
Application Designer

Configuration

Version 8.3.4

July 2014

This document applies to Application Designer Version 8.3.4.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2014 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, USA, and/or its subsidiaries
and/or its affiliates and/or their licensors..

The name Software AG and all Software AG product names are either trademarks or registered trademarks of Software AG and/or
Software AGUSA, Inc. and/or its subsidiaries and/or its affiliates and/or their licensors. Other company and product namesmentioned
herein may be trademarks of their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: CIT-CONFIG-834-20140722

Table of Contents

Preface .. v
1 Browser Configuration .. 1

Supported Browsers ... 2
JavaScript Enabling .. 2
Browser Caching .. 4

2 Background Information ... 7
Application Designer Web Application ... 8
Creating a Second Application Designer Web Application inside Your Tomcat
Installation .. 9
Adding Application Designer to an Existing Web Application 10
Building a Web Application Archive ... 10

3 Design Time Mode and Runtime Mode .. 11
When to Use which Mode .. 12
Setup ... 12
Class Loader Considerations ... 13
File Access Considerations ... 13

4 Advice for Using Application Designer During Development 15
Do not Use the Web Application cis .. 16
Select the Right Directory Location for Your Web Application 16
Typical Steps for Upgrading Your Web Application ... 17
Resource Files to be Shared in a Versioning System .. 20
Integrating Application Designer into Your Build Process 21

5 Configuration of Application Designer ... 23
Overview of Configuration Files .. 24
web.xml .. 24
cisconfig.xml ... 26
controllibraries.xml - Adding Control Libraries .. 34
editortemplates.xml ... 35
editor.xml - Available Controls .. 35
startapps.xml - Applications to be Started ... 35
Customizing Configuration Files ... 35

6 HTTP Data Volume Considerations .. 39
The Browser's Loading Behavior ... 40
How does Application Designer Fit in? ... 41
Configuration Options for Optimized HTTP Usage .. 42

7 Using ANT for Upgrades .. 47
ANT File for Take Over .. 48
Step by Step .. 51
Running the ANT Script .. 52

iii

iv

Preface

This documentation describes how to configure Application Designer. It is subdivided into the
following topics:

How to configure supported browsers.Browser Configuration

Information that is helpful when transferring Application
Designer to a servlet container of your choice.

Background Information

Describes the difference betweenApplicationDesigner running
in design time and runtime environments.

Design Time Mode and Runtime Mode

Important tips that you should consider before you start using
Application Designer in the development process.

Advice for Using Application Designer
During Development

Information on fine-tuning the configuration of Application
Designer.

Configuration of Application Designer

Information on the data volume that is transferred between
server and browser client at runtime.

HTTP Data Volume Considerations

Recommendations for using ANT for upgrading.Using ANT for Upgrades

v

vi

1 Browser Configuration

■ Supported Browsers .. 2
■ JavaScript Enabling ... 2
■ Browser Caching .. 4

1

Supported Browsers

Application Designer runs on browsers supporting DHTML (HTML and JavaScript) to a certain
level. The browsers supporting this level are listed below:

Internet Explorer 8, 9, 10 and 11 (1)

Mozilla Firefox Extended Support Release 17 and 24 (2)

Safari 5.1 on Windows and Mac OS X
Google Chrome (3)

Notes:

(1) Application Designer Version 8.3.4 is the last version that supports Internet Explorer 8.

(2)Only the Extended Support Releases ofMozilla Firefox are explicitly supported. Due to frequent
upgrades of the Mozilla Firefox consumer release, the compatibility of Application Designer with
future versions of Mozilla Firefox cannot be fully guaranteed. Possible incompatibilities will be
removed during the regular maintenance process of Application Designer.

(3) The Google Chrome support is based on Google Chrome Version 31. Due to frequent version
upgrades of Google Chrome, compatibility of ApplicationDesignerwith future versions of Google
Chrome cannot be fully guaranteed. Possible incompatibilities will be removed during the regular
maintenance process of Application Designer.

You do not have to install any further plug-ins or additional software for these browsers. For ex-
ample, Application Designer does not require that any kind of Java Virtual Machine is installed
on the client side.

JavaScript Enabling

Application Designer pages are interactive pages: the interactivity is internally implemented by
the usage of JavaScript inside the pages. As a consequence, JavaScript has to be enabled.

JavaScript enabling is explained below for the following browsers:

■ Internet Explorer

Configuration2

Browser Configuration

■ Mozilla Firefox

Internet Explorer

In Internet Explorer, you enable JavaScript via Tools > Internet Options. On the Security tab of
the resulting dialog box, you can see that Internet Explorer provides different web content zones.

Each zone may have different attributes controlling security-relevant parameters. Make sure that
in the zones inwhichApplicationDesigner pages are available the security settings are set to allow
the execution of JavaScript inside a page.

Mozilla Firefox

In Mozilla Firefox, JavaScript is switched on and off on a central level.

Open theContent tab of theOptions dialog box (Tools > Options) andmake sure that the Enable
JavaScript option is enabled. When you choose the Advanced button next to this option, you can
set the following options:

3Configuration

Browser Configuration

Browser Caching

When working with Application Designer pages as a client front-end, make sure to set up the
browser caching in such a way that it does not reload a page every time it is accessed by the
browser. The reason for this is that ApplicationDesigner's HTMLpages stay stable in the browser.
They do not contain any application data but are more comparable to small programs. The actual
application data is filled into the pages dynamically at runtime.

The browser caching setup is explained below for the following browsers:

■ Internet Explorer
■ Mozilla Firefox

Internet Explorer

In Internet Explorer, you set up caching via Tools > Internet Options. On theGeneral tab of the
resulting dialog box, choose the Settings button in the Temporary Internet files group box. The
following dialog box appears:

Configuration4

Browser Configuration

Either select the option Automatically or Every time you start Internet Explorer.

Mozilla Firefox

WithMozilla Firefox, you do not have to care about the browser’s cache strategy. Open theOptions
dialog box (Tools > Options) and have a look.

5Configuration

Browser Configuration

Configuration6

Browser Configuration

2 Background Information

■ Application Designer Web Application ... 8
■ Creating a Second Application Designer Web Application inside Your Tomcat Installation 9
■ Adding Application Designer to an Existing Web Application .. 10
■ Building a Web Application Archive ... 10

7

Application Designer runs as a web application in any kind of servlet container supporting the
servlet API. Information on the required version of the Servlet specification is provided in the
section Hardware and Software Requirements.

There are multiple servlet containers available on the market. Tomcat is the most commonly used
servlet container of the open source world, but there are also others that in most cases are part of
Java EE-based application server environments: Websphere from IBM, BEAWeblogic, Sun
IPlanet, SAP Web Application Server, JBoss and many others.

This chapter provides background information that is helpful when transferring Application De-
signer to a servlet container of your choice. This chapter is not designed to be usefulwhen installing
Application Designer for the first time - use the standard Tomcat servlet container for doing your
first steps.

Application Designer Web Application

Have a look at your installation's <installdir>/tomcat/webappsdirectory. You see the subdirectory
cis. This is the name of the web application which is used by default.

The cis directory contains the following subdirectories:

/cis/ General information.
/config/ Configuration files.
/licensekey/ License key file.
/styles/ Standard location of style sheet files.
/temp/ Temporary files.

/cisdemos/ Application Designer demo project.
/cisdocumentation/ Documentation.
/EclipsePlugin/ Directory for the Eclipse plug-in.
/HTMLBasedGUI/ Application Designer base project.
/META-INF/ Web application standard directory.
/SWTBasedGUI/ Directory for the SWT client.
/WEB-INF/ Web application standard directory.

/web.xml Web application's configuration file.
/classes/ Web application's classes.
/lib/ Web application's libraries.

Configuration8

Background Information

Configuration of web.xml

Aswith any other web application, theweb.xml file contains configuration information which you
have to take care of when deploying. The file contains information about the servlets which are
part of the Application Designer web application. There is one servlet Connector that contains
important configuration parameters: cis.home and cis.log. See the description of theweb.xml
file for further information.

If only working with Application Designer GUIs, you do not have to pay further attention to the
web.xml file. If working in more complex scenarios in which you might also define other servlets
or when you access Enterprise Java Beans, you have to adapt the web.xml file to your needs (for
example, you have to add bean reference information).

Multiple Deployments

The name "cis" for theweb application is just the default installation name for theweb application.
You can easily name it in a different way. As with any other correct web application, you can also
deploy it multiple times to the same servlet engine.

This is important for you in case you add the Application Designer web application to an existing
web application on your side. You add Application Designer to your web application as you add
normal libraries, i.e. Application Designer is now running under the control of your own web
application.

The following sections provide more information on this aspect.

Creating a Second Application DesignerWeb Application inside Your Tomcat
Installation

To demonstrate the usage of Application Designer as a standard web application, you can create
a secondApplicationDesigner instance inside your Tomcat environment (and a third, fourth, etc.):
simply copy the whole cisweb application directory and paste it with a new name in Tomcat's
webapps directory.

Step by step: let us assume that the name of the new application is secondcis:

■ Copy the directory <installdir>/tomcat/webapps/cis.
■ Paste it in thewebapps directory and rename the new directory to secondcis. As a result, you have
the following directories:

9Configuration

Background Information

<installdir>/tomcat/webapps/cis
/secondcis

Eachweb application instance now contains an independentApplicationDesigner. It is no problem
to run different versions of Application Designer inside one servlet container.

If you want to access the demo workplace of the first instance, you reference the following:

http://localhost:51000/cis/HTMLBasedGUI/workplace/demo.html

If you want to access the demo workplace of the second instance you reference the following:

http://localhost:51000/secondcis/HTMLBasedGUI/workplace/demo.html

You do not have to make further configuration steps when working with Tomcat: the standard
web.xml contains the REALPATH parameter as a pointer to the web application's directory. This
means that the directory path is determined automatically. If you create a second web application
in a different servlet container, you might have to adjust the web.xml file after copying so that the
new web application points to the right directory.

Adding Application Designer to an Existing Web Application

The same way we created a second instance of Application Designer in the section before, we can
now addApplicationDesigner to your exisitingweb application inwhich youwant to use Applic-
ation Designer functions. Just copy the cis directory inside your web application's directory and
merge the web.xml files of both web applications.

Building a Web Application Archive

A web application archive can be simply built by zipping one whole web application directory
into a corresponding .war file.

However, there may also be more complex scenarios in which you want your deployable runtime
to be structured differently compared to your design time. See the sectionDesign Time Mode and
Runtime Mode.

Application Designer also provides the WAR Packager tool that takes over the building of the
.war file. This tool is designed to cover very basic scenarios of packaging aweb application archive
file. It should only be used if you are not familiar with ANT build processes. SeeWAR Packager
in the Development Workplace documentation for more information.

Configuration10

Background Information

3 Design Time Mode and Runtime Mode

■ When to Use which Mode ... 12
■ Setup .. 12
■ Class Loader Considerations ... 13
■ File Access Considerations ... 13

11

Application Designer may run in two different modes:

Design Time Mode
All resource files which are required by Application Designer are read from the file system
using the cis.home parameter value inside theweb.xml configuration file.

The Application Designer class loader may be used. This means you can use the feature to
dynamically reload application classes without having to restart the web application all the
time.

Runtime Mode
All resource files are read internally via mechanisms of the servlet container, by which a web
application can access its resource files.

The Application Designer class loader must not be used.

When to Use which Mode

The design time mode is typically used in the following scenarios:

■ During development.
■ With productive installations, if they are not clustered.

The runtime mode is used in the following scenarios:

■ Productive installations which are distributed by the servlet container or application server on
several cluster nodes.

The design time mode has the advantage that all resources are read from the file system, and are
not blocked after access. This means that you can recreate and change these resources without
restarting the web application. This simplifies the development a lot.

Setup

The switch from design time mode and runtime mode is configured in the web.xml file:

■ If the cis.home parameter is set, the design time mode is switched on.

Configuration12

Design Time Mode and Runtime Mode

<init-param id="CISHOME">
<param-name>cis.home</param-name>
<param-value>REALPATH</param-value>

</init-param>

■ If the cis.home parameter is not set, the runtime mode is switched on.

<!--
<init-param id="CISHOME">

<param-name>cis.home</param-name>
<param-value>REALPATH</param-value>

</init-param>
-->

Class Loader Considerations

Application Designer may use its own class loader below the web application's class loader. The
purpose of this class loader is to dynamically replace classes during development in order to run
newly compiled versions of your software without having to restart the web application all the
time.

In the configuration file cisconfig.xml, you can switch this possibility on or off.

See Appendix D - Class Loader Concepts for more information on what it means to change between
“own Application Designer class loader” and “standard runtime with web application class
loader”. Both expect classes to be located at different locations. As a consequence, you have to
copy classes accordingly in order to bring your application from design time mode to runtime
mode.

File Access Considerations

In design time mode (having a defined cis.home directory), classes and Application Designer re-
sources (multi language files) are read from the file system. The reason is that classes can be reloaded
without restarting the web application. In runtime mode, this is not done anymore: classes are
read by the web application class loader, resources are read via the servlet context.

Consequence: there is no dependency from any file access to a predefined directory - Application
Designer is completely clusterable.

13Configuration

Design Time Mode and Runtime Mode

14

4 Advice for UsingApplicationDesigner DuringDevelopment

■ Do not Use the Web Application cis ... 16
■ Select the Right Directory Location for Your Web Application .. 16
■ Typical Steps for Upgrading Your Web Application ... 17
■ Resource Files to be Shared in a Versioning System .. 20
■ Integrating Application Designer into Your Build Process ... 21

15

This chapter contains useful configuration advices for developing applications with Application
Designer.

Do not Use the Web Application cis

Do not place your development in the standard web application cis. Always use a parallel web
application so that cis is the “Application Designer reference” aside your own development.

Advantage: if installing Application Designer upgrades, you are always sure that these will never
directly touch your development system. You can install upgrades inside the cis directory, have
a look at them and then explicitly decide to take them over into your developmentweb application.

Important: If you take over, always take over the whole reference web application, not parts
of it.

Select the Right Directory Location for Your Web Application

By default, Tomcat administers its web applications within the directory tomcat/webapps. For each
web application, there is one corresponding directory. For example, Application Designer is rep-
resented by directory cis.

You do not have to follow this structure. You can also decide to have your installation directory
in a directory which is completely separated from your Tomcat installation.

There may be several reasons to do so:

■ Youmaywant tomove theweb application directory into your development project directories,
i.e. you do not want to have your development objects distributed on several locations of your
hard disk.

■ You may want to have different Tomcat installations (for example, different versions) and use
the same web application inside these Tomcat installations.

Example

Create the file abcde.xml in the directory conf/Catalina/localhost. Define the file in the followingway:

Configuration16

Advice for Using Application Designer During Development

<Context docBase="C:/Development/project/webui/webapp"
privileged="true"
antiResourceLocking="false"
antiJARLocking="false">

</Context>

In this example, the web application abcde (this is the name of the file) is located in the directory
C:/Development/project/webui/webapp. The directory that is defined by docBase is theweb application
directory which is internally structured in the following way:

webapp/cis
/cisdemos
...
...
/WEB-INF
...

Typical Steps for Upgrading Your Web Application

Software AG constantly publishes patched installation versions. With each patch, there is a brief
documentation on the fixes that were done with the patch. The Application Designer build of a
certain version always includes all patches of previous builds.

When installing a build, you have to follow a certain procedure in order to correctly take over the
files of the new build and to save some information that you might have changed and which may
get overwritten:

1. Start the installation wizard of the corresponding Application Designer build and select a
temporary directory (c:/temp/buildYYYYMMDD) as the destination. As a consequence, the
wizard will install a directory structure such as the following:

c:/temp/buildYYYYMMDD
/tomcat

/webapps
/cis

/cis
/cisdemos
...

2. Make safety copies of all configuration files that Application Designer always delivers as part
of the installation and that you may have changed. Application Designer offers a tool for this;
see Creating Safety Copies of Configuration Files for more information.

3. Copy the content from the cis directory into your own web application.

4. Regenerate your layout definitions. You can do this

17Configuration

Advice for Using Application Designer During Development

■ either by using the LayoutManager in the development workplace (open your project(s) and
regenerate all layout definitions as described in the Development Workplace documentation
under Generating HTML Pages) or by using Ajax Developer;

■ or - and better: define a script (batch) in which you call the Application Designer class
com.softwareag.cis.gui.generate.HTMLGeneratorWholeDirectory in order to regenerate
all layout definitions of one project in one step. See also Java API for HTML Page Mass Regen-
eration in the Development Workplace documentation.

5. If you have defined your own style sheet using the Style Sheet Editor, proceed as described in
theDevelopmentWorkplace orAjaxDeveloper documentation underRegenerating YourOwn Style
Sheet from the Style Sheet Template.

Automate the Upgrade Using ANT

We strongly recommend that you useANT for automating the upgrade of an installation. All steps
(taking over the files and regenerating the layouts) can be easily defined using an ANT script. See
Using ANT for Upgrades in which details are explained and a sample ANT script is provided.

Creating Safety Copies of the Configuration Files

In case you created your customized configuration files with the names user_*.xml, you simply
have to make sure to keep your user_*.xml files. In addition, you have to make a safety copy of the
fileweb.xml. For information on how to create custom configuration fileswith the names user_*.xml,
see Customizing Configuration Files.

In case, you modified Application Designer's default configuration files, you can create safety
copies as described below.

A Configuration Manager is available for managing the core configuration files and which helps
you to keep them consistent through upgrades of Application Designer. This tool is designed for
“non-ANT-minded” developers. All “ANT-minded” developers should refer to the ANT way of
upgrading your system.

We recommendusingANT.Nevertheless, the description of theConfigurationManager is provided
below.

All configurations that are delivered with each Application Designer build and that you might
modify on your own are critical when it comes to applying new builds. Use the Configuration
Manager that comes with Application Designer as described below.

To create safety copies of the configuration files

1 Invoke the demo workplace.

2 In the navigation frame, choose the Development button.

3 In the Configuration node, choose Configuration Manager.

Configuration18

Advice for Using Application Designer During Development

A list of all critical files is shown.

4 From the Filemenu, choose Create Safety Copies.

The system automatically creates copies of the current files. The name of each copy includes
a timestamp.

After having created the safety copies, you can, for example, upgrade your system to a new
Application Designer build by copying/installing it over your existing application.

To check the differences after an upgrade

1 After the upgrade, start the Configuration Manager once again (as described above).

2 Invoke the context menu for a safety copy and choose the Compare command.

The differences between the new version of the file and the saved version are shown.

19Configuration

Advice for Using Application Designer During Development

3 You can edit the current file on the left side and take over changes from the right. Save the
file by choosing Save Current from the Filemenu.

Note: You can choose the View Differences button to better see what has changed.

Resource Files to be Shared in a Versioning System

When working in teams, you typically you use a central source versioning system (for example,
CVS, Perforce, Visual Source Safe or others).

The resources to be synchronized are:

■ Adapter Java Sources
The location of the source files is up to you.

Configuration20

Advice for Using Application Designer During Development

■ Layout Definitions
Each Application Designer project has a set of XML layout definitions that represent the layout
of pages. The definitions are transferred to generated HTML by using the Application Designer
development tools. The definitions are stored in the xml directory of a project.

■ Translation Information
If using the standard multi language management, literal translations are stored in comma-
separated files in the project's multilanguage directory.

■ Help Texts
If using the standard online helpmanagement, help texts are stored in the project's help directory.

■ Other Web Resources
Typically you have images and additionalHTMLpages that you use in your project. For example,
your project has a subdirectory images that contains all GIF and JPG files.

■ Configuration Files
It may also make sense to share configuration files. For example, you may modify theweb.xml
file in order to access EJBs. In this case, you may centrally define the web.xml file and automat-
ically synchronize it through the source code versioning system. The same may apply for all
other configuration files.

Integrating Application Designer into Your Build Process

Typically you define the build process to consistently build up a system out of its resources. You
may use simple scripts to do so, or you may use tools such as ANT.

See the Java API documentation for the following classes in order to find information on how to
automate the generation of Application Designer layouts into HTML pages:

■ com.softwareag.cis.gui.generate.HTMLGenerator

■ com.softwareag.cis.gui.generate.HTMLGeneratorWholeDirectory

21Configuration

Advice for Using Application Designer During Development

22

5 Configuration of Application Designer

■ Overview of Configuration Files .. 24
■ web.xml ... 24
■ cisconfig.xml .. 26
■ controllibraries.xml - Adding Control Libraries .. 34
■ editortemplates.xml .. 35
■ editor.xml - Available Controls .. 35
■ startapps.xml - Applications to be Started ... 35
■ Customizing Configuration Files ... 35

23

In general, you canuseApplicationDesigner from scratch, that is:without any further configuration.
This chapter explains certain options for fine-tuning Application Designer.

Overview of Configuration Files

The web.xml file is located according to the servlet specification:

<webapplication>/WEB-INF/web.xml

Inside the Application Designer installation's web application there is a directory cis/config in
which you can find the Application Designer configuration files.

<webapplication>/cis/config/cisconfig.xml
<webapplication>/cis/config/controllibraries.xml
<webapplication>/cis/config/editor.xml
<webapplication>/cis/config/editortemplates.xml
<webapplication>/cis/config/startapps.xml

web.xml

The web.xml file contains:

■ technical information about the servlets that are defined inside Application Designer and how
they are accessed, and

■ configuration information.

This section only focuses on the configuration information.

Inside the definition for the servlet Connector there are two init-param elements that are relevant
for the system configuration:

<servlet id="Connector">
<servlet-name>Connector</servlet-name>
<display-name>Connector</display-name>
<servlet-class>com.softwareag.cis.server.Connector</servlet-class>

<init-param id="CISHOME">
<param-name>cis.home</param-name>
<param-value>REALPATH</param-value>

</init-param>
<init-param id="CISLOG">

<param-name>cis.log</param-name>
<param-value>REALPATH/../../../log/</param-value>

</init-param>

Configuration24

Configuration of Application Designer

<load-on-startup>1</load-on-startup>
</servlet>

This parameter points to the directory location of the web application - if you are using it in
design time mode. During design time, Application Designer needs to know this file location

cis.home

in order to correctly place generated page files and other information. At runtime, especially if
running the Application Designer web application in a clustered application server scenario,
this parameter should be wiped out. For further information, see the sectionDesign TimeMode
and Runtime Mode.

The parameter can either be set to a directory name (for example, c:/cisinstall/tomcat/webapps/cis/)
or to the parameter REALPATH.

REALPATH is dynamically interpreted at runtime. The name is internally requested by using the
getRealpath()method of the servlet context.

Caution: The above mentioned method is not supported by all servlet containers, it is only
supported by the servlet containers that explicitly deploy into the file system (such as Tomcat,
Jetty and IBMWebsphere).

This parameter points to the directory towhich log information iswritten. Take care in a clustered
scenario that the directory is not set to a fixed directory value: the directorymay not be available
on each cluster node.

cis.log

You can use the REALPATHparameter and you can specify the log location relative to the directory
(for example, REALPATH/log).

You can specify TEMP to indicate that the log is written to a temporary directory that every
servlet container must provide as part of the servlet specification. When using TEMP, your
application is clusterable - the application server will tell Application Designer for each node
where to store log information.

There is a secondparameter influencing the log: this parameter is located in the file cisconfig.xml,
its name is startmonitoringthread. The Application Designer log file is only written if this
parameter is set to "true". Reason: the log is not directly written to the log file but is always
buffered in memory first. The monitoring thread is started every 5 seconds and writes the
buffered data to the file system. If the startmonitoringthread is not started, the log is
automatically written to the logging that is provided by the servlet container. (Internally, the
servlet context's log method is used.) The same will happen if you wipe out the CISLOG section
from the web.xml file. In this case, Application Designer will use the log interface provided by
the servlet context for writing log information.

25Configuration

Configuration of Application Designer

cisconfig.xml

The following topics are covered below:

■ General Parameters
■ Directory for Performance Traces
■ Central Class Path Extensions for Development

General Parameters

The cisconfig.xml file contains some general control information. The following is a very basic ex-
ample:

<cisconfig startmonitoringthread="true"
 requestclienthost="false"
 debugmode="false"
 loglevel="EWI"
 logtoscreen="false"
 sessiontimeout="3600"
 xmldatamanager="com.softwareag.cis.xmldata.filebased.XMLDataManager"
 useownclassloader="true"
 browserpopuponerror="false"
 framebuffersize="3"
 ↩
onlinehelpmanager="com.softwareag.cis.onlinehelp.projectbased.FrameHelpOHManager"
 textencoding="UTF-8"
 enableadapterpreload="true">
</cisconfig>

Default: true.animatecontrols

Defines howApplication Designer handles the animation of controls.
There are several controls that can be rendered in an animated way
and in a standard way.

Setting this parameter to "false" can help to improve performance,
especially if you are not using the newest hardware.

Values: true/false.

Default: false.browserpopuponerror

Defines howApplicationDesigner handles it if the application behind
an Application Designer page throws an error.

By default (false), the browser switches to an error screen. In the screen,
the user can only abort the current function. This is the default way
in which any kind of inconsistency is automatically omitted.

Configuration26

Configuration of Application Designer

When you set browserpopuponerror to "true", the browser opens
a pop-up window in which the error is output. This setting should
only be used during development because itmay cause inconsistencies
in the application.

Values: true/false.

Default: false.clientsideerrorinstatusbar

By default, client-side error messages are displayed as pop-ups.

When you set this parameter to "true", client-side error messages are
displayed in the status bar.

Values: true/false.

Default: 300.collectionorblocklimit

Defines the maximum number of items in a grid after which the
framework automatically switches from client-side scrolling to
server-side scrolling. See also the description of
onloadbehaviour="collectionorblock" in Setting the Client-Side
Loading Behavior in Layout Elements.

Default: false.createhttpsession

Internally, Application Designer does not require HTTP session
management that is provided by the servlet container. Some
application servers (especially in clustered scenarios in which
Application Designer runs in several nodes) require an explicit HTTP
session ID to be used in order to route requests from a browser client
always to the right application server node in the cluster. Set
createhttpsession to "true" in this case.

Values: true/false.

Default: false.debugmode

A log iswritten permanently intoApplicationDesigner's log directory.
When debugmode is set to "true", a lot of informationwhich normally
is not required is written to the log.

Be aware that you can also set the debug mode dynamically within
your running system. Application Designer provides a monitoring
tool in which you can switch the debug mode on and off.

Values: true/false.

You can set your own default style sheet for your entire application.
For example:

defaultcss

27Configuration

Configuration of Application Designer

../cis/styles/MY_STYLE.css

Default: en (English).

Defines the language that is to be used by default when starting
Application Designer. If not set, "en" is used. SeeMulti Language
Management for detailed information on using different languages
with Application Designer.

defaultlanguage

Bydefault, ApplicationDesigner uses an own class loader for accessing
adapter classes at design time. (You can switch this off by specifying
useownclassloader="false".)

designtimeclassloader

With the designtimeclassloader, you can explicitly select a class
loader class that Application Designer is to use. This allows you to
use class loaders that offer special functions such as reading encrypted
class files.

Value: the name of a class loader class.

Default: true.enableadapterpreload

By default, the server sends all required responses at once to the client,
even if different adapters are involved.

If set to "false", a separate data transfer occurs for each involved
adapter.

In case of an unhandled application error, the Application Designer
runtime navigates to an error page. The class name specified in
errorreactionadapter is the Java adapter for this error page.

errorreactionadapter

If an error reaction adapter is not specified, a default adapter is used
which shows the error's stack trace.

TheApplicationDesigner framework contains a second error reaction
adapter with the class name
com.softwareag.cis.server.SecureErrorReactionAdapter.
For security reasons, this adapter does not show a stack trace but only
an error message.

You can write your own error reaction adapter and create your own
error page. An error reaction adapter must implement one of the
interfaces
com.softwareag.cis.server.ISecureErrorReactionAdapter
or com.softwareag.cis.server.IErrorReactionAdapter. For
more information, see the corresponding Java documentation.

Default: false.fieldnumerictypesrightaligned

Set this parameter to "true" in order to right-align textwithin the FIELD
control when using the data type int, long or float.

Values: true/false.

Configuration28

Configuration of Application Designer

Default: false.flushreceivespreviousfocused

By default, during a flush event the adapter gets as focus information
the input control that received the focus. Set this parameter to "true" if
during a flush event your application relies on getting as focus
information the input control that lost the focus.

For Natural applications this means: By default, the Natural system
variable *CURS-FIELD contains during the flush event the value of
the Natural system function POS for the input control that received
the focus.

Values: true/false.

Default: 3.framebuffersize

Each page in the browser client runs inside a surrounding page. This
surrounding page offers a couple of internal functions, one of them
to buffer contained Application Designer pages: if a user opens the
first page and then navigates to a second page, the first page is
internally kept inside a frame buffer. If returning to the first page later
on, the browser does not have to build up the first page from scratch
but just switches to the buffered page.

The framebuffersize defines the number of buffered pages.
Increasing the framebuffersizemeans thatmore resources are used
on the client (browser) side. When changing this value, you should
test the memory consumption on the client side before rolling out the
change to productively running implementations.

Value: integer number.

Default: EWI.loglevel

Defines the message types that are to be logged. Values:

E (error)
W (warning)
I (information)
D (debug)

You can specify any combination of message types by concatenating
the message types.

Example: "EW" logs all error and warning messages. "EWI"
additionally logs information messages.

Caution: When having set debugmode to "true", the loglevel filter
is automatically bypassed and all messages are logged. debugmode
is stronger than loglevel.

Default: false.logtoscreen

29Configuration

Configuration of Application Designer

If this parameter is set to "true", all Application Designer log
information is also output to the command screen from which you
started Application Designer. This parameter should only be set to
"true" if running in development mode.

Values: true/false.

Default: 100.maxitemsinfieldcombo

The FIELD control provides for a predefined pop-up method
openIdValueComboOrPopup. Depending on the size of the list of
valid values, the list is either shown in a combo box or in a pop-up.
Use this parameter to control the maximum number of entries that
are to be shown in the combo box.

Value: integer number.

Default: -1 (unlimited).maxworkplaceactivities

The maximum number of workplace activities in a workplace
application. For reactionswhen themaximumnumber is reached, see
Customizing the MFWPFUNCTIONS Behavior inWorking with Pages.

Internally, Application Designer uses an interface to retrieve the
translation information for a certain text ID and a certain language.

multilanguagemanager

A default implementation is available that stores the corresponding
language information in files that are part of the web application. You
can build your own multi language manager - by using the
com.softwareag.cis.multilanguage.IMLManager interface - in
case you already have an existing framework for multi language
management.

Value: the name of the class that supports Application Designer's
multi language interface.

Default: false.natuppercase

Set this parameter to "true" if yourNatural program only allows Latin
upper-case characters. This is the case, for example, if your Natural
program uses the Hebrew codepage CP803.

Important: Set the parameter natuppercase="true" before you
implement your main program with Natural for Ajax. If you set this
parameter after the implemention, you will have to change all Latin
lower-case characters to upper-case manually.

Values: true/false.

Application Designer accesses a certain URL when the user presses
F1 on certain controls (for example, fields, check boxes and others).

onlinehelpmanager

ApplicationDesigner transfers a corresponding help ID that is defined
with the control into a URL and opens this URL in a pop-up window.
If you have your own mechanisms for defining this URL, you can

Configuration30

Configuration of Application Designer

implement a corresponding Application Designer Java interface
(com.softwareag.cis.onlinehelp.IOHManager).

Value: the name of the interface.

Default: false.requestclienthost

If a client sends an HTTP request, it is determined for the first request
fromwhich client this request is coming. This operation is sometimes
quite expensive. For this reason, you can switch it off. If switched off,
there is no disadvantage in normal operation, besides in themonitoring
tool you cannot identify which session belongs to which client.

Values: true/false.

Application Designer allows to pass each value that is input by the
user through an explicit data converter on the server side, prior to

requestdataconverter

passing this value to the application. In the data converter, you can
implement certain security checks, for example, you can prevent users
from inputting string sequences containing inline JavaScript or SQL
scripting. See the interface
com.softwareag.cis.server.IRequestDataConverter formore
information. See also Security Aspects in the Special Development Topics.

Value: name of a class that implements the interface
com.softwareag.cis.server.IRequestDataConverter.

Default: true.sessionidasthreadname

On start of each page request processing, the Application Designer
runtime calls the method Thread.setNamewith the current session
ID (default).

You can set this parameter to "false" to instruct the Application
Designer runtime not to touch the thread's name.

Values: true/false.

Default: 3600 (1 hour).sessiontimeout

Application Designer sessions are timed out according to the value
definedwith this parameter. This is the definition of the timeout phase
in seconds. By default, 3600 is defined in the configuration file. If no
parameter is specified in the configuration file, 7200 is used.

Value: integer number.

Default: true.startmonitoringthread

If set to "true", a monitoring thread is opened which wakes up every
5 seconds. The thread performs the following activities:

1. It initiates a garbage collection periodically (every two minutes).

2. It writes all log information into a log file (every five seconds).

31Configuration

Configuration of Application Designer

3. It calls the clean up of sessions which are timed out (every two
minutes)

What happens if the monitoring thread is not started?

1. No garbage collection will be triggered by Application Designer.
This is then the task of the servlet container around.

2. The log is not automatically written to the file location specified in
theweb.xml file, but is written to the servlet container's logging.

3. Timing out sessions is not done every two minutes but every
thousand requests.

Caution: Some servlet containers do not allow to let the web
application start new threads (for example, the Sun reference
implementations do so). For these containers, the parameter must be
set to "false".

Values: true/false.

Default: false.suppressfocusmanagement

If you set this parameter to "true", no focus management in the client
will be done after a server round trip. This means: The focus will not
be set to focus-requesting controls such as "EDIT" fieldswith "ERROR"
status after a server round trip.

Usually, you do not set this parameter. If you need to suppress focus
management for specific server round trips, you usually do this from
within your adapter code for these specific server round trips. See
also the focusmgtprop in the NATPAGE control. Only set this
parameter to "true" if your application needs to do it vice versa:
Suppress focus mangement for nearly all server round trips and only
explicitly activate focus management for some specific server round
trips from within your adapter code.

Values: true/false.

Default: false.takeoutfieldpopupicon

Set this parameter to "true" in case you are using right-aligned FIELD
controls with value help. This will avoid overlapping of the
right-aligned text and the corresponding drop-down icon.

Values: true/false.

Default: UTF-8.textencoding

By default, Application Designer reads and writes text files in UTF-8
format. You can tell Application Designer to use a different format
(for example, for writing XML layout definitions). But be very careful
and very aware of what you are doing.

See also Unicode in theMulti Language Management documentation.

Configuration32

Configuration of Application Designer

When Application Designer times out a session (see the
sessiontimeout parameter) and the user tries to continue to work

urlsessiontimeout

with the session, a page will be displayed inside the user's browser,
indicating that a timeout happenedwith the user's session. By default,
this page is an Application Designer page that you might not want to
show to your application users.

Value: the URL of the page that is to be shown instead of the default
page.

Default: false.usemessagepopup

Set this parameter to "true" in order to show status messages as
message pop-ups.

Values: true/false.

Default: true.useownclassloader

If set to "true", Application Designer uses its own class loader to load
application classes.

This parameter may be set to "false" in certain environments, for
example, if youuseApplicationDesigner inside an environmentwhich
requires all application classes to run in the environment's own class
loader environment.

Caution: TheApplicationDesigner class loader automatically searches
for classes in certain directories (<project>/appclasses/classes and
<project>/appclasses/lib). If you do not use the Application Designer
class loader, you have to set up your environment accordingly.

Values: true/false.

This parameter defines the file name of the class which implements
the com.softwareag.cis.xmldata.IXMLDataManager interface.

xmldatamanager

You can specify an own class here. The
com.softwareag.cis.xmldata.XMLDataManagerFactory creates
an instance using a constructor without any parameter.

Default: true.zipcontent

Between the browser and the server, data content is exchanged. By
default, Application Designer zips the content before sending a
response from the server to the browser client.

Sometimes youmaywant to actually “see” what is being sent (maybe
you have a test tool that captures theHTTP protocol). Set zipcontent
to "false" if you do not want Application Designer to zip the data
content returned to the client.

Values: true/false.

33Configuration

Configuration of Application Designer

Directory for Performance Traces

The requestrecording section of the cisconfig.xml file indicates the directory in which recorded
performance traces are stored.

<cisconfig ...>
<requestrecording recordrequests="false"

recorddirectory="c:/temp/traces/">
</requestrecording>

</cisconfig>

See also:

■ Recording a Performance Trace in the Development Workplace documentation.
■ Recording a Performance Trace in the Ajax Developer documentation.

Central Class Path Extensions for Development

If you want to use your own class path extension, you may add a subsection to the cisconfig.xml
file in which you extend the class path of the Application Designer class loader at development
time:

<cisconfig ...>
<classpathextension path="c:/development/centralclasses/classes"/>
<classpathextension path="c:/development/centralclasses/libs/central.jar"/>

</cisconfig>

Each class path extension is listed with a reference to its physical path.

controllibraries.xml - Adding Control Libraries

In this file, all control libraries are registered which you use for your layout definitions. You only
need to modify this file if you use non-Application Designer control libraries. For details, see
Customized Controls.

Configuration34

Configuration of Application Designer

editortemplates.xml

This file defines the layout templates that are offered for selection when you create a new layout
with the Layout Painter. If you do not want to use the default templates, you can customize them.
For details, see the comments in the editortemplates.xml file.

See also:

■ Layout Templates in the Development Workplace documentation.
■ Layout Templates in the Ajax Developer documentation.

editor.xml - Available Controls

This file contains data about all the controls which may be used inside the Layout Painter. You
should never change this file - Application Designer offers a smart way to append your own
definitions to the ones coming from Application Designer: You can create editor_<xxxxx>.xml files
in which you specify your delta compared to editor.xml. For details, see:

■ Using the Control Editor in the Development Workplace documentation.

startapps.xml - Applications to be Started

It is possible to define that certain applications require to be started immediately inside the start
processing of Application Designer. For details, see Becoming a Member of the Startup Process in the
Special Development Topics.

Customizing Configuration Files

This description applies only available when Application Designer is part of a Natural for Ajax
installation.

You can customize the following default configuration files:

cisconfig.xml
controllibraries.xml
editortemplates.xml
startapps.xml

35Configuration

Configuration of Application Designer

However, modifying the above default configuration files has the following disadvantage: With
eachApplicationDesigner version or update package, ApplicationDesigner brings its own default
configuration files. If you forget to save your settings before installing an upgrade, your customized
files will be overwritten by the upgrade. Therefore, it is more convenient if your customized files
do not have the same names as the default files.

The Configuration Manager tool supports the creation of custom configuration files with the fol-
lowing names:

user_cisconfig.xml
user_controllibraries.xml
user_editortemplates.xml
user_startapps.xml

Instead of modifying the default configuration files, it is recommended that you modify the cor-
responding user_*.xml files.

ApplicationDesigner always checkswhether a custom configuration filewith the name user_*.xml
exists. When it exists, Application Designer uses the user_*.xml file and ignores the default file. If
a user_*.xml file does not exist, Application Designer uses the default file.

Note: editor.xml is not intended to be modified. If you want to add your own controls, you
should write your own editor_<xxxxx>.xml file as described above for the editor.xml file.

To create custom configuration files (user_*.xml files)

1 Start the development workplace.

2 In the Development Tools node of the navigation frame (which is visible when the Tools &
Documentation button has previously been chosen), choose Configuration Manager.

Configuration36

Configuration of Application Designer

3 Choose theHelp tab which is shown for the Configuration Manager.

4 See the help text for information on how to proceed.

37Configuration

Configuration of Application Designer

38

6 HTTP Data Volume Considerations

■ The Browser's Loading Behavior .. 40
■ How does Application Designer Fit in? ... 41
■ Configuration Options for Optimized HTTP Usage .. 42

39

This chapter discusses the data volume that is transferred between the server and the browser
client at runtime. You should read this chapter carefullywhendeploying yourApplicationDesigner
based application for productive usage - especially in scenarios in which limited bandwidth is
available.

Application Designer is optimally designed to serve these kinds of applications, but you have to
know and understand how a browser requests information from a server in order to configure
your deployment in an optimal way.

The Browser's Loading Behavior

Browsers loaddata from the server by specifying aURLandgetting back some content (for example,
HTML text). This happens, for example, for any static files that are loaded:

■ pages (HTML),
■ images (GIF, JPG, etc.),
■ other resources.

In order to reduce the volume of data exchanged, the browser uses caching. Once the content for
a specific URL is loaded, the browser will keep the result in its cache, together with a timestamp
that is passed as header information of the loaded content.

How does caching work (now assuming that you use the standard browser configuration)?

■ Once the content is loaded into the browser, the browser will not ask again for the content in
the browser session, i.e. if you keep your browser up and running, it will use the cached content.

■ But if you close the browser and reopen it again, the browser will check whether the cached
content is still up to date. It will send a URL to the server passing the timestamp of the cached
content as part of the request. The serverwill checkwhether the timestamp of the cached content
is valid - if so, it only sends back a short “OK” message to the browser, but does not include the
content. If the timestamp is outdated, the server will send back the now up to date content.

You see: switching cache on (as it is in the standard configuration) still does mean that there is
communication between the browser and the client when starting a new browser. The number of
URLs that are sent as requests to the server is still the same - just the responses are smaller.

Imagine a page that internally holds 10 images. If not yet cached, there will be 11 requests towards
the server, and 11 responses, each response containing the content (1 HTML page, 11 image byte-
streams). Now closing the browser and reopening the page, you will see that again 11 requests
are sent to the server. This time, the server will not send back the content, but just 11 acknowledge-
ment messages that tell the browser that its cached content is still valid.

When improving the data transfer between browser and server, both aspects do play a significant
role:

Configuration40

HTTP Data Volume Considerations

■ The number of exchanged requests.
■ The number of exchanged bytes.

Note: A request over satellite-based networks may have a roundtrip time of about 500 ms
- even if very few pieces of information are actually exchanged.

How does Application Designer Fit in?

ApplicationDesigner pages are kept stable inside the browser. They are not permanently reloaded
but exchange their data content with the server. The data content is exchanged in delta mode, i.e.
only changed data properties are exchanged.

Result: once pages are loaded, Application Designer is “unbeatably” fast (compared to traditional
web frameworks in which pages are constantly resent to the client) because of the clear separation
of page loading and data loading. A data roundtrip (which is internally zipped) has a size of 1 to
3 kBytes typically (depending on the page).

What is the price? Application Designer pages contain JavaScript statements and reference to
JavaScript libraries (that are shared cross pages, of course), i.e. pages are by nature bigger than
plainHTMLpages. Of course, most of the code is shared across different pages (by using libraries).
However, loading an initial page without any information cached in the browser means:

1. loading the page itself (e.g. 50 kBytes)

2. loading libraries (e.g. 150 kBytes)

3. loading images (e.g. 30 kBytes)

and then finally:

4. loading page data (1-3 kBytes)

Only step 4 contains dynamic data. All other steps are requests against static content.

Consequence: you have to explicitly keep an eye on steps 1 to 3. Froma communication perspective,
they are the biggest parts of the initial load, but afterwards need not be reloaded into the browser
because they contain static content.

41Configuration

HTTP Data Volume Considerations

Configuration Options for Optimized HTTP Usage

There are two ways to optimize the HTTP communication:

1. Use compression for all textual information.

2. Make use of browser cache and avoid roundtrips.

For both purposes, Application Designer offers so-called servlet filters. Filters are small programs
that you can configure to wrap HTTP requests coming into a server. In the web application (via
theweb.xml file), you configure which filters are used in which way for which requests.

The two Application Designer filters are:

■ com.softwareag.cis.server.filter.CompressionFilter
A filter that zips content that is loaded from the web application.

■ com.softwareag.cis.server.filter.HttpHeaderFilter
A filter that sets HTTP header attributes for requests. One of the most important attributes that
will be used here is the expiration date of content.

Both filters and the way to use them are explained below:

■ Filter for Compressing Content
■ Filer for Setting HTTP Header Attributes

Filter for Compressing Content

Have a look at the following example configuration (/WEB-INF/web.xml file):

<web-app id="cis">
 ...
 ...
 ...
 <filter>
 <filter-name>Compress</filter-name>
 ↩
<filter-class>com.softwareag.cis.server.filter.CompressionFilter</filter-class>
 </filter>
 ...
 ...
 ...

 <filter-mapping>
 <filter-name>Compress</filter-name>
 <url-pattern>*.html</url-pattern>
 </filter-mapping>
 <filter-mapping>

Configuration42

HTTP Data Volume Considerations

 <filter-name>Compress</filter-name>
 <url-pattern>*.bmp</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>Compress</filter-name>
 <url-pattern>*.js</url-pattern>
 </filter-mapping>
 <filter-mapping>
 <filter-name>Compress</filter-name>
 <url-pattern>/servlet/StartCISPage*</url-pattern>
 </filter-mapping>
 ...
 ...
 ...
 <servlet id="Connector">
 ...
 ...
 ...

First of all, the filter is defined in the <filter>...</filter> section. Then, URL patterns are
defined for which the filter is to be used. In the example, the compression filter compresses any
requests that areHTMLpages, non-compressed images (bitmaps), JavaScript library files and calls
against the Application Designer servlet to start new Application Designer pages.

The example represents a reasonable filter configuration for running Application Designer: un-
compressed content (text, bitmaps) is filtered, i.e. is zipped; compressed content (e.g. JPG images,
PDF files) are passed through without being compressed again.

Of course, compression has its price on the server side. A compressed request requires some time
for executing the compression, but it is typically worth it.

Filer for Setting HTTP Header Attributes

Each request to which a server responds holds a certain number of HTTP header attributes that
surround the content of the response. One important HTTP header parameter is the expiration
date of a page.

Let us come back to the caching discussion previously in this section. A browser holds cached
content associated with the timestamp of loading. If closing and reopening a browser, it will still
send content requests to the server to check whether its content is valid, and will receive acknow-
ledgement messages or refreshed content.

When nowusing the header attribute max-age, you can tell the browser that a content has a certain
stability: for example, you tell the browser that when loading a page today, it will not expire in
the next 24 hours.When nowbeing closed and reopened, the browserwill only sendHTTP requests
to the server that are expired. Now, with defining expiration dates, the browser will really reduce
the number of URLs that are sent to the server when being reopened.

43Configuration

HTTP Data Volume Considerations

...

...

...
<filter>

<filter-name>HttpHeader</filter-name>
<filter-class>com.softwareag.cis.server.filter.HttpHeaderFilter</filter-class>
<init-param>

<param-name>Cache-Control</param-name>
<param-value>max-age=86400</param-value>

</init-param>
</filter>
...
...
...
<filter-mapping>

<filter-name>HttpHeader</filter-name>
<url-pattern>*.gif</url-pattern>

</filter-mapping>
<filter-mapping>

<filter-name>HttpHeader</filter-name>
<url-pattern>*.jpg</url-pattern>

</filter-mapping>
...
...
...

In the filter definition, you see that a header attribute max-age is set for filtered HTTP responses.
The value is set to 86400 seconds (this is 24 times 3600s - one day). The filter is applied to GIF files
and JPG files.

Now it depends on some environment conditions how to configure the filter. Ad hoc candidates
for filtering are:

■ All graphic files. Typically they do not change too frequently and they do not have a direct impact
on the consistency of an application.

■ Static content, e.g. PDF documents.

Of course you might also think about filtering other files such as:

■ JavaScript libraries.
■ Generated Application Designer HTML pages.

But be aware of the following: if you upgrade your server software (for example, youmodify some
of your pages), you will have to explicitly tell your users to clear their cache. Otherwise, they will
keep their old pages until they are expired.

The Application Designer recommendation for long term caching via the expiration date is:

■ You must use it for any static images.

Configuration44

HTTP Data Volume Considerations

■ You should be very careful with any content-related parts of your application.

Be aware of the fact that you can define the filter several times inside your web.xml definition:

...

...

...
<filter>

<filter-name>HttpHeaderLongTerm</filter-name>
<filter-class>com.softwareag.cis.server.filter.HttpHeaderFilter</filter-class>
<init-param>

<param-name>Cache-Control</param-name>
<param-value>max-age=86400</param-value>

</init-param>
</filter>
<filter>

<filter-name>HttpHeaderShortTerm</filter-name>
<filter-class>com.softwareag.cis.server.filter.HttpHeaderFilter</filter-class>
<init-param>

<param-name>Cache-Control</param-name>
<param-value>max-age=3600</param-value>

</init-param>
</filter>

45Configuration

HTTP Data Volume Considerations

46

7 Using ANT for Upgrades

■ ANT File for Take Over ... 48
■ Step by Step .. 51
■ Running the ANT Script .. 52

47

After installing Application Designer, the web application "cis" will be available inside a servlet
engine. The servlet engine either comes with the Application Designer installation (when using
the installation wizard) or is your own servlet engine (when using the .war distribution).

When starting to develop with Application Designer, we recommend the following procedure:

■ Make a copy of the standard "cis" web application into a new, parallel running web application.
You can use a name of your choice; in this chapter we will use the name "ciscopy".

■ Use the "cis" web application as an “untouched” Application Designer reference and make all
of your development inside "ciscopy".

Reason:when installing newor patched versions ofApplicationDesigner, you are sure that changes
will not immediately have an effect on your web application. There is one buffer between what
comes from Software AG and your development.

The take over from the reference "cis"web application to your copy "ciscopy" should be automated
in order to reduce the effort when applying new Application Designer versions. We recommend
to do this automation using an ANT script definition.

This chapter gives an example of an ANT script definition. The ANT script can be used for both
the first, initial copying from the reference and for continuous copying from the reference.

You are not yet familiar withANT?No problem - just downloadANT from http://ant.apache.org/,
extract it into a directory of your choice, that's it.

ANT File for Take Over

Let us have a look at the XML file that defines the ANT job:

<?xml version="1.0"?>
<project name="Copy Into Parallel Project" default="generatehtml">

 <description>Copy Default Application Designer Environment (cis) to an existing ↩
Web Project (ciscopy)</description>

 <!--
 The following three properties need to be updated according to your
 situation.
 -->
 <property name="from.dir" value="C:/TEMP/lllll/tomcat/webapps/cis"/>
 <property name="to.dir" value="C:/TEMP/lllll/tomcat/webapps/ciscopy"/>
 <property name="project" value="yourproject"/>

 <path id="generate.classpath">
 <pathelement location="${to.dir}/WEB-INF/lib/cis.jar"/>
 </path>

Configuration48

Using ANT for Upgrades

http://ant.apache.org/

 <target name="copyfiles" description="Copy Files">

 <!-- Copy cis configuration directory-->
 <copy file="${to.dir}/cis/config/cisconfig.xml"
 tofile="${to.dir}/cis/config/cisconfig_customer.xml" ↩
failonerror="false"/>
 <copy file="${to.dir}/cis/config/startapps.xml"
 tofile="${to.dir}/cis/config/startapps_customer.xml" ↩
failonerror="false"/>
 <copy file="${to.dir}/cis/config/controllibraries.xml"
 tofile="${to.dir}/cis/config/controllibraries_customer.xml" ↩
failonerror="false"/>
 <copy file="${to.dir}/cis/config/editortemplates.xml"
 tofile="${to.dir}/cis/config/editortemplates_customer.xml" ↩
failonerror="false"/>
 <copy file="${to.dir}/cis/config/adapterTemplate.java"
 tofile="${to.dir}/cis/config/adapterTemplate_customer.java" ↩
failonerror="false"/>
 <copy file="${to.dir}/cis/config/adapterTemplate.java"
 tofile="${to.dir}/cis/config/adapterTemplate_customer.java" ↩
failonerror="false"/>
 <copy file="${to.dir}/cis/config/fopClassTemplate.java"
 tofile="${to.dir}/cis/config/fopClassTemplate_customer.java" ↩
failonerror="false"/>

 <copy todir="${to.dir}/cis">
 <fileset dir="${from.dir}/cis">
 </fileset>
 </copy>

 <copy file="${from.dir}/cis/config/cisconfig.xml"
 tofile="${to.dir}/cis/config/cisconfig_sagreference.xml"/>
 <copy file="${from.dir}/cis/config/startapps.xml"
 tofile="${to.dir}/cis/config/startapps_sagreference.xml"/>
 <copy file="${from.dir}/cis/config/controllibraries.xml"
 tofile="${to.dir}/cis/config/controllibraries_sagreference.xml"/>
 <copy file="${from.dir}/cis/config/editortemplates.xml"
 tofile="${to.dir}/cis/config/editortemplates_sagreference.xml"/>
 <copy file="${from.dir}/cis/config/adapterTemplate.java"
 tofile="${to.dir}/cis/config/adapterTemplate_sagreference.java"/>
 <copy file="${from.dir}/cis/config/fopClassTemplate.java"
 tofile="${to.dir}/cis/config/fopClassTemplate_sagreference.java"/>

 <copy file="${to.dir}/cis/config/cisconfig_customer.xml"
 tofile="${to.dir}/cis/config/cisconfig.xml" failonerror="false"/>
 <copy file="${to.dir}/cis/config/startapps_customer.xml"
 tofile="${to.dir}/cis/config/startapps.xml" failonerror="false"/>
 <copy file="${to.dir}/cis/config/controllibraries_customer.xml"
 tofile="${to.dir}/cis/config/controllibraries.xml" failonerror="false"/>
 <copy file="${to.dir}/cis/config/editortemplates_customer.xml"

49Configuration

Using ANT for Upgrades

 tofile="${to.dir}/cis/config/editortemplates.xml" failonerror="false"/>
 <copy file="${to.dir}/cis/config/adapterTemplate_customer.java"
 tofile="${to.dir}/cis/config/adapterTemplate.java" failonerror="false"/>
 <copy file="${to.dir}/cis/config/fopClassTemplate_customer.java"
 tofile="${to.dir}/cis/config/fopClassTemplate.java" ↩
failonerror="false"/>

 <delete file="${to.dir}/cis/config/cisconfig_customer.xml"/>
 <delete file="${to.dir}/cis/config/startapps_customer.xml"/>
 <delete file="${to.dir}/cis/config/controllibraries_customer.xml"/>
 <delete file="${to.dir}/cis/config/editortemplates_customer.xml"/>
 <delete file="${to.dir}/cis/config/adapterTemplate_customer.java"/>
 <delete file="${to.dir}/cis/config/fopClassTemplate_customer.java"/>

 <!-- Copy HTMLBasedGUI directory -->
 <copy todir="${to.dir}/HTMLBasedGUI">
 <fileset dir="${from.dir}/HTMLBasedGUI">
 </fileset>
 </copy>

 <!-- Copy WEB-INF directory -->
 <copy file="${to.dir}/WEB-INF/web.xml"
 tofile="${to.dir}/WEB-INF/web_customer.xml" failonerror="false"/>
 <copy todir="${to.dir}/WEB-INF">
 <fileset dir="${from.dir}/WEB-INF">
 </fileset>
 </copy>
 <copy file="${from.dir}/WEB-INF/web.xml"
 tofile="${to.dir}/WEB-INF/web_sagreference.xml"/>
 <copy file="${to.dir}/WEB-INF/web_customer.xml"
 tofile="${to.dir}/WEB-INF/web.xml" failonerror="false"/>
 <delete file="${to.dir}/WEB-INF/web_customer.xml"/>

 <!-- Copy all Application Designer demo projects that should be available ↩
in the copy -->
 <!--
 <copy todir="${to.dir}/cisdemos"><fileset ↩
dir="${from.dir}/cisdemos"/></copy>
 -->

 </target>

 <!-- Regenerate HTML files in core projects -->
 <target name="generatehtml" depends="copyfiles" description="Regenerate HTML ↩
files of project">
 <mkdir dir="${to.dir}/${project}/log"/>
 <java classname="com.softwareag.cis.gui.generate.HTMLGeneratorWholeDirectory"
 classpathref="generate.classpath">
 <sysproperty key="cis.home" value="${to.dir}/"/>
 <arg value="${to.dir}/${project}/xml"/>
 <arg value="${to.dir}/${project}"/>
 <arg value="${to.dir}/${project}/log"/>

Configuration50

Using ANT for Upgrades

 <arg value="${to.dir}/${project}/accesspath"/>
 </java>
 </target>

</project>

Step by Step

The ANT file contains three major sections:

1. Declaration of properties.

2. Target name "copyfiles" - the copying from this "cis" reference into the "ciscopy" copy is defined
in this section.

3. Target name "generatehtml" - the regeneration of XML layouts into HTML files is defined in
this section.

Declaration of Properties

There are three properties:

1. The name of the directory of the "cis" reference web application.

2. The name of the directory of the "ciscopy" web application.

3. The name of your application project within the "ciscopy" web application.

Define the properties according to your configuration.

Target Name copyfiles

The copying is done in three steps:

1. Copying the directory cis.

2. Copying the directory HTMLBasedGUI.

3. Copying the directoryWEB-INF.

For certain files that you may have changed during development (for example, cis/cisconfig.xml),
the ANT file will create corresponding copies of the original files coming from Software AG - and
will leave your version untouched.

Only the core directories of your "cis" reference will be copied. The demo application will not be
copied (directory cisdemos). In the ANT script, you see a commented section that you can uncom-
ment in order to also copy this directory.

51Configuration

Using ANT for Upgrades

Target Name generatehtml

In this step, the XML files of your project will be regenerated.

Caution: If you have created your own controls -with your own control classes (ITagHandler,
IMacroTagHandler implementations) - you have to adapt the classpath that is used for
generation to also contain your control handler classes.

Running the ANT Script

The following batch file for Windows shows how to start the ANT script, assuming the name of
the file is copy_reference.xml:

set JAVA_HOME=C:\Java\jdk142
C:\ ant\bin\ant.bat -buildfile copy_reference.xml

Adapt the file to your directory configuration.

Configuration52

Using ANT for Upgrades

	Configuration
	Table of Contents
	Preface
	1 Browser Configuration
	Supported Browsers
	JavaScript Enabling
	Internet Explorer
	Mozilla Firefox

	Browser Caching
	Internet Explorer
	Mozilla Firefox

	2 Background Information
	Application Designer Web Application
	Configuration of web.xml
	Multiple Deployments

	Creating a Second Application Designer Web Application inside Your Tomcat Installation
	Adding Application Designer to an Existing Web Application
	Building a Web Application Archive

	3 Design Time Mode and Runtime Mode
	When to Use which Mode
	Setup
	Class Loader Considerations
	File Access Considerations

	4 Advice for Using Application Designer During Development
	Do not Use the Web Application cis
	Select the Right Directory Location for Your Web Application
	Typical Steps for Upgrading Your Web Application
	Automate the Upgrade Using ANT
	Creating Safety Copies of the Configuration Files

	Resource Files to be Shared in a Versioning System
	Integrating Application Designer into Your Build Process

	5 Configuration of Application Designer
	Overview of Configuration Files
	web.xml
	cisconfig.xml
	General Parameters
	Directory for Performance Traces
	Central Class Path Extensions for Development

	controllibraries.xml - Adding Control Libraries
	editortemplates.xml
	editor.xml - Available Controls
	startapps.xml - Applications to be Started
	Customizing Configuration Files

	6 HTTP Data Volume Considerations
	The Browser's Loading Behavior
	How does Application Designer Fit in?
	Configuration Options for Optimized HTTP Usage
	Filter for Compressing Content
	Filer for Setting HTTP Header Attributes

	7 Using ANT for Upgrades
	ANT File for Take Over
	Step by Step
	Declaration of Properties
	Target Name copyfiles
	Target Name generatehtml

	Running the ANT Script

