
Application Designer

Multi Language Management

Version 8.3.4

July 2014

This document applies to Application Designer Version 8.3.4.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: CIT-MULTILANG-834-20140722

Table of Contents

1 Multi Language Management ... 1
2 Writing Multi Language Layouts .. 3

Example .. 4
Page Name Strategy ... 5

3 Creating the Translation File ... 7
4 Defining the Language at Runtime ... 9
5 Dealing with Literals inside Your Adapter ... 11
6 Tools for Translating Text IDs .. 13
7 Tool for Creating Languages ... 15
8 Unicode .. 17
9 Interface IMLManager ... 19

iii

iv

1 Multi Language Management

The multi language management is responsible for changing the text IDs into strings that are
presented to the user.

There are two translation aspects:

■ All literals in theGUI definitions of a layout are replaced by stringswhich are language-specific.
■ Literals you output within your adapter code (e.g. status messages) must be translated.

Themulti languagemanagement is internally kept cleanly behind an internal interface. Thismeans
that in the future a different implementation will be available to provide a solution to find a string
for a given text ID. In this documentation, the default implementation which simply uses comma
separated value files is described.

The information provided in this documentation is organized under the following headings:

Writing Multi Language Layouts

Creating the Translation File

Defining the Language at Runtime

Dealing with Literals inside Your Adapter

Tools for Translating Text IDs

Tool for Creating Languages

Unicode

Interface IMLManager

1

2

2 Writing Multi Language Layouts

■ Example .. 4
■ Page Name Strategy ... 5

3

When defining properties of controls inside a layout definition, there are always two options to
specify fix labels: either use property name or property textid. In case your pages support multi
language ability, you only have to use the textid property. At runtime, the corresponding labels
are found in the following way:

■ Each PAGE has the property translationreference. This property may be the name of the
HTML file - or it may be a logical name, used by different HTML pages.

■ InsideApplicationDesigner, there are defined directories and files inwhich the text information
is stored: each application project is represented by a directory under the web application dir-
ectory of ApplicationDesigner. (SeeApplication ProjectManagement formore details onmanaging
projects.) Inside the project directory, there is a directory /multilanguage/. Under this directory,
each language is represented by its own directory, e.g. by the directory /multilanguage/de/ for
German translations.

■ Inside each language directory, there is one comma separated value (CSV) file for each page
name. The name of the file is <pagename>.csv (for example, Login.csv).

■ Inside theCSVfile, each line contains the text ID, a semicolon and the label text, e.g. "Label1;Login
name".

Example

Let us assume you have defined an application project "accountmgmt". Inside the application
project, there is a layout definition account.xml that points via the translationreference property
of PAGE to "account". The file structure inside your application project directory now looks as
follows:

<webapp-directory>/
accountmgmt/

account.html // generated HTML file
multilanguage/
de/

account.csv // German text
en/

account.csv // English text
xml/

account.xml // layout definition

Multi Language Management4

Writing Multi Language Layouts

Page Name Strategy

The previous section explained how a translation file is found for a certain HTML page. Basically,
the translation reference is used to link the layout definition and the Application Designer multi
language management.

In general, there are two strategies for using this translation reference, and a mixture of both:

■ Specify one central page name for a couple of pages. Therefore, all pages share the same multi
language information (i.e. the same .csv file).

■ Specify one page name for each page. Therefore, every page has its own .csv file.

For larger projects, it makes sense to combine different literal information into one file - in order
to keep consistency and to avoid redundancy. Of course, you have to synchronize the naming of
text IDs for each page.

5Multi Language Management

Writing Multi Language Layouts

6

3 Creating the Translation File

The translation file (account.csv in the example of the previous section) is a simple comma separated
file with the following format:

textid1;text1
textid2;text2
textid3,text3

If your text itself contains a semicolon, then write "\;".

You can either create the file by using a text editor or you can use Application Designer's Literal
Assistant which is integrated in the Layout Painter.

Pay attention: when using text editors of your own, you must configure your editor to store the
text using UTF-8 character encoding. Otherwise, any characters that are not "ASCII characters <
128" will not be properly displayed. Make sure that your editor is UTF-8 capable.

7

8

4 Defining the Language at Runtime

With the protectedmember m_sessionContext, you find or set the currently active language used
by the multi language management:

...
m_sessionContext.setLanguage("de");
...

The value passed to the session context is only validwithin the context of current session. Therefore,
different users can be logged on to the system choosing different languages.

The string, which is passed to the setLanguage()method of m_sessionContext, represents the
name of the directory in which the CSV files are stored. You are not bound to the "de" and "en"
directories; you can add any other directories representing additional languages.

9

10

5 Dealing with Literals inside Your Adapter

Use method replaceLiteral of the inherited Adapter class to replace messages:

...
this.outputMessage("S",replaceLiteral("APP1","successFileSaved"));
...

The first parameter is an abbreviation - the file name of the multi language file. The second para-
meter is the text ID that should be translated into text as described previously.

It is also possible to pass parameters of your application to the multi language management. For
example, if you want to show a success message which informs that file "xyz" was saved, proceed
as follows:

...
String fileName = "xyz";
this.outputMessage("S",replaceLiteral("APP1","successFileSaved",fileName));
...

The corresponding line in the CSV file (APP1.csv) in the \en directory for English looks like:

...
successFileSave;File &1 was saved successfully
...

The "&1" is automatically replaced with the file name. There are other variants of the
replaceLiteral()method available to pass 2 or 3 parameters. In this case, use &1, &2 and &3 in
the text definition.

11

12

6 Tools for Translating Text IDs

There are two tools. One is the Literal Assistant that is part of the Layout Painter. The other is the
Literal Translator.

For detailed information on these tools, see

■ Using the Literal Assistant and Literal Translator in the Development Workplace documentation.
■ Using the Literal Assistant and Literal Translator in the Ajax Developer documentation.

13

14

7 Tool for Creating Languages

Application Designer comes with two languages: "en" for English and "de" for German. When
creating a new language abbreviation, you have to take care of the following:

■ You have to create language directories in your projects.
■ You have to copy certain files in which Application Designer holds text information that is
language dependent.

The LanguageManager automates the creation of language abbreviations. For detailed information
on this tool, see Language Manager in the Development Workplace documentation.

15

16

8 Unicode

Pay attention to the fact that Application Designer is fully based onUnicode and its UTF-8 format.
All multi language files must be in UTF-8 format. Especially pay attentionwhenmaintaining CSV
files with programs like MS Excel.

17

18

9 Interface IMLManager

Application Designer uses CSV files as the default implementation for storing translation inform-
ation. In some scenarios, you do not want Application Designer to be responsible for storing this
information, but want to store translation information on your own.

Example: you may already have a text database within your existing application, and you may
already have defined procedures on top of this: translation tools, automated translation etc.

Application Designer provides an interface com.softwareag.cis.multilanguage.IMLManager
that is internally used for accessing translation information:

public interface IMLManager
public void refreshBuffers();
public String getString(String language,

String project,
String application,
String literal);

public boolean checkIfExists(String language,
String project,
String application,
String literal);

public String getString(String language,
String project,
String application,
String literal,
String[] embeddedStrings);

public String[] getApplicationStrings(String language,
String project,
String application,
String[] textIds);

}

See the JavaDoc API documentation for detailed information.

19

You can implement this interface by a class of your own and register this class in the Application
Designer runtime environment. The registration is done inside the cisconfig.xml file:

<cisconfig ...
multilanguagemanager="<your implementation>"

 ...>

 ↩

Be aware of the fact that the interface is a pure “access interface” that is used at runtime; i.e.
whenever ApplicationDesigner requires information about a certain text ID, the interface is called.
The interface currently does not provide methods for writing text information back, i.e. there is
no coupling of Application Designer's multi language tools (e.g. translation inside the Layout
Painter).

Multi Language Management20

Interface IMLManager

	Multi Language Management
	Table of Contents
	1 Multi Language Management
	2 Writing Multi Language Layouts
	Example
	Page Name Strategy

	3 Creating the Translation File
	4 Defining the Language at Runtime
	5 Dealing with Literals inside Your Adapter
	6 Tools for Translating Text IDs
	7 Tool for Creating Languages
	8 Unicode
	9 Interface IMLManager

