
Application Designer

Appendices

Version 8.3.2

September 2013

This document applies to Application Designer Version 8.3.2.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. and/or their licensors. Other company and product names mentioned herein may be trademarks of
their respective owners.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: CIT-APPENDICES-832-20130923

Table of Contents

Preface .. v
I .. 1

1 Appendix A - Call Sequence for Adapter ... 3
Normal Call Sequence .. 4
Call Sequence when a Subsession is Destroyed ... 9
Call Sequence when a Session is Destroyed .. 6
Error/ Runtime Exceptions ... 6
Pay Attention when Overwriting .. 6

2 Appendix B - Usage of Methods Inherited from the Adapter Class 7
Access to Lookup Session Context ... 8
Access to Application Designer Session Context ... 9
Access to other Adapters ... 9
Error Output .. 9
Page Navigation ... 10
Opening of Pop-up Dialogs ... 10
Frame Communication .. 10
Closing of a Page .. 11
Multi Language Management .. 11

3 Appendix C - Data Types to be Used by Adapter Properties 13
Supported Data Types .. 14
Data Types for Managing Date and Time .. 14

4 Appendix D - Class Loader Concepts ... 15
Design Time - Runtime .. 16
Class Loader Hierarchy .. 16
Preparing for Runtime ... 19

5 Appendix E - StartCISPage Servlet .. 21
Normal Calling of a Page ... 22
Appending Application Parameters .. 22
Controlling the Session Life Cycle ... 22
Controlling the Session ID ... 23
Setting Default Parameters ... 23
Mixing Parameters ... 24
Setting Parameters with the HTTP Method POST ... 24

6 Appendix F - Using JSwat for Debugging ... 25
Usage of JSwat .. 26

II Appendix G - Using Eclipse with Application Designer 2.4 Functionality 29
7 Eclipse: A Brief Introduction ... 31

Concept .. 32
Components ... 33
Using Eclipse-based Products .. 40
Further Reading ... 41

8 Setting up Eclipse as Your Development Environment .. 43
Creating a Project in the Application Designer Environment 44

iii

Creating a Java Project in Eclipse ... 44
9 Setting Up the Eclipse Plug-in ... 51

About the Eclipse Plug-in .. 52
Installing the Eclipse Plug-in ... 52
Creating an Eclipse Project for the Eclipse Plug-in .. 54
Configuring the Eclipse Project .. 54
Elements of the Eclipse Plug-in .. 55

10 Debugging your Project Code ... 59
11 The Log Viewer .. 61

Adding a New Log Viewer .. 62
Editing or Removing a Log Viewer .. 63
About Predefined Logs .. 64

Appendicesiv

Appendices

Preface

The following appendices are available:

Describes how an incoming request by the browser client
is processed inside an adapter.

Appendix A - Call Sequence for Adapter

Gives information about adapter classes and how to use
them.

AppendixB -Usage ofMethods Inherited from
the Adapter Class

Describes the various data types that can be used by
adapter properties.

Appendix C - Data Types to be Used by
Adapter Properties

Gives information about class loader management.Appendix D - Class Loader Concepts

Describes the StartCISPage servlet that is used to open
intelligent HTML pages.

Appendix E - StartCISPage Servlet

Describes the graphical debuggerJSwat and its usage.Appendix F - Using JSwat for Debugging

Contains information about the old Eclipse plug-in that
was available with previous versions. For your
convenience, it is still supported.

Appendix G - Using Eclipse with Application
Designer 2.4 Functionality

v

vi

I
■ 1 Appendix A - Call Sequence for Adapter ... 3
■ 2 Appendix B - Usage of Methods Inherited from the Adapter Class .. 7
■ 3 Appendix C - Data Types to be Used by Adapter Properties .. 13
■ 4 Appendix D - Class Loader Concepts .. 15
■ 5 Appendix E - StartCISPage Servlet .. 21
■ 6 Appendix F - Using JSwat for Debugging ... 25

1

2

1 Appendix A - Call Sequence for Adapter

■ Normal Call Sequence ... 4
■ Call Sequence when a Subsession is Destroyed ... 9
■ Call Sequence when a Session is Destroyed .. 6
■ Error/ Runtime Exceptions .. 6
■ Pay Attention when Overwriting ... 6

3

This chapter describes howan incoming request by the browser client is processed inside an adapter.
The request contains all the changes of properties that have been made at client side.

Normal Call Sequence

■ init()
This method is called only once - when creating the adapter inside a subsession. Before calling
this method, Application Designer makes sure that the adapter instance is properly registered
inside the Application Designer environment. Therefore - for example - you have access to the
session management: use the findSessionContext() or findSubSessionContext()method in
order to look for some values inside the init()method. It is not possible to use the
find...SessionContext()methods inside the constructor of an adapter - since the session is
not yet assigned to the adapter instance.

When navigating between pages (using the switchToPage() or openPopupPage()method), the
corresponding adapter objects are only created once. For example, if you navigate from page
"A" to page "B" and back to page "A", the adapter of page "A" does not change. The init()
method is only called once - at the time the adapter is instanciated.

■ activate(...)
This method is implemented by the Adapter class already. You only need to overwrite this
method if you want to passivate the state between requests. In this case, you can activate this
state inside your implemented method of your adapter class. If you use the adapter class to co-
operate, for example, with components running in a container of an application server, you
should synchronize the state passivation with the container's passivation.

■ reactOnDataTransferStart()
Thismethod is calledwhen the transfer of the changed properties starts. You can initialize some
internal members at this time. If you overwrite this method, do not forget to include themethod
of the super-class (Adapter.reactOnDataTransferStart()) into your method implementation!

■ setXxx(), setYyy(), ...
Now, the set methods of the changed properties of the browser client are transferred. It is very
important that your implemented set methods never cause an exception or an error.

■ reactOnDataTransferEnd()
Thismethod is called after setting the changed properties. Use thismethod to performoperations
you always want to execute when processing a request.

■ invoke()-Method
If the request has a method call inside, the method is invoked now.

■ processAsDefault()
If the request has no method call, this standard method is called.

Appendices4

Appendix A - Call Sequence for Adapter

■ reactOnDataCollectionStart()
Thismethod is calledwhen the transfer of adapter properties starts. Use thismethod, for example,
for performance improvements during the following get methods, for example, by building
temporary objects.

■ getXxx(), getYyy()
All get methods of the adapter - including array elements which may be passed back by - are
called.

■ reactOnDataColletionEnd()
This method is calledwhen data collection is finished. Temporary objects - which youmay have
created for performance reasons - can be released for garbage collection now.

■ passivate(...)
This method is the counterpart of the activate method.

Call Sequence when a Subsession is Destroyed

■ endProcess()
This method is called inside the adapter if the user decides to terminate the subsession. For ex-
ample, in the Application Designer workplace environment, this method is called whenever
the user chooses the close button of a page.

You can deny closing a subsession in your implemented method:

public class ABCAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void endProcess()
{

// veto the endProcess in case of unsaved data
if (changedDataNotSaved == true)
{

this.outputMessage("E","Please save data first");
return;

}
// close subsession
super.endProcess();

}
}

5Appendices

Appendix A - Call Sequence for Adapter

Call Sequence when a Session is Destroyed

If a session is removed from Application Designer - for example, if the user closes the browser or
if a system administrator removes the session - the adapter instances are informed in the following
way:

■ destroy()
In your implementedmethod, clean up all resources bound to your adapter instance. You cannot
deny the destroying of the session - but you can react.

Error/ Runtime Exceptions

Error and runtime exceptions occurring during the adapter request processing may be handled
centrally inside your adapter. For more details, see Binding between Page and Adapter in the Special
Development Topics.

Pay Attention when Overwriting

The methods named above are already implemented with default behavior inside the class
com.softwareag.cis.server.Adapter. Pay attention when overwriting these methods inside
your adapter and always include the super-class's processing into your own implementation. The
first statement inside your implementation should call the super-class method:

public class ABCAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void reactOnDataTransferStart()
{

super.reactOnDataTransferStart();
// now own implementation
...
...

}
}

Appendices6

Appendix A - Call Sequence for Adapter

2 Appendix B - Usage of Methods Inherited from the Adapter

Class
■ Access to Lookup Session Context ... 8
■ Access to Application Designer Session Context ... 9
■ Access to other Adapters .. 9
■ Error Output ... 9
■ Page Navigation .. 10
■ Opening of Pop-up Dialogs ... 10
■ Frame Communication ... 10
■ Closing of a Page .. 11
■ Multi Language Management ... 11

7

Inside the Application Designer management, adapters have to provide a defined interface to be
managed correctly by the system. This interface is declared by
com.softwareag.cis.Server.IAdapter. In order to have a high level of comfort during developing
adapters, you should derive your adapter classes from the super-class
com.softwareag.cis.Server.Adapter. This class already provides some useful methods.

Access to Lookup Session Context

As you know, session management defines sessions (corresponding to one browser instance) and
subsessions (corresponding to one process inside the Application Designer workplace). There is
the possibility to bind and look for parameters on both levels:

■ Adapter.findSessionContext() - returns the context which is on top of all subsessions. All
adapters inside one session refer to the same session context.

■ Adapter.findSubSessionContext() - returns the context which is held per subsession. Only
adapters - belonging to the same subsession - share this context.

The result is a context supporting the interface com.softwareag.cis.context.ILookupContext.
This interface provides two important methods:

public Object lookup(String s, boolean reactWithErrorIfNotExist);
public void bind(String s, Object o);

The session context is used, for example, to refer to the current user who is logged in, the chosen
language, etc. The subsession context is used to share data inside a subsession.

Do not use the context as global variable buffers in a very intensiveway. It will end up in programs
relying on a lot of context information to be available - and sooner or later no one knows what has
to be in the context when starting the program.

Via the methods

■ Adapter.findSessionId()

■ Adapter.findSubsessionId()

you can access the internally used representations of session ID and subsession ID.

Appendices8

Appendix B - Usage of Methods Inherited from the Adapter Class

Access to Application Designer Session Context

Application Designer uses its own lookup session management in order to store information of a
session. You can access and manipulate this information by calling your adapter's method:

■ Adapter.findCISessionContext() - returns a concrete session context object.

Inside the session context, the following parameters are kept:

■ date format
■ time format
■ language
■ style
■ decimal separator
■ and other information.

Have a look at the JavaDoc API documentation for more details.

Access to other Adapters

Access other adapters inside the same subsession by the methods:

■ Adapter.findAdapter(class) - returns the adapter instance for a given class. Method init()
is already called when passing back the instance - but only if the adapter was not used before.

Use thismethod before navigating between pages in order to prepare the adapter that will be used
by the next page.

Error Output

You can display error messages inside the status bar (if it is defined in the page layout) by using
the methods:

■ outputMessage(String, String (, String))

First, pass a string for the type of message. This is needed to display a corresponding icon inside
the status bar. There are constants defined inside the Adapter for specifying the type:

■ Adapter.MT_ERROR

9Appendices

Appendix B - Usage of Methods Inherited from the Adapter Class

■ Adapter.MT_WARNING

■ Adapter.MT_SUCCESS

The second string is the message being shown.

The third string - which is optional - is the long text description of the message. It becomes visible
by a dialog if the user clickswith themouse on themessage. If you do not specify a long description,
the normal message is used.

Page Navigation

Navigate to a page by using the method:

■ switchToPage(String pageName)

The "pageName" is the URL - either relative or absolute - of the next page.

Opening of Pop-up Dialogs

You can open a page inside a pop-up dialog by using the method:

■ openPopup(String pageName).

The "pageName" is the URL - either relative or absolute - of the page that is displayed inside the
dialog.

You can specify pop-up parameters of the pop-up you open with openPopup() by using the
methods:

■ setPopupTitle(String title)

■ setPopupPageFeatures(String pageFeatures)

Frame Communication

There are various methods to communicate to other frames:

■ openPageInTarget

■ openCISPageInTarget

■ invokeMethodInTarget

Appendices10

Appendix B - Usage of Methods Inherited from the Adapter Class

■ refreshTarget

■ sizeTarget

Closing of a Page

The default method used for closing a page is endProcess(). It is provided by the Adapter class.
The tasks performed by the endProcess()method are:

■ The current subsession is closed and de-registered inside the session management.
■ The current page is de-registered from the workplace management - if it was registered before.

Calling the endProcess()method ensures that all memory resources are released for the corres-
ponding subsession.

The endProcess()method is called by clicking inside the page on the close icon at the top right
corner of the page. You can also call it directly inside an adapter, e.g. if you want to close the
subsession as reaction to the user's entered data.

Multi Language Management

You can access the multi language management using the methods:

■ replaceLiteral(String application, String textid)

■ replaceLiteral(String application, String textid, String param1)

■ replaceLiteral(String application, String textid, String param1, String param2)

■ replaceLiteral(String application, String textid, String param1, String param2,
Stirng param3)

The application is the name for the abbreviation of a defined application area for which literals
are defined. In the file-based multi language management, it represents the name of a CSV file
that holds the text identified by a text ID.

11Appendices

Appendix B - Usage of Methods Inherited from the Adapter Class

12

3 Appendix C - Data Types to be Used by Adapter Properties

■ Supported Data Types .. 14
■ Data Types for Managing Date and Time .. 14

13

TheApplicationDesignermanagement is very flexible by allowing various data types for properties
of an adapter.

Supported Data Types

■ String
■ int, long, short, byte
■ float, double
■ BigDecimal
■ boolean
■ CDate
■ CTime
■ CTimeStamp

Data Types for Managing Date and Time

The java.util.Time class is very powerful, but also very complex to use for business applications.
Therefore, three classes are introduced to deal with date and time:

■ com.softwareag.cis.util.CDate

■ com.softwareag.cis.util.CTime

■ com.softwareag.cis.util.CTimeStamp

See the JavaDoc documentation for further details.

Dates and times are transferred as strings betweenApplicationDesigner and the intelligentHTML
page:

■ YYYYMMDD format for dates.
■ HHMMSS format for times.
■ YYYYMMDDHHMMSSMMM format for timestamps.

The interpretation and formatting of these strings to valid formats is done automatically.

Appendices14

Appendix C - Data Types to be Used by Adapter Properties

4 Appendix D - Class Loader Concepts

■ Design Time - Runtime ... 16
■ Class Loader Hierarchy .. 16
■ Preparing for Runtime .. 19

15

An explicit class loader management was introduced to support the following scenarios:

■ Classes are automatically found in the context of Application Designer without specifying a
CLASSPATH variable.

■ Classes can be stored inside an application project directory - separated from other application
projects.

■ During development time, easily run newpages togetherwith the latest classeswithout restarting
the server.

This chapter explains the class loader concepts used inside Application Designer.

Design Time - Runtime

The class loader concepts are designed to simplify the development of pages and their logical
representations on the server side: adapters.

At runtime, they should only be used if you are not running in a cluster - i.e. if you do not distribute
your application server on multiple nodes. When running in a cluster, classes should be located
exactly there, where the application server specifications allow them to be located. Inside the Ap-
plication Designer configuration, you can select which mode you are running in - for details, see
Design Time Mode and Runtime Mode in the Configuration documentation.

After explaining the class loader concepts in this chapter, at the endwe explainwhat to do in order
to change a design time environment into a runtime environment.

Class Loader Hierarchy

Application Designer runs as a web application inside a servlet engine - by default, the Tomcat
servlet engine is used. The class loader used by the servlet engine is called “web application
loader” in the following text.

The Application Designer environment itself is running in the context of the web application
loader. This class loader is looking for classes as specified by the servlet engine. Therefore the
Application Designer runtimemust be accessable by this class loader. For Tomcat, this is achieved
by placing the cis.jar file inside the <installdir>/tomcat/webapps/ROOT/WEB-INF/lib directory.

The following topics are covered below:

■ Application Class Loader
■ Initialisation of Your Application
■ Guidelines for Development
■ Classpath Extensions in cisconfig.xml

Appendices16

Appendix D - Class Loader Concepts

■ Loading Resource Files

Application Class Loader

The application classes (adapter classes) are loaded by the class loadermanagement of Application
Designer. This class loader looks for Java classes as follows:

■ All .class files inside the directory:

<webapp>/softwareag/appclasses/classes
■ All .jar files inside the directory:

<webapp>/softwareag/appclasses/lib
■ All .class files inside any application project under the directory:

<webapp>/<project>/appclasses/classes
■ All .jar files inside any application project under the directory:

/<webapp>/<project>/appclasses/lib
■ All classes that are referenced in the classpath extension that can be defined in the Application
Designer configuration (cisconfig.xml).

Unlike normal class loader hierarchies, the application class loader always tries to resolve a class
inside its application directories first. Only if the class is not found, the parent class loader is called
- the web application loader. The benefit is that application classes are totally separated from the
servlet engine classes - e.g. by using XMLparser libraries. You are not bound to the parser delivered
with the servlet engine.

Inside the Application Designer session management, a session is bound to an application class
loader instance. Therefore the application class loader - which was instanciated when the session
was created - is kept in the session during its whole life cycle. All objects created inside this session
use this instance of the class loader.

In case of changing classes inside the softwareag/appclasses or the corresponding application-project
subdirectories, you can force to create a new class loader used in all sessions which are created
afterwards. This means, that you can upgrade your system without disturbing running sessions.
Old sessions are still using their old classes; new sessions are using new classes.

The creation of a new instance of a class loader is triggered inside the monitoring tool. SeeMonit-
oring in the Development Workplace documentation.

By choosing the button Use latest Version of Applications for new Sessions, a new class loader
instance is generated.

A new class loader instance can also be created during development inside the Layout Painter.
See also the "Hello World!" example in the First Steps and its section If you Change the Adapter.

17Appendices

Appendix D - Class Loader Concepts

Initialisation of Your Application

Every time a new instance of a class loader generated, the initialisation process of your application
is also performed. This guarantees that, for example, all static variables you may use internally
can be correctly initialised by your initialisation procedure.

The initialisation of applications is described in the Becoming a Member of the Startup Process part
of the Special Development Topics.

Guidelines for Development

The guidelines you have to follow during development are quite simple:

■ Always put all your application/adapter classes inside the softwareag/appclasses directory or in
the corresponding project directories. When using the project management (which is strongly
recommended), store the classes in the project directories so that you can easily copy projects
as self-containing units between different Application Designer installations.

■ Do not put classes into the servlet engine's class loader's class path.
■ Avoid class duplicates (a .class file in the /classes subdirectory also contained in a jar file inside
the /lib subdirectory).

■ Reload the classes by creating a new class loader instance. To see the effects re-logon. (The re-
logon can be done by refreshing the browser.)

Classpath Extensions in cisconfig.xml

In the cisconfig.xml file, you can define the possibility to explicitly include defined directories or
jar/zip/etc. files in the application class loader. The following example shows a cisconfig.xml file
containing a class loader extension:

<cisconfig ...>
<classpathextension path="c:/development/centralclasses/classes/"/>
<classpathextension path="c:/development/centralclasses/libs/central.jar"/>

</cisconfig>

Consequence: you can also include classes that are located outside the web application's directory
structure into the application class loader of Application Designer.

Pay attention: if defining directories that contain .class files, then the path definition inside the
classpath extension must end with a slash (/).

Appendices18

Appendix D - Class Loader Concepts

Loading Resource Files

TheApplicationDesigner application class loader does only load classes to be loaded into the Java
virtual machine. It is not able to load resource files that you might access from your code.

Place resource files into the web application class loader, below the directory <webapps>/WEB-
INF/classes/ so that they are loaded in a correct way.

Preparing for Runtime

The following topics are covered below:

■ Basics
■ Example

Basics

As explained in the previous section, the Application Designer class loader concepts are very
useful for design time purposes. What is the price? The Application Designer class loader finds
its classes by accessing the file system. It uses for this reason the cis.home parameter inside the
<webapp>/WEB-INF/web.xml file in order to know the file root directory of the web application.

At runtime - especially if your application server distributes the load on several physical nodes -
this is dangerous: each node may have its own directory structure and you cannot specify one
root directory anymore in which the web application is located.

Consequence: for running in these scenarios, you have to prepare your application accordingly -
i.e. you have to place your classes at the places where the application server definition defines
them to be located.

The normal directories to put classes in are:

■ <webapp>/WEB-INF/lib for libraries (.jar files).
■ <webapp>/WEB-INF/classes for single class files (.class files).

In addition, youmust switch off the flag "useownclassloader" inside the cisconfig.xml. Consequently,
the Application Designer application class loader will not be used at all - all classes are loaded by
the web application loader.

19Appendices

Appendix D - Class Loader Concepts

Example

Example: let us assume that you have set up the Application Designer application project "pro-
jectxyz". The classes for this project are located in

■ <webapp>/projectxyz/appclasses/classes/*.class and
■ <webapp>/projectxyz/appclasses/lib/*.jar

so that the Application Designer class loader can reach them.

For changing to the runtime scenario, just copy the *.class and *.jar files from your project directory
into the corresponding standard directories.

Appendices20

Appendix D - Class Loader Concepts

5 Appendix E - StartCISPage Servlet

■ Normal Calling of a Page .. 22
■ Appending Application Parameters ... 22
■ Controlling the Session Life Cycle ... 22
■ Controlling the Session ID ... 23
■ Setting Default Parameters ... 23
■ Mixing Parameters ... 24
■ Setting Parameters with the HTTP Method POST .. 24

21

The StartCISPage servlet is the central servlet that is used in order to open intelligent HTMLpages.
It was already mentioned several times in this documentation. This chapter describes certain at-
tributes that you can pass inside the servlet call.

Normal Calling of a Page

A normal page is called in the following way:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html

The StartCISPage servlet creates a frameset page around the intelligent HTML page that provides
for specific functions that are internally required.

Appending Application Parameters

Application parameters can be passed by just appending the name and the value of the parameters
to the URL. Each parameter must be the name of a property that is provided for by the server side
adapter.

Example: the adapter provides for a property company. When opening a page via

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&company=softwareag

then the setCompanymethod of the adapter is called and the value "softwareag" is passed.

This is a very simple and powerful way to pass parameters through the URL.

Controlling the Session Life Cycle

A page relates to adapters living inside a session on server side. A session is opened by default
when referencing a page via StartCISPage. By default, it is closed when the initial StartCISPage
page is removed - either by closing the browser or by loading a different URL into it.

You can explicitly control this automated removal of sessionswith the parameter ONUNLOADBEHAVIOR.
If you call a page in the following way, the session is not removed when the page is removed:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&ONUNLOADBEHAVIOUR=NOTHING

Appendices22

Appendix E - StartCISPage Servlet

Controlling the Session ID

By default, a new session ID is internally generated when opening a page by StartCISPage. But
you can also pass the session ID and the subsession ID explicitly. This might be of interest if you
require to control the Application Designer session management from outside.

Calling a page in the following way

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&SESSIONID=4711&SUBSESSIONID=5

will internally open the session with ID 4711 - or use 4711 if it already exists. The same applies on
subsession level.

Pay attention: if you use this possibility, then you are responsible for managing session IDs in
such a way that they are unique.

Setting Default Parameters

Language

As described inMulti LanguageManagement, ApplicationDesigner internally holds a language per
session. This language can be set from outside:

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&LANGUAGE=E

Default Style Sheet

By calling

http://<host>:<port>/<webapplication>/servlet/StartCISPage?PAGEURL=/<project>/<pagename>.html&SESSIONCSS=../softwareag/styles/CIS_PARROTT.css&DEFAULTCSS=../softwareag/styles/CIS_PARROTT.css

you define that the CIS_PARROTT style sheet is used instead of the default style sheet. Of course,
you can reference any style sheet of your own.

23Appendices

Appendix E - StartCISPage Servlet

Mixing Parameters

All parameters can be mixed without any restrictions.

Setting Parameters with the HTTP Method POST

Instead of adding the parameters to the URL, you can also use the HTTP method POST to set the
parameters in an HTML form.

Example (similar to the example under Appending Application Parameters, but with POST):

<html>
<head>
<title>Start Application Designer Demo Application</title>
<script type="text/javascript">
function submitStart() {
document.forms["myform"].submit();
}
</script>
</head>
<body>
<form id="myform" name="myform" action="servlet/StartCISPage" method="post">
<input type="hidden" name="PAGEURL" value="/<project>/<pagename>" />
Company: <input type="input" name="company" value="softwareag" />

</form>
Start Demo
<div id="status">Click on Start Demo</div>

</body>
</html>

Appendices24

Appendix E - StartCISPage Servlet

6 Appendix F - Using JSwat for Debugging

■ Usage of JSwat ... 26

25

JSwat is a graphical debugger, available free of charge - see http://www.bluemarsh.com/. It is not
restricted to any development environment - but is a standalone debugging environment. It is
flexible to use and can be used e.g. in a customer environment where you do not want to install
a full development environment in order to trace and debug your applications. JSwat is written
in Java and also runs on Linux-based systems.

We strongly recommend to use this debugger instead of using a System.out.println()way for
debugging.

Usage of JSwat

JSwat supports remote debugging by the Java JPDAarchitecture. Thismeans, you start Application
Designerwith someflags to force the virtualmachine that it sends debug information to interested
listeners. JSwat acts as listener for this information.

The following topics are covered below:

■ Starting Application Designer in Remote Debugging Mode
■ Configuring JSwat
■ Running the Debug Session

Starting Application Designer in Remote Debugging Mode

There is a special batch file available for starting the default Application Designer in remote de-
bugging mode. Have a look at the file <installdir>\bin\GUIServer_remote.bat:

cd..
cd tomcat
cd bin
set java_home=..\..\jre
set catalina_home=..
set jpda_transport=dt_socket
set jpda_address=5000
catalina jpda run

You see that

■ the Tomcat 4.0 (Catalina) environment is started with the option "jpda";
■ the transport protocol is "dt_socket" at port "5000"

After starting Application Designer with these options, it runs in debug mode, i.e. remote de-
buggers can connect by TCP/IP to the virtual machine.

Appendices26

Appendix F - Using JSwat for Debugging

http://www.bluemarsh.com/

Configuring JSwat

After starting JSwat, configure two items:

■ Connect the JSwat debugger to Application Designer, running in debug mode.
■ Tell JSwat where the sources of your classes are located.

The connection to Application Designer is done by Session > Attach to remote... inside JSwat.
Select the parameters according to the definition inside the <installdir>\bin\GUIServer_remote.bat
file:

The source path is maintained byOptions > Set source path.... In the dialog, define the location
of your sources.

27Appendices

Appendix F - Using JSwat for Debugging

Running the Debug Session

See the JSwat documentation for details on how to use JSwat.

Appendices28

Appendix F - Using JSwat for Debugging

II Appendix G - Using Eclipse with Application Designer 2.4

Functionality

Important: This part contains information about the old Eclipse plug-in that was available
with previous versions. For your convenience, it is still supported. However, it is recom-
mended that you use the new plug-in, the Ajax Developer. For detailed information, see
the Ajax Developer documentation.

This part covers the following topics:

Eclipse: A Brief Introduction

Setting up Eclipse as Your Development Environment

Setting up the Eclipse Plug-in

Debugging your Project Code

Log Viewer

29

30

7 Eclipse: A Brief Introduction

■ Concept .. 32
■ Components ... 33
■ Using Eclipse-based Products ... 40
■ Further Reading .. 41

31

The Eclipse Platform is a very flexible open source development platform for tool integration. It
provides a framework for building an integrated development environment fromplug-in software
components. More andmore products nowadays are Eclipse-based, so that it is becoming increas-
ingly important for developers and users to know what Eclipse is and what it offers.

The information in this document gives you a short overview of the basic Eclipse architecture, its
components and standard user interfaces, as well as an introduction to what an Eclipse-based
product may look like. This will help you understand Software AG products that are based on
Eclipse.

Concept

The benefit of Eclipse is that it offers a single integrated platform for all development tasks. Plug-
ins provide a feature of the Eclipse development environment and lead to the final Eclipse-based
product. Plug-ins can be de-installed without impacting the Eclipse installation as such. Eclipse
supports collaboration of development teams and is freely available fromwww.eclipse.org.

As shown in the following graphic, the basic Eclipse installation consists of three parts: the
Workbench (which is further subdivided into the Standard Widget Toolkit and the JFace), the
Workspace and the Platform Runtime.

Appendices32

Eclipse: A Brief Introduction

http://www.eclipse.org/

■ Workbench

TheWorkbench is the user interface of Eclipse. The Standard Widget Toolkit (SWT) holds a set
of widgets and graphics for building graphical user interfaces, such as buttons, menus, tree lists
etc. With JFace, these elements are grouped into bigger, task-oriented units.

■ Workspace

TheWorkspace is the connection to the file system. It is used to create andmanage project resources
(such as files and folders).

■ Platform Runtime

The Platform Runtime is the kernel that starts and runs the different components and takes care
of the correct loading of plug-ins.

In addition to the basic Eclipse installation, the plug-ins extend the functionality of the Eclipse
platform or other plug-ins. Plug-ins can be bundled as installable units. These installable units are
called features. Each plug-in is connected to Eclipse via extension points, or to another plug-in, or
both. Extension points are used to connect to plug-ins outside the Eclipse platform, but they also
exist within Eclipse, as Eclipse itself is made of plug-ins.

Components

When you start the Eclipse Software Development Kit (SDK) for the first time, theworkbench user
interface and its components are displayed (after having closed theWelcome page), without any
user-defined plug-ins. The Eclipse workbench is a platform for development tools. It provides the
user interface structure for Eclipse and facilitates seamless integration of tools. The workbench
consists of a collection of windowswithmenu bars, toolbars, shortcut bars and so-called perspect-
ives. The name of the active perspective is shown in the title of the window. The following
graphic shows an example of such a “bare” Eclipse workbench, using the Java perspective:

33Appendices

Eclipse: A Brief Introduction

Theworkbench usually contains the followingmenus: File, Edit,Navigate, Project,Window, and
Help. Other menus are plug-in dependent, or context-specific, based on the current perspective,
editor or view. If you are a developer of plug-ins, you can develop and add new menus, editors,
views or wizards.

In the following, the different components of the workbench are briefly introduced:

■ Workspace
■ Resources
■ Wizards
■ Views
■ Editors
■ Perspectives
■ Preferences

Appendices34

Eclipse: A Brief Introduction

■ Properties

Workspace

As mentioned before, the workspace is the place in the file system where the different resources
are stored. It consists of one or more projects. A project is a directory with several files and folders
and has methods to build dependent resources.

Resources

Resources are items in the workspace, i.e. projects, folders, files and other dependent resources.
These are all objects that will be or have been created with Eclipse. They are stored as normal files
within the Eclipse workspace. A project holds several folders with files.

Wizards

In Eclipse, most data is created using wizards. A wizard is an assistant that guides you step-by-
step through a process, for example creating new resources or importing and exporting them.

Examples of wizards are:

■ the New Project wizard;
■ the New Class wizard;
■ the New Package wizard;
■ the Checkout wizard.

Views

A view is a visual component of the workbench that shows information, usually in a table or tree.
It is used to navigate within a hierarchy of information, to open an editor or to display properties
for the active editor. You chooseWindow > Show View to open the view with which you want
towork. Several views can be stacked in a so-called tabbed notebook. To activate a view, you select
its tab. Views also have their own context menus, which can be opened by right-clicking on the
tab. Each view has a pull-down menu, which can be opened by selecting the down arrow to the
right of the toolbar, below the tab. It contains functionality like sorting and filtering, which applies
to the entire content of the view.

35Appendices

Eclipse: A Brief Introduction

Examples of views are:

■ Navigator;
■ Package Explorer;
■ Outline;
■ Problems;
■ Properties;
■ Error Log.

Editors

An editor is another visual component of a workbench page. It is used to edit a document, to keep
changes until the document is saved, or for browsing. Multiple editors may exist even for one
document. There are content assistants, simple page and multiple page editors, and syntax high-
lighters. Menus, toolbars and options in an editor are context-sensitive and change according to
the environment. Eclipse has a list of registered editors, which are consulted first when you open
a resource that needs an editor. If none of the editors in the list is suitable for the file type, the
workbench checks automatically if any other editor from the underlying operating system is
available (external editor). If an external editor is located, it will be launched.

Examples of editors are:

■ Java source editor;
■ XML editor;
■ Ant editor;

Appendices36

Eclipse: A Brief Introduction

■ Text editor;
■ Plug-in editor.

Perspectives

A perspective can be described as a container that holds several views and editors, bundled for a
specific task. Views and editors can be dragged and dropped to other places in the workbench so
that the environment fits your needs and you have your personal working perspective. Only one
perspective is visible at any time. A perspective can be managed with the commands available in
theWindowmenu:

Examples are:

■ Resource perspective;
■ Java perspective;
■ Debug perspective;
■ Team synchronizing perspective.

37Appendices

Eclipse: A Brief Introduction

Preferences

The Preferences dialog box sets the global preferences for various topics. It is available in the
Windowmenu.

Examples of preferences are:

■ Editor settings;
■ Java compiler settings;
■ Team settings.

The Preferences dialog box has a search facility (see the field type filter text in the graphic) and
a history to navigate backwards and forwards through the pages.

Appendices38

Eclipse: A Brief Introduction

Properties

The Properties dialog box shows and changes the properties of a resource or some other object in
the active editor or view. The Properties command is available in the Filemenu or as the last
command in the context menu of a resource.

Examples of properties are:

■ the properties of a file;
■ the properties of a project.

The Properties dialog box has a search facility (see the field type filter text in the graphic) and a
history to navigate backwards and forwards through the pages.

39Appendices

Eclipse: A Brief Introduction

Using Eclipse-based Products

Developing plug-ins with Eclipse is one task, using Eclipse-based products is another one. For a
user of Eclipse-based products, it is generally not necessary to have an in-depth knowledge of the
Eclipse user interface, but it is helpful to have an idea of themain concepts, terms and components
(as described above), as they keep reappearing in the user interface of the products. Here are some
tips and tricks that apply to Software AG's Eclipse-based products.

Navigation

In most Eclipse-based products, navigation is done with the help of theNavigator view. It is
usually displayed on the left side of a perspective and shows the available resources (projects,
folders, files etc.) of the product. If you select a resource in theNavigator view and open the context
menu, the available commands (for example, for copying, pasting, deleting etc.) are displayed.

Accomplishing tasks

To accomplish certain tasks like creating or editing resources, you select an item in theNavigator
view, open the context menu and choose the desired command. The corresponding views and
editors will usually open in a view on the right side of a perspective. You use them to interact with
your product, for example, to enter, edit or add data. If your tasks require a step-by-step process,
it is very probable that a wizard will open automatically and guide you through the process (for
example, when importing or exporting resources). You just follow the instructions in the dialog
boxes.

Logs and Infos

Information about what you are doing is normally available in information and log views at the
bottom of your perspective, e.g. error logs, status information, etc.

Standard menus and commands

Products are integrated seamlessly into the Eclipse workbench. This means that you do not see
where the standard Eclipse workbench ends and where the product-specific user interface starts.
Eclipse-based products make use of standard Eclipse menus and commands, and they add their
own functionality. So an Eclipse-based product usually still has the Eclipse “flavor”, but also its
own components. As a consequence, product documentation describes only product functionality,
and not the standard Eclipse functionality. The latter can be found in the standard Eclipse online
help. If you miss the description of some functionality in the product documentation, it is thus
very likely that youwill find it in the Eclipse documentation (see the Eclipse help at http://www.ec-
lipse.org/documentation/).

Appendices40

Eclipse: A Brief Introduction

http://www.eclipse.org/documentation/
http://www.eclipse.org/documentation/

Making life easier

Once you have established a working environment of views, editors and information windows,
it is a good idea to save this environment as a customized perspective. To do so, you choose
Window > Save Perspective As. You can re-open this perspective any time and thus do not have
to create it again and again. This saves time and effort. If you want to restore the workbench to
its default settings, you chooseWindows > Reset Perspective.

Further Reading

If you are a new to Eclipse, this set of links will help you:

■ http://www.eclipse.org/ (the official Eclipse website)
■ http://www.eclipse.org/articles/index.php (technical articles written by members of the devel-
opment team and other members of the Eclipse community)

■ http://marketplace.eclipse.org/ (solutions for Eclipse)

The generally accepted Eclipse User Interface Guidelines can be found at the following location:
http://wiki.eclipse.org/User_Interface_Guidelines.

The very useful Eclipse online help is available at: http://www.eclipse.org/documentation/.

Further information can be found in the following books:

■ “The Java Developer's Guide to Eclipse” from Shavor, D'Anjou, Fairbrother, Kehn, Kellerman
and McCarthy (Addison-Wesley)

■ “Eclipse - Building Commercial Quality Plug-ins” from Clyberg and Rubel (Addison-Wesley)

Note: It is possible to use the Eclipse user interface using the keyboard only. See the Eclipse
online help for detailed information.

41Appendices

Eclipse: A Brief Introduction

http://www.eclipse.org/
http://www.eclipse.org/articles/index.php
http://marketplace.eclipse.org/
http://wiki.eclipse.org/User_Interface_Guidelines
http://www.eclipse.org/documentation/

42

8 Setting up Eclipse as Your Development Environment

■ Creating a Project in the Application Designer Environment ... 44
■ Creating a Java Project in Eclipse ... 44

43

The information in this section applieswhen you create your layouts in the developmentworkplace
and want to use Eclipse as your development environment for Java.

Creating a Project in the Application Designer Environment

Application Designer has an application project concept in which each project is kept in its own
directory.

When you create a project withApplicationDesigner's ProjectManager, a newdirectory is created
in your web application directory. For example, when using the standard Windows installation,
the root directory of the project is <installdir>/tomcat/webapps/cis/<yourproject>.

For further information, see Project Manager in the Development Workplace documentation.

Creating a Java Project in Eclipse

You must have a source directory into which the adapter classes for your project are written. It is
recommended that the name of this source directory is src. For example, create the directory <in-
stalldir>/tomcat/webapps/cis/<yourproject>/src in order to keep the sources. See also Preferences in the
Development Workplace documentation.

At design time, Application Designer expects the classes to be located in the application project's
/appclasses/classes directory.

This section describes the simple way of creating a Java project for Application Designer. If you
are an experienced Eclipse user, you can also store the Java project in a different directory and
then link the source files from any directory.

To create a Java project for an Application Designer project

1 From the Filemenu of Eclipse, chooseNew > Project.

The following dialog box appears.

Appendices44

Setting up Eclipse as Your Development Environment

2 In the resulting dialog box, select Java Project and choose theNext button.

The following dialog box appears.

45Appendices

Setting up Eclipse as Your Development Environment

3 Specify a name for your Java project name.

If you want to work with existing Application Designer projects (which you have created in
the developmentworkspace), it is recommended that the Java project name and theApplication
Designer project name are the same.

4 Place the root of the project inside the project directory that was created by Application De-
signer. Therefore, select the option button Create project from existing source and specify
the corrsponding directory.

5 Choose theNext button.

The resulting page is used to define the Java build settings for the Eclipse project.

Appendices46

Setting up Eclipse as Your Development Environment

6 Make sure that Eclipse uses the following directories of your Application Designer project:

■ Your source directory (for example, the directory with the recommended name src).
■ The directory containing the compiled classes of your project. Use the Browse button to
specify appclasses/classes as the default output folder.

7 Go to the Libraries page.

47Appendices

Setting up Eclipse as Your Development Environment

8 Use the Add External JARs button to add all libraries which are required by your project.
You must add at least the following libraries:

■ cis.jar
This library is located inside your Application Designer installation in the directory <in-
stalldir>/tomcat/webapps/cis/WEB-INF/lib/.

■ servlet-api.jar
This library is located in the directory <installdir>/tomcat/common/lib.

9 Choose the Finish button.

Your project is set up.

Appendices48

Setting up Eclipse as Your Development Environment

49Appendices

Setting up Eclipse as Your Development Environment

50

9 Setting Up the Eclipse Plug-in

■ About the Eclipse Plug-in .. 52
■ Installing the Eclipse Plug-in .. 52
■ Creating an Eclipse Project for the Eclipse Plug-in ... 54
■ Configuring the Eclipse Project .. 54
■ Elements of the Eclipse Plug-in .. 55

51

About the Eclipse Plug-in

Application Designer's Eclipse plug-in allows you to edit Application Designer layouts directly
inside Eclipse. When the plug-in has been installed and configured, you can use the Layout
Painter and some other Application Designer tools in Eclipse.

Installing the Eclipse Plug-in

The plug-in is delivered with the Application Designer software. After the installation of Applic-
ation Designer, a directory with the name EclipsePlugin is available in your <installdir>/tom-
cat/webapps/cis directory.

The Eclipse plug-in consists of two parts which have to be installed separately: the common part
and the GUI part. You must first install the common part.

Appendices52

Setting Up the Eclipse Plug-in

To install the common part of the Eclipse plug-in

It is required that your servlet container has been started.

1 From theHelpmenu of Eclipse, choose Software Updates > Find and Install.

A dialog appears.

2 Select the option button Search for new features to install.

3 Choose theNext button.

4 On the resulting page, choose theNew Remote Site button.

The following dialog box appears.

5 In theName text box, specify a name of your choice.

6 In the URL text box, specify the path to the Eclipse plug-in. For example:

http://localhost:51000/cis/EclipsePlugin/com.softwareag.common

7 Choose theOK button.

To install the GUI part of the Eclipse plug-in

■ Proceed as described above for the common part. In the URL text box, however, specify the
following path:

http://localhost:51000/cis/EclipsePlugin/com.softwareag.cis.gui.swt

53Appendices

Setting Up the Eclipse Plug-in

Creating an Eclipse Project for the Eclipse Plug-in

You create an Eclipse project in the same way as described in Creating a Java Project in Eclipse.

Configuring the Eclipse Project

Each Application Designer project has an project/xml directory in which the layouts are kept. This
directory needs to be defined in Eclipse. To do so, you have tomodify the properties of each Eclipse
project that you create for the Eclipse plug-in.

To configure the Eclipse project

1 Select the Eclipse project.

2 Invoke the context menu and choose Properties.

3 Enable the check box Enable Application Designer Access.

4 In the Layout Folder text box, specify the path to your project's xml folder.

5 If required, change the properties of theWeb Server Connection and theWeb Application
in this dialog box. See the Tomcat documentation for more details.

Appendices54

Setting Up the Eclipse Plug-in

6 Select the display mode for the Layout Painter and Layout Tester:

■ HTML
Thismodemakes use of theActiveX plug-in of Eclipse inwhich Internet Explorer is running.

■ SWT
This mode makes use of SWT controls which are shown in an SWT client.

7 Choose theOK button.

The Page Layouts node is automatically created in the Navigator view. See below.

Elements of the Eclipse Plug-in

In order to work with the Eclipse plug-in, your servlet container must have been started. See
Starting the Servlet Container in the Development Workplace documentation.

The Eclipse plug-in provides the following tools:

■ Project Manager
■ Layout Painter
■ Style Sheet Editor
■ Control Editor
■ Monitoring
■ Layout Tester

You use these tools in a similar way as those in the development workplace. See the Development
Workplace documentation for further information. The descriptions in the Development Workplace
documentation also apply to the Eclipse plug-in; the only difference in the Eclipse plug-in is that
the tools are invoked in a different way (see below). The screenshots in theDevelopment Workplace
documentation also apply - with slight differences - to the Eclipse plug-in.

Project Manager

To invoke the Project Manager

1 From theWindowmenu, choose Show View > Other.

2 In the resultingShowView dialog box, expand the SoftwareAGApplicationDesigner node.

3 Select the entry Tool - Project Manager and choose theOK button.

A list of existing application projects is now shown.

55Appendices

Setting Up the Eclipse Plug-in

Layout Painter

To create a new layout

1 In the Navigator view, select the Page Layouts node. This node contains all XML layout
definitions.

2 From the Filemenu, chooseNew > Other.

3 In the resulting dialog box, expand the Software AG node.

4 Select the entry Application Designer Layout and choose theNext button.

5 In the resulting dialog box, enter the name of the file that is to contain your layout definition.
The name must end with ".xml".

6 Select the layout template that you want to use.

7 Choose the Finish button.

The Layout Painter appears.

To open an existing layout

1 In the Navigator view, select the layout in the Page Layouts node.

2 Invoke the context menu and chooseOpen With > Layout Painter.

The Layout Painter appears.

Style Sheet Editor

To invoke the Style Sheet Editor

1 From theWindowmenu, choose Show View > Other.

2 In the resultingShowView dialog box, expand the SoftwareAGApplicationDesigner node.

3 Select the entry Tool - Style Sheet Editor and choose theOK button.

Appendices56

Setting Up the Eclipse Plug-in

Control Editor

To invoke the Control Editor

1 From theWindowmenu, choose Show View > Other.

2 In the resultingShowView dialog box, expand the SoftwareAGApplicationDesigner node.

3 Select the entry Tool - Control Editor and choose theOK button.

A dialog appears, listing all available editor extensions.

4 Choose the editor extension that you want to open.

The contents of the editor extension are loaded into the Control Editor. You can now edit your
editor extension.

Monitoring

To invoke the monitoring tool

1 From theWindowmenu, choose Show View > Other.

2 In the resultingShowView dialog box, expand the SoftwareAGApplicationDesigner node.

3 Select the entry SystemMonitoring and choose theOK button.

Layout Tester

The Layout Tester can be used to test the currently defined layout according to the display mode
which is defined in the properties of the Eclipse project: it is either shown as in the browser or as
in the SWT client.

To invoke the Layout Tester

1 Select the layout in the Navigator view.

2 Invoke the context menu and chooseOpen With > Layout Tester.

57Appendices

Setting Up the Eclipse Plug-in

58

10 Debugging your Project Code

Eclipse contains an excellent debugging environment for debugging your Application Designer
applications.

For debugging, you have to start Application Designer in remote debugging mode. This is done
by executing the batch file <installdir>/bin/CIS_debug.bat. The port for debugging is defined in this
batch file. If you want to use a port different from the standard port, you have to modify the batch
file accordingly.

When you are using the Eclipse plug-in, it is required that the HTML mode is active. When you
are debugging with the Layout Painter, you have to activate HTML in the preview configuration.
When you are debugging with the Layout Tester, you have to activate the display mode HTML
in the properties of the Eclipse project.

To configure the debug environment in Eclipse

1 Select the Eclipse project that you want to debug.

2 From the Runmenu, chooseDebug.

3 In the tree of the resulting dialog box, select Remote Java Application.

4 Choose the “New” button to create a debug configuration for the selected project.

59

5 Make sure that the port which is specified in Connection Properties group box is the same
as defined in the file CIS_debug.bat.

6 Choose the Apply button.

7 After having configured the debug environment, execute the batch file CIS_debug.bat.

Or:

Choose the corresponding shortcut from theWindowsStartmenu. See also Starting the Servlet
Container in the Development Workplace documentation.

8 Start debugging in Eclipse.

The debugger will connect to the virtual machine.

Appendices60

Debugging your Project Code

11 The Log Viewer

■ Adding a New Log Viewer ... 62
■ Editing or Removing a Log Viewer .. 63
■ About Predefined Logs ... 64

61

The Log Viewer is developed as an Eclipse plug-in. It is an independent tool designed to view
single or multiple log files. A log file records activities and operations that occurred on a serv-
er/computer, maintaining an operational history of these activities. A log file is identified by its
.log extension.

The Log Viewer allows the user to:

1. Specify refresh intervals.

2. Specify the number of lines to be displayed from a file.

3. Customize the way to view files by specifying filter conditions.

4. Save the log files added in the viewer so that the user is able access them easily the next time.

5. Provide extension points so as to enable other Eclipse plugins to contribute their log files for
viewing.

Adding a New Log Viewer

To add a new Log Viewer

1 In the Eclipse view, openWindow > Show View > Other.

2 In the Show View screen, select Software AG > Log Viewer.

The Log Viewer view appears. Youmay position it to appear at a convenient location on your
screen.

3 To add a new Log Viewer, choose the Add New Log Viewer button.

The Create Log Viewer dialog appears, in which you can specify the file to be viewed and
conditions for viewing.

4 If you are manually selecting a log file, specify the following details:

Specify the following details:

Select this option if the log file that must be viewed is fixed i.e. if its name
does not change. The Log Viewer will view/read this file every time.

Log file to view is fixed

Select this option if the name of the log file changes on some criteria; name
of the log file might contain timestampwhich is changed daily; hence the
name of the log file also varies daily.

Name of the log file varies

Browse and select the location of the file for the Log Viewer to view. The
Log Viewer in this case picks up the file to view/read from this location.
Specify this if you have selected theName of the log file varies option.

Select the log file directory

Appendices62

The Log Viewer

Specify the date pattern of your log files. For example,
${TOMCAT_HOME}\logs\catalina.${yyyy}-${mm}-${dd}.log.

Note: Ensure that you know the log file naming conventions used in your
application before specifying this information.

Log file name pattern

Select the date format from the available options in the drop down list.Add pattern

Enter a name to identify this viewer.Name of the view

The Log Viewer refreshes the view as per the interval you specify here.Refresh Interval (in
seconds)

Choose the option to either view the complete log file or a few lines of it
when opened the first time. If you select the latter option, you need to
specify the Total Lines to be displayed.

Options

Or:

If you are selecting a predefined log, select the log file from the Select a Predefined log file
drop down list. On selection, the settings of the predefined file are auto populated in other
fields. To learn more about predefined logs, see About Predefined Logs.

5 Choose the Add Filter button if you wish to add filters to the log files you view. Using these
features, you can filter lines based on some conditions such as skipping the entire line or
changing the display style in the view.

In the dialog box that appears, add line filters. For example, to view a line highlighted in black
and the font color as green, specify the following filters:

■ Select Contains text in the If Line field and specify the text as Info.
■ Select the Filter Action as Change the style of the line.
■ Select the Foreground color as green and the Background color as black.

6 Choose theOk button to complete adding a new Log Viewer.

Editing or Removing a Log Viewer

You can edit an existing Log Viewer or remove it using the Log Viewer toolbar buttons. The pro-
cedure to edit a Log Viewer is the same as to add a Log Viewer except that you cannot edit the
log file being viewed. You may access the Edit Log Viewer, Remove Log Viewer buttons from
the Log Viewer toolbar or on right click of your mouse.

63Appendices

The Log Viewer

About Predefined Logs

The Log Viewer allows you to configure predefined logs. It displays predefined logs for selection
in the Select a Predefined log file drop down list.

List of Predefined Logs

The following list of predefined log files appear for selection in the Log Viewer.

File LocationPurpose of the FileFile Name

\xciwebapps\xciservices\logs\ApplComposer.logRuntime log file of the BPEL processing layer. It logs system generated and
user defined information.

Application
DesignerApplication
ComposerNatural for
Ajax Server Log

\AeBpelEngine\deployment-logs\aeDeployment.logDeployment log file of the processing layer.

Note: If the CentraSite Tomcat is started manually, the log file path is
C:\Documents and
Settings\MYUSERNAME\AeBpelEngine\deployment-logs\aeDeployment.log.

Application
DesignerApplication
ComposerNatural for
Ajax Deployment
Log

Value provided forMYUSERNAMEmustmatch the usernameunderwhich
the Tomcat server runs.

\projects\log\serverLog_${yyyy}${mm}${dd}.logRuntime log file of the GUI and processing layers.Application
DesignerApplication
ComposerNatural for
Ajax Server Log

${XCI_TOMCAT_HOME}\logs\catalina.${yyyy}-${mm}-${dd}.logCatalina log file of the CentraSite Tomcat. This log file is only written if the
CentraSite Tomcat is manually started using catalina.bat. If tomcat is started

CentraSite Tomcat
Catalina Log

fromWindows > Services, Catalina Service file is generated according to
the parameters passed to the service start. (See Tomcat documentation for
details.)

Appendices64

The Log Viewer

	Appendices
	Table of Contents
	Preface
	I
	1 Appendix A - Call Sequence for Adapter
	Normal Call Sequence
	Call Sequence when a Subsession is Destroyed
	Call Sequence when a Session is Destroyed
	Error/ Runtime Exceptions
	Pay Attention when Overwriting

	2 Appendix B - Usage of Methods Inherited from the Adapter Class
	Access to Lookup Session Context
	Access to Application Designer Session Context
	Access to other Adapters
	Error Output
	Page Navigation
	Opening of Pop-up Dialogs
	Frame Communication
	Closing of a Page
	Multi Language Management

	3 Appendix C - Data Types to be Used by Adapter Properties
	Supported Data Types
	Data Types for Managing Date and Time

	4 Appendix D - Class Loader Concepts
	Design Time - Runtime
	Class Loader Hierarchy
	Application Class Loader
	Initialisation of Your Application
	Guidelines for Development
	Classpath Extensions in cisconfig.xml
	Loading Resource Files

	Preparing for Runtime
	Basics
	Example

	5 Appendix E - StartCISPage Servlet
	Normal Calling of a Page
	Appending Application Parameters
	Controlling the Session Life Cycle
	Controlling the Session ID
	Setting Default Parameters
	Language
	Default Style Sheet

	Mixing Parameters
	Setting Parameters with the HTTP Method POST

	6 Appendix F - Using JSwat for Debugging
	Usage of JSwat
	Starting Application Designer in Remote Debugging Mode
	Configuring JSwat
	Running the Debug Session

	II Appendix G - Using Eclipse with Application Designer 2.4 Functionality
	7 Eclipse: A Brief Introduction
	Concept
	Components
	Workspace
	Resources
	Wizards
	Views
	Editors
	Perspectives
	Preferences
	Properties

	Using Eclipse-based Products
	Further Reading

	8 Setting up Eclipse as Your Development Environment
	Creating a Project in the Application Designer Environment
	Creating a Java Project in Eclipse

	9 Setting Up the Eclipse Plug-in
	About the Eclipse Plug-in
	Installing the Eclipse Plug-in
	Creating an Eclipse Project for the Eclipse Plug-in
	Configuring the Eclipse Project
	Elements of the Eclipse Plug-in
	Project Manager
	Layout Painter
	Style Sheet Editor
	Control Editor
	Monitoring
	Layout Tester

	10 Debugging your Project Code
	11 The Log Viewer
	Adding a New Log Viewer
	Editing or Removing a Log Viewer
	About Predefined Logs
	List of Predefined Logs

