIELD will not be accessible for input. It
is just used as an output field.

displayonly

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is sized
in the same way as the contained control.

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but youmaywant to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

219Layout Elements

CHECKBOX

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

invisibleOptionalIf the visibility of the control is determined dynamically
by an adapter property then there are two renderingmodes
if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source order
to resolve duplicates.

tabindex

0

1

2

5

10

32767

Label

OptionalText that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

OptionalWitdh of the distance between checkbox and label in pixel.hdistpixelwidth

Layout Elements220

CHECKBOX

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

labelstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTMLcode in order to knowwhere direct style definitions
are applied. Press rightmouse-button in your browser and
select the "View source" or "View frame's source" function.

Binding

(already explained above)valueprop

OptionalName of adapter property that controls whether the field
is displayonly(true) or not (false).

displayprop

By using this property you can dynamically control the
"display"-status of the control by your adapter object.

OptionalName of the adapter property that dynamically passes
information how the field should be rendered and how it
should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

221Layout Elements

CHECKBOX

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method

flushmethod

to be called when the user updates the content of the
control. By doing so you can distinguish on the server side
from which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in
case the user presses F1 on the control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to themulti lanaguagemanagement
- representing the tooltip text that is used for the control.

titletextid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that
can be later on used within your test tool in order to do
the object identification

testtoolid

Typically, the CHECKBOX is followed by a LABEL control naming the displayed check box. In
the LABEL definition, set the property asplaintext to "true".

Layout Elements222

CHECKBOX

25 COMBODYN2

■ Example .. 225
■ Typical Problems with COMBODYN2 ... 226
■ Properties .. 226

223

The COMBODYN control is the dynamic counterpart of the COMBOFIX control. Whereas the se-
lection options inside theCOMBOFIX control are defined in a fixedway inside the page definition,
the COMBODYN2 control offers the possibility to derive the selection options dynamically from
adapter properties.

Layout Elements224

COMBODYN2

Example

The XML layout definition looks as follows:

<rowarea name="ComboDyn">
<itr>

<label name="Cost Center" width="120">
</label>
<combodyn2 valueprop="costCenter" validvaluesprop="validCostCenters"

width="200" size="1">
</combodyn2>

</itr>
</rowarea>

The definition of the COMBODYN2 control refers to a valueprop property: this is the property of
the adapter class in which the selection is actually passed. In addition, the definition refers to a
validvaluesprop property: this is the property from which the options are taken.

The code of the corresponding adapter class looks as follows:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.COMBODYNValidValues;

// This class is a generated one.

public class ComboFixAdapter
extends Adapter

{
// property >costCenter<
String m_costCenter;
public String getCostCenter() { return m_costCenter; }
public void setCostCenter(String value) { m_costCenter = value; }

// property >validCostCenters<
COMBODYNValidValues m_validCostCenters = new COMBODYNValidValues();
public COMBODYNValidValues getValidCostCenters() { return m_validCostCenters; }

/** initialisation - called when creating this instance*/
public void init()
{

m_validCostCenters.addValidValue("0001","Marketing");

225Layout Elements

COMBODYN2

m_validCostCenters.addValidValue("0002","Sales");
m_validCostCenters.addValidValue("0003","Development");

}
}

Typical Problems with COMBODYN2

The rendering problems with the internally used HTML control SELECT also apply for the
COMBODYN2 control. See the corresponding information in the section Typical Problems with
COMBOFIX.

For this reason, COMBODYN2 offers the property renderasfield: when switched to "true", the
rendering is not done by using the HTML control SELECT, but by using the normal Application
Designer FIELD with valid value support. Rendering as FIELD has the following advantages:

■ There are no overlapping conflicts anymore.
■ Valid values are brought to the client at the point of time when the user requests value help.

But there is also a disadvantage:

■ When selecting a value from the valid value list, the value is displayed with its ID - not with its
description.

Properties

Basic

ObligatoryServer side property representation of the control.valueprop

ObligatoryAdapter property that provides for the valid values
that are available as selectable options.

validvaluesprop

The adapter property must be of type
"COMBODYNValidValues".

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the
width of the control will either be a default width or -

140

160in case of container controls - it will follow the width
that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200

Layout Elements226

COMBODYN2

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizingwill only bring

50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If
you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Appearance

(already explained above)width

OptionalNumber of rows that are displayed inside the control.
If specified as "1" (default) then the control is rendered

size

as combo box - if ">1" then the control is rendered as
multi line selection.

OptionalIf set to true, the FIELDwill not be accessible for input.
It is just used as an output field.

displayonly

rtlOptionalPresets the default(BiDi) direction of the control. Use
black string in order to have the default value.

direction

ltr

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the

rightsize of the column is bigger than the size of the control
itself. In this case the "align" property specifies the
position of the control inside the column. Inmost cases
you do not require the align control to be explicitly
defined because the size of the column around the
controls exactly is sized in the same way as the
contained control.

If you want to directly control the alignment of text:
inmost text based controls there is an explicit property
"textalign" in which you align the control's contained
text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the

bottomsize of the column is bigger than the size of the control.
In this case the "align" property specify the position of
the control inside the column.

227Layout Elements

COMBODYN2

1OptionalColumn spanning of control.colspan

2If you use TR table rows then youmay sometimeswant
to control the number of columns your control

3occupies. By default it is "1" - but you may want to
define the control to span overmore than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then youmay sometimeswant
to control the number of rows your control occupies.

3By default it is "1" - but you may want to define the
control to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

int-value

trueOptionalIf set to "true" then the combo box is rendered like a
FIELD control that offers valid value support.

renderasfield

false
Default is "false".

The normal translation of COMBODYN2 into HTML
renders an HTML-select control. This control has
certain limitations inside Internet Explorer: it only
offers a very reduced set of styles to manipulate its
look and feel and - much worse: it always occupies
z-index "0" i.e. if you other areas overlapping the
COMBODYN2 area then COMBODYN2 is always on
the top. This is quite ugly if e.g. a menu is opened and
parts of the menu overlap a COMBODYN2 control.

trueOptionalIf set to true then multiple selections are allowed.allowmultiselection

false

OptionalCSS style definition that is directly passed into this
control.

combostyle

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

Layout Elements228

COMBODYN2

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

invisibleOptionalIf the visibility of the control is determineddynamically
by an adapter property then there are two rendering
modes if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source
order to resolve duplicates.

tabindex

0

1

2

5

10

32767

xs:stringOptionalBy default, the control ismanaging its content as string.
By explicitly setting a datatype you can define that the

datatype

------------------------control will format the data coming from the server: if

N n.n
the field has datatype "date" and the user inputs
"010304" then the input will be translated into

P n.n"01.03.2004" (or other representation, dependent on
date format settings).

string n
Please note: the datatype "float" is named a bit
misleading - it represents any decimal format number.
The server side representation may be a float value,
but also can be a double or a BigDecimal property.

Binding

(already explained above)valueprop

(already explained above)validvaluesprop

229Layout Elements

COMBODYN2

OptionalName of adapter property that controls whether the
field is displayonly(true) or not (false).

displayprop

By using this property you can dynamically control
the "display"-status of the control by your adapter
object.

OptionalName of the adapter property that dynamically passes
information how the field should be rendered and how
it should act.

statusprop

OptionalProperty of adapter that dynamically defines the title
of the control. The title is displayed as tool tip when
ther user moves the mouse onto the control.

titleprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registeredwithin
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By
using the FLUSH property you can change this
behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can
react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during
the synchronization always all changed properties -
also the ones thatwere changed before - are transferred
to the adapter object, not only the one that triggered
the synchonization.

Setting FLUSH to "screen" means that the changed
value is populated inside the page. You use this option
if you have redundant usage of the same property
inside one page and if you want to pass one changed
value to all its representaion directly after changing
the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit

flushmethod

method to be calledwhen the user updates the content
of the control. By doing so you can distinguish on the
server side from which control the flush of data was
triggered.

Online Help

OptionalHelp id that is passed to the online help management
in case the user presses F1 on the control.

helpid

(already explained above)titleprop

Miscellaneous

Layout Elements230

COMBODYN2

OptionalUse this attribute to assign a fixed control identifier
that can be later on used within your test tool in order
to do the object identification

testtoolid

231Layout Elements

COMBODYN2

232

26 COMBOFIX

■ Example .. 235
■ Typical Problems with COMBOFIX .. 236
■ COMBOFIX Properties ... 236
■ COMBOOPTION Properties ... 240

233

TheCOMBOFIX control is a selection control. Depending on its configuration, it is either displayed
as a combo box or as a selection list.

The COMBOFIX control allows specifying a defined set of values which can be selected. This set
of values is defined as part of the layout definition - it cannot be loaded dynamically from the
server.

Note: If you want to use dynamic selection, there are two possibilities. Either use the
COMBODYN control which has the same look and feel as the COMBOFIX control, but
where the selectable values are not specified as part of the page definition and are derived
from an adapter property. Or use the value help pop-up dialogs as described inWorking
with Page Navigation.

Layout Elements234

COMBOFIX

Example

The XML layout code for the example looks as follows:

<rowarea name="Combo Box">
<itr takefullwidth="true">

<coltable0 width="50%" takefullheight="true">
<itr>

<combofix valueprop="factor1" size="1" flush="screen">
<combooption name="Ten" value="10">
</combooption>
<combooption name="Twenty" value="20">
</combooption>
<combooption name="Thirty" value="30">
</combooption>

</combofix>
</itr>

</coltable0>
<coltable0 width="50%" takefullheight="true">

<itr takefullwidth="false">
<combofix valueprop="factor1" size="5" flush="screen">

<combooption name="Ten" value="10">
</combooption>
<combooption name="Twenty" value="20">
</combooption>
<combooption name="Thirty" value="30">
</combooption>

</combofix>
</itr>

</coltable0>
</itr>

</rowarea>

There is a property size inside the COMBOFIX definition. This property specifies the number of
lines that are displayed inside the control. If the size property is set to "1", a combo box is displayed;
if it is set to a value higher than "1", the selection control is displayed.

Inside the COMBOFIX definition, there is a set of COMBOOPTION definitions that represent the
selectable values. Each value consists of a display string (name property) and a value that is actually
set as a property value (value property).

235Layout Elements

COMBOFIX

The COMBOFIX definition contains a reference to an adapter property (valueprop property) into
which the value is transferred.

Typical Problems with COMBOFIX

The COMBOFIX control is internally rendered as the HTML control SELECT. Unfortunately, the
HTML control has some internal problems and behaves different from normal HTML controls:

■ The HTML control SELECT always stays on top of all controls, i.e. it has a “maximum high” z-
index and does not allow other controls to overlap.

■ TheHTML control SELECTdoes not allow sophisticated style definitions: besides some coloring
aspects, you have to accept the look and feel of this control. For example, you cannot turn off
its thick borders and you cannot influence the selection image which shows valid values.

Be aware of the consequences of these problems when using the control. Do not place the control
into a page are in which a menu might overlap. The COMBOFIX will always be on top of the
menu.

COMBOFIX Properties

Basic

ObligatoryServer side property representation of the control.valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

Layout Elements236

COMBOFIX

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

OptionalNumber of rows that are displayed inside the control. If
specified as "1" (default) then the control is rendered as

size

combo box - if ">1" then the control is rendered as multi line
selection.

OptionalIf set to true, the FIELD will not be accessible for input. It is
just used as an output field.

displayonly

rtlOptionalPresets the default(BiDi) direction of the control. Use black
string in order to have the default value.

direction

ltr

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. Inmost cases you do not require the align
control to be explicitly defined because the size of the column
around the controls exactly is sized in the same way as the
contained control.

If you want to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside the
column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

237Layout Elements

COMBOFIX

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but youmaywant to define the control to span over
more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

OptionalCSS style definition that is directly passed into this control.combostyle

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

invisibleOptionalIf the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

Layout Elements238

COMBOFIX

xs:stringOptionalBy default, the control is managing its content as string. By
explicitly setting a datatype you can define that the control

datatype

------------------------will format the data coming from the server: if the field has

N n.n
datatype "date" and the user inputs "010304" then the input
will be translated into "01.03.2004" (or other representation,
dependent on date format settings). P n.n

Please note: the datatype "float" is named a bit misleading -
it represents any decimal format number. The server side

string n

representationmay be a float value, but also can be a double
or a BigDecimal property.

Binding

(already explained above)valueprop

OptionalName of adapter property that controls whether the field is
displayonly(true) or not (false).

displayprop

By using this property you can dynamically control the
"display"-status of the control by your adapter object.

OptionalName of the adapter property that dynamically passes
information how the field should be rendered and how it
should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the
browser client - and communicated to the server adapter
objectwhen a user e.g. presses a button. By using the FLUSH
property you can change this behaviour.

Setting FLUSH to "server"means that directly after changing
the input a synchronization with the server adapter is
triggered. As consequence you directly can react inside your
adapter logic onto the change of the corresponding value. -
Please be aware of that during the synchronization always
all changed properties - also the ones that were changed
before - are transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and
if youwant to pass one changed value to all its representaion
directly after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method to

flushmethod

be called when the user updates the content of the control.
By doing so you can distinguish on the server side from
which control the flush of data was triggered.

Online Help

239Layout Elements

COMBOFIX

OptionalHelp id that is passed to the online helpmanagement in case
the user presses F1 on the control.

helpid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can
be later on usedwithin your test tool in order to do the object
identification

testtoolid

COMBOOPTION Properties

Basic

OptionalName that is displayed as selectable option. Either use theNAMEproperty to specify
the text in a "hard" way or use the TEXTID property to define the text in a language
dependent way.

name

OptionalText ID that is used for this option. The text id is passed to the multi language
management in order to find a language dependent text.

textid

OptionalActual value of the option that is passed into the adapter property specified by
VALUEPROP inside the COMBOFIX control.

value

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Layout Elements240

COMBOFIX

27 DATEINPUT

■ Example .. 242
■ From-To Restrictions .. 243
■ Input of Date and Time ... 245
■ Properties .. 246

241

The DATEINPUT control is used to input a date or a date with time. The input can be done both
with the keyboard or by opening a pop-up in which the user can browse through a calendar. The
calendar can be controlled by server side processing in the following way:

■ You can define a valid-from and a valid-to date. Thus, the controlwill not allow the user to input
an invalid date.

■ You can explicitly control the color and the tooltip information inside the calendar. For example,
you may set up a calendar in which vacation times are hightlighted in a certain way.

Example

The most simple usage scenario is to just use the DATEINPUT control in the following way:

<rowarea name="Dateinput">
<itr>

<label name="Order Date" width="120">
</label>
<dateinput valueprop="orderDate" width="120">
</dateinput>

</itr>
</rowarea>

The corresponding screen looks like this:

The usermay directly enter a date into the field (the format of the input is specified by the session's
date display settings) or may open the calendar pop-up by clicking on the field's icon:

Layout Elements242

DATEINPUT

The server-side adapter class looks like this:

public class DateInputAdapter
extends Adapter

{
// property >orderDate<
CDate m_orderDate;
public CDate getOrderDate() { return m_orderDate; }
public void setOrderDate(CDate value) { m_orderDate = value; }

}

Instead of using a property of type CDate, youmay also use a simple String property. In this case,
the date string is passed in the format "YYYYMMDD".

From-To Restrictions

By using the control's properties fromprop and toprop, you can bind the control to adapter prop-
erties that define a time range that can be selected by the user:

243Layout Elements

DATEINPUT

In the date control, you can only input dates between the 3rd and the 15th of June. The correspond-
ing tag definition of the DATEINPUT control looks like this:

<dateinput valueprop="orderDate" width="120" fromprop="fromDate" toprop="toDate">
</dateinput>

The server-side adapter holds the properties fromDate and toDate:

public class DateInputAdapter
extends Adapter

{
// property >orderDate<
CDate m_orderDate;
public CDate getOrderDate() { return m_orderDate; }
public void setOrderDate(CDate value) { m_orderDate = value; }

// property >fromDate<
CDate m_fromDate = new CDate("20050701");
public CDate getFromDate() { return m_fromDate; }
public void setFromDate(CDate value) { m_fromDate = value; }

// property >toDate<
CDate m_toDate = new CDate("20050725");
public CDate getToDate() { return m_toDate; }
public void setToDate(CDate value) { m_toDate = value; }

}

Youmay also specify only the frompropproperty: in this case, the usermay select all dates following
the specified date. (Same with only specifying the toprpop property.)

Layout Elements244

DATEINPUT

Input of Date and Time

By using the property datatype, you can use the DATEINPUT control for inputting a time stamp:

The corresponding layout definition is:

<rowarea name="Date Input - with Day Time Input">
<itr>

<label name="Confirmation Time" width="120">
</label>
<dateinput valueprop="confirmationTime" width="120" datatype="datetime">
</dateinput>

</itr>
</rowarea>

The control now refers on the server side to a property of type CTimestamp:

245Layout Elements

DATEINPUT

// property >confirmationTime<
CTimeStamp m_confirmationTime;
public CTimeStamp getConfirmationTime() { return m_confirmationTime; }
public void setConfirmationTime(CTimeStamp value) { m_confirmationTime = value; }

Using the property secondsvisprop, you can bind the control to a boolean adapter propertywhich
decides whether the user can input the time with or without seconds.

Properties

Basic

OptionalServer side property representation of the control.valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the
width of the control will either be a default width or

160- in case of container controls - it will follow the
width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only 50%

100%bring up correct results if the parent element of the
control properly defines a width this control can
reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent
element does not specify a width then the rendering
result may not represent what you expect.

dateOptionalBy default, the DATEINPUT control is managing a
day. By explicitly setting a datatype you can define

datatype

datetimethat the control is managing a day and time. In the

first use type CDATE within your adapter program
- in the second case use type CTIMESTAMP.

xs:date

xs:dateTime

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Binding

Layout Elements246

DATEINPUT

(already explained above)valueprop

OptionalName of an adapter property to provide for a lower
limit. Propertymust return an object of typeCDATE.

fromprop

The value is used for client side validation of user
input.

OptionalName of an adapter property to provide for a upper
limit. Propertymust return an object of typeCDATE.

toprop

The value is used for client side validation of user
input.

OptionalName of an adapter property to provide for style
information that is used inside the date popup. The

infoprop

property must return an object of type
DATEINPUTInfo.

OptionalName of an adapter property to provide for a
boolean that indicates if to showadditional seconds.

secondsvisprop

This property make sense only if property
DATATYPE is set to "daytime".

OptionalName of the adapter property that dynamically
passes information how the field should be rendered
and how it should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated to the
server adapter object when a user e.g. presses a
button. By using the FLUSH property you can
change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronizationwith the server
adapter is triggered. As consequence you directly
can react inside your adapter logic onto the change
of the corresponding value. - Please be aware of that
during the synchronization always all changed
properties - also the ones that were changed before
- are transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed
value is populated inside the page. You use this
option if you have redundant usage of the same
property inside one page and if you want to pass
one changed value to all its representaion directly
after changing the value.

OptionalWhen the data synchronization of the control is set
to FLUSH="server" then you can specify an explicit

flushmethod

method to be called when the user updates the

247Layout Elements

DATEINPUT

content of the control. By doing so you can
distinguish on the server side from which control
the flush of data was triggered.

Appearance

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there are
two rendering modes if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still
occupies space.

trueOptionalIf set to true, the FIELD will not be accessible for
input. It is just used as an output field.

displayonly

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the size
of the column around the controls exactly is sized in
the same way as the contained control.

If you want to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" in which you align the control's
contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than the
size of the control. In this case the "align" property
specify the position of the control inside the column.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

inputstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

Layout Elements248

DATEINPUT

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generatedHTML code in order to knowwhere direct
style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes
want to control the number of rows your control

3occupies. By default it is "1" - but you may want to

4
define the control to span over more than one
columns.

5The property only makes sense in table rows that
are snychronized within one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes
want to control the number of columns your control

3occupies. By default it is "1" - but you may want to

4
define the control to span over more than one
columns.

5The property only makes sense in table rows that
are snychronized within one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value

trueOptionalBoolean value defining if the control has a border.
Default is "false".

noborder

false

trueOptionalBoolean value defining if the control is rendered
with a transparent background. Default is "false".

transparentbackground

false

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order and
in source order to resolve duplicates.

tabindex

0

1

2

5

249Layout Elements

DATEINPUT

10

32767

Valuehelp

gifOptionalURL of image that is displayed inside the right
corner of the field to indicate to the user that there

popupicon

jpgis some value help available.. Any image type (.gif,
.jpg, ...) that your browser does understand is valid.

jpeg
Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page
is generated directly into your project's folder.
Specifiying "images/xyz.gif" will point into a
directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to
an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalBoolean property that control if a field with
POPUPMETHODdefined is still usable for keyboard

popupinputonly

falseinput. If "false" (= default) then the user can input a
value either directly via keyboard or by using the
popupmethod's help. If set to "true" then no
keyboard input is possible - but only selection from
the popup-method's help.

trueOptionalValue help in a field is triggered either by clicking
with the mouse or by pressing a certain key inside

popuponalt40

falsethe field. The "traditional" keys are "cusrsor-down",
"F7" or "F4". Sometimes you do notwant tomix other
"cursor-down" behaviour (e.g. scrolling in lists) with
the value help behaviour. In this case switch this
property to "true" - and the value helpwill only come
up anymore when "alt-cursor-down" is pressed.

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to define
a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that is
used for the control.

titletextid

OptionalProperty of adapter that dynamically defines the
title of the control. The title is displayed as tool tip
when ther user moves the mouse onto the control.

titleprop

Layout Elements250

DATEINPUT

OptionalHelp id that is passed to the online helpmanagement
in case the user presses F1 on the control.

helpid

251Layout Elements

DATEINPUT

252

28 DROPICON

■ Example .. 254
■ Dragging and Dropping Information from DROPICON to TREENODE3 ... 255
■ Dragging and Dropping Information from DROPICON to ICONLIST ... 255
■ Properties .. 256

253

The DROPICON control is an icon that can be used in order to build drag-and-drop scenarios. A
DROPICON can be defined as the starting point of a drag-and-drop operation or as the target
point of a drag-and-drop operation.

Example

Have a look at the following screen:

The user can click the left mouse button on the left icon (drag), move the mouse to the right icon
and then release the mouse button (drop).

The configuration of drag and drop is quite simple: the icon that is used for starting drag-and-
drop operations leaves a certain drag information - a plain string object. The receiving icon, on
which the user performs the drop operation, receives both an event and the string object which
was left by the icon from where the operation was started.

Have a look at the XML layout definition of the example above:

<rowarea name="Demo">
<itr takefullwidth="true">

<hdist width="10">
</hdist>
<dropicon image="../_DevelopersGuide/images/fav_notes.gif"

method="onSomeOtherFunctionality"
draginfo="Icon NOTICES has been dropped" dropmethod="onDrop"
dropinfoprop="onDropInfo">

</dropicon>
<hdist width="100%">
</hdist>
<dropicon image="../_DevelopersGuide/images/cishop.gif"

draginfo="HAND BAG has been dropped" dropmethod="onDrop"
dropinfoprop="onDropInfo">

Layout Elements254

DROPICON

</dropicon>
<hdist width="10">
</hdist>

</itr>
</rowarea>

In the left icon, the string that is used as drag information is defined using the draginfo property.
(There is also a draginfoprop property that allows to specify this information using an adapter
property instead of hard-wiring it in the layout.) You see that the icon still has a normal method
property, i.e. it can still be used as a normal icon - invoking a certain adapter method when being
chosen.

In the right icon, the dropmethod property defines the method that is called inside the adapter
when the user drops certain information onto this icon. The property dropinfoprop defines the
adapter property in which the string representing the drag information is written.

ADROPICON can be both defined as the starting point and as the target point of a drag-and-drop
operation.

Dragging and Dropping Information from DROPICON to TREENODE3

Themanagement of trees is described inWorking with Trees. It is rcommended that you first read
the general information about building trees with TREENODE3 there.

In a tree, each tree node is represented by a node object which is an extension of the NODEInfo
class. If the user drops information from a DROPICON onto a tree node, then the method
reactOnDropGeneric is called inside the node object. By calling the method getDragInfo(), you
receive the drag information that was dropped onto the tree node.

Dragging and Dropping Information from DROPICON to ICONLIST

Each ICONLIST item is represented by an object of type ICONLISTItem. This object provides a
method reactOnDropGeneric()which is called when information is dropped, and it provides a
method getDragInfo() for accessing the dropped information.

255Layout Elements

DROPICON

Properties

Basic

gifObligatoryURL that points to the image that is shown as icon.image

jpgTheURL either is an absoluteURL or a relativeURL. If using
a relative URL then be aware of that the generated page is
located directly inside your project's directory. jpeg

Example: "images/icon.gif" points to an icon in an
images-folder that is parallel to the page itself.
"../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalString containing any kind of application data to identify
the source DROPINFO control within a drag and drop

draginfo

process. Use property DROPINFOPROP to return this data
on runtime.

OptionalName of an adapter property that provides for information
that is passed to the adapter when dropping this control

draginfoprop

over another DROPICON. Do not use this property (or
property DROPINFO respectively) if you do not want the
user to drag this control.

The server side property needs to be of type "String".

OptionalName of an adapter property to that the "drag info" of the
draggedDROPICON control is set. Do not use this property

dropinfoprop

if this control should not accept other DROPICON controls
within a drag and drop process (i.e. is not a drop target).

The server side property needs to be of type "String".

Sometimes
obligatory

Method of your adapter object that is executed when the
user is dragging another DROPICON control over this

dropmethod

control and drops it there. Do not use this attribute if this
control should not accept other DROPICON controlswithin
a drag and drop process (i.e. is not a drop target).

Sometimes
obligatory

Method of your adapter object that is executedwhen clicking
on the control.

method

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Binding

(already explained above)draginfoprop

(already explained above)dropinfoprop

(already explained above)dropmethod

Layout Elements256

DROPICON

OptionalName of adapter property that provides as value the URL
of the image that is shown inside the control.

imageprop

The URLmust either be an absolute URL or a relative URL.

(already explained above)method

OptionalName of an adapter property that provides the information
if this control is displayed or not. As consequence you can
control the visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

OptionalProperty of adapter that dynamically defines the title of the
control. The title is displayed as tool tip when ther user
moves the mouse onto the control.

titleprop

Appearance

(already explained above)image

invisibleOptionalIf the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

OptionalIf the visibility is dynamically controlled by using the
INVISIBLEPROP then there are two ways the icon reacts if
the corresponding property passes back "false".

imageinactive

If you want the icon to switch into an inactive status then
define inside this property the URL of the image that is the
inactive counter part to the normal icon image. Maybe the
image is a grayed version of the normal icon image.

If you do not define a value for this property then the icon
is made invisible.

OptionalPixel width of the image that is shown inside the icon. If not
defined then the icon is rendered with its normal width.

imagewidth

OptionalPixel height of the image that is shown inside the icon. If
not defined then the icon is renderedwith its normal height.

imageheight

trueOptionalIf set to "true" then 2 pixels of distance are kept on the left
and on the right of the icon.

withdistance

false
Reason behing: if arranging several icons inside one table
row (ITR, TR) then a certain distance is kept between the
icons when this property is set to "true".

leftOptionalHorizontal alignment of control in its column.align

center

257Layout Elements

DROPICON

Each control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

right

column is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. Inmost cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the sameway
as the contained control.

If youwant to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

colstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

spanstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions

Layout Elements258

DROPICON

are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

(already explained above)titleprop

259Layout Elements

DROPICON

260

29 FIELD

■ Example .. 263
■ Dynamically Defining the Input Status .. 263
■ Client Side Validation .. 265
■ Decimal Number Input .. 266
■ Value Help ... 266
■ Value Help - Predefined Reaction Methods ... 268
■ Input-Sensitive Value Help ... 270
■ Touch Screen Support .. 270
■ Properties .. 273

261

The FIELD control is used for entering data. It provides the following features:

■ Normal input/output of text.
■ Password input.
■ Dynamic control if input is allowed.
■ Dynamic highlighting of field in case of errors.
■ Flush the input directly to the server when leaving the field.
■ Start a server method on pressing F4 or F7 or on click - useful for value help pop-up dialogs
■ Adapt the output to a data type (e.g. transfer "YYYYMMDD" to a visible date field)

Layout Elements262

FIELD

Example

The XML layout definition is:

<rowarea name="Fields">
<itr>

<field valueprop="factor4" flush="screen" length="10">
</field>
<hdist>
</hdist>
<field valueprop="factor4" flush="screen" length="10" password="true">
</field>
<hdist>
</hdist>
<field valueprop="factor4" flush="screen" length="10" displayonly="true">
</field>
<hdist>
</hdist>
<field valueprop="factor4" flush="screen" length="10">
</field>
<hdist>
</hdist>

</itr>
</rowarea>

For better visibility, distance controls were added between the FIELD controls.

Dynamically Defining the Input Status

As mentioned previously, you can dynamically control the input status of a FIELD by a property
of the adapter class. The following example shows how to do this.

The XML layout looks as follows:

263Layout Elements

FIELD

<rowarea name="Dynamic Field">
 <itr>
 <field valueprop="factor1" flush="server" length="10">
 </field>
 <hdist>
 </hdist>
 <field valueprop="factor1" flush="server" statusprop="factor1status" ↩
length="10">
 </field>
 </itr>
</rowarea>

There are two fields that show the same adapter property factor1. The first field definition is
without any restrictions, the second one depends on the input status of the property factor1Status.

The adapter program looks as follows:

// property >factor1<
int m_factor1=5;
public int getFactor1() {return m_factor1;}
public void setFactor1(int value) { m_factor1 = value; }

// property >factor1status<
String m_factor1status;
public String getFactor1status()
{

if (m_factor1 > 100) return "DISPLAY";
else if (m_factor1 > 10) return "ERROR";
else return "EDIT";

}
public void setFactor1status(String value) { m_factor1status = value; }

Now let us see what happens if different numbers are entered:

The right field changes its input status according to the value of the property factor1Status.
There are four different values that can be returned as status information:

Layout Elements264

FIELD

■ EDIT
The field is displayed as a normal field.

■ ERROR
The field indicates an error with its value.

■ DISPLAY
The field is only displayed.

■ FOCUS
The field is displayed as a normal field; it requests the focus.

Client Side Validation

By using regular expressions, you can check the user's input into a field in a very powerful way.
Regular expressions are a standardized way (W3C) of describing the format of strings. You can
use it, for example, to checkwhether the user entered an article number correctly - following some
conventions that are defined inside your application.

Regular expressions can be plugged to a field control so that it checks the input of the user against
the expression. The check is donewhen the user has left the field. If the check is successful, nothing
happens - if it fails, an error message pops up indicating to the user that the input did not match
the field's requirements.

There are two ways of plugging regular expressions to the field:

■ Static Definition
The regular expression is directly defined inside the control's definition.

■ Dynamic Definition
Inside the control, you specify a property that passes the expression at runtime.

The following example shows a field inwhich you enter a telephone number. A regular expression
checks whether the number is entered in the right format:

The field is defined in the following way:

265Layout Elements

FIELD

<field valueprop="phone" width="100" validation="[0-9)(-/+]+">
</field>

The regular expression "[0-9)(-/+]+" indicates that the following can be entered

■ A string that has any number of characters: "[]+".
■ A string that has only characters which are "0-9)(-/+".

If the user enter a wrong value, the following message appears:

Decimal Number Input

In the field, you can specify the float value for the datatype property. Consequently, the field's
input will automatically be interpreted as float input - and e.g. decimal separators will be added.

In addition, you can specify the number of valid decimal digits: the number is not defined in a
fixed way inside the control but is derived from a server side property (decimaldigitsprop
property).Maybe you have an application that inputs and outputs amountswith a certain currency
reference. Depending on the currency, the number of decimal digits behind the comma may be
different.

Value Help

The FIELD control supports a value help - i.e. you can offer the user a support pop-up for a field
that e.g. lets the user select valid values instead of typing them manually. The value help bases
on a generic mechanism that allows you to define any kind of your own value help pop-ups - but
there are also two predefined ways to quickly create a simple value help that lets the user select
values from a list.

Layout Elements266

FIELD

First, the description of the generic framework: The FIELD control has a property popupmethod.
If you fill this property, then there are two consequences:

■ The field shows a little icon on the very right.
■ The field is value help-sensitive: if the user clicks on the icon or clicks with the right mouse
button into the field, then the method on server side that is referenced by the popupmethod
property is called.

You see that the value help is triggered in the client, but the actual value help processing is launched
from the server adapter method that is referenced. What the method does is completely up to you
- in most cases, it shows a certain pop-up.

Have a look at the following example:

The XML layout definition is:

<rowarea name="Address">
<itr>

<label name="Titel" width="120">
</label>
<field valueprop="titel" width="50" popupmethod="openIdValueHelp">
</field>

</itr>
</rowarea>

The implementation in the adapter is:

// property >titel<
String m_titel;
public String getTitel() { return m_titel; }
public void setTitel(String value) { m_titel = value; }

public void onValueHelpTitel()
{

openPopup("/HTMLBasedGUI/empty.html");
}

When the user chooses the icon in the title field, onValueHelpTitle() is called. The method itself
opens a certain pop-up. It is completely up to you to specify the reaction - maybe you do not want
to open a pop-up but want to navigate to another page.

SeeWorking with Page Navigation in theWorking with Pages documentation formore details on pop-
up management. Be aware of the fact that - just as with any other method which is, for example,
called by a button - all the data of the screen is first transferred into your adapter before the

267Layout Elements

FIELD

method is called. For example, if the user enters "M" into the title field and then invokes the value
help, then setTitle() is invoked first and after this onValueHelpTitle() is invoked. The same
happens to any other data that was modified on the screen prior to the help request.

Sometimes you want to define a generic way of reacting to value requests - you do not want to
have one explicit method per field to be called - but you want to define one method referenced
by all fields. For this purpose, there is a method findValueRequestProperty() that you inherit
from the Adapter class. This method returns the name of the property that is referenced as
valueprop inside the corresponding field.

Value Help - Predefined Reaction Methods

Based on the popupmethodmechanism that is explained in the previous section, there are simple
ways of providing a standard value help for field inputs:

■ The predefined pop-upmethod openIdValueHelp requests a list of valid values from the adapter
and displays the list in a pop-up from which the user can select a value. The list is fetched by
following a certain naming convention: the adapter must provide for a method with the name
findValidValuesForXxx()where "Xxx" is the name of the property.

Layout Elements268

FIELD

■ The predefined pop-up method openIdValueCombo uses the same findValidValuesForXxx()
method, but displays the result similar to a combo box:

■ The predefinedpop-upmethod openIdValueComboOrPopup is amixture of themethods described
above. For performance reasons, small lists are displayed in a combo box and large lists are
displayed in a pop-up. By default, lists containing up to 100 entries are shown in a combo box.
Using the parameter maxitemsinfieldcombo of the configuration file cisconfig.xml, you can
control the maximum number of entries that are to be shown in the combo box.

The corresponding adapter code is:

// property >titel<
String m_titel;
public String getTitel() { return m_titel; }
public void setTitel(String value) { m_titel = value; }

public ValidValueLine[] findValidValuesForTitel()
{

ValidValueLine[] result = new ValidValueLine[3];
result[0] = new ValidValueLine("Mrs.","Misses");
result[1] = new ValidValueLine("Mr.","Mister");
result[2] = new ValidValueLine("Dr.","Doctor");
return result;

}

Note that the method is called at the point of time when the user requests value help.

The ValidValueLine also supports a constructor in which only the value of the field is passed -
without further description.

269Layout Elements

FIELD

Input-Sensitive Value Help

When having read the previous sections on value help, be aware that at the point in time when
the value help is called (e.g. when findValidValuesFor...() is called), all data input that was
done on the browser client has already been transferred into your adapter object.

This means: you already have access to the property that a user entered before invoking the value
help.

Consequence: inside your reaction on the value help request (e.g. in your implementation of
findValidValuesFor...()), you can already filter the valid values against what the user has
already entered.

Touch Screen Support

As mentioned in the property list, the field is able to offer touch screen support. Have a look at
the following example:

If the user clicks into the area in which you can see a keyboard shining through as background,
the user will get one of the following pop-ups - depending on the data type assigned to the FIELD
control.

Layout Elements270

FIELD

271Layout Elements

FIELD

The XML layout definition is:

<rowarea name="Demo">
 <itr>
 <label name="Integer Input" width="100">
 </label>
 <field valueprop="intValue" width="150" touchpadinput="true" datatype="int">
 </field>
 </itr>
 <itr>
 <label name="Float Input" width="100">
 </label>
 <field valueprop="floatValue" width="150" touchpadinput="true" ↩
datatype="float">
 </field>
 </itr>
 <itr>
 <label name="Text Input" width="100">
 </label>
 <field valueprop="stringValue" width="250" touchpadinput="true">
 </field>
 </itr>
</rowarea>

In all FIELD controls, the property touchpadinput is set to "true". The server side adapter processing
does not differ in any way from the normal adapter processing.

Layout Elements272

FIELD

Properties

Basic

ObligatoryServer side property representation of the
control.

valueprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define thewidth:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow thewidth that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing 100%
will only bring up correct results if the parent
element of the control properly defines a width
this control can reference. If you specify this
control to have a width of 50% then the parent
element (e.g. an ITR-row) may itself define a
width of "100%". If the parent element does not
specify a width then the rendering result may
not represent what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

(already explained above)width

5OptionalWidth of FIELD in amount of characters.
WIDTH and LENGTH should not be used

length

10together. Note that the actual size of the control

15
depends on the font definition if using the
LENGTH property.

20

int-value

5OptionalMaximumnumber of characters that a usermay
enter. This property is not depending on the

maxlength

10LENGTHproperty - please do not get confused

15
by the similar naming. MAXLENGTH has

273Layout Elements

FIELD

nothing to do with the optical sizing of the
control but only with the number of characters
you may input.

20

int-value

trueOptionalIf set to true, an automatic tab is executed for
fields with a specifiedMAXLENGTHwhen the

autotab

falsemaxlength value is reached. For fields without
a MAXLENGTH specified it has no effect.
Default is true.

leftOptionalAlignment of text inside the control.textalign

center

right

trueOptionalIf set to "true", each entered character is
displayed as a '*'.

password

false

trueOptionalIf set to true, the FIELD will not be accessible
for input. It is just used as an output field.

displayonly

false

rtlOptionalPresets the default(BiDi) direction of the control.
Use black string in order to have the default
value.

direction

ltr

trueOptionalIf "true" then all input is automatically
transferred to upper case characters.

uppercase

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than
the size of the control itself. In this case the
"align" property specifies the position of the
control inside the column. Inmost cases you do
not require the align control to be explicitly
defined because the size of the column around
the controls exactly is sized in the same way as
the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an
explicit property "textalign" in which you align
the control's contained text.

topOptionalVertical alignment of control in its column.valign

Layout Elements274

FIELD

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than
the size of the control. In this case the "align"
property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may
sometimes want to control the number of

3columns your control occupies. By default it is

4
"1" - but you may want to define the control to
span over more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may
sometimes want to control the number of rows

3your control occupies. By default it is "1" - but

4
youmaywant to define the control to span over
more than one columns.

5The property only makes sense in table rows
that are snychronized within one container (i.e. 50
TR, STR table rows). It does not make sense in

int-valueITR rows, because these rows are explicitly not
synched.

background-color: #FF0000OptionalCSS style definition that is directly passed into
this control.

fieldstyle

color: #0000FF
With the style you can individually influence
the rendering of the control. You can specify
any style sheet expressions. Examples are:

font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right

275Layout Elements

FIELD

mouse-button in your browser and select the
"View source" or "View frame's source" function.

trueOptionalBoolean value defining if the control has a
border. Default is "false".

noborder

false

trueOptionalBoolean value defining if the control is rendered
with a transparent background. Default is
"false".

transparentbackground

false

OptionalProperty of the adapter object to provide the
background color of the control.

bgcolorprop

OptionalName of adapter property that passes back a
color value (e.g. "#FF0000" for red color). The

fgcolorprop

color value is used as text color in the control. -
The background color is automatically chosen
dependent from the text color: for light text
colors the background color is black, for dark
text colors the color is default. Use
BGCOLORPROP to choose both - text and
background color.

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then there

invisiblemode

clearedare two rendering modes if the visibility is
"false":

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still
occupies space.

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Binding

(already explained above)valueprop

trueOptionalIf set to TRUE then a specified server
flushmethod is also called in case the value has

alwaysflush

falsenot changed. The default is FALSE, meaning

Layout Elements276

FIELD

that a server flushmethod is only called for a
changed value.

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changing the input a synchronizationwith
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You
use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is
set to FLUSH="server" then you can specify an

flushmethod

explicit method to be called when the user
updates the content of the control. By doing so
you can distinguish on the server side from
which control the flush of data was triggered.

trueOptionalIf set to TRUE for a fieldmyfield, method/event
reactOnContextMenuMyfield will be

contextmenu

falsecalled/triggered on right mouse click. In this
method/event you can set a contextmenu
correspondingly. Please use the attribute
CONTEXTMENUMETHOD in case youwould
like to use a different method/eventname. In
case a valid value is specified for the
CONTEXTMENUMETHODattribute, the value
for the CONTEXTMENU attribute is ignored.
Default value is FALSE.

OptionalName of the method on adapter level that is
called when the user presses the right mouse
button in an empty area.

contextmenumethod

277Layout Elements

FIELD

OptionalName of adapter property that controlswhether
the field is displayonly(true) or not (false).

displayprop

By using this property you can dynamically
control the "display"-status of the control by
your adapter object.

OptionalName of the adapter property that dynamically
passes information how the field should be
rendered and how it should act.

statusprop

OptionalName of the adapter property that provides a
"human understandable" description for the

valuetextprop

value: in some cases you enter an id into a
FIELD but want to display the id and a
description to the user. At runtime, the values
provided by the VALUEPROP- and the
VALUETEXTPROP-property are combined into
one text (string) that is returned into the FIELD.

0OptionalIf using property "valuetextprop" then a field
knows an id and a text for a certain value. There

textidmode

1are three types of display: either both are shown

2
together, separated by an "-" (e.g. "id - text"). Or
only text is shown or only the id is shown. If not
defined at all then the system's default text
id-mode will be chosen. The default mode can
be defined as part of the CIS session context.

OptionalProperty of adapter that dynamically defines
the title of the control. The title is displayed as

titleprop

tool tip when ther user moves the mouse onto
the control.

(already explained above)bgcolorprop

(already explained above)fgcolorprop

trueOptionalUse property AUTOCALLPOPUPMETHOD to
invoke the field's value help method with a

autocallpopupmethod

falsecertain offset (milliseconds) after last key down
event

OptionalProperty of the adapter that defines the width
of FIELD in amount of characters.

lengthprop

OptionalName of adapter property that passes back the
maximumnumber of characters that a usermay

maxlengthprop

enter. Consider to use MAXLENGTH to define
this number in a static way.

Validation

dateOptionalBy default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

datatype

float

Layout Elements278

FIELD

int...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field

longwith datatype "int" then a corresponding error

time
message will popup when the user leaves the
field.

timestamp...will format the data coming from the server
or coming form the user input: if the field has color
datatype "date" and the user inputs "010304"

xs:decimalthen the input will be translated into
"01.03.2004" (or other representation, dependent
on date format settings). xs:double

xs:dateIn addition valeu popups are offered for the
user automatically for somedatatypes: e.g.when

xs:dateTimespecifying datatype "date" the automatically the
field provides a calendar input popup. xs:time

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format

N n.nnumber. The server side representation may be
a float value, but also can be a double or a
BigDecimal property. P n.n

string n

L

xs:boolean

xs:byte

xs:short

OptionalNATPAGE only: Natural edit mask.editmask

OptionalContains information used for Data Validation.validationrules

Use the Validation Rules Editor to make
changes!

[a-zA-Z0-9_.-]OptionalRegular expression against which the content
of the field is checked on client side when the

validation

{1,}\\@[a-zA-Z0-9_.-]user changes the field. If the validation fails then

{1,}\\.\\w{2,}\\d{5}
an error message popup up and informs the
user about the wrong input.

[0-9)(-/+]+

OptionalProperty out of which the regular expression is
dynamically read. Works the same way as
VALIDATION but in a dynamic way.

validationprop

279Layout Elements

FIELD

OptionalIf a client side validation fails due towrong user
input then an error popup is opened. If you

validationuserhint

define a hint inside this property then the hint
is output to the user in order to tell in which
way to input the value. The hint is not language
dependent.

OptionalIf using validation expressions (either property
"validation" or "validationprop") then a popup

validationuserhintprop

comes up if the user inputs wrong values into
a field. Inside this popup a certain text may be
added in order to explain to the user what
he/she did not correctly input. This text can be
either statically defined or dynamically - by
using this property reference.

1OptionalNumber that specifiies how many digits are to
be displayed (ie digits before the comma). If

digits

2using this feature then theDATATYPEproperty
must be set to 'float'. See alsoDECIMALDIGITS.

3

int-value

OptionalProperty of the adapter that passes back
informationhowmanydigits are to be displayed

digitsprop

(ie digits before the comma). If using this feature
then the DATATYPE property must be set to
'float'.

1OptionalSpecifies the number of displayed decimal
digits. If using this feature then the DATATYPE
property must be set to 'float'.

decimaldigits

2

3

int-value

OptionalProperty of the adapter that passes back
information howmany decimal digits are to be

decimaldigitsprop

displayed. If using this feature then the
DATATYPE property must be set to 'float'.

1OptionalAn integer valuewhich defines the lower bound
of the value range.

spinrangemin

2

3

int-value

1OptionalAn integer valuewhichdefines the upper bound
of the value range.

spinrangemax

2

Layout Elements280

FIELD

3

int-value

Valuehelp

openIdValueComboOptionalName of the adapter's method that is called
when the user requests value help by pressing

popupmethod

openIdValueHelpF4 or F7 or by clicking into the FIELD with the

openIdValueComboOrPopup
right mouse button. See at chapter 'Popup
Dialog Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user
that there is some value help available.

trueOptionalBoolean property that control if a field with
POPUPMETHOD defined is still usable for

popupinputonly

falsekeyboard input. If "false" (= default) then the
user can input a value either directly via
keyboard or by using the popupmethod's help.
If set to "true" then no keyboard input is possible
- but only selection from the popup-method's
help.

OptionalName of an adapter's boolean property to
provide information whether a

popupprop

POPUPMETHOD is available (true) or not
(false). This feature is used in scenarios inwhich
a FIELD offers e.g. value help or not, depending
on business logic inside the adapter.

trueOptionalValue help in a field is triggered either by
clickingwith themouse or by pressing a certain

popuponalt40

falsekey inside the field. The "traditional" keys are
"cusrsor-down", "F7" or "F4". Sometimes you do
notwant tomix other "cursor-down" behaviour
(e.g. scrolling in lists) with the value help
behaviour. In this case switch this property to
"true" - and the value help will only come up
anymore when "alt-cursor-down" is pressed.

1OptionalPixel width of the standard
"openIdValueCombo" popup dialog. Default is
field width or at least 150 pixel.

popupcombowidth

2

3

int-value

gifOptionalURL of image that is displayed inside the right
corner of the field to indicate to the user that

popupicon

jpgthere is some value help available.. Any image

jpeg

281Layout Elements

FIELD

type (.gif, .jpg, ...) that your browser does
understand is valid.

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your
page is generated directly into your project's
folder. Specifiying "images/xyz.gif" will point
into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point
to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalBoolean property that decides if touch pad
support is offered for the FIELD control. The

touchpadinput

falsedefault is "false". If switched to "true" then you
can input data into the field via a touch pad. As
consequence you can use this control formaking
inputs through a touch terminal.

onlinehelp

OptionalHelp id that is passed to the online help
management in case the user presses F1 on the
control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to
define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that
is used for the control.

titletextid

OptionalContains information used by the Formula
Editor.

formula

Use the Formula Editor to make changes!

Hot Keys

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two
hot keys. Method onCtrlAltA is invoked if the
user presses Ctrl-Alt-A. Method "onEnter" is
called if the user presses the ENTER key.

Layout Elements282

FIELD

Use the popup help within the Layout Painter
to input hot keys.

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid

1OptionalThe offset (milliseconds) after the last key down
event for calling the

autocallpopupmethodoffset

2AUTOCALLPOPUPMETHOD. Makes only

3
sense if an AUTOCALLPOPUPMETHOD is
specified.

int-value

283Layout Elements

FIELD

284

30 FILEUPLOAD/FILEUPLOAD2

■ FILEUPLOAD ... 286
■ FILEUPLOAD2 .. 289
■ FILEUPLOAD Properties ... 291
■ FILEUPLOAD2 Properties ... 295

285

The file upload controls simplify the process of uploading files from the client to the server. Two
types are available:

■ The FILEUPLOAD control is represented by a button. When you choose the button, a dialog
appears showing the file upload form (field input and a file selection button).

■ With the FILEUPLOAD2 control, you embed the file upload form into your page.

Both types have the program binding, i.e. you can switch between the two types without touching
your code.

FILEUPLOAD

The FILEUPLOAD control simplifies the process of uploading files from the client to the server.
Look at the following example:

The control - from the look-and-feel perspective - is a button with some special reaction. When
you choose the button, the following dialog appears:

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

Layout Elements286

FILEUPLOAD/FILEUPLOAD2

After choosing the Upload button, the first screen looks as follows:

Have a look at the layout definition:

<rowarea name="File upload">
<itr>

<fileupload name="Upload File ..." cfileprop="clientFileName"
sfileprop="serverFileName" method="onUploadFile">

</fileupload>
</itr>
<vdist height="20">
</vdist>
<itr>

<label name="Client file name" width="150">
</label>
<field valueprop="clientFileName" width="250" displayonly="true">
</field>

</itr>
<itr>

<label name="Server file name" width="150">
</label>

287Layout Elements

FILEUPLOAD/FILEUPLOAD2

<field valueprop="serverFileName" width="250" displayonly="true">
</field>

</itr>
</rowarea>

The FILEUPLOAD control references to two properties. The cfileprop property references to a
property in which the client file name of the uploaded file is written. The sfileprop property
references to a property inwhich the server file name of the uploaded file iswritten; after the upload
is finished, the file is copied into a server-side directory of your Application Designer installation
and is accessible by normal file I/O operations.

With the method property, you define which method is called when a file is uploaded.

Each file gets a unique file name on the server - you have full access to the file and you can process
the file as you need it, e.g. you can also delete it after usage.

The Java code looks as follows:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class FileUploadAdapter
extends Adapter

{
// property >clientFileName<
String m_clientFileName;
public String getClientFileName() { return m_clientFileName; }
public void setClientFileName(String value) { m_clientFileName = value; }

// property >serverFileName<
String m_serverFileName;
public String getServerFileName() { return m_serverFileName; }
public void setServerFileName(String value) { m_serverFileName = value; }

/** */
public void onUploadFile()
{

outputMessage(MT_SUCCESS, "Upload was successful!");
}

}

Layout Elements288

FILEUPLOAD/FILEUPLOAD2

Usage of com.softwareag.cis.file.FileManager

See the Java API documentation for com.softwareag.cis.file.FileManager. If you do not have
file access routines on your own, you may use this one in order to read the file created on the
server when using the upload button. For example, it offers the methods:

■ byte[] readFileIntoByteArray

■ String[] readTextFileIntoStrings

■ String readTextFileIntoString/readTextFileIntoStringWithLineBreak

Location of Server File

The result of the upload processing is the generation of a server side file. Why do we pass the in-
formation as a file and not as an in-memory byte array? Reason: by doing so,we do not get problems
if your application server runs out of memory when uploading very large files. Only a part of the
upload file is in memory, i.e. when uploading, the server file is written in certain blocks - the
memory blocked by the upload processing has a maximum size of this block (16 KBytes).

The location of the file is the temporary directory that is provided by the servlet container inwhich
the web application that uses Application Designer runs.

Note: Part of the Servlet 2.2 protocol is the definition of the ServletContext. Part of this API
is the obligatory API that passes a temporary directory to web applications.

FILEUPLOAD2

With the FILEUPLOAD2 control, you embed the file upload form into your page.

You can either enter a file name or you can invoke the file selection dialog by choosing the button
to the right of the field (which appears in the language of the browser).

289Layout Elements

FILEUPLOAD/FILEUPLOAD2

After choosing the file, the screen looks as follows:

Have a look at the layout definition:

<rowarea name="Upload...">
 <itr>
 <fileupload2 width="300" cfileprop=" clientFileName" ↩
sfileprop="serverFileName" method=" onUploadFile">
 </fileupload2>
 </itr>
</rowarea>

The FILEUPLOAD2 control references to two properties. The cfileprop property references to a
property in which the client file name of the uploaded file is written. The sfileprop property
references to a property inwhich the server file name of the uploaded file iswritten; after the upload
is finished, the file is copied into a server-side directory of your Application Designer installation
and is accessible by normal file I/O operations.

Layout Elements290

FILEUPLOAD/FILEUPLOAD2

With the method property, you define which method is called when a file is uploaded.

Each file gets a unique file name on the server - you have full access to the file and you can process
the file as you need it, e.g. you can also delete it after usage.

The Java code looks as follows:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class FileUploadAdapter
extends Adapter

{
// property >clientFileName<
String m_clientFileName;
public String getClientFileName() { return m_clientFileName; }
public void setClientFileName(String value) { m_clientFileName = value; }

// property >serverFileName<
String m_serverFileName;
public String getServerFileName() { return m_serverFileName; }
public void setServerFileName(String value) { m_serverFileName = value; }

/** */
public void onUploadFile()
{

outputMessage(MT_SUCCESS, "Upload was successful!");
}

}

Note: The coding is exactly the samewhen using the FILEUPLOAD control. You can switch
between the two types (FILEUPLOAD and FILEUPLOAD2) without touching your code.

FILEUPLOAD Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the
name when using the multi language management - but specify a
"textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

ObligatoryName of adapter property in which the client's file name is passed
at upload time.

cfileprop

291Layout Elements

FILEUPLOAD/FILEUPLOAD2

ObligatoryName of adapter property, in which at upload time - the name of the
file is written - which is a copy of the client file but in the server's file

sfileprop

system. Please pay attention that this file name is a unique one and
has nothing to do with the client's file name!

ObligatoryMethod called inside the adapter when a file is uploaded. The file's
data is available at the point of time this method is called.

method

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

gifOptionalURL of image that is displayed inside the control. Any image type
(.gif, .jpg, ...) that your browser does understand is valid.

image

jpg
Use the following options to specify the URL:

jpeg
(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be renderedwith its default height. If the control is a container control

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250

Layout Elements292

FILEUPLOAD/FILEUPLOAD2

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

400

50%parent element of the control properly defines a height this control

100%
can reference. If you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalName of an adapter property that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

invisibleOptionalThis property has three possible values:invisiblemode

cleared(1) "invisible": the button is not visible without occupying any space.

(2) "disabled": the button is deactivated: it is "grayed" and does not
show any roll over effects any more.

(3)"cleared": the button is not visible but it still occupies space.

OptionalCSS style definition that is directly passed into this control.buttonstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimes the size of the column is bigger

rightthan the size of the control itself. In this case the "align" property
specifies the position of the control inside the column. In most cases
you do not require the align control to be explicitly defined because
the size of the column around the controls exactly is sized in the same
way as the contained control.

If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which you
align the control's contained text.

topOptionalVertical alignment of control in its column.valign

293Layout Elements

FILEUPLOAD/FILEUPLOAD2

middleEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimtes the size of the column is bigger

bottomthan the size of the control. In this case the "align" property specify
the position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does notmake sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does notmake sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

Binding

(already explained above)cfileprop

(already explained above)sfileprop

(already explained above)method

(already explained above)visibleprop

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

Layout Elements294

FILEUPLOAD/FILEUPLOAD2

FILEUPLOAD2 Properties

Basic

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalName of adapter property in which the client's file name is passed
at upload time.

cfileprop

OptionalName of adapter property, in which at upload time - the name of
the file is written - which is a copy of the client file but in the

sfileprop

server's file system. Please pay attention that this file name is a
unique one and has nothing to do with the client's file name!

OptionalMethod called inside the adapterwhen a file is uploaded. The file's
data is available at the point of time this method is called.

method

trueOptionalIf set to "TRUE" adds an additional button to the control to start
the file upload.

withsubmitbutton

false

OptionalThe name of the submit button in case WITSUBMITBUTTON is
set to "true".

submitbuttonname

Optional"Textid" for the name of the submitbutton if
WITHSUBMITBUTTON is set to "true".

submitbuttontextid

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Binding

(already explained above)cfileprop

(already explained above)sfileprop

(already explained above)method

295Layout Elements

FILEUPLOAD/FILEUPLOAD2

OptionalName of an adapter property that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

invisibleOptionalIf the visibility of the control is determined dynamically by an
adapter property then there are two rendering modes if the
visibility is "false":

invisiblemode

disabled

cleared(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies space.

Appearance

(already explained above)invisiblemode

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

trueOptionalNormally the background is in light colour but the CIS style sheets
also have a dark(er) grey colour to be used.

darkbackground

false
If DARKBACKGROUND is set to true then the darker background
colour is chosen. This property typically is used to integrate light
coloured controls into darker container areas.

Layout Elements296

FILEUPLOAD/FILEUPLOAD2

31 ICON

■ Example .. 298
■ Hiding and Disabling Icons .. 298
■ Properties .. 299

297

The ICON control is similar to the BUTTON control, but it uses an image to display its function.
When chosen, it calls a method in the adapter class.

Example

The XML layout definition is:

<rowarea name="Icons">
 <itr>
 <icon image="../HTMLBasedGUI/images/remove.gif" method="remove" ↩
title="Remove">
 </icon>
 <icon image="../HTMLBasedGUI/images/cut.gif" method="cut" withdistance="true"
 title="Cut">
 </icon>
 <icon image="../HTMLBasedGUI/images/paste.gif" method="paste" title="Paste">
 </icon>
 </itr>
</rowarea>

Hiding and Disabling Icons

As with many other controls, the icon provides an invisibleprop property that may point to an
adapter property that decides whether to display an icon ("true") or not ("false"). By using the
property imageinactive, you can fine-control the icon's behavior in the following way:

■ When defining an image in imageinactive, then this image will replace the icon's image that
is normally displayed. The icon itself will be inactive, i.e. there are no roll-over effects and there
is no possibility to click on it.

■ When not defining an image in imageinactive, then the icon will be hidden.

Consequence: if you want to show grayed images for inactive icons, then use imageinactive.

Layout Elements298

ICON

Properties

Basic

gifObligatoryURL that points to the image that is shown
as icon.

image

jpg
The URL either is an absolute URL or a
relative URL. If using a relative URL then jpeg
be aware of that the generated page is
located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon
in an images-folder that is parallel to the
page itself.
"../HTMLBasedGUI/images/new.gif" point
to a URL that is located inside a different
project.

gifOptionalURL that points to the image that is shown
as icon.

imagertl

jpg
The URL either is an absolute URL or a
relative URL. If using a relative URL then jpeg
be aware of that the generated page is
located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon
in an images-folder that is parallel to the
page itself.
"../HTMLBasedGUI/images/new.gif" point
to a URL that is located inside a different
project.

ObligatoryMethod of your adapter object that is
executed when clicking on the control.

method

OptionalText that is displayed inside the control.
Please do not specify the name when using

name

the multi language management - but
specify a "textid" instead.

OptionalMulti language dependent text that is
displayed inside the control. The "textid" is

textid

translated into a corresponding string at
runtime.

Do not specify a "name" inside the control
if specifying a "textid".

299Layout Elements

ICON

OptionalComment without any effect on rendering
and behaviour. The comment is shown in
the layout editor's tree view.

comment

Appearance

10OptionalPixel width of the image that is shown
inside the icon. If not defined then the icon
is rendered with its normal width.

imagewidth

20

40

100

300

10OptionalPixel height of the image that is shown
inside the icon. If not defined then the icon
is rendered with its normal height.

imageheight

20

40

100

300

1OptionalThe HTML font size of the text.
Corresponding to the HTML definition "1"
means "smallest" and "6" means "biggest".

textsize

2

3

4

5

6

gifOptionalIf the visibility is dynamically controlled by
using the INVISIBLEPROP then there are

imageinactive

jpgtwo ways the icon reacts if the
corresponding property passes back "false".

jpeg
If you want the icon to switch into an
inactive status then define inside this
property the URL of the image that is the
inactive counter part to the normal icon
image.Maybe the image is a grayed version
of the normal icon image.

If you do not define a value for this property
then the icon is made invisible.

Layout Elements300

ICON

leftOptionalHorizontal alignment of control in its
column.

align

center
Each control is "packaged" into a column.
The column itself is part of a row (e.g. ITR right
or TR). Sometimes the size of the column is
bigger than the size of the control itself. In
this case the "align" property specifies the
position of the control inside the column.
In most cases you do not require the align
control to be explicitly defined because the
size of the column around the controls
exactly is sized in the same way as the
contained control.

If youwant to directly control the alignment
of text: in most text based controls there is
an explicit property "textalign" inwhich you
align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column.
The column itself is part of a row (e.g. ITR

bottomor TR). Sometimtes the size of the column
is bigger than the size of the control. In this
case the "align" property specify the position
of the control inside the column.

trueOptionalIf set to "true" then 2 pixels of distance are
kept on the left and on the right of the icon.

withdistance

false
Reason behing: if arranging several icons
inside one table row (ITR, TR) then a certain
distance is kept between the iconswhen this
property is set to "true".

background-color:
#FF0000

OptionalCSS style definition that is directly passed
into this control.

colstyle

color: #0000FFWith the style you can individually
influence the rendering of the control. You

font-weight: boldcan specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending
and separating them with a semicolon.

301Layout Elements

ICON

Sometimes it is useful to have a look into
the generatedHTML code in order to know
where direct style definitions are applied.
Press right mouse-button in your browser
and select the "View source" or "View
frame's source" function.

background-color:
#FF0000

OptionalCSS style definition that is directly passed
into this control.

spanstyle

color: #0000FFWith the style you can individually
influence the rendering of the control. You

font-weight: boldcan specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending
and separating them with a semicolon.

Sometimes it is useful to have a look into
the generatedHTML code in order to know
where direct style definitions are applied.
Press right mouse-button in your browser
and select the "View source" or "View
frame's source" function.

invisibleOptionalIf the visibility of the control is determined
dynamically by an adapter property then

invisiblemode

clearedthere are two rendering modes if the
visibility is "false":

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it
still occupies space.

trueOptionalIf set to TRUE, the visibleprop is
automatically switched to TRUE in case of

switchvisibleproponuserinput

falseuser input to any input control in this page.
The default is FALSE.

-1OptionalIndex that defines the tab order of the
control. Controls are selected in increasing

tabindex

0index order and in source order to resolve
duplicates.

1

2

5

Layout Elements302

ICON

10

32767

asideOptionalPosition of the (optional) text to the icon.
Aside or below, default is aside.

nameposition

below
Set the corresponding text in the name or
the text id property.

trueOptionalIf set to true a small indicator signals that
there is a corresponding menu 'behind this
icon'. Default is false.

displaymenuindicator

false

Binding

(already explained above)method

OptionalName of an adapter property that provides
the information if this control is displayed

visibleprop

or not. As consequence you can control the
visibility of the control dynamically.

The server side property needs to be of type
"boolean".

OptionalProperty of adapter that dynamically
defines the title of the control. The title is

titleprop

displayed as tool tip when ther user moves
the mouse onto the control.

OptionalName of adapter property that provides as
value the URL of the image that is shown
inside the control.

imageprop

The URL must either be an absolute URL
or a relative URL.

OptionalName of adapter property that provides as
value the URL of the image that is shown
when the control is inactive.

imageinactiveprop

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this
TITLE property - or use the TITLETEXTID
in order to define a language dependent
literal.

OptionalText ID that is passed to themulti lanaguage
management - representing the tooltip text
that is used for the control.

titletextid

(already explained above)titleprop

Miscellaneous

303Layout Elements

ICON

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within

testtoolid

your test tool in order to do the object
identification

Layout Elements304

ICON

32 ICONLIST

■ Example: Vertical Icon List ... 306
■ Example: Horizontal Icon List ... 308
■ Properties .. 309

305

The ICONLIST is very similar to the BUTTONLIST, representing a list of items instead of a list of
buttons. The list can either be a vertical list or a horizontal list.

Example: Vertical Icon List

This example is already a complex example. Additional style information was added to make the
icon list look like a bar which provides icons for favorites.

The XML layout definition is:

Layout Elements306

ICONLIST

<page model="Icon_ListAdapter">
<titlebar name="Iconlist">
</titlebar>
<header withdistance="false">

<button name="Save">
</button>

</header>
<pagebody>

<vdist height="5">
</vdist>
<itr takefullwidth="true" height="300">

<coltable0 width="50" takefullheight="true" fixlayout="true">
<iconlist iconlistprop="iconList" cellspacing="3"

tablestyle="background-color:#808080">
</iconlist>
<vdist height="100%" backgroundstyle="background-color:#808080">
</vdist>

</coltable0>
<coltable0 width="2" takefullheight="true" fixlayout="true"

tablestyle="background-color:#F7F3DE">
</coltable0>
<coltable0 width="100%" takefullheight="true" fixlayout="true">

<rowarea name="Content Area" height="100%" withrightborder="false"
withbottomborder="false" withtoppadding="false"
areastyle="border-top: 0px">

</rowarea>
</coltable0>

</itr>
<vdist height="5">
</vdist>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

The server side adapter code that dynamically builds up the list of icons is:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.ICONLISTInfo;
import com.softwareag.cis.server.util.ICONLISTItem;

// This class is a generated one.

public class Icon_ListAdapter
extends Adapter

{
// class >MyICONLISTItem<
public class MyICONLISTItem extends ICONLISTItem
{

public MyICONLISTItem(ICONLISTInfo info, String imageURL, String text)
{

super(info, imageURL, text);

307Layout Elements

ICONLIST

}

public void execute()
{

outputMessage(MT_SUCCESS,"Icon " + getText() + " was pressed");
}

}

// property >iconList<
ICONLISTInfo m_iconList = new ICONLISTInfo();
public ICONLISTInfo getIconList() { return m_iconList; }

/** initialisation - called when creating this instance*/
public void init()
{

// Fill IconList
MyICONLISTItem item;
item = new MyICONLISTItem(m_iconList,"images/new.gif","New");
item = new MyICONLISTItem(m_iconList,"images/edit.gif","Edit");

}
}

Similar to the BUTTONLIST control, each icon is represented by a single object. All objects are
collected in an ICONLISTInfo object.

Example: Horizontal Icon List

By setting the property vertical to "false", you can build horizontal icon lists.

The layout definition is:

<rowarea name="Demo">
<iconlist iconlistprop="iconList_02" vertical="false" cellspacing="3">
</iconlist>

</rowarea>

The code for creating the icon list is:

Layout Elements308

ICONLIST

public void init()
{
 // Fill IconList 02
 item = new MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/new.gif","New");
 item = new MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/edit.gif","Edit");
 item = new ↩
MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/remove.gif","Remove");
 m_iconList_02.addDistance();
 item = new MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/new.gif","New");
 item = new MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/edit.gif","Edit");
 item = new ↩
MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/remove.gif","Remove");
 m_iconList_02.addSeparator();
 item = new MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/new.gif","New");
 item = new MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/edit.gif","Edit");
 item = new ↩
MyICONLISTItem(m_iconList_02,"../HTMLBasedGUI/images/remove.gif","Remove");
}

Properties

Basic

ObligatoryName of adapter property representing the control
on server side.

iconlistprop

The property must be of type ICONLISTInfo. Read
further information inside the Java API
Documentation.

trueOptionalDirection of the icon list.vertical

falseIf not specified (or set to "true") then the icons are
arranged in one column, one below the other. If
specified as "false" then the icons are arrange in one
row, one aside the other.

1OptionalAn icons of the ICONLIST control is embedded into
an internal cell. The CELLSPACING property

cellspacing

2defined the number of pixels that are kept between
the icon an the border of this cell.

3
Use the CELLSPACING in order to define a certain
distance each icon keeps from the next item. int-value

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

309Layout Elements

ICONLIST

10OptionalPixel width of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal width.

imagewidth

20

40

100

300

10OptionalPixel height of the image that is shown inside the
icon. If not defined then the icon is rendered with
its normal height.

imageheight

20

40

100

300

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than the
size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If youwant to directly control the alignment of text:
in most text based controls there is an explicit
property "textalign" inwhich you align the control's
contained text.

background-color:
#FF0000

OptionalStyle definition (following CSS style sheet
definitions) that is used for the background area of
the ICONLIST control.

tablestyle

color: #0000FF

font-weight: bold

background-color:
#FF0000

OptionalStyle definition (following CSS style sheet
definitions) that is used for each cell area of the
ICONLIST control in which an icon is kept.

cellstyle

color: #0000FF

font-weight: bold

Layout Elements310

ICONLIST

trueOptionalIf set to true a small indicator signals that there is a
corresponding menu 'behind this icon'. Default is
false.

displaymenuindicator

false

asideOptionalPosition of the text that is displayed inside the
control. Usemethod ICONLISTItem.setName to set
the text.

additionaltextposition

below

1OptionalThe HTML font size of the text. Corresponding to
the HTML definition "1" means "smallest" and "6"
means "biggest".

textsize

2

3

4

5

6

trueOptionalFlag (boolean) that indicates whether to insert a
padding right hand of the last icon. This attribute

withrightpadding

falsedoes apply for horizontal ICONLIST only (see
attribute VERTICAL). Default is true.

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier
that can be later on used within your test tool in
order to do the object identification

testtoolid

311Layout Elements

ICONLIST

312

33 IHTML

■ Example .. 314
■ Pros and Contras when Using the IHTML Control ... 315
■ Scripting in Generated HTML ... 316
■ Example: Building Download Links .. 316
■ Properties .. 321

313

The IHTML control is used to embed server side generated HTML inside a page that is provided
by an adapter property. The IHTML control is very flexible on the one hand. On the other hand,
you have to take care about what is defined inside the IHTML area.

Use this control if you have, for example, a server side report generation programalready producing
HTML as output which you want to include into your pages, etc.

Example

Layout definition:

<rowarea name="IHTML Demo">
<itr>

<ihtml valueprop="generatedHTML">
</ihtml>

</itr>
</rowarea>

Program code:

// property >generatedHTML<
String m_generatedHTML;
public String getGeneratedHTML()
{

return "<table border=1>"+
"<tr>"+
"<td width=100>1</td>"+
"<td width=200>2</td>"+
"<td width=50>3</td>"+
"</tr>"+
"</table>";

}

public void setGeneratedHTML(String value) { m_generatedHTML = value; }

The above layout definition, together with the above program code, produces the following page:

Note that the IHTML control internally opens a table cell in which you place the HTML code
coming from the adapter property. YourHTMLmust fit into this concept, i.e. itmust be embeddable
into an HTML arrangement like the following:

Layout Elements314

IHTML

...

...
<table ...>
...
<tr>

...
<td>

<!-- THIS IS WHERE YOUR HTML NEEDS TO FIT IN -->
</td>
...

</tr>
...
</table>

...

Pros and Contras when Using the IHTML Control

The IHTML control is powerful because it offers all possibilities to directly embed HTML code
inside your page. The “pros” are:

■ You can render complex HTML statements on the server side. The client just plugs the HTML
into the page. The rendering effort on the client side is very low.

■ You can directly write HTML on the server side. If you are an HTML expert, then you may like
to do so in certain situations.

On the other hand, there are “cons”:

■ You begin to write rendering logic on your own - on the server side.
■ You have to take care of being compatible through various browsers.
■ You have to take care of a consistent appearance of theHTML results in order to have a consistent
look and feel throughout your application.

■ You may increase the traffic over the network.

Conclusion:

■ HTML rendering on the server side should not be offered in general, but only under defined
circumstances.

■ Encapsulate your server side rendering behind a proper Java interface. Application developers
work with the Java interface; the HTML rendering behind should be done by an HTML expert.

Application Designer also uses the IHTML control internally: in the area of reporting, Application
Designer provides a server side Java API for simple report generation. Behind the report interface,
HTML (or PDF) is generated which is passed into an internally used IHTML control.

315Layout Elements

IHTML

Scripting in Generated HTML

Based on the conclusion of the previous section, you should be aware of the fact that it is also
possible to add JavaScript statements into the HTML code that you define for the IHTML control.
See Custom Controls for information on the JavaScript API of Application Designer. You can call
the JavaScript library functions from the script that you pass as part of the HTML you create.

Example: you may invoke a method behind a certain link. Your program might look like this:

String m_html;

public String getHtml() { return m_html; }

public void createHTMLString()
{
 ...
 m_html += "<a href='javascript: ↩
csciframe.invokeMethodInModel(\'onClick\');'>Hello";
 ...
}

Example: Building Download Links

WhileHTMLprovides an explicit file upload feature (which is internally usedwhen usingApplic-
ation Designer's UPLOAD control), there is no explicit download control to load server data onto
the client machine. However, there is the standard behavior of the browser when following a link.

The browser knows certain document content types (MIME types). For example, the browser
knows that PDF documents are displayed in an Adobe Reader plug-in. If the browser receives a
URLwith a content type that the browser does not understand, then it automatically opens a pop-
up in which the user is asked to download the file.

Have a look at the following screen:

Layout Elements316

IHTML

The user enter the name of a file that resides on the server (in this case, it is a Windows-based
server). After entering the name, the user sees aDownload link. When choosing this link, the fol-
lowing pop-up appears.

In the pop-up, the user is asked to save the file in the local file system of the browser. After this
security message, the typical file selection dialog box appears:

317Layout Elements

IHTML

The XML page layout looks as follows:

<page model="DownloadAdapter">
<titlebar name="Download File">
</titlebar>
<header withdistance="false">

<button name="Save">
</button>

</header>
<pagebody>

<vdist height="5">
</vdist>
<rowarea name="Demo">

<itr>
<label name="Server File Name" width="120">
</label>
<field valueprop="serverfilename" width="300" flush="server">
</field>

</itr>
<itr>

<label name="Download here !" width="120">
</label>
<ihtml valueprop="downloadURL">
</ihtml>

Layout Elements318

IHTML

</itr>
</rowarea>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

You see that within the FIELD, the property serverFileName is maintained. The FIELD directly
flushes value changes to the server. The HTML text that is shown inside the IHTML control, is
provided by the property downloadURL.

The adapter code is:

import com.softwareag.cis.file.FileManager;
import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class DownloadAdapter
 extends Adapter
{
 // property >downloadURL<
 String m_downloadURL;
 public String getDownloadURL() { return m_downloadURL; }
 public void setDownloadURL(String value) { m_downloadURL = value; }

 // property >serverfilename<
 String m_serverfilename="c:/temp/CI_download/test.txt";
 public String getServerfilename() { return m_serverfilename; }
 public void setServerfilename(String value)
 {
 m_serverfilename = value;
 // load file
 try
 {
 // SECURITY!!! Only allow download from one certain directory
 m_serverfilename = m_serverfilename.replace('\\','/');
 if (!m_serverfilename.startsWith("c:/temp/CI_download/") &&
 !m_serverfilename.startsWith("/tmp/CI_download/"))
 {
 throw new Exception("Only can download files from dedicated directories!");
 }
 // read file content
 byte[] bytes = FileManager.readFileIntoByteArray(m_serverfilename,true);
 String contentName = m_serverfilename.replace('/','_');
 // Build logical name out of file name, this logical name is
 // the default file name that is shown in the "save as" pop-up of the browser.
 // IMPORTANT: the extension must NOT be set, otherwise the browser opens
 // the document and does not offer the download pop-up
 contentName = contentName.replace('/','_');
 contentName = contentName.replace(':','_');

319Layout Elements

IHTML

 contentName = contentName.replace('.','_');
 // pass to session buffer; use content type UNDEFINED,
 // not TEXT/HTML or some existing content type!
 m_downloadURL = findCISessionContext().getSessionBuffer().
 addDocument(contentName,bytes,"UNDEFINED");
 m_downloadURL = "<a target='_blank' href='" + m_downloadURL + ↩
"'>Download";
 }
 catch (Throwable t)
 {
 outputMessage(MT_ERROR,"Could not load file from server! " + t.toString());
 m_downloadURL = null;
 }
 }
}

When the user defines the server file name, the following things happen:

■ The property serverFileName is set in the adapter object.
■ The file name is checked so that only files of a certain server directory are accessible for download.
■ The file is read on server side from the file system.
■ The content of the file is transferred to a so-called session buffer. The session buffer is a small
technical framework that is available for all Application Designer applications: you can store
any data inside the session buffer and assign a name. The session buffer returns aURL that allows
browsers to access this content. (The URL internally contains a servlet call; the servlet is the one
to pick the content when being accessed by a browser.)

■ The URL that is returned from the session buffer is embedded into a <a ...>... tag, rep-
resenting a link to the user.

■ The property downloadURL that is used in the IHTML control is the one to provide the URL.

Consequence: when changing the server file name in the example, the download link will be up-
dated and the user can always download the corresponding file. The file name that is proposed
in the Save As dialog box is the name that you assign to the session buffer content.

For proper content type management, you see that

■ a content type was chosen (UNDEFINED) that is not defined and is consequently treated as “un-
known content”,

■ the name proposed for the download file does not contain an extension that is known to the
browser (it does not contain an extension at all).

Layout Elements320

IHTML

Properties

Basic

OptionalServer side property representation of the control.valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if 400

50%the parent element of the control properly defines a height this
control can reference. If you specify this control to have a height

100%of 50% then the parent element (e.g. an ITR-row)may itself define
a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then youmay sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4

321Layout Elements

IHTML

The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then youmay sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples
are:

ihtmlstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimtes the size of the column is

bottombigger than the size of the control. In this case the "align" property
specify the position of the control inside the column.

Layout Elements322

IHTML

34 IMAGEOUT

■ Example .. 324
■ Loading Images from a Database, the File System, or Any Other Data Source ... 324
■ Properties .. 325

323

The IMAGEOUT control is used to present images inside a page. The name of the image is not
statically defined inside the layout but is taken from the value of an adapter property.

Example

XML layout definition:

<rowarea name="Image Out">
<itr>

<imageout valueprop="imageName">
</imageout>

</itr>
</rowarea>

Java code:

// property >imageName<
String m_imageName ="images/logo.gif";
public String getImageName() { return m_imageName; }
public void setImageName(String value) { m_imageName = value; }

The above layout definition, together with the above Java code, produces a page which looks as
follows:

Loading Images from a Database, the File System, or Any Other Data Source

The previous example assumes that the imagewhich is returned by the adapter program is located
in such a way that the browser can reach it via a URL: the value "images/logo.gif" points to an
image that is directly located inside the web application.

What can you do if the image is stored at a location that cannot be reached via a URL?Have a look
at the following adapter program. It will produce exactly the same result as the previous example,
but will explicitly load the image from the file system and then display it. Intead of loading the
image from the file system, you could also load the image from a database or any other data source.

Layout Elements324

IMAGEOUT

/** initialisation - called when creating this instance*/
public void init()
{
 // read image by file IO
 byte[] imageBytes = ↩
FileManager.readFileIntoByteArray("c:/temp/images/logo.gif",true);
 // add file to session buffer (name = TEST)
 SessionBuffer sb = findCISessionContext().getSessionBuffer();
 m_imageName = sb.addGIF("TEST",imageBytes);
}

You see that the image is read from the file system as a byte array and is then passed into a
SessionBuffer object. This object is provided by Application Designer: you can store file content
inside the buffer under a defined name. The session buffer returns a URL that allows the browser
to access the file content. The session buffer stores the file in memory. It is bound to the user's
session, i.e. it will be destroyedwhen the user ends the session. It also offers interfaces for removing
content. You should remove content as quick as possible in order to save memory inside your
application server.

See the Java API documentation for more information about the SessionBuffer.

Properties

Basic

OptionalName of adapter property that provides as value the URL of the image that is
shown inside the control.

valueprop

The URL must either be an absolute URL or a relative URL.

OptionalProperty of adapter that dynamically defines the title of the control. The title
is displayed as tool tip when ther user moves the mouse onto the control.

titleprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

50%control properly defines a width this control can reference. If you specify this

100%control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

325Layout Elements

IMAGEOUT

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) Youdo not define a height at all. As consequence the controlwill be rendered
with its default height. If the control is a container control (containing) other
controls then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a height this control can reference. If you specify this
control to have a height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalColumn spanning of control.colspan

If you use TR table rows then you may sometimes want to control the number
of columns your control occupies. By default it is "1" - but you may want to
define the control to span over more than one columns.

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

OptionalRow spanning of control.rowspan

If you use TR table rows then you may sometimes want to control the number
of rows your control occupies. By default it is "1" - but you may want to define
the control to span over more than one columns.

The property only makes sense in table rows that are snychronized within one
container (i.e. TR, STR table rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Layout Elements326

IMAGEOUT

35 LABEL

■ Example .. 329
■ Aligning the Text .. 329
■ Properties .. 330

327

The LABEL control is a static text. The tag has different properties to control the design of the label.
It can be used to display plain text or as a headline of a grid.

By default, the label is rendered with a white line under the text. The default is suitable if a FIELD
control follows the label.

Layout Elements328

LABEL

Example

The XML layout definition is:

<rowarea name="Label Controls">
<itr>

<label name="Narrow" width="50">
</label>
<hdist>
</hdist>
<label name="Wide" width="150">
</label>
<hdist>
</hdist>
<label name="Plain" width="100" asplaintext="true">
</label>
<hdist>
</hdist>
<label name="Headline" width="100" asheadline="true">
</label>

</itr>
<vdist>
</vdist>

</rowarea>

For a better separation between the LABEL controls, horizontal distances (HDIST) were added.

Aligning the Text

Use the property textalign in order to align the label's text. Do not use the align property.
textalign refers to the text inside the control, align refers to the position of the control inside the
surrounding cell - if the cell is larger than the control.

329Layout Elements

LABEL

Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding string
at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

140

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
awidth this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf the textual content of the control exceeds the size of the
control then the browser automatically breaks the line and
arranges the text accordingly.

nowrap

false

You can avoid this behaviour by settingNOWRAP to "true".
No line break will be performed by the browser.

(already explained above)width

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200

Layout Elements330

LABEL

(A) You do not define a height at all. As consequence the
controlwill be renderedwith its default height. If the control

250

300is a container control (containing) other controls then the
height of the control will follow the height of its content.

250
(B) Pixel sizing: just input a number value (e.g. "20").

400
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 50%

100%results if the parent element of the control properly defines
a height this control can reference. If you specify this control
to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

trueOptionalIf set to true, the label has a dark background and the text
is written in white (if using the standard style sheet).

asheadline

false
You may use this rendering style is you use labels as
headlines of control grids (ROWTABLEAREA2 control).

trueOptionalIf set to true, no white line is drawn under the label text (if
using the standard style sheet).

asplaintext

false
Youmay use this rendering style if the label is used to name
a RADIOBUTTON control or a CHECKBOX control.

leftOptionalHorizontal alignment of the text that is shown.textalign

center

right

trueOptionalBoolean property defining the rendering if the text of the
label does not fit into the defined width. If "true" then the

cuttext

falsetext is cut - the part that does not fit is hidden. If "false" then
the browser opens a second line.

Default is "false".

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

labelstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

331Layout Elements

LABEL

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalCSS style class used for rendering.labelstyleclass

VAR1OptionalSome controls offer the possibility to define style variants.
By this style variant you can address different styles inside

stylevariant

VAR2your style sheet definition file (.css). If not defined "normal"

VAR3
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

VAR4Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. Inmost cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the sameway
as the contained control.

If youwant to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

Layout Elements332

LABEL

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control to span
over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

invisibleOptionalIf the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

Binding

OptionalName of an adapter property that provides the information
if this control is displayed or not. As consequence you can
control the visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

OptionalText ID that is passed to the multi lanaguage management
- representing the tooltip text that is used for the control.

titletextid

333Layout Elements

LABEL

334

36 MENUBUTTON

■ Example .. 336
■ Building a Button Menu ... 337
■ MENUBUTTON Versus MENU ... 337
■ MENUBUTTON Properties .. 338
■ MENUITEM Properties ... 339

335

The MENUBUTTON control offers the possibility to arrange buttons in a hierarchy.

Example

In the following example, there are twomenu buttonswhich act differentlywhen they are selected:

The XML code for the example looks as follows:

<rowarea name="Demo">
<itr takefullwidth="true">

<coltable0 width="50%" takefullheight="true">
<itr>

<menubutton name="Below" menuposition="below">
<menuitem name="New..." method="newFile" pixelwidth="150">
</menuitem>
<menuitem name="Open..." method="openFile" pixelwidth="150">
</menuitem>

</menubutton>
</itr>

</coltable0>
<coltable0 width="50%">

<vdist height="50">
</vdist>
<itr>

Layout Elements336

MENUBUTTON

<menubutton name="Above" menuposition="above">
<menuitem name="Save..." method="saveFile" pixelwidth="150">
</menuitem>

<menuitem name="Save as ..." method="saveAsFile" pixelwidth="150">
</menuitem>

</menubutton>
</itr>

</coltable0>
</itr>

</rowarea>

In the definition of a menu item, a method of the adapter class is exactly referenced like a normal
button.

Building a Button Menu

With the MENUBUTTON control, you can build simple menus:

Just place the MENUBUTTON controls inside the HEADER area.

MENUBUTTON Versus MENU

A complex MENU control is also available. The MENU control looks like a real menu, whereas
the MENUBUTTON control is a special arrangement of normal buttons. See also the description
of theMENU control inWorking with Menus.

337Layout Elements

MENUBUTTON

MENUBUTTON Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the
name when using the multi language management - but specify a
"textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

aboveOptionalabove if themenu should popup above the basemenu button - below
if the menu should popup below the base menu button.

menuposition

below
The default is below.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
controlwill either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalName of an adapter property that provides the information if this
control is displayed or not. As consequence you can control the
visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4

Layout Elements338

MENUBUTTON

The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does notmake sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does notmake sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

OptionalCSS style definition that is directly passed into this control.buttonstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source" or
"View frame's source" function.

MENUITEM Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the name
when using the multi language management - but specify a "textid"
instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control. The
"textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

339Layout Elements

MENUBUTTON

ObligatoryMethod of your adapter object that is executed when clicking on the
control.

method

ObligatoryWidth of the control in pixels.pixelwidth

OptionalCommentwithout any effect on rendering andbehaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

OptionalHeight of the control in pixels.pixelheight

OptionalCSS style definition that is directly passed into this control.itemstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating themwith
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to knowwhere direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

Layout Elements340

MENUBUTTON

37 METHODLINK

■ Example .. 343
■ Properties .. 343

341

The METHODLINK is a control that renders a text that is dynamically derived from an adapter
property. The text is rendered as a hyperlink. When clicking on the hyperlink, a method is called
on the server side. It is used in scenarios in which users are in the habit of following links instead
of choosing buttons or icons.

Layout Elements342

METHODLINK

Example

The XML layout definition is:

<rowarea name="Method Link">
 <itr>
 <label name="Normal" width="100">
 </label>
 <methodlink method="onLink" valueprop="linkText" width="200">
 </methodlink>
 </itr>
 <itr>
 <label name="Straight Text" width="100">
 </label>
 <methodlink method="onLink" valueprop="linkText" width="300" ↩
straighttext="true">
 </methodlink>
 </itr>
</rowarea>

Properties

Basic

OptionalText that is displayed inside the control. Please do
not specify the name when using the multi

name

language management - but specify a "textid"
instead.

OptionalMulti language dependent text that is displayed
inside the control. The "textid" is translated into a
corresponding string at runtime.

textid

Do not specify a "name" inside the control if
specifying a "textid".

ObligatoryMethod of your adapter object that is executed
when clicking on the control.

method

ObligatoryName of adapter property providing the text that
is shown as link.

valueprop

343Layout Elements

METHODLINK

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent element
of the control properly defines awidth this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

(already explained above)width

trueOptionalIf the text of the control contains HTML tags then
these are by default interpreted by the browser.

straighttext

falseSpecifiying STRAIGHTTEXT as "true" means that
the browser will directly render the characters
without HTML interpretation.

Example: if you want to output the source of an
HTML text then STRAIGHTTEXT should be set to
"true".

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

linkstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Layout Elements344

METHODLINK

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalCSS style class definition that is directly passed
into this control.

linkclass

The style class can be either one which is part of
the "normal" CIS style sheet files (i.e. the ones that
youmaintain with the style sheet editor) - or it can
be one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of
the PAGE tag.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

rightSometimes the size of the column is bigger than
the size of the control itself. In this case the "align"
property specifies the position of the control inside
the column. In most cases you do not require the
align control to be explicitly defined because the
size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of
text: in most text based controls there is an explicit
property "textalign" in which you align the
control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The
column itself is part of a row (e.g. ITR or TR).

bottomSometimtes the size of the column is bigger than
the size of the control. In this case the "align"
property specify the position of the control inside
the column.

trueOptionalIf the textual content of the control exceeds the size
of the control then the browser automatically
breaks the line and arranges the text accordingly.

nowrap

false

You can avoid this behaviour by settingNOWRAP
to "true". No line break will be performed by the
browser.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes
want to control the number of columns your

345Layout Elements

METHODLINK

3control occupies. By default it is "1" - but you may
want to define the control to span over more than
one columns. 4

5The property only makes sense in table rows that
are snychronizedwithin one container (i.e. TR, STR

50table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes
want to control the number of rows your control

3occupies. By default it is "1" - but you may want

4
to define the control to span over more than one
columns.

5The property only makes sense in table rows that
are snychronizedwithin one container (i.e. TR, STR 50
table rows). It does not make sense in ITR rows,
because these rows are explicitly not synched. int-value

Binding

(already explained above)valueprop

(already explained above)method

OptionalProperty of adapter that dynamically defines the
title of the control. The title is displayed as tool tip
when ther user moves the mouse onto the control.

titleprop

OptionalName of the adapter property that dynamically
passes information how the link should be

linkstatusprop

rendered and how it should act. Valid values are
"DISPLAY" and "EDIT".

OptionalName of themethod on adapter level that is called
when the user presses the right mouse button in
an empty area.

oncontextmenumethod

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier
that can be later on used within your test tool in
order to do the object identification

testtoolid

trueOptionalSet this attribute to TRUE when you have set an
own CSS style class for the LINKCLASS property

pseudoclassessupport

falsewhich uses pseudo classes like ':hover' and ':link'.
AHREF attributewill be created,which is required
tomake the pseudo classes work correctly. Set this
property only if you use pseudo classes. Note: If
you set this property the text "javascript:void(0)"
will be displayed in the status barwhen themouse

Layout Elements346

METHODLINK

pointer hovers over the link. This cannot be
avoided.

347Layout Elements

METHODLINK

348

38 MULTISELECT

■ Example .. 350
■ Problems with MULTISELECT .. 352
■ Properties .. 352

349

TheMULTISELECT control allows comfortable input ofmultiple selections of items from a defined
number of items.

Example

The available items are rendered on the left and are brought to the right by choosing the corres-
ponding button. There are buttons to bring all items from the left to the right, and back.

The XML layout looks as follows:

<rowarea name="Control Demo">
 <itr>
 <label name="Multiselect Control" width="150">
 </label>
 <multiselect valueprop="towns" flush="server" width="300" ↩
helpid="MultiSelectHelp">
 </multiselect>
 </itr>
</rowarea>

The adapter code is:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.MULTISELECTInfo;
import com.softwareag.cis.server.util.OPTIONInfo;

// This class is a generated one.

public class MethodLinkAdapter
extends Adapter

{
// --
// property access
// --

Layout Elements350

MULTISELECT

// property >towns<
MULTISELECTInfo m_towns = new MULTISELECTInfo();
public MULTISELECTInfo getTowns() { return m_towns; }

// --
// public access
// --

public void onOutput()
{

StringBuffer sb = new StringBuffer();
OPTIONInfo[] items = m_towns.getItems();
boolean first = true;
for (int i=0; i<items.length; i++)
{

if (items[i].getSelected() == true)
{
if (first)

first = false;
else

sb.append(", ");
sb.append(items[i].getText());
}
}
outputMessage(MT_SUCCESS,sb.toString());

}

// --
// standard adapter methods
// --

/** initialisation - called when creating this instance*/
public void init()
{

m_towns.addItem(new OPTIONInfo("Sevilla", "Sevilla", false));
m_towns.addItem(new OPTIONInfo("Carmona", "Carmona", false));
m_towns.addItem(new OPTIONInfo("Lebrija", "Lebrija", true));
m_towns.addItem(new OPTIONInfo("Cadiz", "Cadiz", false));
m_towns.addItem(new OPTIONInfo("Valencia", "Valencia", false));
m_towns.addItem(new OPTIONInfo("Madrid", "Madrid", false));
m_towns.addItem(new OPTIONInfo("Salamanca", "Salamanca", false));
m_towns.addItem(new OPTIONInfo("Malaga", "Malaga", true));
m_towns.addItem(new OPTIONInfo("Barcelona", "Barcelona", false));
m_towns.addItem(new OPTIONInfo("Bilbao", "Bilbao", true));
m_towns.addItem(new OPTIONInfo("Granada", "Granada", false));

}
}

On the server side, the control is associated with an instance of class MULTISELECTInfo. The items
are passed as OPTIONInfo objects. Depending on the boolean value inside the constructor, items

351Layout Elements

MULTISELECT

are either on the left side (unselected) or on the right side (selected). The onOutput()method
shows how to derive information - which item was selected by the user.

Problems with MULTISELECT

With previous releases, the MULTISELECT control internally used the HTML control SELECT
which has certain problems (see the description of the COMBOFIX control). The control is now
rendered in a different way; the problems do not exist anymore.

Properties

Basic

ObligatoryName of the adapter property representing this control on server side.valueprop

The property must be of type MULTISELECTInfo. Please view
corresponding documentation inside the Java API Documentation.

The MULTISELECT control does not offer a STATUSPROP property
in the way other controls (FIELD, ...) allow you to manipulate there
input status at runtime. Instead you can set the status as method of the
MULTISELECTInfo object that you create inside your adapter.

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define awidth at all. In this case thewidth of the control
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control can

100%reference. If you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a width of "100%".
If the parent element does not specify awidth then the rendering result
may not represent what you expect.

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be rendered with its default height. If the control is a container control

Layout Elements352

MULTISELECT

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%
parent element of the control properly defines a height this control can
reference. If you specify this control to have a height of 50% then the

100%parent element (e.g. an ITR-row) may itself define a height of "100%".
If the parent element does not specify awidth then the rendering result
may not represent what you expect.

OptionalCommentwithout any effect on rendering andbehaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to true, the FIELD will not be accessible for input. It is just used
as an output field.

displayonly

false

trueOptionalIf set to true, corresponding up and down arrows appear on the right
hand side. These arrows allow for changing the order of the selected
items.

withupdown

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is part of
a row (e.g. ITR or TR). Sometimes the size of the column is bigger than

rightthe size of the control itself. In this case the "align" property specifies
the position of the control inside the column. In most cases you do not
require the align control to be explicitly defined because the size of the
column around the controls exactly is sized in the same way as the
contained control.

If youwant to directly control the alignment of text: in most text based
controls there is an explicit property "textalign" in which you align the
control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part of
a row (e.g. ITR or TR). Sometimtes the size of the column is bigger than

bottomthe size of the control. In this case the "align" property specify the
position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4

353Layout Elements

MULTISELECT

The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control the
number of rows your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

OptionalCSS style definition that is directly passed into this control.msstyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating themwith
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to knowwhere direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

Binding

(already explained above)valueprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSH property you can change
this behaviour.

Setting FLUSH to "server"means that directly after changing the input
a synchronizationwith the server adapter is triggered. As consequence
you directly can react inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the ones thatwere

Layout Elements354

MULTISELECT

changed before - are transferred to the adapter object, not only the one
that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is populated
inside the page. You use this option if you have redundant usage of
the same property inside one page and if youwant to pass one changed
value to all its representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to FLUSH="server"
then you can specify an explicit method to be called when the user

flushmethod

updates the content of the control. By doing so you can distinguish on
the server side from which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in case the user
presses F1 on the control.

helpid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later
on used within your test tool in order to do the object identification

testtoolid

355Layout Elements

MULTISELECT

356

39 NEWSFEED

■ Example .. 359
■ Typical Problems ... 361
■ Properties .. 361

357

The NEWSFEED control is a simple-to-use “newsreader” within the Application Designer pages.
It offers the possibility to read news feeds (RSS feeds and Atom feeds).

Important: In order to use the NEWSFEED control, you have to specify a valid RSS or Atom
feed URL (for example http://news.cnet.com/2547-1001_3-0-5.xml). If necessary, you also
have to specify your proxy server settings (host, port, user name, password).

Layout Elements358

NEWSFEED

http://news.cnet.com/2547-1001_3-0-5.xml

Example

The XML layout definition is:

<rowarea name="Newsfeed Control" width="560">
<newsfeed infoprop="newsfeedinfoprop" width="550" height="450">
</newsfeed>

</rowarea>

The Java code of the adapter is:

359Layout Elements

NEWSFEED

public class NewsfeedControlExampleAdapter
extends Adapter

{
// --
// property access
// --

// property >newsfeedinfoprop<
NEWSFEEDInfo m_newsfeedinfoprop=new NEWSFEEDInfo(this);
public NEWSFEEDInfo getNewsfeedinfoprop()
{ return m_newsfeedinfoprop; }
public void setNewsfeedinfoprop(NEWSFEEDInfo value)
{ m_newsfeedinfoprop = value; }

// property >feedURL<
String m_feedURL="http://www.news.com/2547-1001_3-0-5.xml";
public String getFeedURL() { return m_feedURL; }
public void setFeedURL(String value) { m_feedURL = value; }

// --
// public adapter methods
// --

public void openRSS()
{

// proxy settings only if necessary
// with host, port, user name and password
m_newsfeedinfoprop.setProxy(m_phost, m_pport, m_puser, m_ppwd);
// just a host and a port
m_newsfeedinfoprop.setProxy(m_phost, m_pport);
// open the feed
m_newsfeedinfoprop.showFeed(m_feedURL);

}

// --
// standard adapter methods
// --

/** initialisation - called when creating this instance*/
public void init()
{

openRSS();
}

}

Layout Elements360

NEWSFEED

Typical Problems

The following page appears if the selected news feed cannot be opened.

There are the following typical reasons for this error message:

■ The used URL is not valid; check the URL in the adapter code. Try to copy and paste ht-
tp://www.news.com/2547-1001_3-0-5.xml.

■ Make sure whether you have to use a proxy server or not. Use the setProxy(...)method to
enable the proxy or the disableProxy()method to disable the proxy.

Properties

Basic

ObligatoryName of the adapter property that represents the control on server side.infoprop

Return type must be "NEWSFeedInfo".

Pay attention: The NEWSFeedInfo Constructor needs a valid Adapter i.e.

NEWSFeedInfo m_nfi = new NEWSFeedInfo(this)

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will be
renderedwith its default height. If the control is a container control (containing)
other controls then the height of the controlwill follow the height of its content. 250

300(B) Pixel sizing: just input a number value (e.g. "20").

250(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of

400the control properly defines a height this control can reference. If you specify

50%this control to have a height of 50% then the parent element (e.g. an ITR-row)

361Layout Elements

NEWSFEED

may itself define a height of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

100%

vsplitOptionalBy default the newsfeed control appears within a vsplit control. Headers on
the left and content on the right. Set this value to hsplit and the control appears
within a hsplit control. Headers on top, content on the bottom.

splitstyle

hsplit

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Layout Elements362

NEWSFEED

40 RADIOBUTTON

■ Example .. 364
■ Properties .. 365

363

The RADIOBUTTON control displays the radio button. Radio buttons can be grouped together
so that a group of RADIOBUTTON controls manipulates one property of an adapter control. Each
RADIOBUTTON instance represents one value provided by the adapter property.

Example

The XML layout definition is:

<rowarea name="Radio Button">
<itr>

<radiobutton valueprop="option" value="1">
</radiobutton>
<label name="Option 1" asplaintext="true">
</label>

</itr>
<itr>

<radiobutton valueprop="option" value="2">
</radiobutton>
<label name="Option 2" asplaintext="true">
</label>

</itr>
</rowarea>

The Java code of the adapter is:

// property >option<
int m_option;
public int getOption() { return m_option; }
public void setOption(int value) { m_option = value; }

In the code example, an integer value is used as a property. You can also use any other kind of
data type: string, boolean, float, etc.

Layout Elements364

RADIOBUTTON

Properties

Basic

ObligatoryServer side property representation of the control.valueprop

OptionalValue that represents this instance of the RADIOBUTTON
control.

value

The value is set into the adapter property that is defined
by the VALUEPROP property when the user clicks onto
the control. - Vice versa: the control is switched to
"marked" when the adapter property holds the value
defined.

OptionalCommentwithout any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

160container controls - it will follow thewidth that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizingwill only bring up correct 50%

100%results if the parent element of the control properly defines
a width this control can reference. If you specify this
control to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then the
rendering result may not represent what you expect.

trueOptionalIf set to true, the FIELD will not be accessible for input. It
is just used as an output field.

displayonly

false

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because

365Layout Elements

RADIOBUTTON

the size of the column around the controls exactly is sized
in the same way as the contained control.

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the control
inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but youmaywant to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

invisibleOptionalIf the visibility of the control is determined dynamically
by an adapter property then there are two renderingmodes
if the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source order
to resolve duplicates.

tabindex

0

Layout Elements366

RADIOBUTTON

1

2

5

10

32767

xs:stringOptionalBy default, the control is managing its content as string.
By explicitly setting a datatype you can define that the

datatype

------------------------control will format the data coming from the server: if the

N n.n
field has datatype "date" and the user inputs "010304" then
the input will be translated into "01.03.2004" (or other
representation, dependent on date format settings). P n.n

Please note: the datatype "float" is named a bit misleading
- it represents any decimal format number. The server side

string n

representation may be a float value, but also can be a
double or a BigDecimal property.

Label

OptionalName of adapter property that provides as value the text
that is shown inside the control.

nameprop

OptionalText that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

OptionalMulti language dependent text that is displayed inside the
control. The "textid" is translated into a corresponding
string at runtime.

textid

Do not specify a "name" inside the control if specifying a
"textid".

OptionalWitdh of the distance between checkbox and label in pixel.hdistpixelwidth

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

labelstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTMLcode in order to knowwhere direct style definitions

367Layout Elements

RADIOBUTTON

are applied. Press rightmouse-button in your browser and
select the "View source" or "View frame's source" function.

Binding

(already explained above)valueprop

OptionalName of adapter property that controls whether the field
is displayonly(true) or not (false).

displayprop

By using this property you can dynamically control the
"display"-status of the control by your adapter object.

OptionalName of the adapter property that dynamically passes
information how the field should be rendered and how it
should act.

statusprop

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within
the browser client - and communicated to the server
adapter object when a user e.g. presses a button. By using
the FLUSH property you can change this behaviour.

Setting FLUSH to "server" means that directly after
changing the input a synchronization with the server
adapter is triggered. As consequence you directly can react
inside your adapter logic onto the change of the
corresponding value. - Please be aware of that during the
synchronization always all changed properties - also the
ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value
is populated inside the page. You use this option if you
have redundant usage of the same property inside one
page and if you want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method

flushmethod

to be called when the user updates the content of the
control. By doing so you can distinguish on the server side
from which control the flush of data was triggered.

Online Help

OptionalHelp id that is passed to the online help management in
case the user presses F1 on the control.

helpid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property
- or use the TITLETEXTID in order to define a language
dependent literal.

Layout Elements368

RADIOBUTTON

OptionalText ID that is passed to themulti lanaguagemanagement
- representing the tooltip text that is used for the control.

titletextid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that
can be later on used within your test tool in order to do
the object identification

testtoolid

The RADIOBUTTON control is typically followed by a label explaining its meaning.

369Layout Elements

RADIOBUTTON

370

41 SCHEDULELINE

■ Example .. 372
■ CSV Manager ... 374
■ Properties .. 375

371

The SCHEDULELINE control is used to define screens like the following:

You can display a certain sequence of items, each item holding a text, a color value, a size and an
identifier. When clicking on an item, a certain method is called inside your adapter and the ID of
the selected item is returned to perform activities in your program.

Example

The SCHEDULELINE control is very usefulwhen used inside grids as shown in the above example
screen. In principle, it is a standalone control that can (like any other control) be used inside a
TABLEAREA grid. In this section, you find the explanation of the control. InWorking with Grids,
you will learn how to arrange single controls inside a grid.

First, have a look at a simple scenario in which the SCHEDULELINE control is used without a
grid:

The XML layout definition looks as follows:

Layout Elements372

SCHEDULELINE

<rowarea name="Single Schedule Line">
<itr>

<label name="Schedule" width="120">
</label>
<scheduleline valueprop="schedule" width="450" pixelheight="20"

selectmethod="selectSchedule" selscheduleprop="selectedID"
seltypeprop="simpleSelType">

</scheduleline>
</itr>
<itr>

<label name="Selected Item" width="120">
</label>
<field valueprop="selectedID" flush="screen" length="3" displayonly="true">
</field>

</itr>
</rowarea>

The SCHEDULELINE definition links to a property schedule from which it derives the item in-
formation. If a selected method (selectmethod property) is called in the adapter, the ID of the se-
lected item is passed into the property (selschedule property) before.

Let us have a look at the adapter code:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class Schedule_LineAdapter
 extends Adapter
{
 // property >schedule<
 String m_schedule;
 public String getSchedule() { return m_schedule; }
 public void setSchedule(String value) { m_schedule = value; }

 // property >selectedID<
 int m_selectedID;
 public int getSelectedID() { return m_selectedID; }
 public void setSelectedID(int value) { m_selectedID = value; }

/** */
 public void selectSchedule(){ }

 /** initialisation - called when creating this instance*/
 public void init()
 {
 setSchedule("#FFa0a0;100;First Item;1;#A0FFA0;150;Second ↩
Item;2;#A0A0FF;200;Third Item;3");
 }
}

373Layout Elements

SCHEDULELINE

The most significant property is the schedule property. It derives its value from the class member
m_schedule. The member is initialised with a string that represents the item information.

The string is structured in the following way:

■ It contains values that are separated by semicolons, i.e. it follows the common “comma separated
value” structure.

■ Each item consists of four values, one after the other:
■ The color of the item in an HTML-understandable way.
■ The width of the item.
■ The text of the item - which can be blank.
■ The ID of the item. This ID can be blank. The control automatically changes the cursor no
matter whether the item contains an ID or not. Items holding a key are selectable - items
without a key are not selectable.

■ If one of the four values is not available (e.g. no ID), it must not be left out. There must always
be a sequence of four values. Example: if you want to display just an item with a color and a
width value, this looks like "...;#FF0000;100;;;...".

■ You can add as many items into the string as you desire.

The visible width of an item depends on the width of the SCHEDULELINE control itself (which
is defined by the width property) and on the width value of the item. If the total width of a control
is defined to be 100 pixels and each item ID is specified to get a width of "25%", then each item is
actually getting 25% of the available 100 pixels.

Property selectedId receives the selected ID.Method selectSchedule is calledwhenever an item
is selected. There is no implementation code in this example, but you could trigger e.g. page nav-
igation or open a pop-up dialog on demand.

CSV Manager

Inside the Application Designer classes, there is the class CSVManager (package
com.softwareag.cis.file) that supports the building of comma separated value strings. The
class also covers themanagement of cases inwhich content parts of a CSV string themselves contain
the separator character (conversion of ";" into "\;"). Documentation on this class is provided in the
API JavaDoc documentation.

Use this class when encoding strings into CSV strings:

Layout Elements374

SCHEDULELINE

String csv = CSVManager.encodeString(new String[] {"1","2","3"});

Properties

Basic

ObligatoryName of the adapter property representing the control's
content on server side.

valueprop

The property must be of type "String". It returns a
semicolon separated list of schedule items. Each item is
represented by a color, a width, a text and a selection id.
The width is not a pixel width but represents a "portion"
that this schedule item represents.

Example: #FF0000\"1000;Text 1;1;#00FF00;500;Text 2;2

The total "logical width" is 1500. The first item occupies
2/3 of the width, the right item occupies 1/3 of the width.

The selection is required in case youwant to react on user
selections. If a user clicks onto one schedule item then
the adapter is notified by a certain method - the id of the
schedule item is passed as reference. Please have a look
into the corresponding property descriptions.

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define awidth at all. In this case thewidth
of the control will either be a default width or - in case

160of container controls - it will follow the width that is
occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%

100%up correct results if the parent element of the control
properly defines awidth this control can reference. If you
specify this control to have awidth of 50% then the parent
element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width
then the rendering result may not represent what you
expect.

OptionalHeight of the control in pixels.pixelheight

OptionalCommentwithout any effect on rendering andbehaviour.
The comment is shown in the layout editor's tree view.

comment

375Layout Elements

SCHEDULELINE

Appearance

(already explained above)width

(already explained above)pixelheight

trueOptionalA schedule line consists of sections, each one rendered
with a certain width. By default the width does not

pixelsizemode

falserepresent a pixel value but represents a logical size. The
width of the section depends on the logical size of one
section compared with the logical size of the other
sections.

When switching this property to "true" then the size of
the sections are interpreted as real pixel values.

leftOptionalHorizontal alignment of the text inside the control's
schedule items.

cellalign

center

right

topOptionalVertical alignement of the text inside the control's
schedule items.

cellvalign

middle

bottom

background-color:
#FF0000

OptionalStyle that is used inside the schedule item cells. Can be
any CSS style.

cellstyle

color: #0000FF

font-weight: bold

trueOptionalIf switched to "true" then the text inside the schedule item
cells is not broken if exceeding the size of the control -
the text is cut instead.

cellnowrap

false

Default is "false".

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the size

bottomof the column is bigger than the size of the control. In this
case the "align" property specify the position of the
control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want
to control the number of columns your control occupies.

3By default it is "1" - but you may want to define the
control to span over more than one columns.

4

Layout Elements376

SCHEDULELINE

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table

5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want
to control the number of rows your control occupies. By

3default it is "1" - but you may want to define the control
to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because these
rows are explicitly not synched.

int-value

trueOptionalFlag (true | false) that indicates that cells of different lines
(within ROWTABLEAREA2) does not have same ids. If

crosslineids

falseset to false the control is able to detect and skip
unnecessary re-draws (performance).

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

tablestyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press rightmouse-button in your
browser and select the "View source" or "View frame's
source" function.

Binding

(already explained above)valueprop

OptionalAdapter method that is called when the user selects one
schedule item with the mouse.

selectmethod

OptionalName of adapter property in which the id of the selected
schedule item is passed. The property is correctly set

selscheduleprop

377Layout Elements

SCHEDULELINE

before the method for reacting on the selection event is
called.

OptionalName of an adapter property that is used in the following
way:

seltypeprop

If the user selects an item it can also be determined, if the
item is selected by the left or by the right mouse button.
In case the user uses the left mouse button, the value
LEFT is passed into the property, which is referenced by
the SELTYPEPROP property. In case the user uses the
right mouse button, the value RIGHT is passed.

trueOptionalIf set to "true" then schedule items holding an id can be
"preselected": the user can click on a schedule item and

preselectmode

falseit is "grayed" as consequence - without directly calling
the selectionmethod. The selectionmethod is calledwhen
double clicking onto the schedule item.

Default is "false".

The reaction of the control when clicking with the right
mouse button remains untouched: still the selection
method is called by a single right mouse button click.

Vertical

trueOptionalFlag that indicates if the line is rendered vertically.
Default is false.

verticalschedule

false

OptionalName of an adapter property of type "String" that
contains the comma separated list of help texts that are
displayed on mouse over (tooltip).

tooltipprop

OptionalName of the adapter property that returns a comma
separated string of image URLs. An URL either is an

imageprop

absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located
directly inside your project's directory.

Example: "images/green.gif;;red.gif"

leftOptionalFlag that indicates to render the image at the left or right
hand of the text.

imageorientation

right

OptionalName of an adapter property to that the id of the dragged
cell is set. Do not use this property if you do not want to

dropinfoprop

support drag anddropwithin the SCHEDULELINE.The
server side property needs to be of type "String".

OptionalName of an adapter method that is called on drop of one
cell (source) over another cell (target). Use property

onmovemethod

DROPINFOPROP to get the id of the dragged cell

Layout Elements378

SCHEDULELINE

(source). Use SELSCHEDULEPROP to get the id of the
cell that got the drop (target).

OptionalName of an adapter property to that the information is
setwhether the user pressed theCTRLkeywhen selecting
a cell. Property needs to be of type "boolean".

controlkeyprop

379Layout Elements

SCHEDULELINE

380

42 SLIDER

■ Example .. 382
■ Properties .. 385

381

The SLIDER control represents a slider. The main use of the slider is to limit the user input to
specific values. It uses a number representation for its values, but the numbers can also be used
to express string values.

Example

The XML layout definition is:

<rowarea name="Number Output">
<itr>

<slider valueprop="slider1" from="13" to="60" showrange="true"
showcurrentvalue="false">

</slider>
</itr>

</rowarea>

The control can be customized by setting its start value, end value and a step. The start and end
values form a closed interval. The step defines the distance between two valid values represented
by the slider in this interval.

In the above example, the value for the step is the default value "1". The possible values represented
by the slider are the integers from "13" to "60". It is possible to specify a floating-point number as
a step, for example "0,25". The slider can be further customized by setting the properties showrange
and showcurrentvaluewhich show the range (start and end value) and the current value of the
slider while the user is moving it. The width and height of the slider point is adjustable. The slider
point is the elementwhich the user drags and drops. The colors, the borders of the slider, the point,
the line, the range and the current value can also be customized.

Layout Elements382

SLIDER

The Java code of the adapter is:

package com.softwareag.cis.test22;
// This class is a generated one.

import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;

public class SliderAdapter
extends Adapter

{

public class NumberSLIDERInfo extends SLIDERInfo
{

public void trigger()
{

m_fieldNumber = this.giveFormattedSliderValueAsInt();
}

}

public class StringSLIDERInfo extends SLIDERInfo
{

public void trigger()
{
int inpValue = this.giveFormattedSliderValueAsInt();
if(inpValue == 1) m_fieldString = "very bad";
else if(inpValue == 2) m_fieldString = "bad";
else if(inpValue == 3) m_fieldString = "ok";
else if(inpValue == 4) m_fieldString = "good";
else if(inpValue == 5) m_fieldString = "very good";
}

}

// property >fieldNumber<
int m_fieldNumber;
public int getFieldNumber() { return m_fieldNumber; }
public void setFieldNumber(int value)
{

m_fieldNumber = value;
}

383Layout Elements

SLIDER

// property >slider1<
NumberSLIDERInfo m_slider1=new NumberSLIDERInfo();
public NumberSLIDERInfo getSlider1() { return m_slider1; }
public void setSlider1(NumberSLIDERInfo value) { m_slider1 = value; }

// property >fieldString<
String m_fieldString;
public String getFieldString() { return m_fieldString; }
public void setFieldString(String value) { m_fieldString = value; }

// property >slider2<
StringSLIDERInfo m_slider2=new StringSLIDERInfo();
public StringSLIDERInfo getSlider2() { return m_slider2; }
public void setSlider2(StringSLIDERInfo value) { m_slider2 = value; }

// property >slider3<
SLIDERInfo m_slider3=new SLIDERInfo();
public SLIDERInfo getSlider3() { return m_slider3; }
public void setSlider3(SLIDERInfo value) { m_slider3 = value; }

/** initialisation - called when creating this instance*/
public void init()
{

m_slider1.setSliderValue(18);
m_slider2.setSliderValue(3);

}

/** */
public void onEnterNumber()
{

m_slider1.setSliderValue(m_fieldNumber);
m_fieldNumber = m_slider1.giveFormattedSliderValueAsInt();

}

}

Every slider is bound to a SLIDERInfo object. Calling the setSliderValue()method sets the value
of the slider which automatically moves it. However, the slider is not set to every given value, but
to one valid value which fits in the given interval. The valid value to which the slider is currently
set can be obtained by calling the giveFormattedSliderValueAsInt() or
giveFormattedSliderValueAsFloat()method. When the user drops the slider, the method
trigger() is called. This can be used to define specific behaviorwhen the value in the user interface
is changed. As in the example above, the SLIDERInfo can be extended, and the trigger()method
can be overwritten to define specific behavior. You can show the new value in another control or
use it for other purposes.

Layout Elements384

SLIDER

Properties

Basic

ObligatoryServer side property representation of the
control.

valueprop

Appearance

100OptionalWidth of the slider. Can be given in pixels or
percentage.

width

120

140

160

180

200

50%

100%

trueOptionalIf set to true, the SLIDER will not be accessible
for input. It is just used as an output.

displayonly

false

trueOptionalBoolean value. Whether to show the range of
the slider. The range is the "from" and "to"
values.

showrange

false

trueOptionalBoolean value. Whether to show the current
value of the slider while it is moving.

showcurrentvalue

false

#FF0000OptionalBackground color of the slider container.mainbgcolor

#00FF00This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBorder color of the slider container.mainbordercolor

385Layout Elements

SLIDER

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

thinOptionalBorder width of the slider container.mainborderwidth

medium

thick

1px

2px

5px

10px

#FF0000OptionalBackground color of the slider point.pointbgcolor

#00FF00This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBorder color of the slider point.pointbordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

thinOptionalBorder width of the slider point.pointborderwidth

medium

thick

1px

2px

5px

10px

Layout Elements386

SLIDER

10OptionalWidth of the slider point in pixels. The value
must be an integer value.

pointwidth

20

40

100

300

10OptionalHeight of the slider point in pixels. The value
must be an integer value.

pointheight

20

40

100

300

#FF0000OptionalBackground color of the slider line.linebgcolor

#00FF00This should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #0000FF

#FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBorder color of the slider line.linebordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #BBBBBB #666666 #666666
#BBBBBB

thinOptionalBorder width of the slider line.lineborderwidth

medium

thick

1px

2px

5px

10px

387Layout Elements

SLIDER

xx-smallOptionalFont size of the slider range.rangefontsize

x-small

small

medium

large

x-large

xx-large

smaller

larger

150%

#FF0000OptionalBackground color of the slider current value
which is shown if the "showcurrentvalue"
property is set to true.

valuebgcolor

#00FF00

#0000FFThis should be a valid CSS color value. For
example a name(blue, red), a hexadecimal
value(#99CCFF) or others. #FFFFFF

#808080

#000000

#bbb #666 #666 #bbbOptionalBackground color of the slider current value
which is shown if the "showcurrentvalue"
property is set to true.

valuebordercolor

#BFCFFF #00248F #00248F
#BFCFFF

This should be a valid CSS border-color value.
You can specify a different color for the top,
right, bottom and left border in this sequence.
For example: #bbb #666 #666 #bbb

thinOptionalBorder width of the slider current value which
is shown if the "showcurrentvalue" property is
set to true.

valueborderwidth

medium

thick

1px

2px

5px

10px

Layout Elements388

SLIDER

xx-smallOptionalFont size of the slider current value which is
shown if the "showcurrentvalue" property is set
to true.

valuefontsize

x-small

small

medium

large

x-large

xx-large

smaller

larger

150%

389Layout Elements

SLIDER

390

43 STRIPSEL

■ Example .. 392
■ Properties .. 394

391

The STRIPSEL control is very similar to the TABSTRIP2 control: the user selects one option out of
many.

The STRIPSEL control is typically located somewhere at the top of a page, but it can also be posi-
tioned anywhere else.

Example

Programming a STRIPSEL control is the same as programming the TABSTRIP2 control - just the
rendering of the control differs:

In this example, the STRIPSEL control is the control below the titlebar. For comparison, the TAB-
STRIP2 control has also been added.

The XML layout is:

<page model="com.softwareag.cis.test40.StripselAdapter">
<titlebar name="STRIPSEL Control">
</titlebar>
<stripsel tabstripprop="stripsel">
</stripsel>
<pagebody>

<rowarea name="Test">
<itr>

<label name="Selection" width="120">
</label>
<field valueprop="selection" width="200" displayonly="true">
</field>

</itr>
</rowarea>
<rowarea name="Comparison with TABSTRIP Control">

<tabstrip2 tabstripprop="stripsel">
</tabstrip2>

</rowarea>
...
...

Layout Elements392

STRIPSEL

...
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

The Java code of the adapter is:

package com.softwareag.cis.test40;

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.test30.Tabstrip2Adapter.MyTABSTRIPInfo;
import com.softwareag.cis.util.*;

public class StripselAdapter
extends Adapter

{
public class MyTABSTRIPInfo

extends TABSTRIPInfo
{

public void reactOnTabSelection(int index)
{

m_selection = this.getItems()[index].getName();
}

}

String m_selection;
public String getSelection() { return m_selection; }
public void setSelection(String value) { m_selection = value; }

TABSTRIPInfo m_stripsel = new MyTABSTRIPInfo();
public TABSTRIPInfo getStripsel() { return m_stripsel; }

public void init()
{

m_stripsel.addItem("First");
m_stripsel.addItem("Second");
m_stripsel.addItem("Third");
m_stripsel.addItem("Fourth");
m_stripsel.selectTab(0);

}

}

393Layout Elements

STRIPSEL

Properties

Basic

OptionalName of the adapter property that represents the control
on server side.

tabstripprop

The property must be a subclass of "TABSTRIPInfo". In
your implementation you must override mehotd
"reactOnTabSelection(index)".

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimes the size

rightof the column is bigger than the size of the control itself.
In this case the "align" property specifies the position of
the control inside the column. In most cases you do not
require the align control to be explicitly defined because
the size of the column around the controls exactly is
sized in the same way as the contained control.

If you want to directly control the alignment of text: in
most text based controls there is an explicit property
"textalign" in which you align the control's contained
text.

trueOptionalFlag that indicates if the control shows scroll icons on
the right upper corner. Default is true

scrollable

false

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

backgroundstyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press rightmouse-button in your
browser and select the "View source" or "View frame's
source" function.

Layout Elements394

STRIPSEL

OptionalHelp text that is displayed if the user moves the mouse
of the scroll to left icon.

scrolllefttitle

OptionalMulti language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

scrolllefttitletextid

Do not specify a "name" inside the control if specifying
a "textid".

OptionalHelp text that is displayed if the user moves the mouse
of the scroll to right icon.

scrollrighttitle

OptionalMulti language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

scrollrighttitletextid

Do not specify a "name" inside the control if specifying
a "textid".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollleftimage

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollleftimagertl

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollrightimage

jpg

395Layout Elements

STRIPSEL

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollrightimagertl

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif" will point into a directory parallel to
your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Layout Elements396

STRIPSEL

44 SUBPAGE

■ Example .. 398
■ Typical Problem: Non-Refreshing Subpages ... 399
■ Properties .. 400

397

The SUBPAGE control defines an area in which an HTML page is shown. The URL of the page is
not statically defined, but is derived from a value of an adapter property.

Due to the browser's capability to embed installed plug-ins, you can use non-HTML objects to be
called - and which the browser is able to understand. For example, if you have Microsoft Office
installed (or the viewers for Microsoft Office documents) and you pass the name of a Word docu-
ment as the URL, the Word document will be embedded into the page.

Example

<rowarea name="Subpage">
<itr>

<label name="URL" width="100">
</label>
<field valueprop="url" flush="true" length="30">
</field>

</itr>
<vdist>
</vdist>
<vdist>
</vdist>
<itr>

<subpage valueprop="url" height="300" width="400">
</subpage>

</itr>
</rowarea>

The above XML layout definition produces a page which looks as follows:

Layout Elements398

SUBPAGE

Typical Problem: Non-Refreshing Subpages

Sometimes the SUBPAGE control is used to embed a generated HTML page into an existing page:
the adapter program somehow creates an HTML document (e.g. a certain list output) and saves
this output to the file system in such a way that it can be reached via a URL. This URL is passed
back as a value into the SUBPAGE control.

Pay attention to the fact that the SUBPAGE control only refreshes its content if the URL changes.
If the URL stays constant, the SUBPAGE control does refresh its inner content. Consequence: if
you have situations in which the user stays on the same page and creates new subpages multiple
times, these subpages must have a URL which changes on every new creation.

A way to force this reloading of a subpage is to append a parameter to the URL which changes
every time you want to refresh. Example: if the page's URL is http://xyz.xyz.html, then you can
write your adapter program in the following way:

399Layout Elements

SUBPAGE

public void getPageURL()
{

return m_pageURL;
}

public void onReloadPageURL()
{

m_pageURL = "http://xyz.xyz.html?DUMMPARAM=" + (new Date()).getTime();
}

Check the reload behavior with your web server first.

Properties

Basic

ObligatoryName of adapter property providing the URL to be displayed inside
the SUBPAGE control.

valueprop

TheURLmay either be an absoluteURL ("http://....) ormay be a relative
URL.

Please note: the SUBPAGE control only re-renders its inner content if
the URL provided by the property really changes. The SUBPAGE
control does not "know" if something changed inside the contained
page and that it has to redraw the page. - If you want to refresh the
inner page explicitly append some random number to your URL, e.g.:
http://...url...?RANDOM=45435. By changing the number the browser
will relaod the URL.

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define awidth at all. In this case thewidth of the control
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content.

140

160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines awidth this control can

100%reference. If you specify this control to have a width of 50% then the
parent element (e.g. an ITR-row) may itself define a width of "100%".
If the parent element does not specify awidth then the rendering result
may not represent what you expect.

Layout Elements400

SUBPAGE

100Sometimes
obligatory

Height of the control.

There are three possibilities to define the height:

height

150

(A) You do not define a height at all. As consequence the control will
be renderedwith its default height. If the control is a container control

200

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50% then

100%the parent element (e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

(already explained above)height

autoOptionalDefinition of the scrollbar's appearance.scrolling

yesYou can define that the scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown always

no("scroll"). Or scrollbars are never shown - and the content is cut
("hidden").

Default is "auto".

OptionalCSS style definition that is directly passed into this control.pagestyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating themwith
a semicolon.

Sometimes it is useful to have a look into the generated HTML code
in order to knowwhere direct style definitions are applied. Press right
mouse-button in your browser and select the "View source" or "View
frame's source" function.

1OptionalColumn spanning of control.colspan

401Layout Elements

SUBPAGE

2If you use TR table rows then you may sometimes want to control the
number of columns your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control the
number of rows your control occupies. By default it is "1" - but you
may want to define the control to span over more than one columns. 3

4The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make sense
in ITR rows, because these rows are explicitly not synched. 5

50

int-value

trueOptionalWhen setting to false, the subpage is not reloadedwhen a page switch
is executed, default is true.

alwaysreload

false

Binding

(already explained above)valueprop

Layout Elements402

SUBPAGE

45 TABSEL

■ Example .. 404
■ Properties .. 406

403

The TABSEL control looks as shown in the following example:

The number of tabs is dynamically defined at runtime. There are various output options:

■ With/without a horizontal line below the control.
■ Normal or reverse coloring.

Like the TABSTRIP control, the TABSEL control does not provide internal containers that are
switched when selecting tabs. It just represents one tab line.

Example

The XML layout of above example is:

<pagebody horizdist="false">
<tabsel tabselprop="tabsel">
</tabsel>
<vdist height="10">
</vdist>
<tabsel tabselprop="tabsel" bottomborder="false">
</tabsel>
<vdist height="10">
</vdist>
<tabsel tabselprop="tabsel" bottomborder="true" reversecolors="true">
</tabsel>
<vdist height="10">
</vdist>
<tabsel tabselprop="tabsel" bottomborder="false" reversecolors="true">
</tabsel>

</pagebody>

The adapter code is:

Layout Elements404

TABSEL

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TABSELInfo;

// This class is a generated one.

public class TabSelAdapter
extends Adapter

{
// --
// inner classes
// --

// class >TabselInfo<
public class TabselInfo extends TABSELInfo
{

public void reactOnSelect()
{

outputMessage(MT_SUCCESS,"Selected: " + getSelectedItem());
}

}

// --
// properties
// --

// property >tabsel<
TabselInfo m_tabsel = new TabselInfo();
public TabselInfo getTabsel() { return m_tabsel; }

/** initialisation - called when creating this instance*/
public void init()
{

// Fill TABSEL
m_tabsel.exchangeItems(new String[]

{
"First Command",
"Second",
"Third",
"Fourth",
"Fifth",
"Sixth",
"Seventh"
});

}
}

On the server side, the control is associated with an instance of class MyTABSELInfo - derived from
TABSELInfo. The instance is loadedwith the available tabs. When the user selectes a tab, a method
reactOnSelect is called inside the instance. The program can access the selected item by using
getSelectedItem() - returning the index of the item selected.

405Layout Elements

TABSEL

Properties

Basic

ObligatoryName of the adapter property representing the TABSEL control on
server side.

tabselprop

The property must be of type "TABSELInfo". Please find further
information inside the Java API Documentation.

trueOptionalIf set to "true" then a bottomborder is rendered below the tab selection.
If set to "false" then no bottom border will be drawn.

bottomborder

false

trueOptionalReverses the color scheme of the TABSEL control.reversecolors

false

1OptionalInserts a horizontal distance left of the first "tab" and shifts the "tabs"
to the right as consequence. The value you may define represents the
number of pixels that are inserted.

leftindent

2

3

int-value

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Layout Elements406

TABSEL

46 TABSTRIP2

■ Example .. 408
■ TABSTRIP2 - Usage with Other Controls .. 410
■ Properties .. 411

407

The TABSTRIP2 control is used to navigate through certain aspects of your application. The way
you navigate depends completely on your implementation.

Note: TABSTRIP2 is a wrapper around the TABSTRIP control which was available with
previous releases. In the TABSTRIP control, you had to do quite a lot of references to adapter
properties that are now replaced by one TABSTRIPInfo object. The TABSTRIP control is
still supported.

Example

The control looks as follows:

For each aspect, there is one tab holding a name and an index. The left-most tab holds index 0, the
next one 1, etc.

The XML layout definition is:

<page model="tabstripAdapter">
<titlebar name="Simple programming of tab-strip-controls">
</titlebar>
<tabstrip2 tabstripprop="titletab" scrollable="false">
</tabstrip2>
<header withdistance="false">

<button name="Exit">
</button>

</header>
<pagebody>

<rowarea name="Selection">
<itr>

<label name="Selected tab" width="120">
</label>
<field valueprop="selTabText">
</field>

</itr>
</rowarea>

</pagebody>
<statusbar withdistance="false">

Layout Elements408

TABSTRIP2

</statusbar>
</page>

Note: Whereas the ROWTABAREA and COLTABAREA controls explicitly open one con-
tainer (TABPAGE) per tab, the TABSTRIP2 control is just a “tab line” itself without any
container included.

The adapter class looks as follows:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TABSTRIPInfo;

// This class is a generated one.

public class tabstripAdapter
extends Adapter

{
// --
// inner classes
// --

public class TitleTABSTRIPInfo
extends TABSTRIPInfo
{

public void reactOnTabSelection(int index)
{

m_selTabText = this.findSelectedItem().getName();

}
}

// --
// property access
// --

// property >selTabText<
String m_selTabText;
public String getSelTabText() { return m_selTabText; }
public void setSelTabText(String value) { m_selTabText = value; }

// property >titletab<
TABSTRIPInfo m_titletab = new TitleTABSTRIPInfo();
public TABSTRIPInfo getTitletab() { return m_titletab; }
public void setTitletab(TABSTRIPInfo value) { m_titletab = value; }

// --
// standard adapter methods
// --

/** initialisation - called when creating this instance*/
public void init()

409Layout Elements

TABSTRIP2

{
m_titletab.addItem("First"); // tab 0
m_titletab.addItem("Second"); // tab 1
m_titletab.addItem("Third"); // tab 2
m_titletab.selectTab(0);

}
}

The TABSTRIP2 control is represented by a TABSTRIPInfo object on the server side. You see that
a subclass of its own is generated (TitleTABSTRIPInfo) in which the method
reactOnTabSelection(...) is overwritten. This method is called when the user selects a tab.

The TitleTABSTRIPInfo object is initialised inside the init()method: there are corresponding
methods for adding items and for selecting the one that represents the currently selected one. You
can change the information behind this (e.g. the number of tabs to be shown) at any time - also at
a later point in time, after initialisation. But: do not create new instances of the object, use the
clear()method instead.

TABSTRIP2 - Usage with Other Controls

The TABSTRIP2 control may not only be used below the titlebar. It can also be arranged on top
or belowmany other controls. The following example shows the usage togetherwith aROWAREA
control:

The XML layout definition is:

Layout Elements410

TABSTRIP2

<rowarea name="Info" height="200">
</rowarea>
<tabstrip2 tabstripprop="tabstrip" backgroundstyle="background-color: #FFFFFF">
</tabstrip2>

You see that the background style of the TABSTRIP2 control was explicitly set to white in order
to fit into the coloring of the ROWAREA.

Properties

Basic

OptionalName of the adapter property that represents the control
on server side.

tabstripprop

The property must be a subclass of "TABSTRIPInfo". In
your implementation you must override mehotd
"reactOnTabSelection(index)".

leftOptionalHorizontal alignment of the control's content. Default is
"center".

align

center

right

trueOptionalIf set to "true" then small icons will appear on the right
border of the control. If the size of the "tabs" is too big

scrollable

falseand some tabs are cut as consequence then you can use
these icons for scrolling left and right.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

backgroundstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame's
source" function.

OptionalCommentwithout any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

411Layout Elements

TABSTRIP2

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollleftimage

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif"will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif"will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollleftimagertl

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif"will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif"will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollrightimage

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif"will point into a directory parallel to your
page. Specifying "../HTMLBasedGUI/images/new.gif"will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

gifOptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

scrollrightimagertl

jpg

jpegUse the following options to specify the URL:

(A) Define the URL relative to your page. Your page is
generated directly into your project's folder. Specifiying
"images/xyz.gif"will point into a directory parallel to your

Layout Elements412

TABSTRIP2

page. Specifying "../HTMLBasedGUI/images/new.gif"will
point to an image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

413Layout Elements

TABSTRIP2

414

47 TAGCLOUD

■ Example .. 416
■ Properties .. 418

415

The TAGCLOUD control represents a collection of tags. A tag is a keyword assigned to an inform-
ation resource (picture, video clip or others). In a tag cloud, the tags are mainly shown by their
popularity.

Example

As you can see, different tags can be added to a tag cloud. They differ by their popularity. The
most popular tags are those with a bigger font size.

The XML layout definition is:

<itr>
<tagcloud tagcloudprop="tagCloud"

width="300" height="350"
borderstyle="dotted" borderwidth="1px"
bordercolor="#0000FF" backgroundcolor="#E6E6FA"
textcolor="#0000FF">

</tagcloud>
</itr>

The tag cloud can be customized by defining a background color. Use the Style Sheet Editor to
apply your own style.

The Java code of the adapter is:

Layout Elements416

TAGCLOUD

public classTagcloudAdapter
extends Adapter

{
/** sub class TAGCLOUDInfo to react on click events*/
public class MyTagcloudInfo extends TAGCLOUDInfo
{
public void trigger()
{

outputMessage(MT_SUCCESS, getSelectedTagName());
}

}

// property >tagCloud<
MyTagcloudInfo m_tagCloud=new MyTagcloudInfo();
public MyTagcloudInfo getTagCloud() { return m_tagCloud; }

/** called on page load*/
public void init()
{

m_tagCloud.addTag("computer");
m_tagCloud.addTag("technology");
m_tagCloud.addTag("java", TAGCLOUDInfo.TAGPOPULARITY_5_VERYBIG);
m_tagCloud.addTag("books");
m_tagCloud.addTag("drinks");
m_tagCloud.addTag("music", TAGCLOUDInfo.TAGPOPULARITY_4_BIG);
m_tagCloud.addTag("people");
m_tagCloud.addTag("germany", TAGCLOUDInfo.TAGPOPULARITY_4_BIG);
m_tagCloud.addTag("summer", TAGCLOUDInfo.TAGPOPULARITY_4_BIG);
m_tagCloud.addTag("flowers");
m_tagCloud.addTag("kids", TAGCLOUDInfo.TAGPOPULARITY_2_SMALL);
m_tagCloud.addTag("holiday");
m_tagCloud.addTag("semantic", TAGCLOUDInfo.TAGPOPULARITY_4_BIG);
m_tagCloud.addTag("micro", TAGCLOUDInfo.TAGPOPULARITY_2_SMALL);
m_tagCloud.addTag("birthday");

. . .

. . .
}

}

A tag cloud is bound to a TAGCLOUDInfo object. Using this object you can add tags with different
popularities. All tagswith the same popularity have their own stylesheet class. You can also remove
tags and get the last tag which has been selected by the user. When you want to react on click
events, you can override the trigger() function of the TAGCLOUDInfo object and add specific code.

417Layout Elements

TAGCLOUD

Properties

Basic

ObligatoryName of the adapter property that represents the control on server
side.

tagcloudprop

Return type must be "TAGCLOUDInfo".

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row)may itself define awidth
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row)may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

solidOptionalChoose the style the controls border.borderstyle

double

groove

Layout Elements418

TAGCLOUD

dotted

dashed

inset

outset

ridge

hidden

thinOptionalBorder size of control in pixels. Specify "0" not to renderborderwidth

mediumany border at all.

thick

1px

2px

5px

10px

#FF0000OptionalSets the border color of the control.bordercolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

#FF0000OptionalSets the background color of the control.backgroundcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

#FF0000OptionalSets the text color of the control.textcolor

#00FF00

419Layout Elements

TAGCLOUD

#0000FF

#FFFFFF

#808080

#000000

Layout Elements420

TAGCLOUD

48 TEXT

■ Example .. 422
■ Properties .. 422

421

The TEXT control represents a multi line text edit control. It represents the value of an adapter
property.

Example

The XML layout definition is:

<rowarea name="Text">
<itr>

<text valueprop="longText" rows="7" cols="30">
</text>

</itr>
</rowarea>

Properties

Basic

ObligatoryServer side property representation of the control.valueprop

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content.

140

160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row) may itself
define a width of "100%". If the parent element does not specify

Layout Elements422

TEXT

a width then the rendering result may not represent what you
expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a

250container control (containing) other controls then the height of
the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if 400

50%the parent element of the control properly defines a height this
control can reference. If you specify this control to have a height

100%of 50% then the parent element (e.g. an ITR-row) may itself
define a height of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered within the
browser client - and communicated to the server adapter object
when a user e.g. presses a button. By using the FLUSHproperty
you can change this behaviour.

Setting FLUSH to "server" means that directly after changing
the input a synchronizationwith the server adapter is triggered.
As consequence you directly can react inside your adapter logic
onto the change of the corresponding value. - Please be aware
of that during the synchronization always all changed properties
- also the ones that were changed before - are transferred to the
adapter object, not only the one that triggered the
synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if
you want to pass one changed value to all its representaion
directly after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method to be

flushmethod

calledwhen the user updates the content of the control. By doing
so you can distinguish on the server side fromwhich control the
flush of data was triggered.

string nOptionalBy default, the control is managing its content as string. By
explicitly setting a datatype you can define that the control will

datatype

xs:string

423Layout Elements

TEXT

format the data coming from the server: if the field has datatype
"date" and the user inputs "010304" then the input will be
translated into "01.03.2004" (or other representation, dependent
on date format settings).

Please note: the datatype "float" is named a bit misleading - it
represents any decimal format number. The server side
representation may be a float value, but also can be a double or
a BigDecimal property.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

trueOptionalIf set to true, the FIELDwill not be accessible for input. It is just
used as an output field.

displayonly

false

rtlOptionalPresets the default(BiDi) direction of the control. Use black string
in order to have the default value.

direction

ltr

OptionalName of adapter property that controls whether the field is
displayonly(true) or not (false).

displayprop

By using this property you can dynamically control the
"display"-status of the control by your adapter object.

OptionalName of the adapter property that dynamically passes
information how the field should be rendered and how it should
act.

statusprop

softOptionalSpecifies the line wrapping inside the control. By default a line
that exceeds the width of the control is broken automatically.

wrap

hard
You may define this property to not wrap at all ("off") - in this
case the text control offers horizontal scroll bars to scroll the text. off

There are two styles of wrapping "soft" and "hard". The
difference between "soft" and "hard" is the way the text is - if
changed by the user - passed back to the adapter property: when
specifying "soft" then line breakswhich are caused bywrapping
are not sent to the server, when specifying "hard" then line breaks
caused by wrapping are sent as carriage return/ line feed. - Be
carefule when specifying "hard" as consequence!

Thewrap attribute is not part of theHTML standard. It depends
on the browser if wrap=hard/soft are supported.

OptionalHeight of control specified by number of rows. Either define the
height by the HEIGHT property or by the ROWS property. Do
not specify both!

rows

Layout Elements424

TEXT

When specifying the height by ROWS then be aware of that the
height depends from the font size used inside the control (that
is defined in the styles sheet definition).

OptionalWidth of control specified by number of characters. Either define
the width by theWIDTH property or by the COLS property. Do
not specify both!

cols

When specifying the width by COLS then be aware of that the
width depends from the font size used inside the control (that
is defined in the styles sheet definition).

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By default

3it is "1" - but you may want to define the control to span over
more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

5OptionalMaximum number of characters that a user may enter. This
property is not depending on the LENGTH property - please

maxlength

10do not get confused by the similar naming. MAXLENGTH has

15
nothing to dowith the optical sizing of the control but onlywith
the number of characters you may input.

20

int-value

OptionalName of adapter property that passes back the maximum
number of characters that a user may enter. Consider to use
MAXLENGTH to define this number in a static way.

maxlengthprop

20OptionalMaximum number of rows.maxrows

50

100

200

500

0

OptionalName of the adapter property that dynamically sets the
maximum number of rows.

maxrowsprop

425Layout Elements

TEXT

5OptionalMaximum number of characters in a row.maxrowlength

10

15

20

int-value

OptionalName of the adapter property that dynamically sets the
maximum number of characters in a row.

maxrowlengthprop

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default it

3is "1" - but youmaywant to define the control to span overmore
than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

OptionalCSS style definition that is directly passed into this control.textareastyle

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to knowwhere direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or
use the TITLETEXTID in order to define a language dependent
literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

Layout Elements426

TEXT

OptionalProperty of adapter that dynamically defines the title of the
control. The title is displayed as tool tip when ther user moves
the mouse onto the control.

titleprop

OptionalName of adapter property that passes back a color value (e.g.
"#FF0000" for red color). The color value is used as background

bgcolorprop

color in the control. - The color of the text color is automatically
chosen dependent from the background color: for light
background colors the text color is black, for dark background
colors the color iswhite. Use FGCOLORPROP to choose the text
color on your own.

OptionalName of adapter property that passes back a color value (e.g.
"#FF0000" for red color). The color value is used as text color in

fgcolorprop

the control. - The background color is automatically chosen
dependent from the text color: for dark text colors the
background color is transparent (default), for light text colors
the color is black. Use BGCOLORPROP to choose both - the text
and background color.

autoOptionalDefinition of the scrollbar's appearance.scroll

scrollYou can define that the scrollbars only are shown if the content
is exceeding the control's area ("auto"). Or scrollbars can be

hiddenshown always ("scroll"). Or scrollbars are never shown - and the
content is cut ("hidden").

Default is "auto".

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to resolve
duplicates.

tabindex

0

1

2

5

10

32767

Binding

(already explained above)displayprop

(already explained above)statusprop

(already explained above)titleprop

(already explained above)bgcolorprop

(already explained above)fgcolorprop

(already explained above)maxlengthprop

(already explained above)maxrowsprop

427Layout Elements

TEXT

(already explained above)maxrowlengthprop

Online Help

OptionalHelp id that is passed to the online help management in case
the user presses F1 on the control.

helpid

(already explained above)title

(already explained above)titletextid

(already explained above)titleprop

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be
later on used within your test tool in order to do the object
identification

testtoolid

Layout Elements428

TEXT

49 TEXTOUT

■ Example .. 430
■ Example: Dynamic Labels ... 430
■ Example: Dynamic Labels with Tooltips .. 431
■ Properties .. 431

429

The TEXTOUT control is used to display plain text. The text is not statically defined (as a label)
but is derived from a property of the adapter class.

Example

The XML layout definition is:

<rowarea name="Textouts">
<itr>

<textout valueprop="factor1" width="100">
</textout>
<textout valueprop="factor1" width="100" textsize="1">
</textout>
<textout valueprop="factor1" width="100" textsize="3">
</textout>
<textout valueprop="factor1" width="100" textsize="6">
</textout>

</itr>
</rowarea>

Example: Dynamic Labels

By using the styleclass property of the TEXTOUT control, you can define text output that looks
like a normal LABEL control. However, instead of a fixed text, it has a text that is dynamically
derived from the adapter logic:

The layout definitions is:

Layout Elements430

TEXTOUT

<rowarea name="Text">
<itr>

<textout valueprop="dynprop" width="120" textoutclass="LABELCellNormal">
</textout>
<field valueprop="dynlabel" width="200">
</field>

</itr>
</rowarea>

In the above example, the left First Name is not a label but a TEXTOUT control, referencing to the
style class LABELCellNormal that normally is a style class belonging to the LABEL control.

Example: Dynamic Labels with Tooltips

By extending the previous example, you can also add tooltips to the dynamic label:

The implementation of the adapter property is:

// property >dynlabel<
String m_dynlabel ="Harald";
public String getDynlabel() { return m_dynlabel; }
public void setDynlabel(String value) { m_dynlabel = value; }

The text of the value that is passed back is encapsulated within an HTML span. The span itself
provides the property title.

Properties

Basic

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case the width
of the control will either be a default width or - in case of

140

160container controls - it will follow the width that is occupied
by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

431Layout Elements

TEXTOUT

200(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct

50%results if the parent element of the control properly defines

100%
awidth this control can reference. If you specify this control
to have a width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

ObligatoryServer side property representation of the control.valueprop

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

(already explained above)width

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
controlwill be renderedwith its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

trueOptionalIf the textual content of the control exceeds the size of the
control then the browser automatically breaks the line and
arranges the text accordingly.

nowrap

false

You can avoid this behaviour by settingNOWRAP to "true".
No line break will be performed by the browser.

1OptionalTheHTML font size of the text. Corresponding to theHTML
definition "1" means "smallest" and "6" means "biggest".

textsize

2

3

4

5

6

Layout Elements432

TEXTOUT

#FF0000OptionalColour of the text. Input a value like "#FF0000".textcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

dateOptionalBy default, the control is managing its content as string. By
explicitly setting a datatype you can define that the control

datatype

floatwill format the data coming from the server: if the field has

int
datatype "date" and the user inputs "010304" then the input
will be translated into "01.03.2004" (or other representation,
dependent on date format settings). long

Please note: the datatype "float" is named a bit misleading
- it represents any decimal format number. The server side

time

timestamprepresentationmay be a float value, but also can be a double
or a BigDecimal property.

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

L

xs:boolean

xs:byte

xs:short

trueOptionalIf the text of the control contains HTML tags then these are
by default interpreted by the browser. Specifiying

straighttext

false

433Layout Elements

TEXTOUT

STRAIGHTTEXT as "true" means that the browser will
directly render the characterswithoutHTML interpretation.

Example: if you want to output the source of an HTML text
then STRAIGHTTEXT should be set to "true".

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimes the size of the

rightcolumn is bigger than the size of the control itself. In this
case the "align" property specifies the position of the control
inside the column. Inmost cases you do not require the align
control to be explicitly defined because the size of the
column around the controls exactly is sized in the sameway
as the contained control.

If youwant to directly control the alignment of text: in most
text based controls there is an explicit property "textalign"
in which you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself
is part of a row (e.g. ITR or TR). Sometimtes the size of the

bottomcolumn is bigger than the size of the control. In this case the
"align" property specify the position of the control inside
the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By

3default it is "1" - but you may want to define the control to
span over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default

3it is "1" - but you may want to define the control to span
over more than one columns.

4
The property only makes sense in table rows that are
snychronizedwithin one container (i.e. TR, STR table rows). 5

50It does not make sense in ITR rows, because these rows are
explicitly not synched.

Layout Elements434

TEXTOUT

int-value

OptionalName of adapter property that passes back a color value
(e.g. "#FF0000" for red color). The color value is used as

bgcolorprop

background color in the control. - The color of the text color
is automatically chosen dependent from the background
color: for light background colors the text color is black, for
dark background colors the color is white. Use
FGCOLORPROP to choose the text color on your own.

OptionalName of adapter property that passes back a color value
(e.g. "#FF0000" for red color). The color value is used as text

fgcolorprop

color in the control. - The background color is automatically
chosen dependent from the text color: for dark text colors
the background color is transparent (default), for light text
colors the color is black. Use BGCOLORPROP to choose
both - the text and background color.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

textoutstyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to knowwhere direct style definitions
are applied. Press right mouse-button in your browser and
select the "View source" or "View frame's source" function.

OptionalCSS style class definition that is directly passed into this
control.

textoutclass

The style class can be either onewhich is part of the "normal"
CIS style sheet files (i.e. the ones that youmaintain with the
style sheet editor) - or it can be one of an other style sheet
file that you may reference via the ADDSTYLESHEET
property of the PAGE tag.

VAR1OptionalSome controls offer the possibility to define style variants.
By this style variant you can address different styles inside

stylevariant

VAR2your style sheet definition file (.css). If not defined "normal"

VAR3
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

VAR4Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them

435Layout Elements

TEXTOUT

via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

Binding

(already explained above)valueprop

OptionalProperty of adapter that dynamically defines the title of the
control. The title is displayed as tool tip when ther user
moves the mouse onto the control.

titleprop

(already explained above)bgcolorprop

(already explained above)fgcolorprop

OptionalName of an adapter property that provides the information
if this control is displayed or not. As consequence you can
control the visibility of the control dynamically.

visibleprop

The server side property needs to be of type "boolean".

invisibleOptionalIf the visibility of the control is determined dynamically by
an adapter property then there are two rendering modes if
the visibility is "false":

invisiblemode

cleared

(1) "invisible": the control is not visible.

(2)"cleared": the control is not visible but it still occupies
space.

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can
be later on usedwithin your test tool in order to do the object
identification

testtoolid

Layout Elements436

TEXTOUT

50 TOGGLE

■ Example .. 438
■ Usage as a Triple Status Control ... 439
■ Properties .. 441

437

The TOGGLE control is used to display and to edit a selection status. In principle, it acts similar
to a CHECKBOX control, but it

■ allows to define different icon images for the "true" and "false" representations;
■ allows being informed when the user presses the CTRL or SHIFT key when clicking the icon. With
this information, you can react on a combination of SHIFT and click in a different way than to a
normal click or a combination of CTRL and click. This is especially useful inside grid processing
when you want to allow the user to do mass selections.

Example

In the following example, the value of a boolean property is displayed by a TOGGLE control and
a FIELD control.

The XML layout definition is:

<rowarea name="Toggle Control">
<itr>

<label name="Toggle" width="100" asplaintext="true">
</label>
<hdist width="5">
</hdist>
<toggle valueprop="toggleValue" flush="server"

trueimage="images/newWithDistance.gif" falseimage="images/remove.gif"
shiftmethod="onToggleShift" controlmethod="onToggleControl">

</toggle>
<hdist width="5">
</hdist>
<field valueprop="toggleValue" displayonly="true">
</field>

</itr>
</rowarea>

The Java adapter code is:

Layout Elements438

TOGGLE

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class CheckBoRadioButtonAdapter
extends Adapter

{
// --
// property access
// --

// property >toggleValue<
boolean m_toggleValue;
public boolean getToggleValue() { return m_toggleValue; }
public void setToggleValue(boolean value) { m_toggleValue = value; }

// --
// public adapter methods
// --

public void onToggleControl()
{

outputMessage(MT_WARNING, "Control was pressed when clicking");
}

public void onToggleShift()
{

outputMessage(MT_WARNING, "Shift was pressed when clicking");
}

}

When the user presses the SHIFT or CTRL key, a corresponding method is called inside the adapter.
In the example, the adapter displays the information which key was pressed in the status bar.

Usage as a Triple Status Control

Have a look at the following example:

439Layout Elements

TOGGLE

The XML layout definition is:

<rowarea name="Triple Toggle">
 <itr>
 <label name="Selected" width="100" asplaintext="true">
 </label>
 <hdist width="5">
 </hdist>
 <toggle valueprop="selected_semi" flush="screen" ↩
trueimage="images/tripletrue.gif"
 falseimage="images/triplefalse.gif" shiftmethod="onToggleShift"
 controlmethod="onToggleControl" partialimage="images/triplesemi.gif">
 </toggle>
 <hdist width="5">
 </hdist>
 <field valueprop="selected_semi" displayonly="true">
 </field>
 </itr>
 <vdist height="20">
 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Not true, not false" method="onPartialSelection_semi">
 </button>
 </itr>
</rowarea>

In the code, each status of the TOGGLE control is represented by a value: "true", "false" and "null".

Layout Elements440

TOGGLE

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class CheckBoRadioButtonAdapter
extends Adapter

{
// property >selected<
String m_selected="true";
public String getSelected() { return m_selected; }
public void setSelected(String value) { m_selected = value; }

public void onPartialSelection()
{

m_selected = null;
}

}

Properties

Basic

ObligatoryName of the adapter property that represents the value of the
control.

valueprop

Must be of type "boolean" or "Boolean".

Typically the TOGGLE control knows one image to represent "true"
and one image to represent "false". If using "Boolean" objects on
server side (not "boolean" values) then you can also use a third
image that is defined within the property PARTIALIMAGE. This
image is shown if the corresponding value is "null". As consequence
you can define a "triple-state-toggle" switching between "true",
"false" and "null".

gifObligatoryImage URL that is shown if the corresponding property value is
"true".

trueimage

jpg

jpeg

gifObligatoryImage URL that is shown if the corresponding property value is
"true".

falseimage

jpg

jpeg

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

441Layout Elements

TOGGLE

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row)may itself define awidth
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row)may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalImage URL that is shown if the corresponding property value is
"null".

partialimage

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but youmaywant to define the control to span over more than one
columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

Layout Elements442

TOGGLE

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

-1OptionalIndex that defines the tab order of the control. Controls are selected
in increasing index order and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

OptionalCSS style class definition that is directly passed into this control.backgroundclass

The style class can be either one which is part of the "normal" CIS
style sheet files (i.e. the ones that youmaintain with the style sheet
editor) - or it can be one of an other style sheet file that you may
reference via the ADDSTYLESHEET property of the PAGE tag.

Binding

(already explained above)valueprop

OptionalName of the adapter property that dynamically passes information
how the field should be rendered and how it should act.

statusprop

OptionalName of adapter method that is invoked if the user clicks on the
toggle control and presses the Shift-key the same time.

shiftmethod

OptionalName of adapter method that is invoked if the user clicks on the
toggle control and presses the Ctrl-key the same time.

controlmethod

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registeredwithin the browser
client - and communicated to the server adapter object when a user
e.g. presses a button. By using the FLUSHproperty you can change
this behaviour.

443Layout Elements

TOGGLE

Setting FLUSH to "server" means that directly after changing the
input a synchronization with the server adapter is triggered. As
consequence you directly can react inside your adapter logic onto
the change of the corresponding value. - Please be aware of that
during the synchronization always all changed properties - also
the ones that were changed before - are transferred to the adapter
object, not only the one that triggered the synchonization.

Setting FLUSH to "screen" means that the changed value is
populated inside the page. You use this option if you have
redundant usage of the same property inside one page and if you
want to pass one changed value to all its representaion directly
after changing the value.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method to be

flushmethod

called when the user updates the content of the control. By doing
so you can distinguish on the server side from which control the
flush of data was triggered.

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be
later on used within your test tool in order to do the object
identification

testtoolid

Layout Elements444

TOGGLE

51 ACTIVEX

■ Example .. 446
■ Properties .. 449

445

This is a “hot topic”: embedding ActiveX controls in pages. Before telling you what the control
does, let us explain why we do it:

Of course, the client integration of ActiveX controls has - from browser or SWT perspective - only
disadvantages:

■ ActiveX controls are not secure: you decide to run one control or not. But do not have a “sandbox”
as you have with JavaScript or with applets. Using an ActiveX control means that this contol -
once running - has native access to your computer, just as any other native program.

■ ActiveX controls are bound to the Microsoft Windows platform.
■ ActiveX controls need to be explicitly installed on the client side - maybe automated in some
way, but still an explicit installation is necessary.

But - and this is why we support them - in some cases, they are a nice way to integrate other soft-
ware which runs out of the scope of the browser.

Example: youmaywant to integrate your user interface with a barcode reader which is connected
to your client via a serial interface. In this case, there is no way to access this barcode reader via
JavaScript. You need to use an ActiveX control (or a signed applet) to connect to the serial device.

There is a simple interface betweenHTML/JavaScript andActiveX, and vice versa. ActiveX controls
can be embedded into anHTML page and it is possible to directly access properties of the ActiveX
control from JavaScript. This interface was used for building the ACTIVEX control that you can
use as an Application Designer control. Calling methods in the ACTIVEX or send/receive events
is not supported.

Example

Have a look at the following screen:

Layout Elements446

ACTIVEX

Within the normal Application Designer controls, you see a calendar control: this calendar control
is an ActiveX control. When choosing theGet Date button, the date of the calendar is displayed
within the field below.

Let us have a look at the XML layout definition:

<rowarea name="ActiveX Control" height="100%">
<itr takefullwidth="true" height="100%">

<activex classid="8E27C92B-1264-101C-8A2F-040224009C02"
progid="MSCAL.Calendar"
getxparams="year;adapterYear;month;adapterMonth;day;adapterDay"
width="100%" height="100%">

</activex>
</itr>
<vdist height="12">
</vdist>
<itr>

447Layout Elements

ACTIVEX

<button name="Get Date" method="onGetDate">
</button>
<hdist width="12">
</hdist>
<field valueprop="date" width="200" datatype="date">
</field>

</itr>
</rowarea>

The ActiveX control links via a classid and a progid to the ActiveX component that is used. It
has a property getxparams: in this property, pairs of properties are listed, each pair being the name
of theActiveX component's property and the one of the adapter property.When using getxparams,
the ActiveX properties are transferred into the adapter properties with every roundtrip (and only
when changed). There is also a setxparams property (not used in the example) that transfers values
into the other direction: from the adapter object into the ActiveX component.

The adapter code is quite simple:

package com.softwareag.cis.test40;

import java.util.Date;
import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.util.CDate;

public class ActiveXCalendarAdapter
extends Adapter

{
CDate m_date = new CDate(new Date());
public CDate getDate() { return m_date; }
public void setDate(CDate value) { m_date = value; }

String m_adapterDay;
public String getAdapterDay() { return m_adapterDay; }
public void setAdapterDay(String value) { m_adapterDay = value; }

String m_adapterMonth;
public String getAdapterMonth() { return m_adapterMonth; }
public void setAdapterMonth(String value) { m_adapterMonth = value; }

String m_selectedDate;
public String getSelectedDate() { return m_selectedDate; }
public void setSelectedDate(String value) { m_selectedDate = value; }

String m_adapterYear;
public String getAdapterYear() { return m_adapterYear; }
public void setAdapterYear(String value) { m_adapterYear = value; }

public void onGetDate()
{

String day = m_adapterDay;
if (day.length() == 1) day = "0" + day;

Layout Elements448

ACTIVEX

String month = m_adapterMonth;
if (month.length() == 1) month = "0" + month;
m_date.setDate(m_adapterYear+month+day);

}
}

The adapter's properties are automatically filled. The onGetDate()method assembles the properties
to form a Application Designer date.

Properties

Basic

OptionalClass id of the ActiveX control. A string in the format
"8E27C92B-1264-101C-8A2F-040224009C02" representing the UUID of the

classid

ActiveX component. TheCLASSID is used inside theHTMLclient to reference
the ActiveX control.

OptionalThe unique program identifier which has been registered for this ActiveX
Control like "Shell.Explorer"

progid

OptionalInit parameters that are used for creating an instance of the ActiveX control.
Values are passed as semicolon separated string:
property;value;property;value etc.

xinitparams

The property is the name of the ActiveX control's property that is initialized
with the corresponding value.

OptionalSame as GETXPARAMS but now the other direction. Adapter properties
that are transferred (on change) into corresponding ActiveX properties with

setxparams

each repsonse. The string format is the same:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.

OptionalSemicolon separated list of which ActiveX control are linked with which
adapter properties. The format is:
activeXProperty;adapterProperty;activeXProperty;adapterProperty etc.

getxparams

With each request send from the browser theActiveX properties are collected
in from the ActiveX control and are transferred (if they have changed) into
the corresponding adapter properties.activex_attr_progid"Program id of the
ActiveX control. E.g. "MSCAL.Calendar" for the Microsoft calendar. The
PROGID is used inside the SWT client to access the ActiveX control.

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

449Layout Elements

ACTIVEX

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of

50%the control properly defines awidth this control can reference. If you specify

100%
this control to have awidth of 50% then the parent element (e.g. an ITR-row)
may itself define a width of "100%". If the parent element does not specify a
width then the rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will be
rendered with its default height. If the control is a container control

250(containing) other controls then the height of the control will follow the
height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of 400

50%the control properly defines a height this control can reference. If you specify
this control to have a height of 50% then the parent element (e.g. an ITR-row)

100%may itself define a height of "100%". If the parent element does not specify
a width then the rendering result may not represent what you expect.

OptionalInidicates that the ActiveX component is reloadedwith every repsonse from
the server that changed data of the ActiveX component.

reloadprop

trueOptionalSet to false if setting the parameters in your ActiveX does not work using
the html param tag. Normally you don't have to set this attribute.

useparamtag

false

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Layout Elements450

ACTIVEX

52 GOOGLEMAP2

■ Before You Start .. 452
■ Example .. 453
■ Typical Problems ... 459
■ Properties .. 460

451

The GOOGLEMAP2 control is used to provide for Google Maps support within Application De-
signer pages. The control internally makes use of the GoogleMaps API. In order to use the control
on your site, you need to sign up for a Google Maps API key at https://de-
velopers.google.com/maps/signup. Make sure that you agree with the Google Maps APIs Terms
of Service (https://developers.google.com/maps/terms).

Before You Start

In order to use the GOOGLEMAP2 control, you need to sign up for a Google Maps API key. A
key is valid for a single “directory” on your web server only, i.e. you sign up for a URL like ht-
tp://www.mysite.com/mywebapp/myproject. With a standard installation of Application Designer on
localhost, you may sign up for the URL http://localhost:8080/mywebapp/myproject. Typically, you
develop your Application Designer web application not on the site on which you run it later in
productivemode. Therefore, youmay sign up for two different sites (development and production
site).

Required Steps

1. Choose the project directory that keeps the layouts using the GOOGLEMAP2 control.

2. Sign up for aGoogleMapsAPI key at https://developers.google.com/maps/signup for this project
directory (e.g. http://localhost:8080/mywebapp/myproject).

3. Create the API key page. Store the key page in the registered project directory. You are free in
naming the file (the file extension must be "html"). The GOOGLEMAP2 control embeds your
API key as a subpage. The subpage must have the following minimum structure:

<html>
 <head>
 <script src=" ↩
http://maps.google.com/maps?file=api&v=2.x&key=YOUR_API_KEY"></script>
 <script src="../HTMLBasedGUI/general/googlemapsscript.js"></script>
 </head>
 <body>
 <div id="map" style="position:absolute; top0; left:0;"></div>
 </body>
</html>

You see that the page includes two JavaScript libraries. The first line refers to the Google Maps
API. Replace the placeholder "YOUR_API_KEY" with your Google Maps API key. With the
second line, the page includes the control's scripting (calls from Application Designer to the
Google Maps). The page body is quite simple: it contains a single div tag with the ID "map".
This div is used as an anchor to insert Google Maps controls dynamically.

Layout Elements452

GOOGLEMAP2

https://developers.google.com/maps/signup
https://developers.google.com/maps/signup
https://developers.google.com/maps/terms
https://developers.google.com/maps/signup

Example

■ General Usage
■ Marker Management

General Usage

The map options are taken from the property infoprop. On this object, you may set the address
(or latitude and longitude), the zoom level and the map size as well as the map type.

Note: The usage of address or longitude/latitude is mutually exclusive.

The above map is controlled by the following adapter code:

public class GoogleMap2Adapter extends Adapter
{

// property >gm2Info<
GOOGLEMAP2Info m_gm2Info = new GOOGLEMAP2Info(

GOOGLEMAP2Info.NO_MAPTYPE_CONTROL,
GOOGLEMAP2Info.SMALL_MAP);

public GOOGLEMAP2Info getGm2Info(){ return m_gm2Info; }
public void setGm2Info(GOOGLEMAP2Info value){ m_gm2Info = value; }
// Marker items

453Layout Elements

GOOGLEMAP2

private class HotelMarker extends GOOGLEMAP2Item
{

// [see section "Marker Management"]
....

}

private Hashtable hotels = new Hashtable();

/** initialisation - called when creating this instance */
public void init()
{

m_gm2Info.setAddress("Darmstadt, Germany");
m_gm2Info.setZoomlevel("13");
setupHotels();

}

// property >hotelSelection<
String m_hotelSelection = "";
public String getHotelSelection(){ return m_hotelSelection; }
public void setHotelSelection(String value){ m_hotelSelection = value; }

// property >validHotSel<
COMBODYNValidValues m_validHotSel = new COMBODYNValidValues();
public COMBODYNValidValues getValidHotSel(){ return m_validHotSel; }

/** */
public void onSelect()
{

HotelMarker hotel = (HotelMarker) hotels.get(m_hotelSelection);
m_gm2Info.centerMarker(hotel);

}

// property >hotelDesc<
String m_hotelDesc = "";
public String getHotelDesc(){ return m_hotelDesc; }
public void setHotelDesc(String value){ m_hotelDesc = value; }

// property >hotelName<
String m_hotelName = "";
public String getHotelName(){ return m_hotelName; }
public void setHotelName(String value) { m_hotelName = value; }

/** */
public void onPlaceOwn()
{

if (m_hotelName.equals(""))
{
outputMessage(MT_ERROR, "Please specify a name.");
return;

}

HotelMarker MyHotel = new HotelMarker(m_hotelName);

Layout Elements454

GOOGLEMAP2

MyHotel.setInfoText("" + m_hotelName + "\n" + m_hotelDesc);

m_gm2Info.addMarkerToLastSelectedPoint(MyHotel);
}

/** */
public void onRemove()
{

m_gm2Info.removeLastSelectedMarker();
}

/** */
public void onRemoveAll()
{

m_gm2Info.clear();
hotels.clear();
m_validHotSel.clear();
m_hotelSelection = "";

}

/** */
public void onShowAll()
{

onRemoveAll();
setupHotels();

}

private void setupHotels()
{

setupHotel("Bestwestern, Parkhaus-Hotel",
"Grafenstraße 31, 64283 Darmstadt");

setupHotel("
// deactivate last added marker
m_gm2Info.setSelectedMarker(null);

}

private void setupHotel(String name, String address)
{

HotelMarker hotel = new HotelMarker(name, address);
hotel.setInfoText("" + name + "\n" + address.replaceAll(", ", "\n"));
m_gm2Info.addMarker(hotel, false);
if (name.length() > 23)
name = name.substring(0, 23) + "...";

m_validHotSel.addValidValue(String.valueOf(hotel.getId()), name);
hotels.put(String.valueOf(String.valueOf(hotel.getId())), hotel);

}

// property >naviCity<
String m_naviCity;
public String getNaviCity(){ return m_naviCity; }
public void setNaviCity(String value){ m_naviCity = value; }

455Layout Elements

GOOGLEMAP2

// property >naviCountry<
String m_naviCountry;
public String getNaviCountry(){ return m_naviCountry; }
public void setNaviCountry(String value){ m_naviCountry = value; }

// property >naviStreet<
String m_naviStreet;
public String getNaviStreet(){ return m_naviStreet; }
public void setNaviStreet(String value){ m_naviStreet = value; }

/** */
public void onNavigate()
{

String address = "";

if (!m_naviStreet.equals(""))
{
address += m_naviStreet + ", ";

}
if (!m_naviCity.equals(""))
{
address += m_naviCity + ", ";

}
if (!m_naviCountry.equals(""))
{
address += m_naviCountry;

}

m_gm2Info.setAddress(address);
}

....
}

The above map is initialized with the instantiation of the GOOGLEMAP2Info object and just a few
simple lines of code in the init()method.

The constructor of the GOOGLEMAP2Info class takes the following arguments:

■ Map Type Control Setting
Using the constant "MAPTYPE_CONTROL" (instead of "NO_MAPTYPE_CONTROL" which is
used in the above example) would result in three buttons in the upper right corner of the map,
which enable the user to change the map view between "Map", "Satellite" and "Hybrid" mode.

Note: The range of zoom levels may differ for different map types in the same region.

Layout Elements456

GOOGLEMAP2

■ Map Size Setting
For the above map the map size property is set to the constant "SMALL_MAP" which results in
the four navigation arrows and the zoom buttons in the upper left corner. The constant
"LARGE_MAP" would alternatively provide more precise navigation controls allocating more
of the map area in exchange.

The GOOGLEMAP2Info class provides for a second constructor without any arguments. Using this
constructor is equal to the usage of the described constructor with the constants "NO_MAP-
TYPE_CONTROL" and "SMALL_MAP".

In the init()method, the map view is positioned via the setAddressmethod. The same result
would be achieved using the setLatLngmethod with the argument "49,879046" (for latitude) and
"8,670112" (for longitude). It is obligatory to set the map view using one of these variants or using
a marker (seeMarker Management for further information). Otherwise the map will not be dis-
played.

The range of values for the zoomlevel property may vary according to the map region. The value
"4" is used by default if zoomlevel is not set explicitly.

The GOOGLEMAP2 control listens to changes on the address (or latitude/longitude) and the
zoomlevel property.

Marker Management

To use the marker management of the GOOGLEMAP2 control, you need an implementation of
the GOOGLEMAP2Item class. For the above example, the following code was used:

private class HotelMarker extends GOOGLEMAP2Item
{

private String m_name;

public HotelMarker(String name)
{

super(true);
m_name = name;

}

public HotelMarker(String name, String address)
{

super(address, true);
m_name = name;

}

public void reactOnSelect()
{

outputMessage(MT_SUCCESS, "Hotel '" + m_name + "' selected.");
}

public void reactOnDrag()

457Layout Elements

GOOGLEMAP2

{
outputMessage(MT_SUCCESS, "Hotel '" + m_name + "' has moved.");

}

public void reactOnDeactivate()
{

outputMessage(MT_SUCCESS, "Hotel '" + m_name + "' deselected.");
}

}

Themethods reactOnSelect(), reactOnDrag() and reactOnDeactivate()have to be implemented
in order to define the behavior for the following events:

■ Select
The user clicks on the corresponding marker on the map.

If the user clicks the button, for example, five times, this event is fired five times, even if the
button remains active.

■ Drag
The user drags the marker to a different position on the map and drops it.

It is possible to switch dragging on and off for each marker using the marker's
setDraggable(boolean)method. By default, all markers are draggable.

■ Deactivate
The user clicks a different marker or somewhere else on the map when the marker is active.

A marker is considered active from selection until deactivation.

Markers may be added to specific positions or to the position the user has clicked last on the map,
removed, activated, deactivated or centered using the infoprop property. As mentioned above in
the sectionGeneral Usage, a marker may be used to set the map's view if it is told to center on the
marker.

Each marker may have an infoText that is shown within the pop-up when the marker is selected
by the user. Changes to this text will be updated on the client side. If no text is set, a pop-up will
not appear. Since the infoText is treated as HTML code, it may be formatted like HTML. Only
breaks will automatically be replaced.

The GOOGLEMAP2 control listens to changes on markers, address (or latitude/longitude) and
infoText property.

Layout Elements458

GOOGLEMAP2

Typical Problems

■ Google Map API Key
■ Map Remains Gray

Google Map API Key

Your Google Maps API key is bound to a directory on a certain web server (i.e. you sign up for
theURL http://mycomputer.mydomain.com:8080/mywebapp/myproject). If you use your key for another
URL, Google shows an error message:

Reasons that cause the error:

■ You have registered your computer using the computer's name (e.g. http://mycomputer...). But
the Application Designer development workplace is started using the URL http://localhost....

Solution: start the Application Designer workplace with http://mycomputer....
■ The registered directory (e.g. .../mywebapp/myproject) does not match your installation (either a
mistake in writing when signing up for the key or you have renamed the web application or
project after registration).

Solution: rename your web application or project to match the registered names. Or sign up for
a new key and insert the new key into the API key page. In the latter case, delete the content of
the browser's cache. Otherwise, the browser will use the former API key page (and thus the old
key).

Map Remains Gray

If you use longitude and latitude for placing the marker on the map, their values may exceed the
map top (or bottom) border. If you are able to find the map by scrolling down (or up), then this
is the case. Check the values for longitude and latitude in this case.

459Layout Elements

GOOGLEMAP2

Properties

Basic

ObligatoryName of adapter property representing the control on server side.infoprop

The property must be of type GOOGLEMAPInfo. Read further
information inside the Java API Documentation.

ObligatoryName of the Maps API Key page. Example:
mygooglemapsapikey.html. Keep this file within the project

apikeypagename

directory (directory within the CIS HTML pages are kept). The
GOOGLEMAP-control expects this file within certain Javascript
includes and content. Have look into chapter "GoogleMap - Before
You Start" within the Developers Guide

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row)may itself define awidth
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizingwill only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%

100%then the parent element (e.g. an ITR-row)may itself define a height

Layout Elements460

GOOGLEMAP2

of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

OptionalCSS style definition that is directly passed into this control.pagestyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to know where direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

461Layout Elements

GOOGLEMAP2

462

53 HELPICON

For detailed information on the HELPICON control, see Online Help Management.

463

464

54 LINECHART

■ Example .. 467
■ Properties .. 468

465

The LINECHART control allows you to build line charts. This control requires that Adobe Flash
Player is installed.

For each line chart, you can define a time range and render multiple series within this time range.
For each series, you specify name, measures and the values you would like to see for the series.

The following topics are covered below:

Layout Elements466

LINECHART

Example

The above example shows two series in the time range of Februar 9th through March 9th.

Note: The 80_linechart example in the cisdemosproject contains a completeworking example
including layout and source code.

The XML layout definition of above example is:

<page model="com.softwareag.cis.test80.LINECHARTAdapter">
<titlebar name="LINECHART Control">
</titlebar>
<pagebody takefullheight="true">

<rowarea name="Demo" height="100%">
<itr takefullwidth="true" height="100%">

<linechart linechartinfoprop="lineChartInfo" width="100%" height="350px">
</linechart>

</itr>
</rowarea>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

In the underlying Java adapter, the LINECHART control is represented by an instance of the class
com.softwareag.cis.server.util.LINECHARTInfo. See also the corresponding Javadocumentation.

467Layout Elements

LINECHART

public class LINECHARTAdapter
extends Adapter

{

// property >lineChartInfo<
LINECHARTInfo m_lineChartInfo=new LINECHARTInfo();

public LINECHARTInfo getLineChartInfo()
{

return m_lineChartInfo;
}
public void setLineChartInfo(LINECHARTInfo value)
{

m_lineChartInfo = value;
}

}

Properties

Basic

ObligatoryName of adapter property that represents the line chart on server
side. The property must be of type "LINECHARTInfo".

linechartinfoprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container

250control (containing) other controls then the height of the control
will follow the height of its content.

300

Layout Elements468

LINECHART

(B) Pixel sizing: just input a number value (e.g. "20"). 250

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

400

50%the parent element of the control properly defines a height this

100%
control can reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row)may itself define
a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

leftOptionalHorizontal alignment of control in its column.align

centerEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimes the size of the column is

rightbigger than the size of the control itself. In this case the "align"
property specifies the position of the control inside the column.
In most cases you do not require the align control to be explicitly
defined because the size of the column around the controls exactly
is sized in the same way as the contained control.

If you want to directly control the alignment of text: in most text
based controls there is an explicit property "textalign" in which
you align the control's contained text.

topOptionalVertical alignment of control in its column.valign

middleEach control is "packaged" into a column. The column itself is part
of a row (e.g. ITR or TR). Sometimtes the size of the column is

bottombigger than the size of the control. In this case the "align" property
specify the position of the control inside the column.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then youmay sometimes want to control
the number of columns your control occupies. By default it is "1"

3- but you may want to define the control to span over more than
one columns.

4
The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then youmay sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4

469Layout Elements

LINECHART

The property onlymakes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does not make
sense in ITR rows, because these rows are explicitly not synched.

5

50

int-value

Layout Elements470

LINECHART

55 MACROMEDIAFLASH

■ Example .. 472
■ Creating the Action Script .. 473
■ Properties .. 474

471

The MACROMEDIAFLASH control defines an area in which a Macromedia Flash movie is run.
It provides for a client-side API that is to be used within the movie's action script. With that, the
application (page adapter) can react on clicks that are captured by the movie's action script.

Example

The XML layout definition is:

<pagebody>
<itr takefullwidth="true" height="100%">

<macromediaflash valueprop="flashInfo" width="100%" height="100%">
</macromediaflash>

</itr>
</pagebody>

The Java code of the adapter is:

import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.MACROMEDIAFLASHInfo;
import com.softwareag.cis.util.*;

// This class is a generated one.

public class MacroMediaFlashAdapter
extends Adapter

{
public class MyMACROMEDIAFLASHInfo extends MACROMEDIAFLASHInfo
{

MyMACROMEDIAFLASHInfo(Adapter owner)

Layout Elements472

MACROMEDIAFLASH

{
super(owner);

}

public void reactOnFlushEvent(String flushInfo)
{

outputMessage(MT_SUCCESS, flushInfo);
}

}

// property >flashInfo<
MyMACROMEDIAFLASHInfo m_flashInfo = new MyMACROMEDIAFLASHInfo(this);
public MyMACROMEDIAFLASHInfo getFlashInfo() { return m_flashInfo; }

/** */
public void init()
{

// content byte array contains the flash movie
byte[] content = ...;
String key = "FlashMovie_" + UniqueIdMgmt.createPseudoGUID() + ".swf";
SessionBuffer sb = findCISSessionContext().getSessionBuffer();
String url = sb.addDocument(key, content, "application/x-shockwave-flash");
m_flashInfo.showDocument(url);

}
}

Creating the Action Script

TheMACROMEDIAFLASHcontrol provides for a client-sideAPI to be invokedwithin themovie's
action script. When creating the flash movie on the fly (for example, using Flagstone API), use the
method generateActionScript of the MACROMEDIAFLASHInfo class as shown below:

String actionScript = m_flashInfo.generateActionScript("This string is flushed to ↩
server on click");

When creating the movie in a static way (for example, using Adobe's Flash Editor), the action
script to be included looks like this:

FSGetUrl("javascript:(setPropertyValue('flashInfo.flushInfo', 'This string is flushed ↩
to server on click');
 invokeMethodInModel('flashInfo.reactOnFlushEvent');");

where flashInfo is the property name of the page adapter returning the MyMACROMEDIAFLASHInfo
object.

473Layout Elements

MACROMEDIAFLASH

Properties

Basic

OptionalServer side property representation of the control.valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

50%control properly defines a width this control can reference. If you specify this

100%control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) Youdo not define a height at all. As consequence the controlwill be rendered
with its default height. If the control is a container control (containing) other
controls then the height of the control will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the
control properly defines a height this control can reference. If you specify this
control to have a height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Layout Elements474

MACROMEDIAFLASH

56 NETMEETING

■ Example .. 476
■ Properties .. 477

475

The NETMEETING control allows you to start NetMeeting sessions within your Application De-
signer pages.

Example

The XML layout definition is:

<pagebody>
<itr>

<netmeeting calltoprop="callto" modeprop="modep" width="300">
</netmeeting>

</itr>
</pagebody>

The Java code of the adapter is:

public class NetMeetingTestAdapter extends Adapter
{

// property >callto<
String m_callto; // netmeeting directory server /emailAdr
public String getCallto() { return m_callto; }
public void setCallto(String value) { m_callto = value; }

// property >modep<
String m_modep;
// FULL, PREVIEWONLY, PREVIEWNOPAUSE,
// REMOTEONLY, REMOTENOPAUSE, DATAONLY
public String getModep() { return m_modep; }

Layout Elements476

NETMEETING

public void setModep(String value) { m_modep = value; }

/** initialisation - called when creating this instance*/
public void init()
{
m_callto = "netmeeting.ils.server/contact@netmeeting.com";
m_modep="PREVIEWONLY";

}

}

Properties

Basic

OptionalHas to contain the contact data of 'contact' that should be called.calltoprop

The data has to have the following semantics.

ILS Server/email adress e.g. ils.netmeeting.de/contact@testmail.com

OptionalHolds the mode of the control.modeprop

Possible are:

FULL, PREVIEWONLY, PREVIEWNOPAUSE, REMOTEONLY,
REMOTENOPAUSE, DATAONLY

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

50%control properly defines a width this control can reference. If you specify this

100%control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

477Layout Elements

NETMEETING

478

57 REPORT

For detailed information on the REPORT control, seeWriting Reports in the Special Development
Topics.

479

480

58 ROWCHARTAREA

■ Example .. 482
■ Properties .. 496

481

The ROWCHARTAREA control allows you to arrange and visualize objects.

Example

In this example, we will use the ROWCHARTAREA control to develop a very simple “FlowChart
Modeller” step-by-step.

This is a large example with lots of Java code. However, you will notice that a large amount of the
code is not unknown to you. Detailed explanations are provided in the sample code. Therefore,
you should also take close a look at the comment sections in the sample code.

This example consists of the following steps:

■ Step 1 - Creating a Simple ROWCHARTAREA with Icons
■ Step 2 - Adding Labels to the Items
■ Step 3 - Drawing Connection Lines
■ Step 4 - Showing and Hiding the Connection Spots
■ Step 5 - Adding Context Menus

Step 1 - Creating a Simple ROWCHARTAREA with Icons

We will first design the following layout which contains a ROWCHARTAREA control in which
you can drop and arrange different icons.

The XML layout definition is:

Layout Elements482

ROWCHARTAREA

<pagebody takefullheight="true">
<itr height="100%">

<coltable0 width="110" takefullheight="true">
<rowarea height="100%">

<vdist></vdist>
<itr>
<dropicon image="../cisdemos/images/flowchart_01.jpg"

draginfo="flow01">
</dropicon>

</itr>
<itr>
<dropicon image="../cisdemos/images/flowchart_02.jpg"

draginfo="flow02">
</dropicon>

</itr>
...
// Some more ‘Drop Icons’. Define them in the same way as above
...

<vdist height="100%"></vdist>
</rowarea>

</coltable0>
<coltable0 width="100%" takefullheight="true">
<rowarea height="100%">

<rowchartarea infoprop="chartareaprop" width="100%" height="100%"
usegridlines="true" gridlinexdistance="50" gridlineydistance="50">
</rowchartarea>

</rowarea>
</coltable0>

</itr>
</pagebody>

The Java code of the adapter is:

public class RowChartAreaSimpleDemoAdapter
extends Adapter
{

/**
* Name of the adapter property
* that represents the control on server side.
* */
public class RowChartArea extends CHARTAREAInfo
{

public RowChartArea() {}

/**
* This overwritten method is needed.
* It takes control of what happens with
* the dropped objects.
* */
public void reactOnDrop(String dropInfo, int xpos, int ypos)
{

// On drop, a new FlowChartItem is generated

483Layout Elements

ROWCHARTAREA

FlowChartItem fci = drawFlowChartItem(dropInfo, xpos, ypos);
// and added to this RowChartArea property
addChartAreaItem(fci);

}
}
/**
* This class represents the dropped and visualized items
* inside the ROWCHARTAREA control.
* */
public class FlowChartItem extends CHARTAREAItem
{

// ID for the item type (flowchart_01, flowchart_02, ...).
int m_itemId;

// Property for labeling the items.
CHARTAREAItemText m_txtout = null;
public CHARTAREAItemText getTxtout() { return m_txtout; }
public void setTxtout(CHARTAREAItemText txtout)
{ this.m_txtout = txtout;}

// This rectangle is needed to show which item is selected
CHARTAREAItemRect m_rect = null;
public CHARTAREAItemRect getRect() { return m_rect; }
public void setRect(CHARTAREAItemRect rect) { this.m_rect = rect; }

public FlowChartItem(int x, int y, int width,
int height, String dragIcon, int itemId)

{
super(x, y, width, height, dragIcon);
m_itemId = itemId;

}

/**
* reactOnSelection() and reactOnContextMenuRequest()
* have to be implemented
* We will have a closer look at these methods later.
* */

/** take care of ContextMenu for the FlowChartItems*/
public void reactOnContextMenuRequest()
{ }

/** take care of what happens if this item is selected */
public void reactOnSelection(boolean shiftKey, boolean ctrlKey)
{
// save the info which item is last selected
m_lastSelected = this;

}
}

/**
* generate a FlowChartItem

Layout Elements484

ROWCHARTAREA

* */
private FlowChartItem drawFlowChartItem(String dropInfo, int xpos,

int ypos)
{

FlowChartItem fci = null;
String img = null;

int itemID = new Integer(dropInfo.substring(dropInfo.length()-1,
dropInfo.length())).intValue();

switch(itemID)
{
case 1:

img = "images/flowchart_01.jpg";
break;

case 2:
img = "images/flowchart_02.jpg";
break;

...
// some more icons if needed
...
}

// create a new FlowChartItem
fci = new FlowChartItem(xpos, ypos, 120, 80,"../cisdemos/"+img,

itemID);

// if the object was successfully created, add an image
if (fci != null)
fci.addImage(5,5, 1,110,70, img);

return fci;
}

/** Members */
CHARTAREAInfo m_chartareaprop = new RowChartArea();
public CHARTAREAInfo getChartareaprop() { return m_chartareaprop; }
public void setChartareaprop(CHARTAREAInfo value)
{ m_chartareaprop = value; }

// property that stores the information which item is the last selected
FlowChartItem m_lastSelected = null;

/** initialisation - called when creating this instance*/
public void init()
{ }

Let us have a look at what we have done so far. In the following example, you can see our layout
with some dropped icons.

485Layout Elements

ROWCHARTAREA

Until now, this example only allows you to drag-and-drop the FlowChartItem icons into the
ROWCHARTAREA control where you can move the icons.

Step 2 - Adding Labels to the Items

Wewill now add a label to each FlowChartItem, andwewill add a visualization for the itemwhich
is currently selected. Therefore, we need to add some more XML and Java code.

First, we will add the following to the XML layout definition:

<itr align="left">
<label name="Selected Item:" width="100" asplaintext="true"></label>
<field valueprop="selectedItem" width="200" displayonly="true"

noborder="true"></field>
</itr>
<vdist></vdist>
<itr align="left">

<label name="Infotext:" width="100" invisiblemode="cleared"
asplaintext="true"></label>

<field valueprop="infotext" width="200" statusprop="fstatus"
maxlength="10" noborder="true"></field>

<hdist></hdist>
<button name="Set Info" method="onSetInfo" width="75"></button>

</itr>

The new lines look as follows:

Layout Elements486

ROWCHARTAREA

The Java code of the adapter is (new code is indicated in bold):

public class FlowChartItem extends CHARTAREAItem
{

...
/**
* take care of what happens if this item is selected
* */
public void reactOnSelection(boolean shiftKey, boolean ctrlKey)
{

// ==> new
// bring the infotext of this item to the screen
m_infotext = m_txtout.getText();
// and show the itemId
m_selectedItem = "FlowChartItem "+m_itemId;
// set the m_infotext field status to edit
m_fstatus = CS_EDIT;
// call prvate method setSelected()
setSelected(this);

// <== new
}

}
...

private FlowChartItem drawFlowChartItem(String dropInfo, int xpos,
int ypos)

{
...

// if the object was successfully created add an image
if (fci != null)
{
fci.addImage(5,5, 1,110,70, img);

// ==> new
// create and add a rectangle to the item
// this is for the visualization of the selected item
CHARTAREAItemRect rect = fci.addRect(3, 3, -1, 114 , 74, 0,"", "");
fci.setRect(rect);

// create and add an empty textfield to the item
CHARTAREAItemText outputText =

fci.addText(25, 30, 2, 85, 15, "","","");
fci.setTxtout(outputText);

// <== new
return fci;

}

/** Members */
...

487Layout Elements

ROWCHARTAREA

// ==> new
// property >infotext<
String m_infotext;
public String getInfotext() { return m_infotext; }
public void setInfotext(String value) { m_infotext = value; }

// property >fstatus<
String m_fstatus= CS_DISPLAY;
public String getFstatus() { return m_fstatus; }
public void setFstatus(String value) { m_fstatus = value; }

// property >selectedItem<
String m_selectedItem;
public String getSelectedItem() { return m_selectedItem; }
public void setSelectedItem(String value) { m_selectedItem = value; }

// <== new

...

// ==> new
/**
* Sets the color of the rectangle around the selected item
* to #0000FF and stores the information which item is the
* last selected one in m_lastSelected.
* setSelected(null) resets the color of the selected item to ""
**/
private void setSelected(FlowChartItem item)
{

if(m_lastSelected != null && m_lastSelected != item)
m_lastSelected.getRect().setBackgroundColor("");

if(item != null)
{
item.getRect().setBackgroundColor("#0000FF");
m_lastSelected = item;

}
}
// <== new

...

// ==> new
/**
* public methods that sets the infotext
* and the tooltip to the last selected item.
* The method is called if the button 'Set Info' is clicked.
* */
public void onSetInfo()
{

if(m_lastSelected == null)
return;

if(!m_infotext.equalsIgnoreCase(m_lastSelected.getTxtout().getText())&&
m_infotext != null)

Layout Elements488

ROWCHARTAREA

{
// set the infotext of the item
m_lastSelected.getTxtout().setText(m_infotext);
// and the tooltip
m_lastSelected.setTooltip(m_infotext);

}
}
// <== new

...

Now, we have a label for each FlowChartItem and a visualization for the selected item.

Step 3 - Drawing Connection Lines

We will now draw lines between the single FlowChartItem icons.

For this purpose, changes to the XML layout are not required. However, we have to add some
more Java code:

489Layout Elements

ROWCHARTAREA

// ==> new
/**
* a class for the small spots where the connection lines
* are drawn from/to
* */
public class ConnectionSpot extends CHARTAREASpot
{

public ConnectionSpot(int x, int y, int z, int orientation)
{
super(x, y, z, orientation);

}
/** This method has to be overwritten.
* It generates the lines between the items.
*/
public CHARTAREAConnectionLine buildNewConnectionLine

(CHARTAREASpot fromSpot, CHARTAREASpot toSpot)
{

//Create a new line
CHARTAREAConnectionLine line = new

CHARTAREAConnectionLine(fromSpot,toSpot);
// set line style
line.setToSpotStyle(CHARTAREAConnectionLine.LINE_STYLE_ARROW);
line.setLineColor("000000");
line.setZIndex(-1);
return line;

}
}
// <== new

...
private FlowChartItem drawFlowChartItem(String dropInfo, int xpos,

int ypos)
{
...

// if the object was successfully created ...
if (fci != null)
{
...

// ==> new
/**
* add the connection spots
* each items gets 4
* north, south, east and west
* */
fci.addHotspot(new ConnectionSpot(55,0,3,CHARTAREASpot.O_NORTH));
fci.addHotspot(new ConnectionSpot(55,70,3,CHARTAREASpot.O_SOUTH));
fci.addHotspot(new ConnectionSpot(110,35,3,CHARTAREASpot.O_EAST));
fci.addHotspot(new ConnectionSpot(0,35,3,CHARTAREASpot.O_WEST));

// <== new
}

Now, each FlowChartItem has connection spots and it is thus possible to connect the items with
a line.

Layout Elements490

ROWCHARTAREA

Step 4 - Showing and Hiding the Connection Spots

We will now add buttons for showing and hiding the connection spots to the layout.

This is the corresponding XML layout definition:

<hdist width="18"></hdist>
<button name="Hide Spots" method="onHideSpots" width="100"></button>
<hdist></hdist>
<button name="Show Spots" method="onShowSpots" width="100"></button>

The Java code of the adapter is:

/** Members */
...

// ==> new
// property that stores the information whether the spots are (in)visible private ↩
boolean m_hotSpotVisible = true;
 // <== new

...

// ==> new
/** Makes the 'Connection Spots' invisible */
public void onHideSpots()
{

// save the information whether the spots are visible ore not
m_hotSpotVisible = false;
// make the spots invisible
m_chartareaprop.setAllHotspotsVisible(m_hotSpotVisible);
// no item selected => no rectangle visible
setSelected(null);

}
/** Makes the 'Connection Spots' visible */
public void onShowSpots()
{

// save the information whether the spots are visible ore not
m_hotSpotVisible = true;
// Make the spots visible
m_chartareaprop.setAllHotspotsVisible(m_hotSpotVisible);

491Layout Elements

ROWCHARTAREA

}
// <== new

Step 5 - Adding Context Menus

Thewill nowadd three different contentmenus,where each contextmenuhas its own functionality:

■ A context menu for the FlowChartItem icons:

■ A context menu for the lines:

■ A context menu for the ROWCHARTAREA:

The Java code for the context menus is:

/** Members */
// ==> new
FlowChartItem m_itemWithContext = null;
CHARTAREAConnectionLine m_lineWithContext = null;

// three properties for the different contextmenus
TREECollection m_contextMenuLine = new TREECollection();
TREECollection m_contextMenuItem = new TREECollection();
TREECollection m_contextMenuArea = new TREECollection();

Layout Elements492

ROWCHARTAREA

/** initialisation - called when creating this instance*/
public void init()
{

// build the contextmenus in the init method
buildContextMenus();

}
// <== new

...

// ==> new
/** build the contextmenus */
private void buildContextMenus()
{
LineContextMenuItem node;

// contextmenu items for the area
node = new LineContextMenuItem("Add FLOW_01", 1);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem("Add FLOW_02", 2);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem("Add FLOW_03", 3);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem("Add FLOW_04", 4);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem("Add FLOW_05", 5);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem(MENUNODEInfo.TYPE_SEPARATOR);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem("Show Spots", 12);
m_contextMenuArea.addTopNode(node, true);
node = new LineContextMenuItem("Hide Spots", 13);
m_contextMenuArea.addTopNode(node, true);

// contextmenu items for the FlowChartItems
node = new LineContextMenuItem("Delete Item", 11);
m_contextMenuItem.addTopNode(node, true);
node = new LineContextMenuItem(MENUNODEInfo.TYPE_SEPARATOR);
m_contextMenuItem.addTopNode(node, true);
node = new LineContextMenuItem("Show Spots", 12);
m_contextMenuItem.addTopNode(node, true);
node = new LineContextMenuItem("Hide Spots", 13);
m_contextMenuItem.addTopNode(node, true);

// contextmenu for the lines
node = new LineContextMenuItem("Delete Line", 21);
m_contextMenuLine.addTopNode(node, true);

}
/**
* The class for the contextmenu items
* */

493Layout Elements

ROWCHARTAREA

public class LineContextMenuItem extends MENUNODEInfo
{
/** keeps the information what action should be called in the
* reactOnContextMenuSelect() method... */

int m_action;

public LineContextMenuItem(String text)
{

super(text);
m_action = -1;

}

public LineContextMenuItem(String text, int action)
{

super(text);
m_action = action;

}

public LineContextMenuItem(String text, String image, int action)
{

super(text, image);
m_action = action;

}

public void reactOnSelect()
{

reactOnContextMenuSelect(m_action);
}

}

/**
* React on a click in the contextmenu.
* depending on the m_action content of the clicked item
* there are different 'reactions'.
*/
public void reactOnContextMenuSelect(int action)
{

switch(action)
{
// new FlowChartItem type 01 to added
case 1:

m_chartareaprop.reactOnDrop("flow01",
m_chartareaprop.getMouseDownX(),m_chartareaprop.getMouseDownY());

break;
// new FlowChartItem type 02 to added
case 2:

m_chartareaprop.reactOnDrop("flow02",
m_chartareaprop.getMouseDownX(),m_chartareaprop.getMouseDownY());

break;
...
// one reaction for each possible ‘FlowChartItem’
...

Layout Elements494

ROWCHARTAREA

// delete the selected 'FlowChartItem
case 11:
m_itemWithContext.removeAllConnections();
m_chartareaprop.removeChartAreaItem(m_itemWithContext);
m_itemWithContext = null;
setSelected(null);
m_selectedItem = "";
m_infotext = "";
m_fstatus = "DISPLAY";
break;
// Make 'Connection Spots' visible
case 12:

onShowSpots();
break;
// Make 'Connection Spots' invisible
case 13:

onHideSpots();
break;
// delete selected line
case 21:

m_lineWithContext.removeLine();
m_lineWithContext = null;

break;
}

}
// <== new

...
public class RowChartArea extends CHARTAREAInfo
{

...
/** reactOnContextMenu for area */
public void reactOnContextMenuRequest()
{

// ==> new
// open the context menu for the area
showPopupMenu(m_contextMenuArea);

// <== new
}

// ==> new
/** reactOnContextMenu for line */
public void
reactOnContextMenuRequestConnectionLine(CHARTAREAConnectionLine
connectionLine)

{
m_lineWithContext = connectionLine;

// open the context menu for the line
showPopupMenu(m_contextMenuLine);

}
// <== new
}

...
public class FlowChartItem extends CHARTAREAItem

495Layout Elements

ROWCHARTAREA

{
...

// ==> new
/** reactOnContextMenu for Item*/
public void reactOnContextMenuRequest()
{
m_itemWithContext=this;
showPopupMenu(m_contextMenuItem);

}
// <== new

...
}

The result of our coding is a simple “for-loop” flowchart. For example (with an opened context
menu):

Properties

Basic

ObligatoryName of the adapter property that represents the control on
server side.

infoprop

Return type must be "CHARTAREAInfo".

100OptionalWidth of the control.width

120There are three possibilities to define the width:

Layout Elements496

ROWCHARTAREA

140(A) You do not define a width at all. In this case the width of
the control will either be a default width or - in case of container
controls - it will follow thewidth that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results

50%if the parent element of the control properly defines a width

100%this control can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not
specify a width then the rendering result may not represent
what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a

250container control (containing) other controls then the height of
the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results 400

50%if the parent element of the control properly defines a height
this control can reference. If you specify this control to have a

100%height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not
specify a width then the rendering result may not represent
what you expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

trueOptionalDefault is false. Allows to 'drag and drop' icons from another
frame into the ROWCHARTAREA control.

pagebaseddragdrop

false
Set to true if you want to enable 'drag and drop' only within
the page the ROWCHARTAREA control is placed in.

trueOptionalEnables/Disables 'automatic snap to grid'. Default is true.usegridlines

falseYou can define the X- and Y-Distance of the grid.

OptionalName of an adapter property that provides the information if
'automatic snap to grid' is enabled or disabled.

gridlinesprop

As consequence you can control the 'automatic snap to grid'
function of the control dynamically.

497Layout Elements

ROWCHARTAREA

The server side property needs to be of type "boolean".

1OptionalDefine the X-Distance of the gridlines. Default is 50.gridlinexdistance

2Notice: The X-Distance does not have any effect if 'automatic
snap to grid' is disabled. Please have a look at the

3USEGRIDLINES and GRIDLINESPROP which are already
explained above.

int-value

1OptionalDefine the Y-Distance of the gridlines. Default is 50.gridlineydistance

2Notice: The Y-Distance does not have any effect if 'automatic
snap to grid' is disabled. Please have a look at the

3USEGRIDLINES and GRIDLINESPROP which are already
explained above.

int-value

Layout Elements498

ROWCHARTAREA

59 SKYPECALL

■ Example .. 501
■ Properties .. 502

499

The SKYPECALL control allows you to start the Skype client with given contact data from your
Application Designer pages.

Important: In order to use the SKYPECALL control you need to have a valid Skype account
and the Skype clientmust be installed. For further information, see http://www.skype.com/.

Layout Elements500

SKYPECALL

http://www.skype.com/

Example

The XML layout definition is:

<pagebody>
<itr>
<label name="Click on the link to start the Skype client: "

asplaintext="true"></label>
<skypecall valueprop="skypecall"></skypecall>
</itr>

</pagebody>

The Java code of the adapter is:

public class SkypetestAdapter extends Adapter
{

// property >skypecall<
String m_skypecall;
public String getSkypecall() { return m_skypecall; }
public void setSkypecall(String value) { m_skypecall = value; }

/** initialisation - called when creating this instance*/
public void init()
{
// enter the Skype ID or a valid phone number
m_skypecall="ValidSkypeID";
// it is possible to pass parameters to the Skype client
// using '?'. See the Skype API for details!

501Layout Elements

SKYPECALL

}
}

Properties

Basic

ObligatoryAdapter object that contains the phone number or the Skype ID of the person that
should be called. It is also possible to set some parameters.

valueprop

For further information, see the Skype API.

Note: The Skype client must be installed if you want to use this control.

Layout Elements502

SKYPECALL

60 TIMER

For detailed information on the TIMER control, see Non-Visual Controls and Hot Keys in the Special
Development Topics.

503

504

IV Working with Grids

So far, all pages that were explained referred to singular properties of the adapter class. There was
just one control referring to one property (and sometimes more than one).

This part shows you how to deal with grids. Working with grids is as simple as working with
singular properties because the grid management adapts seamlessly into the normal processing
of the Application Designer environment.

The information provided in this part is organized under the following headings:

Basics

TEXTGRID2

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

ROWTABLEAREA2 - The Flexible Control Grid

COLINFOS Control - Show and Hide Single Columns

FLEXLINE - Flexible Columns in Control Grids

MGDGRID - Managing the Grid

GRIDCOLHEADER - Flexible Column Headers

FLEXGRID - Flexible Grid, Hiding the Grid Complexity for Developers

Sorting Aspects with Grids

Background Information on Grids

505

506

61 Basics

It is quite simple: “normal” controls refer to an adapter class and are bound to singular properties
- i.e. properties that are accessible by a simple set/getmethod. Grid controls refer to an adapter
class as well - but are bound to a collection of objects. Each collection element provides set/get
methods to access its content, i.e. its own properties.

Two types of grid controls are available:

■ The TEXTGRID2 control is a control that displays grid data - but does not allow any change to
the data. You can select grid rows and colorize them in different ways. Change the order of
columns dynamically and sort columns by clicking into the title row of the grid.

There is a TEXTGRIDSSS2 control that is a certain variant of the TEXTGRID2 control.
■ The ROWTABLEAREA2 is a container that internally allows you to use any normal control to
be embedded inside a grid. Therefore, you canplace normal FIELDcontrols, CHECKBOXcontrols
etc. inside the ROWTABLEAREA2 container.

Use theTEXTGRID2 controls for displaying and selectingdata.UseROWTABLEAREA2 for entering
data inside a grid.

507

508

62 TEXTGRID2

■ A Simple Example ... 510
■ Selecting Rows in a TEXTGRID2 .. 512
■ Triggering Adapter Methods when Selecting a Row .. 514
■ TEXTGRID2 Properties ... 515
■ COLUMN Properties .. 521
■ Dynamic Setting of Text Styles in TEXTGRID2 .. 525
■ Example: Displaying an ASCII Protocol .. 527
■ Example: Using Images inside the TEXTGRID2 Control .. 530
■ Specifying the Width of a TEXTGRID2 Control .. 532
■ Change Index Management ... 532
■ Flexible Columns with CSVCOLUMN ... 535
■ CSVCOLUMN Properties .. 538

509

A Simple Example

The following example shows a TEXTGRID2 control:

There are two columns which hold data. There is one column at the very left which displays a se-
lection icon - in addition to a yellow background for a selected line. Even and odd lines are dis-
played in slightly different colors. At the very right of each title column, there is a symbol which
indicates the sorting status; if youdouble-click on this symbol, the column is sorted first in ascending
direction and, when clicking again, in descending direction. Change the sequence of columns by
dragging the title of a column and dropping it on another column's title. Depending from where
you drop, the column is either moved left or right.

The asterisk in the upper left corner of the grid is used to select/deselect all lines in the grid. The
behavior depends on the setting of the singleselect propertywhich determineswhethermultiple
lines can be selected in the grid (default) or whether only one line can be selected:

■ Multiple Line Selection Mode
When you choose the asterisk for the first time, all lines are selected. When you choose the as-
terisk a second time, all lines are deselected.

■ Single Line Selection Mode
When you choose the asterisk (no matter how often), an existing selected line is deselected.

The XML layout definition is:

Layout Elements510

TEXTGRID2

<rowarea name="Textgrid">
 <itr takefullwidth="true" fixlayout="true">
 <textgrid2 griddataprop="lines" width="100%" height="200" ↩
selectprop="selected"
 hscroll="true">
 <column name="First Name" property="firstName" width="50%">
 </column>
 <column name="Last Name" property="lastName" width="50%">
 </column>
 </textgrid2>
 </itr>
 <vdist height="5">
 </vdist>
</rowarea>

The TEXTGRID2 definition is bound to a grid data property lines. This is a special collection that
mirrors the server data. Technically, it is treated in the sameway as a normal collection. It supports
the Collection and List interface.

Inside the TEXTGRID2 control definition there are two columns. These columns are bound to the
properties firstName and lastName.

This is the Java adapter source:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

// This class is a generated one.

public class TextGridAdapter
extends Adapter

{
// class >LinesItem<
public class LinesItem
extends SelectableLine
{

// property >firstName<
String m_firstName;
public String getFirstName() { return m_firstName; }

// property >lastName<
String m_lastName;
public String getLastName() { return m_lastName; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

}

511Layout Elements

TEXTGRID2

// property >lines<
TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
public TEXTGRIDCollection getLines() { return m_lines; }

/** initialisation - called when creating this instance*/
public void init()
{

for (int i=0; i< 50; i++)
{

LinesItem l = new LinesItem();
l.m_firstName = "First " + i;
l.m_lastName = "Last " + i;
m_lines.add(l);

}
}

}

The adapter class provides a property lines. This property returns an instance of the class
TEXTGRIDCollectionwhich itself is a special collection and comes with the Application Designer
runtime. The instance is filled in the init()method of the adapter - just as a normal collection.
But it automatically brings in all the functions for sorting and - if desired - server-side scrolling
(see the TEXTGRIDSSS2 description).

The collection is filled with objects of the inner class Line. Each object supports a property
firstName, lastName and selected. (The class Line is an inner class in the example - but of course
it could also be a normal class). Make sure to make the class publicly accessible, because the Ap-
plication Designer runtime requires public access to the corresponding properties.

The whole TEXTGRID2 definition is bound by the griddataprop property to the lines collection
- and each COLUMN definition is bound to a property of class Line, i.e. the class representing
elements of the collection.

Selecting Rows in a TEXTGRID2

Maybe you wonder why there is a selected property in the class Line of the previous example.

This property is required for indicating which lines are currently selected andwhich are not. Each
line which is displayed in the TEXTGRID2 control is represented at the server side by an object
of the class Line. Therefore, the selection status of the grid (which lines are selected and which
lines are not) is mirrored by the corresponding selected property of each line.

The code below shows an extension of the previous example. It demonstrates how to build a
method for taking the line selection into consideration.

Below the TEXTGRID2definition, there is a button that triggers amethod for removing the selected
lines.

Layout Elements512

TEXTGRID2

The XML layout definition is improved in the following way:

<rowarea name="Textgrid">
 <itr takefullwidth="true" fixlayout="true">
 <textgrid2 griddataprop="lines" width="100%" height="200" ↩
selectprop="selected"
 hscroll="true">
 <column name="First Name" property="firstName" width="50%">
 </column>
 <column name="Last Name" property="lastName" width="50%">
 </column>
 </textgrid2>
 </itr>
 <vdist height="5">
 </vdist>
 <itr>
 <button name="Remove Selected Items" method="onRemoveSelectedItems">
 </button>
 </itr>
 <vdist>
 </vdist>
</rowarea>

Note that inside the TEXTGRID2definition, there is a property selectprop that points to the name
of the item property used for storing the selection information accordingly.

The method onRemoveSelectedItemswas added into the adapter code of the previous example:

513Layout Elements

TEXTGRID2

public void onRemoveSelectedItems()
{

for (int i=m_lines.size()-1; i>=0; i--)
{
LinesItem l = (LinesItem)m_lines.get(i);
if (l.getSelected() == true)
m_lines.remove(i);

}

The collection is iterated from its last element to its first. All elements which hold a selected
property with value "true" are removed.

Note: In this example, you are able to select multiple rows inside the grid. If you want to
allow selecting only one item, use the property singleselect inside the TEXTGRID2
definition.

Triggering Adapter Methods when Selecting a Row

In the previous section, you sawhow tomanage selections inside a TEXTGRID2 control. Sometimes,
you want to trigger a certain function when selecting a row - maybe you want to react directly to
the selected item.

To do so, you can use some additional properties inside the TEXTGRID2 definition:

■ The onclickmethod property is used to point to a method of your adapter class which is called
when a click event occurs.

■ The ondblclickmethod property is used when the user double-clicks a grid row.

You can use “direct triggering ofmethod” togetherwith single line selectionmode orwithmultiple
line selection mode. In case of using it with multiple line selection, you have to find out which
was the “last selected index”, i.e. the line index of the clicked/double-clicked line.

There is a property lastselectedprop inside the TEXTGRID2 definition. Using this definition,
you can bind the value to an integer property of your adapter class. The index value which is se-
lected is passed into this property.

Layout Elements514

TEXTGRID2

TEXTGRID2 Properties

Basic

ObligatoryName of adapter property that represents the grid on
server side. The property must be of type
"TEXTGRIDCollection".

griddataprop

var m_items = new TEXTGRIDCollection()

Pay attention: once you have created an instance of
TEXTGRIDCollection inside your adapter always
exactly use this one instance. Do not re-instantiate
collection objects! - Example:

Instead of...

WRONG: m_items = new TEXTGRIDCollection();

...use...

CORRECT: m_items.clear();

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the
width of the control will either be a default width or -

160in case of container controls - it will follow the width
that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g. "100").

200
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizingwill only bring 50%

100%up correct results if the parent element of the control
properly defines a width this control can reference. If
you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define
a width of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence
the control will be rendered with its default height. If

250the control is a container control (containing) other

515Layout Elements

TEXTGRID2

300controls then the height of the control will follow the
height of its content.

250
(B) Pixel sizing: just input a number value (e.g. "20").

400
(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizingwill only bring 50%

100%
up correct results if the parent element of the control
properly defines a height this control can reference. If
you specify this control to have a height of 50% then
the parent element (e.g. an ITR-row) may itself define
a height of "100%". If the parent element does not
specify a width then the rendering result may not
represent what you expect.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout editor's
tree view.

comment

Selection

OptionalName of the adapter parameter used for selectable
property for the textgrid(textgridsss) control.

selectableprop

OptionalName of property of the item objects - representing
the individual rows of the text grid - that is used for
selecting rows.

selectprop

Must be of type "boolean"/ "Boolean".

If the user selects a text grid row then the value "true"
is passed into the corresponding row object's property.

trueOptionalIf set to "true" then only one row can be selected inside
the text grid. - If set to "false" then multiple lines can

singleselect

falsebe selected by using Ctrl- and Shift-key during mouse
selection.

Default is "false".

OptionalName of adapter property that dynamically defined
whether SINGLESELECT is true or false. Must return
'true' or 'false'.

singleselectprop

OptionalAdapter method that is called when the user selects a
row.

onclickmethod

Inside the adapter you can find the selected rows by
iterating through the rowobjects andfinding outwhich
one's selection-property is switched to "true". In case
of multiple row selection you can also use the method
"findLastSelectedItem()" of your corresponding
TEXTGRIDCollection object.

OptionalAdapter method that is called when the user selects a
row by a double click.

ondblclickmethod

Layout Elements516

TEXTGRID2

Inside the adapter you can find the selected rows by
iterating through the rowobjects andfinding outwhich
one's selection-property is switched to "true". In case
of multiple row selection you can also use the method
"findLastSelectedItem()" of your corresponding
TEXTGRIDCollection object.

trueOptionalWhen defining a SELECTPROP property then
automatically a selection column is added as first left

withselectioncolumn

falsecolumnof the grid. Inside the column an icon inidicates
if a row is currently selected.

Set this property to "false" in order to avoid the
selection column.

trueOptionalFlag that indicateswhether the selection column shows
a "select all" icon on top. Default is true.

withselectioncolumnicon

false

trueOptionalif switched to true then an additional "graying" of
selected lines will be activated. Switch this property

fgselect

falseto "true" if you have coloured textgrid cells: the
selection colour will not override the colour of each
cell, as consequence you require an additional effect
in order to make the user see which row is selected.

OptionalName of property of the item objects - representing
the individual rows of the text grid - that indicates if
the line should receive focus.

focusedprop

Must be of type "boolean"/ "Boolean".

Right Mouse Button

OptionalIf clicking on a row of the text grid with the right
mouse button then always the method

oncontextmenumethod

"reactOnContexMenuRequest()" is called inside the
corresponding row item object (that itself is kept inside
the TEXTGRIDCollection object).

If the user clicks with the right mouse button onto an
empty area of the grid then there is no object to call -
instead the adapter method that is specified by this
property is called.

trueOptionalWith SHIFT andCTRLkey the user can selectmultiple
lines (use property SINGLESELECT to suppress this

singleselectcontextmenu

falsefeature). Use this property to ensure that the context
menu is requested only for a single line.

noselection
Default is "false".

trueOptionalUse this property to enable the default context menu
of the browser within the textgrid. Please note: do not

enabledefaultcontextmenu

false

517Layout Elements

TEXTGRID2

enable the browser's context menu if your application
itself provides for a context menu.

Default is "false".

Appearance

(already explained above)width

(already explained above)height

1OptionalNumber of rows that are displayed independent of the
size of the server side collection.

minapparentrows

2

3

int-value

autoSometimes
obligatory

Definition of the horizontal scrollbar's appearance.

You can define that the scrollbars only are shown if
the content is exceeding the control's area ("auto"). Or

hscroll

scroll

hiddenscrollbars can be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut ("hidden").

Default is "auto".

trueOptionalIf defined as "false" then no top title row is shown.withtitlerow

false"True" is default.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then youmay sometimeswant
to control the number of columns your control

3occupies. By default it is "1" - but you may want to
define the control to span overmore than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

50rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then youmay sometimeswant
to control the number of rows your control occupies.

3By default it is "1" - but you may want to define the
control to span over more than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table 5

Layout Elements518

TEXTGRID2

50rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

int-value

trueOptionalIf defined to "false" then no re-arranging of columns
is offered to the user.

personalizable

false
Default is "true". This means: if using COLUMN
controls inside the grid definition then the user can
re-arrange the sequence of columns by dragging and
dropping them within the top title row.

VAR1OptionalSome controls offer the possibility to define style
variants. By this style variant you can address different

stylevariant

VAR2styles inside your style sheet definition file (.css). If not
defined "normal" styles are chosen, if defined (e.g.
"VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing
them via the "stylevariant" property. CIS currently
offerst two variants "VAR1" and "VAR2" but does not
predefine any semantics behind - this is up to you!

VAR1OptionalName of the adapter property which dynamically
defines the STYLEVARIANT value at runtime.

stylevariantprop

VAR2

OptionalCSS style definition that is directly passed into this
control.

backgroundstyle

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in
your browser and select the "View source" or "View
frame's source" function.

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or

519Layout Elements

TEXTGRID2

hiddenscrollbars can be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut ("hidden").

Default is "scroll".

trueOptionalThe textgrid controls provide for a so called "roll over"
effect. The row that is currently below the mouse

withrollover

falsepointer is highlighted in a certain way. Use this
property to disable the roll over effect (Default is
TRUE).

trueOptionalWhen switching the FIXEDCOLUMNSIZES property
to value "true" then internally the grid is arranged in

fixedcolumnsizes

falsea way that the area always determines its size out of
the width specification of the COLUMN controls. The
browser does not look into the column contents in
order to try to optimise the size of the area - but always
follows the width that you define.

1OptionalMinimum height of the control in pixels. Use this
property to ensure a minimum height if the overall

requiredheight

2control's height is a percentage of the available space

3
- i.e. if value of property HEIGHT is a percentage (e.g.
100%).

int-valuePlease note:You must not use FIXLAYOUT at the
surrounding row container (ITR and ROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut off.

trueOptionalFlag that indicates if the user can change the width of
the grid columns. Default is false.

disablecolumnresizing

false

trueOptionalFlag that indicates if the user can change the order of
grid columns. Default is false.

disablecolumnmoving

false

-1OptionalIndex that defines the tab order of the control. Controls
are selected in increasing index order and in source
order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Drag And Drop

Layout Elements520

TEXTGRID2

OptionalName of the row item property that passes back the
line's "drag info". When using this attribute the grid

draginfoprop

lines can be dragged onto "drop targets" (e.g.
DROPICON control). The dragged line is identified
by its "drag info". Use any string/information
applicable.

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier
that can be later on used within your test tool in order
to do the object identification

testtoolid

Deprecated

ondblclickOptionalUseONCLICKMETHODandONDBLCLICKMETHOD
instead.

directselectevent

onclick

OptionalUseONCLICKMETHODandONDBLCLICKMETHOD
instead.

directselectmethod

COLUMN Properties

The COLUMN tag is the typical tag that is placed inside a TEXTGRID2 definition. The COLUMN
definition defines a column with its binding to a property of the collection elements.

Tip: If you set the property headernowrap="false", you usually have to increase the height
of the header in the style sheet of your layout page. You can do this in the Style Sheet Editor:
Go to theStyleDetails tab, expand the tree for TEXTGRID and then adjust the height value
for TEXTGRIDCellHeaderUnsorted.

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not
specify the name when using the multi language
management - but specify a "textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside
the control. The "textid" is translated into a
corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying
a "textid".

ObligatoryProperty of the row item object that represents the
column's content.

property

The content typically is straight text but can also be
"complex HTML".

521Layout Elements

TEXTGRID2

100ObligatoryWidth of the control.width

120There are two possibilities to define the width:

140(A) Pixel sizing: just input a number value (e.g. "100").

160(B) Percentage sizing: input a percentage value (e.g.
"50%"). Pay attention: percentage sizingwill only bring

180up correct results if the parent element (textgrid2,

200
textgridsss2) of the control properly defines a width
this control can reference.

50%

100%

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

dateOptionalBy default, the control ismanaging its content as string.
By explicitly setting a datatype you can define that the

datatype

floatcontrol will format the data coming from the server:

int
if the field has datatype "date" and the user inputs
"010304" then the input will be translated into

long"01.03.2004" (or other representation, dependent on
date format settings).

time
Please note: the datatype "float" is named a bit
misleading - it represents any decimal format number. timestamp
The server side representation may be a float value,
but also can be a double or a BigDecimal property. color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

L

Layout Elements522

TEXTGRID2

xs:boolean

xs:byte

xs:short

leftOptionalHorizontal alignment of the control's content. Default
is "center".

align

center

right

trueOptionalIf the text of the control containsHTML tags then these
are by default interpreted by the browser. Specifiying

straighttext

falseSTRAIGHTTEXTas "true"means that the browserwill
directly render the characters without HTML
interpretation.

Example: if youwant to output the source of anHTML
text then STRAIGHTTEXT should be set to "true".

trueOptionalIf switched to "true" then all spaces inside the text that
is rendered into the column are converted to non
breakable spaces (andnbsp\").

convertspaces

false

Use this option if you have "meaningful" spaces inside
the values you return from the server adapter object,
e.g. if outputting someASCII protocol inside a column.

trueOptionalIf switched to "false" then the content of the column is
broken if it excceeds the column's width definition.

cuttextline

falseDefault is "true" i.e. if the content is too big for the
column cell then it is cut.

trueOptionalFlag that indicates if a small sort indicator is shown
within the right corner of the control. Default is TRUE.

withsorticon

false

OptionalURL of image that is displayed inside the control. Any
image type (.gif, .jpg, ...) that your browser does
understand is valid.

headerimage

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page
is generated directly into your project's folder.
Specifiying "images/xyz.gif" will point into a directory
parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an
image of a neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

523Layout Elements

TEXTGRID2

trueOptionalThe textual content of the header is not wrapped
automatically. No line break will be performed

headernowrap

falseautomatically by the browser. If you want the text of
the header to be wrapped, set the value to "false".

Binding

(already explained above)property

OptionalName of the property of the row itemobject that passes
back a style-string that is used for rendering the
column's content.

textstyleprop

As consequence you can indiviudally assign a
CSS-style to each cell of your text grid.

OptionalName of the property of the row item object that
defines a style class to be used for rendering the
content.

textclassprop

You can set up a limited number of style classes inside
your style sheet definition - and dynamically reference
them per grid cell.

OptionalName of the property of the row item object passing
back an image URL. The image is rendered at the very

imageprop

left of the column's area - in front of the text
(PROPERTY property definition).

OptionalName of a method within the row item object that is
called if user clicks the column's text.

linkmethod

OptionalName of the row item property that passes back the
name of a method or null. If the method name is not

celllinkmethodprop

null then the corresponding column (cells) will show
the text as method link. On click the provided row
item cell method is called.

OptionalName of the property of the row itemobject that passes
back the tooltip of this cell.

celltitleprop

Online help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to define
a language dependent literal.

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text that is used
for the control.

titletextid

OptionalText that is shown as tooltip for the sort indicator.sorttitle

Either input text by using this SORTTITLE property -
or use the SORTTITLETEXTID in order to define a
language dependent literal.

Layout Elements524

TEXTGRID2

OptionalText ID that is passed to the multi lanaguage
management - representing the tooltip text for the sort
indicator.

sorttitletextid

(already explained above)celltitleprop

Dynamic Setting of Text Styles in TEXTGRID2

The example from the previous sections will now be enhanced in order to demonstrate how to
control the style of cells inside a TEXTGRID2 control dynamically:

Some of the cells in the TEXTGRID2 control are rendered with a different style than the normal
one. Each COLUMN definition has the property textstyleprop:

<rowarea name="Textgrid">
 <itr takefullwidth="true" fixlayout="true">
 <textgrid2 griddataprop="lines" width="100%" height="200" ↩
selectprop="selected"
 hscroll="true">
 <column name="First Name" property="firstName" width="50%"
 textstyleprop="firstNameStyle">
 </column>
 <column name="Last Name" property="lastname" width="50%"
 textstyleprop="lastNameStyle">
 </column>
 </textgrid2>
 </itr>
 <vdist height="5">
 </vdist>
 <itr>
 <button name="Remove Selected Items" method="onRemoveSelectedItems">

525Layout Elements

TEXTGRID2

 </button>
 </itr>
</rowarea>

The referenced property inside the COLUMNdefinition is on the same level as the normal property
that is responsible for the content of the columns and which is referenced by the normal property
property. Have a look at the Java source:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

// This class is a generated one.

public class TextGridAdapter
extends Adapter

{
// class >LinesItem<
public class LinesItem
extends SelectableLine
{

// property >firstName<
String m_firstName;
public String getFirstName() { return m_firstName; }

// property >lastName<
String m_lastName;
public String getLastName() { return m_lastName; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

// property >firstNameStyle<
String m_firstNameStyle;
public String getFirstNameStyle() { return m_firstNameStyle; }
public void setFirstNameStyle(String value) { m_firstNameStyle = value; }

// property >lastNameStyle<
String m_lastNameStyle;
public String getLastNameStyle() { return m_lastNameStyle; }
public void setLastNameStyle(String value) { m_lastNameStyle = value; }

}

// property >lines<
TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
public TEXTGRIDCollection getLines() { return m_lines; }

Layout Elements526

TEXTGRID2

...

/** initialisation - called when creating this instance*/
public void init()
{

for (int i=0; i< 50; i++)
{
LinesItem l = new LinesItem();
l.m_firstName = "First " + i;
l.m_lastName = "Last " + i;
if (i%3 == 2)

l.setFirstNameStyle("color: #FF0000;");
if (i%4 == 3)

l.setLastNameStyle("color: #0000FF; background-color: #C0C0C0");
m_lines.add(l);
}

}
}

The properties lastNameStyle and firstNameStyle are available on item level. They are filled in
the init()method.

Example: Displaying an ASCII Protocol

The following example shows the output of an ASCII protocol. The example demonstrates the
usage of the COLUMN properties textstyleprop and convertspaces.

527Layout Elements

TEXTGRID2

The XML layout definition looks as follows:

<page model="Ascii_Protocol_Adapter">
 <titlebar name="ASCII Protocol">
 </titlebar>
 <header withdistance="false">
 <button name="Save">
 </button>
 </header>
 <pagebody>
 <rowarea name="Protocol Output">
 <itr takefullwidth="false" height="350" fixlayout="true">
 <textgrid2 griddataprop="items" width="100%" height="100%" ↩
hscroll="true"
 vscroll="true" backgroundstyle="background-color:#000000">
 <column name="Protocol" property="protocolText" width="1000"
 textstyleprop="protocolStyle" convertspaces="true">
 </column>
 </textgrid2>
 </itr>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">

Layout Elements528

TEXTGRID2

 </statusbar>
</page>

The following is defined in the above layout definition:

■ Inside the TEXTGRID2 definition, a black background is defined (backgroundstyle property).
■ Inside the COLUMN definition, a style property is referenced (textstyleprop property).
■ Inside the COLUMN definition, the property convertspaces is set to "true".

The Java source looks as follows:

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

// This class is a generated one.

public class Ascii_Protocol_Adapter
 extends Adapter
{
 // --
 // inner classes
 // --

 // class >ItemsItem<
 public class Item
 {
 // property >protocolStyle<
 String m_centralStyle = "font-family: courier; color: #00FFFF; ↩
background-color: #000000;";
 String m_protocolStyle;
 public String getProtocolStyle() { return m_centralStyle; }

 // property >protocolText<
 String m_protocolText;
 public String getProtocolText() { return m_protocolText; }
 public void setProtocolText(String value) { m_protocolText = value; }
 }
 // --
 // property access
 // --

 // property >items<
 TEXTGRIDCollection m_items = new TEXTGRIDCollection();
 public TEXTGRIDCollection getItems() { return m_items; }

 // --
 // standard adapter methods
 // --

 /** initialisation - called when creating this instance*/

529Layout Elements

TEXTGRID2

 public void init()
 {
 Item item;
 item = new Item(); item.setProtocolText("BATCH RUN (01.04.2002)"); ↩
m_items.add(item);
 item = new Item(); item.setProtocolText("======================"); ↩
m_items.add(item);
 item = new Item(); item.setProtocolText(""); m_items.add(item);
 item = new Item(); item.setProtocolText("Time consuumed : 48.000 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText("Waiting time : 3.452 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText("Database time : 32.203 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText("App Server time : 10.485 ms");
 m_items.add(item);
 item = new Item(); item.setProtocolText(""); m_items.add(item);
 item = new Item(); item.setProtocolText("Return Code : 0 (OK)"); ↩
m_items.add(item);
 }
}

Example: Using Images inside the TEXTGRID2 Control

In the following text grid, graphical information and text information are mixed:

The layout definition looks as follows:

Layout Elements530

TEXTGRID2

<rowarea name="Textgrid with contained Icons">
<itr takefullwidth="tue">

<textgrid2 griddataprop="lines" width="100%" height="200">
<column name="Icon" width="53" imageprop="iconURL">
</column>
<column name="Text" property="text" width="100%">
</column>

</textgrid2>
</itr>

</rowarea>

In the definition of the left column, the property imageprop is used to reference to a property that
provides the URL string of the image to be displayed. The definition of the right column contains
the property property that points to a property providing text information.

The adapter class looks as follows:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class Textgrid_02_Adapter
extends Adapter
{
// --
// inner classes
// --
// class >LinesItem<
public class LinesItem
{

// property >iconURL<
String m_iconURL;
public String getIconURL() { return m_iconURL; }
public void setIconURL(String value) { m_iconURL = value; }

// property >text<
String m_text;
public String getText() { return m_text; }
public void setText(String value) { m_text = value; }

}
// --
// property access
// --
// property >lines<
TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
public TEXTGRIDCollection getLines() { return m_lines; }

// --
// standard adapter methods
// --

531Layout Elements

TEXTGRID2

/** initialisation - called when creating this instance*/
public void init()
{

for (int i=0; i<10; i++)
{
LinesItem l = new LinesItem();
l.setIconURL("images/touch_"+i+".gif");
l.setText("This is icon number " + i);
m_lines.add(l);
}

}

You can also mix text and image by specifying the property and the imageprop property. In this
case, the image will be drawn on the left and the text will be placed to the right of the image.

Specifying the Width of a TEXTGRID2 Control

The sizing of text grids was improved with a previous release: now you can simply set a width of
e.g. "100%" if the text grid should cover the complete width that is available.

Pay attention to the following:

■ If you do not specify a width inside the TEXTGRID2 definition, the width of the grid will be as
wide as defined by its content. Of course, it does not make sense to define a percentage value
inside the COLUMN definitions - there is nothing to refer to.

■ If you specify a width in the TEXTGRID2 and you already know that the size of the columns
does not fit into the given width, you must set the flag HSCROLL to "true". Otherwise, there will
be no scrolling at all and the grid will be rendered as wide as required by its content.

■ If you specify a percentage value as a width for the TEXTGRID2 control, you must place the
grid into an ITR definition that itself has also aWIDTH definition (typically of "100%"). In addi-
tion, you must set the flag FIXLAYOUT to "true" on ITR level. Otherwise the grid will follow the
width of its contained columns.

Change Index Management

In order to improve performance on the client side, there is a so-called change indexmanagement:
a text grid binds to an array of data records. Every time when the browser client receives updated
data from the server, it finds out whether a text grid has to be updated or not. Updating a text
grid is a quite expensive operation for the client - consequently, it is done only if really necessary.

For this reason, each TEXTGRIDCollection object implicitly administers a change index. A change
index is a property of type long. The value of the property always changes if something inside

Layout Elements532

TEXTGRID2

the collection changes. The client reads this property and only refreshes the text grid if the property
has changed.

Normally, the property is managed internally - without you being involved. If a
TEXTGRIDCollection is manipulated via its methods (e.g. add or clear), then the property is
automatically updated - and consequently, the client refreshes. But: if a change of data happens
inside one itemof a TEXTGRIDCollection, then the call does not go through the TEXTGRIDCollection
API. Consequently, you have to explicitly trigger the update by your program. Inside the
TEXTGRIDCollection, there is a method itemChanged()which indicates that due to the change of
data within one item the grid has to be updated.

The following example shows how to control the change index. In this example, a text grid is built
and manipulated by three buttons:

With the first button, new items are added to the grid. With the second button, all items receive
new content. With the third button, the change index will be updated.

The XML code is:

<rowarea name="Textgrid with Change Index Management">
<itr>

<textgrid2 griddataprop="lines_02" width="100%" height="200">
<column name="Text" property="text" width="100%">
</column>

</textgrid2>
</itr>
<itr>

<button name="Add Data Line" method="onAddDataLine">
</button>
<button name="Update Data Lines" method="onUpdateDataLines">
</button>
<button name="Update Change Index" method="onUpdateChangeIndex">

533Layout Elements

TEXTGRID2

</button>
</itr>

</rowarea>

The Java adapter source is shown below. Pay attention to the constructor of the m_linesmember
(which passes "true" as a parameter) and to the method m_lines.itemChanged() that is called in
order to update the change index implicitly.

// This class is a generated one.

import java.util.Date;
import java.util.Iterator;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class Textgrid_02_Adapter
extends Adapter

{
// --
// inner classes
// --
// class >Lines_02Item<
public class Lines_02Item
{

// property >text<
String m_text;
public String getText() { return m_text; }
public void setText(String value) { m_text = value; }

}
// --
// property access
// --

// property >lines_02<
TEXTGRIDCollection m_lines_02 = new TEXTGRIDCollection();
public TEXTGRIDCollection getLines_02() { return m_lines_02; }

// --
// public adapter methods
// --
/** */
public void onAddDataLine()
{

Lines_02Item l = new Lines_02Item();
l.setText((new Date()).toString());
m_lines_02.add(l);

}

/** */
public void onUpdateChangeIndex()

Layout Elements534

TEXTGRID2

{
m_lines_02.itemChanged();

}

/** */
public void onUpdateDataLines()
{

Iterator iter = m_lines_02.iterator();
while (iter.hasNext())
{
Lines_02Item l = (Lines_02Item)iter.next();
l.setText((new Date()).toString());
}

}
}

The behavior of the text grid control is as follows:

■ If a new line is added (method onAddDataLine()), the change index will be updated internally
- you do not have to explicitly tell the text grid management that something has changed.

■ If the lines are updated (method onUpdateDataLines()), changes will not be reflected in the
grid - until you explicitly trigger the method onUpdateChanngeIndex().

Consequence: every time you change the inner content of the grid data, you have to update the
change index by yourself.

Flexible Columns with CSVCOLUMN

There are situations in which the number and the format of the columns of a text grid cannot be
defined in a fixed way inside the layout definition. The column type CSVCOLUMN allows you
to dynamically define columns of a grid by your adapter program.

Have a look at the following example:

535Layout Elements

TEXTGRID2

The control looks like a normal text grid.When looking inside the XML layout definition, you find
out that instead of three fixed columns there is one dynamic column definition:

<rowarea name="Rowarea">
 <itr>
 <textgrid2 griddataprop="lines" width="100%" height="150" ↩
selectprop="selected"
 singleselect="true" hscroll="true">
 <csvcolumn titlesprop="gridTitles" valuesprop="values" ↩
widthsprop="gridWidths"
 alignsprop="gridAligns" backgroundsprop="backgrounds">
 </csvcolumn>
 </textgrid2>
 </itr>
</rowarea>

Inside the CSVCOLUMN definition, there is a binding to various properties that are provided for
by the corresponding adapter:

// This class is a generated one.

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class textgrid_03_Adapter
extends Adapter

{
// --
// inner classes
// --

// class >LinesItem<
public class LinesItem
{

public LinesItem (String values, String backgrounds)
{

m_values = values;
m_backgrounds = backgrounds;

}

// property >backgrounds<
String m_backgrounds;
public String getBackgrounds() { return m_backgrounds; }
public void setBackgrounds(String value) { m_backgrounds = value; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

Layout Elements536

TEXTGRID2

// property >values<
String m_values;
public String getValues() { return m_values; }
public void setValues(String value) { m_values = value; }

}
// --
// property access
// --
String m_gridAligns = CSVManager.encodeString(new String[] {

"left",
"left",
"right"
});

public String getGridAligns() { return m_gridAligns; }

String m_gridTitles = CSVManager.encodeString(new String[] {
"First",
"Second",
"Third"
});

public String getGridTitles() { return m_gridTitles; }

String m_gridWidths = CSVManager.encodeString(new String[] {
"200",
"200",
"200"
});

public String getGridWidths() { return m_gridWidths; }

// property >lines<
TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
public TEXTGRIDCollection getLines() { return m_lines; }

// --
// public adapter methods
// --
/** initialisation - called when creating this instance*/
public void init()
{

m_lines.add(new LinesItem("100;100;100","#FF0000;#00FF00;#0000FF"));
m_lines.add(new LinesItem("200;200;200","#00FF00;#FF0000;#0000FF"));
m_lines.add(new LinesItem("300;400;500","#FF0000;#FF0080;#FF00FF"));

}
}

The information for creating dynamic columns is passed as comma separated values. Comma
separated values are either created directly as a string or by calling a static method of the class
com.softwareag.cis.file.CSVManager.

Note: When using the CSVManagermethods for creating comma separated value strings,
this always pays attention towhat happens if strings already include one ormore semicolons.

537Layout Elements

TEXTGRID2

Example: the CSVManagerwill encode the strings "A", "B1;B2" and "C" to "A;B1\;B2;C". On the client
side, the "\;" is decoded back to ";".

Compare the layout definition with the code example in order to find out the exact binding tech-
nique between the control and the adapter properties.

CSVCOLUMN Properties

Tip: If you set the property headernowrap="false", you usually have to increase the height
of the header in the style sheet of your layout page. You can do this in the Style Sheet Editor:
Go to theStyleDetails tab, expand the tree for TEXTGRID and then adjust the height value
for TEXTGRIDCellHeaderUnsorted.

The properties of the CSVCOLUMN control are:

Basic

ObligatoryNameof adapter property provding a semicolon-separated string
containing the titles to be displayed.

titlesprop

Example for a value that is passed back by the property:

"First Name;Last Name;Street""

ObligatoryName of row item property that passes back the content of the
cells - as semicolon-separated string.

valuesprop

ObligatoryNameof adapter property provding a semicolon-separated string
containing the widths of the columns to be displayed.

widthsprop

Example for a value that is passed back by the property:

"100;200;100%""

Sometimes
obligatory

Nameof adapter property provding a semicolon-separated string
containing the horizontal alignment of the columns to be
displayed.

alignsprop

Example for a value that is passed back by the property:

"left\"center;right""

OptionalName of adapter property provding a semicolon-separated string
containing the background color of the columns to be displayed.

backgroundsprop

Example for a value that is passed back by the property:

"\"#C0C0C0;#FF0000""

Layout Elements538

TEXTGRID2

OptionalName of adapter property provding a semicolon-separated string
containing the row item properties that are internally used to
build up the value string.

proprefsprop

The property names are used for sorting: if the user invoke the
sorting of the grid by clicking on the corresponding icons inside
the title cell then this column needs to be associated with an
internal property that is used for sorting.

Example: "firstName\"lastName;street""

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf the text of the control contains HTML tags then these are by
default interpreted by the browser. Specifiying STRAIGHTTEXT

straighttext

falseas "true" means that the browser will directly render the
characters without HTML interpretation.

Example: if you want to output the source of an HTML text then
STRAIGHTTEXT should be set to "true".

trueOptionalIf switched to "false" then the content of the column is broken if
it excceeds the column's width definition. Default is "true" i.e. if
the content is too big for the column cell then it is cut.

cuttextline

false

trueOptionalThe textual content of the header is not wrapped automatically.
No line break will be performed automatically by the browser.

headernowrap

falseIf you want the text of the header to be wrapped, set the value
to "false".

trueOptionalFlag that indicates if the user can resize column widths and
re-order columns by drag and drop. Default is false. If set to true

withgridcolheaders

falsethe corresponding adapter program must register as "column
change event" listener. Use method
TEXTGRIDCollection.registerGridColHeaderChangeListener for
that.

Additional Binding

OptionalName of the property of the row item object that passes back a
style-string that is used for rendering the column's content.

textstyleprop

As consequence you can indiviudally assign a CSS-style to each
cell of your text grid.

OptionalName of the property of the row item object that defines a style
class to be used for rendering the content.

textclassprop

You can set up a limited number of style classes inside your style
sheet definition - and dynamically reference them per grid cell.

OptionalName of the property which dynamicalle defines whether
STRAIGHTTEXT is true or false.

straighttextprop

539Layout Elements

TEXTGRID2

OptionalName of adapter property provding a semicolon-separated string
containing the titles to be displayed.

sorttitlesprop

Example for a value that is passed back by the property:

"Click here to sort columnFirstName\"Click here to sort column
Last Name; Click here to sort column Street""

OptionalName of adapter property provding a semicolon-separated string
containing the tooltip tip texts to be displayed when the mouse
is moved over the column headers.

tooltiptitlesprop

OptionalName of the property of the row item object that passes back
(comma separated) names of row item methods. The

linkmethodsprop

corresponding columns will show the text as method links. On
click the provided row item method is called.

OptionalName of the row item property that passes back (comma
separated) names of cell methods. The corresponding columns

celllinkmethodsprop

(cells) will show the text as method links. On click the provided
row item cell method is called.

OptionalName of the property of the row item object that passes back
(comma separated) tool tip titles. The titles will show up if the
user is moving slowly the mouse over the grid cells.

celltooltiptitleprop

OptionalName of the property of the row item object that passes back
(comma separated) image URLs. The URL must either be an
absolute URL or a relative URL.

imageprop

OptionalName of the property that passed back (comma separated) image
URLs. The images are applied to the header.

headerimageprop

Layout Elements540

TEXTGRID2

63 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

■ Performance Considerations .. 542
■ Example .. 542
■ No Change in Adapter Code between TEXTGRID2 and TEXTGRIDSSS2 ... 544
■ Using rowcount and height .. 544
■ Setting the Client-Side Loading Behavior .. 544
■ TEXTGRIDSSS2 Properties ... 545

541

The TEXTGRIDSSS2 control is a variant of the TEXTGRID2 control which is explained in the
previous section. "SSS" is the abbreviation for "server-side scrolling".

Performance Considerations

The TEXTGRID2 control fetches all items belonging to the grid and renders them according to its
layout definition. If there are more items available than the grid can display, a vertical scroll bar
is displayed and you can scroll through the list.

From scrolling perspective, this is very effective - the browser is very fastwhen scrolling is needed.
But there are two disadvantages, especially for long lists:

■ All the data that are to be displayed inside the gridmust be available on the client side. Therefore,
the data must be transferred from the server to the client at least one time. Imagine you have a
grid of 10,000 lines: even if Application Designer transfers only “net data” and even if this
happens in “delta transfer mode”, it must be transferred.

■ In addition, the gridmust be built completely in order to allow fast scrolling. Thismeans - taking
the above example - that 10,000 lines have to be rendered before the grid can be displayed. Table
rendering is time-consuming and needs a lot of the client's CPU performance.

Consequence: text grids of the TEXTGRID2 control are easy to use, but they have their limitations
in terms of scalability. You should use it only if a limited amount of information is to be displayed.

Example

The TEXTGRIDSSS2 is very similar to the TEXTGRID2 control it is even based on the same code.
However, some special behavior has been built in. The main differences are “in the background”.
The TEXTGRIDSSS2 control only receives the data of the visible items. In this example, only the
data of the first 20 items are returned and rendered. When scrolling down, the next 20 items are
fetched and rendered. This means: the control requests always the data which are currently dis-
played.

Layout Elements542

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Consequence: every scrolling step requires an interaction with the server. However, only a small
amount of data - which is visible - is requested, not the data of all available items. The performance
of the grid does not changewith the number of itemswhich are available. There is no time difference
in rendering a text grid containing 100 or 10,000 items.

The layout definition is:

<rowarea name="textgridsss2">
<itr>

<textgridsss2 griddataprop="lines" rowcount="20" width="100%"
selectprop="selected" singleselect="false" hscroll="true"
directselectmethod="onDirectSelection"
directselectevent="ondblClick">

<column name="First Name" property="firstname" width="50%">
</column>
<column name="Last Name" property="lastname" width="50%">
</column>

</textgridsss2>
</itr>

</rowarea>

The definition is nearly the same as for the TEXTGRID2 control - with the exception that there is
a property rowcount to be used. The property rowcountdefines the number of rows that are fetched
from the server. All the other properties are the same as with TEXTGRID2.

543Layout Elements

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

No Change in Adapter Code between TEXTGRID2 and TEXTGRIDSSS2

No changes are required for the adapter source. You can use the same adapter code for TEXTGRID2
as for TEXTGRIDSSS2 controls. The server-side scrolling is completely done by the
TEXTGRIDCollection class, already explained in section TEXTGRID2.

Note: In older versions you had to program server-side scrolling by yourself, and the code
was not the same between TEXTGRID and TEXTGRIDSSS.

Using rowcount and height

Maybe you have noticed that in the TEXTGRIDSSS2 control, there are two properties for defining
the height of the text grid: rowcount and height. The usage of the properties is as follows:

■ rowcount="20", height="" (undefined)

The text grid is rendered with exactly 20 lines. The height of the text grid is the height of the 20
lines.

■ rowcount="20", height="100%" (or pixel value)

The height is determined by the height definition. The text grid will only show these items
which fit into the height. If the height only allows 12 lines to be shown, server-side scrolling al-
ways picks 12 items from the server instead of 20 as defined. The rowcount property defines
the maximum number of items to be picked, i.e. if the height allows 25 lines to be displayed,
only the maximum of 20 are picked.

By using rowcount and height together, you can have both server-side scrolling and dynamic
vertical sizing of a text grid.

Setting the Client-Side Loading Behavior

As an alternative to server-side scrolling, you can customize the client-side loading behavior.
Setting the property onloadbehaviour="collection" activates performance-optimized client-side
scrolling in the JavaScript/SWT client. As with the TEXTGRID2 control, the application must pass
all items to the client at the beginning. But other than with the TEXTGRID2 control, these items
are not immediately rendered in the grid. Instead, the JavaScript/SWT client caches the items and
only renders the items that are currently visible. If you have a limited number of items, the TEXT-
GRIDSSS2 control thus combines the advantage of the easy-to-use TEXTGRID2 controlwith better
performance. For a really large number of items, however, server-side scrolling is still the best
solution.

Layout Elements544

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

Sometimes, the number of items is not yet known at design-time. In such a case, you can set
onloadbehaviour="collectionorblock". Up to a defined number of items, the behavior is
identical to onloadbehaviour="collection". The maximum number of items for which client-
side scrolling is to be done can be specified in the cisconfig.xml file. For a higher number of items,
server-side scrolling is done. Switching between client-side scrolling and server-side scrolling is
done automatically. You need not program anything to make it work.

TEXTGRIDSSS2 Properties

Basic

ObligatoryName of adapter property that represents the
grid on server side. The propertymust be of type
"TEXTGRIDCollection".

griddataprop

var m_items = new TEXTGRIDCollection()

Pay attention: once you have created an instance
of TEXTGRIDCollection inside your adapter
always exactly use this one instance. Do not
re-instantiate collection objects! - Example:

Instead of...

WRONG:m_items=newTEXTGRIDCollection();

...use...

CORRECT: m_items.clear();

ObligatoryNumber of rows that are rendered inside the
control.

rowcount

There are two ways of using this property -
dependent on whether you in addition define
the HEIGHT property:

If you doNOTdefine theHEIGHTproperty then
the control is rendered with exactly the number
of rows that are defined as ROWCOUNT value.

If a HEIGHT value is defined in addition (e.g. as
percentage value "100%") then the number of
rows depend on the actual height of the control.
The ROWCOUNT value in this case indicates
the maximum number of rows that are picked
from the server. You should define this value in
a way so that it is not too low - otherwise your
grid will not be fully filled. On the other hand it

545Layout Elements

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

should not be defined too high ("100") because
this causesmore communication traffic andmore
rendering effort inside the browser.

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case
the width of the control will either be a default

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizingwill 100%
only bring up correct results if the parent element
of the control properly defines a width this
control can reference. If you specify this control
to have a width of 50% then the parent element
(e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a
width then the rendering result may not
represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with

250its default height. If the control is a container

300
control (containing) other controls then the
height of the control will follow the height of its
content. 250

(B) Pixel sizing: just input a number value (e.g.
"20").

400

50%
(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizingwill 100%
only bring up correct results if the parent element
of the control properly defines a height this
control can reference. If you specify this control
to have a height of 50% then the parent element
(e.g. an ITR-row) may itself define a height of
"100%". If the parent element does not specify a
width then the rendering result may not
represent what you expect.

blockOptionalLoading behaviour of the items into the client.onloadbehaviour

Layout Elements546

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

collection"block" (=default) means that the client always
requests the currently visible items from the
server (=Server-Side Scrolling). collectionorblock

"collection" means that the client requests all
items at the beginning from the server. The client
itself implements the scrolling in the
JavaScript/SWT (=Client-Side Scrolling)

New in CIT81: "collectionorblock" means that
the runtime automicatically switches between
Client-Side Scrolling and Server-Side Scrolling.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Selection

OptionalName of the adapter parameter used for
selectable property for the textgrid(textgridsss)
control.

selectableprop

OptionalName of property of the item objects -
representing the individual rows of the text grid
- that is used for selecting rows.

selectprop

Must be of type "boolean"/ "Boolean".

If the user selects a text grid row then the value
"true" is passed into the corresponding row
object's property.

trueOptionalIf set to "true" then only one row can be selected
inside the text grid. - If set to "false" thenmultiple

singleselect

falselines can be selected by using Ctrl- and Shift-key
during mouse selection.

Default is "false".

OptionalName of adapter property that dynamically
definedwhether SINGLESELECT is true or false.
Must return 'true' or 'false'.

singleselectprop

OptionalAdapter method that is called when the user
selects a row.

onclickmethod

Inside the adapter you can find the selected rows
by iterating through the row objects and finding
out which one's selection-property is switched
to "true". In case of multiple row selection you
can also use themethod "findLastSelectedItem()"
of your corresponding TEXTGRIDCollection
object.

547Layout Elements

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

OptionalAdapter method that is called when the user
selects a row by a double click.

ondblclickmethod

Inside the adapter you can find the selected rows
by iterating through the row objects and finding
out which one's selection-property is switched
to "true". In case of multiple row selection you
can also use themethod "findLastSelectedItem()"
of your corresponding TEXTGRIDCollection
object.

trueOptionalWhen defining a SELECTPROP property then
automatically a selection column is added as first

withselectioncolumn

falseleft column of the grid. Inside the column an icon
inidicates if a row is currently selected.

Set this property to "false" in order to avoid the
selection column.

trueOptionalFlag that indicateswhether the selection column
shows a "select all" icon on top. Default is true.

withselectioncolumnicon

false

trueOptionalif switched to true then an additional "graying"
of selected lines will be activated. Switch this

fgselect

falseproperty to "true" if you have coloured textgrid
cells: the selection colour will not override the
colour of each cell, as consequence you require
an additional effect in order tomake the user see
which row is selected.

OptionalName of property of the item objects -
representing the individual rows of the text grid
- that indicates if the line should receive focus.

focusedprop

Must be of type "boolean"/ "Boolean".

Right Mouse Button

OptionalIf clicking on a row of the text gridwith the right
mouse button then always the method

oncontextmenumethod

"reactOnContexMenuRequest()" is called inside
the corresponding row item object (that itself is
kept inside the TEXTGRIDCollection object).

If the user clicks with the right mouse button
onto an empty area of the grid then there is no
object to call - instead the adapter method that
is specified by this property is called.

trueOptionalWith SHIFT and CTRL key the user can select
multiple lines (use property SINGLESELECT to

singleselectcontextmenu

falsesuppress this feature). Use this property to

noselection

Layout Elements548

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

ensure that the context menu is requested only
for a single line.

Default is "false".

trueOptionalUse this property to enable the default context
menu of the browser within the textgrid. Please

enabledefaultcontextmenu

falsenote: do not enable the browser's context menu
if your application itself provides for a context
menu.

Default is "false".

Appearance

(already explained above)width

(already explained above)height

autoOptionalDefinition of the horizontal scrollbar's
appearance.

hscroll

scroll
You can define that the scrollbars only are shown
if the content is exceeding the control's area hidden
("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and
the content is cut ("hidden").

Default is "hidden".

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if
the content is exceeding the control's area

hidden("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and
the content is cut ("hidden").

Default is "scroll".

trueOptionalBoolean property that decides if touch pad
support is offered for the TEXTGRID control.

touchpadinput

falseThe default is "false". If switched to "true" then
you can scroll the grid via a touch pad. As
consequence you can use this control formaking
inputs through a touch terminal.

trueOptionalIf defined as "false" then no top title row is
shown.

withtitlerow

false
"True" is default.

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may
sometimes want to control the number of

3columns your control occupies. By default it is

549Layout Elements

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

4"1" - but you may want to define the control to
span over more than one columns.

5
The property onlymakes sense in table rows that
are snychronized within one container (i.e. TR, 50

int-value
STR table rows). It does not make sense in ITR
rows, because these rows are explicitly not
synched.

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may
sometimes want to control the number of rows

3your control occupies. By default it is "1" - but

4
you may want to define the control to span over
more than one columns.

5The property onlymakes sense in table rows that
are snychronized within one container (i.e. TR, 50
STR table rows). It does not make sense in ITR

int-valuerows, because these rows are explicitly not
synched.

trueOptionalIf defined to "false" then no re-arranging of
columns is offered to the user.

personalizable

false
Default is "true". This means: if using COLUMN
controls inside the grid definition then the user
can re-arrange the sequence of columns by
dragging and dropping themwithin the top title
row.

OptionalSome controls offer the possibility to define style
variants. By this style variant you can address

stylevariant

different styles inside your style sheet definition
file (.css). If not defined "normal" styles are
chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style
sheet defintion and use them multiple times by
addressing them via the "stylevariant" property.
CIS currently offerst two variants "VAR1" and
"VAR2" but does not predefine any semantics
behind - this is up to you!

VAR1OptionalNameof the adapter propertywhichdynamically
defines the STYLEVARIANT value at runtime.

stylevariantprop

VAR2

OptionalCSS style definition that is directly passed into
this control.

backgroundstyle

Layout Elements550

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

With the style you can individually influence the
rendering of the control. You can specify any
style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

trueOptionalIf switched to "true" then the gridwill show small
scroll icons bywhich the user can scroll the grid's

withblockscrolling

falsecontent. Scrolling typically is done by using the
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility
to scroll.

trueOptionalThe textgrid controls provide for a so called "roll
over" effect. The row that is currently below the

withrollover

falsemouse pointer is highlighted in a certain way.
Use this property to disable the roll over effect
(Default is TRUE).

trueOptionalWhen switching the FIXEDCOLUMNSIZES
property to value "true" then internally the grid

fixedcolumnsizes

falseis arranged in a way that the area always
determines its size out of thewidth specification
of the COLUMN controls. The browser does not
look into the column contents in order to try to
optimise the size of the area - but always follows
the width that you define.

1OptionalMinimumheight of the control in pixels. Use this
property to ensure a minimum height if the

requiredheight

2overall control's height is a percentage of the

3
available space - i.e. if value of propertyHEIGHT
is a percentage (e.g. 100%).

int-valuePlease note:You must not use FIXLAYOUT at
the surrounding row container (ITR and
ROWAREA). Otherwise: if the available space
is less than the required height the end of the
control is just cut off.

1OptionalMinimum number of apparent rows. Insert a
valid number to make sure that (e.g. 10) rows
are shown for sure.

minapparentrows

2

551Layout Elements

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

3

int-value

trueOptionalFlag that indicates if the user can change the
width of the grid columns. Default is false.

disablecolumnresizing

false

trueOptionalFlag that indicates if the user can change the
order of grid columns. Default is false.

disablecolumnmoving

false

-1OptionalIndex that defines the tab order of the control.
Controls are selected in increasing index order
and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

trueOptionalIf set to false, no empty line will be rendered. By
default empty lines are shown.

showemptylines

false

trueOptionalSetting this to "true" prevents unwisched slider
jumps while scrolling up/down in a grid with a
huge number of lines (for example 20000).

withsliderfreeze

false

Drag And Drop

OptionalName of the row item property that passes back
the line's "drag info". When using this attribute

draginfoprop

the grid lines can be dragged onto "drop targets"
(e.g. DROPICON control). The dragged line is
identified by its "drag info". Use any
string/information applicable.

Miscellaneous

OptionalUse this attribute to assign a fixed control
identifier that can be later on used within your
test tool in order to do the object identification

testtoolid

Deprecated

OptionalUse ONCLICKMETHOD and
ONDBLCLICKMETHOD instead.

directselectmethod

Layout Elements552

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

ondblclickOptionalUse ONCLICKMETHOD and
ONDBLCLICKMETHOD instead.

directselectevent

onclick

Inside the TEXTGRIDSSS2 definitions, COLUMN tags are also used to define its content. There
is no difference in COLUMN tag usage between TEXTGRIDSSS2 and TEXTGRID2 definition.

553Layout Elements

TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling

554

64 ROWTABLEAREA2 - The Flexible Control Grid

■ Example .. 556
■ Using rowcount and height .. 559
■ Making Grids Look like Grids ... 560
■ Special Events in ROWTABLEAREA2 Processing .. 561
■ ROWTABLEAREA2 Properties ... 565
■ STR Properties ... 570

555

The ROWTABLEAREA2 is a container control that allows other controls to be arranged inside its
grid management.

Example

There is a grid that contains a header row and 10 lines. Each line contains one check box and two
fields. Some of the lines are highlighted.

The XML layout definition is:

<rowarea name="Grid">
<rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="true">

<tr>
<hdist>
</hdist>
<label name="First Name" asheadline="true">
</label>
<label name="Last Name" asheadline="true">
</label>

</tr>
<repeat>

<str valueprop="selected">
<checkbox valueprop="selected" flush="screen" width="30">
</checkbox>
<field valueprop="firstname" width="50%">
</field>
<field valueprop="lastname" width="50%">

Layout Elements556

ROWTABLEAREA2 - The Flexible Control Grid

</field>
</str>

</repeat>
</rowtablearea2>
<vdist height="10">
</vdist>
<itr>

<button name="Add new Line" method="onAddLine">
</button>
<hdist>
</hdist>
<button name="Remove selected Lines" method="onRemoveLines">
</button>

</itr>
</rowarea>

Note the following:

■ There is a ROWTABLEAREA2 definition with the property griddataprop="lines". There is a
rowcount definition of "10". This is the same as for the text grid processing: the grid container
is bound to a server-side collection. Similar to the TEXTGRIDSSS2 definition, there is a row
count that defines the number of lines.

■ Inside the ROWTABLEAREA2 definition, there is first the definition of a normal table row (TR)
inwhich a distance and two labels are defined. The labels are renderedwith asheadline="true".

■ Inside the REPEAT definition, there is a special table row definition "STR" (selectable table row)
that itself contains one CHECKBOX and two FIELD definitions. CHECKBOX and FIELDs are
bound to properties themselves.

■ After the ROWTABLEAREA2 definition, there is a vertical distance and a row that contains two
buttons with which a user can manipulate the grid.

The content of the REPEAT block is repeated as many times as defined inside the rowcount
definition of ROWTABLEAREA2. The content holds a table row (STR) - therefore the result is a
grid.

The Java code of the adapter is:

// This class is a generated one.

import java.util.Iterator;
import java.util.Vector;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.GRIDCollection;

public class rowtabarea2_adapterAdapter
extends Adapter

{
// --

557Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

// inner classes
// --
// class >LinesItem<
public class LinesItem
{

// property >firstname<
String m_firstname;
public String getFirstname() { return m_firstname; }
public void setFirstname(String value) { m_firstname = value; }

// property >lastname<
String m_lastname;
public String getLastname() { return m_lastname; }
public void setLastname(String value) { m_lastname = value; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

}
// --
// property access
// --
// property >lines<
GRIDCollection m_lines = new GRIDCollection();
GRIDCollection getLines() { return m_lines; }

// --
// public adapter methods
// --
/** */
public void onAddLine()
{

LinesItem l = new LinesItem();
m_lines.add(l);

}

/** */
public void onRemoveLines()
{

Vector v = new Vector();
// collect all elements to be deleted

Iterator iter = m_lines.iterator();
while (iter.hasNext())
{

LinesItem l = (LinesItem)iter.next();
if (l.getSelected() == true)

v.addElement(l);
}

// delete elements
iter = v.iterator();
while (iter.hasNext())

Layout Elements558

ROWTABLEAREA2 - The Flexible Control Grid

m_lines.remove(iter.next());
}

}

Programming the grid is very simple. Define an instance of the class GRIDCollection in which
you hold the items. This instance is referenced by the griddataprop definition inside the
ROWTABLEAREA2 tag.

Each element inside the collection itself supports the properties that are referenced by the controls
inside the REPEAT block. In our example, the properties are referenced by the STR, CHECKBOX
and FIELD controls.

Use any “normal controls” inside the REPEAT block. For example, use either the BUTTON control
or the ICON control. Properties of these included controls are called inside the item class lines
and not directly in the adapter class.

The class GRIDCollection is the parent of TEXTGRIDCollection. It manages all aspects of server-
side scrolling that is used internally.

Using rowcount and height

Similar to the TEXTGRIDSSS2 control, the ROWTABLEAREA2 controls offers two properties for
defining its height:

■ rowcount and
■ height

If only rowcount is defined, the control will be always rendered with exactly the same number of
lines - the one defined by the rowcount property.

If the height is specified additionally, the height of the grid will follow the height definition. The
number of rows consequently follows the available vertical space. In this case, rowcount is the
maximum number of rows that is exchanged.

Background information: if you have a look at the generated HTML page for an XML layout
definition containing a ROWTABLEAREA2 grid, then you will see that each row of the grid is
rendered into corresponding controls. If a ROWTABLEAREA2 contains 10 lines where each line
has three FIELD controls, then the result will be an HTML page containing 30 fields.

Consequently, the rowcount property - when also specifying the height - should be carefully se-
lected. Youmust not simply define a rowcount of "100" because then youwill get very largeHTML
pages that become too large to be operated in a fast way. On the other hand, the rowcount should
fit into normal screen sizes and should not be too low. Have in mind the screen sizes of your users
and decide accordingly.

559Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

When does it make sense to have a height and a rowcount definition? Typically, it does not make
sense to define a fixed height (for example, "200") for ROWTABLEAREA2 controls: instead of de-
fining fixed heights, you should size the grid by using rowcount only. But it makes sense if you
have flexible heights, for example, a height of "100%". In this case, the actual height depends on
the size of the user's screen and the grid can thus be sized in a flexible way.

Making Grids Look like Grids

Fields typically contain a high number of FIELD controls. Typically, a FIELD control has a certain
rendering that renders a field with a border and with a certain background color.

Be aware that inside the FIELD definition, there are two important properties:

■ noborder - if set to "true", no border will be drawn
■ transparentbackground - if set to "true", the field will always take over the background of the
controls in which it is positioned (e.g. STR row).

Have a look at the difference between the following screens. One screen uses the properties, the
other screen does not use them.

This is a grid:

This is collection of fields:

Layout Elements560

ROWTABLEAREA2 - The Flexible Control Grid

For information on how to build the lines of a grid dynamically, see the description of the FLEXLINE
control.

Special Events in ROWTABLEAREA2 Processing

If using input controls (FIELD, CHECKBOX, COMBOBOX) inside a grid, then there are two special
events that may be passed to your application.

■ FWDTABKEYMETHOD of ROWTABLEAREA2: this is themethod that is calledwhen the user presses
the TAB key within the rightmost field of the grid.

■ BWDTABKEYMETHOD of ROWTABLEAREA2: this is themethod that is calledwhen the user presses
SHIFT+TAB on the leftmost control of the grid.

You can use these events for various purposes:

■ You may create a new item below the existing one when the user leaves the rightmost field.
■ You may want to trigger the scrolling of the grid if the user tabs through the last right field.

In the following example, every time the user leaves the rightmost field of the grid, a new item is
created:

561Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

When the user now presses TAB in the last field, the screen will look as follows:

The XML layout is:

...

...

...
<rowtablearea2 griddataprop="lines" rowcount="10" ↩
fwdtabkeymethod="endofLineProcessing">
 <tr>
 <label name=" " width="30" asheadline="true" labelstyle="text-align:center">
 </label>
 <label name="Item" width="30" asheadline="true">

Layout Elements562

ROWTABLEAREA2 - The Flexible Control Grid

 </label>
 <label name="Article" width="400" asheadline="true">
 </label>
 <label name="Quantity" asheadline="true" labelstyle="text-align:right">
 </label>
 <label name="Price" width="50" asheadline="true" ↩
labelstyle="text-align:right">
 </label>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="30">
 </checkbox>
 <textout valueprop="itemNumber" width="30" ↩
textoutstyle="text-align:center">
 </textout>
 <field valueprop="article" width="100%" noborder="true"
 transparentbackground="true">
 </field>
 <field valueprop="quantity" width="50" noborder="true"
 transparentbackground="true">
 </field>
 <field valueprop="price" width="50" noborder="true"
 transparentbackground="true" datatype="float" decimaldigits="2">
 </field>
 <hdist>
 </hdist>
 </str>
 </repeat>
</rowtablearea2>
...
...

Be aware that the method that is associated with the “tab” event is called in the item object in
which the “tab” event was thrown.

The server-side processing looks as follows:

...

...
public class rowtab2_specEventsAdapter

extends Adapter
{

// class >LinesItem<
public class LinesItem
{

public LinesItem(int itemNumber)
{

m_itemNumber = itemNumber;
m_focussedItemNumber = itemNumber;

}

563Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

public String getArticleStatus()
{

if (m_itemNumber == m_focussedItemNumber)
return "FOCUS";

else
return "EDIT";

}

int m_itemNumber;
public int getItemNumber() { return m_itemNumber; }
public void setItemNumber(int value) { m_itemNumber = value; }

int m_focussedItemNumber;
public int getfocussedItemNumber() { return m_itemNumber; }
public void setfocussedItemNumber(int value) { m_itemNumber = value; }

// property >article<
String m_article;
public String getArticle() { return m_article; }

// property >price<
double m_price;
public double getPrice() { return m_price; }

// property >quantity<
int m_quantity;
public int getQuantity() { return m_quantity; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

public void endOfLineProcessing()
{

if (m_itemNumber == m_lines.size())
{

LinesItem item = new LinesItem(m_lines.size() + 1);
m_lines.add(item);
m_lines.displayItem(item);

}
}

}
...
...

Inside the method endOfLineProcessing() that is defined on item level, the new item is created.
In addition, you see that there is a certain focus management behind the field representing the
article: the focus management is used in a way that the focus is directly set into the article field
when a new item is created.

Layout Elements564

ROWTABLEAREA2 - The Flexible Control Grid

The full XML and code is available inside the project cisdemos.

ROWTABLEAREA2 Properties

Basic

ObligatoryName of adapter property representing
the grid on server side.

griddataprop

Must be of type "GRIDCollection". The
whole grid is represented by the
GRIDCollection-object, each individual
row of the grid is represented by one
item inside the collection.

If using the control for building trees
(TREENODE-control inside the grid's
items) then use "TREECollection" on
server side.

OptionalNumber of rows that are rendered inside
the control.

rowcount

There are two ways of using this
property - dependent on whether you in
addition define the HEIGHT property:

If you do NOT define the HEIGHT
property then the control is rendered
with exactly the number of rows that are
defined as ROWCOUNT value.

If a HEIGHT value is defined in addition
(e.g. as percentage value "100%") then
the number of rows depend on the actual
height of the control. The ROWCOUNT
value in this case indicates themaximum
number of rows that are picked from the
server. You should define this value in a
way so that it is not too low - otherwise
your grid will not be fully filled. On the
other hand it should not be defined too
high ("100") because this causes more
communication traffic and more
rendering effort inside the browser.

100OptionalHeight of the control.height

150

565Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

There are three possibilities to define the
height:

200

250
(A) You do not define a height at all. As
consequence the controlwill be rendered 300

250
with its default height. If the control is a
container control (containing) other

400controls then the height of the control
will follow the height of its content.

50%
(B) Pixel sizing: just input a number
value (e.g. "20"). 100%

(C) Percentage sizing: input a percantage
value (e.g. "50%"). Pay attention:
percentage sizing will only bring up
correct results if the parent element of
the control properly defines a height this
control can reference. If you specify this
control to have a height of 50% then the
parent element (e.g. an ITR-row) may
itself define a height of "100%". If the
parent element does not specify a width
then the rendering result may not
represent what you expect.

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the
width:

width

120

140
(A) You do not define a width at all. In
this case the width of the control will 160

180
either be a default width or - in case of
container controls - it will follow the
width that is occupied by its content. 200

(B) Pixel sizing: just input a number
value (e.g. "100").

50%

100%
(C) Percentage sizing: input a percantage
value (e.g. "50%"). Pay attention:
percentage sizing will only bring up
correct results if the parent element of
the control properly defines a width this
control can reference. If you specify this
control to have a width of 50% then the
parent element (e.g. an ITR-row) may
itself define a width of "100%". If the
parent element does not specify a width

Layout Elements566

ROWTABLEAREA2 - The Flexible Control Grid

then the rendering result may not
represent what you expect.

trueSometimes
obligatory

If set to "true" then the grid is sized
according to its first row. This first row

firstrowcolwidths

falsetypically is a header-TR-row in which
GRIDCOLHEADER controls are used as
columnheaders for the subsequent rows.

Default is "false", i.e. the grid is sized
according to its "whole content".

Please note: when using the
GRIDCOLHEADER control within the
header-TR-row this propertymust be set
to "true" - otherwise column resizing (by
drag and drop) does not work correctly.

blockOptionalLoading behaviour of the items into the
client.

onloadbehaviour

collection
"block" (=default) means that the client
always requests the currently visible collectionorblock
items from the server (=Server-Side
Scrolling).

"collection"means that the client requests
all items at the beginning from the server.
The client itself implements the scrolling
in the JavaScript/SWT (=Client-Side
Scrolling)

New inCIT81: "collectionorblock"means
that the runtime automicatically switches
between Client-Side Scrolling and
Server-Side Scrolling.

OptionalComment without any effect on
rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to "false" then no thin border is
drawn around the controls that are
contained in the grid.

withborder

false

Default is "true".

autoOptionalDefinition of the horizontal scrollbar's
appearance.

hscroll

scroll
You can define that the scrollbars only
are shown if the content is exceeding the hidden
control's area ("auto"). Or scrollbars can

567Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut
("hidden").

Default is "hidden".

autoOptionalDefinition of the vertical scrollbar's
appearance.

vscroll

scroll
You can define that scrollbars only are
shown if the content is exceeding the hidden
control's area ("auto"). Or scrollbars can
be shown always ("scroll"). Or scrollbars
are never shown - and the content is cut
("hidden").

Default is "scroll".

(already explained above)firstrowcolwidths

trueOptionalIf switched to true then the content of the
grid can be selected and exported into
the client's clipboard.

clipboardaccess

false

trueOptionalIf switched to "true" then the grid will
show small scroll icons bywhich the user

withblockscrolling

falsecan scroll the grid's content. Scrolling
typically is done by using the grid's
scrollbar - the scroll icons that are
switched on by this property are an
additional possibility to scroll.

trueOptionalIf set to "true" then touch screen icons for
scrolling are displayed in addition.

touchpadinput

false
Default is "false".

1OptionalMinimum height of the control in pixels.
Use this property to ensure a minimum

requiredheight

2height if the overall control's height is a

3
percentage of the available space - i.e. if
value of property HEIGHT is a
percentage (e.g. 100%). int-value

Please note:You must not use
FIXLAYOUT at the surrounding row
container (ITR and ROWAREA).
Otherwise: if the available space is less
than the required height the end of the
control is just cut off.

background-color:
#FF0000

OptionalCSS style definition that is directly
passed into this control.

tablestyle

color: #0000FF

Layout Elements568

ROWTABLEAREA2 - The Flexible Control Grid

With the style you can individually
influence the rendering of the control.

font-weight: bold

You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by
appending and separating them with a
semicolon.

Sometimes it is useful to have a look into
the generated HTML code in order to
know where direct style definitions are
applied. Press right mouse-button in
your browser and select the "View
source" or "View frame's source"
function.

trueOptionalNormally the background is in light
colour but the CIS style sheets also have
a dark(er) grey colour to be used.

darkbackground

false

If DARKBACKGROUND is set to true
then the darker background colour is
chosen. This property typically is used
to integrate light coloured controls into
darker container areas.

invisibleOptionalIf set to "invisible" an incomplete last row
is not shown.

invisiblemodeincompletelastrow

visible

trueOptionalSetting this to "true" prevents unwisched
slider jumps while scrolling up/down in

withsliderfreeze

falsea grid with a huge number of lines (for
example 20000).

Binding

OptionalName of adapter method that is called
when the user presses rightmouse button

oncontextmenumethod

into the grid - but not on an existing row
(then the row item object is responsible
for handling the rightmouse button) but
on "empty area" of the grid.

OptionalName of an adaptermethod that is called
if the user presses the TAB key within

fwdtabkeymethod

the very last cell of the grid (last cell
within the last line). Use property

569Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

FWDTABKEYFILTER to associate this
call with a grid column.

OptionalBy default the FWDTABKEYMETHOD
is called if the user presses the TAB key

fwdtabkeyfilter

within the veryfirst cell of the grid. Input
the name of a cell's VALUEPROP to
associate the method call with any other
column.

OptionalName of an adaptermethod that is called
if the user presses SHIFT and TAB keys

bwdtabkeymethod

within the first cell of a grid line. Use
property BWDTABKEYFILTER to
associate this call with a cell of choice.

OptionalBy default the BWDTABKEYMETHOD
is called if the user presses the SHIFT and

bwdtabkeyfilter

TAB keys within the very first cell of the
grid. Input the name of a cell's
VALUEPROP to associate the method
call with any other column.

Hot Keys

OptionalComma separated list of hot keys. A
hotkey consists of a list of keys and a

hotkeys

method name. Separate the keys by "-"
and the method name again with a
comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter
...defines two hot keys. Method
onCtrlAltA is invoked if the user presses
Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout
Painter to input hot keys.

STR Properties

STR (selectable table row) is a normal table row (TR) that highlights its background depending
on an adapter property.

Layout Elements570

ROWTABLEAREA2 - The Flexible Control Grid

Basic

ObligatoryName of the adapter property that defines if the row is selected
(value "true") or not selected ("false").

valueprop

trueOptionalFlag that indicates if the grid line shows alternating background
color (like rows within a textgrids). Default is false. Please note:

withalterbackground

falsecontrols inside the rowmust have transparent background. In case
of the FIELD control simply set property
TRANSPARENTBACKGROUND to true.

trueOptionalFlag that indicates if an unused row is visible. Example: if set to
false a grid with rowcount ten and a server side collection size of
seven will hide the three remaining rows.

showifempty

false

Default is false.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Binding

(already explained above)valueprop

OptionalName of the method inside the row item class that is called if the
user clicks a line.

onclickmethod

OptionalName of the method inside the row item class that is called if the
user double clicks a line.

ondblclickmethod

OptionalName of the method on adapter level that is called when the user
presses the right mouse button in an empty area.

contextmenumethod

OptionalName of the property inside the row item class that is called if the
user clicks a FIELD control. The VALUEPROP of the clicked field
control will passed.

proprefprop

OptionalName of the adapter property that dynamically sets the
background color for the control.

backgroundcolorprop

In the above example, the selection itself is done by a CHECKBOX. Both CHECKBOX and STR
definitions are bound to the same Boolean value property (selected). Because of the flush
definition inside the CHECKBOX, the table row is highlighted immediately after clicking the check
box.

Inside the REPEAT definition, you can use also normal table rows (TR instead of STR). You cannot
use ITR table rows to form a well-structured grid, because all columns have to be synchronized
in their width.

It is recommended to use STR rows. The reasons are:

■ The STR row refers to a property representing its selection status (property valueprop). If this
property is not available, the STR row automatically deactivates its contained controls. This
means: if the STR row is not represented by a corresponding data object on the server side (be-
cause the grid containsmore rows than aremade available by the grid collection), then all controls
of the STR row are automatically deactivated.

571Layout Elements

ROWTABLEAREA2 - The Flexible Control Grid

■ Special grid functions like up/down cursor navigation and cut/paste operations with the right
mouse button are only available with the STR row, not with TR.

Layout Elements572

ROWTABLEAREA2 - The Flexible Control Grid

65 COLINFOS Control - Show and Hide Single Columns

■ Example .. 574
■ COLINFOS Properties .. 577
■ COLINFO Properties .. 577

573

COLINFOS is a container control that allows to dynamically show and hide single columns in a
ROWTABLEAREA2 control. The COLINFOS container can only contain COLINFO controls. Each
COLINFO control is responsible for one column.

Notes:

1. This feature can only be used with Internet Explorer. It cannot be used with Mozilla Firefox or
Netscape since these browsers do not support the COLGROUP and COL elements as defined with
the HTML 4.01 specification.

2. TheCOLINFOS control is deprecated. It is recommended that you use the visiblepropproperty
of theGRIDCOLHEADER control instead.

Example

The table in this example has three columns: the first column contains a SELECTOR control for
the numbers, the second column contains a FIELD control for the first names, and the third column
contains a FIELD control for the last names.

The second column (first name) can be visible.

You can also hide the second column (first name).

Layout Elements574

COLINFOS Control - Show and Hide Single Columns

The XML layout definition is:

<pagebody>
<rowarea name="ROWTABAREA2 with colinfos">
<rowtablearea2 griddataprop="lines" rowcount="5">

<colinfos>
<colinfo></colinfo>
<colinfo visibleprop="col2"></colinfo>
</colinfos>
<tr>
<gridcolheader name=" " width="30">
</gridcolheader>
<gridcolheader name="First Name" width="120">
</gridcolheader>
<gridcolheader name="Last Name" width="120">
</gridcolheader>
</tr>
<repeat>
<str valueprop="selected">
<selector valueprop="selected" width="30" singleselect="true">
</selector>
<field valueprop="fname" width="120" displayonly="true"

noborder="true">
</field>
<field valueprop="lname" width="120" displayonly="true"

noborder="true">
</field>

</str>
</repeat>

</rowtablearea2>

575Layout Elements

COLINFOS Control - Show and Hide Single Columns

</rowarea>
</pagebody>

A COLINFO control is required for each column that is to be shown/hidden dynamically. The re-
sponsibility for the columns goes from left to right. Thus, the first COLINFO control applies to
the first column, the second COLINFO control applies to the second column, and so on.

In the above example, two COLINFO controls are used even though only the second column is to
be shown/hidden. The first COLINFO control is required since the columns are calculated from
left to right. Since the first COLINFO control does not have a visibleprop property, this column
is always visible.

If youwould omit the first COLINFOcontrol, the visiblepropproperty of the remainingCOLINFO
controlwould be applied to the first column containing the numbers (and not to the second column
containing the first name).

A third COLINFO control is not required in this example, since you do not want to show/hide the
third column containing the last name.

The Java code of the adapter is:

public class colinfosAdapter
extends Adapter
{

// property >col2<
boolean m_col2 = true;
public boolean getCol2() { return m_col2; }
public void setCol2(boolean value) { m_col2 = value; }

// class >LinesItem<
public class LinesItem
{

// property >fname<
String m_fname;
public String getFname() { return m_fname; }
public void setFname(String value) { m_fname = value; }

// property >lname<
String m_lname;
public String getLname() { return m_lname; }
public void setLname(String value) { m_lname = value; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

}

// property >lines<
GRIDCollection m_lines = new GRIDCollection();

Layout Elements576

COLINFOS Control - Show and Hide Single Columns

public GRIDCollection getLines() { return m_lines; }

/** initialisation - called when creating this instance*/
public void init()
{

// generate some content for the displayed lines ...
LinesItem item;
for (int i = 0; i < 5; i++)
{
item = new LinesItem();
item.m_fname = "First Name " +i;
item.m_lname = "Last Name "+i;
m_lines.add(item);

}
}

public void onSwitch()
{
// switch visibility of the second column

m_col2 = !m_col2;
}

}

COLINFOS Properties

Basic

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

COLINFO Properties

Basic

OptionalName of property that tells if the corresponding column that is associatedwith the
colinfo-control is displayed or not. Property must be of type "boolean".

visibleprop

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

577Layout Elements

COLINFOS Control - Show and Hide Single Columns

578

66 FLEXLINE - Flexible Columns in Control Grids

■ Example .. 580
■ FLEXLINE Properties ... 584
■ Increasing the Performance ... 585

579

In aprevious example, the gridwas completely defined as part of the layout definition: the sequence
of columns was internally defined by defining the controls that are part of an STR row.

The FLEXLINE control offers the option to define the columns of a grid dynamically at runtime.
That is: the application decides at runtime which column controls to use with which properties.
Consequently, you can build a control grid with some system configuration in mind, in which the
layout of control grids is customized.

Example

Have a look at the following example:

The grid looks like a normal ROWTABLEAREA2 grid, but it is built in a more dynamic way.

The XML layout definition is:

Layout Elements580

FLEXLINE - Flexible Columns in Control Grids

<page model="flexline_01Adapter">
 <titlebar name="Flexline Example">
 </titlebar>
 <header withdistance="false">
 <button name="Save">
 </button>
 </header>
 <pagebody>
 <rowarea name="Example">
 <vdist height="5">
 </vdist>
 <rowtablearea2 griddataprop="lines" rowcount="10" width="395" ↩
withborder="true">
 <tr>
 <label name=" " asheadline="true">
 </label>
 <flexline infoprop="headline">
 </flexline>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="30">
 </checkbox>
 <flexline infoprop="/rowline">
 </flexline>
 <hdist width="100%">
 </hdist>
 </str>
 </repeat>
 </rowtablearea2>
 <vdist height="10">
 </vdist>
 </rowarea>
 <vdist height="5">
 </vdist>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

You see that there are two FLEXLINE control definitions inside the ROWTABLEAREA2definition:

■ One definition represents the headline of the grid.
■ The other definition is part of each row's content.

Each definition points to a property that passes the configuration at runtime. Within the second
definition, youmay see somethingwhich is new for you: the VALUEPROP references to a property
/rowline. The "/" character at the beginning indicates that this property is always picked from the
adapter - and not from the object representing the row item.

This is the Java code on the server side:

581Layout Elements

FLEXLINE - Flexible Columns in Control Grids

// This class is a generated one.

import java.math.BigDecimal;

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.FLEXLINEInfo;
import com.softwareag.cis.server.util.GRIDCollection;

public class flexline_01Adapter
extends Adapter

{
// class >LinesItem<
public class LinesItem
{

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

String m_article;
BigDecimal m_price;

public void remove()
{

m_lines.remove(this);
}

public String getArticle() { return m_article; }
public void setArticle(String article) { m_article = article; }
public BigDecimal getPrice() { return m_price; }
public void setPrice(BigDecimal price)
{

m_price = price.setScale(2,BigDecimal.ROUND_UP);
}

}

// property >headline<
FLEXLINEInfo m_headline = new FLEXLINEInfo();
public FLEXLINEInfo getHeadline() { return m_headline; }

// property >rowline<
FLEXLINEInfo m_rowline = new FLEXLINEInfo();
public FLEXLINEInfo getRowline() { return m_rowline; }

// property >lines<
GRIDCollection m_lines = new GRIDCollection();
public GRIDCollection getLines() { return m_lines; }

/** initialisation - called when creating this instance*/
public void init()
{

Layout Elements582

FLEXLINE - Flexible Columns in Control Grids

// configure controls in headline
m_headline.addLabel(this,CSVManager.encodeString(new String[]
{

"name","Article",
"width","250",
"asheadline","true"

}));
m_headline.addLabel(this,CSVManager.encodeString(new String[]
{

"name","Price",
"width","100",
"textalign","right",
"asheadline","true"

}));
// configure controls in row
m_rowline.addField(this,CSVManager.encodeString(new String[]
{

"valueprop","article",
"width","250",
"flush","server",
"noborder","true",
"transparentbackground","true"

}));
m_rowline.addField(this,CSVManager.encodeString(new String[]
{

"valueprop","price",
"width","100",
"textalign","right",
"noborder","true",
"transparentbackground","true"

}));
// create lines
for (int i=1; i<=20; i++)
{

LinesItem li = new LinesItem();
li.setArticle("Article " + i);
li.setPrice(new BigDecimal(i*0.99));
m_lines.add(li);

}
}

}

For each FLEXLINE control, there is a FLEXLINEInfo property. The properties are initialized during
the init() phase of the adapter. Of course, you can also change the FLEXLINEInfo configuration
later: there is a corresponding clear()method for doing so.

Inside the FLEXLINEInfo class, there is a Java interface with which you can add:

■ labels
■ check boxes

583Layout Elements

FLEXLINE - Flexible Columns in Control Grids

■ buttons
■ combo boxes

There is amethod for each object. As part of themethod, you always pass the owner (i.e. the current
model) and the configuration of the control.

The configuration is passed as a comma-separated string that is built using the CSVManager class.
You could also directly write the CSV string (valueprop;price;width;100;noborder;true) but
then have to be careful to replace every “real” semicolon character with "\;". You can use and
combine any properties that are available for the controls. This means there is no difference in
managing controls that you flexibly add and controls that are defined in a fixedway inside a layout
definition.

All the other processing around the FLEXLINE management is the same as you know it from
layouts that are defined in a fixed way.

Note: Application Designer now provides a FLEXGRID control. While FLEXLINE still is
supported (and necessary), FLEXGRID offers a simpler API to build dynamically controlled
control grids. Basically, FLEXGRID is a combination of ROWTABLEAREA2, FLEXLINE
and GRIDCOLHEADER. See the description of the FLEXGRID control.

FLEXLINE Properties

Basic

ObligatoryName of the adapter property that provides the server side information for
this control. The adapter property must be of type "FLEXLINEInfo". Inside
the property the sequence of controls is defined.

infoprop

trueOptionalFlag that indicates if a border is drawn between the controls that are rendered
inside the FLEXLINE control. Default is "false", i.e. no border is drawn.

withborder

false

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Layout Elements584

FLEXLINE - Flexible Columns in Control Grids

Increasing the Performance

In the above example, the grid was filled by adding FIELD controls into a FLEXLINE control. In
larger grids with a high number of columns and rows, you may consider displaying your data
within plain <TD> elements. Thus, the grid becomesmore lightweight and the performance increases
significantly. You can output images and use your own cell style. Direct cell input, however, is
not possible.

In the following example, the grid looks like a ROWTABLEAREA2 grid, but it is built in a more
dynamic way.

The XML layout definition is:

<page model="FlexlineTDSAdapter">
 <titlebar name="FLEXLINE-TDS">
 </titlebar>
 <header withdistance="false">
 </header>
 <pagebody>
 <rowarea name="Demo">
 <rowtablearea2 griddataprop="lines" rowcount="5" width="100%" ↩
firstrowcolwidths="true">
 <tr>
 <label name=" " width="30" asheadline="true">
 </label>
 <label name="Product" width="60%" asheadline="true">
 </label>
 <label name="Price&amp;nbsp;" width="20%" asheadline="true" ↩
textalign="right">
 </label>
 <label name="Stock&amp;nbsp;" width="20%" asheadline="true" ↩
textalign="right">
 </label>

585Layout Elements

FLEXLINE - Flexible Columns in Control Grids

 </tr>
 <repeat>
 <str valueprop="selected" withalterbackground="true">
 <selector valueprop="selected">
 </selector>
 <flexline infoprop="/contentFL">

</flexline>
</str>

</repeat>
</rowtablearea2>

</rowarea>
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

You see that there is one FLEXLINE control definition inside the ROWTABLEAREA2 definition.
This definition points to a property that passes the configuration at runtime.Within the definition,
the infoprop references to a property "/contentFL". The slash (/) at the beginning indicates that
this property is always picked from the adapter (it is not picked up from the object representing
the row item).

This is the Java code on the server side:

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class FlexlineTDSAdapter extends Adapter
{
 // class >LinesItem<
 public class LinesItem
 {
 // property >selected<
 boolean m_selected;

 public boolean getSelected()
 {
 return m_selected;
 }

 public void setSelected(boolean value)
 {
 m_selected = value;
 }

 // property >tdsValue<
 String m_tdsValue;

Layout Elements586

FLEXLINE - Flexible Columns in Control Grids

 public String getTdsValue()
 {
 return m_tdsValue;
 }

 // property >tdsColors<
 String m_tdsColor;

 public String getTdsColor()
 {
 return m_tdsColor;
 }

 // property >tdsBGColors<
 String m_tdsBGColor;

 public String getTdsBGColor()
 {
 return m_tdsBGColor;
 }

 // property >tdsAlign<
 String m_tdsAlign;

 public String getTdsAlign()
 {
 return m_tdsAlign;
 }

 // property >imageURL<
 String m_imageURL;

 public String getImageURL()
 {
 return m_imageURL;
 }
 }

 // property >contentFL<
 FLEXLINEInfo m_contentFL = new FLEXLINEInfo();

 public FLEXLINEInfo getContentFL()
 {
 return m_contentFL;
 }

 // property >lines<
 GRIDCollection m_lines = new GRIDCollection();

 public GRIDCollection getLines()
 {

587Layout Elements

FLEXLINE - Flexible Columns in Control Grids

 return m_lines;
 }

 /** initialization - called when creating this instance */
 public void init()
 {
 m_contentFL.addTds(this,
 "colcount;5;" +
 "valueprop;tdsValue;" +
 "fgcolorprop;tdsColor;" +
 "bgcolorprop;tdsBGColor;" +
 "alignprop;tdsAlign;" +
 "imageprop;imageURL;" +
 "font-weight;bold");

 LinesItem item = new LinesItem();
 item.m_tdsValue = "Half fat margarine (with a very-long text for ↩
description);0,99;2300";
 item.m_tdsColor = "#000000;#000000;#000000";
 item.m_tdsBGColor = ";;";
 item.m_imageURL = ";../HTMLBasedGUI/images/helpiconblue.gif;";
 item.m_tdsAlign = "left;right;right";
 m_lines.add(item);

 item = new LinesItem();
 item.m_tdsValue = "Earl Grey Tea;1,99;340";
 item.m_tdsColor = "#000000;#000000;#000000";
 item.m_tdsBGColor = ";;";
 item.m_imageURL = ";;";
 item.m_tdsAlign = "left;right;right";
 m_lines.add(item);

 item = new LinesItem();
 item.m_tdsValue = "White Salmon;4,99;10";
 item.m_tdsColor = "#000000;#000000;#FFFFFF";
 item.m_tdsBGColor = ";;#FF0000";
 item.m_imageURL = ";;";
 item.m_tdsAlign = "left;right;right";
 m_lines.add(item);

 }
}

For each FLEXLINE control, there is a FLEXLINEInfo property. The properties are initialized during
the init() phase of the adapter. You can also change the FLEXLINEInfo configuration later: there
is a corresponding clear()method for doing so.

Inside the FLEXLINEInfo class, there is a Java interface with which you can add the following:

Layout Elements588

FLEXLINE - Flexible Columns in Control Grids

addTds(Adapter owner, String properties);

Semicolons are used to separate the values in the property list. The properties may contain the
following values:

colcount
The number of columns that have to be provided for the contents.

valueprop
The property name of the row item class that returns a list of columnvalueswhich are separated
by semicolons.

fgcolorprop
The property name of the row item class that returns a list of foreground color values which
are separated by semicolons.

bgcolorprop
The property name of the row item class that returns a list of background color values which
are separated by semicolons.

alignprop
The property name of the row item class that returns a list of cell alignment values which are
separated by semicolons. Possible values: left, center, right.

imageprop
The property name of the row item class that returns a list of image URLs which are separated
by semicolons. A single TD contains either text (see valueprop) or an image. If you provide
an image URL and text for same cell, the text is suppressed.

font-weight
The weight of the font.

A width is not passed. It is assumed that the width is defined by the environment (for example,
by a ROWTABLEAREA2 control where the columns have a fixed size).

Note: It is currently only possible to add exactly one Tds control to one FLEXLINE control.

589Layout Elements

FLEXLINE - Flexible Columns in Control Grids

590

67 MGDGRID - Managing the Grid

■ Example .. 592
■ MGDGRID Properties ... 594
■ ROWINSERT Properties ... 598
■ ROWCOPY Properties .. 599
■ ROWDELETE Properties .. 600

591

TheMGDGRID control is an extension of theROWTABLEAREA2 control. It allows to insert, copy
and delete rows of the grid without the need of any corresponding Java coding.

See also STR Propertieswhich are described with the ROWTABLEAREA2 control.

Example

There is a grid that contains a header row and 10 lines. Each line contains two fields and a “delete
row” control.

Each of the function controls (insert, copy, delete) can be added at the top of theMGDGRID, below
the MGDGRID or within the lines of the MGDGRID.

Look at the corresponding layout definition:

<rowarea name="Manage Grid Demo">
<mgdgrid griddataprop="mglines" rowcount="10" width="100%" firstrowcolwidths="true">

<tr>
<label name=" " width="25" asheadline="true">
</label>
<gridcolheader name="First Name" width="50%">
</gridcolheader>
<gridcolheader name="Last Name" width="50%" >
</gridcolheader>
<gridcolheader width="20">
</gridcolheader>
<hdist></hdist>

</tr>

Layout Elements592

MGDGRID - Managing the Grid

<repeat>
<str valueprop="selected" showifempty="true">

<selector valueprop="selected" singleselect="true">
</selector>
<field valueprop="fname" width="100%">
</field>
<field valueprop="lname" width="100%">
</field>
<rowdelete>
</rowdelete>

</str>
</repeat>
<mgdfunctions>
<rowinsert title="Insert a new line">
</rowinsert>
<rowcopy title="Copy selected line">
</rowcopy>

</mgdfunctions>
</mgdgrid>

</rowarea>

This is the corresponding adapter code:

public class ManageGridDemoAdapter
extends Adapter

{
// property >mglines<
MGDGRIDCollection m_mglines = new MGDGRIDCollection(MGDItem.class);
public GRIDCollection getMglines() { return m_mglines; }

}

The constructor of the MGDGRIDCollection class needs an “item class”. This “item class” cannot
be a sub/inner class this time; therefore two separate Java files are required for the MGDGRID.

This is the Java code of the corresponding MGDItem class:

public class MGDItem
{

// property >fname<
String m_fname;
public String getFname() { return m_fname; }
public void setFname(String value) { m_fname = value; }

// property >lname<
String m_lname;
public String getLname() { return m_lname; }
public void setLname(String value) { m_lname = value; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }

593Layout Elements

MGDGRID - Managing the Grid

public void setSelected(boolean value) { m_selected = value; }
}

With the MGDGRID control, there is no need of further Java coding. It handles insert, copy and
delete events itself, but the developer has to take care of the corresponding “item class”.

The MGDGRID control is an extension to the ROWTABLEAREA2 control. See the description of
the ROWTABLEAREA2 control for further information.

MGDGRID Properties

Basic

ObligatoryName of adapter property representing the grid
on server side.

griddataprop

Must be of type "GRIDCollection". Thewhole grid
is represented by the GRIDCollection-object, each
individual row of the grid is represented by one
item inside the collection.

If using the control for building trees
(TREENODE-control inside the grid's items) then
use "TREECollection" on server side.

OptionalNumber of rows that are rendered inside the
control.

rowcount

There are two ways of using this property -
dependent on whether you in addition define the
HEIGHT property:

If you do NOT define the HEIGHT property then
the control is rendered with exactly the number of
rows that are defined as ROWCOUNT value.

If a HEIGHT value is defined in addition (e.g. as
percentage value "100%") then the number of rows
depend on the actual height of the control. The
ROWCOUNT value in this case indicates the
maximum number of rows that are picked from
the server. You should define this value in a way
so that it is not too low - otherwise your grid will
not be fully filled. On the other hand it should not
be defined too high ("100") because this causes
more communication traffic and more rendering
effort inside the browser.

100OptionalHeight of the control.height

Layout Elements594

MGDGRID - Managing the Grid

150There are three possibilities to define the height:

200(A) You do not define a height at all. As
consequence the control will be rendered with its

250default height. If the control is a container control

300
(containing) other controls then the height of the
control will follow the height of its content.

250(B) Pixel sizing: just input a number value (e.g.
"20"). 400

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will

50%

100%only bring up correct results if the parent element
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

100Sometimes
obligatory

Width of the control.

There are three possibilities to define the width:

width

120

(A) You do not define a width at all. In this case
the width of the control will either be a default

140

160width or - in case of container controls - it will
follow the width that is occupied by its content.

180
(B) Pixel sizing: just input a number value (e.g.
"100"). 200

50%(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will 100%
only bring up correct results if the parent element
of the control properly defines awidth this control
can reference. If you specify this control to have a
width of 50% then the parent element (e.g. an
ITR-row) may itself define a width of "100%". If
the parent element does not specify a width then
the rendering result may not represent what you
expect.

trueSometimes
obligatory

If set to "true" then the grid is sized according to
its first row. This first row typically is a

firstrowcolwidths

falseheader-TR-row in which GRIDCOLHEADER
controls are used as column headers for the
subsequent rows.

595Layout Elements

MGDGRID - Managing the Grid

Default is "false", i.e. the grid is sized according to
its "whole content".

Please note: when using the GRIDCOLHEADER
control within the header-TR-row this property
must be set to "true" - otherwise column resizing
(by drag and drop) does not work correctly.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Appearance

trueOptionalIf set to "false" then no thin border is drawn around
the controls that are contained in the grid.

withborder

false
Default is "true".

autoOptionalDefinition of the horizontal scrollbar's appearance.hscroll

scrollYou can define that the scrollbars only are shown
if the content is exceeding the control's area

hidden("auto"). Or scrollbars can be shown always
("scroll"). Or scrollbars are never shown - and the
content is cut ("hidden").

Default is "hidden".

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if
the content is exceeding the control's area ("auto").

hiddenOr scrollbars can be shown always ("scroll"). Or
scrollbars are never shown - and the content is cut
("hidden").

Default is "scroll".

(already explained above)firstrowcolwidths

trueOptionalIf switched to true then the content of the grid can
be selected and exported into the client's clipboard.

clipboardaccess

false

trueOptionalIf switched to "true" then the grid will show small
scroll icons by which the user can scroll the grid's

withblockscrolling

falsecontent. Scrolling typically is done by using the
grid's scrollbar - the scroll icons that are switched
on by this property are an additional possibility to
scroll.

trueOptionalIf set to "true" then touch screen icons for scrolling
are displayed in addition.

touchpadinput

false
Default is "false".

Layout Elements596

MGDGRID - Managing the Grid

1OptionalMinimum height of the control in pixels. Use this
property to ensure aminimumheight if the overall

requiredheight

2control's height is a percentage of the available

3
space - i.e. if value of property HEIGHT is a
percentage (e.g. 100%).

int-valuePlease note:You must not use FIXLAYOUT at the
surrounding row container (ITR andROWAREA).
Otherwise: if the available space is less than the
required height the end of the control is just cut
off.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

tablestyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the "View
source" or "View frame's source" function.

Binding

OptionalName of adapter method that is called when the
user presses right mouse button into the grid - but

oncontextmenumethod

not on an existing row (then the row item object is
responsible for handling the right mouse button)
but on "empty area" of the grid.

OptionalName of an adapter method that is called if the
user presses the TAB key within the very last cell

fwdtabkeymethod

of the grid (last cell within the last line). Use
property FWDTABKEYFILTER to associate this
call with a grid column.

OptionalBy default the FWDTABKEYMETHOD is called if
the user presses the TAB key within the veryfirst

fwdtabkeyfilter

cell of the grid. Input the name of a cell's
VALUEPROP to associate the method call with
any other column.

OptionalName of an adapter method that is called if the
user presses SHIFT and TAB keys within the first

bwdtabkeymethod

597Layout Elements

MGDGRID - Managing the Grid

cell of a grid line. Use property
BWDTABKEYFILTER to associate this call with a
cell of choice.

OptionalBy default the BWDTABKEYMETHOD is called if
the user presses the SHIFT and TAB keys within

bwdtabkeyfilter

the very first cell of the grid. Input the name of a
cell's VALUEPROP to associate the method call
with any other column.

Hot Keys

OptionalComma separated list of hot keys. A hotkey
consists of a list of keys and a method name.

hotkeys

Separate the keys by "-" and the method name
again with a comma

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot
keys. Method onCtrlAltA is invoked if the user
presses Ctrl-Alt-A. Method "onEnter" is called if
the user presses the ENTER key.

Use the popup help within the Layout Painter to
input hot keys.

ROWINSERT Properties

Basic

ObligatoryURL that points to the image that is shown as icon.image

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of an adapter property that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

The server side property needs to be of type "boolean".

Online Help

Layout Elements598

MGDGRID - Managing the Grid

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

ROWCOPY Properties

Basic

ObligatoryURL that points to the image that is shown as icon.image

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of an adapter property that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

The server side property needs to be of type "boolean".

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

599Layout Elements

MGDGRID - Managing the Grid

ROWDELETE Properties

Basic

ObligatoryURL that points to the image that is shown as icon.image

The URL either is an absolute URL or a relative URL. If using a relative URL
then be aware of that the generated page is located directly inside your project's
directory.

Example: "images/icon.gif" points to an icon in an images-folder that is parallel
to the page itself. "../HTMLBasedGUI/images/new.gif" point to a URL that is
located inside a different project.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Binding

OptionalName of an adapter property that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

The server side property needs to be of type "boolean".

Online Help

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management - representing the
tooltip text that is used for the control.

titletextid

Layout Elements600

MGDGRID - Managing the Grid

68 GRIDCOLHEADER - Flexible Column Headers

■ Flexible Column Sizing ... 602
■ Flexible Column Sorting .. 606
■ Flexible Column Sequence .. 607
■ GRIDCOLHEADER Properties ... 614
■ Smart Selection of Rows - SELECTOR Control .. 617
■ SELECTOR Properties ... 618

601

In the example introducing the ROWTABLEAREA2 control, the header of the grid was built by
arranging certain LABEL controls, where the LABEL controls where rendered as headers:

<rowtablearea2 griddataprop="lines" rowcount="10" withborder="true" width="100%">
<tr>

...
<label name="First Name" asheadline="true">
</label>
...

</tr>
<repeat>

...

...

...

It is also possible to use the GRIDCOLHEADER control in order to define the header of a grid.
The advantages are:

■ GRIDCOLHEADER controls are automatically rendered in “header style”.
■ GRIDCOLHEADER controls allow to sort the grid content.
■ GRIDCOLHEADER controls allow to resize a grid.
■ GRIDCOLHEADER controls allow to change the sequence of columns - if used together with
the FLEXLINE control.

Flexible Column Sizing

Let us have a look on the following grid definition:

<rowarea name="Grid Col Header Example">
 <rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="true"
 hscroll="true" firstrowcolwidths="true">
 <tr>
 <gridcolheader name=" " width="30">
 </gridcolheader>
 <gridcolheader name="First Name" width="150">
 </gridcolheader>
 <gridcolheader name="Last Name" width="150">
 </gridcolheader>
 <hdist>
 </hdist>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="100%" ↩
align="center">
 </checkbox>

Layout Elements602

GRIDCOLHEADER - Flexible Column Headers

 <field valueprop="firstName" width="100%" noborder="true"
 transparentbackground="true">
 </field>
 <field valueprop="lastName" width="100%" noborder="true"
 transparentbackground="true">
 </field>
 <hdist>
 </hdist>
 </str>
 </repeat>
 </rowtablearea2>
</rowarea>

You see:

■ The ROWTABLEAREA2 definition was set to always follow the columnwidths of the first row.
The first row of the grid is the row containing the GRIDCOLHEADER controls, this means that
this row defines the column sizing for the whole grid.

■ The header row of the grid is built out of GRIDCOLHEADER controls, each one specifying a
name and a width.

■ The header row is closed with an horizontal distance.This is quite important: if your column
widths do not horizontally fill the grid, then the remaining space is typically equally distributed
among the columns. Even if GRIDCOLHEADER specifies a certain width, this may still be
overridden by the browser. A horizontal distance control (HDIST) at the endmakes the browser
assign the remaining space to the distance control, not to the GRIDCOLHEADER controls.

When the usermoves themouse over the border of the header columns, then the cursorwill change
and the user can change the width of the columns:

603Layout Elements

GRIDCOLHEADER - Flexible Column Headers

Your adapter gets notified by a certain event if the user changes the width of the columns. Have
a look at the adapter code:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.GRIDCOLHEADERInfo;
import com.softwareag.cis.server.util.GRIDCollection;
import com.softwareag.cis.server.util.IGRIDCOLHEADERChangeListener;
import com.softwareag.cis.server.util.ISSSARRAYInfo;

public class FlexibleColumnSizingAdapter
extends Adapter
implements IGRIDCOLHEADERChangeListener

{
// class >LinesItem<
public class LinesItem
{

// property >firstName<
String m_lastName;
public String getLastName() { return m_firstName; }
public void setLastName(String value) { m_firstName = value; }

String m_firstName;
public String getFirstName() { return m_firstName; }
public void setFirstName(String value) { m_firstName = value; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

Layout Elements604

GRIDCOLHEADER - Flexible Column Headers

}

// property >lines<
GRIDCollection m_lines = new GRIDCollection();
public GRIDCollection getLines() { return m_lines; }

/** initialisation - called when creating this instance*/
public void init()
{

for (int i=0; i<20; i++)
{

LinesItem line = new LinesItem();
line.setFirstName("First Name " +i);
line.setLastName("Last Name " + i);
m_lines.add(line);

}
m_lines.addGridColHeaderChangeListener(this);

}

// --
// interface IGRIDCOLHEADERChangeListener
// --

public void reactOnContextMenuRequest(ISSSARRAYInfo collection,
GRIDCOLHEADERInfo colInfo)

{ }

public void reactOnMove(ISSSARRAYInfo collection, GRIDCOLHEADERInfo[] colInfo)
{ }

public void reactOnResize(ISSSARRAYInfo collection,
GRIDCOLHEADERInfo[] colInfos)

{
String colWidths = "";
for (int i=0; i<colInfos.length; i++)
{

colWidths += colInfos[i].getWidth();
colWidths += " ";

}
outputMessage(MT_SUCCESS,colWidths);

}
}

The interface IGRIDCOLHEADERChangeListener passes all events inside the GRIDCOLHEADER
controls to the adapter code. You register the interface by using the GRIDCollection's
addColHeaderChangeListenermethod.

In addition, you can set the widths of the columns by your adapter, e.g. you may store column
widths inside your application in order to save the user's column settings and later on reapply the
width information.

605Layout Elements

GRIDCOLHEADER - Flexible Column Headers

Flexible Column Sorting

TheGRIDCOLHEADERallows to bind to a propertywhich is used for sorting. The XMLdefinition
of the previous example was extended to demonstrate this:

<rowarea name="Grid Col Header Example">
 <rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="true"
 hscroll="true" firstrowcolwidths="true">
 <tr>
 <gridcolheader name=" " width="30" propref="selected">
 </gridcolheader>
 <gridcolheader name="First Name" width="150" propref="firstName">
 </gridcolheader>
 <gridcolheader name="Last Name" width="150" propref="lastName">
 </gridcolheader>
 <hdist>
 </hdist>
 </tr>
 <repeat>
 <str valueprop="selected">
 <checkbox valueprop="selected" flush="screen" width="100%" ↩
align="center">
 </checkbox>
 <field valueprop="firstName" width="100%" noborder="true"
 transparentbackground="true">
 </field>
 <field valueprop="lastName" width="100%" noborder="true"
 transparentbackground="true">
 </field>
 <hdist>
 </hdist>
 </str>
 </repeat>
 </rowtablearea2>
</rowarea>

Each GRIDCOLHEADER control now points to the property that is referenced in the subsequent
FIELD/CHECKBOX definition. The control now displays small sort icons. The user can sort the
information by choosing the icon. Sorting is done implicitly on the server side, i.e. the order of
items inside the collection is changed without any programming effort.

Layout Elements606

GRIDCOLHEADER - Flexible Column Headers

The automated sorting is a feature of the GRID collection object. The sorting is data type aware,
i.e. if a property is a string property, then lexical sorting is performed; if it is, for example, an integer
or float property, then numeric sorting is performed.

Flexible Column Sequence

Let us have a look at the following grid definition:

<rowtablearea2 griddataprop="lines" rowcount="20" width="100%"
withborder="true" hscroll="true" firstrowcolwidths="true">

<tr>
<label width="25" asheadline="true">
</label>
<flexline infoprop="gridheaderline">
</flexline>
<hdist>
</hdist>

</tr>
<repeat>

<str valueprop="selected">
<selector valueprop="selected">
</selector>
<flexline infoprop="/flexInfo">
</flexline>
<hdist>
</hdist>

</str>
</repeat>

</rowtablearea2>

You see:

■ The ROWTABLEAREA2 definition is set to always follow the column widths of the first row
(FIRSTROWCOLWIDTH is set to "true"). The first row of the grid is the row containing the
header FLEXLINE control. This means that this row defines the column sizing for the whole
grid.

■ The header row of the grid is built using a FLEXLINE control. At runtime, we pass GRIDCOL-
HEADER controls, where each GRIDCOLHEADER control specifies a name and a width.

607Layout Elements

GRIDCOLHEADER - Flexible Column Headers

■ The header row is closed with a horizontal distance.This is important: if your column widths
do not horizontally fill the grid, then the remaining space is typically equally distributed among
the columns. Even if GRIDCOLHEADER specifies a certain width, this may still be overridden
by the browser. A horizontal distance control (HDIST) at the end makes the browser assign the
remaining space to the distance control, not to the GRIDCOLHEADER controls.

The user can change the sequence of the columns by moving a column header to the position of
another header. Example:

Layout Elements608

GRIDCOLHEADER - Flexible Column Headers

Your adapter gets notified by a certain event if the user changes the width of the columns. Have
a look at the adapter code:

// This class is a generated one.
package com.softwareag.cis.test40;

import java.util.Hashtable;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.server.util.FLEXLINEInfo;
import com.softwareag.cis.server.util.GRIDCOLHEADERInfo;
import com.softwareag.cis.server.util.GRIDCollection;
import com.softwareag.cis.server.util.IGRIDCOLHEADERChangeListener;
import com.softwareag.cis.server.util.ISSSARRAYInfo;
import com.softwareag.cis.server.util.MENUNODEInfo;
import com.softwareag.cis.server.util.SelectableLine;
import com.softwareag.cis.server.util.TREECollection;

/**
 * Adapter class for Demo "/cisdemos/35_gridheader.xml/"
 * */
public class GridColHeadersAdapter
 extends Adapter
 implements IGRIDCOLHEADERChangeListener
{
 // ---
 // members
 // ---

 private GRIDCOLHEADERInfo[] m_gridColHeaderInfos;
 private int s_cellCounter = 1000;
 private String m_columnSortTooltip;
 private String[] m_proprefs = new String[]
 {

609Layout Elements

GRIDCOLHEADER - Flexible Column Headers

 "aaa",
 "bbb",
 "ccc",
 "ddd"
 };
 private String[] m_widths = new String[]
 {
 "25%",
 "25%",
 "25%",
 "25%"
 };
 private String[] m_titles = new String[]
 {
 "AAA",
 "BBB",
 "CCC",
 "DDD"
 };

 // ---
 // inner classes
 // ---

 /** Represents one line within the grid. The column values of the grid
 * line is kept dynamically (interface IDynamicAccess) - there are
 * no explicit Getter and Setter methods. The definition of the column
 * are kept dynamically, too (FLEXLINEInfo).
 */
 public class Line extends SelectableLine implements IDynamicAccess
 {
 Hashtable m_propertyValues = new Hashtable();

 /** Constructs a grid line that visualizes a person.*/
 public Line(String[] propRefs, String[] widths)
 {
 for (int i = 0; i < propRefs.length; i++)
 m_propertyValues.put(propRefs[i], ""+s_cellCounter--);

 rebuildContentLine(propRefs, widths);
 }

 public void rebuildContentLine(String[] propRefs,
 String[] width)
 {
 m_flexInfo.clear();
 for (int i = 0; i < propRefs.length; i++)
 ↩
m_flexInfo.addField(GridColHeadersAdapter.this,"valueprop;"+propRefs[i]+";" +
 "width;"+width[i]+";" +
 "noborder;true;" +

Layout Elements610

GRIDCOLHEADER - Flexible Column Headers

 "transparentbackground;true;");
 }

 /** Dynamic person properties */
 public String[] findDynamicAccessProperties()
 {
 return m_proprefs;
 }

 /** Java Datatype */
 public Class getClassForProperty(String property)
 {
 return null; // ==> String
 }
 public Object getPropertyValue(String propertyName)
 {
 return m_propertyValues.get(propertyName);
 }
 public void setPropertyValue(String propertyName, Object value)
 {
 if (value == null) value = "";
 m_propertyValues.put(propertyName, value);
 }
 public void invokeMethod(String methodName)
 {
 // nothing to do
 }
 }

 // ---
 // property access
 // ---

 // property >gridheaderline<
 FLEXLINEInfo m_gridheaderline = new FLEXLINEInfo();
 public FLEXLINEInfo getGridheaderline() { return m_gridheaderline; }
 public void setGridheaderline(FLEXLINEInfo value) { m_gridheaderline = value; }

 // property >flexInfo<
 FLEXLINEInfo m_flexInfo = new FLEXLINEInfo();
 public FLEXLINEInfo getFlexInfo() { return m_flexInfo; }

 // property >lines<
 GRIDCollection m_lines = new GRIDCollection();
 public GRIDCollection getLines() { return m_lines; }

 // ---
 // public methods
 // ---

 /** Is called on page load*/
 public void init()

611Layout Elements

GRIDCOLHEADER - Flexible Column Headers

 {
 m_lines.registerGridColHeaderChangeListener(this);
 m_gridColHeaderInfos = new GRIDCOLHEADERInfo[m_proprefs.length];
 for (int i = 0; i < m_proprefs.length; i++)
 m_gridColHeaderInfos[i] = new ↩
GRIDCOLHEADERInfo(i,m_proprefs[i],m_widths[i]);
 for (int i = 0; i < 50; i++)
 m_lines.add(new Line(m_proprefs,m_widths));
 rearrangeGridColumns(m_gridColHeaderInfos);
 }

 /** Is called when user re-orders columns by drag and drop */
 public void reactOnMove(ISSSARRAYInfo collection, GRIDCOLHEADERInfo[] colInfo)
 {
 rearrangeGridColumns(colInfo);

 // output info
 String info = replaceLiteral("release40","gridcolhead.columnorder");
 for (int i = 0; i < colInfo.length; i++)
 {
 info += ↩
replaceLiteral("release40","gridcolhead.column")+colInfo[i].getPropref().toUpperCase();
 if (i != (colInfo.length-1))
 info += ", ";
 }
 outputMessage(MT_SUCCESS, info);
 }

 /** Is called when user re-orders columns by drag and drop */
 public void reactOnResize(ISSSARRAYInfo collection, GRIDCOLHEADERInfo[] colInfo)
 {
 rearrangeGridColumns(colInfo);

 // output info
 String info = replaceLiteral("release40","gridcolhead.columnwidth");
 for (int i = 0; i < colInfo.length; i++)
 {
 info += ↩
replaceLiteral("release40","gridcolhead.column")+colInfo[i].getPropref().toUpperCase()+" ↩
("+colInfo[i].getWidth()+")";
 if (i != (colInfo.length-1))
 info += ", ";
 }
 outputMessage(MT_SUCCESS, info);
 }

 /** */
 public void reactOnContextMenuRequest(ISSSARRAYInfo collection, GRIDCOLHEADERInfo ↩
colInfo)
 {
 }

Layout Elements612

GRIDCOLHEADER - Flexible Column Headers

 // ---
 // private helpers
 // ---

 private void rearrangeGridColumns(GRIDCOLHEADERInfo[] colInfo)
 {
 m_gridColHeaderInfos = colInfo;

 // HEADER
 m_gridheaderline.clear();
 for (int i = 0; i < colInfo.length; i++)
 m_gridheaderline.addGridColHeader(this,
 m_lines,
 ↩
"name;"+findTitleForPropRef(colInfo[i].getPropref())+";" +
 "width;"+colInfo[i].getWidth()+";" +
 "propref;"+colInfo[i].getPropref()+";"+
 "sorttitle;"+m_columnSortTooltip);

 // CONTENT
 String[] columns = new String[colInfo.length];
 for (int i = 0; i < columns.length; i++)
 columns[i] = colInfo[i].getPropref();

 String[] witdhs = new String[colInfo.length];
 for (int i = 0; i < columns.length; i++)
 witdhs[i] = colInfo[i].getWidth();

 for (int i=0; i<m_lines.size(); i++)
 {
 Line l = (Line)m_lines.get(i);
 l.rebuildContentLine(columns, witdhs);
 }
 }

 private String findTitleForPropRef(String propRef)
 {
 for (int i = 0; i < m_proprefs.length; i++)
 {
 if (m_proprefs[i].equals(propRef))
 return m_titles[i];
 }
 return ""; // should not happen
 }
}

The interface IGRIDCOLHEADERChangeListener passes all events inside the GRIDCOLHEADER
controls to the adapter code. You register the interface by using the GRIDCollection's
addColHeaderChangeListenermethod.

613Layout Elements

GRIDCOLHEADER - Flexible Column Headers

In addition, you can set the sequence of the columns by your adapter, e.g. you may store the
column sequence inside your application in order to save the user's column settings and later on
reapply the width information.

GRIDCOLHEADER Properties

Basic

Sometimes
obligatory

Text that is displayed inside the control. Please do not specify the
name when using the multi language management - but specify a
"textid" instead.

name

Sometimes
obligatory

Multi language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

100ObligatoryWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50% then
the parent element (e.g. an ITR-row) may itself define a width of
"100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalIf the grid column visualizes data input the name of the property
here. This property is located within the row item class. Example: if

propref

you use a FIELD or CHECKBOX control input the value of property
VALUEPROP here. If the grid column does not visualize any data
(e.g. you use a BUTTON control) input an unique column identifier.
The PROPREFproperty is used as keywhenflushing 'column change
events' to the application.

Appearance

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use
the TITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text that is used for the control.

titletextid

Layout Elements614

GRIDCOLHEADER - Flexible Column Headers

trueOptionalFlag that indicates if a small sort indicator is shown within the right
corner of the control. Default is TRUE.

withsorticon

false

OptionalURL of image that is displayed inside the control. Any image type
(.gif, .jpg, ...) that your browser does understand is valid.

image

Use the following options to specify the URL:

(A) Define the URL relative to your page. Your page is generated
directly into your project's folder. Specifiying "images/xyz.gif" will
point into a directory parallel to your page. Specifying
"../HTMLBasedGUI/images/new.gif" will point to an image of a
neighbour project.

(B) Define a complete URL, like
"http://www.softwareag.com/images/logo.gif".

trueOptionalThe textual content of the header is not wrapped automatically. No
line break will be performed automatically by the browser. If you
want the text of the header to be wrapped, set the value to "false".

nowrap

false

VAR1OptionalSome controls offer the possibility to define style variants. By this
style variant you can address different styles inside your style sheet

stylevariant

VAR2definition file (.css). If not defined "normal" styles are chosen, if

VAR3
defined (e.g. "VAR1") then other style definitions (xxxVAR1xxx) are
chosen.

VAR4Purpose: you can set up style variants in the style sheet defintion
and use them multiple times by addressing them via the
"stylevariant" property. CIS currently offerst two variants "VAR1"
and "VAR2" but does not predefine any semantics behind - this is
up to you!

OptionalText that is shown as tooltip for the sort indicator.sorttitle

Either input text by using this SORTTITLE property - or use the
SORTTITLETEXTID in order to define a language dependent literal.

OptionalText ID that is passed to the multi lanaguage management -
representing the tooltip text for the sort indicator.

sorttitletextid

trueOptionalSet this attribute to TRUE if you want the columns to be movable at
runtime. Default is FALSE. Please notice that only specific controls
like FIELD in a grid support movable columns.

movablecol

false

leftOptionalAlignment of text inside the control.textalign

center

right

-1OptionalIndex that defines the tab order of the control. Controls are selected
in increasing index order and in source order to resolve duplicates.

tabindex

615Layout Elements

GRIDCOLHEADER - Flexible Column Headers

0

1

2

5

10

32767

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to control
the number of rows your control occupies. By default it is "1" - but

3you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does notmake sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to control
the number of columns your control occupies. By default it is "1" -

3but you may want to define the control to span over more than one
columns.

4
The property only makes sense in table rows that are snychronized
within one container (i.e. TR, STR table rows). It does notmake sense
in ITR rows, because these rows are explicitly not synched.

5

50

int-value

Binding

Comment

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Layout Elements616

GRIDCOLHEADER - Flexible Column Headers

Smart Selection of Rows - SELECTOR Control

By using the SELECTOR control in combination with the STR control, you can build nice looking
grids in which the user can select rows - without effort on the programming side. Have a look at
the following screen:

The SELECTOR control is typically is used in the leftmost column. The user can select the control
with themouse or keyboard. In case of using the control for multiple selections, the user can select
mulitple rows using a combination of CTRL and click or SHIFT and click.

The SELECTOR control references a boolan property inside a row object that is representing the
selection state. The XML layout definition looks as follows:

<rowtablearea2 griddataprop="lines" rowcount="10" width="100%" withborder="true"
hscroll="true" firstrowcolwidths="true">

<tr>
<gridcolheader name=" " width="30" propref="selected">
</gridcolheader>
<gridcolheader name="First Name" width="150" propref="firstName">
</gridcolheader>
<gridcolheader name="Last Name" width="150" propref="lastName">
</gridcolheader>
<hdist>
</hdist>

</tr>
<repeat>

<str valueprop="selected">
<selector valueprop="selected" width="30" withlinenum="false"

singleselect="false">
</selector>
<field valueprop="firstName" width="100%" noborder="true"

transparentbackground="true">
</field>
<field valueprop="lastName" width="100%" noborder="true"

transparentbackground="true">
</field>
<hdist>
</hdist>

</str>
</repeat>

</rowtablearea2>

617Layout Elements

GRIDCOLHEADER - Flexible Column Headers

You see the following:

■ STR and SELECTOR are referencing the same property selected so that selections done by the
SELECTOR control are automatically reflected in the selections of the row.

■ SELECTOR is switched to allow multiple selections.
■ By using the property withlinenum, you specify that inside the selector no line number is output.
Instead, the SELECTOR is left empty if not selected, or it displays an icon if selected.

The selector simplifies programming of the grid selection a lot. When clicking the selector control,
it automatically manages the referenced selection property of all rows that are managed inside
the corresponding grid collection.

SELECTOR Properties

Basic

OptionalName of adapter property that is indicating the selection status of the
row that the selector refers to. The property is set and get by the
SELECTOR control.

valueprop

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control
will either be a default width or - in case of container controls - it will
follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizingwill only bring up correct results if the parent element

50%of the control properly defines a width this control can reference. If you

100%specify this control to have a width of 50% then the parent element (e.g.
an ITR-row) may itself define a width of "100%". If the parent element
does not specify a width then the rendering result may not represent
what you expect.

trueOptionalIndicates if the multiple lines can be selected ("false") or only one line
can be selected ("true"). Default is "true".

singleselect

false

OptionalCommentwithout any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Binding

(already explained above)valueprop

Appearance

Layout Elements618

GRIDCOLHEADER - Flexible Column Headers

trueOptionalThere are two usage variants: either the line number of the corresponding
row is shown as content of the SELECTOR control ("true") - or nothing
is shown inside ("false").

withlinenum

false

In case of selecting "true" then the line number is automatically retrieved,
i.e. you do not have to specify a property on adapter side to indicate the
value of the line number.

OptionalIf specifying WITHLINENUM to be "false" then a small arrow icon is
shown inside the control if selecting a corresponding row. Input the URL
of the icon to be shown if you do not want to use the default icon.

image

If specifying WITHLINENUM to be "true" then the line number of
selected lines is output in bold font.

OptionalThe URL of the image to be shown for displaying selected rows is not
hardwires via the IMAGEproperty but "softwired": you refer an adapter
property that dynamically passes the URL of the image to be shown.

imageprop

trueOptionalFlag that indicates if the selector shows its image - independent from
whether the corresponding line is selected or not. With

alwaysshowicon

falseALWAYSHOWICON you can show icons on unselected lines, too. For
that specify WITHLINENUM to be "false" and use IMAGEPROP.

Default is "false".

-1OptionalIndex that defines the tab order of the control. Controls are selected in
increasing index order and in source order to resolve duplicates.

tabindex

0

1

2

5

10

32767

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later on
used within your test tool in order to do the object identification

testtoolid

619Layout Elements

GRIDCOLHEADER - Flexible Column Headers

620

69 FLEXGRID - Flexible Grid, Hiding the Grid Complixity for

Developers
■ FLEXGRID Properties .. 624
■ Overriding FLEXGRIDInfo ... 626

621

In the previous sections, you saw the basics that make a flexible grid:

■ ROWTABLEAREA2, REPEAT, STR as controls for defining a grid structure.
■ GRIDCOLHEADER for defining header columns and getting move, resize events.
■ FLEXLINE for defining a column's layout (both for header and for items).
■ SELECTOR for selecting rows.

Even though each control has its dedicated task and is itself fairly uncomplex, the combination of
all controls is not easy for developers to cope with in order to build flexible grids.

The FLEXGRID control is a pre-packaged arrangement of all these controls, combined with a
server-side processing that is available using the corresponding FLEXGRIDInfo class. With a
FLEXGRID control, you can easily (and dynamically) set up the layout of a grid - and all the ad-
vantages such as reacting on moving columns are automatically available.

Have a look at the following grid:

It looks like a normal grid - the corresponding layout definition shows the difference:

<rowarea name="Demo">
 <flexgrid infoprop="grid" selectprop="selected" rowcount="10" ↩
singleselect="false">
 </flexgrid>
</rowarea>

The definition of the grid is very compact - only pointing to a certain property on the server side
(gridinfoprop), defining a selection property (selectprop) and a row count.

The server-side code is also quite simple:

Layout Elements622

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

package com.softwareag.cis.test40;

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class FlexGrid2Adapter
 extends Adapter
{
 public class MyLine extends SelectableLine
 {
 String m_firstName;
 String m_lastName;
 boolean m_released;
 public String getFirstName() { return m_firstName; }
 public void setFirstName(String firstName) { m_firstName = firstName; }
 public String getLastName() { return m_lastName; }
 public void setLastName(String lastName) { m_lastName = lastName; }
 public boolean getReleased() { return m_released; }
 public void setReleased(boolean released) { m_released = released; }
 }

 FLEXGRIDInfo m_grid = new FLEXGRIDInfo(this);
 public FLEXGRIDInfo getGrid() { return m_grid; }
 public void setGrid(FLEXGRIDInfo value) { m_grid = value; }

 public void init()
 {
 m_grid.clearColumnStructure();
 m_grid.addFieldColumn("firstName","50%","name;First ↩
Name","transparentbackground;true");
 ↩
m_grid.addCheckboxColumn("released","30","name;Rel","transparentbackground;true");
 m_grid.addFieldColumn("lastName","50%","name;Last ↩
Name","transparentbackground;true");
 m_grid.addButtonColumn("100","name;","name;OK");
 for (int i=0; i<8; i++)
 {
 MyLine ml = new MyLine();
 ml.setFirstName("FN " + i);
 ml.setLastName("LN " + i);
 m_grid.getLines().add(ml);
 }
 }
}

There is a property grid of type FLEXGRIDInfo that is referenced by the control. In the init()
method of the adapter, the grid is prepared: diverse controls are added (the same controls as with
FLEXLINE are available for dynamic adding).

Have a look at the following Java statement:

623Layout Elements

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

m_grid.addFieldColumn("firstName","50%","name;First ↩
Name","transparentbackground;true");

There are four parameters that are passed:

■ The name of the "valueprop" for the FIELD control that is internally generated.
■ The width of the control.
■ The additional properties of the GRIDCOLHEADER control that is internally generated as
header column.

■ The additional properties of the FIELD control that is generated as content.

At any point of time, you can change the column layout inside your adapter by calling themethod
clearColumnStructure() and then recalling the addField/addCheckbox etc. methods.

FLEXGRID Properties

Basic

ObligatoryName of the adapter property that provide a FLEXGRIDInfo
object that serves the control on server side. The structure of
columns is defined within this object using a JAVA API.

infoprop

ObligatoryName of the item property that indicates if a grid line is selected.selectprop

1OptionalNumber of rows that are rendered inside the control.rowcount

2There are twoways of using this property - dependent onwhether
you in addition define the HEIGHT property:

3
If you do NOT define the HEIGHT property then the control is
rendered with exactly the number of rows that are defined as
ROWCOUNT value.

int-value

If aHEIGHTvalue is defined in addition (e.g. as percentage value
"100%") then the number of rows depend on the actual height of
the control. The ROWCOUNT value in this case indicates the
maximum number of rows that are picked from the server. You
should define this value in a way so that it is not too low -
otherwise your grid will not be fully filled. On the other hand it
should not be defined too high ("100") because this causes more
communication traffic and more rendering effort inside the
browser.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a

Layout Elements624

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

250container control (containing) other controls then the height of
the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if 400

50%
the parent element of the control properly defines a height this
control can reference. If you specify this control to have a height

100%of 50% then the parent element (e.g. an ITR-row)may itself define
a height of "100%". If the parent element does not specify awidth
then the rendering result may not represent what you expect.

autoOptionalDefinition of the vertical scrollbar's appearance.vscroll

scrollYou can define that scrollbars only are shown if the content is
exceeding the control's area ("auto"). Or scrollbars can be shown

hiddenalways ("scroll"). Or scrollbars are never shown - and the content
is cut ("hidden").

Default is "scroll".

trueOptionalIf switched to "true" then the grid will show small scroll icons by
which the user can scroll the grid's content. Scrolling typically is

withblockscrolling

falsedone by using the grid's scrollbar - the scroll icons that are
switched on by this property are an additional possibility to scroll.

trueOptionalFlag that indicates if a line that is not used at the moment is
visible. Example: if set to false a grid with rowcount of ten and

showemptylines

falsecollection size of seven the last three remaining lines become
invisible.

Default is true.

Selector

100OptionalWidth of the control.selectorwidth

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
control will either be a default width or - in case of container
controls - it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if

50%the parent element of the control properly defines a width this

100%control can reference. If you specify this control to have a width
of 50% then the parent element (e.g. an ITR-row)may itself define
a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

625Layout Elements

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

trueOptionalIndicates if the multiple lines can be selected ("false") or only one
line can be selected ("true"). Default is "true".

singleselect

false

trueOptionalThere are two usage variants: either the line number of the
corresponding row is shown as content of the SELECTOR control
("true") - or nothing is shown inside ("false").

withlinenum

false

In case of selecting "true" then the line number is automatically
retrieved, i.e. you do not have to specify a property on adapter
side to indicate the value of the line number.

OptionalIf specifying WITHLINENUM to be "false" then a small arrow
icon is shown inside the control if selecting a corresponding row.

image

Input the URL of the icon to be shown if you do not want to use
the default icon.

If specifying WITHLINENUM to be "true" then the line number
of selected lines is output in bold font.

OptionalThe URL of the image to be shown for displaying selected rows
is not hard wires via the IMAGE property but "soft wired": you

imageprop

refer an adapter property that dynamically passes theURL of the
image to be shown.

Overriding FLEXGRIDInfo

You can override the FLEXGRIDInfo class at any time and build up your own, extended class. See
the Java API documentation for more details.

Layout Elements626

FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers

70 Sorting Aspects with Grids

■ Default Sorting .. 628
■ Your Own Sorting .. 628
■ Special Consideration with CSVCOLUMN Controls .. 630

627

Application Designer's grid controls support automated sorting of items.

■ TEXTGRID(SSS): by default, you can sort the grid columns by clicking on the corresponding
columns header.When usingCSVCOLUMNcontrols, you need to explicitly tell which property
is behind which column (property proprefsprop).

■ ROWTABLEAREA2: by using theGRIDCOLHEADERcontrol, you have the same type of sorting
as you have with TEXTGRIDs.

Default Sorting

The default sorting is done in the following way:

■ Application Designer sorts the grid collection on the server side.
■ Application Designer accesses the grid item objects by reflection or by dynamic access. (See
Binding between Page and Adapter for more information on dynamic access.)

■ Application Designer is taking the data type of the property into consideration when deciding
whether to sort lexically or numerically.

Your Own Sorting

You can override the default sorting inside a TEXTGRIDCollection or GRIDCollection. The following
example shows how to do so:

package com.softwareag.cis.demoapps;

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class GridSortAdapter
 extends Adapter
{
 /**
 * Own textgrid collection that overrides the default sort behaviour.
 */
 public class MyTGC extends TEXTGRIDCollection
 {
 /**
 * Own SortInfo-class. In the sort-method you can do "everything you like"
 * for sorting: you can e.g. manipulate the grid collection in any way.

Layout Elements628

Sorting Aspects with Grids

 */
 public class MySI extends SORTInfo
 {
 public void sort(String sortProperty, boolean ascending)
 {
 outputMessage(MT_SUCCESS,"Sorting: " + sortProperty + ", " + ↩
ascending);
 }
 }

 protected SORTInfo createGridSortInfo()
 {
 MySI result = new MySI();
 return result;
 }
 }

 /**
 * "Normal" lines item object.
 */
 public class LinesItem
 {
 // property >firstName<
 String m_firstName;
 public String getFirstName() { return m_firstName; }
 public void setFirstName(String value) { m_firstName = value; }

 // property >lastName<
 String m_lastName;
 public String getLastName() { return m_lastName; }
 public void setLastName(String value) { m_lastName = value; }
 }

 MyTGC m_lines = new MyTGC();
 public MyTGC getLines() { return m_lines; }

 public void init()
 {
 for (int i=0; i<100; i++)
 {
 LinesItem li = new LinesItem();
 li.setFirstName("FN " + i);
 li.setLastName("LN " + i);
 m_lines.add(li);
 }
 }
}

Instead ofworking on the normal TEXTGRIDCollection, youwork on a derived one (in the example,
this is MyTGC). In the derived implementation, you need to overwrite the method

629Layout Elements

Sorting Aspects with Grids

createGridSortInfo() returning an object that extends SORTInfo (in the example, this is MySI).
Inside the SORTInfo object, you need to implement the sort(..)method as shown in the example.

In the example, all classes are defined as inner classes. Of course, the choice whether to use inner
classes or normal classes is up to you.

Special Consideration with CSVCOLUMN Controls

The CSVCOLUMN is a dynamic arrangement of columns inside a text grid. The adapter specifies
the sequence, width and content of columns at runtime. In order to let ApplicationDesigner know
how to sort the corresponding items of the TEXTGRIDCollection, you need to tell via the CSV-
COLUMN property proprefspropwhich property is behind which column.

When using the default sorting (i.e. no derived TEXTGRIDCollection as shown in the previous
section), then Application Designer will sort the grid collection by accessing the properties. This
means that you have to expose each column property accordingly.

Example:

The layout definition is:

<rowarea name="Own Sort on Server">
<itr takefullwidth="true">

<textgridsss2 griddataprop="lines" rowcount="10" width="100%">
<csvcolumn titlesprop="titles" valuesprop="values"

widthsprop="widths" proprefsprop="proprefs">
</csvcolumn>

</textgridsss2>
</itr>

</rowarea>

The adapter implementation looks like this:

Layout Elements630

Sorting Aspects with Grids

package com.softwareag.cis.demoapps;

// This class is a generated one.

import java.util.*;

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class GridSortAdapter
extends Adapter

{
public class LinesItem
{

String m_firstName;
public String getFirstName() { return m_firstName; }
public void setFirstName(String value) { m_firstName = value; }

String m_lastName;
public String getLastName() { return m_lastName; }
public void setLastName(String value) { m_lastName = value; }

public String getValues()
{

return CSVManager.encodeString(new String[] {m_firstName,m_lastName});
}

}

String m_proprefs = "firstName;lastName";
public String getProprefs() { return m_proprefs; }

String m_titles = "First Name;LastName";
public String getTitles() { return m_titles; }

String m_widths = "50%;50%";
public String getWidths() { return m_widths; }

TEXTGRIDCollection m_lines = new TEXTGRIDCollection();
public TEXTGRIDCollection getLines() { return m_lines; }

public void init()
{

for (int i=0; i<100; i++)
{

LinesItem li = new LinesItem();
li.setFirstName("FN " + i);
li.setLastName("LN " + i);
m_lines.add(li);

}

631Layout Elements

Sorting Aspects with Grids

}
}

The LinesItem class exposes three properties:

■ The values property passes back the comma separated string that contains the content of the
columns.

■ The firstName and lastName properties are exposed for ApplicationDesigner being able to sort
the grid collection by property access.

Since ApplicationDesigner communicates all simple datatype properties to the client that are part
of an accessed object in the scenario above, all three properties are transferred to the UI client -
though of course only the values property is actually required. The other properties are used for
sorting puposes only.

To avoid this, youmay use a certain interface IControlPropertyAccesswithwhich you can clearly
tell Application Designer that certain simple datatype properties - though provided in the imple-
mentation - are not relevant to be transferred to the client:

/**
* "Normal" lines item object.
*/

public class LinesItem
implements IControlPropertyAccess

{
String m_firstName;
public String getFirstName() { return m_firstName; }
public void setFirstName(String value) { m_firstName = value; }

String m_lastName;
public String getLastName() { return m_lastName; }
public void setLastName(String value) { m_lastName = value; }

public String getValues()
{

return CSVManager.encodeString(new String[] {m_firstName,m_lastName});
}

public String[] findPropertiesNotToBeCollected()
{

return CSVManager.decodeString(m_proprefs);
}

}

String m_proprefs = "firstName;lastName";
public String getProprefs() { return m_proprefs; }

If you do not want to provide for the fine granular properties at all (firstName, lastName), then
you still can use the possibility of doing the sorting completely on your own as shown in the pre-

Layout Elements632

Sorting Aspects with Grids

vious section. In this case, the property references passed by PROPREFSPROP are just strings thay
are communicated to the sort(..)method when the user sorts a grid.

633Layout Elements

Sorting Aspects with Grids

634

71 Background Information on Grids

If you are interested in more background information on how grids internally work, see Binding
between Page and Adapter in the Special Development Topics. Basically, a grid maps to an array of
data internally - and the array of data is provided by the corresponding grid collections
(GRIDCollection, TEXTGridCollection).

635

636

V Working with Trees

This part shows you how to work with trees and tree nodes. The information is organized under
the following headings:

Basics

TREENODE3 in Control Grid (ROWTABLEAREA2)

CLIENTTREE

637

638

72 Basics

■ Types of Trees .. 640
■ When to Use Which Type .. 641

639

Types of Trees

The following controls are available for building trees:

■ TREENODE3
This control displays a single tree node. It can be put into the normal control grid
(ROWTABLEAREA2), and can consequently be combined with any other control (for example,
FIELD, TEXTOUT, etc.).

Of course, you do not have to combine it with other controls. You can also use it “stand-alone”
inside a ROWTABLEAREA2 grid:

As with the normal ROWTABLEAREA2 management, only these items are transferred from
the server to the client which are currently visible. Items which are collapsed or which are not
in the visible area of the client, are not transferred.

All scrolling of items and all toggling of items (opening/collapsing) goes through the server.
■ CLIENTTREE
This control represents a whole tree. You cannot add further controls into the tree node lines.

Layout Elements640

Basics

The data which is displayed inside the tree is transferred from the server to the client in one
step - always the whole tree. The data is transferred when opening a page or when the tree data
in the server is updated.

All scrolling of items and all toggling of items (opening/collapsing) is done in the client without
going back to the server.

When to Use Which Type

Use the TREENODE3 control inside the control grid ROWTABLEAREA2 in the following cases:

■ High number of tree nodes.
■ Tree nodes are not loaded from the beginning, but step by step.
■ Data in the tree is exchanged/updated quite often.

Use the CLIENTTREE control in the following cases:

■ Low number of tree nodes (100).
■ High interactivity requirements for toggling nodes.
■ Data in the tree is rather static. It is loaded once into the client, and afterwards it is not changed
anymore.

Example: in the Application Designer environment, the tree controls are used in the following
way:

■ In theworkplace, a CLIENTTREE is loaded: the number of nodes is quite low, the tree represents
a menu which is rather static.

■ In the Layout Painter, a TREENODE2 in a ROWTABLEAREA2 is used for representing the XML
control tree: the number of items can be quite high, the update rate of the tree data is very high.

641Layout Elements

Basics

642

73 TREENODE3 in Control Grid (ROWTABLEAREA2)

■ Example .. 644
■ Editing the Text of the Tree Node .. 646
■ Embedding Controls into TREENODE3 .. 648
■ Loading Large Trees - Step by Step .. 648
■ Drag-and-Drop Inside a TREENODE3 Tree .. 650
■ Dynamic Setting of Tree Icons .. 652
■ Properties .. 654

643

Example

The following image shows an example for a tree management:

The grid contains three columns: the first column shows the tree node, the other two columns
display some text information.

The XML layout definition is:

<rowarea name="Tree">
 <rowtablearea2 griddataprop="treeGridInfo" rowcount="8" width="500" ↩
withborder="false">
 <tr>
 <label name="Tree Node" width="200" asheadline="true">
 </label>
 <label name="Toggle Count" width="100" asheadline="true"
 labelstyle="text-align:right">
 </label>
 <label name="Select Count" width="100" asheadline="true"
 labelstyle="text-align:right">
 </label>
 </tr>
 <repeat>
 <tr>
 <treenode3 width="200" withplusminus="true"
 imageopened="images/fileopened.gif"
 imageclosed="images/fileclosed.gif"
 imageendnode="images/fileendnode.gif">
 </treenode3>
 <textout valueprop="toggleCount" width="100" align="right">
 </textout>
 <textout valueprop="selectCount" width="100" align="right">
 </textout>
 </tr>
 </repeat>
 </rowtablearea2>
</rowarea>

You see that the TREENODE3 control is placed inside the control grid just as a normal control.
There are certain properties available which influence the rendering: in the example, the name of

Layout Elements644

TREENODE3 in Control Grid (ROWTABLEAREA2)

the tree node images is statically overwritten. The flag withplusminus is set to true - consequently,
small "+"/"-" icons are placed in front of the node.

The corresponding adapter code is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.NODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class tree_01Adapter
extends Adapter

{
// class >TreeGridInfoItem<
public class Item extends NODEInfo
{

int m_toggleCount = 0;
int m_selectCount = 0;

public Item(String text)
{

super(text);
}
public void reactOnToggle() { m_toggleCount++; }
public void reactOnSelect() { m_selectCount++; }
public int getToggleCount() { return m_toggleCount; }
public int getSelectCount() { return m_selectCount; }

}

// property >treeGridInfo<
TREECollection m_treeGridInfo = new TREECollection();
public TREECollection getTreeGridInfo() { return m_treeGridInfo; }

/** initialisation - called when creating this instance*/
public void init()
{

m_treeGridInfo = new TREECollection();
Item item = new Item("Top");
m_treeGridInfo.addTopNode(item,false);
m_treeGridInfo.addSubNode(new Item("Sub 1"),item,true,false);
Item subItem = new Item("Sub 2");
m_treeGridInfo.addSubNode(subItem,item,false,false);
Item subItem21 = new Item("Sub 2-1");
m_treeGridInfo.addSubNode(subItem21,subItem,false,false);
m_treeGridInfo.addSubNode(new Item("Sub 2-1-1"),subItem21,true,false);
m_treeGridInfo.addSubNode(new Item("Sub 2-1-2"),subItem21,true,false);
Item subItem22 = new Item("Sub 2-2");
m_treeGridInfo.addSubNode(subItem22,subItem,false,false);
m_treeGridInfo.addSubNode(new Item("Sub 2-2-1"),subItem22,true,false);
m_treeGridInfo.addSubNode(new Item("Sub 3"),item,true,false);

645Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

// open top node
m_treeGridInfo.toggleNode(item);

}
}

The grid collection is an instance of the class TREECollection from the package
com.softwareag.cis.server.util. (Remember that the class GRIDCollection is used for normal
grids.) The TREECollection has all functions that are required for:

■ server-side scrolling,
■ selecting tree nodes,
■ opening and closing tree nodes.

The items of the tree collection are derived from a predefined class NODEInfo from the package
com.softwareag.cis.server.util. By overwriting the methods reactOnToggle() and
reactOnSelect(), you can react on user interaction. Each tree node is represented by one single
instance of this item class.

The tree is built inside the init()method of the adapter. For filling the tree, the followingmethods
of the TREECollection class are used:

■ addTopNode()

■ addSubNode()

See the JavaDoc documentation for more information on these methods and other methods for
manipulating the tree.

The tree can be filled “all at once” - as shown in this example - or loaded step by step on the
server side. For example, the tree can be extended in the reactOnToggle()method when a node
is being opened.

Editing the Text of the Tree Node

You may already have seen the property withtextinputwhich you may set to "true". If doing so,
then the user can double-click on a tree node and edit the node's text:

Layout Elements646

TREENODE3 in Control Grid (ROWTABLEAREA2)

By pressing TAB or ENTER, the input is taken over into the tree node and is by default transferred
to the adapter with the next request (e.g. when a button is chosen on the screen). Users can also
use the ESC key - in this case, the tree node is set back to its former value. The server-side adapter
can pick the text by the normal getText()method which is available in the tree node and is im-
plemented on NODEInfo level.

If you want your server program to be explicitly notified by the text change, then override the
setText()method inside your tree node implementation:

...

...

...
public class TreeItem extends NODEInfo
{

...

...

...
public void setText(String value)
{

super.setText(value);
// do your own implementation here
outputMessage(MT_SUCCESS,"Node text changed: " + value);

}

...

...
}
...
...
...

You can also explicitly define the point of time when the text change in the user interface is
transferred to the server. Aswith normal input controls (FIELD, CHECKBOX, etc.), the text change
is by default registered in the browser, but does not trigger an immediate transfer to the server-
side adapter. By using the property flush, you can control this: setting this property to "server"
will immediately synchronize the client with the adapter; setting it to "screen" will immediately
synchronize inside the browser.

There is still one issue: inside the tree node item, there is the method
setDisableTextInput(boolean). Calling this method will switch off the editing behavior for this
tree node. Consequently, you can explicitly define tree nodes that allow to edit text and others
that do not allow to do so. In case the user double-clicks onto a node that is explicitly set to be not
editable, the text will be displayed in disabled format so that the user receives visual feedback
that this operation is not supported for this node.

647Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

Embedding Controls into TREENODE3

It is possible to add further controls into the tree node. The typical cases are:

■ a check box,
■ an icon,
■ a toggle control.

The toggle control offers the possibility to manipulate a boolean value - it is similar to a check box,
but allows to explicitly define a "true-image" and a "false-image". When using the toggle control
inside the tree node, there is one useful feature: the toggle control allows to be defined in such a
way that it show three different images:

■ "true-image"
■ "false-image"
■ "partial-image"

In trees, you typically have selections in which you want to select by toggle control one item and
all of its subitems. The same goes for deselecting. But you alsowant to be able to express that inside
one node, there are some selected subitems, but not all subitems are selected. The toggle control
exactly matches these requirements. For more information, see the description of the TOGGLE
control.

Loading Large Trees - Step by Step

In the example at the beginning of this TREENODE3 section, the whole TREECollection inside
the adapterwas filled in one step. The following example shows how to dynamically load elements
into a tree that gets larger and larger due to the user's navigation in the tree.

Layout Elements648

TREENODE3 in Control Grid (ROWTABLEAREA2)

Every time the user opens a folder, the folders "Sub 0" to "Sub 4" and the end nodes "Node 0" to
"Node 4" are input into the tree hierarchy:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.NODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class tree_03Adapter
extends Adapter

{
// class >TreeItem<
public class TreeItem extends NODEInfo
{

boolean m_subNodesAvailable = false;
public TreeItem(String text)
{

super(text);
}
public void reactOnSelect() {}
public void reactOnToggle()
{

if (m_subNodesAvailable == false)
{

m_subNodesAvailable = true;
addSubNodesFor(this);

}
}

// property >tree<
TREECollection m_tree = new TREECollection();
public TREECollection getTree() { return m_tree; }

649Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

public void init()
{

TreeItem top;
for (int i=0; i<10; i++)
{

top = new TreeItem("Top " + i);
m_tree.addTopNode(top,false);

}
}

private void addSubNodesFor(TreeItem top)
{

TreeItem sub;
for (int i=0; i<5; i++)
{

sub = new TreeItem("Sub " + i);
sub.setDisableTextInput(true);
m_tree.addSubNode(sub,top,false,false);
sub.setOpened(TREECollection.ST_CLOSED);

}
for (int i=0; i<5; i++)
{

sub = new TreeItem("Node " + i);
m_tree.addSubNode(sub,top,true,false);

}
}

}

Inside the tree node class (TreeItem), a booleanmember m_subNodesAvailable indicates whether
subnodes for this instance have already been loaded. In the method reactOnToggle(), new nodes
are added by calling the addSubNodesFor(...)method - depending on the m_subNodesAvailable
value.

If you are “very eager” or if you have for some good reason to be very strict in memory-house-
keeping, then you could also remove all subnodes of a node when the node is closed.

Drag-and-Drop Inside a TREENODE3 Tree

Implementing drag-and-drop inside your tree is easy - you just have to do two things:

■ Set the enabledrag property to "true" inside the TREENODE3 definitiion.
■ Add amethod reactOnContextMenuRequestDragTarget() into your node class and implement
your reaction.

The tree node inside your page will automatically offer the following behavior: when selecting
one or more nodes, you can click on the node's text, drag the nodes, and drop them onto another
node's text.

Layout Elements650

TREENODE3 in Control Grid (ROWTABLEAREA2)

Sorry for the name reactOnContextMenuRequestDragTarget() - it assumes that you ought to open
a context menu, but you can do any other reaction as well. Of course, it is a nice feature to offer a
context menuwhen the user drops items onto another item - showing the user what functions can
be executed with the dropped items.

The following simple demo shows an example inwhich the node onwhich other nodes are dropped
outputs the text of the dropped nodes:

...

...

...
// class >TreeItem< representing node object
public class TreeItem extends NODEInfo
{

...

...

...
public void reactOnContextMenuRequestDragTarget()
{

// iterate through selected tree nodes and concatenate text
NODEInfo[] selItems = m_tree.findSelectedItems();
StringBuffer sb = new StringBuffer();
for (int i=0; i<selItems.length; i++)
{

if (i != 0) sb.append(", ");
sb.append(selItems[i].getText());

}
outputMessage(MT_SUCCESS,"Drop result: " + sb.toString());

}
...
...
...

}
...
...
...

In themethod reactOnContextMenuRequestDragTarget, the selected items are identified by using
the tree collection's method findSelectedItems().

Note: With the TREENODE3property singleselect, you can change the tree from its default
“single select mode” into “multi select mode”.

651Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

Dynamic Setting of Tree Icons

There are three ways to define icons for a tree node:

■ No definition at all. The nodes will be rendered with the default icons.
■ Fixed definition of icons. Using the TREENODE3 properties imageopened, imageclosed and
imageendnode, you can define the icons to be used.

■ Dynamic definition of icons. Each node can be assigned an own icon. The icon is defined by a
property of the server-side node object. The name of the property is defined inside the
TREENODE3 property imageprop.

Have a look at the following example:

Each of the subnodes has its own icon, depending on its category. (An individual icon can also be
used for folder nodes.)

The XML layout definition is:

<page model="com.softwareag.cis.demoapps.TreeDynamicIconsAdapter">
 <titlebar name="Tree with dynamic Icons">
 </titlebar>
 <pagebody>
 <rowarea name="Tree Demo">
 <rowtablearea2 griddataprop="lines" rowcount="10" width="100%" ↩
withborder="false">
 <repeat>
 <tr>
 <treenode3 width="100%" imageprop="imageName">
 </treenode3>
 </tr>

Layout Elements652

TREENODE3 in Control Grid (ROWTABLEAREA2)

 </repeat>
 </rowtablearea2>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

In the layout definition, you see that the TREENODE3 property imageprop points to the property
imageName.

The adapter code is:

package com.softwareag.cis.demoapps;

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class TreeDynamicIconsAdapter
 extends Adapter
{
 public class LinesItem extends NODEInfo
 {
 public LinesItem(String text, String imageName)
 {
 super(text);
 m_imageName = imageName;
 }

 String m_imageName;
 public String getImageName() { return m_imageName; }
 public void setImageName(String value) { m_imageName = value; }

 public void reactOnSelect()
 {
 }

 public void reactOnToggle()
 {
 }
 }

 // property >lines<
 TREECollection m_lines = new TREECollection();
 public TREECollection getLines() { return m_lines; }

 public void init()

653Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

 {
 LinesItem top = new LinesItem("Printers",null);
 m_lines.addTopNode(top,false);
 m_lines.addSubNode(new LinesItem("LPT1 - ↩
Printer","images/print.gif"),top,true,true);
 m_lines.addSubNode(new LinesItem("COM - ↩
Printer","images/print.gif"),top,true,true);
 top = new LinesItem("Disks",null);
 m_lines.addTopNode(top,false);
 m_lines.addSubNode(new LinesItem("A: drive","images/save.gif"),top,true,true);
 m_lines.addSubNode(new LinesItem("B: drive","images/save.gif"),top,true,true);
 top = new LinesItem("Pencils",null);
 m_lines.addTopNode(top,false);
 m_lines.addSubNode(new LinesItem("My ↩
pencil","images/editdisabled.gif"),top,true,true);
 }

}

The imageName property is implemented on tree node level (i.e. as property inside the inner class
LinesItem). In the initmethod, the property is defined to be "null" for the top nodes and to hold
a value for the leaf nodes.

Again: you could also define an individual icon for the top nodes - in the same way you do it for
the leaf nodes. The example above shows that the different ways of assigning icons build on one
another: if the dynamic icon is not passed (as donewith the top nodes), then these icons are selected
that are definedwith imageopened/imageclosed/imageendnode properties. If these are not defined
(as in the example), the default icon is used.

Properties

Basic

1OptionalWidth of the control.width

2There are three possibilities to define the width:

3(A) You do not define a width at all. In this case the width of
the controlwill either be a default width or - in case of container
controls - it will follow thewidth that is occupied by its content. int-value

(B) Pixel sizing: just input a number value (e.g. "100").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if
the parent element of the control properly defines a width this
control can reference. If you specify this control to have awidth
of 50% then the parent element (e.g. an ITR-row) may itself

Layout Elements654

TREENODE3 in Control Grid (ROWTABLEAREA2)

define a width of "100%". If the parent element does not specify
a width then the rendering result may not represent what you
expect.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to "true" then +/- Icons will be rendered in front of the tree
items.

withplusminus

false

trueOptionalIf set to "true" then the tree elements are connected with one
another by gray lines.

withlines

false
Please pay attention: PAGE layouts (Java), if switching this
property to "true" then you have to create the instance of your
server side TREECollection object with a special constructor:

Example:

TREECollection m_tree = new TREECollection(true)

trueOptionalIf set to "true" then the text of an item is also available as tool
tip. Use this option in case you expect that the horizontal space

withtooltip

falseof the itemwill not be sufficient to display the whole text of the
item.

trueOptionalIf set to "true" then the tree node can also be edited. Editing is
started when the user double clicks the node.

withtextinput

false
The text that is input is passed into the property "text" which is
implemented in the default NODEInfo implementation.

OptionalImage of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by this

imageopened

property or also may be defined dynamically - see the
corresponding properties defined with this control.

OptionalImage of a tree node that has subnodes and that is currently not
showing its nodes. The image either is defined statically by this

imageclosed

property or also may be defined dynamically - see the
corresponding properties defined with this control.

OptionalImage of a tree node that is an end node (leaf node). The image
either is defined statically by this property or also may be

imageendnode

defined dynamically - see the corresponding properties defined
with this control.

trueOptionalIf set to "true" then only one item can be selected. If set to "false"
then multiple icons can be selected.

singleselect

false

ondblclickOptionalEvent that represents a tree node selection. A tree node selection
is done when the user clicks/doubleclicks on the tree node text.

directselectevent

655Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

onclickIn this case the select() method is called in the corresponding
node object on server side.

textonlyOptionalIf set to "textonly" only user clicks on the tree node text will
select the node. If set to "allspace" also user clicks outside the
area occupied by the node text will select the node.

directselectelement

allspace

VAR1OptionalSome controls offer the possibility to define style variants. By
this style variant you can address different styles inside your

selectionstylevariant

VAR2style sheet definition file (.css). If not defined "normal" styles
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet defintion
and use them multiple times by addressing them via the
"stylevariant" property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any semantics
behind - this is up to you!

VAR1OptionalSome controls offer the possibility to define style variants. By
this style variant you can address different styles inside your

textstylevariant

VAR2style sheet definition file (.css). If not defined "normal" styles
are chosen, if defined (e.g. "VAR1") then other style definitions
(xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet defintion
and use them multiple times by addressing them via the
"stylevariant" property. CIS currently offerst two variants
"VAR1" and "VAR2" but does not predefine any semantics
behind - this is up to you!

1OptionalNumber of pixels that each hierarchy level is indented. If not
defined then a standard is used.

pixelshift

2

3

int-value

1OptionalNumber of pixels that end nodes are indented. If not defined
then a standard is used.

pixelshiftendnode

2

3

int-value

1OptionalColumn spanning of control.colspan

2If you use TR table rows then you may sometimes want to
control the number of columns your control occupies. By default

3it is "1" - but you may want to define the control to span over
more than one columns.

Layout Elements656

TREENODE3 in Control Grid (ROWTABLEAREA2)

4The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It

5does not make sense in ITR rows, because these rows are
explicitly not synched.

50

int-value

1OptionalRow spanning of control.rowspan

2If you use TR table rows then you may sometimes want to
control the number of rows your control occupies. By default it

3is "1" - but youmaywant to define the control to span overmore
than one columns.

4
The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table rows). It 5

50does not make sense in ITR rows, because these rows are
explicitly not synched.

int-value

1OptionalHeight of the control in pixels.pixelheight

2

3

int-value

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to resolve
duplicates.

tabindex

0

1

2

5

10

32767

Binding

OptionalName of property of the item objects that provides for a image
for the tree node.

imageprop

Each node may provide for its own image, e.g. dependent on
the type of node.

If the adapter property passes back "null" then the image is
taken from the static definitions that you may parallely do by

657Layout Elements

TREENODE3 in Control Grid (ROWTABLEAREA2)

using the properties IMAGEOPENED, IMAGECLOSED and
IMAGEENDNODE.

OptionalName of property of the item objects - representing the
individual rows of the collection - that indicates if the row
receives the keyboard focus.

focusedprop

Must be of type "boolean"/ "Boolean".

If more than one lines are returning "true" the first of them is
receiving the focus.

screenOptionalFlush behaviour when using the possibility of having editable
tree nodes. If double clicking on the tree node then you can edit

flush

serverits content. The FLUSH property defines how the browser
behaves when leaving the tree node's input field:

If not defined ("") then nothing happens - the changed tree node
text is communicated to the server side adapter object with the
next roundtrip.

If defined as "server" then immediately when leaving the field
a roundtrip to the server is initiated - in case you want your
adapter logic to directly react on the item change.

If defined as "screen" then the changed tree node text is
populated inside the page inside the front end.

OptionalWhen the data synchronization of the control is set to
FLUSH="server" then you can specify an explicit method to be

flushmethod

calledwhen the user updates the content of the control. By doing
so you can distinguish on the server side from which control
the flush of data was triggered.

OptionalName of property of the item objects that provides for a text
that is shown if the user moves the mouse over the tree item
(tooltip).

tooltipprop

OptionalName of a property that contains a 'comma separated list' of
valid drag informations.

validdraginfosprop

Drag and Drop

trueOptionalIf set to true then drag and drop is enabled within the tree.enabledrag

false

Layout Elements658

TREENODE3 in Control Grid (ROWTABLEAREA2)

74 CLIENTTREE

■ Example .. 660
■ Properties .. 662

659

Example

The following example shows a simple client tree:

The XML layout definition is:

<rowarea name="Clienttree">
<clienttree treecollectionprop="tree" height="200" withplusminus="true"

treestyle="background-color:#FEFEEE">
</clienttree>

</rowarea>

In this example, the client tree is directly put as row into the ROWAREA container. The property
treecollectionprop contains a reference to the property treewhich contains the net data of the
tree. With the property treestyle, an explicit background color is set.

The Java code of the adapter is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.NODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class ClientTreeAdapter
extends Adapter

{
// class >TreeItem<
public class TreeItem extends NODEInfo
{

public TreeItem(String text)
{

Layout Elements660

CLIENTTREE

super(text);
}

public void reactOnSelect()
{

outputMessage("S", "Node " + getText() + " was selected.");
}

public void reactOnToggle()
{

// TODO Auto-generated method stub
}

}

// property >tree<
TREECollection m_tree = new TREECollection();
public TREECollection getTree() { return m_tree; }
public void setTree(TREECollection value) { m_tree = value; }

/** initialisation - called when creating this instance*/
public void init()
{

TreeItem file = new TreeItem("File");
m_tree.addTopNode(file, false);
m_tree.toggleNode(file); // open this file node to open immediately
TreeItem news = new TreeItem("New");
m_tree.addSubNode(news, file, false, false);
TreeItem project = new TreeItem("Project");
m_tree.addSubNode(project, news, true, false);
TreeItem packages = new TreeItem("Package");
m_tree.addSubNode(packages, news, true, false);
TreeItem classes = new TreeItem("Class");
m_tree.addSubNode(classes, news, true, false);
TreeItem close = new TreeItem("Close");
m_tree.addSubNode(close, file, true, false);
TreeItem closeAll = new TreeItem("Close All");
m_tree.addSubNode(closeAll, file, true, false);
TreeItem save = new TreeItem("Save");
m_tree.addSubNode(save, file, true, false);
TreeItem saveAll = new TreeItem("Save All");
m_tree.addSubNode(saveAll, file, true, false);
TreeItem print = new TreeItem("Exit");
m_tree.addSubNode(print, file, true, false);
TreeItem exit = new TreeItem("Exit");
m_tree.addSubNode(exit, file, true, false);
TreeItem edit = new TreeItem("Edit");
m_tree.addTopNode(edit, false); // open this file node to open immediately
m_tree.toggleNode(edit);
TreeItem undo = new TreeItem("Undo");
m_tree.addSubNode(undo, edit, true, false);

}
}

661Layout Elements

CLIENTTREE

You see that the implementation of the server-side representation of the client tree control is using
the same mechanisms as the one which you got to know when the TREENODE2 control was ex-
plained.

The difference is:

■ The reactOnToggle()method needs not to be implemented. There is no explicit toggle event
passed to the server. The toggling is done completely on the client side.

You also see that the top nodes are toggled immediately via the TREECollectionAPI after creation:

MyNODEInfo edit = new MyNODEInfo("Edit");
m_tree.addTopNode(edit, false); // open this file node to open immediately
m_tree.toggleNode(edit);

Reason: by default, foldable tree nodes are opened with "closed" status. If they are toggled in the
creation process, then they are already open when the tree is shown the first time.

Properties

Basic

OptionalName of adapter property representing the tree of items on
server side.

treecollectionprop

The property must be of type "TREECollection". Please view
in Java API Documentation for more information.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the
control will be renderedwith its default height. If the control

250is a container control (containing) other controls then the
height of the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%").
Pay attention: percentage sizing will only bring up correct 400

50%results if the parent element of the control properly defines
a height this control can reference. If you specify this control

100%to have a height of 50% then the parent element (e.g. an
ITR-row) may itself define a height of "100%". If the parent
element does not specify a width then the rendering result
may not represent what you expect.

Layout Elements662

CLIENTTREE

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

Appearance

trueOptionalIf set to "true" then +/- Icons will be rendered in front of the
tree items.

withplusminus

false

trueOptionalIf set to "true" then the text of an item is also available as tool
tip. Use this option in case you expect that the horizontal

withtooltip

falsespace of the item will not be sufficient to display the whole
text of the item.

trueOptionalIf set to "true" then the clicked item will also marked with a
certain background color. The background color is defined
by the style sheet settings.

selectionvisible

false

trueOptionalIf set to "true" then only one item can be selected. If set to
"false" then multiple icons can be selected.

singleselect

false

OptionalImage of a tree node that has subnodes and that is currently
showing its nodes. The image either is defined statically by

imageopened

this property or also may be defined dynamically - see the
corresponding properties defined with this control.

OptionalImage of a tree node that has subnodes and that is currently
not showing its nodes. The image either is defined statically

imageclosed

by this property or also may be defined dynamically - see
the corresponding properties defined with this control.

OptionalImage of a tree node that is an end node (leaf node). The
image either is defined statically by this property or alsomay

imageendnode

be defined dynamically - see the corresponding properties
defined with this control.

OptionalStyle (following cascading style sheet definitions) that is
directly passed to the background area of the client tree. You
can manipulate e.g. the colour of the tree's background.

treestyle

The style can also be set dynamically by specifying the
property TREESTYLEPROP.

VAR1OptionalSome controls offer the possibility to define style variants.
By this style variant you can address different styles inside

selectionstylevariant

VAR2your style sheet definition file (.css). If not defined "normal"
styles are chosen, if defined (e.g. "VAR1") then other style
definitions (xxxVAR1xxx) are chosen.

Purpose: you can set up style variants in the style sheet
defintion and use them multiple times by addressing them
via the "stylevariant" property. CIS currently offerst two
variants "VAR1" and "VAR2" but does not predefine any
semantics behind - this is up to you!

663Layout Elements

CLIENTTREE

autoOptionalDefinition of the horizontal scrollbar's appearance.hscroll

scrollYou can define that the scrollbars only are shown if the
content is exceeding the control's area ("auto"). Or scrollbars

hiddencan be shown always ("scroll"). Or scrollbars are never shown
- and the content is cut ("hidden").

Default is "auto".

1OptionalNumber of pixels that each hierarchy level is indented. If not
defined then a standard is used.

pixelshift

2

3

int-value

1OptionalNumber of pixels that end nodes are indented. If not defined
then a standard is used.

pixelshiftendnode

2

3

int-value

-1OptionalIndex that defines the tab order of the control. Controls are
selected in increasing index order and in source order to
resolve duplicates.

tabindex

0

1

2

5

10

32767

trueOptionalFlag that indicates if the control has a 10 pixel padding on
left side. Default is true.

withleftpadding

false

Binding

(already explained above)treecollectionprop

trueOptionalIf set to "true" then you indicate to the tree control that not
all tree informationmay be loaded when initializing the tree

dynamicloading

false(i.e. the tree collection on server side). As consequence the
tree control will pass the "toggle-event" to the server - in case
the subnodes of a certain nodes are not yet loaded.

Layout Elements664

CLIENTTREE

In the case the toggle event is passed to the server, themethod
onToggle() is called inside the tree item.

OptionalProperty of the tree item object that provides for the image
URLwhich is shown for opened tree nodes or end tree nodes.

imageopenedprop

The valuemay be different from tree node to tree node -each
tree node may have an own image.

OptionalProperty of the tree item object that provides for the image
URL which is shown for closed tree nodes. The value may

imageclosedprop

be different from tree node to tree node -each tree node may
have an own image.

OptionalProperty of the adapter object that dynamically provides for
a style value that is passed to the control's area (background

treestyleprop

of the client tree). You can as consequence e.g. define the
background-colour of the tree dependent on your server side
logic.

OptionalName of adapter property that passes back the name of a
style sheet class that is taken to render the client tree's

treeclassprop

background area. - Similar to the property TREESTYLEPROP,
but now a style class is passed, not the style itself.

OptionalName of property of the item objects that provides for a text
that is shown if the user moves the mouse over the tree item
(tooltip).

tooltipprop

OptionalName of themethod on adapter level that is called if the user
presses the right mouse button in an empty area of the client
tree.

oncontextmenumethod

Note: if the user presses right mouse button on a node then
the method "reactOnContextMenuRequest()" is called in the
item object.

ondblclickOptionalEvent that represents a tree node selection. A tree node
selection is done when the user clicks/doubleclicks on the

directselectevent

onclicktree node text. In this case the select() method is called in the
corresponding node object on server side.

OptionalName of property of the item objects - representing the
individual rows of the collection - that indicates if the row
receives the keyboard focus.

focusedprop

Must be of type "boolean"/ "Boolean".

If more than one lines are returning "true" the first of them
is receiving the focus.

Drag and Drop

trueOptionalIf set to true then drag and drop is enabled within the tree.enabledrag

false

665Layout Elements

CLIENTTREE

666

VI Working with Menus

Menus are used to arrange a number of functions in a structured way.

The information provided in this part is organized under the following headings:

Types of Menus

MENU

DLMENU

Context Menu

667

668

75 Types of Menus

The following menu controls are available:

■ MENU
This is the typical drop-down menu:

■ DLMENU
This is a double-line menu representing a two-level hierarchy. It can be found quite often in
web applications.

When clicking an item in the first line, the corresponding subitems are shown in the second line.
■ Context Menu
This is a menu which appears in certain controls (tree controls, grid controls) when the user
presses the right mouse button.

669

All menu controls are completely configured by a corresponding adapter implementation. This
means:

■ The structure of themenu and itsmenu nodes is not statically defined but is dynamically derived
by some adapter program logic. For example, you can build a personalized menu taking the
user's rights into consideration.

■ Menu information can be dynamically updated during runtime.

Layout Elements670

Types of Menus

76 MENU

■ Example .. 672
■ Separators ... 674
■ Properties .. 675

671

Example

The example looks as follows:

When clicking on amenu item forwhich a function has been defined, then the name of the function
is displayed in the status bar.

The XML layout definition is:

Layout Elements672

MENU

<page model="Menue_01_Adapter">
<titlebar name="Menu Demo">
</titlebar>
<header align="left" withdistance="false">

<menu menucollectionprop="menuData" width="100">
</menu>

</header>
<pagebody>
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

In this example, the menu is embedded in the header. By the property menucollectionprop, it is
bound to the adapter property menuData.

The Java code of the adapter is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.MENUNODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class Menue_01_Adapter
extends Adapter

{
// class >MenuDataItem<
public class MenuDataItem extends MENUNODEInfo
{

public MenuDataItem(String text)
{

super(text);
}
public MenuDataItem(String text, String image)
{

super(text, image);
}
public void reactOnSelect()
{

outputMessage("S",getText() + " was called");
}

}

// property >menuData<
TREECollection m_menuData = new TREECollection();
public TREECollection getMenuData() { return m_menuData; }

/** initialisation - called when creating this instance*/
public void init()
{

673Layout Elements

MENU

MenuDataItem top;
top = new MenuDataItem("File");
m_menuData.addTopNode(top,false);
m_menuData.addSubNode(new MenuDataItem("New...","images/new.gif"),
top,true,false);
m_menuData.addSubNode(new MenuDataItem("Save","images/save.gif"),
top,true,false);
m_menuData.addSubNode(new MenuDataItem("Save as..."),top,true,false);
m_menuData.addSubNode(new MenuDataItem("&SEPARATOR"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("Remove"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("&SEPARATOR"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("Exit"),top,true,false);
top = new MenuDataItem("Edit");
m_menuData.addTopNode(top,false);
m_menuData.addSubNode(new MenuDataItem("Undo"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("&SEPARATOR"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("Cut"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("Copy"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("Paste"),top,true,false);
top = new MenuDataItem("Help");
m_menuData.addTopNode(top,false);
m_menuData.addSubNode(new MenuDataItem("Online Help"),top,true,false);
m_menuData.addSubNode(new MenuDataItem("About"),top,true,false);

}
}

The member m_menuData holds an object of the instance TREECollection, which is defined in
package com.softwareag.cis.server.util. The tree collection holds the menu items.

Each item is represented by an instance of the class MyMENUNODEInfo. The class itself is derived
from the class NODEInfo in the package com.softwareag.cis.server.util. In the own class
definition, the reactOnSelect()method is overwritten.

In the init()method of the class, the tree collection is assembled. Note that it can be reassembled
at any point of time.

Separators

As you see in the example, separators can be added into the menu just as normal tree nodes,
holding a special text "&SEPARATOR".

Layout Elements674

MENU

Properties

Basic

ObligatoryName of adapter property that represents themenu's itemhierarchy
on server side.

menucollectionprop

The property must be of type "TREECollection". Each menu item
is represented by a tree node (subclassed from "NODEInfo")within
the collection.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Appearance

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the
controlwill either be a defaultwidth or - in case of container controls
- it will follow the width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the

50%parent element of the control properly defines a width this control

100%can reference. If you specify this control to have a width of 50%
then the parent element (e.g. an ITR-row)may itself define a width
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

OptionalHeight of the control.height

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the control
will be renderedwith its default height. If the control is a container
control (containing) other controls then the height of the control
will follow the height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the
parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of 50%
then the parent element (e.g. an ITR-row)may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

675Layout Elements

MENU

OptionalURL of the image that is shown on the right end of a menu item, if
this item contains subitems. If not explicitly defined then a default
icon is used.

toggleimage

OptionalName of adapter property that provides a URL-string that defines
the toggle image. The toggle icon is shown on the right end of a
menu item that has subitems.

toggleimageprop

OptionalCSS style definition that is directly passed into this control.menustyle

With the style you can individually influence the rendering of the
control. You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generatedHTML code
in order to know where direct style definitions are applied. Press
right mouse-button in your browser and select the "View source"
or "View frame's source" function.

OptionalName of adapter property that dynamically provides explicit style
information for the control.

menustyleprop

Layout Elements676

MENU

77 DLMENU

■ Example .. 678
■ Properties .. 680

677

Example

The example looks as follows:

A double-line menu is displayed. When selecting a menu item, then its text is written to the status
bar.

The XML layout definition is:

Layout Elements678

DLMENU

<page model="menue_02_dl_Adapter">
<titlebar name="Double Line Menu">
</titlebar>
<dlmenu menuprop="menuData">
</dlmenu>
<header withdistance="false">

<button name="Save">
</button>

</header>
<pagebody>
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

The DLMENU control is positioned directly following the title bar. In its property menuprop, it
holds a binding to the property menuData.

The Java code of the adapter is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.DLMenu;
import com.softwareag.cis.server.util.DLMenuSubItem;
import com.softwareag.cis.server.util.DLMenuTopItem;

public class menue_02_dl_Adapter
extends Adapter

{
// class >MyDLMenuSubItem<
public class MyDLMenuSubItem extends DLMenuSubItem
{

public MyDLMenuSubItem(DLMenuTopItem topItem, String text)
{

super(topItem, text);
}
public void invoke()
{

outputMessage("S",getText() + " was invoked");
}

}
// property >menuData<
DLMenu m_menuData = new DLMenu();
public DLMenu getMenuData() { return m_menuData; }

/** initialisation - called when creating this instance*/
public void init()
{

DLMenuTopItem top;
MyDLMenuSubItem sub;

679Layout Elements

DLMENU

top = new DLMenuTopItem(m_menuData,"File");
sub = new MyDLMenuSubItem(top,"New...");
sub = new MyDLMenuSubItem(top,"Save");
sub = new MyDLMenuSubItem(top,"Save as...");
sub = new MyDLMenuSubItem(top,"Remove");
sub = new MyDLMenuSubItem(top,"Exit");
top = new DLMenuTopItem(m_menuData,"Edit");
sub = new MyDLMenuSubItem(top,"Undo");
sub = new MyDLMenuSubItem(top,"Cut");
sub = new MyDLMenuSubItem(top,"Copy");
sub = new MyDLMenuSubItem(top,"Paste");
top = new DLMenuTopItem(m_menuData,"Help");
sub = new MyDLMenuSubItem(top,"Online Help");
sub = new MyDLMenuSubItem(top,"About");

}
}

There is an own class MyDLMenuSubItemwhich is subclassed from DLMenuSubItem in the package
com.softwareag.cis.server.util. The main task of this own class is to overwrite the invoke()
method and to put some logic inside.

Each menu node is represented by an object. Menu nodes of the top line are instances of the class
DLMenuTopItem. Menu nodes of the second line are instances of the own class MyDLMenuSubItem.

All items are arranged inside the member m_menuDatawhich is an instance of class DLMenu.

When the user clicks an item of the second line at runtime, the invoke()method of the correspond-
ing item instance is called in the server.

Properties

Basic

ObligatoryName of the adapter property that represents the control on server
side.

menuprop

The property must be of type "DLMENUInfo". See detailed
information inside the Java API Documentation.

OptionalMulti language dependent text that is displayed inside the control.
The "textid" is translated into a corresponding string at runtime.

textid

Do not specify a "name" inside the control if specifying a "textid".

leftOptionalHorizontal alignment of the control's content. Default is "center".align

center

right

Layout Elements680

DLMENU

trueOptionalIf set to "true" then the DLMENU control only contains its top line -
there is no second line below. Default is "false".

onlyoneline

false

trueOptionalIf set to "true" then only a very thin cell separator is added between
two menu items. Otherwise the separation is rendered explicitely.

cellseparatoronly

false

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Miscellaneous

OptionalUse this attribute to assign a fixed control identifier that can be later
on used within your test tool in order to do the object identification

testtoolid

681Layout Elements

DLMENU

682

78 Context Menu

■ Example: Context Menu with a Text Grid .. 685
■ Context Menu with a Tree .. 687

683

The contextmenu is not a control itself - it is part of existing controls. Contextmenus are supported
by the following controls:

■ TEXTGRID2
■ TEXTGRIDSSS2
■ TREENODE2
■ CLIENTTREE
■ FIELD

All these controls have items that are represented by corresponding objects on the server side:

■ For the text grid controls, each row of the grid is represented by a certain object on the server
side that is managed inside a TEXTGRIDCollection.

■ For the tree controls, each node of the tree is represented by a certain object (derived from
NODEInfo) that is managed inside a TREECollection.

When the user right-clicks on an item, themethod reactOnContextMenuRequest() is called inside
the item's server-side object. When the user right-clicks in a FIELD control for which "myfield"
has been defined with the valueprop property, the default name of the called method is
reactOnContextMenuMyfield. In principle, your server-side implementation could do anything
as reaction inside the implementation of themethod - i.e. you do not have to open a context menu,
but you can also do every other thing that you are able to do inside an adapter implementation.

To open a context menu, you proceed as follows:

■ You define a tree collection.
■ You add menu nodes to the tree collection - exactly in the same way as you do it with a normal
MENU control.

■ You pass the tree collection to the adapter via its method showPopupMenu().

Layout Elements684

Context Menu

Example: Context Menu with a Text Grid

There is no special specification necessary inside the layout definition of the corresponding TEX-
TGRID2/ TEXTGRIDSSS2 control. All you have to do is to implement the
reactOnContextMenuRequest()method inside the class representing the items of the grid:

public class MenuAdapter
extends Model

{
// --
// inner classes
// --

/** class used for pop-up menu. */
public class MyMenuNodeInfo

extends MENUNODEInfo
{

public MyMenuNodeInfo(String text) { super(text); }
public MyMenuNodeInfo(String text, String image) { super(text, image); }
public void reactOnSelect()
{

outputMessage("S", "Menu Item \"" + getText() + "\" selected!");
}

}

/** class represents one row within the text grid. */
public class Line
{

String m_name;
CTimeStamp m_htmlChange;
CTimeStamp m_xmlChange;

685Layout Elements

Context Menu

public Line(String name, CTimeStamp xmlChange, CTimeStamp htmlChange)
{

m_name = name;
m_xmlChange = xmlChange;
m_htmlChange = htmlChange;

}
public String getName() { return m_name; }
public CTimeStamp getHtmlChange() { return m_htmlChange; }
public CTimeStamp getXmlChange() { return m_xmlChange; }

/** This method will be called if the line will be clicked with
* the right mouse button.*/

public void reactOnContextMenuRequest()
{

// prepare the appropriate popu menu content
TREECollection menu = new TREECollection();
menu.addTopNode(new MyMenuNodeInfo(

"Open in Layout Painter",
"../HTMLBasedGUI/images/open.gif"),true);

menu.addTopNode(new MyMenuNodeInfo(
"Generate Adapter Code",
"../HTMLBasedGUI/images/java.gif"),true);

menu.addTopNode(new MyMenuNodeInfo(
"Maintain Literals",
"../HTMLBasedGUI/images/literals.gif"),true);

menu.addTopNode(new MyMenuNodeInfo(
"&SEPARATOR"),true);

menu.addTopNode(new MyMenuNodeInfo(
"Remove (XML & HTML)",
"../HTMLBasedGUI/images/remove.gif"),true);

// open the poup menu
showPopupMenu(menu);

}
}

...

...

...

...

...

}

Pay attention: the showPopupMenu()method is provided by the class Adapter - in the implement-
ation example, it is directly accessed from the class Line. The class Line is an inner class and con-
sequently has full access to all the methods of its surrounding class.

Layout Elements686

Context Menu

Context Menu with a Tree

The implementation of a context menu in the tree is absolutely the same as with a text grid - this
time you have to implement the reactOnContextMenuRequest()method inside the class repres-
enting one tree node.

687Layout Elements

Context Menu

688

	Layout Elements
	Table of Contents
	Preface
	I Typical Page Layout
	1 PAGE
	Properties

	2 TITLEBAR
	Properties

	3 HEADER
	Properties

	4 PAGEBODY
	Properties

	5 STATUSBAR/STATUSBARSSW
	STATUSBAR
	Adapter Implementation Details

	STATUSBARSSW
	Example

	STATUSBAR Properties
	STATUSBARSSW Properties

	II Working with Containers
	6 Positioning of Controls inside a Container
	Row Types - TR and ITR
	Some More Details on ITR
	TR Properties
	ITR Properties

	7 Defining the Width of Controls inside a Container
	Controlling the Width of Controls
	HDIST and VDIST Controls
	HDIST Control
	VDIST Control

	HDIST Properties
	VDIST Properties
	rowspan and colspan Definitions
	CELLSPAN Control
	CELLSPAN Properties
	Rules for Positioning Controls inside Containers

	8 Vertical Sizing of Containers and Controls
	Vertical Pixel Sizing
	Vertical Percentage Sizing
	Finishing the Example

	9 Overview of Different Containers
	Different Kind of Containers
	Row Containers
	Column Containers
	Row and Column Containers in Combination
	Nesting Containers

	10 ROWAREA and COLAREA
	ROWAREA Properties
	COLAREA Properties

	11 ROWAREAWITHHEADER
	Simple Example
	ROWAREAWITHHEADER Properties
	ROWAREAHEADER Properties
	ROWAREABODY Properties

	12 ROWTABAREA and COLTABAREA
	ROWTABAREA Properties
	COLTABAREA Properties
	TABPAGE Properties
	The Most Common Error
	Example: Controlling which Tab is displayed by the Server Adapter
	Example: Controlling the Visibility of Tab Pages

	13 ROWTABLE0 and COLTABLE0
	ROWTABLE0 Properties
	COLTABLE0 Properties

	14 ROWDYNAVIS and COLDYNAVIS
	ROWDYNAVIS Properties
	COLDYNAVIS Properties
	Some Comments on Controlling the Visibility of Controls

	15 ROWDIV and INNERDIV
	When to Use ROWDIV and INNERDIV Containers
	ROWDIV Properties
	INNERDIV Properties

	16 ROWSCROLLAREA
	ROWSCROLLAREA Properties

	17 HSPLIT and VSPLIT
	Example for HSPLIT
	Example for VSPLIT
	HSPLIT Properties
	VSPLIT Properties
	SPLITCELL Properties
	Defining the Split Size

	18 HLINE and VLINE
	VLINE Properties
	HLINE Properties

	19 Performance Optimization with Containers

	III Working with Controls
	20 Some Common Rules for all Controls
	Name and Text ID
	Table, Row, Column, Control
	Explicit Alignment
	Binding to Adapter Properties
	Directly Influencing the Control Style
	Dynamically Controlling the Visibility and the Display Status of Controls
	Focus Management
	Flushing of Inputs
	Tab Sequence
	Tooltips

	21 BREADCRUMB
	Example
	Properties

	22 BUTTON
	Example: Simple Button
	Example: Button with Image
	Hiding and Disabling Buttons
	Properties

	23 BUTTONLIST
	Example
	Defining Outlook Bars by Using BUTTONLIST
	Properties

	24 CHECKBOX
	Example
	Properties

	25 COMBODYN2
	Example
	Typical Problems with COMBODYN2
	Properties

	26 COMBOFIX
	Example
	Typical Problems with COMBOFIX
	COMBOFIX Properties
	COMBOOPTION Properties

	27 DATEINPUT
	Example
	From-To Restrictions
	Input of Date and Time
	Properties

	28 DROPICON
	Example
	Dragging and Dropping Information from DROPICON to TREENODE3
	Dragging and Dropping Information from DROPICON to ICONLIST
	Properties

	29 FIELD
	Example
	Dynamically Defining the Input Status
	Client Side Validation
	Decimal Number Input
	Value Help
	Value Help - Predefined Reaction Methods
	Input-Sensitive Value Help
	Touch Screen Support
	Properties

	30 FILEUPLOAD/FILEUPLOAD2
	FILEUPLOAD
	Usage of com.softwareag.cis.file.FileManager
	Location of Server File

	FILEUPLOAD2
	FILEUPLOAD Properties
	FILEUPLOAD2 Properties

	31 ICON
	Example
	Hiding and Disabling Icons
	Properties

	32 ICONLIST
	Example: Vertical Icon List
	Example: Horizontal Icon List
	Properties

	33 IHTML
	Example
	Pros and Contras when Using the IHTML Control
	Scripting in Generated HTML
	Example: Building Download Links
	Properties

	34 IMAGEOUT
	Example
	Loading Images from a Database, the File System, or Any Other Data Source
	Properties

	35 LABEL
	Example
	Aligning the Text
	Properties

	36 MENUBUTTON
	Example
	Building a Button Menu
	MENUBUTTON Versus MENU
	MENUBUTTON Properties
	MENUITEM Properties

	37 METHODLINK
	Example
	Properties

	38 MULTISELECT
	Example
	Problems with MULTISELECT
	Properties

	39 NEWSFEED
	Example
	Typical Problems
	Properties

	40 RADIOBUTTON
	Example
	Properties

	41 SCHEDULELINE
	Example
	CSV Manager
	Properties

	42 SLIDER
	Example
	Properties

	43 STRIPSEL
	Example
	Properties

	44 SUBPAGE
	Example
	Typical Problem: Non-Refreshing Subpages
	Properties

	45 TABSEL
	Example
	Properties

	46 TABSTRIP2
	Example
	TABSTRIP2 - Usage with Other Controls
	Properties

	47 TAGCLOUD
	Example
	Properties

	48 TEXT
	Example
	Properties

	49 TEXTOUT
	Example
	Example: Dynamic Labels
	Example: Dynamic Labels with Tooltips
	Properties

	50 TOGGLE
	Example
	Usage as a Triple Status Control
	Properties

	51 ACTIVEX
	Example
	Properties

	52 GOOGLEMAP2
	Before You Start
	Example
	General Usage
	Marker Management

	Typical Problems
	Google Map API Key
	Map Remains Gray

	Properties

	53 HELPICON
	54 LINECHART
	Example
	Properties

	55 MACROMEDIAFLASH
	Example
	Creating the Action Script
	Properties

	56 NETMEETING
	Example
	Properties

	57 REPORT
	58 ROWCHARTAREA
	Example
	Step 1 - Creating a Simple ROWCHARTAREA with Icons
	Step 2 - Adding Labels to the Items
	Step 3 - Drawing Connection Lines
	Step 4 - Showing and Hiding the Connection Spots
	Step 5 - Adding Context Menus

	Properties

	59 SKYPECALL
	Example
	Properties

	60 TIMER

	IV Working with Grids
	61 Basics
	62 TEXTGRID2
	A Simple Example
	Selecting Rows in a TEXTGRID2
	Triggering Adapter Methods when Selecting a Row
	TEXTGRID2 Properties
	COLUMN Properties
	Dynamic Setting of Text Styles in TEXTGRID2
	Example: Displaying an ASCII Protocol
	Example: Using Images inside the TEXTGRID2 Control
	Specifying the Width of a TEXTGRID2 Control
	Change Index Management
	Flexible Columns with CSVCOLUMN
	CSVCOLUMN Properties

	63 TEXTGRIDSSS2 - TEXTGRID2 with Server-Side Scrolling
	Performance Considerations
	Example
	No Change in Adapter Code between TEXTGRID2 and TEXTGRIDSSS2
	Using rowcount and height
	Setting the Client-Side Loading Behavior
	TEXTGRIDSSS2 Properties

	64 ROWTABLEAREA2 - The Flexible Control Grid
	Example
	Using rowcount and height
	Making Grids Look like Grids
	Special Events in ROWTABLEAREA2 Processing
	ROWTABLEAREA2 Properties
	STR Properties

	65 COLINFOS Control - Show and Hide Single Columns
	Example
	COLINFOS Properties
	COLINFO Properties

	66 FLEXLINE - Flexible Columns in Control Grids
	Example
	FLEXLINE Properties
	Increasing the Performance

	67 MGDGRID - Managing the Grid
	Example
	MGDGRID Properties
	ROWINSERT Properties
	ROWCOPY Properties
	ROWDELETE Properties

	68 GRIDCOLHEADER - Flexible Column Headers
	Flexible Column Sizing
	Flexible Column Sorting
	Flexible Column Sequence
	GRIDCOLHEADER Properties
	Smart Selection of Rows - SELECTOR Control
	SELECTOR Properties

	69 FLEXGRID - Flexible Grid, Hiding the Grid Complixity for Developers
	FLEXGRID Properties
	Overriding FLEXGRIDInfo

	70 Sorting Aspects with Grids
	Default Sorting
	Your Own Sorting
	Special Consideration with CSVCOLUMN Controls

	71 Background Information on Grids

	V Working with Trees
	72 Basics
	Types of Trees
	When to Use Which Type

	73 TREENODE3 in Control Grid (ROWTABLEAREA2)
	Example
	Editing the Text of the Tree Node
	Embedding Controls into TREENODE3
	Loading Large Trees - Step by Step
	Drag-and-Drop Inside a TREENODE3 Tree
	Dynamic Setting of Tree Icons
	Properties

	74 CLIENTTREE
	Example
	Properties

	VI Working with Menus
	75 Types of Menus
	76 MENU
	Example
	Separators
	Properties

	77 DLMENU
	Example
	Properties

	78 Context Menu
	Example: Context Menu with a Text Grid
	Context Menu with a Tree

