
Application Designer

Special Development Topics

Version 8.2 (2013-03-18)

March 2013

This document applies to Application Designer Version 8.2 (2013-03-18).

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: CIT-DEVTOPICS-82-20130318

Table of Contents

Preface ... ix
I Controls for Absolute Positioning ... 1

1 Example ... 3
2 Controls ... 7
3 ABSFOLDER ... 9

Properties ... 10
4 ABSFIELD .. 11

Properties ... 12
5 ABSICON .. 15

Properties ... 16
6 ABSDYNICON .. 17

Example: Moving an Icon .. 18
Properties ... 21

7 ABSTEXTOUT ... 23
Properties ... 24

8 ABSLABEL .. 27
Properties ... 28

9 ABSTABLE0/ABSTR .. 31
ABSTABLE0 Properties .. 33
ABSTR Properties ... 35

10 ROWABSAREA ... 37
All Controls Directly Inside the Page Tag .. 38
All Controls Inside the Page Body ... 38
Explicit Areas for Absolute Positioning ... 40
Properties ... 42

11 ABSAREA .. 45
Example .. 46
Properties ... 47

II Writing Reports ... 49
12 Introduction ... 51
13 Writing Reports by Using the REPORT Control ... 55

The Very Beginning - A White Report Area .. 56
Rendering a Grid into the REPORT Control .. 57
Using Special Styles for Cell Output .. 59
Adding Some Text .. 60
Adding a Second Grid .. 62
Adding an Image .. 63
HTML Rendering - PDF Rendering ... 64
Reacting on Mouse Clicks .. 66
REPORTInfo API .. 69
REPORT Controls versus TEXTGRID Control .. 69
Properties ... 70

14 Creating Statistical Charts ... 73

iii

Structure ... 74
Class com.softwareag.cis.chart.CHARTInfo .. 75
Creating a Simple Chart ... 75
Setting the Scale of the y-Axis .. 78

15 Embedding Statistical Charts into Reports ... 81
Creating an SVG Graphic and Embedding it into a Report 82
Creating a JPEG Graphic and Embedding it into a Report 83
Pay Attention when Sizing your Graphic .. 84

16 Using the Special Chart Control QUADRANTPLOT ... 85
Simple Example .. 86
Properties ... 89

17 Creating Simple Charts Quickly Using the PIVOT Control 91
Simple Example .. 92
Properties ... 95

18 Best Practice Hints ... 97
III Non-Visual Controls and Hot Keys ... 99

19 TIMER .. 101
Example .. 102
Properties .. 104

20 Extended Hot Key Management ... 105
Direct Hot Key Definitions with Certain Controls ... 106
Hot Key Definitions for Certain Controls .. 106

IV Binding between Page and Adapter .. 109
21 Phases of Adapter Processing .. 111

SET/INVOKE/GET Phase - The Default Phases ... 112
INIT Phase when Adapter is Constructed ... 113
DESTROY Phase when Adapter is Deregistered ... 114

22 Class Binding ... 115
Direct Class Binding ... 116
Generic Class Binding .. 117

23 Types of Property Binding ... 119
24 Java Bean Property Binding ... 121

Class Binding .. 122
Method Binding .. 122
Property Binding .. 123
Access Path Restrictions ... 126

25 Dynamic Access Property Binding .. 129
Interface IDynamicAccess .. 130
Example .. 130

26 XML Property Binding .. 135
27 Getting Information about Access Paths ... 137
28 Exception Management Inside an Adapter Object .. 141

Normal Exceptions are to be Handled by the Application 142
Errors and Runtime Exceptions - The Default Behavior 143

Special Development Topicsiv

Special Development Topics

Interrupting the Application Designer Request Processing -
AdapterNotAvailableError ... 144
Errors and Runtime Exceptions - The Special Behavior 145

29 Additional Interfaces ... 147
Extending the Set of Simple Data Types .. 148
Avoid the Getting of Certain Simple Data Type Properties 149
Exchanging Objects by Converter Objects ... 150

V Details on Session Management ... 151
30 HTTP Sessions - Application Designer Sessions ... 153
31 Application Designer Session - Application Designer Subsessions 155
32 Application Designer Subsession - Application Designer Adapter Objects 157
33 How Things Start ... 161

Starting an Application Designer Session .. 162
Starting Additional Application Designer Subsessions 163

34 How Things End .. 165
End of an Application Designer Session .. 166
End of an Application Designer Subsession .. 322
End of an Application Designer Adapter .. 166

35 Workplace Management .. 167
36 Saving Context Data .. 169

Different Levels of Context .. 170
Accessing the Context .. 170
Typical Usage Scenarios ... 171

37 Session IDs ... 173
VI Application Project Management .. 175

38 What is an Application Project? ... 177
39 Class Loading Issues .. 179
40 Application Project Directory .. 181
41 Application Project Context Root .. 183
42 Creating an Application Project .. 185
43 Tools for Application Project Management ... 187

VII Dynamic Page Layout .. 189
44 Introduction ... 191
45 Scenarios .. 193
46 Dynamic Pages - Normal Pages ... 195
47 Programming Dynamic Pages ... 197
48 Interface IDynamicPageMgmt ... 201
49 Background Information ... 203

Link to Session Management ... 204
Performance Considerations .. 205
URL Position of the Pages .. 205
Dynamic Pages - Multi Language Management .. 206

50 Dynamic Pages - Dynamic Adapters ... 207
VIII Becoming a Member of the Startup Process ... 209

51 Overview .. 211

vSpecial Development Topics

Special Development Topics

52 Startup Class .. 213
53 Registration .. 215

IX Adapting the Look & Feel .. 217
54 Introduction ... 219
55 Style Sheet File ... 221
56 Writing a New Style Sheet File .. 223
57 Selecting the Right Style Sheet ... 225
58 Dynamic Selection of the Style Sheet File .. 227

What You Can Do ... 228
Example .. 228

59 Static Selection of the Style Sheet File .. 231
X Controls for Database Reporting .. 233

60 Basics .. 235
Two Types of DB Controls .. 236
When to Use Which Type ... 237

61 DBQUERY .. 239
Example .. 241
DBQUERY Properties ... 245
DBFILTER Properties ... 249
DBCOLUMN Properties .. 251
DBPARAMSINGLEVALUE Properties .. 253
DBPARAMDOUBLEVALUE Properties .. 254
Variant Management .. 255
PDF Generation .. 256

62 DBFIELD .. 257
Example .. 258
Properties .. 263

63 DBCOMBO .. 265
Example .. 266
Properties .. 269

64 DBSELECTOPTION ... 273
Example .. 274
Properties .. 279

65 DBCHECKBOX .. 281
Example .. 282
Properties .. 284

66 DBRADIOBUTTON ... 287
Example .. 288
Properties .. 291

XI Personalization of Pages .. 293
67 Goal .. 295
68 Customized Layout - Concepts ... 297

Overview .. 298
Dynamic Controls .. 300
Using Filters ... 301

Special Development Topicsvi

Special Development Topics

Personalization Filter .. 302
Personalization Scenario Sequence .. 302
Maintaining Personalization Data .. 303
Persisting Personalization Data .. 303

69 Customized Layout - Example .. 305
XML Layout .. 306
Java Adapter Code ... 308

70 Customized Proposals - Concepts ... 311
Overview .. 312
Properties Used for Proposals .. 314
Personalization Scenario, Personalization Scenario Sequence 314

71 Customized Proposals - Example .. 315
XML Layout .. 316
Java Adapter Code ... 317
Directly Accessing Proposal Values ... 318

XII .. 319
72 SWT Client ... 321
73 Security Aspects ... 325
74 Portal Integration ... 327

Integrating Pages as Portlets .. 328
Session Management and Portlet API Support .. 330
Portlet Integration and AJAX ... 331

75 Using Layout Painter Extensions ... 333
Example .. 334
Details on the Extension ... 335
Extension Meets Pattern ... 345

76 Microsoft Silverlight Integration ... 351
Example .. 352
Implementation of the Sample Page .. 353
Integration of Silverlight .. 356

77 Integrating Application Designer Controls in HTML Pages 373
Example .. 374
Details on the Implementation ... 376
Invoking the Page in the Browser .. 377
PGHEAD Properties ... 378
PGCONTAINER Properties ... 378

78 Automated Testing .. 383

viiSpecial Development Topics

Special Development Topics

viii

Preface

The information in this documentation is organized in the following parts:

How to use absolute positioning for controls.Controls for Absolute Positioning

Shows how Application Designer supports reporting.Writing Reports

How to develop controls that do not have visual effects.Non-Visual Controls and Hot Keys

Describes data transfer between pages and adapter.Binding between Page and Adapter

Gives details about session management.Details on Session Management

Gives details about project management.Application Project Management

Gives details about dynamic page layout.Dynamic Page Layout

Shows you how to become a member of the startup process.Becoming aMember of the Startup Process

Shows you how to provide high quality controls by simply
specifying tags inside a layout definition.

Adapting the Look & Feel

Shows you a simple and flexible way to develop typical
reporting papers for querying database content.

Controls for Database Reporting

Shows you how to provide for customizable pages.Personalization of Pages

Lists the limitations of the SWT client which can be used
instead of a browser.

SWT Client

How to avoid security risks.Security Aspects

How to integrate your application with a portlet.Portal Integration

How to generate layout elements into an existing layout.Using Layout Painter Extensions

How to integrateMicrosoft Silverlight controls into your pages.Microsoft Silverlight Integration

How to use this “outside-in approach” to integrateApplication
Designer controls and functionality in standardHTML pages.

IntegratingApplicationDesigner Controls
in HTML Pages

How to use test tool IDs for automated tests.Automated Testing

ix

x

I Controls for Absolute Positioning

There is a special set of controls available to position them by defining their absolute x- and y-co-
ordinates. In addition, you can define the z-coordinate to define the drawing sequence if two
controls overlap.

Use these controls for specific purposes only - positioning controls by using container controls is
much more simple and much more flexible.

The information provided in this part is organized under the following headings:

Example

Controls

ABSFOLDER

ABSFIELD

ABSICON

ABSDYNICON

ABSTEXTOUT

ABSLABEL

ABSTABLE0/ABSTR

ROWABSAREA

ABSAREA

1

2

1 Example

A typical case for using absolute positioning is demonstrated in the following example:

3

On top of a map there are normal input fields and dynamic icons. If you enter certain values, the
traffic lights change their color.

The controls supporting absolute positioning start with the prefix "ABS".

This is the XML code for the above example:

Special Development Topics4

Example

<page model="com.softwareag.cis.demo.AbsoluteDemoAdapter">
 <absfolder name="All">
 <absfolder name="Center">
 <absdynicon valueprop="imgCenter" x="522" y="264" z="10">
 </absdynicon>
 <absfield valueprop="kfCenter" length="10" x="522" y="319" z="10" ↩
displayonly="true">
 </absfield>
 </absfolder>
 <absfolder name="Factory1">
 <absdynicon valueprop="imgFactory1" x="332" y="225" z="10">
 </absdynicon>
 <absfield valueprop="kfFactory1" length="10" x="332" y="280" z="10">
 </absfield>
 </absfolder>
 <absfolder name="Factory2">
 <absdynicon valueprop="imgFactory2" x="270" y="396" z="10">
 </absdynicon>
 <absfield valueprop="kfFactory2" length="10" x="270" y="451" z="10">
 </absfield>
 </absfolder>
 <absfolder name="Factory3">
 <absdynicon valueprop="imgFactory3" x="440" y="549" z="10">
 </absdynicon>
 <absfield valueprop="kfFactory3" length="10" x="440" y="604" z="10">
 </absfield>
 </absfolder>
 <absicon image="images/absbackground.gif" x="100" y="70" z="1">
 </absicon>
 <abslabel x="20" y="80" z="10" name="XYZ Company" textsize="5" ↩
textcolor="#FF8080">
 </abslabel>
 </absfolder>
 <titlebar name="Overview">
 </titlebar>
 <header>
 <button name="Refresh" method="refresh">
 </button>
 </header>
 <pagebody vscroll="false">
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

Some controls start with "ABS" and hold x-, y- and z-coordinates. These controls are structured
withinABSFOLDERcontrols. TheABSFOLDERcontrols have neither optical or execution relevance
- they are just used to structure the absolutely positioned controls inside a hierarchy - otherwise,
the controls would be displayed in one long line, one after the other.

The Java adapter code looks as follows:

5Special Development Topics

Example

package com.softwareag.cis.demo;

import com.softwareag.cis.server.Adapter;

public class AbsoluteDemoAdapter extends Adapter
{

float m_kfFactory1;
float m_kfFactory2;
float m_kfFactory3;
float m_kfCenter;

public void setKfFactory1(float value) { m_kfFactory1 = value; }
public float getKfFactory1() { return m_kfFactory1; }

public void setKfFactory2(float value) { m_kfFactory2 = value; }
public float getKfFactory2() { return m_kfFactory2; }

public void setKfFactory3(float value) { m_kfFactory3 = value; }
public float getKfFactory3() { return m_kfFactory3; }

public float getKfCenter() { return m_kfCenter; }

public void reactOnDataTransferEnd()
{

m_kfCenter = m_kfFactory1 + m_kfFactory2 + m_kfFactory3;
}

public String getImgFactory1() { return findImage(m_kfFactory1); }
public String getImgFactory2() { return findImage(m_kfFactory2); }
public String getImgFactory3() { return findImage(m_kfFactory3); }
public String getImgCenter() { return findImage(m_kfCenter/3); }

private String findImage(float f)
{

if (f < 1000) return "images/abstlred.gif";
if (f < 10000) return "images/abstlyellow.gif";
return "images/abstlgreen.gif";

}
}

Properties starting with "kf" represent key figures which are displayed in the page. All properties
starting with "img" pass back a name of an image file. The image file is used inside the ABS-
DYNICON control in the layout description to show an image which is taken from the value of
an adapter property.

Special Development Topics6

Example

2 Controls

All controls which allow absolute positioning have 3 standard properties:

■ x - this is the X coordinate.
■ y - this is the Y coordinate.
■ z - this is the Z coordinate.

The x- and y-value is measured from the top left corner of the page.

The z-value indicates the drawing sequence - the layer. The layer information becomes important
if controls overlap - the control with the higher z-value is drawn on top of the control with the
lower z-value.

7

8

3 ABSFOLDER

■ Properties .. 10

9

The ABSFOLDER control has neither optical or execution relevance. It is used to structure the
absolutely positioned controls inside a hierarchy. Without the ABSFOLDER control, the controls
would be displayed in one long line, one after the other.

Properties

Basic

OptionalA name for the ABSFOLDER can be defined here, without any effect on rendering
and behaviour.

name

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Special Development Topics10

ABSFOLDER

4 ABSFIELD

■ Properties .. 12

11

The ABSFIELD is the normal FIELD control to be positioned absolutely. All properties are the
same as the properties used by the FIELD control. See the description of the FIELD control.

Properties

Basic

ObligatoryServer side property representation of the
control.

valueprop

5OptionalWidth of FIELD in amount of characters.WIDTH
andLENGTH should not be used together. Note

length

10that the actual size of the control depends on the
font definition if using the LENGTH property.

15

20

int-value

OptionalX-coordinated (in pixels) of the left top corner
of the control.

x

OptionalY-coordinated (in pixels) of the left top corner
of the control.

y

OptionalZ-coordinated (in pixels) of the left top corner
of the control.

z

screenOptionalFlushing behaviour of the input control.flush

serverBy default an input into the control is registered
within the browser client - and communicated
to the server adapter object when a user e.g.
presses a button. By using the FLUSH property
you can change this behaviour.

Setting FLUSH to "server" means that directly
after changeing the input a synchronizationwith
the server adapter is triggered. As consequence
you directly can react inside your adapter logic
onto the change of the corresponding value. -
Please be aware of that during the
synchronization always all changed properties
- also the ones that were changed before - are
transferred to the adapter object, not only the
one that triggered the synchonization.

Setting FLUSH to "screen" means that the
changed value is populated inside the page. You

Special Development Topics12

ABSFIELD

use this option if you have redundant usage of
the same property inside one page and if you
want to pass one changed value to all its
representaion directly after changing the value.

OptionalWhen the data synchronization of the control is
set to FLUSH="server" then you can specify an

flushmethod

explicit method to be called when the user
updates the content of the control. By doing so
you can distinguish on the server side from
which control the flush of data was triggered.

trueOptionalIf set to "true", each entered character is
displayed as a '*'.

password

false

trueOptionalIf set to true, the FIELDwill not be accessible for
input. It is just used as an output field.

displayonly

false

OptionalName of adapter property that controlswhether
the field is displayonly(true) or not (false).

displayprop

By using this property you can dynamically
control the "display"-status of the control by your
adapter object.

OptionalName of the adapter property that dynamically
passes information how the field should be
rendered and how it should act.

statusprop

openIdValueComboOptionalName of the adapter's method that is called
when the user requests value help by pressing

popupmethod

openIdValueHelpF4 or F7 or by clicking into the FIELD with the

openIdValueComboOrPopup
rightmouse button. See at chapter 'PopupDialog
Management' for more details. If the
POPUPMETHOD is defined, a small icon is
shown inside the field to indicate to the user that
there is some value help available.

dateOptionalBy default, the FIELD control is managing its
content as string. By explicitly setting a datatype
you can define that the control...

datatype

float

int...will check the user input if it reflects the
datatype. E.g. if the user inputs "abc" into a field

longwith datatype "int" then a corresponding error

timemessage will popup when the user leaves the
field.

timestamp
...will format the data coming from the server or
coming form the user input: if the field has color
datatype "date" and the user inputs "010304"

13Special Development Topics

ABSFIELD

xs:decimalthen the inputwill be translated into "01.03.2004"
(or other representation, dependent on date
format settings). xs:double

xs:dateIn addition value popups are offered for the user
automatically for some datatypes: e.g. when

xs:dateTimespecifying datatype "date" the automatically the
field provides a calendar input popup. xs:time

Please note: the datatype "float" is named a bit
misleading - it represents any decimal format

N n.nnumber. The server side representation may be
a float value, but also can be a double or a
BigDecimal property. P n.n

string n

L

xs:boolean

xs:byte

xs:short

OptionalCSS style definition that is directly passed into
this control.

fieldstyle

With the style you can individually influence
the rendering of the control. You can specify any
style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame's source" function.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Special Development Topics14

ABSFIELD

5 ABSICON

■ Properties .. 16

15

This is an image which is drawn at a defined coordinate. Either show the image in the original
size or define the image size explicitly. Optionally, define a method to be called when the image
is clicked.

Properties

Basic

ObligatoryName of the image to be displayed as an icon. The value must be a valid URL.image

ObligatoryName of the adapter method to be called by clicking on the icon. If the name is not
specified, the data of the page is synchronized with the server by clicking on the
icon.

method

OptionalX-coordinated (in pixels) of the left top corner of the control.x

OptionalY-coordinated (in pixels) of the left top corner of the control.y

OptionalZ-coordinated (in pixels) of the left top corner of the control.z

OptionalTitle of the icon to be displayed as a "tool tip". If the mouse cursor stays on the icon
for some time, the title will appear.

title

OptionalText id of the icon's title, replaced by a literal by the multi language management
at runtime.

titletextid

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Special Development Topics16

ABSICON

6 ABSDYNICON

■ Example: Moving an Icon .. 18
■ Properties .. 21

17

The ABSDYNICON is similar to theABSICON control. Main difference: whereas the name of the
image is defined statically by the ABSICON control, it is derived from an adapter property by the
ABSDYNICON control. The image can be changed by the application. The ABSDYNICON is used
to display the dynamic traffic lights in the previous example.

It is also possible to specify the height and the width of an ABSDYNICON control by binding
these values to corresponding adapter properties. For example, use this feature to display a nu-
meric value by a graphical bar which changes its size depending on this value.

In addition, it is also possible to specify the coordinates (x/y/z) of the ABSDYNICONdynamically.
Maybe you want to display an icon representing a car and want to update regularly its position
by properties of your adapter object.

Example: Moving an Icon

The following example demonstrates the possibility to specify dynamically the size and coordinates
of the ABDSDYNICON control. It looks as follows:

By clicking on the buttons you manipulate the size and the position of the icon.

Special Development Topics18

ABSDYNICON

The XML layout definition looks as follows:

<page model="MovingIconAdapter">
 <absfolder name="ABSFolderMovingIcon">
 <absdynicon valueprop="iconName" xprop="x" yprop="y" zprop="z" ↩
heightprop="height"
 widthprop="width">
 </absdynicon>
 </absfolder>
 <titlebar name="Moving Icon">
 </titlebar>
 <header align="left" withdistance="false">
 <button name="Left" method="moveLeft">
 </button>
 <button name="Right" method="moveRight">
 </button>
 <button name="Up" method="moveUp">
 </button>
 <button name="Down" method="moveDown">
 </button>
 <button name="Increase Size" method="increase">
 </button>
 <button name="Decrease Size" method="decrease">
 </button>
 </header>
 <pagebody>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The coordinates and the size for the ABSDYNICON control are derived from adapter properties.
The adapter class source is:

import com.softwareag.cis.server.Adapter;

// This class is a generated one.

public class MovingIconAdapter
extends Adapter

{
// property >height<
int m_height=100;
public int getHeight() { return m_height; }
public void setHeight(int value) { m_height = value; }

// property >iconName<
String m_iconName= "images/new.gif";
public String getIconName() { return m_iconName; }
public void setIconName(String value) { m_iconName = value; }

19Special Development Topics

ABSDYNICON

// property >width<
int m_width=100;
public int getWidth() { return m_width; }
public void setWidth(int value) { m_width = value; }

// property >x<
int m_x=100;
public int getX() { return m_x; }
public void setX(int value) { m_x = value; }

// property >y<
int m_y=100;
public int getY() { return m_y; }
public void setY(int value) { m_y = value; }

// property >z<
int m_z;
public int getZ() { return m_z; }
public void setZ(int value) { m_z = value; }

/** */
public void decrease()
{

m_width -= 20;
m_height -= 20;

}

/** */
public void increase()
{

m_width += 20;
m_height += 20;

}

/** */
public void moveLeft() { m_x -= 20; }
public void moveRight() { m_x += 20; }
public void moveUp() { m_y -= 20; }
public void moveDown() { m_y += 20; }

}

Special Development Topics20

ABSDYNICON

Properties

Basic

ObligatoryName of the adapter property providing the URL of the image to be displayed
as an icon.

valueprop

OptionalMethod being called inside the adapter when clicking on the icon. You do not
have to define a value but can also use the icon just as a dynamic image display.

method

OptionalX position in pixels.x

OptionalY position in pixels.y

OptionalZ position.z

OptionalName of property returning the X position.xprop

OptionalName of property returning the Y position.yprop

OptionalName of property returning the Z position.zprop

OptionalHeight of icon in pixels.height

OptionalWidth of icon in pixels.width

OptionalName of property returning the height.heightprop

OptionalName of property returning the width.widthprop

OptionalText that is shown as tooltip for the control.title

Either specify the text "hard" by using this TITLE property - or use the
TITLETEXTID in order to define a language dependent literal.

OptionalCommentwithout any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

There are three options to set the size of an icon:

1. The icon is displayed in its original size - you do not have to specify any of the properties height,
width, heightprop, widthprop.

2. The icon is displayedwith a defined sizewhich does not change - you have to specify the height
and width property values with the corresponding pixel values.

3. The icon is displayed with a defined size which changes dynamically - you have to specify the
heightprop and widthprop property values and you have to provide the corresponding adapter
properties.

There are two options for setting the position of an icon:

1. Static definition by the x, y and z properties.

2. Dynamic definition by adapter properties which are specified by the xprop, yprop and zprop
properties.

21Special Development Topics

ABSDYNICON

22

7 ABSTEXTOUT

■ Properties .. 24

23

The ABSTEXTOUT control allows you to display text information which is dynamically derived
from an adapter property.

Properties

Basic

OptionalX-coordinated (in pixels) of the left top corner of the control.x

OptionalY-coordinated (in pixels) of the left top corner of the control.y

OptionalZ-coordinated (in pixels) of the left top corner of the control.z

ObligatoryName of the adapter property providing the text to be
displayed.

valueprop

1OptionalThe HTML font size of the text. Corresponding to the HTML
definition "1" means "smallest" and "6" means "biggest".

textsize

2

3

4

5

6

#FF0000OptionalColour in which the text is displayed. Must be a valid colour
code, e.g. #FF0000 for "red".

textcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

dateOptionalBy default, the control is managing its content as string. By
explicitly setting a datatype you can define that the control will

datatype

floatformat the data coming from the server: if the field has datatype

int
"date" and the user inputs "010304" then the input will be
translated into "01.03.2004" (or other representation, dependent
on date format settings). long

Please note: the datatype "float" is named a bit misleading - it
represents any decimal format number. The server side

time

timestamprepresentation may be a float value, but also can be a double
or a BigDecimal property.

color

Special Development Topics24

ABSTEXTOUT

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

N n.n

P n.n

string n

L

xs:boolean

xs:byte

xs:short

OptionalCSS style definition that is directly passed into this control.textoutstyle

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to knowwhere direct style definitions are applied.
Press rightmouse-button in your browser and select the "View
source" or "View frame's source" function.

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

25Special Development Topics

ABSTEXTOUT

26

8 ABSLABEL

■ Properties .. 28

27

The ABSLABEL allows you to display static text information. The text can be a text which is taken
from the multi language management.

Properties

Basic

OptionalX-coordinated (in pixels) of the left top corner of the area.x

OptionalY-coordinated (in pixels) of the left top corner of the area.y

OptionalZ-coordinated (in pixels) of the left top corner of the area.z

OptionalStatic text which is displayed.name

OptionalText id, replaced by a literal of the multi language management.textid

1OptionalFont size of the text as defined by the HTML font size specification.textsize

2

3

4

5

6

#FF0000OptionalColour in which the text is displayed.textcolor

#00FF00

#0000FF

#FFFFFF

#808080

#000000

OptionalCSS style definition that is directly passed into this control.labelstyle

With the style you can individually influence the rendering of the control.
You can specify any style sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them with a
semicolon.

Special Development Topics28

ABSLABEL

Sometimes it is useful to have a look into the generated HTML code in order
to knowwhere direct style definitions are applied. Press right mouse-button
in your browser and select the "View source" or "View frame's source"
function.

OptionalComment without any effect on rendering and behaviour. The comment is
shown in the layout editor's tree view.

comment

Either use the name or the textid property.

29Special Development Topics

ABSLABEL

30

9 ABSTABLE0/ABSTR

■ ABSTABLE0 Properties .. 33
■ ABSTR Properties ... 35

31

This is a set of very powerful absolute controls because they are very generic in what happens
below.

The ABSTABLE0 represents a table that you place with its top left corner onto a certain x, y, z
position. Inside the table, you can do what you want - i.e. you can include any other controls
reachable inside the table.

The ABSTR represents a row that you place in the same way as ABSTABLE0.

This is an example:

The XML layout definition is:

<rowarea name="Rowarea">
<rowabsarea width="100%" height="200">

<abstable0 x="100" y="20" z="1" width="250">
<rowtabarea height="150" name1="Left" page1="idPage1"

name2="Right" page2="idPage2">
<tabpage id="Left" takefullheight="true">
</tabpage>
<tabpage id="Right" takefullheight="true">
</tabpage>

</rowtabarea>
</abstable0>
<abstr x="220" y="70" z="2">

<button name="Press Me!" method="onPressMe">
</button>
<button name="Press Me!" method="onPressMe">
</button>

</abstr>
</rowabsarea>

</rowarea>

Special Development Topics32

ABSTABLE0/ABSTR

ABSTABLE0 Properties

Basic

OptionalX-coordinated (in pixels) of the left top corner of the area.x

OptionalY-coordinated (in pixels) of the left top corner of the area.y

OptionalZ-coordinated (in pixels) of the left top corner of the area.z

OptionalName of adapter properties for the x-coordinate.xprop

OptionalName of adapter properties for the y-coordinate.yprop

OptionalName of adapter properties for the z-coordinate.zprop

100OptionalHeight in pixels. Only required if you use percentage sizing
inside the ABSTABLE0. Otherwise the height of the table
follows the height of its content.

height

150

200

250

300

250

400

50%

100%

100OptionalWidth in pixels. If not defined then ABSTABLE0 will be as
wide as required by its content.

width

120

140

160

180

200

50%

100%

trueOptionalIndicates if the content of the control's area gets the full
available height.

takefullheight

false
If you use percentage sizing inside the control's area then this
property must be switched to 'true'. If you use no explicit

33Special Development Topics

ABSTABLE0/ABSTR

vertical sizing at all - or you use vertical pixel sizing for your
controls - the property must be switched to 'false'.

Background information: container control's internally open
up a table in which you place rows (ITR/TR) which then hold
controls (e.g. LABEL/FIELD). The table that is opened up
normally has no explicit height and grows with its content as
consequence. By specifying "takefullheight=true" the table
itself is sized to fill the maximum height of the available area.

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective it

fixlayout

falserequires to have specified the height and thewidth (if available
as property) of the control.

If setting fixlayout to "true" then the control's area is defined
as area which is not sized dependent on its content (as
normally done with table rendering). Instead the size is
predefined from outside without letting the browser "look"
into the content of the area. If the content is not fitting into the
area then it is cut.

You typically use this control if the content of the control's
area is flexibly sizable. E.g. if the content (e.g. a TEXTGRID
control) is following the size of the container.

When using vertical percentage based sizing you should pay
attention to set the fixlayout-property to "true" as often as
possible. - The browser as consequence will be much faster in
doing its rendering because a screen consists out of "building
blocks" with simple to calculate sizes.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering
of the control. You can specify any style sheet expressions.
Examples are:

tablestyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating
them with a semicolon.

Sometimes it is useful to have a look into the generatedHTML
code in order to know where direct style definitions are
applied. Press right mouse-button in your browser and select
the "View source" or "View frame's source" function.

OptionalCommentwithout any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Special Development Topics34

ABSTABLE0/ABSTR

ABSTR Properties

Basic

OptionalX-coordinated (in pixels) of the left top corner of the area.x

OptionalY-coordinated (in pixels) of the left top corner of the area.y

OptionalZ-coordinated (in pixels) of the left top corner of the area.z

OptionalName of adapter properties for the x-coordinates.xprop

OptionalName of adapter properties for the y-coordinates.yprop

OptionalName of adapter properties for the z-coordinates.zprop

OptionalName of an adapter property that provides the information if this control is
displayed or not. As consequence you can control the visibility of the control
dynamically.

visibleprop

The server side property needs to be of type "boolean".

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

35Special Development Topics

ABSTABLE0/ABSTR

36

10 ROWABSAREA

■ All Controls Directly Inside the Page Tag .. 38
■ All Controls Inside the Page Body ... 38
■ Explicit Areas for Absolute Positioning ... 40
■ Properties .. 42

37

It is possible to define flexible areas in which absolutely positioned controls are displayed. There
are three possibilities:

■ You define all controls directly inside the page tag.
■ You define the page body to hold the controls.
■ You define explicitly the area for control positioning inside any part of the page.

All Controls Directly Inside the Page Tag

This is the easiest way to use absolutely positioned controls - and it is used in the example previ-
ously in this part. Each coordinate of a control relates to the whole generated HTML page, i.e. the
coordinate "(0;0)" positions a control at the left-top corner of the page.

Though this is the fastest way to start with, there are some disadvantages:

■ If a control is positioned outside the page, the user is unable to scroll to this point.
■ If you add controls which are not absolutely positioned, you have to mix both variants in a
dangerousway: e.g. define a title bar and a header inside a page. Therefore, youwill not position
your controls on top of these elements - i.e. youwill position them at a y-coordinate "60" in order
to keep a distance. If further elements are added inside the header, the height of the header in-
creases and all absolutely positioned controls need to be redefined by a new y-coordinate.

All Controls Inside the Page Body

The page body (PAGEBODY tag) typically reflects the area between header and status bar. It is
possible to add a ROWABSAREA control inside the page body. Inside the ROWABSAREA con-
tainer, you can position your controls.

If you do not define any further parameters by this ROWABSAREA control, it will occupy the
whole page body if necessary. Defining the vscroll and hscroll properties (set to true) inside
the PAGEBODY tag, you can scroll to any control that is outside the visible range of the page body.

Look at the following example: it contains two absolutely positioned icons inside the page body.
If the window size is too small to show both icons, the scroll bars are shown accordingly.

Special Development Topics38

ROWABSAREA

The layout definition of this example looks as follows:

<pagebody vscroll="true" hscroll="true">
<rowabsarea>

<absfolder>
<absicon image="images/logo.gif" x="150" y="100" z="10">
</absicon>
<absicon image="images/logo.gif" x="250" y="200" z="10">
</absicon>

</absfolder>

39Special Development Topics

ROWABSAREA

</rowabsarea>
</pagebody>

The controls are positioned relative to the page body's coordinates. I.e. the coordinate "(0;0)" is the
left-top corner of the page body.

Use this method to position the controls within a page where the page body is used for positioned
controls absolutely.

Explicit Areas for Absolute Positioning

Use the ROWABSAREA container, which is explained above, to define areas inside a page where
you want to position controls.

Have a look at the following example:

Special Development Topics40

ROWABSAREA

An area was embedded for absolute positioning inside the normal flow of controls of a page. The
corresponding XML layout definition looks as follows:

<rowarea name="Titel">
<rowabsarea width="100%" height="350">

<absfolder>
<absicon image="images/logo.gif" x="50" y="50" z="100">
</absicon>
<absicon image="images/new.gif" x="120" y="120" z="100">
</absicon>
<absicon image="images/logo.gif" x="150" y="150" z="100">
</absicon>

</absfolder>
</rowabsarea>
<vdist height="5">
</vdist>
<itr>

41Special Development Topics

ROWABSAREA

<label name="Parameter" width="120" asplaintext="false">
</label>
<field valueprop="factor1" length="20">
</field>

</itr>
</rowarea>

Inside the ROWAREA definition, a ROWABSAREA is placed - holding a defined width and size.
Below the ROWABSAREA, the normal definition of a set of absolutely positioned controls are
defined, i.e. an ABSFOLDER with some ABSICON definitions.

In the row following the ROWABSAREA, normal controls are defined - just as usual.

Properties

Basic

100OptionalWidth of the control.width

120There are three possibilities to define the width:

140(A) You do not define a width at all. In this case the width of the control will
either be a default width or - in case of container controls - it will follow the
width that is occupied by its content. 160

180(B) Pixel sizing: just input a number value (e.g. "100").

200(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

50%control properly defines a width this control can reference. If you specify this

100%control to have a width of 50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect.

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will be rendered
with its default height. If the control is a container control (containing) other
controls then the height of the control will follow the height of its content. 250

300(B) Pixel sizing: just input a number value (e.g. "20").

250(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay attention:
percentage sizing will only bring up correct results if the parent element of the

400control properly defines a height this control can reference. If you specify this

50%control to have a height of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element does not specify a width
then the rendering result may not represent what you expect. 100%

Special Development Topics42

ROWABSAREA

OptionalCommentwithout any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

43Special Development Topics

ROWABSAREA

44

11 ABSAREA

■ Example .. 46
■ Properties .. 47

45

Independent of what type of area you define for positioning controls (see previous section), it is
possible to define subareas inside this area. A subarea is an areawith its own x-, y- and z-coordinates
and also contains absolutely positioned controls - or again: subareas.

Example

The following example shows a page with three groups of absolutely positioned controls - each
group holding an icon (ABSICON) and a label (ABSLABEL):

The XML layout definition contains three definitions of an ABSAREA control - with different x-,
y- and z-coordinates. Inside the area, the controls are positionedwith exactly the same coordinates.

<rowarea name="Absolute Area" height="500">
<rowabsarea width="100%" height="100%">

<absarea x="150" y="150" z="10">
<abslabel x="5" y="5" z="10" name="This is test-position 5,5">
</abslabel>
<absicon image="images/remove.gif" x="0" y="0" z="0">
</absicon>

</absarea>
<absarea x="150" y="400" z="10">

<abslabel x="5" y="5" z="10" name="This is test-position 5,5">

Special Development Topics46

ABSAREA

</abslabel>
<absicon image="images/remove.gif" x="0" y="0" z="0">
</absicon>

</absarea>
<absarea x="300" y="300" z="10">

<abslabel x="5" y="5" z="10" name="This is test-position 5,5">
</abslabel>
<absicon image="images/remove.gif" x="0" y="0" z="0">
</absicon>

</absarea>
</rowabsarea>

</rowarea>

An ABSAREA control opens its own area on the page, providing its own coordinate system.

In this example, the x-, y- and z-coordinates for each area are defined inside the layout definition.
Set the position dynamically by deriving the x-, y- and z-values by the adapter properties.

Properties

Basic

OptionalX-coordinate (in pixels) of the left top corner of the area.x

OptionalY-coordinate (in pixels) of the left top corner of the area.y

OptionalZ-coordinate (in pixels) of the left top corner of the area.z

OptionalName of adapter properties for the x-coordinates.xprop

OptionalName of adapter properties for the y-coordinates.yprop

OptionalName of adapter properties for the z-coordinates.zprop

OptionalComment without any effect on rendering and behaviour. The comment is shown
in the layout editor's tree view.

comment

Either all of the properties x, y and z have to be defined or all the properties xprop, yprop and
zprop have to be defined.

47Special Development Topics

ABSAREA

48

II Writing Reports

This part describes how to create reports with Application Designer.

The information provided in this part is organized under the following headings:

Introduction

Writing Reports by Using the REPORT Control

Creating Statistical Charts

Embedding Statistical Charts into Reports

Using the Special Chart Control QUADRANTPLOT

Creating Simple Charts Quickly Using the PIVOT Control

Best Practice Hints

When using the REPORT control with an embedded chart, the transfomation from SVG to JPEG,
GIF and other formats is only possible when the environment variable DISPLAY has been set. Ex-
ample:

DISPLAY=:0.0
export DISPLAY

For users of early versions: Application Designer also offers some controls in the area of VML
graphics (vector markup language). These controls are continued to be supported. Because VML
is not compatible through the various browsers and because VML is not accepted as a public
standard, we do not recommend new Application Designer users to use these controls anymore.
The documentation for the VML controls is available in Appendix G - VML Chart Controls of the
Appendices documentation.

49

50

12 Introduction

Application Designer offers flexible, easy-to-use controls and server side Java APIs to support re-
porting. Reporting functions include:

■ Simple reporting document output, including
■ output of tables
■ output of text
■ output of statistical graphics

■ The reporting output is automatically rendered into HTML and/or PDF without developers to
take care of.

In addition, Application Designer provides a Java API to create a rich set of statistical charts.
Functions in this area include:

■ Various types of charts:
■ pie chart
■ bar chart
■ 3D bar chart
■ point chart
■ line chart
■ aggregation chart

■ Different types of charts can be mixed - e.g. you can combine lines and bars inside one chart.
■ Charts can be rendered into

■ SVG format (scalable vector graphics) - a W3C standard that is supported by up-to-date
browsers (e.g. IE support comes through Adobe Plugin that comes with Adobe Reader)

■ JPG format

51

While in principle Application Designer delivers independent APIs for the various issues (e.g. the
charting API is independent from the reporting output API), all can be combined in order to write
nice looking reports:

Reporting is not an island on its own but can be integrated easily in any Application Designer
page, i.e. the output is done inside a normal Application Designer control that you place into an
Application Designer page.

The objective of Application Designer reporting is:

■ Create nice looking reports in an efficient way.
■ Offer a report rendering API that can be flexibly used by your application logic frameworks.
■ Have an automated PDF generation.
■ Provide interactivity so that reports can be linked to other parts of your application.

Special Development Topics52

Introduction

In short: we do not provide a full-fledged reporting tool for SQL type of reporting - we offer
something small and smart that is easy to integrate and to adapt into your application.

53Special Development Topics

Introduction

54

13 Writing Reports by Using the REPORT Control

■ The Very Beginning - A White Report Area ... 56
■ Rendering a Grid into the REPORT Control .. 57
■ Using Special Styles for Cell Output .. 59
■ Adding Some Text ... 60
■ Adding a Second Grid .. 62
■ Adding an Image ... 63
■ HTML Rendering - PDF Rendering ... 64
■ Reacting on Mouse Clicks ... 66
■ REPORTInfo API .. 69
■ REPORT Controls versus TEXTGRID Control ... 69
■ Properties .. 70

55

The REPORT control can be considered as a white sheet of paper in which you render reporting
output. The output may consist of:

■ grids
■ text
■ images (jpg/svg)

From the control definition point of view, the REPORT control is very easy: you just have to define
the size of the control and a reference to an adapter property that represents the control on the
server side. Let us start building up a simple report step by step.

The Very Beginning - A White Report Area

Let us first define the page layout:

The layout definition is:

Special Development Topics56

Writing Reports by Using the REPORT Control

<page model="Demo_Report_Adapter">
<titlebar name="Demo Report">
</titlebar>
<pagebody takefullheight="true">

<rowarea name="Demo Report" height="100%">
<report reportprop="report" height="100%" showpdf="true">
</report>

</rowarea>
</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

The adapter code is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.REPORTCellFormat;
import com.softwareag.cis.server.util.REPORTInfo;

public class Demo_Report_Adapter
extends Adapter

{
// property >report<
REPORTInfo m_report = new REPORTInfo(this);
public REPORTInfo getReport() { return m_report; }

}

On the layout side, you see the REPORT control referencing the property report. The property
itself is of type REPORTInfo.

Please note: in the XML layout definition, the property showpdf is set to "true". If you do so, you
also have to create the instance of REPORTInfo by calling the constructor in which the instance of
the adapter object that manages the control is passed.

Rendering a Grid into the REPORT Control

The following extension is done to the adapter class:

57Special Development Topics

Writing Reports by Using the REPORT Control

public void init()
{

renderGrid();
}

/**
* Renders a grid with 4 columns and 3 data rows.
*/

private void renderGrid()
{

m_report.addHeadlineCell("Title 1","150");
m_report.addHeadlineCell("Title 2","70");
m_report.addHeadlineCell("Title 3","100");
m_report.addHeadlineCell("Title 4","80");
m_report.addNewLine();
for (int i=0; i<3; i++)
{

m_report.addContentCell("A Cell " + i);
m_report.addContentCell("B Cell " + i);
m_report.addContentCell("C Cell " + i);
m_report.addContentCell("D Cell " + i);
m_report.addNewLine();

}
}

The control now looks as follows:

Special Development Topics58

Writing Reports by Using the REPORT Control

You see that grids are rendered in a simple way. By using the API of REPORTInfo, you can add
headline and content cells. You append the grid information cell by cell, indicating new lines
between.

Using Special Styles for Cell Output

The grid uses style sheet definitions that are part of the normal Application Designer style sheet
files. They are taken from the TEXTGRID definitions inside the style sheet file.

You can override these style definitions explicitly. In the following example, the renderGrid()
method is extended to display a summary line at the end of the grid:

The code is:

59Special Development Topics

Writing Reports by Using the REPORT Control

private void renderGrid()
{

m_report.addHeadlineCell("Title 1","150");
m_report.addHeadlineCell("Title 2","70");
m_report.addHeadlineCell("Title 3","100");
m_report.addHeadlineCell("Title 4","80");
m_report.addNewLine();
for (int i=0; i<3; i++)
{

m_report.addContentCell("A Cell " + i);
m_report.addContentCell("B Cell " + i);
m_report.addContentCell("C Cell " + i);
m_report.addContentCell("D Cell " + i);
m_report.addNewLine();

}
REPORTCellFormat sumFormat = new REPORTCellFormat();
sumFormat.setBackgroundColor("#D0FFD0"); // light green
sumFormat.setTextColor("#FF0000"); // red
sumFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
sumFormat.setAlign(REPORTCellFormat.ALIGN_CENTER);
m_report.addContentCell("This is the summary line.", // text

4, // cellspan
sumFormat); // cell format

}

You see that the API for adding cells offers a variant by which you can pass a columns span
definition and a REPORTCellFormat object.

Adding Some Text

By using the addText(...)methods of REPORTInfo, you can add text to the reporting area:

Special Development Topics60

Writing Reports by Using the REPORT Control

The adapter code is:

private void renderGrid()
{

// headline
REPORTCellFormat hlFormat = new REPORTCellFormat();
hlFormat.setFontSize("16pt");
hlFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
m_report.addText("Demo Report",hlFormat);
m_report.addVerticalDistance("10");

// grid
...
...
... see coding above
...
...

// description
m_report.addVerticalDistance("10");
m_report.addText("This is a description of the grid. " +

"This is a description of the grid. " +
"This is a description of the grid. " +
"This is a description of the grid. " +
"This is a description of the grid. ");

}

61Special Development Topics

Writing Reports by Using the REPORT Control

In the code, you see the usage of the addText(...)method. Text can be combinedwith an explicit
cell format object (as done in the title) or can be output straight forward (as done in the description).
In order to keep a certain distance between the texts and the grid, the method
addVerticalDistance(...) is called.

Adding a Second Grid

You can repeat the addmethods for rendering grids, texts, etc. multiple times. The formats (column
width etc.) of each grid are completely independent from one another:

The code of the example was changed in the following way:

public void init()
{

renderGrid();
renderGrid2();

}

private void renderGrid()
{

...see coding above
}

Special Development Topics62

Writing Reports by Using the REPORT Control

private void renderGrid2()
{

m_report.addVerticalDistance("10");

m_report.setIndent("50");
m_report.addHeadlineCell("Second Grid's Title","250");
m_report.addNewLine();
m_report.addContentCell("Line 1");
m_report.addNewLine();
m_report.addContentCell("Line 2");
m_report.addNewLine();

}

By using the method REPORInfo.setIndent(...), the second grid was indented by 50 pixels.

Adding an Image

Images that are part of your web application can be added by using the addGIFGraphic(...) or
addJPEGGraphic(...) interface. If adding the following code to your example

public void init()
{

renderLogo();
renderGrid();
renderGrid2();

}

private void renderLogo()
{

m_report.addGIFGraphic("../HTMLBasedGUI/images/logo.gif","550");
}

then the report will look like:

63Special Development Topics

Writing Reports by Using the REPORT Control

Pay attention: only add images that are accessible through your web application, e.g. that are part
of your Application Designer project in which you are working. Do not add images by defining
an absolute URL (http://.....) - this will cause problems when transferring the result to PDF.

HTML Rendering - PDF Rendering

When clicking on the PDF icon in the right top corner of the REPORT controls, the report will be
rendered into PDF:

Special Development Topics64

Writing Reports by Using the REPORT Control

65Special Development Topics

Writing Reports by Using the REPORT Control

The PDF output is not a 100% match to the HTML output but a “as much as possible” match.
When specifying sizes (e.g. column sizes, indent sizes) always use straight values representing
pixels - as done in the examples above. There is a certain calculation factor (that can also be explicitly
set by an API) between "Pixels" and PDF centimeters.

HTML tables are quite forgivingwhen specifying non-fitting pixel widths - there are optimisation
rules that recalculate widths, e.g. if a text of a cell exceeds the size of the cell. FOP/PDF rendering
is not as forgiving but will let your text overlap into the next cell. Consequence: keep an eye on
your PDF output during development.

The sizing of the PDF document is done in the following way.

■ First the system tries to render the report into an A4 paper, portrait.
■ If the document exceeds the width, then the document is switched to landscape.
■ If the document still exceeds the width, then the document size is increased accordingly. The
page width and height will always keep the A4 relationships.

This all happens automatically - you do not have to take care of this.

Reacting on Mouse Clicks

The examples up to now only showed one way reporting. A report was just produced and output.

The REPORT controls also offer the possibility to react on mouse clicks. When a grid is clicked,
certain information is passed to the adapter program that identifies the clicked object. You can
either identify whole rows or single cells within rows.

Special Development Topics66

Writing Reports by Using the REPORT Control

If clicking onto a row in the top grid, then a corresponding ID is output in the status bar. The same
happens if clicking onto a cell in the bottom grid.

The adapter code is:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.REPORTCellFormat;
import com.softwareag.cis.server.util.REPORTInfo;

public class Demo_Report__interactive_Adapter
extends Adapter

{
public class MyREPORTInfo
extends REPORTInfo
{

public MyREPORTInfo(Adapter Adapter)
{

super(model);
}
public void reactOnClick(String id)
{

outputMessage(MT_SUCCESS, "Clicked id = " + id);
}

}

// property >report<

67Special Development Topics

Writing Reports by Using the REPORT Control

REPORTInfo m_report = new MyREPORTInfo(this);
public REPORTInfo getReport() { return m_report; }

private void renderGrid1()
{

// headline
REPORTCellFormat hlFormat = new REPORTCellFormat();
hlFormat.setFontSize("16pt");
hlFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
m_report.addText("Interactivity on Row Level", hlFormat);
m_report.addVerticalDistance("10");
// grid
m_report.addHeadlineCell("Title 1", "150");
m_report.addHeadlineCell("Title 2", "70");
m_report.addHeadlineCell("Title 3", "100");
m_report.addHeadlineCell("Title 4", "80");
for (int i = 0; i < 3; i++)
{

m_report.addNewLine("ROWID_" + i);
m_report.addContentCell("A Cell " + i);
m_report.addContentCell("B Cell " + i);
m_report.addContentCell("C Cell " + i);
m_report.addContentCell("D Cell " + i);

}
}

private void renderGrid2()
{

// headline
m_report.addVerticalDistance("10");
REPORTCellFormat hlFormat = new REPORTCellFormat();
hlFormat.setFontSize("16pt");
hlFormat.setFontWeight(REPORTCellFormat.FONTWEIGHT_BOLD);
m_report.addText("Interactivity on Cell Level", hlFormat);
m_report.addVerticalDistance("10");
// grid
m_report.addHeadlineCell("Title 1", "150");
m_report.addHeadlineCell("Title 2", "70");
m_report.addHeadlineCell("Title 3", "100");
m_report.addHeadlineCell("Title 4", "80");
for (int i = 0; i < 3; i++)
{

m_report.addNewLine();
m_report.addContentCell("A Cell " + i,"CELL_A_" + i);
m_report.addContentCell("B Cell " + i,"CELL_B_" + i);
m_report.addContentCell("C Cell " + i,"CELL_C_" + i);
m_report.addContentCell("D Cell " + i,"CELL_D_" + i);

}
}

/** initialisation - called when creating this instance*/
public void init()

Special Development Topics68

Writing Reports by Using the REPORT Control

{
renderGrid1();
renderGrid2();

}
}

You see that there is an own subclass of REPORTInfo that is used within the adapter program. The
subclass has overridden the method reactOnClick(...). Through the method, it receives an ID.

The ID is set either when creating a new line or when creating a cell. You are responsible for de-
fining the format and the semantics behind the ID.

REPORTInfo API

The previous topics showed you by example how to build reports. They did not cover the full in-
terface of REPORTInfo and related classes. See the corresponding Java API documentation.

REPORT Controls versus TEXTGRID Control

The REPORT is designed to produce flexible output lists. Compared to the text grid, it has the
following advantages:

■ It is easier to program. The report list is generated inside the Java Code; you do not have to
work both in the Layout Painter and in your Java editor.

■ It is more flexible. You can span cells, and you can individually colorize them.
■ It is faster. The HTML for the REPORT is created on the client side and plugged into the client's
area. There is no additional dynamic rendering at the client side.

It has the following disadvantages:

■ It does not offer server side scrolling, i.e. the whole report list result is always transferred to the
client in one step. If it is a really large report, thismay take awhile, especially inWAN scenarios.

■ It does not offer the same kind of interactivity but is more static. You can only click on rows. It
does not offer right mouse button pop-up menus, highlighting of selections, roll over effects,
switching columns, etc.

69Special Development Topics

Writing Reports by Using the REPORT Control

Properties

Basic

ObligatoryName of adapter property that is referenced by the
REPORT control.

reportprop

The adapter property must be of type "REPORTInfo".
See the corresponding Java API documentation in order
to get more information how to define report output for
this control.

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence
the control will be rendered with its default height. If

250the control is a container control (containing) other

300
controls then the height of the control will follow the
height of its content.

250(B) Pixel sizing: just input a number value (e.g. "20").

400(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring 50%
up correct results if the parent element of the control

100%properly defines a height this control can reference. If
you specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not specify
awidth then the rendering resultmay not representwhat
you expect.

trueOptionalIf set to "true" then a PDF icon is rendered in the right
top corner of the control. When the user clicks on the

showpdf

falseicon then the report is automatically rendered as PDF -
and the result will show up in a popup window.

Pay attention: if setting this property to "true" then you
also have to choose a special constructor when creating
the REPORTInfo instance on server side, in which the
instance of the model is passed as argument.

Example:

public class XYZAdapter extends Adapter

{

REPORTInfo m_report = new REPORTInfo(this)

Special Development Topics70

Writing Reports by Using the REPORT Control

...

}

trueOptionalIf switched to "true" then a small print icon will appear
right from the report area. The print icon opens up a

showprintversion

falsemodal popup from which the HTML produced inside
the report can be directly sent to the printer.

Pay attention: if specifying "true" then the adapter
property holding the REPORTInfo object must create
the REPORTInfo instance with passing "this" in the
constructor.

trueOptionalNATPAGE layouts only: If set to "true" then a PDF icon
is rendered in the right top corner of the control. When

showupload

falsethe user clicks on the icon then the report is automatically
rendered as PDF and the PDF content is added to the
NJX:OBJECTS cache for an upload to theNatural server.
The event value-of-reportprop.onUploadPDF is triggered
in the Natural application. The Natural application can
access the PDF in theNJX:OBJECTSdata structure during
this event.

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this
control.

areastyle

color: #0000FFWith the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are: font-weight: bold

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press rightmouse-button in your
browser and select the "View source" or "View frame's
source" function.

OptionalCSS style class used for rendering.areastyleclass

trueOptionalThe fixlayout property is important for saving rendering
performance inside your browser. To become effective

fixlayout

falseit requires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control's area is
defined as area which is not sized dependent on its
content (as normally donewith table rendering). Instead

71Special Development Topics

Writing Reports by Using the REPORT Control

the size is predefined from outside without letting the
browser "look" into the content of the area. If the content
is not fitting into the area then it is cut.

You typically use this control if the content of the
control's area is flexibly sizable. E.g. if the content (e.g.
a TEXTGRID control) is following the size of the
container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as
often as possible. - The browser as consequence will be
much faster in doing its rendering because a screen
consists out of "building blocks"with simple to calculate
sizes.

Special Development Topics72

Writing Reports by Using the REPORT Control

14 Creating Statistical Charts

■ Structure ... 74
■ Class com.softwareag.cis.chart.CHARTInfo .. 75
■ Creating a Simple Chart .. 75
■ Setting the Scale of the y-Axis ... 78

73

Structure

The creation of statistical charts is done by a library that is part of the ApplicationDesigner library.

The library offers an API in which you pass the data to be rendered into a chart. It interprets the
data and creates an SVG (scalable vector graphics) string out of it. This SVG string can be directly
passed back to the calling application.

In addition, the SVG string can be rendered into a JPEG image. Internally, the Apache batik.jar is
used for this purpose.

When should you use which format?

■ SVG is a vector format. This means that you can use it in printable documents because the
quality of rendering is scalable. SVG requires a plugin on browser side to be displayed; it does
not come with Internet Explorer or Mozilla. The plugin is available by installing an up-to-date
version of Adobe Reader (from our experience, it became available with Adobe Reader 5.0).

■ JPEG is a format for pixel images. Thismeans that it is easily displayable in any browserwithout
requiring plugins. However, it has a limited printing quality.

The chart library in principle is a self-containing library, packaged into the cis.jar. The result can
be flexibly used inside Application Designer.

Special Development Topics74

Creating Statistical Charts

Class com.softwareag.cis.chart.CHARTInfo

The class CHARTInfo is the central class for creating charts. See the Java API documentation. The
infomation below will only provide an example of how to use this library.

Creating a Simple Chart

The following chart will be created:

Let us take a look at the Java program that creates the chart:

private void renderChart()
{

CHARTInfo chart = buildChart();
String svg = chart.getSVGBarChart();

}
private CHARTInfo buildChart()
{

// CHARTInfo chart = new CHARTInfo("300","300"); // width/height
// set descriptions

75Special Development Topics

Creating Statistical Charts

chart.setXAxisDescription("Region","#000000");
chart.setYAxisDescription("Month","#000000");
// Define x-axis
chart.addXAxisScale("North");
chart.addXAxisScale("Central");
chart.addXAxisScale("South");
// Define "value lines"
chart.addDataDescription("January","#FF0000");
chart.addDataDescription("February","#00FF00");
// Define values
chart.addData("North","January",100);
chart.addData("Central","January",200);
chart.addData("South","January",300);
chart.addData("North","February",300);
chart.addData("Central","February",200);
chart.addData("South","February",100);
return chart;

}

The program is split into two methods: one method (buildChart) fills a CHARTInfo object with
data. The other method (renderChart) takes the result and triggers the output of the SVG inform-
ation.

First have a look at the buildChart()method:

■ A CHARTInfo object is intialized.
■ The names of x- and y-axis are defined.
■ The scale of the x-axis is defined.
■ Value lines are defined - each value line represents one set of values that forms one line.
■ Data is passed into the CHARTInfo object.

At the end, the chart information is logically filled.

The rendering is triggered at the point of time when accessing the CHARTInfo's getSVG*() or
getJPEG*()methods. This is done in the example's renderChart()method. For each type of
graphic, you have a different method.

Examples:

■ getSVGBarChart()

Special Development Topics76

Creating Statistical Charts

■ getSVG3DBarChart()

■ getSVGLineChart()

77Special Development Topics

Creating Statistical Charts

■ getSVGBarStackedChart()

■ getSVGPointChart()

The SVG methods return an SVG string. There are corresponding other methods that return a
JPEG file.

Setting the Scale of the y-Axis

If the scale of the y-axis is not specified explicitly, the scale will be calculated automatically:

■ In case of only positive data values, the bottom of the scale will be "0". The top will be the max-
imumdata value that is found. Between "0" and themaximum value, some interim scale figures
will be added that are clean decimal figures.

■ In case of both positive and negative values, the bottom of the scale will be the minimum value.

You can also set the scale on your own.

Special Development Topics78

Creating Statistical Charts

To do so, use the following method:

chart.setYAxisDimension(90,350);

The systemwill still try to find optimal interim scale values. However, you also can set the y-scale
completely on your own:

79Special Development Topics

Creating Statistical Charts

The code for doing so is:

chart.addYAxisScale(95,"#FF0000");
chart.addYAxisScale(175,"#00FF00");

Special Development Topics80

Creating Statistical Charts

15 Embedding Statistical Charts into Reports

■ Creating an SVG Graphic and Embedding it into a Report ... 82
■ Creating a JPEG Graphic and Embedding it into a Report ... 83
■ Pay Attention when Sizing your Graphic ... 84

81

The chart library is not bound to the reporting functions, but can of course be used there in a
simple way. You can produce charts and directly embed them into your report. The REPORTInfo
class hides the internal complexity that is involved in doing this.

Creating an SVG Graphic and Embedding it into a Report

Have a look at the following code:

private void renderChart()
{

// headline in front of chart
m_report.addText("Chart Demo");
CHARTInfo chart = buildChart();
m_report.addVerticalDistance("10");
String svg = chart.getSVGBarChart();
m_report.addSVGsource(svg,"300", // width
"300", // height
"0"); // indent

}
private CHARTInfo buildChart()
{

// CHARTInfo chart = new CHARTInfo("300","300"); // width/height
// set descriptions
chart.setXAxisDescription("Region","#000000");
chart.setYAxisDescription("Month","#000000");
// Define x-axis
chart.addXAxisScale("North");
chart.addXAxisScale("Central");
chart.addXAxisScale("South");
// Define "value lines"
chart.addDataDescription("January","#FF0000");
chart.addDataDescription("February","#00FF00");
// Define values
chart.addData("North","January",100);
chart.addData("Central","January",200);
chart.addData("South","January",300);
chart.addData("North","February",300);
chart.addData("Central","February",200);
chart.addData("South","February",100);
return chart;

}

It creates an SVG graphic by using CHARTInfo and directly places the SVG graphic into a report.
The output looks as follows:

Special Development Topics82

Embedding Statistical Charts into Reports

Creating a JPEG Graphic and Embedding it into a Report

Nearly the same code is required for creating the graphic as an JPEG file:

private void renderChart()
{

...
String svg = chart.getSVGBarChart();
byte[] jpegBytes = chart.transformChartToGraphic(svg,CHARTInfo.CREATEJPEGIMAGE);
m_report.addJPEGsource(jpegBytes);
...

}

private CHARTInfo buildChart()
{

...

...

...
}

By using the transformChartToGraphic()method, you can translate generated SVG into various
file formats (JPEG, PNG, TIFF).

83Special Development Topics

Embedding Statistical Charts into Reports

Pay Attention when Sizing your Graphic

You may already have recognized that in the previous examples the CHARTInfo object was ini-
tialised in the following way:

CHARTInfo chart = new CHARTInfo("300","300");

On the other hand, when placing the generated SVG into the report output, again the size was
passed:

m_report.addSVGsource(svg,"300", // width
"300", // height
"0"); // indent

Make sure that both sizes are the same.

When using SVG for reporting, you do not pass sizes like "4 cm" but you pass pixel values. Pixel
values are transferred into metric sizes within a calculation factor. You can change the calculation
factor by using the method REPORTInfo.setFactorForTransformPixel2PDF(...).

Special Development Topics84

Embedding Statistical Charts into Reports

16 Using the Special Chart Control QUADRANTPLOT

■ Simple Example .. 86
■ Properties .. 89

85

The QUADRANTPLOT control represents an extension to the normal SVG chart. It allows you to
divide the displayed chart into quadrants and to react on clicks.

Simple Example

The XML layout definition is:

<pagebody takefullheight="true">
<itr takefullwidth="true" valign="middle">
<quadrantplot quadrantplotprop="drawArea">
</quadrantplot>
</itr>

</pagebody>

The Java code of the adapter is:

Special Development Topics86

Using the Special Chart Control QUADRANTPLOT

public class QuadrantPlotAdapter
extends Adapter
implements IQUADRANTPLOTListener
// Interface for the click event of the QUADRANTPLOTInfo.

{
QUADRANTPLOTInfo m_drawArea = new QUADRANTPLOTInfo(this);
public QUADRANTPLOTInfo getDrawArea() { return m_drawArea; }
public void setDrawArea(QUADRANTPLOTInfo value) { m_drawArea = value; }

/** Interface IQUADRANTPLOTListener
* Method is call after a click in a quadrant with an ID.

* The ID is passed as argument. */
public void reactOnClick(String id)
{

outputMessage (MT_SUCCESS,"Quadrant "+ id + " was clicked!");
}

public void initData()
{
// set x axis quadrants description
String[] xAxisValues = new String[]
{
"decreased", "standard", "increased", "highly increased", "none"
};

// set y axis quadrants description
String[] yAxisValues = new String[]
{
"low", "mid", "high"
};

m_drawArea.clearDrawAreaData();
m_drawArea.rotateXAxisScaleText(-0,0);
m_drawArea.setLeftYAxisDistance(400);
m_drawArea.printFrameAround(true);

// set x axis description
m_drawArea.setXAxisDescription("Risk","black", 18, 250);
m_drawArea.setYAxisDescription("Occurrences","black", 18, 250);

m_drawArea.setXAxis(xAxisValues);
m_drawArea.setYAxis(yAxisValues);

// added quadrants
m_drawArea.addQuadrantInfo(0, 0, "white", "area_0_0");
m_drawArea.addQuadrantInfo(0, 1, "white", "area_0_1");
m_drawArea.addQuadrantInfo(0, 2, "white", "area_0_2");

m_drawArea.addQuadrantInfo(1, 0, "green", "area_1_0");
m_drawArea.addQuadrantInfo(1, 1, "green", "area_1_1");
m_drawArea.addQuadrantInfo(1, 2, "yellow", "area_1_2");

87Special Development Topics

Using the Special Chart Control QUADRANTPLOT

m_drawArea.addQuadrantInfo(2, 0, "green", "area_2_0");
m_drawArea.addQuadrantInfo(2, 1, "yellow", "area_2_1");
m_drawArea.addQuadrantInfo(2, 2, "red", "area_2_2");

m_drawArea.addQuadrantInfo(3, 0, "yellow", "area_3_0");
m_drawArea.addQuadrantInfo(3, 1, "red", "area_3_1");
m_drawArea.addQuadrantInfo(3, 2, "red", "area_3_2");

m_drawArea.addQuadrantInfo(4, 0, "black", "area_4_0");
m_drawArea.addQuadrantInfo(4, 1, "black", "area_4_1");
m_drawArea.addQuadrantInfo(4, 2, "black", "area_4_2");

// added values
m_drawArea.addPlotData(0.5, 1.5, "X", 10, "black");
m_drawArea.addPlotData(0.75, 1.25, "X", 10, "black");

m_drawArea.addPlotData(1.5, 0.1, "X", 10, "black");
m_drawArea.addPlotData(1.5, 0.8, "X", 10, "black");

m_drawArea.addPlotData(1.5, 1.3, "X", 10, "black");
m_drawArea.addPlotData(1.4, 1.5, "X", 10, "black");
m_drawArea.addPlotData(1.6, 1.5, "X", 10, "black");

m_drawArea.addPlotData(1.3, 2.1, "X", 10, "black");
m_drawArea.addPlotData(1.7, 2.1, "X", 10, "black");
m_drawArea.addPlotData(1.5, 2.5, "X", 10, "black");
m_drawArea.addPlotData(1.8, 2.7, "X", 10, "black");

m_drawArea.addPlotData(2.5, 0.8, "X", 10, "black");

m_drawArea.addPlotData(2.7, 1.8, "X", 10, "black");

m_drawArea.addPlotData(2.2, 2.1, "X", 10, "black");
m_drawArea.addPlotData(2.6, 2.8, "X", 10, "black");

m_drawArea.addPlotData(3.5, 0.75, "X", 10, "black");

m_drawArea.addPlotData(4.5, 1.5, "X", 10, "white");

// get the svg plot
m_drawArea.setSVGOutputWidth(300);
}

/** initialisation - called when creating this instance*/
public void init()
{

initData();
}

}

Special Development Topics88

Using the Special Chart Control QUADRANTPLOT

Properties

Basic

ObligatoryName of the adapter property that represents the control on server
side.

quadrantplotprop

Return type must be "QUADRANTPLOTInfo".

Pay attention: The QUADRANTPLOTInfo Constructor needs a valid
Adapter i.e.

QUADRANTPLOTInfo m_qpi = new QUADRANTPLOTInfo(this) ;

100OptionalHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control will
be renderedwith its default height. If the control is a container control

250(containing) other controls then the height of the control will follow
the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if the 400

50%parent element of the control properly defines a height this control
can reference. If you specify this control to have a height of "50%"

100%then the parent element (e.g. an ITR row) may itself define a height
of "100%". If the parent element does not specify a width then the
rendering result may not represent what you expect.

89Special Development Topics

Using the Special Chart Control QUADRANTPLOT

90

17 Creating Simple Charts Quickly Using the PIVOT Control

■ Simple Example .. 92
■ Properties .. 95

91

The PIVOT control offers an easy way to create interactive pivot tables in a short period of time.
All that is required is passing an array of data to the PivotChartInfo object which is the server-
side representation of the PIVOT control.

Simple Example

The XML layout definition is:

<pagebody>
<rowarea name="Simple Pivot Chart Demo">

<pivot pivotprop="pivot" height="390" showpdf="true">
</pivot>

<rowarea>
</pagebody>

The Java code of the adapter is:

Special Development Topics92

Creating Simple Charts Quickly Using the PIVOT Control

PIVOTInfo m_pivot = new PIVOTInfo(this);
public PIVOTInfo getPivot() { return m_pivot; }
public void setPivot(PIVOTInfo value) { m_pivot = value; }

/** initialization - called when creating this instance */
public void init()
{

PIVOTDataArray pda = new PIVOTDataArray
(

new String[] // Column Headers
{
"Country","Product","Region","Revenue","Pieces"
},

new String[][] // Column Content
{
{ "D","Laptop","WHOLE","100","10" },
{ "D","PC","WHOLE","110","20" },
{ "US", "Laptop","CA","120","10" },
{ "US", "Laptop","MI","130","40" },
{ "US", "Laptop","NY","100","33" },
{ "US", "Laptop","OR","110","45" },
{ "US","PC","CA","120","31" },
{ "US","PC","MI","130","32" },
{ "US","PC","NY","78","25" },
{ "US","PC","OR","115","43" }
}

);

pda.setGroupColumns(new int[] {0,1,2});
pda.setDataColumns(new int[] {3, 4});

m_pivot.setComputedValueType(m_pivot.COMPUTE_SUM);
m_pivot.setPivotData(pda);

}

The PIVOT control is represented by an PIVOTInfo object on the adapter side. When you look at
the constructor, you will see that the PIVOInfo constructor needs a valid adapter, that is new
PIVOTInfo(this).

To generate a simple pivot table, you just need to fill a PIVOTDataArray objectwith two string arrays.
The first string arry contains the column headers (that is "Country", "Product", "Region", "Revenue"
and "Pieces"). The second string array holds the contents of the rows.

In this simple example, the third row contains the following data: "US", "Laptop", "CA", "120" and
"10".

The server needs to know which columns contain data that are relevant for sorting and which
columns only contain descriptional information that can be used for grouping the columns.

In this example, the first three columns are the so-called “group columns” which only contain
descriptional information. You define these three group columns as follows:

93Special Development Topics

Creating Simple Charts Quickly Using the PIVOT Control

pda.setGroupColumns(new int[]{0,1,2});

You define the columns which contain the data in a similar way:

pda.setDataColumns(new int[] {3, 4});

There are differentways of sorting or grouping the PIVOT table. The default value is COMPUTE_SUM.
You can change this value dynamically using the setComputedValueType()method. Valid values
for this method are:

ValueConstant

0COMPUTE_SUM

1COMPUTE_AVERAGE

2COMPUTE_MAX

3COMPUTE_MIN

4COMPUTE_COUNT

You can change the detail of the corresponding level of each group by simply clicking in the pivot
table:

The first row now just shows the sum of data group "D"; and within the data group "US", the
"Laptop" group also just shows the sum.

Special Development Topics94

Creating Simple Charts Quickly Using the PIVOT Control

Properties

Basic

ObligatoryName of adapter property that represents the pivot report on
server side. Must be of type "PIVOTInfo".

pivotprop

100ObligatoryHeight of the control.height

150There are three possibilities to define the height:

200(A) You do not define a height at all. As consequence the control
will be rendered with its default height. If the control is a

250container control (containing) other controls then the height of
the control will follow the height of its content.

300
(B) Pixel sizing: just input a number value (e.g. "20").

250
(C) Percentage sizing: input a percantage value (e.g. "50%"). Pay
attention: percentage sizing will only bring up correct results if 400

50%the parent element of the control properly defines a height this
control can reference. If you specify this control to have a height

100%of 50% then the parent element (e.g. an ITR-row)may itself define
a height of "100%". If the parent element does not specify awidth
then the rendering result may not represent what you expect.

trueOptionalIf set to "true" then a PDF icon is rendered in the right top corner
of the control. When the user clicks on the icon then the report

showpdf

falseis automatically rendered as PDF - and the result will show up
in a popup window.

Pay attention: if setting this property to "true" then you also have
to choose a special constructor when creating the REPORTInfo
instance on server side, in which the instance of the model is
passed as argument.

Example:

public class XYZAdapter extends Adapter

{

REPORTInfo m_report = new REPORTInfo(this)

...

}

95Special Development Topics

Creating Simple Charts Quickly Using the PIVOT Control

background-color:
#FF0000

OptionalCSS style definition that is directly passed into this control.

With the style you can individually influence the rendering of
the control. You can specify any style sheet expressions.
Examples are:

areastyle

color: #0000FF

font-weight: bold
border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and separating them
with a semicolon.

Sometimes it is useful to have a look into the generated HTML
code in order to knowwhere direct style definitions are applied.
Press right mouse-button in your browser and select the "View
source" or "View frame's source" function.

Special Development Topics96

Creating Simple Charts Quickly Using the PIVOT Control

18 Best Practice Hints

The reporting functions you got to know in this part enable you to do reporting output including
interactive grids, texts and graphics. Before directly using them inside your programs, you should
think about setting up a certain abstraction layer on top of the functions that has a higher degree
of semantic relationship with your application.

What do we mean? Let us explain by example:

Imagine you often have the situation of showing grids of data together with a certain graphic. In
this case, you could think about writing a “report renderer” that rceives an array of values and
that produces grid and graphics in one step. It internally uses the APIs of Application Designer
reporting:

Maybe you even can embed some data collection functions into your “report renderer” functions
that pick certain data from a data source and immediately transfer this data into a reporting output.

97

In otherwords: the ApplicationDesigner functions for reporting are technical rendering functions.
Not less - and not more!

Special Development Topics98

Best Practice Hints

III Non-Visual Controls and Hot Keys

This part describes some controls that do not have any visual effect to your screen, but provide
some client functions to be applied to your page.

The information provided in this part is organized under the following headings:

TIMER

Extended Hot Key Management

99

100

19 TIMER

■ Example .. 102
■ Properties .. 104

101

With a timer, you can regularly trigger a defined method invoked by the client. For example, you
can use a timer to regularly update information to be displayed inside your page.

The timer tag is accessible as a valid subnode inside the page tag.

Specify either the interval or the intervalprop property in order to set the interval. In case of
using a property for dynamically setting the interval, note the following:

■ You can change the interval time at any time.
■ You can stop the timer by setting the interval time to 0.

Example

The following screen displays a time stamp of the server. It is refreshed depending on the interval
field. Increase/decrease the interval time by choosing the corresponding buttons.

The XML layout definition is:

<page model="DemoTimerAdapter">
 <titlebar name="Demo Timer">
 </titlebar>
 <header withdistance="false">
 <button name="~~Increment" method="incrementTimer">
 </button>
 <button name="~~Decrement" method="decrementTimer">
 </button>
 <button name="~~Stop" method="stopTimer">
 </button>
 </header>

Special Development Topics102

TIMER

 <pagebody>
 <rowarea name="Time">
 <itr>
 <label name="Interval (ms)" width="100" asplaintext="true">
 </label>
 <field valueprop="interval" length="5" displayonly="true" ↩
datatype="int">
 </field>
 </itr>
 <itr>
 <label name="Server time" width="100" asplaintext="true">
 </label>
 <field valueprop="serverTime" length="50" displayonly="true">
 </field>
 </itr>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
 <timer intervalprop="interval">

</timer>
</page>

In this example, the timer tag does not call a defined method but refreshes the screen. The timer
interval is retrieved by the property interval of the adapter object.

The Java code of the adapter is:

// This class is a generated one.

import java.util.Date;
import com.softwareag.cis.server.Adapter;

public class DemoTimerAdapter
extends Adapter

{
// property >interval<
int m_interval=1000;
public int getInterval() { return m_interval; }
public void setInterval(int value) { m_interval = value; }

// property >serverTime<
String m_serverTime;
public String getServerTime()
{

Date d = new Date();
return d.toString();

}

public void decrementTimer() { m_interval -= 500; }
public void incrementTimer() { m_interval += 500; }

103Special Development Topics

TIMER

public void stopTimer() { m_interval = 0; }
}

It just contains the property serverTime, returning the current time and the property interval to
provide the interval duration, controlling the timer. The stopTimermethod sets the interval dur-
ation to "0".

Tip: Do not update the page too frequently. Every update means a roundtrip to the server.

Properties

Basic

Sometimes obligatoryDuration inmilliseconds the timerwaits between calling the adapter
method defined in the METHOD property.

interval

Use this property to "hard code" the duration - or use
INTERVALPROP to define the duration by an adapter property.

Sometimes obligatoryName of adapter property that defines the timer interval's duration.intervalprop

The adapter property must be of type "int" or "Integer" ("long"/
"Long"/ "String"). If "0" is passed then the timer is stopped.

ObligatoryName of adapter method that is called by the timer.method

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Special Development Topics104

TIMER

20 Extended Hot Key Management

■ Direct Hot Key Definitions with Certain Controls ... 106
■ Hot Key Definitions for Certain Controls ... 106

105

Extended hot key management provides the following features:

■ Possibility to define hot keys with certain controls.
■ Possibility to define language dependent hot keys.

Direct Hot Key Definitions with Certain Controls

Some controls allow to directly specify hot keyswithin the text that is displayed inside the control.
The controls that currently support this feature are:

■ BUTTON
■ MENU
■ ROWTABAREA

Example: If you specify the button text to be "~~Stop", the button will look like this:

The text may both be directly maintained in the control (name property) or may come from the
multi language management (textid property).

At the time, the hot key CTRL+ALT+S will be added to the page. The definition of hot keys in the
texts of MENU controls or ROWTABAREA controls is done in the same way.

Caution: Application Designer does not check if hot keys are defined twice in a page.

Why use CTRL+ALT as a default way to trigger the hot keys? This is because most of the simple ALT

keys are already occupied by the browser.

Hot Key Definitions for Certain Controls

The controls PAGE, FIELD and ROWTABLEAREA2 support the property hotkeys.

The hotkeys property defines the active hot keys for the corresponding control. This means that
you may have hot keys that are only valid inside a certain grid (ROWTABLEAREA2 control) or
even inside a single FIELD, but are not valid inside the whole page (PAGE control).

Have a look at the following demo:

Special Development Topics106

Extended Hot Key Management

If the user presses CTRL+ALT+A inside the grid, the hot key ismanaged by the grid. If the user presses
the same key outside the grid, the hot key is processed by a corresponding definition on page
level. The XML layout looks as follows:

107Special Development Topics

Extended Hot Key Management

<page model="com.softwareag.cis.test40.GridHotkeysAdapter" ↩
translationreference="40_gridhotkeys"
 hotkeys="ctrl-alt-65;onCtrlAltAPage">
...
...
 <rowtablearea2 griddataprop="grid" rowcount="12" width="100%" ↩
firstrowcolwidths="true"
 hotkeys="ctrl-alt-$KEYCODE_A;onCtrlAltA">
...
...

The hotkeys property on PAGE, FIELD or ROWTABLEAREA2 is a semicolon-separated list con-
taining the hot key itself and the method it is calling. There can be multiple hot key definitions for
the same control. When maintaining this property, use the special dialog in the Layout Painter
that appears for the hotkeys property. For further information, seeDefining Hot Keys in theDevel-
opment Workplace documentation.

You can either specify the key code of the hot key or a text ID that is to be translated by the multi
language management.

Special Development Topics108

Extended Hot Key Management

IV Binding between Page and Adapter

One of the basic concepts of the Application Designer environment is to provide a simple mech-
anism for transferring data between the pagewhich runs inside the browser and the adapter object
which runs inside Application Designer. The page renders content, while the adapter provides
content.

Between the page and the adapter, there is a binding which is defined during development time:

■ A page is bound to an adapter class by the PAGE tag.
■ Controls are bound to properties and methods of the adapter class.

At runtime, this binding definition is used inside Application Designer for accessing the adapter
objects to pull and push data.

The information provided in this part is organized under the following headings:

Phases of Adapter Processing

Class Binding

Types of Property Binding

Java Bean Property Binding

Dynamic Access Property Binding

XML Property Binding

Getting Information about Access Paths

Exception Management Inside an Adapter Object

Additional Interfaces

109

110

21 Phases of Adapter Processing

■ SET/INVOKE/GET Phase - The Default Phases .. 112
■ INIT Phase when Adapter is Constructed ... 113
■ DESTROY Phase when Adapter is Deregistered .. 114

111

SET/INVOKE/GET Phase - The Default Phases

An adapter object is the logical representation of a page. The page runs inside the GUI client, the
adapter runs inside the Java server.

The user changes information on the page (e.g. inputs some values into field controls) and operates
some functions (e.g. chooses a button). Every time a function is invoked, a request is initiated from
the client. The request contains all data thatwas changed on the client, and it contains the command
(e.g. the method to be called; sometimes there is no explicit command but the request just is a
“data transfer request”, e.g. when having defined FLUSH="server"with a FIELD control).

The request is processed in three phases:

■ (activate)
■ SET phase
■ INVOKE phase
■ GET phase
■ (passivate)

During the SET phase, Application Designer passes all changed property values into the property
representations of the server side adapter object. In the following INVOKE phase, the method is
called that is associated with the request. In the GET phase, Application Designer checks all
property values if they have changed. If a change happened (i.e. during the INVOKE phase, some
property valueswere changed), then the changes are communicated back as response to the client.

The SET and GET phases have dedicated methods which are called inside the adapter in order to
signalize the start and end of the phases:

■ SET phase:

reactOnDataTransferStart();
set...();
set...();
set...();
reactOnDataTransferEnd();

■ GET phase:

Special Development Topics112

Phases of Adapter Processing

reactOnDataCollectionStart();
get...();
get...();
get...();
reactOnDataCollectionEnd();

You can use the methods for diverse purposes:

■ reactOnDataTransferStart()
You may want to initialize certain internal data that needs to be initialized for each request
processing.

■ reactOnDataTransferEnd()
You may want to check which properties actually have changed and which application checks
have to be invoked.

■ reactOnDataCollectionStart()
You may want to build up some interim objects for complex data structures that allow a faster
response for the following get calls.

■ reactOnDataCollectionEnd()
You may want to set certain data to initial values - in case they were changed during request
processing.

INIT Phase when Adapter is Constructed

The INIT phase is processed only once per adapter instance - at the point of time when it is con-
structed.

The INIT phase is internally processed in two steps:

■ Creation of the adapter object via the new operator (without any parameters).
■ init()

Application Designer first creates an instance of an adapter object and then calls the init()
method of the object.

Important: Many functions inside your adapter class (extended fromApplication Designer's
Adapter class) are only available after having constructed the object. Application Designer
first creates the instance of the object and then internally registers the object inside its internal
data structures (session management, etc.). The init()method is called after the internal
registration. All functions that require the adapter object to be correctly registered will fail
when being called inside the constructor, but will not fail if called in the init()method.

Best practice: use the init()method as constructor for an adapter object.

113Special Development Topics

Phases of Adapter Processing

DESTROY Phase when Adapter is Deregistered

The DESTROY phase is processed only once per adapter instance - when Application Designer
has internally deregistered the adapter instance:

The DESTROY phase consists of one method that is called inside the adapter:

■ destroy()

Application Designer's sessionmanagement deregisters all adapters when a subsession or session
is closed. All associated adapters are internally deregistered so that they are available for garbage
collection. In addition, each instance receives a destroy signal so that it can internally pass back
resources that it used.

Special Development Topics114

Phases of Adapter Processing

22 Class Binding

■ Direct Class Binding ... 116
■ Generic Class Binding .. 117

115

For each page, there must be one adapter class. The name of the adapter class is given inside the
PAGE tag of a page by the corresponding model property. Several page definitions can point to
one adapter class, for example, when you have several page variants to display the same logical
content.

The Application Designer runtime can create an adapter instance of a page in two ways:

1. Direct Class Binding
The Application Designer runtime directly tries to create an adapter instance from the name in
the model property of the PAGE tag of the page.

2. Generic Class Binding
If the direct class binding does not succeed, the Application Designer runtime tries to create a
generic adapter instance that has to be made accessible by the application.

Option 1 is the typical one. Option 2 is a solution if you require an adapter to be used very gener-
ically inside your framework.

Direct Class Binding

The following page definition forces the Application Designer runtime to look for a Test1Adapter
class inside the package com.softwareag.cis.test:

<page model="com.softwareag.cis.test.Test1Adapter">
...
...
...

</page>

The class itself is derived typically from the class com.softwareag.cis.server.Adapter:

package com.softwareag.cis.test;

import com.softwareag.cis.server.Adapter;

public class Test1Adapter extends Adapter
{

// --
// constructor - without parameters
// --

public Test1Adapter()
{
}

// --
// public access

Special Development Topics116

Class Binding

// --

/** The init message is called when an object is created and all
* runtime aspects are correctly set inside the adapter. */
public void init()
{

...

...
}

}

The default constructor is required (without any parameters).

Generic Class Binding

If the runtime does not find the class, it tries to find a generic one. The name of the generic class
is created in the following way:

■ The package name is taken from the model property of the PAGE tag of your page definition.
■ The class name is "GenericAdapter".

Example: if you bind a page to the class com.softwareag.cis.test.Test2Adapter and the runtime
system cannot locate the class Test2Adapter, the system tries to load the class GenericAdapter in
the same package as the class that could not be found:

<page model="com.softwareag.cis.test.Test2Adapter">
...
...
...

</page>

The generic adapter is just a normal adapter which typically supports the dynamic binding of
properties (see below).

package com.softwareag.cis.test;

import com.softwareag.cis.server.Adapter;

public class GenericAdapter extends Adapter
{

/** */
public void init()
{

System.out.println("My original class name is " + this.m_modelName);
}

}

117Special Development Topics

Class Binding

Each adapter object can access the m_modelNamemember. This member is set after the initialisation
of the object. It holds the original adapter name to which the page refers.

Special Development Topics118

Class Binding

23 Types of Property Binding

There are different types of binding techniques that are provided:

■ Java Bean binding - the adapter provides set/get methods.
■ Dynamic access binding - the adapter provides the implementation of a generic interface to
access its data.

■ XML access binding - the property values are kept within XML files, together with the page
layout.

119

120

24 Java Bean Property Binding

■ Class Binding .. 122
■ Method Binding ... 122
■ Property Binding .. 123
■ Access Path Restrictions ... 126

121

Class Binding

The page binding is defined in the PAGE tag of your page definition. The PAGE tag points to a
class supporting the interface com.softwareag.cis.server.IModel. There is a class
com.softwareag.cis.server.Adapterwhich implements this interface - which should be used
to build adapter classes as subclasses of Adapter.

Example:

<page model="com.softwareag.cis.demo.DemoAdapter" ...>
...
...
...

</page>

The above definition points to a class which looks as follows:

package com.softwareag.cis.demo;

import com.softwareag.cis.server.*;

public class DemoAdapter
extends Adapter

{
// constructor - either no constructor or a constructor
// without any parameters
public DemoAdapter()
{
}
...
...

}

Note that the adapter class has at least a default constructor (without any parameters).

Method Binding

Controls triggering a method inside the adapter are bound to a method name of the adapter. The
method implementation itself must be a method without any parameters.

Example:

Special Development Topics122

Java Bean Property Binding

<button name="Save" method="doSave" ...>
</button>

The above button definition points to a method inside the adapter class which looks as follows:

public void doSave()
{

...

...
}

Property Binding

Controls presenting or manipulating data of the adapter are bound to properties of the adapter.
There is a flexible concept available that makes it possible for you to use the following:

■ Simple Properties which are Provided Directly by the Adapter
■ Simple Properties which are Provided by Embedded Objects of the Adapter
■ Array Properties which are Provided Directly by the Adapter
■ Array Properties which are Provided by Embedded Objects of the Adapter

Simple Properties which are Provided Directly by the Adapter

This is the easiest way of binding: the property name which you specify in the definition of the
control is provided directly by the adapter object - by a corresponding set and get method. It de-
pends on the control whether you have to provide both set and get methods or just one of them.

Following the Java Bean conventions, the first character of the property name is written as a cap-
ital letter inside the corresponding set or get method.

The get method must return a value which is either a simple data type or a “simple” object. A list
of supported return values is shown in Appendix C - Data Types to be Used by Adapter Properties.
The set methodmust offer one parameter to update its value at runtime. The parameter typemust
either be a simple data type or one of the classes that are listed in appendix C.

Example:

<field valueprop="name" ...></field>
<field valueprop="age" ...></field>
<field valueprop="weight" ...></field>
<field valueprop="birthday" ...></field>

The above field definitions are bound to the following set/get methods:

123Special Development Topics

Java Bean Property Binding

public void setName(String value) { ... }
public String getName() { ... }

public void setAge(int value) { ... }
public String getAge() { ... }

public void setWeight(float value) { ... }
public float getWeight() { ... }

public void setBirthday(Cdate value) { ... }
public Cdate getBirthday() { ... }

The correct property name starts with a lowercase letter, because the first letter is always converted
to lowercase. Example:

<field valueprop="cAPITAL" ...></field>

The above field definition.is bound to the following set/get method:

public void setCAPITAL(String value) { ... }
public String getCAPITAL() { ... }

Simple Properties which are Provided by Embedded Objects of the Adapter

Properties can also be provided by an embedded object of the adapter. The embedded object itself
must be accessible by a corresponding get method.

Example:

<field valueprop="address.street"></field>

The above field definition points to a value which is provided in the following way:

public class XYZAdapter
extends com.softwareag.cis.server.Adapter

{
// access in the adapter to the address object
public Address getAddress() { ... }

}

public class Address
{

public String getStreet() { ... }
public void setStreet(String value) { ... }

}

You can build any chaining of properties you desire.

Special Development Topics124

Java Bean Property Binding

As shown in the example, embedded objects need not be adapter objects. Only the root object is
required to be an adapter.

Array Properties which are Provided Directly by the Adapter

You can use array properties and can access them directly within your binding definitions. An
array property always returns an array of objects, each object providing either simple properties
or array properties. The type of the object array is not relevant for theApplicationDesigner runtime.
If you just return "Object[]" as a result of the method, this is sufficient.

Example:

<field valueprop="addresses[0].street" ...></field>

The above field definition points to a property which is implemented in the following way:

public class XYZAdapter
extends com.softwareag.cis.server.Adapter

{
// access in the adapter to the address object
public Address[] getAddresses() { ... }

}

public class Address
{

public String getStreet() { ... }
public void setStreet(String value) { ... }

}

Note that the name used inside the control definition for binding (addresses[0].street in the
our example) can either be entered manually or is implicitly created by some controls. Example:
in a TEXTGRID control, specify an array property for the entire control and a simple property inside
the COLUMN definition:

<textgrid arrayprop="addresses" ...>
<column property="street" ...></column>
<column property="city" ...></column>

</textgrid>

The TEXTGRID control itself uses these definitions to ask for the properties addresses[0].street,
addresses[0].city, addresses[1].street, addresses[1].city etc. at runtime.

Note that it is not possible to access an array of simple objects directly. It is not possible to define
a field in the following way

125Special Development Topics

Java Bean Property Binding

<field valueprop="streets[0]"></field>

having a method:

public String[] getStreets() { ... }

You always have to go through an array of objects where each element itself provides access to
simple properties.

Array Properties which are Provided by Embedded Objects of the Adapter

You can use any combination of Simple Properties which are Provided by EmbeddedObjects of the Adapter
and Array Properties which are Provided Directly by the Adapter.

Example: define access to array properties in the following way:

<field valueprop="person.addresses[0].street" ...></field>

<textgrid arrayprop="person.addresses" ...>
<column property="street" ...></column>
<column property="city" ...></column>

</textgrid>

Access Path Restrictions

At runtime, Application Designer transfers the data from the adapter to the client. For accessing
the data, it uses the following strategy:

■ It asks the adapter object for all properties. This means, it calls all get methods that are defined
as public methods.

■ If the get method returns a simple value, is marked to be transferred. (Whether it is really
transferred, depends also on the delta management between the client and the server.)

■ If the get method returns an object (e.g. an address object as used in the previous sections) or
an array of objects, these objects are used for further drill down.

This mechanism is flexible on the one side, but dangerous on the other side: the Application De-
signer runtime will load all objects by following up the get methods.

Consequently, there is a certain access path restriction inside theApplicationDesigner environment:
if you generate a page (either by the Layout Painter or by the logical interfaces to the HTML gen-
erator) an access path restriction file is generated in addition. The HTML generator parses all tags
of a page; the controls themselves are bound to properties. This information is collected and
written to a file.

Special Development Topics126

Java Bean Property Binding

This file is stored in the directory /accesspath below the project directory. Please have a look at the
files generated implicitly with your pages: the file contains a list of all access paths that are valid
to be followed by runtime.

The name of the access path file is the same as the name of the page, but has the extension .access.
Be aware of the fact that this access path file is inevitably important to avoid “mass loading” of
data. Therefore, it must be a part of your software deployment.

127Special Development Topics

Java Bean Property Binding

128

25 Dynamic Access Property Binding

■ Interface IDynamicAccess ... 130
■ Example .. 130

129

Dynamic access binding is an additional binding technique that can be used together with Java
Bean binding as described in the previous section. Dynamic access binding does not require an
explicit definition of a set/get method for each property but is able to access the properties by
generic data access functions.

Adapter objects, aswell as embedded objects that are accessed inside the access path,may optionally
support the interface IDynamicAccess. In this interface, you declare that there are additional
properties to be accessed by generic access methods.

Interface IDynamicAccess

The interface definition looks as follows:

public interface IDynamicAccess
{

public String[] findDynamicAccessProperties();
public Class getClassForProperty(String property);
public void setPropertyValue(String propertyName, Object value);
public Object getPropertyValue(String propertyName);
public void invokeMethod(String methodName);

}

It informs which dynamic properties are supported. In addition, you have to specify which class
of a property it is. You can use any of the classes that are listed in Appendix C - Data Types to be
Used by Adapter Properties for simple-value properties - and any class you desire for embedded
object properties that you follow inside your access path. If you return a null value as a result of
the getClassForProperty()method, the runtime returns the value as a String object.

Besides, you have to implement the generic set and get functions for property access.

There is a generic method invoked, e.g. when the user chooses a button in the page bound to a
dynamically called method.

Example

The following example shows an adapter object that has twoBean properties (firstName, lastName)
and three dynamic properties (street, city, birthday):

Special Development Topics130

Dynamic Access Property Binding

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.util.CDate;

public class DynamicAccess_Adapter
extends Adapter
implements IDynamicAccess

{
String m_firstName;
String m_lastName;
String m_street;
String m_city;
CDate m_birthday;

public String[] findDynamicAccessProperties()
{

return new String[] {"street","city","birthday"};
}

public void setPropertyValue(String propertyName, Object value)
{

if (propertyName.equals("street")) m_street = (String)value;
else if (propertyName.equals("city")) m_city = (String)value;
else if (propertyName.equals("birthday")) m_birthday = (CDate)value;
else throw new Error("No property " + propertyName + " available");

}

public Object getPropertyValue(String propertyName)
{

if (propertyName.equals("street")) return m_street;
if (propertyName.equals("city")) return m_city;
if (propertyName.equals("birthday")) return m_birthday;
throw new Error("No property " + propertyName + " available");

}

public Class getClassForProperty(String propertyName)
{

if (propertyName.equals("birthday")) return CDate.class;
// default: null ==> String is assumed by runtime
return null;

}

public void invokeMethod(String methodName) {}

// --
// bean properties
// --
public void setFirstName(String value) { m_firstName = value; }
public String getFirstName() { return m_firstName; }
public void setLastName(String value) { m_lastName = value; }

131Special Development Topics

Dynamic Access Property Binding

public String getLastName() { return m_lastName; }
}

Specifying a layout definition, there is no difference between the dynamic access properties and
the bean properties.

The layout definition for the above page looks as follows:

<page model="DynamicAccess_Adapter">
<titlebar name="Dynamic Access">
</titlebar>
<header withdistance="false">

<button name="Save">
</button>

</header>
<pagebody>

<rowarea name="Address Data">
<itr>

<label name="First Name" width="100">
</label>
<field valueprop="firstName" length="20">
</field>

</itr>

Special Development Topics132

Dynamic Access Property Binding

<itr>
<label name="Last Name" width="100">
</label>
<field valueprop="lastName" length="20">
</field>

</itr>
<itr>

<label name="Street" width="100">
</label>
<field valueprop="street" length="20">
</field>

</itr>
<itr>

<label name="City" width="100">
</label>
<field valueprop="city" length="20">
</field>

</itr>
<itr>

<label name="Birthday" width="100">
</label>
<field valueprop="birthday" length="20" datatype="date">
</field>

</itr>
</rowarea>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

133Special Development Topics

Dynamic Access Property Binding

134

26 XML Property Binding

Use XML property binding with the following:

■ ICONLIST control,
■ MENU control,
■ ROWTABSUBPAGES control, or
■ for any simple property.

XML property binding uses XML files to access property values. Use the prefix "XML:" to indicate
XML property binding.

<itr visibleprop="XML:isHomeAddressVisible">
...

</itr>

You see that the visibility of the row container is controlled by the XML property
isHomeAddressVisible. An XML property is bound to a property tag (name-value pair).

<property name="isHomeAddressVisible" value="true">
</property>

The overall page layout is bound to an XML data file that contains all the property tags.

<xmlproperties>
<property name="isHomeAddressVisible" value="true">
</property>
<property name="isBusinessAddressVisible" value="false">
</property>

</xmlproperties>

The XML data file contains two property tags. With the first property, isHomeAddressVisible is
set to "true"; with the second property, isBusinessAddressVisible is set to "false". At runtime,

135

you can switch between XML data files by changing the “XML data mode”. Just use the following
method in order to use the correct XML data file method:

Adapter.setXMLDataMode

Thefiles are keptwithin directory <webapp>/<project>/xmldata. EachXMLdatamode is represented
by a subdirectory. By default, the Application Designer server accesses the XML files within the
directory default.

cis
project

xmldata
default

PersonInfoAdapter.xml
fullinfo

PersonInfoAdapter.xml

Special Development Topics136

XML Property Binding

27 Getting Information about Access Paths

Sometimes you need to get detailed information about a page accessing its adapter. Or, in other
words: you want to get a detailed list of all the properties and objects which are referenced by
your page definition to the corresponding adapter object.

For this reason, there is the class CheckAccessPath in the com.softwareag.cis.server package
providing this information. The class has a getInstance()method to obtain an instance; the class
has two additional methods:

public String[] findAccessedObjects(String application,
String reference);

public String[] findAccessedProperties(String application,
String reference);

In both methods, the parameters are "application" and "reference". "application" is the application
project in which a page is defined. "reference" is the name of the page itself, without ".xml".

The findAccessedObjectsmethod returns a String array of all objects referenced in this page. An
object is referenced if the properties are not directly plugged to the adapter itself but to subobjects.
Example: if you bind a FIELD to the VALUEPROP "address.street" then "address" is the returned
name.

The findAccessedPropertiesmethod returns a String array of all properties referenced in the
page which are not complex properties, but simple value properties.

In the cisdemos project (which is part of the installation), there is a page "ShowAccessPaths" and
the corresponding class ShowAccessPathsAdapter that shows an example of how to use the
CheckAccessPathmethods. The page allows you to enter the application name and the page name,
and returns a list of referenced objects and properties:

137

In the class definition of the corresponding adapter, the code (finding the information about access
paths) looks as follows:

// --
// inner classes
// --
 public class Info
{
 // property >objects[*].name<
 // property >properties[*].name<
 String m_name;
 public String getName() { return m_name; }
 public void setName(String value) { m_name = value; }
}

// --
// property access
// --

// property >app<
String m_app = "";
public String getApp() { return m_app; }
public void setApp(String value) { m_app = value; }

// property >page<
String m_page = "";

Special Development Topics138

Getting Information about Access Paths

public String getPage() { return m_page; }
public void setPage(String value) { m_page = value; }

// array property >objects[*]<
TEXTGRIDCollection m_objects = new TEXTGRIDCollection();
public TEXTGRIDCollection getObjects() { return m_objects; }

// array property >properties[*]<
TEXTGRIDCollection m_properties = new TEXTGRIDCollection();
public TEXTGRIDCollection getProperties() { return m_properties; }

// --
// public usage
// --

/** */
public void onShowAccessPath()
{
 // check
 if (m_app.trim().length() == 0)
 {
 outputMessage(MT_ERROR,"Please specify application project");
 return;
 }
 if (m_page.trim().length() == 0)
 {
 outputMessage(MT_ERROR,"Please specify page");
 return;
 }
 // fill data
 m_properties.clear();
 m_objects.clear();
 String[] objects = ↩
CheckAccessPath.getInstance().findAccessedObjects(m_app,m_page);
 String[] properties = ↩
CheckAccessPath.getInstance().findAccessedProperties(m_app,m_page);
 for (int i=0; i<objects.length; i++)
 {
 Info info = new Info();
 info.m_name = objects[i];
 m_objects.add(info);
 }
 for (int i=0; i<properties.length; i++)
 {
 Info info = new Info();
 info.m_name = properties[i];
 m_properties.add(info);
 }
 }
}

139Special Development Topics

Getting Information about Access Paths

140

28 Exception Management Inside an Adapter Object

■ Normal Exceptions are to be Handled by the Application ... 142
■ Errors and Runtime Exceptions - The Default Behavior ... 143
■ Interrupting the Application Designer Request Processing - AdapterNotAvailableError 144
■ Errors and Runtime Exceptions - The Special Behavior ... 145

141

Application Designer binds its page processing to adapter objects providing properties and
methods - as explained in the previous sections. What happens if an error happens at runtime,
e.g. an error occurs in themethod of an adapter object that is called after the user pressed a button?

Normal Exceptions are to be Handled by the Application

The first rule is: normal exceptions (i.e. no “Errors”, no “Runtime Exceptions”) are to be handled
by the application itself.

This means: a property is provided by the corresponding set/get methods (or by an equivalent
method when using dynamic binding). The methods must not throw any exception, i.e. in their
declarations there is no "throws" element.

Example for a correct implementation:

public void setFirstName(String value)
{

...

...
}
public String getFirstName()
{

...

...
}

The following example is an incorrect implementation because application exceptions are thrown:

public void setFirstName(String value)
throws ApplException

{
...
...

}
public String getFirstName()

throws ApplException
{

...

...
}

Consequence: Application Designer passes values from the browser front end into the adapter
object, invokes certain activities inside this object and collects data from the object to pass data
changes back to the browser. Application exceptions are not relevant fromApplication Designer's
point of view - they only affect the application internally.

Special Development Topics142

Exception Management Inside an Adapter Object

Errors and Runtime Exceptions - The Default Behavior

Of course your application still can throw “Error” exceptions or “Runtime” exceptions. These are
the exceptions that need not be declared inside a method's code - but that can be thrown any time
at any place.

If Application Designer receives an error or runtime exception, Application Designer displays a
page by default in which the error information is shown.

In addition, Application Designer writes a full stack dump into its runtime log.

143Special Development Topics

Exception Management Inside an Adapter Object

Interrupting the Application Designer Request Processing - AdapterNotAvail-
ableError

Theremay be some situations - within a special environment context - that do not allow to process
the page at all. Maybe you have a page that requires a user to be logged on; if the Application
Designer request processing starts now, you may decide with the method
reactOnDataCollectionStart that you do not want to start the request since it does not make
sense at all and just causes exceptions.

The only thing you want to do in such a scenario is to “escape” to a page which helps out of the
situation. For example, if youmiss logon information, youwant to “escape” to the logon page and
return to your original page afterwards.

The Java error class AdapterNotAvailableError is provided for this reason. The following adapter
code shows an example on how to handle this error:

package com.softwareag.cis.demoapps;

...

...

public class Rescue1Adapter
extends Adapter

{
...
...
/** start of data transfer */
public void reactOnDataTransferStart()
{

super.reactOnDataTransferStart();
// fetch user and sytem info from session context
m_user = (String)findSessionContext().lookup("rescueexample/user",false);

m_system = (String)findSessionContext().lookup("rescueexample/system",false);
// if not logged on ==> switch to rescue2 page
if (m_user == null ||

m_system == null)
{

// prepare Rescue2 page
Rescue2Adapter r2a = (Rescue2Adapter)findAdapter(Rescue2Adapter.class);
r2a.init("Rescue1.html");
// throw error in order to interrupt normal processing and switch
// to Rescue2 page
throw new AdapterNotAvailableError("Rescue2.html");

}
}
...

Special Development Topics144

Exception Management Inside an Adapter Object

...
}

Inside the reactOnDataTransferStartmethod, a user and a system variable are read from the
session context. If one of them is null, the adapter decides to switch to page Rescue2.html and
throws an AdapterNotAvailableError error. Before, it pre-fetches the page adapter of the page
to escape to and initializes the page with certain information (in this example, it passes its own
page name).

The error page is opened inside the same subsession as the one throwing the error.

Errors and Runtime Exceptions - The Special Behavior

There is a set of methods available in the adapter with which you can influence the standard error
behavior:

■ handleErrorDuringInitPhase()

■ handleErrorDuringSetPhase()

■ handleErrorDuringInvokePhase()

■ handleErrorDuringGetPhase()

Depending on the method you have the following possibilities:

■ handleErrorDuringInitPhase()
This method is called when an error occurs in the initmethod of the adapter.

■ handleErrorDuringSetPhase() andhandleErrorDuringGetPhase()
These methods are called when an error occurs during the set and the get phase of the adapter
request processing.

You may throw an AdapterNotAvailableError to navigate to a page of your own in order to
present to the user detailed error information - and maybe also some way to solve the error.

■ handleErrorDuringInvokePhase()
This method is called when an error occurs during the invoke phase of the adapter request
processing.

You can decide whether normal Application Designer runtime processing continues, whether
you want to navigate to an error handling page (via PageNotAvailableError), or whether the
standard error processing of Application Designer is done.

See the API documentation (Java Doc) for further details.

145Special Development Topics

Exception Management Inside an Adapter Object

146

29 Additional Interfaces

■ Extending the Set of Simple Data Types ... 148
■ Avoid the Getting of Certain Simple Data Type Properties .. 149
■ Exchanging Objects by Converter Objects .. 150

147

Some additional interfaces are available which allow you tomodify the binding behavior between
a page and its adapter object. The interfaces are available via
com.softwareag.cis.server.IInteractionSessionMgrwhich represents a general interface to
the Application Designer runtime.

You receive an instance of IInteractionSessionMgt in the following way:

...

...
IInteractionSessionMgr iism = InteractionSessionMgrFactory.getInteractionSessionMgr();
...
... ↩

Extending the Set of Simple Data Types

As described previously in this part, Application Designer collects all the properties of an adapter
object (and its contained objects) when collecting the data in order to respond to the browser client.

The way Application Designer collects the data for a certain object is:

■ ApplicationDesigner collects all the properties that represent simple data types (int, float, String,
BigDecimal, CDate, etc.; see Appendix C - Data Types to be Used by Adapter Properties).

■ Application Designer investigates all properties that are non-simple datatypes and that are part
of the access path of a certain page.

Somtimes you want to add a certain class to be managed as “Simple Datatype Class”, i.e. Applic-
ationDesignerwill not treat objects of this class as non-simple objects but will treat them as simple
objects.

Simple objects have to provide a class implementation that

■ provides a constructor in which the value is passed as a string object, and
■ provides a toString()method to get the String representation of the contained value.

Example of a valid class:

public class ExtendedString
{

String m_value;
public ExtendedString(String value)
{

m_value = value;

}
public String toString()
{

Special Development Topics148

Additional Interfaces

return m_value;
}
...
...

}

The class is registered by using the method IInteractionSessionMgr.
registerPropertyAccessSimpleDatatypeExtension():

IInteractionSessionMgr iism;
iism = InteractionSessionMgrFactory.getInteractionSessionMgr();
iism.registerPropertyAccessSimpleDatatypeExtension(ExtendedString.class);

Nowhaving an adapter object (or follow-on object such as grid item) providing a property of type
ExtendedString, Application Designer will not drill down the object but will use the object's
toString()method to get its value and will use the object's constructor to pass new values to the
application.

Avoid the Getting of Certain Simple Data Type Properties

In the previous sections, the general rule was explained: if Application Designer investigates an
object during the get-data phase, then

■ it takes all simple data type properties, and
■ it takes those complex data type properties that are required by the corresponding page.

There is one possibility to fine-control the getting of simple data type properties: Every object that
is investigated byApplicationDesigner during the get phase (e.g. the adapter object) can implement
the interface com.softwareag.cis.server.IControlPropertyAccess. The interface is defined as
follows:

public interface IControlPropertyAccess
{

public String[] findPropertiesNotToBeCollected();
}

When the interface is implemented, the get methods that are passed back by the
findPropertiesNotToBeCollected()method are not processed.

Note that the method is called once per class - the first time Application Designer interacts with
an object. You cannot tell Application Designer by this interface to sometimes use the property
and sometimes not.

149Special Development Topics

Additional Interfaces

Exchanging Objects by Converter Objects

When Application Designer is accessing properties that are non-simple data type objects, there is
the possibility to exchange the object and tell ApplicationDesigner to use a converter object instead.

The interfaces are:

■ With IInteractionSessionMgr.registerPropertyAccessConverter(Class forClass,
IPropertyAccess Converter converter) you can register a class (parameter converter) that
is used as converter for another class (parameter forClass).

■ The converter class itself must support the interface IPropertyAccessConverter that looks as
follows:

public interface IPropertyAccessConverter
{

public Object getConvertedObject(Object propertyValue);
}

For more details, see the JavaDoc API documentation.

Special Development Topics150

Additional Interfaces

V Details on Session Management

InWorking with Page Navigation, there is a brief description on howApplication Designermanages
sessions. This part provides more details about session management.

In principle, the session management is hidden inside Application Designer. If you write normal
applications running in theApplicationDesignerworkplace environment, you do not have to care
about session management at all: you do not have to somehow collect data from a session object
in order to work with it or do something similar.

However, reading this part is interesting for you if you want to know the following:

■ What is the life cycle of an adapter?
■ What amount of data is kept in an adapter?
■ How does Application Designer internally arrange adapters?

This part is especially important for you if you:

■ write a workplace-like application which serves as a frame for content applications;
■ not only have Application Designer pages in your web application but also other servlets or JSP
pages.

The information provided in this part is organized under the following headings:

HTTP Sessions - Application Designer Sessions

Application Designer Session - Application Designer Subsessions

Application Designer Subsession - Application Designer Adapter Objects

How Things Start

How Things End

Workplace Management

Saving Context Data

Session IDs

151

152

30 HTTP Sessions - Application Designer Sessions

If you have already developed servlets/JSPs, your first question will be: how do Application De-
signer sessions relate to HTTP sessions?

ApplicationDesigner adapters are living in sessionswhich are administered inside theApplication
Designer runtime environment. The sessions are kept in parallel to HTTP sessions, i.e. HTTP ses-
sionsmay be used by other servlets/JSPs thatmay be part of yourweb application - but Application
Designer itself does not require them. It is no problem to reach HTTP sessions from an adapter
object via an API.

Why is ApplicationDesigner not using straightHTTP sessions? The problem is thatHTTP sessions
are sometimes the same for multiple browser instances. If you open a new browser instance from
an existing browser instance (for example, with the Internet Explorer), then the corresponding
session object on the server is shared between the browser instances. In the Application Designer
sessionmanagement, each instance of a browser (and if youwant: each frame inside one browser)
has its own clearly assigned session.

153

The above diagram shows the following:

■ There are three browser instances sharing one HTTP session.
■ Each browser instance has one related Application Designer session.
■ There is an API from the Application Designer runtime to access the HTTP session.

Special Development Topics154

HTTP Sessions - Application Designer Sessions

31 Application Designer Session - Application Designer

Subsessions

TheApplicationDesigner session concept knows one level below theApplicationDesigner session:
the Application Designer subsession. Adapter objects are living inside one subsession - and there
can be multiple subsessions within one session.

Let us approach the subsessions by a practical example:

155

In the diagram, the Application Designer demo workplace is shown. Inside the workplace, three
activities have been opened. The "AddressManagement" application is currently active. In addition,
the workplace is also running.

See the next section Application Designer Subsession - Application Designer Adapter Objects for
further information on this example.

Special Development Topics156

Application Designer Session - Application Designer Subsessions

32 Application Designer Subsession - Application Designer

Adapter Objects

Each of the activities listed in the previous section Application Designer Session - Application
Designer Subsessions is represented by a subsession on the server side. Each subsession itself is
holding the adapters for the activity.

157

In the diagram above, the activity "Address Management" is shown in detail. It consists of several
pages between which the user navigates. Each page belongs to one adapter of a certain class. The
adapter instances are managed inside the subsession.

The general rules for administering adapter instances are:

■ For each adapter class, there is one instance inside one subsession. This means: if you have
several different pages betweenwhich you navigate inside one activity, and all pages are bound
to the sameAdapter class, then all pages areworkingwith the same server side adapter instance.

■ Adapter instances start to live when they are first accessed (e.g. by a page requesting them).
They are kept as instances for the whole life cycle of a subsession - if not explicitly destroyed
by the application via an API call.

Basically, there are two types of sessions:

Special Development Topics158

Application Designer Subsession - Application Designer Adapter Objects

■ Each browser connected to Application Designer opens a new session inside the server. When
closing the browser or navigating to another web page, this session is automatically destroyed
at the server side.

■ Within a session there are subsessions. Each subsession represents the state of one interaction
process inside the browser. In the Application Designer workplace environment, you can open
multiple parallel interaction processes, and you can switch from one to another. You may have
other environments inwhich you do notwant to offer themulti-interaction processmanagement
- and only have one subsession for the whole life cycle of a session.

Inside a subsession, the adapter instances are created. All navigation is done between pages that
belong to the same subsession. See alsoWorking with Page Navigation.

159Special Development Topics

Application Designer Subsession - Application Designer Adapter Objects

160

33 How Things Start

■ Starting an Application Designer Session ... 162
■ Starting Additional Application Designer Subsessions ... 163

161

Starting an Application Designer Session

The proper start of a session is to open an Application Designer page via the StartCISPage servlet.

Example: If you start the "HelloWorld!" pagewith the followingURL, a newApplicationDesigner
session object with a new session ID is automatically created on the server side:

http://localhost:51000/cis/servlet/StartCISPage?PAGEURL=/cisyourfirstproject/helloworld.html

The logical counter part of the page - theHelloWorldAdapter object - is opened inside a subsession
that is automatically created inside the Application Designer session.

You see that inside one Application Designer session, there is always at least one subsession.

Special Development Topics162

How Things Start

Starting Additional Application Designer Subsessions

You may use your pages in a mode in which you always work inside one Application Designer
subsession - the one which was created during the StartCISPage procedure. But maybe youwant
to start additional subsessions.

There are two good reasons for starting additional subsessions:

■ Separate life cycles of activities
A subsession is keeping all adapter instances which play a role inside the processing of a certain
activity. By closing the subsession, all adapter objects belonging to the subsession are released
and can be caught by the garbage collector. In other words: a subsession is something like the
life cycle manager for its contained adapters.

Consequence: if you have multiple activities running in parallel, then each activity has its own
life cycle, e.g. it can be closed individually without any consequence for the life cycle of the
other activities.

■ Isolated activities
The adapter objects are created per subsession. This means: you can run one and the same
activity in parallel - represented by two subsessions. In both subsessions, adapters are built up
in parallel - completely isolated from one another.

Programming applications inside “multi document interface”-like programs, (e.g. applications
inside the Application Designer workplace) is therefore simple: each document (activity) is as-
sociated with its own subsession. The workplace just coordinates that the correct page is linked
to the correct subsession at the appropriate point of time.

The starting of a new Application Designer subsession is done by opening a page inside a frame
or inside an Application Designer subpage via Application Designer APIs.

ApplicationDesigner offers APIs (in class com.softwareag.cis.server.Adapter) to openApplic-
ation Designer pages in a certain frame. These APIs always have one “simple” variant and one
“complex” variant:

■ Simple Variant

protected void openCISPageInTarget(String pageURL,
String target)

By calling this method, you open a certain page in a certain frame. The page is automatically
linked to the subsession of the adapter calling this method.

163Special Development Topics

How Things Start

■ Complex Variant:

protected void openCISPageInTarget(String pageURL,
String subsessionId,
String target)

By calling this method you open a certain page in a certain frame. But now you can explicitly
pass a new subsessionId to be used for the page's adapter.

The proper call for a page which should belong to a new subsession is:

...

...

public void onOpenNewPage()
{

// create new subsession id
String newSSID = UniqueIdMgmt.createPseudoGUID();
openCISPageInTarget("...URL...",newSSID,"...TARGET...");

}
...
...

Special Development Topics164

How Things Start

34 How Things End

■ End of an Application Designer Session ... 166
■ End of an Application Designer Subsession .. 322
■ End of an Application Designer Adapter ... 166

165

End of an Application Designer Session

A session normally ends if the page which was opened with the StartCISPage servlet is closed.
This happens for example:

■ if the user shuts down the browser,
■ if the user loads a new page into the frame in which the StartCISPage servlet was called previ-
ously.

In other words: the session is normally kept alive as long as the user stays in the Application De-
signer environment.

Why “normally”? If a session is without user interaction for a long time, the session is timed out
on the server side. When the user comes back to continue interaction, a corresponding message
appears. The duration until a session is timed out is configurable; see the description of the ciscon-
fig.xml file in the Configuration documentation for details.

If a session ends, all its subsessions and all adapters in the subsessions are automatically ended.

End of an Application Designer Subsession

A subsession is ended via an API. There are two APIs available:

■ Via the interface com.softwareag.cis.server.IInteractionManager.
■ Via the method endProcess()which your adapters inherit from the Adapter class.

For further information, see the JavaDoc documentation.

End of an Application Designer Adapter

Adapters typically stay alive until the subsession ends in which they are living. There is also an
API available to directly end adapters:

■ Method Adapter.markThisAdapterForDestroy().
■ Via the interface IInteractionProcesswhich you receive inside an adapter via
this.m_interactionProcess.

Special Development Topics166

How Things End

35 Workplace Management

After reading the previous sections, youmay now see in a better waywhat the task of a workplace
management inside Application Designer is: a workplace is an application on its own having the
task to administer content applications both from the graphical and the sessionmanagement point
of view.

The workplace management is responsible for the proper assignment of subsessions to activities.
The life cycle of subsessions is typically controlled by the workplace.

167

168

36 Saving Context Data

■ Different Levels of Context ... 170
■ Accessing the Context .. 170
■ Typical Usage Scenarios ... 171

169

Sometimes it is useful to save context data centrally inside a session context and to use these data
like a session-global variable. You should be very restrictive with this option - otherwise you may
end up in a scenario in which any kind of data exchange is done by the context.

Different Levels of Context

The session management allows you to hold context information at two levels:

■ Session Context
Within the session context, save data that you want to access from everywhere inside your ad-
apters.

■ Subsession Context
Within the subsession context, save data which you want to access from everywhere inside a
subsession.

Two different subsessions have also two different subsession contexts, i.e. the saved data are
kept independent per subsession.

Accessing the Context

You obtain the context(s) by calling methods which are inherited from the Adapter class:

■ findSessionContext()
Returns a context which is held for each session.

■ findSubSessionContext()
Returns a context which is held for each subsession.

Both methods return a com.softwareag.cis.context.ILookupContext interface. This interface
offers the possibility to bind and look up any objects.

public interface ILookupContext
{

public Object lookup(String s, boolean reactWithErrorIfNotExist);
public void bind(String s, Object o);
public void releaseAllReferences();

}

When binding objects to a context, use a naming convention that is similar to the naming of your
Java classes to avoid naming conflicts. Example:

Special Development Topics170

Saving Context Data

...
findSessionContext.bind("com/yourcompany/application/parameter");
...

The context can be cleaned up by the releaseAllReferences()method. It is integrated into Ap-
plication Designer's session management.

Typical Usage Scenarios

Examples of typical data that you save at the session context level:

■ Name of the user who is currently logged on.
■ Name of the system to which the user is currently logged on.
■ Language in which the user is logged on.

Examples of typical data that you save at the subsession context level:

■ ID of the object you are processing.
■ Temporary data you want to pass from one page to another.

171Special Development Topics

Saving Context Data

172

37 Session IDs

Each session - session or subsession - holds an ID.

■ Session
The ID of the session is unique inside one instance of Application Designer. If you have two
Application Designer installations running, the same ID may be used inside both servers.

■ Subsession
The ID of a subsession is unique inside one session. If you havemultiple sessions running inside
one Application Designer instance, the same subsession ID may be used in two sessions.

You can access the IDs from your adapter in the following way:

public class TestAdapter
extends com.softwareag.cis.server.Adapter

{
...
...
public void xxx()
{

...
String sessionId = this.m_interactionProcess.getSessionId();
String subsessionId = this.m_interactionProcess.getProcessId();
...

}
...
...

}

173

174

VI Application Project Management

In the "HelloWorld!" example of the First Steps, you used the application project "cisyourfirstproject"
to develop your first Application Designer application. This part provides more details on project
management.

The information provided in this part is organized under the following headings:

What is an Application Project?

Class Loading Issues

Application Project Directory

Application Project Context Root

Creating an Application Project

Tools for Application Project Management

175

176

38 What is an Application Project?

According to the information in the Introduction, Application Designer runs as a web application
or as part of a web application inside a servlet engine.

If you have larger projects and consequently have a high number of layouts and adapter classes,
then you want to structure your development activities in a better way. For this reason, a project
management exists that you can use to separate your project's resources across so-called application
projects.

An application project is represented in the file system by a single directory. It includes:

■ XML layout definitions.
■ HTML files which are generated from the layout definitions.
■ Required images or required “normal” HTML files.
■ Adapter classes.
■ Files holding the information on how to translate text IDs into readable words in a language-
dependent way.

■ Help files.

You can (and should) arrange your application projects to be self-containing units.

177

178

39 Class Loading Issues

If you use Application Designer in design time mode (i.e. using the Application Designer class
loader), then place the classes for each project inside the project's /appclasses/classes or /appclasses/lib
directory.

Make sure that the same class does not occur in different projects. The Application Designer class
loader embeds all classes of all projects in one view and loads the first class it finds. Keep in mind:
if turning to runtimemode (i.e. class loading of web application class loader), then all classes have
to be transferred to /WEB-INF/appclasses/classes and /WEB-INF/appclasses/lib anyhow, and having
two class implementations holding the same names also will cause conflicts at this point of time.

For detailed information, see Appendix D - Class Loader Concepts.

179

180

40 Application Project Directory

Each application project is represented by a subdirectory of the web application's directory inside
the Application Designer installation. If you stick to the default installation and you create an ap-
plication project "appxyz", the application project directory is:

<installdir>/tomcat/webapps/cis/appxyz/

The application project directory itself is subdivided into several other directories:

DescriptionDirectory

This is where access restriction files are stored.accesspath/

This is where the class loader looks for *.class files.appclasses/classes

This is where the class loader looks for *.jar files.appclasses/lib

This is where the multi language management looks for its files./multilanguage

This is where the XML layout definitions are stored./xml

HTML files (e.g. generated intelligent HTML pages) are stored directly in the application project
directory.

181

182

41 Application Project Context Root

Each application project can be reached from the web server/servlet engine in the following way:

http://<host>:<port>/<WebAppName>/<ApplicationProjectName>

Taking the project "appxyz" from above and still sticking to the standard installation, the URL
looks as follows:

http://localhost:51000/cis/appxyz

183

184

42 Creating an Application Project

You create an application project using the Project Manager which is available in Application
Designer's developmentworkplace. For detailed information, seeProjectManager in theDevelopment
Workplace documentation.

If you use the standard Tomcat servlet engine, you have to restart Tomcat after having created
the new application project.

185

186

43 Tools for Application Project Management

After having created a project, certain tools are available in which the project becomes visible.

The navigation frame of the development workplace shows one button for each project. In each
topic, you see the existing layouts for the project.

When you open the LayoutManager, the application project becomes selectable in the list of projects.

187

188

VII Dynamic Page Layout

The information provided in this part is organized under the following headings:

Introduction

Scenarios

Dynamic Pages - Normal Pages

Programming Dynamic Pages

Interface IDynamicPageMgmt

Background Information

Dynamic Pages - Dynamic Adapters

189

190

44 Introduction

There are three ways to provide for a dynamic page layout:

■ Some controls support dynamic rendering that can be controlled by corresponding adapter
properties.

A FIELD control, for example, can be influenced by adapter properties that control whether the
field is editable or not. A BUTTON control can refer to an adapter property telling whether the
button is visible or not. There is a ROWDYNAVIS control that represents a container area that
can be switched on/off by your server side adapter.When switched on or off, thewhole container
is visible or invisible.

■ If a page gets too large, you usually split up the page into logical areas, each having a certain
level of independency.

With the SUBCISPAGE2 control, you can embed one screen flexibly into other screens. The same
can be done by using the ROWTABSUBPAGES control. You can also distribute your layout
across multiple frames of a frameset. This is, for example, done inside the workplace itself: the
content frame of theworkplace is dynamically started - it displays the activitywhich is currently
active.

■ Screens can be built up in a “100% dynamic way”. This means that the layout that you normally
create when designing a page is defined at runtime by a program.

Information on the first two options is provided inWorking with Controls (in the Layout Elements
documentation), and in Embedding Pages into Pages and Embedding Pages into a Workplace (in the
Working with Pages documentation).

This part tells you about the last option: building dynamic pages.

191

192

45 Scenarios

You use dynamic pages in scenarios in which it is not possible to define the layout of a page at
design time. Typically you are in the process of developing a generic part of your application
when desiring dynamic pages.

Example: youwant to create a generic application formaintaining table records of a database. You
may have a detail screen for one table record: the number of fields and their interrelation depends
on the table. In order to provide a properly usable screen, you can generate the detail screen dy-
namically - based on meta data which comes from the database management system.

193

194

46 Dynamic Pages - Normal Pages

Dynamic pages follow the same principles as normal Application Designer pages. The following
diagram explains the difference:

The normal way for creating intelligent HTML pages is to use the Application Designer design
time environment: during the development process, XML layout definitions are translated into
intelligent HTML pages. These pages are loaded and executed by the browser.

195

For the browser, it is not really relevant where the HTML behind a URL comes from - it does not
need to know if it is coming from a staticHTMLfile or if it is coming from a program. Consequently,
the dynamic pagemanagement just uses the components of the design time environment and puts
them into the runtime context:

■ Via the API com.softwareag.cis.servcer.IDynamicPageMgmt, you can pass XML layout that
is translated into correspondingHTMLcode.Whenpassing the XML, youdefine a logical name.
The generated HTML is kept under this name.

■ From now on, you can reference the generated HTML by using a servlet that receives as para-
meter the logical name of what you passed.

All steps are performed in memory, i.e. there is no file which is stored. The dynamically created
page is kept in the context of one Application Designer session. After the session is destroyed, the
dynamic page is removed from memory.

Special Development Topics196

Dynamic Pages - Normal Pages

47 Programming Dynamic Pages

This section gives an example on how to program the dynamic page management.

On the left of the example page, you can enter any XML layout definition. When choosing the
Preview button, the layout definition is translated into an HTML page. The page is shown in the
right area.

197

The main controls that are used are:

■ The TEXT control - for entering the text.
■ The SUBCISPAGE control - for displaying the preview.

The XML layout definition looks as follows:

<rowarea name="Rowarea" height="100%">
<itr takefullwidth="true" height="100%">

<text valueprop="layoutXML" width="50%" height="100%"
textareastyle="background-color:#000000;color:#D0FFD0;font-weight:bold">

</text>
<hdist>
</hdist>
<button name="Preview" method="onPreview">
</button>
<hdist>
</hdist>

<SUBCISPAGE valueprop="subpageURL" width="50%" height="100%" borderwidth="0">
</SUBCISPAGE>

</itr>
</rowarea>

The adapter code looks as follows:

// This class is a generated one.

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicPageMgmt;

public class dynamicPagesAdapter
extends Adapter

{
String m_layoutXML;

public String getLayoutXML() { return m_layoutXML; }
public void setLayoutXML(String value) { m_layoutXML = value; }

String m_subpageURL = "/HTMLBasedGUI/empty.html";
public String getSubpageURL() { return m_subpageURL; }
int m_counter = 0;
// --
// public adapter methods
// --

public void onPreview()
{

try
{

m_counter++;

Special Development Topics198

Programming Dynamic Pages

// pass page to dynamic page management
IDynamicPageMgmt dpm = m_sessionContext.getDynamicPageMgmt();
dpm.addDynamicPage(m_layoutXML,"DYNAMIC_EXAMPLE" + m_counter);
// switch to dynamic page
m_subpageURL = dpm.createURLString("DYNAMIC_EXAMPLE" + m_counter);

}
catch (Throwable t)
{

outputMessage(MT_ERROR,t.toString());
}

}
}

When you choose the Preview button, the method onPreview() is called. This method takes the
text that is entered inside the TEXT control and passes this text to the dynamic pagemanagement.
The dynamic page management is internally organized on session level - you access it inside an
adapter via the member m_sessionContext.

Directly inside the method addDynamicPage(...), the XML that is passed gets translated. If the
XML contains errors, the corresponding error messages are thrown.

With the message createURLString(...), a URL is built that you can use for referencing the dy-
namic page.Maybe youwant to have a look ofwhat is created as theURL: it is the call of the servlet
StartCISPage with a parameter indicating the current session and the name of the dynamic page.
You should not build this URL on your own but always go through the API.

The URL that is created is used inside the SUBCISPAGE control. If it changes, the control displays
the new URL in its content area. This is also the reason why an explicit counter is used: by using
the counter, each previewed page gets a URL of its own - the SUBCISPAGE control does not reload
its content area if the URL stays stable.

199Special Development Topics

Programming Dynamic Pages

200

48 Interface IDynamicPageMgmt

The interface looks as follows:

package com.softwareag.cis.server;

public interface IDynamicPageMgmt
{

public class DynamicPageInfo
{

String xml;
String html;
String[] accessPaths;

}

public class URLParameter
{

public URLParameter(String name, String value)
{

m_name = name;
m_value = value;

}
String m_name;
String m_value;

}

public void addDynamicPage(String xml, String name);
public void addDynamicPage(String xml,

String name,
String applicationProject);

public DynamicPageInfo getDynamicPageInfo(String name);
public boolean containsDynamicPage(String name);
public void removeDynamicPage(String name);
public void clearDynaymicPages();
public String createURLString(String name, URLParameter[] parameters);

}

201

For more technical details, see the JavaDoc API documentation.

Special Development Topics202

Interface IDynamicPageMgmt

49 Background Information

■ Link to Session Management ... 204
■ Performance Considerations .. 205
■ URL Position of the Pages ... 205
■ Dynamic Pages - Multi Language Management ... 206

203

Link to Session Management

The dynamic pagemanagement is linked to the sessionmanagement. Dynamic pages are generated
from an XML definition. When calling the method addDynamicPage(...) from the interface
IDynamicPageMgmt, an HTML string is internally generated and kept. It is later picked up by the
servlet URL that references the dynamic page.

This means that two aspects are important:

■ When is the page taken out of the memory?
■ Who can use the page besides the one who has generated it?

Both questions are answeredwith reference to the sessionmanagement. See alsoDetails on Session
Management.

The above diagram illustrates that a generated page belongs to one session. When the session is
removed (e.g. due to log out of the user or due to timeouts), all dynamic pages are released to
garbage collection. Of course, you can also remove dynamic pages by using the
removeDynamicPage(...)method.

Special Development Topics204

Background Information

Only the session that has created the dynamic page can use it. Parallel sessions are not able to see
it; they have to have their own dynamic pages, if required.

Performance Considerations

Dynamic pages are a very flexible technology for building generic application parts. However,
this flexibility has some disadvantages when looking at the consumption of resources:

■ Normal pages are generated during the design time process; they are already “compiled”. Dy-
namic pages require an extra generation step during runtime before they can be used.

■ Normal pages do not burden thememory because they are stored inside the file system.Dynamic
pages are kept in memory. A large page with many controls can be in an area of more than 50-
100 kBytes of HTML and JavaScript code. Keep in mind that every user who is logged on holds
instances of the pages in the corresponding session context.

Therefore, you should only use dynamic pages when you have specific requirements.

URL Position of the Pages

Normal intelligent pages are located inside a project directory inside the web application that in-
cludes Application Designer. Internally, the page is addressed with the following URL:

http://<host>:<port>/<webapplication>/<project>/<pagename>.html

Note: Remember that you normally do not directly reference pages because they always
have to be embedded into a certain environmentwhich is created by the StartCISPage servlet.

If a certain icon is addressed inside the page, the URL of the icon is typically relative to the page's
position. Typically, images are kept in a separate directory below the project - e.g. an icon image
is positioned inside an images directory. In this case, the image is addressed in the following way:

images/iconimage.gif

Dynamic pages are referenced by the internal usage of a special servlet. The URL that is internally
used to access a dynamic page is:

http://<host>:<port>/<webapplication>/servlet/StartDynamicPage?SESSIONID=<sessionid>&DYNAMICPAGE=<pageid>

This means that from the URL reference point of view, your page is living below the URL root:

http://<host>:<port>/<webapplication>/servlet/

If you now reference resources which are inside your project's directory, you have to explicitly
step into the project. The same icon that was used before, is now referenced via the link:

205Special Development Topics

Background Information

../<project>/iconimage.gif

Dynamic Pages - Multi Language Management

For the same reason as explained in the previous section, you must explicitly define the project in
which the page is to live when using the multi language management. Multi language files are
kept per project; consequently, a page needs to know the project from which it is to take the
translated literals.

You define the project by using the following method of IDynamicPageMgmt and pass the name of
the project.

public void addDynamicPage(String xml,
String name,
String applicationProject);

You can access the name of the project in which a concrete adapter is living by calling the Adapter
method findPageApplication().

Special Development Topics206

Background Information

50 Dynamic Pages - Dynamic Adapters

If you are using dynamic pages, then you typically also think about dynamic adapters.

Let us take the example of a generic maintenance application for table records in which the detail
screen of a record is dynamically created. Having the dynamic screen is the one part of the story;
having a generic adapter providing for exactly these properties that are belonging to the records
is the other one.

ApplicationDesigner offers a powerful way to provide for dynamic adapters. SeeBinding between
Page and Adapter for detailed information.

207

208

VIII Becoming a Member of the Startup Process

There may be the demand to become a member of the startup process of Application Designer:
for example, in some cases you have an application which is accessed by Application Designer -
by corresponding adapter classes. Typically, you have to initialise this application, for example,
by setting up some database connection.

This initialisation takes time and should be done on startup of Application Designer - instead of
the first time a user interacts with the application.

The information provided in this part is organized under the following headings:

Overview

Startup Class

Registration

209

210

51 Overview

It is quite easy to integrate your application inside Application Designer at startup time. You have
to

■ provide a startup class supporting the interface
com.softwareag.cis.server.IServletInitHandler,

■ register this class by editing a configuration file inside Application Designer.

211

212

52 Startup Class

The following code shows a simple Java class that can be registered inside the startup process of
Application Designer:

package com.softwareag.cis.test;

import javax.servlet.*;
import com.softwareag.cis.server.*;

public class StartDemo
implements IServletInitHandler

{

public void init(ServletConfig conf)
{

System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");
System.out.println("StartDemo: started!");

}

public void destroy()
{

System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");
System.out.println("StartDemo: destroyed!");

}

}

It supports the interface com.softwareag.cis.server.IServletInitHandler that requires the
implementation of themethods init and destroy. The initmethod takes the servlet configuration

213

as parameter with which the Application Designer's servlet itself is initialised. See the document-
ation of the servlet functions (e.g. in the reference documentation for the servlet API) for more
details.

Special Development Topics214

Startup Class

53 Registration

This class must be registered in the /config/statapps.xml configuration file to be integrated into the
startup process of Application Designer. The file looks as follows:

<startapps>
<start class="com.softwareag.cis.test.StartDemo"/>

</startapps>

Just add a new "start" line and specify the class name. The classmust be accessible during runtime.

215

216

IX Adapting the Look & Feel

One of the guiding principles of ApplicationDesigner is to provide high-quality controls by simply
specifying tags inside a layout definition. Each tag is rendered when generating the intelligent
HTML page into various HTML and JavaScript statements. The HTML statements contain the
specification of the display style of each control. For example, a label is rendered into a table cell
having a defined background (typically a bottom line), a defined text size, etc.

This part describes how to modify the default rendering with the help of style sheets in order to
adapt the look and feel to your needs.

The information provided in this part is organized under the following headings:

Introduction

Style Sheet File

Writing a New Style Sheet File

Selecting the Right Style Sheet

Dynamic Selection of the Style Sheet File

Static Selection of the Style Sheet File

217

218

54 Introduction

There are different possibilities for adapting the look and feel - depending on what you want to
do:

1. Overwrite the style definition in individual controls by specifying the style property. Offered
for all controls holding text information inside (label, button, field, etc.) and for all container
controls (areas, tables, rows, etc.).

2. Exchange the central style sheet file containing all style information for controls. Furthermore,
specify your own style sheet: define a style sheet file for a page statically or switch between
style sheets dynamically (e.g. user-dependent).

3. Create new controls by yourself and place them into the Application Designer design and
runtime environment.

Option 1 is typically used if you like the default style provided by Application Designer - but you
want to change it for some pages. For example, you want the text of the button to appear in red -
instead of black for some buttons.

Option 2 is typically used if you have to adapt the style of the controls to some customer-specific
style. For example, if you want to change the font "Verdana" that is used inside the Application
Designer style, or if you want to introduce a new color scheme. Option 2 does not require any
changes inside the page layout definitions - the style is completely separated from the layout. You
do not have to regenerate your XML definitions at all.

Option 3 is used if you need new controls. There is an open API that allows you to add your own
controls in a simple way.

Option 1 is discussed inWorking with Controls (in the Layout Elements documentation). Option 3
is explained in the Customized Controls documentation. This part focuses on option 2 - exchanging
the style sheet.

219

220

55 Style Sheet File

The style information of all controls is defined in the file <your-webapplication>/cis/styles/CIS_DE-
FAULT.css. The style information is sorted alphabetically. Omit the prefix "ROW" or "COL" for
container controls - e.g. you find the style information of the "ROWAREA" in "AREA".

.AREATable
{

font-size: 10pt;
border-width: 0;
background-color: #E0D8C8;
border: 1 solid #808080

}
.AREATitleCell
{

font-size: 8pt;
color: #808080;
background-color: #00006C

}
.AREALeftFromTitleCell
{

font-size: 8pt;
color: #808080;
background-color: #00006C

}
.AREARightFromTitleCell
{

font-size: 8pt;
color: #808080;
background-color: #00006C

}
.AREALinks
{

color: #FFFFFF;
text-decoration: none

}

221

Take further information out of the comments describing when which style class used.

Special Development Topics222

Style Sheet File

56 Writing a New Style Sheet File

Style sheet files should be created and maintained with the Style Sheet Editor. This tool covers
style sheet manipulation on a very low level. Maintaining style sheets with the Style Sheet Editor
means that all information that you enter is kept separate from the style sheet itself.

From release to release, Application Designer adds new controls to its control library. As a con-
sequence, the style sheet template is typically enhanced with every new control. When you work
with the Style Sheet Editor, this is done automatically. You just have to regenerate your own style
sheet file.

Otherwise (if you have manually created your own style sheet file), you always have to have to
embed the enhancements into your style sheet file when Application Designer does style sheet
changes: you have to copy the additional Application Designer style classes from the standard
Application Designer style sheet file (CIS_DEFAULT.css) into your own style sheet file. Use a diff-
viewer/diff-editor to do this.

223

224

57 Selecting the Right Style Sheet

An intelligent HTML page (generated inside Application Designer) links to a style sheet file. The
selection of the style sheet file is done in the following way:

■ Dynamic selection (default):
The name of the style sheet file is determined by a property style of your adapter class. If this
is not specified, the default Application Designer style sheet is chosen. The style property is
provided automatically. See Dynamic Selection of the Style Sheet File for further information.

■ Static selection:
The name of the style sheet file is defined in the page by specifying the stylesheetfile property
of the "page" tag. See Static Selection of the Style Sheet File.

Static selection takes precedence over dynamic selection, i.e. if static selection is defined, dynamic
selection is not taken into consideration anymore.

Typically, you define the style sheet file name statically only for certain pages: for those pages you
want to be sure that they do not differ from the defined look and feel.

225

226

58 Dynamic Selection of the Style Sheet File

■ What You Can Do .. 228
■ Example .. 228

227

The style sheet file is determined by your adapter:

■ There is a property stylewith its corresponding getStyle()method implemented in the inherited
class com.softwareag.cis.server.Adapter. The style property returns the URL of the used
style sheet file.

■ The Adapter class derives the URL of the style sheet file from the Application Designer session
context. Access the Application Designer session context by the protected property
m_sessionContext. The m_sessionContext object provides a setStyle() and getStyle()
method. To change the style sheet file inside the adapter, do the following:

public void ...()
{

...
m_sessionContext.setStyle("...yourStyleURL... ");
...

}

What You Can Do

There are two options that you can use in parallel:

■ You can take over the getStyle()method in your adapter from the Adapter class. In this case,
you can set the session's style sheet via m_sessionContext.setStyle(...), as described.

■ You can write your own getStyle()method and can apply any other rule you might think of
on your own.

Example

Inside the ApplicationDesigner demoworkplace, there is a function to select a style sheet for your
current session:

Special Development Topics228

Dynamic Selection of the Style Sheet File

The program lists all available style sheets in the directory <webapp>/styles/. If you select one style
sheet file, then the selected style sheet is internally passed to the session context as described in
the previous section.

Consequently, all pages in the content area of the workplace will be renderedwith this style sheet.

The style of theworkplace itself will not change: theworkplace adapter overwrites the getStyle()
method: with the workplace, you can pass its style sheet file when dynamically defining the
workplace.

229Special Development Topics

Dynamic Selection of the Style Sheet File

230

59 Static Selection of the Style Sheet File

It makes sense for some pages to define the style sheet file statically. In this case, it cannot be
changed dynamically. This can be done inside the XML layout definition of the page with the
"page" tag.

<page model="xyz"
pagename="xyz.html"
stylesheetfile="/HTMLBasedGUI/general/layout.css">

...

...

...
</page>

231

232

X Controls for Database Reporting

The information provided in this part is organized under the following headings:

Basics

DBQUERY

DBFIELD

DBCOMBO

DBSELECTOPTION

DBCHECKBOX

DBRADIOBUTTON

233

234

60 Basics

■ Two Types of DB Controls ... 236
■ When to Use Which Type .. 237

235

Two Types of DB Controls

Application Designer provides a simple but flexible way to develop typical reporting pages for
querying the contents of a relational database. There is a set of database (DB) controls for creating
queries. DB controls can be divided into two types:

■ Filter Criteria Controls (DBSELECTOPTION, DBFIELD, DBCOMBO, DBRADIOBUTTON
and DBCHECKBOX)
These are controls representing/covering a single filter criterion of a query. The controls provide
for value help (exceptDBCHECKBOXandDBRADIOBUTTON), a checkwhether the user input
is valid (again except DBCHECKBOX and DBRADIOBUTTON) and a conversion of the user
input to a string to be added to the SQL string. The following screen shot shows (from top to
bottom) aDBCHECKBOX,DBCOMBO,DBFIELD,DBRADIOBUTTONandDBSELECTOPTION
control.

As with the "corresponding" controls (CHECKBOX, COMBODYN, FIELD, RADIOBUTTON)
you have a high degree of freedom when placing the DB controls into the layout of the report.

■ DBQUERY Control
This control represents an entire database query. It covers filter criteria, the query execution,
the result area, output formats such as PDF andquery variants -with aminimumof programming
effort on server side. The following screenshot shows one DBQUERY control.

Special Development Topics236

Basics

The DBQUERY control has various properties in order to adapt the layout to your needs - but
you are not as free as with the above mentioned DB controls.

When to Use Which Type

Use the filter criteria controls in the following case:

■ The page layout of the report is of high importance and theDBQUERY control cannot be adapted
to match your needs.

Use the DBQUERY control in the following cases:

■ If you want to create a report in a very efficient way (in respect to creating the page layout as
well as to the programming effort on the server side).

■ If you do not want to care about report variants and PDF conversion

237Special Development Topics

Basics

238

61 DBQUERY

■ Example .. 241
■ DBQUERY Properties ... 245
■ DBFILTER Properties ... 249
■ DBCOLUMN Properties .. 251
■ DBPARAMSINGLEVALUE Properties .. 253
■ DBPARAMDOUBLEVALUE Properties ... 254
■ Variant Management .. 255
■ PDF Generation .. 256

239

TheDBQUERY control is designed to significantly reduce the effort for developing queries against
relational databases. In the control definition, you specify the SELECT string, the filter criteria and
the output columns - the rest is done automatically. The sequence, sorting and grouping of the
output grid can be defined in a very flexible way. You even can store so-called variants: if you
have certain filter criteria you always want to use in a query, then you can store them under a
name in order to have quick access to often-used queries. The following typical aspects of a query
are covered:

■ Filter criteria (ad hoc input, saved in query variants).
■ Result output (server-side scrolling, context menu).
■ Report variants (column visibility and column order, sorting, grouping, etc.).
■ (Default) PDF generation.

Special Development Topics240

DBQUERY

Example

There is aDBQUERYcontrolwith its inner components. Look at the corresponding layout definition:

<dbquery valueprop="dBQueryInfo" query="SELECT * FROM ADDRESS AS A, BUSINESSPARTNER ↩
AS B
 WHERE A.BUSINESSPARTNERID = B.ID" datasource="addressdb" title="Adress ↩
Report"
 rowareaname="Report Demo" executebuttonname="Execute" maxrows="200"
 image="images/addresses.gif" height="100%" rowcount="40" titletext="Address ↩
Report">
 <dbfilter labelname="Title" labelwidth="150" querycolumn="title" ↩
valuehelptable="title"
 valuehelpcolumn="id" fieldwidth="200" hideout="true">
 </dbfilter>
 <dbfilter labelname="First Name" labelwidth="150" querycolumn="firstname" ↩
fieldwidth="200">
 </dbfilter>
 <dbfilter labelname="Lat Name" labelwidth="150" querycolumn="lastname" ↩
fieldwidth="200">
 </dbfilter>

241Special Development Topics

DBQUERY

 <dbcolumn name="Title" column="TITLE" width="50" widthpdf="2cm" groupby="true">
 </dbcolumn>
 <dbcolumn name="Last Name" column="LASTNAME" width="100" widthpdf="3cm" ↩
sortorder="1"
 sortascending="true" groupby="true">
 </dbcolumn>
 <dbcolumn name="First Name" column="FIRSTNAME" width="100" widthpdf="3cm" ↩
sortorder="2"
 sortascending="true">
 </dbcolumn>
 <dbcolumn name="Street" column="STREET" width="150" widthpdf="5cm">
 </dbcolumn>
 <dbcolumn name="Country" column="COUNTRY" width="50" widthpdf="2cm">
 </dbcolumn>
 <dbcolumn name="State" column="STATE" width="100%" widthpdf="5cm">
 </dbcolumn>
</dbquery>

Look at the following items:

■ There is a DBQUERY definition with the property valueprop "dBQueryInfo". The property
query contains the SELECT string.

■ There are DBFILTER definitions for each filter criterion.
■ There are DBCOLUMN definitions for each grid column of the result area.

The adapter code is the following:

// This class is a generated one.

import java.sql.Connection;
import java.sql.DriverManager;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.server.util.DBQUERYDataObject;
import com.softwareag.cis.server.util.DBQUERYInfo;
import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBTEXTGRIDLine;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;
import com.softwareag.cis.server.util.IDBQUERYContextMenuRequestListener;
import com.softwareag.cis.server.util.IDBQUERYGeneratePDFRequestListener;
import com.softwareag.cis.server.util.IDBQUERYOptimizer;
import com.softwareag.cis.server.util.MENUNODEInfo;
import com.softwareag.cis.server.util.TREECollection;
import com.softwareag.cis.server.util.ValidValueLine;

public class DBQUERYAdapter
 extends Adapter
 implements IDBDemoAdapter

Special Development Topics242

DBQUERY

{
 // --
 // inner classes
 // --

 /** class used for a simple connection management. */
 public class ConnectionProvider
 implements IDBQUERYConnectionProvider
 {
 public Connection getDBConnection(String datasource)
 {
 try
 {
 Class.forName("org.hsqldb.jdbcDriver");
 return DriverManager.getConnection("jdbc:hsqldb:hsql://localhost", ↩
"sa", "");
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
 }
 /** class used for SQL optimization. */
 public class SQLOptimizer
 implements IDBQUERYOptimizer
 {
 public String optimizeQuery(String query, String[] gridColumns)
 {
 // do checks + optimization here
 return query;
 }
 }
 /** class used for pop-up menu. */
 public class MyMenuNodeInfo
 extends MENUNODEInfo
 {
 IDynamicAccess m_row; // = row for that the context menu is requested
 public MyMenuNodeInfo(IDynamicAccess row, String text, String image)
 {
 super(text, image);
 m_row = row;
 }
 public void reactOnSelect()
 {
 outputMessage("S", getText() + " selected");
 }
 }
 /** class used to create the context menu within the result grid. */
 public class ResultAreaContextMenu
 implements IDBQUERYContextMenuRequestListener
 {

243Special Development Topics

DBQUERY

 public void reactOnContextMenuRequestFor(IDynamicAccess row)
 {
 // opens a pop-up menu with two entries
 TREECollection cm = new TREECollection();
 cm.addTopNode(new MyMenuNodeInfo(row, "Edit", "images/edit.gif"),true);
 cm.addTopNode(new MyMenuNodeInfo(row,"Remove", "images/remove.gif"),true);
 showPopupMenu(cm);
 }
 }
 /** class used for PDF conversion. */
 public class GeneratePDFRequestListener
 implements IDBQUERYGeneratePDFRequestListener
 {
 public void generatePDFAndDisplayDocument(DBQUERYDataObject dataObject)
 {
 // create PDF document here
 }
 }

 DBQUERYInfo m_dBQueryInfo = new DBQUERYInfo(this,new ConnectionProvider(),
 new ResultAreaContextMenu(),
 new SQLOptimizer(),
 new GeneratePDFRequestListener());
 public DBQUERYInfo getDBQueryInfo() { return m_dBQueryInfo; }
}

Programming the DBQUERY is quite simple. Define an instance of the class DBQUERYInfo. This
instance is referenced by the valueprop definition inside the DBQUERY tag. The DBQUERYInfo
offers a set of constructors.

Mandatory Parameters

Same to all constructors are the (two) mandatory parameters. First you have to pass the adapter
object that defines the DBQUERYInfo instance. This object is used, for example, to open a pop-up
inside the DBQUERY control. With the second, you have to pass an implementation of interface
IDBQUERYConnectionProvider. As the DBQUERYInfo class does not open a database connection on
its own, it uses this object to obtain a connection. The connection is only used to read data from
the database. There are no updates (insert/update/delete) done with this connection. Internally,
the provided connection is buffered and used each time the query is executed. As the DBQUERYInfo
does not open the connection, it does not care about closing the connection.

Optional Parameters

The constructors vary in the list of their optional parameters. By construction, you may pass an
implementation of interface IDBQUERYContextMenuRequestListener. This object is called (with

Special Development Topics244

DBQUERY

method reactOnContextMenuRequestFor) if the user clicks into a line inside of the report result
grid with right mouse button. See the Javadoc documentation of interface
IDBQUERYContextMenuRequestListener for details.

If you want to check/optimize the SQL statement prior its execution, youmay pass an implement-
ation of interface IDBQUERYOptimizer. The object is called with method optimizeQuery each time
the report is executed. See the Javadoc documentation of interface IDBQUERYOptimizer for details.

If you do not want to use the default PDF conversion of the DBQUERY control, you may pass an
implementation of interface IDBQUERYGeneratePDFRequestListener. This object is called (with
method generateAndDisplayPDF) if the user clicks the "PDF" icon within the DBQUERY control.
See the Javadoc documentation of interface IDBQUERYGeneratePDFRequestListener for details.

DBQUERY Properties

Java Binding

ObligatoryPropertyVALUEPROPpoints to a property of type
DBQUERYInfo (package

valueprop

com.softwareag.cis.server.util). This class
encapsulates the reports execution, the variant
management and the PDF and CSV output.

OptionalTheDIRECTSELECTMETHODproperty is used to
point to a method of your adapter class, which is

directselectmethod

called when a selection event occurs within the
result grid.

ondblclickOptionalThe DIRECTSELECTEVENT property is used to
define whether the direct select method is called

directselectevent

onclickby a single or a double click. Typically you use a
single click ("onclick") if you want to select
something in the grid and to display
simultaneously details of what was selected in the
same page. Use a double click ("ondblclick") to
navigate to the next page.

DB Binding

ObligatoryLogical identifier of the database on that the report
is executed. This value is passed in the method

datasource

"IDBQUERYConnectionProvider.
GetDBConnection".

ObligatorySQL statementwith a complete SELECTandFROM
clause and with an optional WHERE clause. With

query

the SELECT clause you define the result set of the
report (each DBCOLUMN control refers to one
element/column name of this result set via the
property COLUMN). Prior the reports execution

245Special Development Topics

DBQUERY

the values of the DBFILTER controls are added to
this query.

20OptionalSpecifies the maximum number of rows fetched
from database. The value "0" represents unlimited.
Default is "200".

maxrows

50

100

200

500

0

trueOptionalFlag which indicates if the report is to be executed
on page load. Default is "false".

executeonload

false

andOptionalThe values of the DBFILTER controls are added
dynamically toQUERYprior the reports execution.

filterlinkoperator

orWith this property you can specify the operator to
be used to add the DBFILTER values. Default is
"AND".

Height

100ObligatoryThe height of the DBQUERY control in pixels or as
percentage value.

height

150

200

250

300

250

400

50%

100%

Title

OptionalName of the database report.title

OptionalText ID (report title) for the multi language
management.

titletextid

100OptionalWidth of the title in pixels or as percentage value.titlelabelwidth

120

Special Development Topics246

DBQUERY

140

160

180

200

50%

100%

background-color:
#FF0000

OptionalDirect manipulation of title style.titlestyle

color: #0000FF

font-weight: bold

Row Area

OptionalName of the surrounding row area.rowareaname

OptionalText ID (row area) for the multi language
management.

rowareatextid

trueOptionalThe surrounding row area can be shrinked by
clicking on its title. This standard behaviour can be
disabled by setting FOLDABLE to "false".

foldable

false

background-color:
#FF0000

OptionalInline style for the surrounding row area.rowareastyle

color: #0000FF

font-weight: bold

OptionalURL of the image that is shown at the right hand
of the filters. The URL can be relative or absolute.

image

OptionalName that is displayed on the execute button.executebuttonname

OptionalText ID (execute button) for the multi language
management.

executebuttontextid

trueOptionalFlag that indicates if messages that are generated
by the report (DBQUERYInfo) are displayedwithin

outputmesstostatusbar

falsethe status bar (default) or inside the DBQUERY
control above the result grid ("false").

trueOptionalIf switched to "true" then a small print icon will
appear right from the grid. The print icon opens

showprintversion

falseup amodal popup fromwhich theHTMLproduced
inside the report can be directly sent to the printer.

247Special Development Topics

DBQUERY

Pay attention: if specifying "true" then the adapter
property holding the REPORTInfo object must
create the REPORTInfo instancewith passing "this"
in the constructor.

trueOptionalIf set to "true" then a PDF icon is rendered in the
right top corner of the control.When the user clicks

showpdf

falseon the icon then the report is automatically
rendered as pdf - and the result will show up in a
popup window.

Pay attention: if setting this property to "true" then
you also have to choose a special constructor when
creating the REPORTInfo instance on server side,
in which the instance of the model is passed as
argument.

trueOptionalIf defined to "false" then no re-arranging of columns
is offered to the user.

personalizable

false
Default is "true". This means: if using COLUMN
controls inside the grid definition then the user can
re-arrange the sequence of columns by dragging
and dropping them within the top title row.

OptionalComment without any effect on rendering and
behaviour. The comment is shown in the layout
editor's tree view.

comment

Result Grid

1OptionalThe property ROWCOUNT defines the number of
rows that are fetched from the server.

rowcount

2

3

int-value

trueOptionalFlag which indicates if the result grid does have a
selection column. Default is "true".

withselectioncolumn

false

trueOptionalFlag indicates if the result grid does have a title row
(default) or not ("false").

withtitlerow

false

trueOptionalIndicator if the result grid shows a horizontal scroll
bar.

hscroll

false

trueOptionalWhen switching the FIXLAYOUTproperty to value
"true" then internally the result grid is arranged in

fixlayout

falsea way that the area always determines its size out

Special Development Topics248

DBQUERY

of the width specification of the DBCOLUMN
controls. The browser does not look into the column
contents in order to try to optimise the size of the
area - but always follows thewidth and height that
you define.

OptionalDirect style manipulation of the table style which
surrounds the table cells inside the result grid.

backgroundstyle

DBFILTER Properties

The DBFILTER tag is the typical tag that is placed inside a DBQUERY definition. The DBFILTER
defines one filter criterion with its binding to a table column (property querycolumn). The para-
meter values are added dynamically to theWHERE clause of the SQL query prior to report execu-
tion. The SQL statement is defined within the query property of the DBQUERY control.

DB Binding

ObligatoryName of the column within the reports query the DBFILTER
control is bound to. With this name user input will be added

querycolumn

to the SQL statement on report execution. The SQL statement
is defined in the property QUERY of the DBQUERY control.
Example: If you define the SQL statement like "SELECT
STREET, ZIPCODE, TOWN FROM ADDRESS" in property
QUERYof theDBQUERY control you can specify any column
name of table "ADDRESS" here.

OptionalYoumay have a table in that the valid values for this filter are
kept. In that case you can provide for a filter value help by

valuehelptable

using the properties VALUEHELPTABLE and
VALUEHELPCOLUMN. Input the name of the table here.

OptionalYoumay have a table in that the valid values for this filter are
kept. In that case you can provide for a filter value help by

valuehelpcolumn

using the properties VALUEHELPTABLE and
VALUEHELPCOLUMN. Input the name of the column here.

trueOptionalFlag that indicates that the value help is coming from the
query result set.

usequeryforvaluehelp

false

OptionalAlias of the database columncolumnalias

Filter Name

OptionalName of the filter.labelname

OptionalText ID (filter name) for the multi language management.labeltextid

100OptionalWidth of the filter name in pixels or as percentage value.labelwidth

120

249Special Development Topics

DBQUERY

140

160

180

200

50%

100%

Filter Input

100OptionalWidth of the filter input field in pixels or as percentage value.fieldwidth

120

140

160

180

200

50%

100%

5OptionalWidth of the filter input field in amount of characters.
FIELDWIDTH and FIELDLENGTH should not be used
together.

fieldlength

10

15

20

int-value

intOptionalSpecifies the data type of the filter. As a consequence the fields
inside the grid of the value help popup are checking the data

fielddatatype

floatduring input (e.g. if the DATATYPE is "int", it is not allowed

date
to enter alphabetic characters) and adds a logic to transfer the
data into various output formats (e.g. if the DATATYPE is
"date", the date is formatted into the right date format). In
addition these fields have a standard "value help" popup
dialog for some data types (e.g. if the DATATYPE is "date"
then automatically a date input dialog pops up if invoking
"value help").

trueOptionalFlagwhich indicates if the alphabetic characters input should
be converted to upper case if necessary. Default is "false".

fielduppercase

false

Special Development Topics250

DBQUERY

OptionalExplicit style information for the input field. Example: if you
want the text to be right aligned, define "text-align: right".

fieldstyle

OptionalName that is used to identify the online help page to be
opened if the user presses the F1-key inside the FIELD control.
Please refer to chapter "OnlineHelpManagement" for details.

fieldhelpid

Comment

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

DBCOLUMN Properties

The DBCOLUMN tag is the typical tag that is placed inside a DBQUERY definition. The DB-
COLUMN definition defines one column within the result grid. It is bound to a name (column
name or column alias) in the result set of the report. This result set is defined by the query property
inside the DBQUERY definition.

DB Binding

ObligatoryName of the table column the DBCOLUMN control refers
to. Please pay attention: If you use column aliases in the SQL

column

query (refer to property QUERY of the DBQUERY control)
you must specify the column alias here. Example: If you use
the query "Select CUSTNAME as CN FROM CUSTOMER"
you have to use column alias "CN" here. "

Appearance

OptionalName of the title cell of the grid column.name

OptionalText ID (name) for the multi language management.textid

100OptionalWidth of the column in pixels or as percentage value.width

120

140

160

180

200

50%

100%

0.5OptionalWidth in centimetres the column should occupy inside the
PDF document.

widthpdf

0.75

251Special Development Topics

DBQUERY

1

2

5

10

leftOptionalHorizontal alignment of the text within the column. Default
is "left", other values are "center" or "right".

align

center

right

trueOptionalFlag which indicates whether the text displayed inside the
column if formatted asHTML text or as straight text. Default
is "false".

straighttext

false

trueOptionalFlag which indicates if spaces inside the text of a cell should
be converted in "non-breakable-spaces". In general HTML

convertspaces

falseconverts several appearances of space-characters ("blanks")
into one space-character. If you set CONVERTSPACES to
"true", this default behaviour is switched off.

trueOptionalIf a text does not fit into a cell then it is cut off. If you set
CUTTEXTLINE to "false", it will be broken - followingHTML

cuttextline

falserules for breaking text. Therefore the cell will contain more
than one text line.

dateOptionalData type of the content of the column. Therefore certain
rendering rules are applied (e.g. in case of "date", a
YYYYMMDD date is converted into a proper date format).

datatype

float

int

long

time

timestamp

color

xs:decimal

xs:double

xs:date

xs:dateTime

xs:time

Special Development Topics252

DBQUERY

N n.n

P n.n

string n

L

xs:boolean

xs:byte

xs:short

Comment

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

DBPARAMSINGLEVALUE Properties

The DBPARAMSINGLEVALUE tag is the typical tag that is placed inside a DBQUERY definition.
The DBPARAMSINGLEVALUE defines a filter criterion. In contrast to the DBFILTER tag, it is not
visualized within the DBQUERY control and is therefore not accessible/changeable by the user.

Example: a table "ADDRESS" may have a column "COUNTRY". You want to restrict the user to
see German addresses only. In this case, use a DBPARAMSINGLEVALUE with the property
querycolumn set to "COUNTRY", operator set to "=" (equal), and value set to "DE".

Basic

ObligatoryName of the column the DBPARAMSINGLEVALUE control refers
to. This name is used to add the parameters value to the SQL

querycolumn

statement prior the reports execution. The SQL statement is defined
in the property QUERY of the DBQUERY control.

=ObligatoryName of the operator to use to append the value toWHERE clause
of the SQL statement.

operator

!=

~

!~

>

>=

<

253Special Development Topics

DBQUERY

<=

NULL

NOT NULL

ObligatoryThe parameter value. You can either enter a fixed value or you can
specify the namewith that a value can be looked up from the session
context when executing the report.

value

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

DBPARAMDOUBLEVALUE Properties

The DBPARAMDOUBLEVALUE tag is very similar to DBPARAMSINGLEVALUE. The only dif-
ference is that you can specify operators that work on two operands (e.g. "is between").

Basic

ObligatoryName of the column the DBPARAMSINGLEVALUE control refers to. This
name is used to add the parameters value to the SQL statement prior the

querycolumn

reports execution. The SQL statement is defined in the property QUERY
of the DBQUERY control.

Example:

If you define the SQL statement like "SELECT STREET, ZIPCODE, TOWN
FROM ADDRESS" in property QUERY of the DBQUERY control you can
specify any column name of table "ADDRESS" here.

>>ObligatoryName of the operator to use to append the value to WHERE clause of the
SQL statement. The operator specified here must work on two operands.
At the moment "between" and "not between" are supported.

operator

!gt;>

ObligatoryThe first parameter value. You can either enter a fixed value or you can
specify the namewith that a value can be looked up from the session context
when executing the report.

value1

Example:

If you enter "$FROMDATE$" here, the DBPARAMSINGLEVALUEwill try
to lookup a value bound to the name "FROMDATE" from the session
context. An exception will be raised if nothing is found.

ObligatoryThe second parameter value.value2

OptionalComment without any effect on rendering and behaviour. The comment
is shown in the layout editor's tree view.

comment

Special Development Topics254

DBQUERY

Variant Management

The DBQUERY control provides for so-called query variants. Within a variant, you can save e.g.
an often-used filter criteria combination. If you do not want to use variants at all, you just set the
property personalizable to false.

Persistence

The variant data is stored in the local file system.

Key

The key of a report variant is consists of:

■ the name of the web application,
■ the name of the project that contains the HTML page,
■ the name of the HTML page that contains the DBQUERY control,
■ the actual user logged on (read from the session context on save),
■ the name of the variant (specified in the save pop-up).

As the name of the page (that embeds the DBQUERY control) is part of the variant key, you can
have multiple pages within one Application Designer project - each with its own variant set. But:
as a consequence, variants do not work inside the Layout Painter. Reason: if you preview the XML
layout definition, the editor first removes the temporary HTML page (name starts with
"ZZZZZZZZ") of a former preview. In a second step, it creates a new page - with a different name
(the name contains a timestamp). This means: inside the Layout Painter, you never view the same
HTML page twice. If you work with the published HTML page, variants will work properly.

Create/Change/Remove

To create a variant, you just save your current input (filter criteria or settings inside the variant
properties pop-up). To save a variant, choose the save icon to the right of the result grid. To change
an existing variant, open the variant (with input field to the right of the report title label), apply
your changes (either by changing the filter criteria or within the variant properties pop-up - icon
above the save icon) and save them. To remove a variant, choose the remove icon (icon below save
icon), select one or more variants and choose ok.

255Special Development Topics

DBQUERY

PDF Generation

The DBQUERY control provides for a generation of a PDF document. The generation is invoked
when choosing the "PDF" icon to the right of the result grid. The document is displayed inside a
pop-up. It contains the following data:

■ Report title (header line).
■ Timestamp of the reports execution (footer).
■ Table with used filter criteria (body).
■ Table with result of the report (body).

How to do the PDF generation on your own?

The DBQUERYInfo class provides for a constructorwhere you canpass an implementation of interface
IDBQUERYGeneratePDFRequestListener. This implementation is called with the method
generatePDFAndDisplayDocument if the "PDF" icon is chosen. The current data of the DBQUERY
is passed within that call. For details, see the JavaDoc documentation of interface
IDBQUERYGeneratePDFRequestListener and class DBQUERYInfo (both from package
com.softwareag.cis.server.util).

Special Development Topics256

DBQUERY

62 DBFIELD

■ Example .. 258
■ Properties .. 263

257

The DBFIELD control represents a filter criterion of a database query. It provides for a value help
that is read from the database, a convenient way to append the filter criterion to the SELECT
statement, and the ability to reflect a “to-one” dependency between filter criteria.

Example

The following image shows an example in which two DBFIELD controls are used for the filter
criteria "Country" and "State" within a simple business partner report. Both fields provide for
value help. The field "State" is defined to be dependent on "Country". As a consequence, the list
of valid values for "State" is country-specific. The result shows partners that reside in state "New
York" of the United States of America.

The following screenshots demonstrate the dependency between country and state. The first pop-
up shows the valid states if country is set to "US". The second pop-up shows the valid states in
Germany.

Special Development Topics258

DBFIELD

Have a look at the XML layout definition:

259Special Development Topics

DBFIELD

<rowarea name="Search Criteria">
 <itr>
 <label name="Country" width="60">
 </label>
 <dbfield valueprop="dBFieldCountry" querycolumn="COUNTRY" ↩
datasource="addressdb"
 valuehelptable="COUNTRY" valuehelpcolumn="ID">
 </dbfield>
 </itr>
 <itr>
 <label name="State" width="60">
 </label>
 <dbfield valueprop="dBFieldState" querycolumn="STATE" datasource="addressdb"
 valuehelptable="STATE" valuehelpcolumn="ID" ↩
valuehelpcolumncond="COUNTRY">
 </dbfield>
 <hdist width="100%">
 </hdist>
 <button name="Execute" method="onExecute">
 </button>
 </itr>
</rowarea>
<rowarea name="Result" height="140">
 <itr height="100%">
 <textgridsss2 griddataprop="result" rowcount="5" width="100%">
 <column name="Title" property="TITLE" width="50">
 </column>
 <column name="Last Name" property="LASTNAME" width="100">
 </column>
 <column name="First Name" property="FIRSTNAME" width="100">
 </column>
 <column name="Country" property="COUNTRY" width="50">
 </column>
 <column name="State" property="STATE" width="100%">
 </column>
 </textgridsss2>
 </itr>
</rowarea>

The corresponding adapter code is:

// This class is a generated one.

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.server.util.DBFIELDInfo;
import com.softwareag.cis.server.util.DBQUERYDataObject;
import com.softwareag.cis.server.util.DBQUERYInfo;

Special Development Topics260

DBFIELD

import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBTEXTGRIDLine;
import com.softwareag.cis.server.util.DBUtil;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBCondition;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;
import com.softwareag.cis.server.util.IDBQUERYContextMenuRequestListener;
import com.softwareag.cis.server.util.IDBQUERYGeneratePDFRequestListener;
import com.softwareag.cis.server.util.IDBQUERYOptimizer;
import com.softwareag.cis.server.util.MENUNODEInfo;
import com.softwareag.cis.server.util.TREECollection;

public class DBFIELD_Adapter
 extends Adapter
 implements IDBQUERYConnectionProvider, IDBDemoAdapter
{
 private Connection m_connection;

 // property >dBFieldCountry<
 DBFIELDInfo m_dBFieldCountry = new DBFIELDInfo(this);
 public DBFIELDInfo getDBFieldCountry() { return m_dBFieldCountry; }

 // property >dBFieldState<
 DBFIELDInfo m_dBFieldState = new DBFIELDInfo(this, m_dBFieldCountry);
 public DBFIELDInfo getDBFieldState() { return m_dBFieldState; }

 // property >result<
 DBTEXTGRIDCollection m_result = new DBTEXTGRIDCollection();
 public DBTEXTGRIDCollection getResult() { return m_result; }
 public void setResult(DBTEXTGRIDCollection value) { m_result = value; }
...
 // --
 // inner classes
 // --
 /** class used for a simple connection management. */
 public class ConnectionProvider
 implements IDBQUERYConnectionProvider
 {
 public Connection getDBConnection(String datasource)
 {
 try
 {
 Class.forName("org.hsqldb.jdbcDriver");
 return DriverManager.getConnection("jdbc:hsqldb:hsql://localhost", ↩
"sa", "");
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
 }

261Special Development Topics

DBFIELD

...
 public void onExecute()
 {
 try
 {
 StringBuffer sb = new StringBuffer();
 sb.append("SELECT * FROM BUSINESSPARTNER INNER JOIN ADDRESS ON ↩
BUSINESSPARTNER.ID =
 ADDRESS.BUSINESSPARTNERID");
 DBUtil.addToQuery(sb, new IDBCondition[] { m_dBFieldCountry, ↩
m_dBFieldState}, true);
 String dataSource = m_dBFieldCountry.getDataSource();
 Connection con = getDBConnection(dataSource);
 ResultSet rs = con.createStatement().executeQuery(sb.toString());
 m_result.initWithResultSet(rs);
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
...
}

Both properties dBFieldCountry and dBFieldState are of type DBFIELDInfo (from the package
com.softwareag.cis.server.util). The DBFIELDInfo implements (like allDB controls) the interface
IDBCondition (com.softwareag.cis.server.util). With class DBUtil
(com.softwareag.cis.server.util), you can append the values of the filter criteria to the SELECT
statement in a convenient way. See the JavaDoc documentation of class DBUtil for details.

The DBFIELDInfo class does not open a database connection on its own (same to all DB controls).
The embedding adapter provides for an implementation of interface IDBQUERYConnectionProvider
(com.softwareag.cis.server.util) when creating a DBFIELDInfo object. The interface method
getDBConnection is called once - at the first time the DBFIELDInfo accesses the database. There
are no updates (insert/update/delete) done with this connection. As the DBFIELDInfo does not
open the connection, it does not care about closing the connection.

You see that the object DBFIELDInfo dBFieldCountry is passed in the constructor of DBFIELDInfo
dBFieldState. With this, you define DBFIELDINfo dBFieldState depending on dBFieldCountry.
The list of valid states only shows items that belongs to the country actually set.

For displaying the result, the class DBTEXTGRIDCollection (from the package
com.softwareag.cis.server.util) is used. This class extends TEXTGRIDCollection by the ability
to initialise the collection with a result set (java.sql.ResultSet). For each line of the result set, it
creates an object of class DBTEXTGRIDLine (package com.softwareag.cis.server.util). Class
DBTEXTGRIDLine implements the interface IDynamicAccess. With this, “normal” text grid controls
can be used to visualize the data of the DBTEXTGRIDCollection.

Special Development Topics262

DBFIELD

Properties

Basic

ObligatoryProperty that returns a DBFIELDInfo-instance. This instance
provides for the value help read from database as well as for a
convenient way to append the filter value to query string.

valueprop

ObligatoryName of the column in the query to that the filter criteria is
belongs to. This column may differ from the value help

querycolumn

table/column (properties VALUEHELPTABLE,
VALUEHELPCOLUMN). This name is used to build a SQL
string in method "toSQLString".

ObligatoryLogical identifier of the data source to use. This name is passed
to the connection provider in method
"IDBQUERYConnectionProvider.getDBConnection".

datasource

ObligatoryName of the table from there the list of valid values can be read.valuehelptable

OptionalName of the column from there the list of valid values can be
read.

valuehelpcolumn

OptionalName of a columnwhere an additional description of the valid
values is stored. The name must identify a column inside the
"value help table" (property VALUEHELPTABLE).

valuehelpcolumndescr

OptionalName of the column inside the "value help table" (property
VALUEHELPTABLE) that defines the "to-one" dependency to
another DBFIELD control.

valuehelpcolumncond

OptionalWidth of DBFIELD in pixels or as percentage value.width

OptionalWidth of DBFIELD in amount of characters. WIDTH and
LENGTH should not be used together.

length

intOptionalBy default, the DBFIELD is managing its content as a string. By
the DATATYPE property, force the type of the data that is

datatype

floatrepresented. As a consequence the DBFIELD is checking the

date
data during input (e.g. if the DATATYPE is "int", it is not
allowed to enter alphabetic characters) and adds a logic to
transfer the data into various output formats (e.g. if the
DATATYPE is "date", the date is formatted into the right date
format).

screenOptionalFlushing behaviour, please view "Common Rules" for detailsflush

server

trueOptionalIf set to "true", the DBFIELD will not be accessible for input. It
is just used as an output field.

displayonly

false

OptionalExplicit Alignmentalign

263Special Development Topics

DBFIELD

OptionalExplicit Alignmentvalign

OptionalNumber of columns occupied by this control.colspan

OptionalNumber of rows occupied by this control.rowspan

OptionalExplicit style information passed to the DBFIELD.fieldstyle

Example: if you want the text inside the DBFIELD to be right
aligned, define "text-align: right".

OptionalIdentifier that is used for building the URL of the online help
page. Please refer to "Online Help Management" for details.

helpid

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Special Development Topics264

DBFIELD

63 DBCOMBO

■ Example .. 266
■ Properties .. 269

265

The DBCOMBO control represents a filter criterion of a database query. It provides for a value
help that is read from the database and a convenient way to append the filter criterion to the SE-
LECT statement. In contrast to DBFIELD, the valid values are read from the database when the
page is loaded.

Example

The following image shows an example inwhich aDBCOMBOcontrol is used for the filter criterion
"Country" within a simple business partner report. The combo box options are read from table
"COUNTRY" when the page is loaded.

Have a look at the XML layout definition:

<rowarea name="Filter Criteria">
 <itr>
 <label name="Country" width="80">
 </label>
 <dbcombo valueprop="dBComboCountry" querycolumn="COUNTRY" ↩
datasource="addressdb"
 valuehelptable="COUNTRY" valuehelpcolumn="ID" width="80">
 </dbcombo>
 <hdist width="100%">
 </hdist>
 <button name="Execute" method="onExecute">
 </button>
 </itr>
</rowarea>
<vdist>
</vdist>
<rowarea name="Result" height="140">
 <itr height="100%">
 <textgridsss2 griddataprop="result" rowcount="5" width="100%">

Special Development Topics266

DBCOMBO

 <column name="Title" property="TITLE" width="50">
 </column>
 <column name="Last Name" property="LASTNAME" width="100">
 </column>
 <column name="First Name" property="FIRSTNAME" width="100">
 </column>
 <column name="Country" property="COUNTRY" width="50">
 </column>
 <column name="State" property="STATE" width="100%">
 </column>
 </textgridsss2>
 </itr>
</rowarea>

The corresponding adapter code is:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.DBCOMBOInfo;
import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBUtil;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBCondition;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;

// This class is a generated one.

public class DBCOMBO_Adapter
 extends Adapter
 implements IDBQUERYConnectionProvider, IDBDemoAdapter
{
 // --
 // members
 // --

 private int m_port = 9001;
 private int m_dbPort = 9001;
 private Connection m_connection;
...
 DBQUERYStartDatabaseThread m_startDemoDBThread;
 // --
 // property access
 // --

 // property >port<
 public void setPort(int value) { m_port = value;}

267Special Development Topics

DBCOMBO

 public int getPort(){ return m_port;}

 // property >dbComboCountry<
 DBCOMBOInfo m_dBComboCountry = new DBCOMBOInfo(this);
 public DBCOMBOInfo getDBComboCountry() { return m_dBComboCountry; }

 // property >result<
 DBTEXTGRIDCollection m_result = new DBTEXTGRIDCollection();
 public DBTEXTGRIDCollection getResult() { return m_result; }
 public void setResult(DBTEXTGRIDCollection value) { m_result = value; }
...
 // --
 // public adapter methods
 // --

 public Connection getDBConnection(String datasource)
 {
 try
 {
 if (m_connection == null)
 {
 String jdbcDriverClassName = "org.hsqldb.jdbcDriver";
 String jdbcUrl = "jdbc:hsqldb:hsql://localhost:"+m_dbPort;
 String user = "sa";
 String password = "";
 Class.forName(jdbcDriverClassName);
 m_connection = DriverManager.getConnection(jdbcUrl, user, password);
 }
 return m_connection;
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
...
 public void onExecute()
 {
 try
 {
 StringBuffer sb = new StringBuffer();
 sb.append("SELECT * FROM BUSINESSPARTNER INNER JOIN ADDRESS ON ↩
BUSINESSPARTNER.ID =
 ADDRESS.BUSINESSPARTNERID");
 DBUtil.addToQuery(sb, new IDBCondition[] { m_dBComboCountry }, true);
 String dataSource = m_dBComboCountry.getDataSource();
 Connection con = getDBConnection(dataSource);
 ResultSet rs = con.createStatement().executeQuery(sb.toString());
 m_result.initWithResultSet(rs);
 }
 catch (Exception exc)
 {

Special Development Topics268

DBCOMBO

 throw new DelegateError(exc);
 }
 }
}

The property dBComboCountry is of type DBCOMBOInfo (from the package
com.softwareag.cis.server.util). The DBCOMBOInfo implements (like allDB controls) the interface
IDBCondition (com.softwareag.cis.server.util). With class DBUtil
(com.softwareag.cis.server.util), you can append values of the filter criteria to the SELECT
statement in a convenient way. See the JavaDoc documentation of class DBUtil for details.

The DBCOMBOInfo class does not open a database connection on its own (same to all DB controls).
The embedding adapter provides for an implementation of interface IDBQUERYConnectionProvider
(com.softwareag.cis.server.util) when creating a DBCOMBOInfo object. The interface method
getDBConnection is called once - at the first time the DBCOMBOInfo has to access the database. There
are no updates (insert/update/delete) done with this connection. As the DBCOMBOInfo does not
open the connection, it does not care about closing the connection.

For displaying the result, the class DBTEXTGRIDCollection (from the package
com.softwareag.cis.server.util) is used. This class extends TEXTGRIDCollection by the ability
to initialise the collection with a result set (java.sql.ResultSet). For each line of the result set, it
creates an object of class DBTEXTGRIDLine (package com.softwareag.cis.server.util). Class
DBTEXTGRIDLine implements the interface IDynamicAccess. With this, “normal” text grid controls
can be used to visualize the data of the DBTEXTGRIDCollection.

Properties

Basic

ObligatoryProperty that returns a DBCOMBOInfo -instance. This
instance provides for the combo box options that are read

valueprop

from database as well as for a convenient way to append the
filter value to query string.

ObligatoryName of the column in the query to that the filter criteria is
belongs to. This column may differ from the value help

querycolumn

table/column (properties VALUEHELPTABLE,
VALUEHELPCOLUMN). This name is used to build a SQL
string in method "toSQLString".

ObligatoryLogical identifier of the data source to use. This name is
passed to the connection provider in method
"IDBQUERYConnectionProvider.getDBConnection".

datasource

ObligatoryName of the table from there the list of valid values can be
read.

valuehelptable

ObligatoryName of the column from there the list of valid values can
be read.

valuehelpcolumn

269Special Development Topics

DBCOMBO

OptionalName of a column where an additional description of the
valid values is stored. The name must identify a column
inside the "value help table" (property VALUEHELPTABLE).

valuehelpcolumndescr

OptionalInteger value that defines the number of lines being
displayed. If the SIZE is set to "1", the selection is displayed

size

as combo box. If it is set to ">1", it is displayed as multi line
selection.

screenOptionalFlushing behaviour\; please view "CommonRules" for detailsflush

server

OptionalIf set to "true", theDBCOMBOwill not be accessible for input.
It is just used as an output field.

displayonly

100OptionalWidth of DBCOMBO in pixels or as percentage value.width

120

140

160

180

200

50%

100%

leftOptionalExplicit Alignmentalign

center

right

topOptionalExplicit Alignmentvalign

middle

bottom

1OptionalNumber of columns occupied by this control.colspan

2

3

4

5

50

Special Development Topics270

DBCOMBO

int-value

1OptionalNumber of rows occupied by this control.rowspan

2

3

4

5

50

int-value

OptionalExplicit style information passed to the DBCOMBO.combostyle

Example: if you want the text inside the DBCOMBO to be
right aligned, define "text-align: right".

OptionalIdentifier that is used for building the URL of the online help
page. Please refer to "Online Help Management" for details.

helpid

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

271Special Development Topics

DBCOMBO

272

64 DBSELECTOPTION

■ Example .. 274
■ Properties .. 279

273

The DBSELECTOPTION control manages a single filter criterion of a database query. In contrast
to the DBFIELD control, it allows the input of several values in a convenient way. Each value is
assigned to an operator (e.g. “equals”, “like”, “between”, etc.). The operator-value pairs are linked
with a logical “OR” (represented by the string "||"). You can either directly input a string of oper-
ator-value pairs into the DBSELECTOPTION, or you invoke the value help. The resulting pop-up
displays a grid of operator-value pairs. Maybe this still sounds rather difficult - wait for the fol-
lowing example.

The grid pop-up itself offers a value help for entering appropriate values. The list of valid values
(with an optional description) is read from database. The value help table/column (that contains
the valid values) can differ from the table on which the query is executed.

Example

The following image shows an example in which the DBSELECTOPTIONmanages the filter cri-
terion "Title" within a simple business partner report. The report shows partners that have a title
equal to "Dr" or equal to "Mr".

On value help request, the following pop-up appears:

Special Development Topics274

DBSELECTOPTION

The first columndefines the operator, the second the filter value. The value help of the first column
returns a list of valid operators. The second column has value help, too (see properties
valuehelptable and valuehelpcolumn). The following pop-up shows the list of valid values read
from the table "TITLE".

275Special Development Topics

DBSELECTOPTION

Have a look at the XML layout definition:

<rowarea name="Filter Criteria">
<itr>

<label name="Title" width="60">
</label>
<dbselectoption querycolumn="TITLE" datasource="addressdb"

valueprop="dBSelectOptionTitle" valuehelptable="TITLE"
valuehelpcolumn="ID">

</dbselectoption>
<hdist width="100%">
</hdist>
<button name="Execute" method="onExecute">
</button>

</itr>
</rowarea>
<vdist>
</vdist>
<rowarea name="Result" height="140">

<itr height="100%">
<textgridsss2 griddataprop="result" rowcount="5" width="100%">

<column name="Title" property="TITLE" width="20%">
</column>
<column name="Last Name" property="LASTNAME" width="40%">
</column>
<column name="First Name" property="FIRSTNAME" width="40%">
</column>

Special Development Topics276

DBSELECTOPTION

</textgridsss2>
</itr>

</rowarea>

The corresponding adapter code is:

package com.softwareag.cis.test20;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.DBSELECTOPTIONInfo;
import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBUtil;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBCondition;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;

public class DBSELECTOPTIONDemoAdapter
 extends Adapter
 implements IDBQUERYConnectionProvider
{
 // --
 // members
 // --

 Connection m_connection;

 // --
 // property access
 // --

 // property >dbselectOptionTitle<
 DBSELECTOPTIONInfo m_dBSelectOptionTitle = new DBSELECTOPTIONInfo(this, this);
 public DBSELECTOPTIONInfo getDBSelectOptionTitle() { return ↩
m_dBSelectOptionTitle; }

 // property >result<
 DBTEXTGRIDCollection m_result = new DBTEXTGRIDCollection();
 public DBTEXTGRIDCollection getResult() { return m_result; }
 public void setResult(DBTEXTGRIDCollection value) { m_result = value; }

 // --
 // public adapter methods
 // --

 /** implementation of interface IDBQUERYConnectionProvider */
 public Connection getDBConnection(String datasource)
 {

277Special Development Topics

DBSELECTOPTION

 if (m_connection == null)
 {
 try
 {
 Class.forName("org.hsqldb.jdbcDriver");
 m_connection = DriverManager.getConnection("jdbc:hsqldb:hsql://localhost", ↩
"sa", "");
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
 return m_connection;
 }

 /** executes the query with current values of the filter criteria "Title". */
 public void onExecute()
 {
 try
 {
 StringBuffer sb = new StringBuffer();
 sb.append("SELECT * FROM BUSINESSPARTNER");
 DBUtil.addToQuery(sb, new IDBCondition[] { m_dBSelectOptionTitle}, true);

 String dataSource = m_dBSelectOptionTitle.getDataSource();
 Connection con = getDBConnection(dataSource);
 ResultSet rs = con.createStatement().executeQuery(sb.toString());
 m_result.initWithResultSet(rs);
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
}

The adapter property dbselectOptionTitle is of type DBSELECTOPTIONInfo (from the package
com.softwareag.cis.server.util). The DBSELECTOPTIONInfo implements (like all DB controls)
the interface IDBCondition (com.softwareag.cis.server.util). On report execution, you may
use the class DBUtil (com.softwareag.cis.server.util) to append the value of property
dbselectOptionTitle to the SQL query. See the JavaDoc documentation of class
DBSELECTOPTIONInfo and DBUtil for details.

The DBSELECTOPTIONInfo class does not open a database connection on its own (same to all DB
controls). The embedding adapter provides for an implementation of interface
IDBQUERYConnectionProvider (com.softwareag.cis.server.util) when creating a
DBSELECTOPTIONInfo object. The interface method getDBConnection is called once - at the first
time the DBSELECTOPTIONInfo has to access the database.

Special Development Topics278

DBSELECTOPTION

There are no updates (insert/update/delete) donewith this connection. As the DBSELECTOPTIONInfo
does not open the connection, it does not care about closing the connection.

For displaying the result, the class DBTEXTGRIDCollection (from the package
com.softwareag.cis.server.util) is used. This class extends TEXTGRIDCollection by the ability
to initialise the collection with a result set (java.sql.ResultSet). For each line of the result set, it
creates an object of class DBTEXTGRIDLine (package com.softwareag.cis.server.util). Class
DBTEXTGRIDLine implements the interface IDynamicAccess. With this, “normal” text grid controls
can be used to visualize the data of the DBTEXTGRIDCollection.

Properties

Basic

ObligatoryName of the column in the query to that the filter criteria
belongs to. This column may differ from the value help

querycolumn

table/column (properties VALUEHELPTABLE,
VALUEHELPCOLUMN). This name is used to build a SQL
string in method "toSQLString".

ObligatoryLogical identifier of the data source to use. This name is passed
to the connection provider in method
"IDBQUERYConnectionProvider.getDBConnection".

datasource

ObligatoryProperty that returns a DBSELECTOPTIONInfo -instance. This
instance provides for the value help read from database as well

valueprop

as for a convenient way to append the filter value to query
string.

OptionalName of the table from where the valid values of the
DBSELECTOPTION control are stored.

valuehelptable

OptionalName of the column from where the valid values of the
DBSELECTOPTION control are stored.

valuehelpcolumn

OptionalName of a columnwhere an additional description of the valid
values is stored. The column must be inside the "value help
table" (property VALUEHELPTABLE).

valuehelpcolumndescr

OptionalWidth of DBFIELD in pixels or as percentage value.width

OptionalWidth of DBFIELD in amount of characters. WIDTH and
LENGTH should not be used together.

length

intOptionalThe DBSELECTOPTION control manages multiple
"operator-value"-pairs.

datatype

float
By default, each is managed as string. By the DATATYPE
property, force the type of the data that is represented. As a date
consequence the DBFIELD controls inside the
"operator-value"-popup is checking the data during input (e.g.
if the DATATYPE is "int", it is not allowed to enter alphabetic

279Special Development Topics

DBSELECTOPTION

characters) and adds a logic to transfer the data into various
output formats (e.g. if the DATATYPE is "date", the date is
formatted into the right date format). In addition it displays a
standard "value help" popup dialog for some data types (e.g. if
the DATATYPE is "date" then automatically a date input dialog
pops up if invoking "value help").

screenOptionalFlushing behaviour, please view "Common Rules" for detailsflush

server

trueOptionalIf set to "true", the DBFIELD will not be accessible for input. It
is just used as an output field.

displayonly

false

OptionalExplicit Alignmentalign

OptionalExplicit Alignmentvalign

OptionalNumber of columns occupied by this control.colspan

OptionalNumber of rows occupied by this control.rowspan

OptionalExplicit style information passed to the DBFIELD.fieldstyle

Example: if you want the text inside the DBFIELD to be right
aligned, define "text-align: right".

OptionalIdentifier that is used for building the URL of the online help
page. Please refer to "Online Help Management" for details.

helpid

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Special Development Topics280

DBSELECTOPTION

65 DBCHECKBOX

■ Example .. 282
■ Properties .. 284

281

The DBCHECKBOX control represents a filter criterion of a database query of type Boolean.
Compared to a “normal” CHECKBOX control, the only benefit is the convenientway of appending
the filter criterion to the SELECT statement.

Example

The following image shows an example inwhich the DBCHECKBOX is used for the filter criterion
"Female":

Have a look at the XML layout definition:

<rowarea name="Filter Criteria">
<itr>

<label name="Female" width="80">
</label>
<dbcheckbox valueprop="dBCheckboxFemale" querycolumn="FEMALE">
</dbcheckbox>
<hdist width="100%">
</hdist>
<button name="Execute" method="onExecute">
</button>

</itr>
</rowarea>
<vdist>
</vdist>
<rowarea name="Result" height="140">

<itr height="100%">
<textgridsss2 griddataprop="result" rowcount="5" width="100%">

<column name="Title" property="TITLE" width="50">
</column>
<column name="Last Name" property="LASTNAME" width="100">
</column>

Special Development Topics282

DBCHECKBOX

<column name="First Name" property="FIRSTNAME" width="100">
</column>
<column name="Country" property="COUNTRY" width="50">
</column>
<column name="State" property="STATE" width="100%">
</column>

</textgridsss2>
</itr>

</rowarea>

The corresponding adapter code is:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.DBCHECKBOXInfo;
import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBUtil;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBCondition;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;

// This class is a generated one.

public class DBCHECKBOX_Adapter
 extends Adapter
 implements IDBQUERYConnectionProvider, IDBDemoAdapter
{
 // --
 // members
 // --
...
 // property >dBCheckboxFemale<
 DBCHECKBOXInfo m_dBCheckboxFemale = new DBCHECKBOXInfo();
 public DBCHECKBOXInfo getDBCheckboxFemale() { return m_dBCheckboxFemale; }

 // property >result<
 DBTEXTGRIDCollection m_result = new DBTEXTGRIDCollection();
 public DBTEXTGRIDCollection getResult() { return m_result; }
 public void setResult(DBTEXTGRIDCollection value) { m_result = value; }
...
 // --
 // public adapter methods
 // --
...
 public void onExecute()
 {
 try
 {
 StringBuffer sb = new StringBuffer();

283Special Development Topics

DBCHECKBOX

 sb.append("SELECT * FROM BUSINESSPARTNER INNER JOIN ADDRESS ON ↩
BUSINESSPARTNER.ID =
 ADDRESS.BUSINESSPARTNERID");
 DBUtil.addToQuery(sb, new IDBCondition[] { m_dBCheckboxFemale }, true);
 Class.forName("org.hsqldb.jdbcDriver");
 Connection con = ↩
DriverManager.getConnection("jdbc:hsqldb:hsql://localhost", "sa", "");
 ResultSet rs = con.createStatement().executeQuery(sb.toString());
 m_result.initWithResultSet(rs);
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }

The adapter property dBCheckboxFemale is of type DBCHECKBOXInfo (from the package
com.softwareag.cis.server.util). This class has a property value that is manipulated by the
DBCHECKBOX control. The DBCHECKBOXInfo implements (like all DB controls) the interface
IDBCondition (com.softwareag.cis.server.util). With class DBUtil
(com.softwareag.cis.server.util) there is a convenient way to append the filter value to the
SQL query. See the JavaDoc documentation of class DBCHECKBOXInfo and DBUtil for details.

For displaying the result, the class DBTEXTGRIDCollection (from the package
com.softwareag.cis.server.util) is used. This class extends TEXTGRIDCollection by the ability
to initialise the collection with a result set (java.sql.ResultSet). For each line of the result set, it
creates an object of class DBTEXTGRIDLine (package com.softwareag.cis.server.util). Class
DBTEXTGRIDLine implements the interface IDynamicAccess. With this, “normal” text grid controls
can be used to visualize the data of the DBTEXTGRIDCollection.

Properties

Basic

ObligatoryProperty that returns aDBCHECKBOXInfo-instance.With classDBUtil
this instance provides for a convenient way to append the filter value
to query string.

valueprop

ObligatoryName of the column in the query to that the filter criteria belongs to.
This column may differ from the value help table/column (properties

querycolumn

VALUEHELPTABLE, VALUEHELPCOLUMN). The name is used to
build a SQL string in method "toSQLString".

screenOptionalFlush reaction as described in "Common Rules"flush

server

Special Development Topics284

DBCHECKBOX

trueOptionalIf set to "true", the displayed checkbox can not be changed. The default
is "false".

displayonly

false

100OptionalWidth of the control in pixels or as percentage value. This does not
change the size of the "box" of the CHECKBOX, but the size of the
column in which the CHECKBOX is located.

width

120

140

160

180

200

50%

100%

leftOptionalExplicit Alignmentalign

center

right

topOptionalExplicit Alignmentvalign

middle

bottom

1OptionalNumber of columns occupied by this control.colspan

2

3

4

5

50

int-value

1OptionalNumber of rows occupied by this control.rowspan

2

3

4

285Special Development Topics

DBCHECKBOX

5

50

int-value

OptionalIdentifier that is used for building the URL of the online help page.
Please refer to "Online Help Management" for details.

helpid

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Special Development Topics286

DBCHECKBOX

66 DBRADIOBUTTON

■ Example .. 288
■ Properties .. 291

287

The DBRADIOBUTTON control represents a filter criterion of a database query. Compared to a
“normal” RADIOBUTTON control, the only benefit is the convenient way of appending the filter
criterion to the SELECT statement.

Example

The following image shows an example in which the DBRADIOBUTTON is used for the filter
criterion "Country":

Have a look at the XML layout definition:

<rowarea name="Filter Criteria">
<itr>

<label name="Country" width="80">
</label>

<dbradiobutton valueprop="dBRadioButtonSex" querycolumn="COUNTRY" value="DE">
</dbradiobutton>
<hdist>
</hdist>
<label name="DE" asplaintext="true">
</label>
<hdist width="40">
</hdist>

<dbradiobutton valueprop="dBRadioButtonSex" querycolumn="COUNTRY" value="UK">
</dbradiobutton>
<hdist>
</hdist>
<label name="UK" asplaintext="true">
</label>
<hdist width="40">
</hdist>

<dbradiobutton valueprop="dBRadioButtonSex" querycolumn="COUNTRY" value="US">

Special Development Topics288

DBRADIOBUTTON

</dbradiobutton>
<hdist>
</hdist>
<label name="US" asplaintext="true">
</label>
<hdist>
</hdist>
<hdist width="100%">
</hdist>
<button name="Execute" method="onExecute">
</button>

</itr>
</rowarea>
<vdist>
</vdist>
<rowarea name="Result" height="140">

<itr height="100%">
<textgridsss2 griddataprop="result" rowcount="5" width="100%">

<column name="Title" property="TITLE" width="50">
</column>
<column name="Last Name" property="LASTNAME" width="100">
</column>
<column name="First Name" property="FIRSTNAME" width="100">
</column>
<column name="Country" property="COUNTRY" width="50">
</column>
<column name="State" property="STATE" width="100%">
</column>

</textgridsss2>
</itr>

</rowarea>

The corresponding adapter code is:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;

import com.softwareag.cis.server.Adapter;
import com.softwareag.cis.server.util.DBRADIOBUTTONInfo;
import com.softwareag.cis.server.util.DBTEXTGRIDCollection;
import com.softwareag.cis.server.util.DBUtil;
import com.softwareag.cis.server.util.DelegateError;
import com.softwareag.cis.server.util.IDBCondition;
import com.softwareag.cis.server.util.IDBQUERYConnectionProvider;

// This class is a generated one.

public class DBRadioButton_Adapter
 extends Adapter
 implements IDBQUERYConnectionProvider, IDBDemoAdapter
{

289Special Development Topics

DBRADIOBUTTON

...
 // property >dBRadioButtonSex<
 DBRADIOBUTTONInfo m_dBRadioButtonSex = new DBRADIOBUTTONInfo();
 public DBRADIOBUTTONInfo getDBRadioButtonSex() { return m_dBRadioButtonSex; }

 // property >result<
 DBTEXTGRIDCollection m_result = new DBTEXTGRIDCollection();
 public DBTEXTGRIDCollection getResult() { return m_result; }
 public void setResult(DBTEXTGRIDCollection value) { m_result = value; }
...
 public void onExecute()
 {
 try
 {
 StringBuffer sb = new StringBuffer();
 sb.append("SELECT * FROM BUSINESSPARTNER INNER JOIN ADDRESS ON ↩
BUSINESSPARTNER.ID =
 ADDRESS.BUSINESSPARTNERID");
 DBUtil.addToQuery(sb, new IDBCondition[] { m_dBRadioButtonSex }, true);
 Class.forName("org.hsqldb.jdbcDriver");
 Connection con = ↩
DriverManager.getConnection("jdbc:hsqldb:hsql://localhost", "sa", "");
 ResultSet rs = con.createStatement().executeQuery(sb.toString());
 m_result.initWithResultSet(rs);
 }
 catch (Exception exc)
 {
 throw new DelegateError(exc);
 }
 }
...
}

The adapter property dBRadioButtonCountry is of type DBRADIOBUTTONInfo (from the package
com.softwareag.cis.server.util). This class has a property value that is manipulated by the
DBRADIOBUTTONcontrol. The DBRADIOBUTTONInfo implements (like all DB controls) the interface
IDBCondition (com.softwareag.cis.server.util). With class DBUtil
(com.softwareag.cis.server.util), there is a convenient way to append the filter value to the
SQL query. See the JavaDoc documentation of class DBRADIOBUTTONInfo and DBUtil for details.

For displaying the result, the class DBTEXTGRIDCollection (from the package
com.softwareag.cis.server.util) is used. This class extends TEXTGRIDCollection by the ability
to initialise the collection with a result set (java.sql.ResultSet). For each line of the result set, it
creates an object of class DBTEXTGRIDLine (package com.softwareag.cis.server.util). Class
DBTEXTGRIDLine implements the interface IDynamicAccess. With this, “normal” text grid controls
can be used to visualize the data of the DBTEXTGRIDCollection.

Special Development Topics290

DBRADIOBUTTON

Properties

Basic

ObligatoryProperty that returns a DBRADIOBUTTONInfo -instance. With class
DBUtil this instance provides for a convenientway to append the filter
value to query string.

valueprop

ObligatoryName of the column in the query to that the filter criteria belongs to.
This column may differ from the value help table/column (properties

querycolumn

VALUEHELPTABLE, VALUEHELPCOLUMN). The name is used to
build a SQL string in method "toSQLString".

ObligatoryValue that represents this instance of the DBRADIOBUTTON control.value

The value is set into the adapter property that is defined by the
VALUEPROP attribute when the user clicks onto the control. - Vice
versa: the control is switched to "marked" when the adapter property
holds the value defined.

trueOptionalIf set to "true", the displayed checkbox can not be changed. The default
is "false".

displayonly

false

screenOptionalFlush reaction as described in "Common Rules"flush

server

100OptionalWidth of the control in pixels or as percentage value. This does not
change the size of the "box" of the CHECKBOX, but the size of the
column in which the CHECKBOX is located.

width

120

140

160

180

200

50%

100%

leftOptionalExplicit Alignmentalign

center

right

topOptionalExplicit Alignmentvalign

291Special Development Topics

DBRADIOBUTTON

middle

bottom

1OptionalNumber of columns occupied by this control.colspan

2

3

4

5

50

int-value

1OptionalNumber of rows occupied by this control.rowspan

2

3

4

5

50

int-value

OptionalIdentifier that is used for building the URL of the online help page.
Please refer to "Online Help Management" for details.

helpid

OptionalComment without any effect on rendering and behaviour. The
comment is shown in the layout editor's tree view.

comment

Special Development Topics292

DBRADIOBUTTON

XI Personalization of Pages

The information provided in this part is organized under the following headings:

Goal

Customized Layout - Concepts

Customized Layout - Example

Customized Proposals - Concepts

Customized Proposals - Example

293

294

67 Goal

Developers of standard enterprise applications are confrontedwith the problem that pages of their
application need to be customized to a certain degree by their customers. Customizing includes
two aspects:

■ Customized Layout
A standard page typically offers more features and fields than are required by the specific cus-
tomer. Consequently, application developers have to make their pages flexible in order to allow
the switching off/on of certain information and functions on the screen.

■ Customized Proposals
Certain input parameters of your application can be proposed automatically to the user. If, for
example, your application deals with currencies and you have a default currency to be used,
this default currency can be proposed as input automaticallywithout having the user to provide
input all the time.

This is what we call the “personalization” of pages.

Depending on the size and structure of a specific customer application, the personalization may
be done several times. Maybe one page looks different in each business unit of the customer, and
maybe one page even looks different within several departments of one business unit.

The goal of the personalization framework is to keep - as much as possible - work away from the
application development being responsible for the layout of the page and for the development of
corresponding adapter objects. The focus of adapter objects clearly is to pass information from the
user input into the business logic behind the adapters, and vice versa.

The framework described in this part is an offer - it bases on a generalized filter model for inform-
ation passed between adapter and page. The framework is an optional offer to be used by you -
you also can build up own frameworks or do not use personalization at all. If not used, there are
no negative impacts in means of performance and resource consumption.

295

The framework is released in several steps. The focus of the first step (which is described here) is
to control the visibility of controls on pages and to automate the proposal of input values. This
part first introduces the concepts for a customized layout (with an example), and then the concepts
for customized proposals (also with an example). Both concepts can be used independently from
one another.

Special Development Topics296

Goal

68 Customized Layout - Concepts

■ Overview ... 298
■ Dynamic Controls .. 300
■ Using Filters ... 301
■ Personalization Filter .. 302
■ Personalization Scenario Sequence .. 302
■ Maintaining Personalization Data .. 303
■ Persisting Personalization Data .. 303

297

Overview

Let us approach the framework from the result side. The following screen is a simple address
maintenance:

You see that in the right top corner there is a special icon directly to left of the close icon. This
“personalization icon” is not always visible. It is only visible, if a certain parameter is defined inside
the session context (e.g. when an administrator logs on).

When choosing the icon, a window appears:

Special Development Topics298

Customized Layout - Concepts

The window shows on the left a tree of personalizable aspects. When selecting a node, the aspect
can be edited on the right. In our example, we set the "Street (2)" aspect and the "Check ZIP Code"
aspect to be invisible. Make sure that the personalization is done within a certain scenario (in this
example, the scenario has the name "customer").

After choosing the Save and Close button, the address page now looks as follows:

299Special Development Topics

Customized Layout - Concepts

You see that two lines have disappeared. This definition and the corresponding screen layout are
now automatically valid for all users that work in the personalization scenario "customer". Maybe
other users work in a different scenario and thus see a different screen layout.

The framework basics will be explained below, and the implementation of the above address ex-
ample will be shown in detail.

Dynamic Controls

The basis of all personalization is the possibility to define a control's rendering and behavior dy-
namically via the adapter. Each BUTTONcontrol, for example, provides for a visiblepropproperty
by which the adapter can specify whether the button is shown or not.

The control of visibility was much extended for personalization purposes. It is possible to control
visibility for all major controls including:

■ TR and ITR rows.
■ ROWAREA, ROWTABLE0, and other container controls.
■ BUTTON, ICON, MENUBUTTON, FIELD, and other input controls

By defining the visibleprop properties in the controls, you can -without using the next framework
parts - already control the page layout dynamically in a detailed way. It is up to you to specify
where and how to use the visibleprop definitions. Sometimes it is useful to use the definitions
on single elements (e.g. BUTTON controls). Sometimes it is useful to define the visibility on row

Special Development Topics300

Customized Layout - Concepts

level (ITR, TR control). If inside your screen there is the combination of “label and field in one
row”, then it makes sense to define visibility on row level.

Using Filters

Having defined the visibleprop definitions inside the page, the question now is how to provide
for the corresponding property values at runtime.

The concept of filters offers a flexible and efficient way to provide for the values in front of the
adapter logic - without even letting the adapter logic know about.

After the Application Designer framework has collected the property values from the adapter, it
passes them to a filter thatmay be assigned to an adapter. The filter can nowmanipulate the values.
This means it can

301Special Development Topics

Customized Layout - Concepts

■ change the value of properties,
■ add properties that are not provided for by the adapter.

What does this mean for personalization? It means that the adapter does not need to implement
all the visibleprop properties on its own but can “outsource” this task to a generic filter.

Personalization Filter

The personalization filter is a concrete filter implementation that is responsible for providing
personalization data values. On the one hand, the personalization filter is kept well apart from
the Application Designer framework; i.e. you will not find any specific personalization aspects
inside the base framework ofApplicationDesigner (e.g. there are no personalizationmethods inside
the Adapter class). On the other hand, it is tightly integrated into the Application Designer
framework - being a concrete implementation of open interfaces that are offered.

The main aspects of the personalization filter are:

■ Inside the page layout definition, a developer decides at design time which properties are con-
trolled by the filter. These properties are called “managed properties” in the following text.

■ At runtime, the filter provides for the property values depending on so-called personalization
scenarios: values for themanaged properties are kept with reference to a scenario in a persistent
storage. This means that the property values are either stored in an SQL database or in the file
system.

■ At runtime (e.g. when a user logs on to an application system), the application defines the active
personalization scenario(s) in the session context. Depending on the scenario(s), the right filter
information is read from persistent storage and used by the filter.

Personalization Scenario Sequence

It is possible to define a sequence of personalization scenarios at runtime.Maybe a user is assigned
after having logged on to the scenarios "Department 12", "Business Unit1". In this case, the person-
alization filter first tries to find filter information for "Department 12"; if filter information is not
defined, then it tries to find filter information for "Business Unit1".

Consequently, you can set up a flexible way to try to provide for themost detailed personalization
definition for specific screens - and referencing to a general personalization definition (or none at
all) for other screens.

Special Development Topics302

Customized Layout - Concepts

Maintaining Personalization Data

Personalization data ismaintained through a specific page. Themaintenance pagemay be accessed
directly from a personalized page via a certain control - a certain icon in the title bar. This icon is
only visible when a certain context parameter is set. It should not be visible during normal user
sessions, but should only be available for administrative sessions.

Persisting Personalization Data

The personalization data is stored in the local file system, inside the directory /pers of anApplication
Designer project.

Caution: Filter information is runtime information, not design time information. Thismeans:
filter information is not part, for example, of a WAR file that you deliver, it is maintained
within a delivered system by your customer.

303Special Development Topics

Customized Layout - Concepts

304

69 Customized Layout - Example

■ XML Layout .. 306
■ Java Adapter Code .. 308

305

Let us take the address maintenance example that was shown in the previous section.

XML Layout

The XML layout looks as follows:

<page model="CustomizedLayoutAdapter">
 <titlebar name="Address Edit">
 <persedit persprop="paInfo">
 </persedit>
 </titlebar>
 <header withdistance="false">
 <button name="Save" method="onSave">
 </button>
 </header>
 <pagebody>
 <rowarea name="Address" visibleprop="adressAreaVisible">
 <itr visibleprop="firstNameVisible">
 <label name="First Name" width="100">
 </label>
 <field valueprop="firstName" width="200">
 </field>
 </itr>
 <itr visibleprop="lastNameVisible">
 <label name="Last Name" width="100">
 </label>
 <field valueprop="lastName" width="200">
 </field>
 </itr>
 <itr visibleprop="streetVisible">
 <label name="Street" width="100">
 </label>
 <field valueprop="street" width="300">
 </field>
 </itr>

Special Development Topics306

Customized Layout - Example

 <itr visibleprop="street2Visible">
 <label name="Street (2)" width="100">
 </label>
 <field valueprop="street2" width="300">
 </field>
 </itr>
 <itr visibleprop="zipCodeVisible">
 <label name="Zip Code" width="100">
 </label>
 <field valueprop="zipCode" width="100">
 </field>
 </itr>
 <itr visibleprop="townVisible">
 <label name="Town" width="100">
 </label>
 <field valueprop="town" width="200">
 </field>
 </itr>
 <itr visibleprop="countryVisible">
 <label name="Country" width="100">
 </label>
 <field valueprop="country" width="50">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr visibleprop="checkZipCodeVisible">
 <hdist width="100">
 </hdist>
 <button name="Check ZIP Code" method="onCheckZIPCode">
 </button>
 </itr>
 </rowarea>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
 <personalization>
 <persproposal property="town" comment="Town">
 </persproposal>
 <persproposal property="country" comment="Country">
 </persproposal>
 <persfilter property="adressAreaVisible" group="Areas" comment="Address Area">
 </persfilter>
 <persfilter property="firstNameVisible" group="Address fields" comment="First ↩
Name">
 </persfilter>
 <persfilter property="lastNameVisible" group="Address fields" comment="Last ↩
Name">
 </persfilter>
 <persfilter property="streetVisible" group="Address fields" comment="Street">
 </persfilter>
 <persfilter property="street2Visible" group="Address fields" comment="Street ↩

307Special Development Topics

Customized Layout - Example

(2)">
 </persfilter>
 <persfilter property="zipCodeVisible" group="Address fields" comment="Zip ↩
Code">
 </persfilter>
 <persfilter property="townVisible" group="Address fields" comment="Town">
 </persfilter>
 <persfilter property="countryVisible" group="Address fields" ↩
comment="Country">
 </persfilter>
 <persfilter property="checkZipCodeVisible" group="Address functions"
 comment="Check ZIP Code">
 </persfilter>
 </personalization>
</page>

What are the personalization aspects of the XML layout?

■ In the TITLEBAR definition, you see a special PERSEDIT control. This control is rendered as an
icon. It is only available if the session context indicates an administrative session (details will
be provided later). When choosing this icon, the personalization maintenance appears. The
control references to a PERSPROP property paInfo.

■ In the various ITR definitions (each ITR holding a label and a field), there are references to
VISIBLEPROP properties.

■ In the PERSONALIZATION section, there is a list of PERSFILTER definitions. Each definition
indicates a personalizable property and holds some additional information: a comment and a
group. The group is used to structure the properties in a tree inside the personalization main-
tenance page. The comment is used as text for the property. Since personalization is not an end-
user task but an administrative task, group and comment are not language-dependent and
should be kept in the default language of your application.

Java Adapter Code

The adapter code is:

// This class is a generated one.

import java.util.Iterator;
import java.util.Properties;

import com.softwareag.cis.pers.Personalization;
import com.softwareag.cis.pers.PersonalizationAdapterInfo;
import com.softwareag.cis.pers.PersonalizationScenarioSequence;
import com.softwareag.cis.server.Adapter;

public class CustomizedLayoutAdapter

Special Development Topics308

Customized Layout - Example

 extends Adapter
{
 PersonalizationAdapterInfo m_paInfo = new PersonalizationAdapterInfo(this);
 String m_lastName;
 String m_firstName;
 String m_street;
 String m_street2;
 String m_zipCode;
 String m_town;
 String m_country;

 public PersonalizationAdapterInfo getPaInfo() { return m_paInfo; }

 public String getLastName() { return m_lastName; }
 public void setLastName(String value) { m_lastName = value; }

 public String getFirstName() { return m_firstName; }
 public void setFirstName(String value) { m_firstName = value; }

 public String getStreet() { return m_street; }
 public void setStreet(String value) { m_street = value; }

 public String getStreet2() { return m_street2; }
 public void setStreet2(String value) { m_street2 = value; }

 public String getZipCode() { return m_zipCode; }
 public void setZipCode(String value) { m_zipCode = value; }

 public String getTown() { return m_town; }
 public void setTown(String value) { m_town = value; }

 public String getCountry() { return m_country; }
 public void setCountry(String value) { m_country = value; }
...
 /** initialisation - called when creating this instance*/
 public void init()
 {
 // switch maintenance on
 Personalization.switchPersonalizationMaintenanceOn(findSessionContext());
 // set up scenarios
 PersonalizationScenarioSequence pss = new ↩
PersonalizationScenarioSequence("customer");
 Personalization.defineScenarioSequenceInContext(findSessionContext(),pss);
 // transfer proposal values
 m_paInfo.applyProposals(this);
 }
...
}

You see that personalization does not affect the adapter too much:

309Special Development Topics

Customized Layout - Example

■ There is amember (m_paInfo) of type PersonalizationAdapterInfo that is made accessible via
getPAInfo(). This property passes certain information about personalization to the PERSEDIT
control inside the page.

■ In the init()method, there is the call of the method
Personalization.switchPersonalization-MaintenanceOn(). As parameter, the session context
is passed. This method specifies in a certain session context parameter that the current session
is a session in which you want to maintain personalization data. It should normally be called
during a certain logon page of your application inwhich you decide by certain logon parameters
that now the administrative user logs on in a special administrative mode.

■ In the init()method, there is the setting of the current personalization scenario. In the example,
the scenario sequence contains one scenario: the "customer" scenario. Scenarios are just names
that are used as references into the personalization at runtime. The setting of the scenario se-
quence normally should happen also as part of the logon procedure to your application.

All the rest (the filtering of properties, the calling of the maintenance pop-up, the storing of per-
sonalization data) is done automatically. You, the developer, do not have to take care of it.

Special Development Topics310

Customized Layout - Example

70 Customized Proposals - Concepts

■ Overview ... 312
■ Properties Used for Proposals .. 314
■ Personalization Scenario, Personalization Scenario Sequence ... 314

311

Overview

The previous addressmaintenance example also provides the option tomaintain proposal values.
When choosing the personalization icon, a window appears. The second tab area of this window
looks as follows:

Let us assume that the user typically enters addresses of inhabitants of the German city Berlin -
maybe the user works in an office for public administration. In this case, the user prefers that the
screen proposes the following values:

Special Development Topics312

Customized Proposals - Concepts

The next time the address maintenance will be started, it will automatically provide the adequate
values:

313Special Development Topics

Customized Proposals - Concepts

Properties Used for Proposals

The concept behind proposals is fairly simple:

■ Proposal values are kept for a certain personalization scenario.
■ Proposal values can be taken over into a certain adapter in two ways:

■ Automated Transfer
Call an apply()method when initialising an adapter. In the apply()method, the proposed
values are automatically transferred into the properties of an adapter by serving the set
property methods or going through the IDynamicAccess interface.

■ Application Transfer
The application can ask for the proposed values and take over the values itself.

In both ways, the application is responsible for triggering the data transfer. There is no “secret”
setting of data that is not under the control of your application.

Personalization Scenario, Personalization Scenario Sequence

Personalization scenarios and personalization scenario sequences are managed in the same way
as they are used in the Customized Layout section.

Special Development Topics314

Customized Proposals - Concepts

71 Customized Proposals - Example

■ XML Layout .. 316
■ Java Adapter Code .. 317
■ Directly Accessing Proposal Values ... 318

315

The address maintenance example from the beginning of this part is now shown in detail. Since
it is an extension of the previous example for the customized layout, only the additions are shown
that are responsible for the management of proposal values.

XML Layout

The XML layout definition is:

<page model="CustomizedLayoutAdapter">
<titlebar name="Address Edit">

<persedit persprop="paInfo">
</persedit>

</titlebar>
<header withdistance="false">

<button name="Save" method="onSave">
</button>

</header>
<pagebody>

<rowarea name="Address" visibleprop="adressAreaVisible">
...
<itr visibleprop="townVisible">

<label name="Town" width="100">
</label>
<field valueprop="town" width="200">
</field>

</itr>
<itr visibleprop="countryVisible">

<label name="Country" width="100">
</label>
<field valueprop="country" width="50">
</field>

</itr>
...

</rowarea>
</pagebody>
<statusbar withdistance="false">
</statusbar>
<personalization>

<persproposal property="town" comment="Town">
</persproposal>
<persproposal property="country" comment="Country">
</persproposal>
...
</persfilter>

</personalization>
</page>

Special Development Topics316

Customized Proposals - Example

Below the PERSONALIZATION tag, you see two PERSPROPOSAL tags. Each tag holds the fol-
lowing information:

■ The name of the property that should be proposed.
■ A comment.

Java Adapter Code

The adapter code is:

// This class is a generated one.
...

public class CustomizedLayoutAdapter
 extends Adapter
{
 PersonalizationAdapterInfo m_paInfo = new PersonalizationAdapterInfo(this);
 ...

 ...

 public String getTown() { return m_town; }
 public void setTown(String value) { m_town = value; }

 public String getCountry() { return m_country; }
 public void setCountry(String value) { m_country = value; }
...
 public void init()
 {
 // switch maintenance on
 Personalization.switchPersonalizationMaintenanceOn(findSessionContext());
 // set up scenarios
 PersonalizationScenarioSequence pss = new ↩
PersonalizationScenarioSequence("customer");
 Personalization.defineScenarioSequenceInContext(findSessionContext(),pss);
 // transfer proposal values
 m_paInfo.applyProposals(this);
 }
...
}

You see that inside the init()method, the method applyProposals(...) is called. This method
is responsible for transferring the proposal values into the corresponding properties of the adapter.
For the transfer, just the normal methods are used: i.e. properties are either set via their corres-
ponding set method or by calling the IDynamicAccess interface.

317Special Development Topics

Customized Proposals - Example

It is completely up to you where to embed the applyProposals(...) into your adapter code. To
put it into the init()method is just one example. Maybe you want to make the decision whether
to propose values or not dependent on some other conditions inside your program: when you
create a new address, you want to propose values - however, when you edit an existing address,
you do not want to propose values.

Directly Accessing Proposal Values

You can also access proposal values directly. The PersonalizationAdapterInfo class offers a
corresponding method getAllProposalValues() to do so:

public void onDirectAccess()
{

Properties props = m_paInfo.getAllProposalValues();
if (props == null)
{

outputMessage(MT_ERROR,"No proposal values are available");
return;

}
Iterator keys = props.keySet().iterator();
while (keys.hasNext())
{

String key = (String)keys.next();
String value = props.getProperty(key);
System.out.println("Key/Value: " + key + "/" + value);

}
}

Special Development Topics318

Customized Proposals - Example

XII
■ 72 SWT Client ... 321
■ 73 Security Aspects ... 325
■ 74 Portal Integration ... 327
■ 75 Using Layout Painter Extensions .. 333
■ 76 Microsoft Silverlight Integration ... 351
■ 77 Integrating Application Designer Controls in HTML Pages .. 373
■ 78 Automated Testing ... 383

319

320

72 SWT Client

The SWT client (SWTBasedGUI), which is started via JavaWeb Start, can be used as an alternative
to the browser. Its benefits are:

■ better performance
■ better security since JavaScript is not used

When using the SWT client, you have to keep in mind the following limitations:

■ Supported Platform
The SWT client can only be used with Java Web Start on Windows.

■ CSS
The SWT client cannot use cascading style sheets (CSS). However, the SWT client has its own
skin maintenance. Using the Configuration link at the top of the screen, you can create your
own skins in a comfortable way.

■ Background Images
The SWT client only supports background images for the following controls:

ITR
COLTABLE0
ROWAREA
COLAREA
PAGEBODY
TEXTOUT
BUTTON

■ Inline Style
The SWT client only supports the following style parameters:

text-align
background-color
color

321

font-family (italic and bold)
font-size

■ JSP Integration
Not possible in the SWT client.

■ Applet Integration
Not possible in the SWT client.

■ ABSFOLDER
Can only be used in ABS controls.

Example:

<rowabsarea width="100%" height="400">
<absfolder>

<absdynicon valueprop="iconName" xprop="x" yprop="y"
zprop="z" heightprop="height" widthprop="width">

</absdynicon>
</absfolder>

</rowabsarea>

■ CLIENTTREE
The property withplusminus has no effect. The icons are always printed.

The CLIENTTREE control draws dotted lines between the nodes.
■ IHTML
The size cannot be calculated. The developer has to set the size.

■ ROWTABAREA/COLTABAREA
The property leftindent has no effect.

The different properties for the borders have no effect. A border is always drawn.
■ TEXTGRID2/TEXTGRIDSSS2
The SWT client always prints empty lines, the property minapparentrows has no effect.

It is not possible to place icons in the column headers.

Tooltips for the column headers are not available.

Tooltips for the columns (celltitleprop) are not available.

Percentage sizing: the column rendering is not the same as in the browser.
■ PINEDIT
Not possible in the SWT client.

Special Development Topics322

SWT Client

■ rowspan
The rowspan property has no effect.

323Special Development Topics

SWT Client

324

73 Security Aspects

With regard to AJAX, you have to keep in mind the following security risks:

1. Code Injection
The main risk is the so-called “code injection”.

To prevent code injection, all data needs to be checked on the server side. For this purpose,
Application Designer offers the IRequestDataConverter interface. This filter enables you to
convert values coming from the user interface client: each data request contains values of
changed properties. Each property value that is transferred into the Application Designer
server may be passed through an instance of this interface.

Background: in certain scenarios youmay want to make sure that certain values are not passed
into your application system. For example, for reasons of security, you do not want to enable
inline scripting or inline SQL statements; therefore, you want to make sure that a user cannot
input JavaScript statements or SQL statements. The cisconfig.xml file contains the parameter
requestdataconverter. In order to make use of your data converter, specify the name of your
data converter with this parameter. Example:

<cisconfig .. requestdataconverter="com.your.RequestDataConverter" />

2. Faked Client
The second risk is a so-called “faked client” which sends bad HTTP sequences, hoping that
there is no server-side validation.

In this case, the responsibility is on the developer's side. Application Designer offers a client-
side validation: the regular expression /d/d/d/d as the validation for a field; the field expects
4 decimal digits which will be validated on the client side. A faked client does not provide any
validation. Thus, it depends on the developer to implement a server-side validation as well.
One approach is to assume that all data that arrives from the client side might be wrong, even
the data that is returned from a combo box. Therefore, if data might be wrong, it is important
to double-check it on the server side.

325

326

74 Portal Integration

■ Integrating Pages as Portlets ... 328
■ Session Management and Portlet API Support .. 330
■ Portlet Integration and AJAX .. 331

327

The Portlet API defines the way a portal server assembles pages out of content fragments that are
provided by different applications. The Portlet API was published in its 1.0 version in October
2003 as JSR (Java SpecificationRequest) 168. See the JavaCommunity Process pages at http://jcp.org/
for details. It is very important to point out the Portlet 1.0 Errata document which was published
in May 2005 and which is an addition to the 1.0 standard. See http://jcp.org/aboutJava/communi-
typrocess/maintenance/jsr168/Portlet1.0-ERRATA.html for details.

Application Designer provides an integration into portal servers that is based on the Portlet 1.0
standard. It allows you to easily import any page that is built using Application Designer into
portal scenarios, i.e. the page can directly be used as part of a portal page.

The portal integration features are:

■ Any page can be wrapped into a portal without coding effort.
■ Parameters can be passed into the page by the normal URL extension (“&name=value”), by a
POST or GET request.

■ The application has full read and write access to the portlet request (and by this to the portlet
session and to the portlet context) and thus can share and exchange data with other portlets.

■ The deployment units (.war files) built by Application Designer are directly usable as input by
portlet servers.

Integrating Pages as Portlets

There is one generic portlet that comes with Application Designer. The name is:

com.softwareag.cis.server.PortletWrapper

The portlet allows you to pass portlet preferences:

■ PAGEURL - this is the name of the Application Designer page that is opened inside the portlet.
The format is "/project/page.html".

■ NORMWIDTH/NORMHEIGHT - thewidth and height (as px/pt/%value) that the portlet should
have when opened in normal size. The default is 400 for width and 300 for height.

■ MAXWIDTH/MAXHEIGHT - the width and height (as px/pt/% value) that the portlet should
have when opened in maximum size. The default is 100% both for width and height.

The specification of the portlet preferences needs to be done following the description of your
portlet server.

Example:whendeploying anApplicationDesigner to the portlet reference implementation (Apache
Pluto), then the portlets are registered in the portletentityregistry.xml file in the following way:

Special Development Topics328

Portal Integration

http://jcp.org/
http://jcp.org/aboutJava/communityprocess/maintenance/jsr168/Portlet1.0-ERRATA.html
http://jcp.org/aboutJava/communityprocess/maintenance/jsr168/Portlet1.0-ERRATA.html

 <application id="8">
 <definition-id>cis</definition-id>
 <portlet id="1">
 <definition-id>cis.PortletWrapper</definition-id>
 <preferences>
 <pref-name>PAGEURL</pref-name>
 ↩
<pref-value>/HTMLBasedGUI/com.softwareag.cis.admin.serverlog.html</pref-value>
 <read-only>true</read-only>
 </preferences>
 <preferences>
 <pref-name>MAXHEIGHT</pref-name>
 <pref-value>600</pref-value>
 <read-only>true</read-only>
 </preferences>
 <preferences>
 <pref-name>MAXWIDTH</pref-name>
 <pref-value>100%</pref-value>
 <read-only>true</read-only>
 </preferences>
 </portlet>
 <portlet id="2">
 <definition-id>cis.PortletWrapper</definition-id>
 <preferences>
 <pref-name>PAGEURL</pref-name>
 ↩
<pref-value>/HTMLBasedGUI/com.softwareag.cis.workplace.logon.html</pref-value>
 <read-only>true</read-only>
 </preferences>
 <preferences>
 <pref-name>MAXHEIGHT</pref-name>
 <pref-value>600</pref-value>
 <read-only>true</read-only>
 </preferences>
 <preferences>
 <pref-name>MAXWIDTH</pref-name>
 <pref-value>100%</pref-value>
 <read-only>true</read-only>
 </preferences>
 </portlet>
 <portlet id="3">
 <definition-id>cis.PortletWrapper</definition-id>
 <preferences>
 <pref-name>PAGEURL</pref-name>
 <pref-value>/HTMLBasedGUI/xyz.html</pref-value>
 <read-only>true</read-only>
 </preferences>
 <preferences>
 <pref-name>MAXHEIGHT</pref-name>
 <pref-value>600</pref-value>
 <read-only>true</read-only>
 </preferences>

329Special Development Topics

Portal Integration

 <preferences>
 <pref-name>MAXWIDTH</pref-name>
 <pref-value>100%</pref-value>
 <read-only>true</read-only>
 </preferences>
 </portlet>
 </application>

The web application's name is cis. You see that per portlet a portlet definition is made, each
definition pointing to the PAGEURL that it should open and each definition specifying the
MAXHEIGHT and MAXWIDTH. In the Pluto environment the defined portlets can now be ad-
dressed from the portal page definition file (pageregistry.xml).

Session Management and Portlet API Support

The portal server is responsible for a certain sessionmanagement (and e.g. for single signon support
within this session management).

ApplicationDesigner comeswith its own sessionmanagement. The coupling is done in the follow-
ingway: the portal's sessionmanagement is seen as the "Master SessionManagement". Thismeans
that sessions are opened insideApplicationDesigner at the point of timewhen they are first accessed
through a portlet. The session ID that is used insideApplicationDesigner is the same as the session
ID that comes from the portal server. The session's info string is set to "Created by PortletWrapper".

In Application Designer, the server side counterpart of a page that runs inside the browser is also
called "adapter object".

From the adapter you can directly access the portlet request which comes from the portal server:

■ The method PortletWrapper.findPortletRequest(this) returns an object of type
PortletRequest.

From the portlet request you can navigate to

■ the portlet session
■ the portlet credential information
■ the portlet context

following the Portlet 1.0 specification.

Special Development Topics330

Portal Integration

Portlet Integration and AJAX

AJAX technology is used inside Application Designer to ensure that pages in the browser are not
permanently fully reloaded when a page communicates to its server side application.

Portal pages take a different approach: portal pages are always fully reloaded (fully means: all
portlets that are rendered inside one page are reloaded) whenever one portlet communicates to
its server side application.

The portlet integration of Application Designer takes this approach into account:

■ Whenever the Application Designer portlet exchanges information with its server side counter
part, NO reloading of thewhole portal page is done internally. You can imagine the portlet page
to be an "island" whose communication is decoupled from the portal server's page updating.

This ensures that complex pages requiring AJAX for supporting a high frontend interactivity are
also usable within a portal environment.

331Special Development Topics

Portal Integration

332

75 Using Layout Painter Extensions

■ Example .. 334
■ Details on the Extension ... 335
■ Extension Meets Pattern ... 345

333

You can place external tools into a dedicated area of the Layout Painter and get access to the XML
layout that is currently edited. Thus, you can build editor extensions which typically generate a
certain part of an XML layout which can then be added to the XML layout that is currently edited
in the Layout Painter.

For information on how to use the Layout Painter, see Layout Painter in theDevelopment Workplace
documentation.

Example

Using extensions, you can easily generate layout elements into an existing layout. This example
shows how to build SQL query screens. The result will look as follows:

The right side of the Layout Painter provides an additional extension area in which you can enter
database parameters and in which the columns of a selected table are shown. This extension is
used in the following way:

■ You specify a property name. This property namewill later occur in the names of the properties
for the generated layout elements.

Example: if you specify "sq" as the property name, the query field typemay point, for example,
to the property sq.query.type.

■ You specify the class name and the connection URL of the database to be accessed.

Note: There are also other ways of accessing a database, however, this example concen-
trates on Layout Painter extension concepts, not on database management.

Special Development Topics334

Using Layout Painter Extensions

■ The column definitions of the table are shown. You select the columns that are to appear in the
layout and choose the Create Layout button. As a result, a layout is generated into the page
body that reflects a query screen.

■ You can manipulate the query screen using the normal edit functionality of the Layout Painter.

Details on the Extension

The definition of an extension is simple:

■ You define the extension screen and adapter just as you define a normal Application Designer
page.

■ You add the interface IEditorExtension to the adapter implementation.
■ You register the extension in the cisconfig.xml file.

In the above example, the layout of the extension is defined in the following way:

<page model="com.softwareag.cis.editor.sql.SQLExtensionAdapter">
 <titlebar name="Connection to SQL Databases" withclose="false">
 </titlebar>
 <pagebody horizdist="false" pagebodystyle="background-color: #deebf7" ↩
paddingleft="5"
 paddingright="5" paddingtop="5" paddingbottom="5">
 <itr>
 <label name="Property" width="100">
 </label>
 <field valueprop="prefix" width="50">
 </field>
 </itr>
 <itr takefullwidth="true" fixlayout="true">
 <label name="Driver Class" width="100">
 </label>
 <field valueprop="driverClass" width="100%">
 </field>
 </itr>
 <itr takefullwidth="true" fixlayout="true">
 <label name="Connect. URL" width="100">
 </label>
 <field valueprop="connectionURL" width="100%">
 </field>
 </itr>
 <itr takefullwidth="true">
 <label name="Table" width="100">
 </label>
 <field valueprop="table" width="100%" ↩
popupmethod="openIdValueComboOrPopup">
 </field>

335Special Development Topics

Using Layout Painter Extensions

 </itr>
 <vdist height="5">
 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Show Table" method="onShowTable">
 </button>
 </itr>
 <vdist height="15">
 </vdist>
 <rowdynavis valueprop="tableVisible">
 <itr takefullwidth="true">
 <label name="Select all columns which you want to take over into ↩
your layout. Then press &quot;Create Layout&quot;." asplaintext="true">
 </label>
 </itr>
 <rowtablearea2 griddataprop="columns" rowcount="10" vscroll="auto"
 firstrowcolwidths="true">
 <repeat>
 <str valueprop="selected" showifempty="false">
 <checkbox valueprop="selected" flush="server" width="50" ↩
align="center">
 </checkbox>
 <checkbox valueprop="key" width="30" displayonly="true">
 </checkbox>
 <textout valueprop="column" width="50%">
 </textout>
 <textout valueprop="type" width="50%">
 </textout>
 </str>
 </repeat>
 </rowtablearea2>
 <vdist height="10">
 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Create Layout" method="onCreateLayout">
 </button>
 </itr>
 </rowdynavis>
 </pagebody>
 <statusbar withdistance="false">
 </statusbar>
</page>

The adapter implementation looks as follows:

Special Development Topics336

Using Layout Painter Extensions

package com.softwareag.cis.editor.sql;

// not shown: ...pacakge import statements...

public class SQLExtensionAdapter
 extends Adapter
 implements IEditorExtension
{
 // --
 // inner classes
 // --

 public class ColumnsItem
 {
 String m_column;
 public String getColumn() { return m_column; }
 public void setColumn(String value) { m_column = value; }

 boolean m_key;
 public boolean getKey() { return m_key; }
 public void setKey(boolean value) { m_key = value; }

 boolean m_selected;
 public boolean getSelected() { return m_selected; }
 public void setSelected(boolean value) { m_selected = value; }

 String m_type;
 public String getType() { return m_type; }
 public void setType(String value) { m_type = value; }
 }

 GRIDCollection m_columns = new GRIDCollection();
 public GRIDCollection getColumns() { return m_columns; }

 String m_connectionURL;
 public String getConnectionURL() { return m_connectionURL; }
 public void setConnectionURL(String value) { m_connectionURL = value; }

 String m_driverClass;
 public String getDriverClass() { return m_driverClass; }
 public void setDriverClass(String value) { m_driverClass = value; }

 String m_prefix;
 public String getPrefix() { return m_prefix; }
 public void setPrefix(String value) { m_prefix = value; }

 String m_table;
 public String getTable() { return m_table; }
 public void setTable(String value) { m_table = value; }

 boolean m_tableVisible = false;
 public boolean getTableVisible() { return m_tableVisible; }

337Special Development Topics

Using Layout Painter Extensions

 IExtensionPoint m_extensionPoint;

 // --
 // IEditorExtension
 // --

 public String buildPageURL()
 {
 return "/HTMLBasedGUI/cis.editor.SQLExtension";
 }

 public void init(IExtensionPoint extensionPoint)
 {
 m_extensionPoint = extensionPoint;
 }

 public void reactOnLoadDocument() {}
 public void reactOnUnloadDocument() {}

 // --
 // public usage
 // --

 public void init()
 {
 m_driverClass = "com.mysql.jdbc.Driver";
 m_connectionURL = ↩
"jdbc:mysql://localhost:3306/cispersist?user=root&password=admin";
 }

 /** */
 public ValidValueLine[] findValidValuesForTable()
 {
 return SQLUtil.findValidValuesForTable(m_driverClass,m_connectionURL);
 }

 /**
 * Read table meta data and transfer into columns list.
 */
 public void onShowTable()
 {
 if (m_prefix == null || m_prefix.trim().length() == 0)
 {
 outputMessage(MT_ERROR,"Please specify property first");
 return;
 }
 if (m_table == null || m_table.trim().length() == 0)
 {
 outputMessage(MT_ERROR,"Please specify table name first");
 return;
 }

Special Development Topics338

Using Layout Painter Extensions

 // fetch meta data from SQL and load into columns table
 try
 {
 SQLUtil.ColumnMetaData[] cols = ↩
SQLUtil.readMetaDataForTable(m_driverClass,m_connectionURL,m_table);
 m_columns.clear();
 for (int i=0; i<cols.length; i++)
 {
 ColumnsItem ci = new ColumnsItem();
 ci.setColumn(cols[i].m_column);
 ci.setType(cols[i].m_type);
 ci.setKey(cols[i].m_isKey);
 m_columns.add(ci);
 }
 m_tableVisible = true;
 }
 catch (Throwable t)
 {
 outputMessage(MT_ERROR,t.toString());
 }
 }

 /**
 * Create the layout out of the column definition and transfer the layout
 * into the page's XML.
 */
 public void onCreateLayout()
 {
 List selColumns = new ArrayList();
 Iterator iter = m_columns.iterator();
 while (iter.hasNext())
 {
 ColumnsItem ci = (ColumnsItem)iter.next();
 if (ci.getSelected() == true)
 selColumns.add(ci);
 }
 if (selColumns.size() == 0)
 {
 outputMessage(MT_ERROR,"Please select all columns for which layout ↩
elements should be generated");
 return;
 }
 // generate XML layout definition
 StringBuffer sb = new StringBuffer();
 iter = selColumns.iterator();
 while (iter.hasNext())
 {
 ColumnsItem ci = (ColumnsItem)iter.next();
 sb.append("<itr>");
 sb.append("<label name='"+ci.getColumn()+"' width='120'/>");
 sb.append("<field valueprop='"+m_prefix+".query."+ci.getColumn()+"' ↩
width='200'/>");

339Special Development Topics

Using Layout Painter Extensions

 sb.append("</itr>");
 }
 sb.append("<vdist height='2'/>");
 sb.append("<itr>");
 sb.append("<hdist width='120'/>");
 sb.append("<button name='Query' method='"+m_prefix+".onQuery'/>");
 sb.append("</itr>");
 sb.append("<vdist height='10'/>");
 sb.append("<itr takefullwidth='true'>");
 sb.append("<textgridsss2 width='100%' rowcount='15' ↩
griddataprop='"+m_prefix+".lines'>");
 iter = selColumns.iterator();
 while (iter.hasNext())
 {
 ColumnsItem ci = (ColumnsItem)iter.next();
 sb.append("<column name='"+ci.getColumn()+"' ↩
property='"+ci.getColumn()+"' width='120'/>");
 }
 sb.append("</textgridsss2>");
 sb.append("</itr>");
 // pass created XML into the page
 if (m_extensionPoint != null)
 {
 String layoutXML = m_extensionPoint.findXMLLayout();
 layoutXML = ↩
StringMgmt.replaceInString("</pagebody>",sb.toString()+"</pagebody>",layoutXML);
 m_extensionPoint.updateXMLLayout(layoutXML);
 }
 }

}

The building blocks of the code are:

■ The adapter implements the interface IEditorExtension and therefore needs to implement the
following methods:
■ buildPageURL
This method tells the extension framework the name of the extension's HTML page. The ex-
tension is registered at the server side. Therefore, the Layout Painter needs to know which
page it has to embed in the extension area.

■ init
This method is called by the Layout Painter. The most important parameter is the
IExtensionPointwhich is an abstraction of the Layout Painter environment. It allows access
to the inner parts of the Layout Painter such as the XML layout definition.

Special Development Topics340

Using Layout Painter Extensions

■ reactOnLoadDocument andreactOnUnloadDocument
These methods are called when the user opens or closes a layout definition inside the editor.

■ The adapter provides a method onShowTable()which accesses the database via an SQLUtil
class and fills the grid containing information on each column.

■ The adapter provides a method onCreateLayout(). This method creates a layout which is then
passed into the page's layout. For the generation of the layout, the following rules apply:
■ For each column that is selected, a query line is generated. The query line is an ITR line
holding a LABEL and a FIELD definition.

■ One TEXTGRIDSSS2 definition is created. For each selected column, one COLUMNdefinition
inside the grid is created.

The SQLUtil class provides generic functions for accessing the database:

package com.softwareag.cis.editor.sql;

import java.sql.Connection;
import java.sql.DatabaseMetaData;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;

import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.server.ServerLog;
import com.softwareag.cis.server.util.ValidValueLine;
import com.softwareag.cis.editor.sql.SQLExtensionAdapter.ColumnsItem;

/**
* Collection of static functions which manage the interface
* to the database.
*/
public class SQLUtil
{

// --
// inner classes
// --

public static class ColumnMetaData
{

public boolean m_isKey;
public String m_column;
public String m_type;

}

341Special Development Topics

Using Layout Painter Extensions

// --
// public usage
// --

/**
*/
public static Connection createConnection(String driverClassName,

String connectionURL)
throws Exception

{
Class.forName(driverClassName).newInstance();
Connection conn = DriverManager.getConnection(connectionURL);
return conn;

}

/**
*/
public static ColumnMetaData[] readMetaDataForTable(String driverClassName,

String connectionURL,
String table)

{
try
{

List columns = new ArrayList();
Connection conn = createConnection(driverClassName,connectionURL);
DatabaseMetaData dbmd = conn.getMetaData();
// get primary key and column info
Set primaryKeys = new HashSet();
ResultSet rs = dbmd.getPrimaryKeys(null,null,table);
while (rs.next())

primaryKeys.add(rs.getString("COLUMN_NAME"));
rs = dbmd.getColumns(null,null,table,null);
while (rs.next())
{

ColumnMetaData cmd = new ColumnMetaData();
cmd.m_column = rs.getString("COLUMN_NAME");
cmd.m_type = rs.getString("TYPE_NAME");
if (primaryKeys.contains(cmd.m_column))

cmd.m_isKey = true;
columns.add(cmd);

}
conn.close();
ColumnMetaData[] result = new ColumnMetaData[columns.size()];
columns.toArray(result);
return result;

}
catch (Throwable t)
{

throw new Error(t);
}

}

Special Development Topics342

Using Layout Painter Extensions

/**
*/
public static ValidValueLine[] findValidValuesForTable(String driverClassName,

String connectionURL)
{

try
{

Connection conn = createConnection(driverClassName,connectionURL);
DatabaseMetaData dbmd = conn.getMetaData();
// get primary key and column info
List vvs = new ArrayList();
ResultSet rs = dbmd.getTables(null,null,null,null);
while (rs.next())
{

ValidValueLine vv = new ValidValueLine(rs.getString("TABLE_NAME"));
vvs.add(vv);

}
conn.close();
ValidValueLine[] result = new ValidValueLine[vvs.size()];
vvs.toArray(result);
return result;

}
catch (Throwable t)
{

ServerLog.appendException(t);
return new ValidValueLine[0];

}
}

/**
*/
public static List executeQuery(String driverClassName,

String connectionURL,
String sql,
String[] columns)

{
try
{

List resultList = new ArrayList();
Connection conn = createConnection(driverClassName,connectionURL);
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(sql);
while (rs.next())
{

Map columnMap = new HashMap();
for (int i=0; i<columns.length; i++)
{

String column = columns[i];
String value = rs.getString(column);
columnMap.put(column,value);

}

343Special Development Topics

Using Layout Painter Extensions

resultList.add(columnMap);
}
conn.close();
return resultList;

}
catch (Throwable t)
{

return new ArrayList();
}

}

}

Note: The functions for table processing are a bit limited as they deal only with string-type
columns, however, this is a demo use case only.

Finally, let us have a look at the cisconfig.xml file in which all extensions are registered. For this
example, we have inserted a new editor extension named "SQL Browser".

<cisconfig startmonitoringthread="true"
 requestclienthost="false"
 debugmode="false"
 loglevel="EWI"
 logtoscreen="true"
 sessiontimeout="3600"
 xmldatamanager="com.softwareag.cis.xmldata.filebased.XMLDataManager"
 useownclassloader="true"
 browserpopuponerror="false"
 framebuffersize="3"
 ↩
onlinehelpmanager="com.softwareag.cis.onlinehelp.projectbased.FrameHelpOHManager"
 textencoding="UTF-8"
 enableadapterpreload="true"
 animatecontrols="true">

 <requestrecording recordrequests="false"
 recorddirectory="c:/temp/traces/">
 </requestrecording>

 <editorextensions>
 <editorextension name="WSDL Browser"
 ↩
classname="com.softwareag.cis.editor.extension.wsdlpage.WSDLPageAdapter">
 </editorextension>
 <editorextension name="SQL Browser"

classname="com.softwareag.cis.editor.sql.SQLExtensionAdapter">
 </editorextension>
 <editorextension name="Map Converter" classname="PluginMapCreatorAdapter">
 </editorextension>
 </editorextensions>

Special Development Topics344

Using Layout Painter Extensions

 <generationaddons>
 <generationaddon ↩
classname="com.softwareag.cis.gui.generate.XSDGenerationAddon">
 </generationaddon>
 </generationaddons>

</cisconfig>

In the section editorextensions, the class names of all editor extensions are listed. The class needs
to provide a constructor without parameters and needs to implement the interface
IEditorExtension.

Extension Meets Pattern

A Layout Painter extension generates a certain XML layout which is taken over into the page. It
makes sense to generate the layout in such a way that it meets a processing pattern within the
adapter of the generated page.

In the above SQL example, the controls that are generated by the extension are binding to properties
in the following way:

■ There is a general property definition that is input into the extension. Let us assume that the
user specifies "sq" as the general property name.

■ All query fields are binding to a property definition valueprop="sq.query.columnName".
■ The TEXTGRIDSSS2 binds to griddataprop="sq.lines" and each COLUMN definition inside
the girds binds to property="columnName".

Let us have a look at the adapter code of the page that is generated inside the Layout Painter:

// This class is a generated one.

import java.util.*;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;
import com.softwareag.cis.editor.sql.SQLQueryMgr;

public class SSQQLL1Adapter
extends Adapter

{
SQLQueryMgr m_sq = new SQLQueryMgr(

"com.mysql.jdbc.Driver",
"jdbc:mysql://localhost:3306/cispersist?user=root&password=admin",
"xmldata");

public SQLQueryMgr getSq() { return m_sq; }
}

345Special Development Topics

Using Layout Painter Extensions

This is not much code. The main coding is done in the SQLQueryMgr class. This pattern class can
be used throughout various adapters to provide the ".query" and ".lines" data and processing. Let
us have a look at this class:

package com.softwareag.cis.editor.sql;

import java.sql.Connection;
import java.sql.DriverManager;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.server.IDynamicAccess;
import com.softwareag.cis.server.util.TEXTGRIDCollection;

public class SQLQueryMgr
{
 // --
 // inner classes
 // --

 /**
 * This is the object that holds all the query parameters. Each column
 * is represented as one property which is reachable by IDynamicAccess.
 */
 public class TableRow
 implements IDynamicAccess
 {
 Map m_data = new HashMap();
 public String[] findDynamicAccessProperties()
 {
 return m_columnNames;
 }
 public Class getClassForProperty(String property)
 {
 return null; // default: String...
 }
 public Object getPropertyValue(String propertyName)
 {
 return this.m_data.get(propertyName);
 }
 public void invokeMethod(String methodName)
 {
 }
 public void setPropertyValue(String propertyName, Object value)
 {
 this.m_data.put(propertyName,value);
 }
 }

Special Development Topics346

Using Layout Painter Extensions

 public class SelectableTableRow
 extends TableRow
 {
 boolean m_selected;
 public void setSelected(boolean value) { this.m_selected = value; }
 public boolean getSelected() { return this.m_selected; }
 }

 // --
 // members
 // --

 String m_driverClassName;
 String m_connectionURL;
 String m_table;
 SQLUtil.ColumnMetaData[] m_columns; // loaded in init()
 String[] m_columnNames; // loaded in init()

 TableRow m_query = new TableRow();
 TEXTGRIDCollection m_lines = new TEXTGRIDCollection();

 // --
 // constructors
 // --

 public SQLQueryMgr(String driverClassName,
 String connectionURL,
 String table)
 {
 m_driverClassName = driverClassName;
 m_connectionURL = connectionURL;
 m_table = table;
 m_columns = ↩
SQLUtil.readMetaDataForTable(m_driverClassName,m_connectionURL,m_table);
 m_columnNames = new String[m_columns.length];
 for (int i=0; i<m_columnNames.length; i++)
 m_columnNames[i] = m_columns[i].m_column;
 }

 // --
 // public usage
 // --

 public TableRow getQuery() { return m_query; }
 public TEXTGRIDCollection getLines() { return m_lines; }

 public void onQuery()
 {
 try
 {
 // build SQL string

347Special Development Topics

Using Layout Painter Extensions

 StringBuffer sql = new StringBuffer();
 sql.append("SELECT * FROM " + m_table + " ");
 int counter = 0;
 for (int i=0; i<m_columnNames.length; i++)
 {
 String colName = m_columnNames[i];
 Object colValue = m_query.getPropertyValue(colName);
 if (colValue == null) continue;
 if (counter == 0)
 sql.append("WHERE ");
 else
 sql.append("AND ");
 sql.append(colName + " LIKE " + "'%"+colValue+"%'");
 counter++;
 }
 sql.append(";");
 // execute query
 List queryList = SQLUtil.executeQuery(m_driverClassName,
 m_connectionURL,
 sql.toString(),
 m_columnNames);
 // transfer into lines
 m_lines.clear();
 Iterator iter = queryList.iterator();
 while (iter.hasNext())
 {
 Map columnMap = (Map)iter.next();
 SelectableTableRow str = new SelectableTableRow();
 for (int i=0; i<m_columnNames.length; i++)
 ↩
str.setPropertyValue(m_columnNames[i],columnMap.get(m_columnNames[i]));
 m_lines.add(str);
 }

 }
 catch (Throwable t)
 {
 t.printStackTrace();
 }
 }
}

The building blocks are:

■ There is a class TableRowwhich is used both for the query properties (sq.query.type,
sq.query.id, etc.) and for the line objects of the grid. This class supports a dynamic set of
properties using the IDynamicAccess interface. The definitionwhich properties to support comes
from the table definition. Again, the SQLUtil class is used for accessing the table definition.

Special Development Topics348

Using Layout Painter Extensions

■ There is an onQuerymethod which builds the SQL selection string out of the query parameters,
passes it to the SQL database processing and transfers the result back into the grid collection
(m_lines).

As you have seen in the above example, only a small amount of coding is required for building
extensions that greatly simplify the creation of typical screens. The XML layout that is added using
extensions typically matches a pattern on the server side that provides the properties and the
processing “without coding” (as seen from the usage point of view).

349Special Development Topics

Using Layout Painter Extensions

350

76 Microsoft Silverlight Integration

■ Example .. 352
■ Implementation of the Sample Page .. 353
■ Integration of Silverlight .. 356

351

Microsoft Silverlight is a plug-inwhich allows to specify sophisticated graphics, such as animations.
It is positioned as competitive plug-in to Adobe's Macromedia Flash control. Silverlight runs
withinMicrosoft-based andApple-OS-based systems. As browsers, the Internet Explorer, Mozilla
and Safari are supported.

This chapter assumes that you already knowhow to deal with Silverlight. Read the documentation
that comes with the Silverlight SDK when downloading from Microsoft.

The integration of Silverlight is simple and straight forward. Silverlight has direct access to
JavaScript processing - this is where AJAX and Silverlight meet.

UsingApplicationDesigner's control concept, the Silverlight part of a page can be nicely integrated,
allowing theAJAX page to pass data (“net data”) to the Silverlight control and allowing the Silver-
light processing to set data and raise events within the AJAX processing.

Notes:

1. Silverlight is bound to certain platforms (Windows, Mac OS). It is up to you to decide whether
you should use it or not.

2. Silverlight is not supported inApplicationDesigner's SWT client. Silverlight is browser-specific,
themain reason being the communication between the Silverlight plug-in and the surrounding
environment. In the browser, the binding is done using JavaScript. For SWT, no standard
binding is offered.

3. The Silverlight plug-in only supports a subset of Microsoft's XAML definitions. The subset
definition is documented as part of the SDK that you can download from Microsoft.

Example

The following page contains three special controls: two buttons and an image area.

Special Development Topics352

Microsoft Silverlight Integration

As you can see in the layout tree, the names of the corresponding control tags are SL_BUTTON
and SL_IMAGEOUT. These controls are animated:

■ When pressing a button, it rotates one time.
■ When loading images into the image area, the images fly in and out.

From the layout perspective, the controls are just normal controls. The button is bound to a server-
side method, the image output area is bound to a server-side property. The control's complexity
is completely hidden from of the application developer who just uses controls by dropping them
into a page and putting server-side logic behind them.

Implementation of the Sample Page

The layout of the above sample page is defined in the following way:

<page model="SL_Test1Adapter">
<sl_silverlight>
</sl_silverlight>
<titlebar name="Template">
</titlebar>
<pagebody paddingleft="20" paddingright="20" paddingtop="20" paddingbottom="20">

<itr>
<label name="First Name" width="120">
</label>

353Special Development Topics

Microsoft Silverlight Integration

<field valueprop="firstName" width="200">
</field>

</itr>
<itr>

<label name="Last Name" width="120">
</label>
<field valueprop="lastName" width="200">
</field>

</itr>
<vdist height="10">
</vdist>
<itr>

<hdist width="120">
</hdist>
<sl_button name="Save" method="onSave">
</sl_button>

</itr>
<vdist>
</vdist>
<itr>

<hdist width="120">
</hdist>
<sl_button name="Tschüss!" method="onBye">
</sl_button>

 </itr>
 <vdist height="10">
 </vdist>
 <itr takefullwidth="true">
 <textgrid2 griddataprop="images" width="100%" height="100%" ↩
selectprop="selected" singleselect="true" onclickmethod="onSelectImage">
 <column name="Image Name" property="imageName" width="100%">
 </column>
 </textgrid2>
 <hdist width="10">
 </hdist>
 <sl_imageout valueprop="image" width="300" height="300">

</sl_imageout>
</itr>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

In the above layout, the following types of tags are used that are specific to Silverlight. These are
customized controls.

■ SL_SILVERLIGHT
A tag that puts some Silverlight initialization code into the page. This control has no visible
representation in the page; it just adds some functions which are required for the visible Silver-
light controls.

Special Development Topics354

Microsoft Silverlight Integration

■ SL_BUTTON
The button tag.

■ SL_IMAGEOUT
The image output tag.

The adapter implementation looks as follows:

// This class is a generated one.

import java.util.*;

import com.softwareag.cis.file.FileManager;
import com.softwareag.cis.server.*;
import com.softwareag.cis.server.util.*;
import com.softwareag.cis.util.*;

public class SL_Test1Adapter
extends Adapter

{
String m_firstName;
public String getFirstName() { return m_firstName; }
public void setFirstName(String value) { m_firstName = value; }

String m_lastName;
public String getLastName() { return m_lastName; }
public void setLastName(String value) { m_lastName = value; }

String m_image;
public String getImage() { return m_image; }
public void setImage(String value) { m_image = value; }

public class ImagesItem
{

// property >imageName<
String m_imageName;
public String getImageName() { return m_imageName; }
public void setImageName(String value) { m_imageName = value; }

// property >selected<
boolean m_selected;
public boolean getSelected() { return m_selected; }
public void setSelected(boolean value) { m_selected = value; }

}

TEXTGRIDCollection m_images = new TEXTGRIDCollection();
public TEXTGRIDCollection getImages() { return m_images; }

public void init()
{

String dirName = Params.getApplicationDirectoryName("playground") + "images/";
String[] images = FileManager.getFileNamesOfDiretory(dirName,".jpg");

355Special Development Topics

Microsoft Silverlight Integration

for (int i=0; i<images.length; i++)
{

ImagesItem ii = new ImagesItem();
ii.setImageName(images[i]);
m_images.add(ii);

}
}

public void onSelectImage()
{

ImagesItem ii = (ImagesItem)m_images.findLastSelectedItem();
m_image = "../playground/images/"+ii.getImageName();

}

public void onBye()
{

outputMessage(MT_SUCCESS,"Bye was pressed!");
}

public void onSave()
{

outputMessage(MT_SUCCESS,"Save was pressed!");
}

}

The adapter code does not contain any itemswhich are specific to Silverlight. The important items
in the code are:

■ The text grid is loaded in the init()method. A certain directory is scanned for JPG files and a
table row is created for each item.

■ Once the user selects a text grid item, the onSelect()method takes care of transferring the name
of the selected image into the property m_image. This is the property which is referenced by the
SL_IMAGEOUT control.

Integration of Silverlight

The descriptions below are based on the following structure:

/HTMLBasedGUI/
/silverlight/

/createSilverlight.js
/Silverlight.js
/SL_BUTTON.xaml
/SL_IMAGEOUT.xaml

There is an /HTMLBasedGUI/silverlight directory in which the following files are kept:

Special Development Topics356

Microsoft Silverlight Integration

■ createSilverlight.js
This file contains JavaScript that generated the HTML elements (for example, an OBJECT tag)
that are holding a Silverlight plug-in. This file was taken from the Silverlight SDK without any
change.

■ Silverlight.js
This file contains binding code between the JavaScript processing of the page and the Silverlight
plug-ins.

■ *.xaml
The *.xaml files (SL_BUTTON.xaml and SL_IMAGEOUT.xaml) hold the XAML rendering defin-
ition for the Silverlight controls.

This example introduces new control handlers for the SL_* controls .

Note: The selection of theHTMLBasedGUI directory for keeping the silverlight directorywas
done because HTMLBasedGUI is can be considered as Software AG's “home directory”
within a web application. When doing your own implementation, you can choose any dir-
ectory of your choice that is part of the web application's directory.

The customized controls are described below:

■ SL_SILVERLIGHT Control
■ SL_BUTTON
■ SL_IMAGEOUT

SL_SILVERLIGHT Control

Editor Extension File

Let us first have a look at the editor extension file that defines the control's integration into the
Layout Painter.

<?xml version="1.0" encoding="UTF-8"?>

<!--
Dynamic extension of editor.xml file.
-->

<controllibrary>
<editor>

<!--
**
* TAGs
**
-->

<!--SILVERLIGHT -->

357Special Development Topics

Microsoft Silverlight Integration

<tag name="silverlight">
</tag>
<tagsubnodeextension control="page" newsubnode="silverlight"/>

</editor>
</controllibrary>

The definition is pretty simple. The tag will appear in the controls palette of the Layout Painter,
as a new section with the name "Silverlight". The control does not have any properties.

Control Handler

The control adds some JavaScript statements into the generated HTML of a page. Have a look at
the implementation for the control handler:

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.protocol.ProtocolItem;

public class SL_SILVERLIGHTHandler
 implements ITagHandler
{
 // --
 // public usage
 // --

 public void generateHTMLForStartTag(int id,
 String tagName,
 AttributeList attrlist,
 ITagHandler[] handlersAbove,
 StringBuffer sb,
 ProtocolItem protocolItem)
 {
 sb.append("<!-- SILVERLIGHT begin -->\n");
 sb.append("<script type=\"text/javascript\" ↩
src=\"../HTMLBasedGUI/silverlight/Silverlight.js\"></script>\n");
 sb.append("<script type=\"text/javascript\" ↩
src=\"../HTMLBasedGUI/silverlight/createSilverlight.js\"></script>\n");
 }

 public void generateHTMLForEndTag(String tagName, StringBuffer sb)
 {
 sb.append("<!-- SILVERLIGHT end -->\n");
 }

 public void generateJavaScriptForInit(int id,
 String tagName,
 StringBuffer sb)
 {

Special Development Topics358

Microsoft Silverlight Integration

 }

}

This implementation only contains the integration of the .js files which are stored in the /HTML-
BasedGUI/silverlight directory.

SL_BUTTON

The handling of the button is done in several parts.

Editor Extension File

Let us first have a look at the editor extension file that defines the control's integration in the
Layout Painter.

<?xml version="1.0" encoding="UTF-8"?>

<!--
Dynamic extension of editor.xml file.
-->

<controllibrary>
<editor>

<!--
**
* TAGs
**
-->

<!-- SL_BUTTON -->
<tag name="sl_button">

<attribute name="name"/>
<attribute name="method"/>
<attribute name="width" datatype="width"/>
<attribute name="height" datatype="height"/>

</tag>
<tagsubnodeextension control="itr" newsubnode="sl_button"/>
<tagsubnodeextension control="tr" newsubnode="sl_button"/>
<taggroupsubnodeextension group="Silverlight" newsubnode="sl_button"/>

</editor>
</controllibrary>

The control has four attributes. name, width and height are used to specify the button's rendering.
method defines the binding to an adapter method.

In the controls palette of the Layout Painter, the control will appear within the section Silverlight.
It can be placed below ITR and TR row containers.

359Special Development Topics

Microsoft Silverlight Integration

Control Handler

The SL_BUTTON tag handler class is responsible for generating the HTML:

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.protocol.Message;
import com.softwareag.cis.gui.protocol.ProtocolItem;

public class SL_BUTTONHandler
 implements ITagHandler
{
 // --
 // members
 // --

 String m_name = "";
 String m_method;
 String m_width = "100";
 String m_height= "21";

 // --
 // public usage
 // --

 public void generateHTMLForStartTag(int id,
 String tagName,
 AttributeList attrlist,
 ITagHandler[] handlersAbove,
 StringBuffer sb,
 ProtocolItem protocolItem)
 {
 readAttributes(attrlist);
 fillProtocol(protocolItem);
 generateXSD(protocolItem);
 // create HTML
 sb.append("<!-- SL_BUTTON begin -->\n");
 sb.append("<td width='"+m_width+"'><div id='C"+id+"'"+
 " style='width:"+m_width+"; height:"+m_height+"'/></td>\n");
 sb.append("<script>function onButtonPressed"+id+"()"+
 " { C.invokeMethodInModel('"+m_method+"'); }</script>");
 }

 public void generateHTMLForEndTag(String tagName, StringBuffer sb)
 {
 sb.append("<!-- SL_BUTTON end -->\n");
 }

 public void generateJavaScriptForInit(int id,

Special Development Topics360

Microsoft Silverlight Integration

 String tagName,
 StringBuffer sb)
 {
 sb.append("if (firstusage) C_"+id+" = document.getElementById('C"+id+"');\n");
 sb.append("if (firstusage) ↩
createMySilverlightControl('../HTMLBasedGUI/silverlight/SL_BUTTON.xaml',C_"+id+",'"+id+"','"+m_width+"','"+m_height+"');\n");
 sb.append("if (firstusage) C_"+id+".CASA_width='"+m_width+"';\n");
 sb.append("if (firstusage) C_"+id+".CASA_method='"+m_method+"';\n");
 sb.append("if (firstusage) C_"+id+".CASA_name='"+m_name+"';\n");
 }

 // --
 // private usage
 // --

 /** */
 private void readAttributes(AttributeList attrlist)
 {
 for (int i=0; i<attrlist.getLength(); i++)
 {
 if (attrlist.getName(i).equals("name")) m_name = attrlist.getValue(i);
 if (attrlist.getName(i).equals("method")) m_method = attrlist.getValue(i);
 if (attrlist.getName(i).equals("width")) m_width = attrlist.getValue(i);
 if (attrlist.getName(i).equals("height")) m_height = attrlist.getValue(i);
 }
 }

 /** */
 private void fillProtocol(ProtocolItem pi)
 {
 pi.addMethod(m_method);
 }

 /** */
 private void generateXSD(ProtocolItem pi)
 {
 XSDGenerationAddon xga = ↩
(XSDGenerationAddon)pi.findGenerationAddon(XSDGenerationAddon.class);
 if (xga != null)
 {
 xga.addMethod(pi,m_method);
 }
 }

}

The above code does the following:

■ Some td and div elements are created. This is where the Silverlight object is placed in. The div
receives a certain ID ("Cxxx") which will be referenced later. In addition, there is a JavaScript
function onButtonPressedxxx() that will later be called by the Silverlight control.

361Special Development Topics

Microsoft Silverlight Integration

■ In the JavaScript initialization, the variable reference "C_xxx" is defined, which points to the
div. The actual generation of the Silverlight object is then done by using the function
createMySilverlightControl. Some parameters are transferred, for example, the name of the
XAMLfile to render. The createMySilverlightControl function is part of the createSilverlight.js
file and internally wraps the creation of the Silverlight control:

function createMySilverlightControl(pXaml,pDiv,pId,pWidth,pHeight)
{

Sys.Silverlight.createObject(
pXaml,
pDiv,
"SL_" + pId,
{

width:pWidth,
height:pHeight,
inplaceInstallPrompt:false,
background:'#FFFFFF',
isWindowless:'false',
framerate:'24',
version:'0.9'

},
{

onError:null,
onLoad:null

},
pId);

}

This may look complex. However, when you look at the Silverlight SDK documentation, you
see that this is just a normal Silverlight implementation. The Sys.Silverlight.createObject
function checks whether Silverlight is installed and creates a corresponding object tag into the
surrounding div element that is passed as parameter.

■ Finally you see that the C_xxx variable gets some attributes which take over definitions such as
width and height to be used later on.

The control is rendered and Silverlight is invoked.

XAML File

Let us now have a look at the XAML file that is passed as parameter. The XAML file is the XML
definition which defines the layout of what is rendered inside the Silverlight control:

Special Development Topics362

Microsoft Silverlight Integration

<Canvas
xmlns="http://schemas.microsoft.com/client/2007"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<Canvas Canvas.Top="0"
Canvas.Left="0"
Width="100"
Height="21"
Loaded="onLoadedBUTTON">

<Canvas Canvas.Top="0"
Canvas.Left="0"
Width="100"
Height="21"
x:Name="lllll"
MouseLeftButtonDown="onMouseLeftButtonDownBUTTON">

<Canvas.Resources>
<Storyboard x:Name="button_flip">

<DoubleAnimation
Storyboard.TargetName="lllllscale"
Storyboard.TargetProperty="ScaleY"
From="1.0" To="-1.0" Duration="0:0:0.400" AutoReverse="True"/>

</Storyboard>
</Canvas.Resources>
<!-- Content Begin -->
<Rectangle Canvas.Top="0"

Canvas.Left="0"
Width="100"
Height="21"
Stroke="#808080"
StrokeThickness="1"
RadiusX="10"
RadiusY="10"
Cursor="Hand">

<Rectangle.Fill>
<LinearGradientBrush StartPoint="0,0" EndPoint="0,1">

<GradientStop Color="#E0E0E0" Offset="0.0" />
<GradientStop Color="#A0A0A0" Offset="1.0" />

</LinearGradientBrush>
</Rectangle.Fill>

</Rectangle>
<TextBlock Text=""

FontSize="12"
Canvas.Top="1"
Canvas.Left="10"
Cursor="Hand"
x:Name="text1"/>

<TextBlock Text=""
FontSize="12"
Canvas.Top="22"
Canvas.Left="10"
Height="5"
Cursor="Hand"

363Special Development Topics

Microsoft Silverlight Integration

x:Name="text2">
<TextBlock.Foreground>

<LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
<GradientStop Color="#B0B0B0" Offset="0.0" />
<GradientStop Color="#606060" Offset="1.0" />

</LinearGradientBrush>
</TextBlock.Foreground>
<TextBlock.RenderTransform>

<ScaleTransform ScaleX="1" ScaleY="-0.6"/>
</TextBlock.RenderTransform>

</TextBlock>
<!-- Content End -->
<Canvas.RenderTransform>

<ScaleTransform x:Name="lllllscale" ScaleX="1" ScaleY="1" CenterY="10"/>
</Canvas.RenderTransform>

</Canvas>
</Canvas>

</Canvas>

If this is the first XAML definition that you see, it may look confusing. But in the end, it is quite
simple what happens:

■ There is a set of Canvas definitions, each one representing a drawing zone of its own.
■ There is a rectangle with rounded edges (that is: the button) with a brush definition.
■ There are two text block definitions holding a text which will later be passed by JavaScript. One
text block is the “main text”, the other one is a “mirrored text” (the button's text is mirrored in
a light gray color).

■ There is a ScaleTransform at the very end.
■ And there is a Storyboard definition in the resources section, which is used to scale the trans-
formation of the Y coordinates from 1 to -1 in 400ms, and back. This is what happens when the
user chooses the button: the button flips vertically and goes back to its original position.

JavaScript

Finally, there is some JavaScript that plays a role: one canvas contains an event handler
MouseLeftButtonDownwhich calls amethod onMouseLeftButtonDownBUTTON. The implementation
of thismethod is done in the file creatSilverlight.js. This is the file fromwhich the controlwas created.

function onMouseLeftButtonDownBUTTON(sender,eventArgs)
{

var control = sender.getHost();
var params = control.initParams;
// animation
var flippig = control.content.findName("button_flip");
flippig.begin();
// invoke button function
var methodName = "onButtonPressed"+params;

Special Development Topics364

Microsoft Silverlight Integration

var method = window[methodName];
method();

}

The following happens:

■ The flipping is started by referencing the corresponding ID "button_flip" from the XAML file
and calling the corresponding function.

■ The method onButtonPressedxxx is started inside the HTML pages. This is the one that is gen-
erated by the control handler. The method itself is calling a server-side function. It uses the
JavaScript API that is available for Application Designer controls.

There is one thing left which was not mentioned yet: the setting of the button's text. This is done
through the following JavaScript implementation:

function onLoadedBUTTON(sender,eventArgs)
{

var control = sender.getHost();
var params = control.initParams;
var cc = window["C_"+params];
var text1 = control.content.findName("text1");
text1.text = cc.CASA_name;
var text2 = control.content.findName("text2");
text2.text = cc.CASA_name;
var taw = text1.actualWidth;
var centeredX = 50 - taw/2;
text1["Canvas.Left"] = centeredX;
text2["Canvas.Left"] = centeredX;

}

This is called when the button is loaded inside the Silverlight control. It picks the method name
and passes it to the text blocks within the XAML definition.

SL_IMAGEOUT

The implementation of SL_IMAGEOUT is similar to that of SL_BUTTON.

Editor Extension File

This is the control's editor extension file:

365Special Development Topics

Microsoft Silverlight Integration

<?xml version="1.0" encoding="UTF-8"?>

<!--
Dynamic extension of editor.xml file.
-->

<controllibrary>
<editor>

<!--
**
* TAGs
**
-->

<!-- SL_SLIMAGEOUT -->
<tag name="sl_imageout">

<attribute name="valueprop"/>
<attribute name="width" datatype="width"/>
<attribute name="height" datatype="height"/>
<taginstance/>
<protocolitem/>

</tag>
<tagsubnodeextension control="itr" newsubnode="sl_imageout"/>
<tagsubnodeextension control="tr" newsubnode="sl_imageout"/>
<taggroupsubnodeextension group="Silverlight" newsubnode="sl_imageout"/>

</editor>
</controllibrary>

The control defines three attributes. width and height are used to set the image dimension.
valueprop is used to bind the image's URL to an adapter property.

In the controls palette of the Layout Painter, the control will appear within the section Silverlight.
It can be placed below ITR and TR row containers.

Control Handler

This is the tag handler implementation:

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.protocol.ProtocolItem;

public class SL_IMAGEOUTHandler implements ITagHandler
{
 String m_valueprop;
 String m_width = "300";
 String m_height= "300";

Special Development Topics366

Microsoft Silverlight Integration

 // --
 // public usage
 // --

 public void generateHTMLForStartTag(int id,
 String tagName,
 AttributeList attrlist,
 ITagHandler[] handlersAbove,
 StringBuffer sb,
 ProtocolItem protocolItem)
 {
 readAttributes(attrlist);
 fillProtocol(protocolItem);
 generateXSD(protocolItem);
 // create HTML
 sb.append("<!-- SL_IMAGEOUT begin -->\n");
 sb.append("<td width='"+m_width+"'><div id='C"+id+"' ↩
style='width:"+m_width+"; height:"+m_height+"'/></td>\n");
 sb.append("<script>\n");
 sb.append("var s_vv"+id+" = 'inittini';\n");
 sb.append("function romu"+id+"()\n");
 sb.append("{\n");
 sb.append("var vv = C.getPropertyValue('"+m_valueprop+"');\n");
 sb.append("if (vv == s_vv"+id+") return;\n");
 sb.append("s_vv"+id+" = vv;\n");
 sb.append("displayImageIMAGEOUT(C"+id+",vv);\n");
 sb.append("}\n");
 sb.append("</script>\n");
 }

 public void generateHTMLForEndTag(String tagName, StringBuffer sb)
 {
 sb.append("<!-- SL_IMAGEOUT end -->\n");
 }

 public void generateJavaScriptForInit(int id,
 String tagName,
 StringBuffer sb)
 {
 sb.append("if (firstusage) C_"+id+" = document.getElementById('C"+id+"');\n");
 sb.append("if (firstusage) C_"+id+".CASA_width='"+m_width+"';\n");
 sb.append("if (firstusage) C_"+id+".CASA_valueprop='"+m_valueprop+"';\n");
 sb.append("if (firstusage) C_"+id+".CASA_width='"+m_width+"';\n");
 sb.append("if (firstusage) C_"+id+".CASA_height='"+m_height+"';\n");
 sb.append("if (firstusage) ↩
createMySilverlightControl('../HTMLBasedGUI/silverlight/SL_IMAGEOUT.xaml',C_"+id+",'"+id+"','"+m_width+"','"+m_height+"');\n");
 sb.append("if (firstusage) C.registerListener(romu"+id+");\n");
 }

 // --
 // private usage

367Special Development Topics

Microsoft Silverlight Integration

 // --

 /** */
 private void readAttributes(AttributeList attrlist)
 {
 for (int i=0; i<attrlist.getLength(); i++)
 {
 if (attrlist.getName(i).equals("valueprop")) m_valueprop = ↩
attrlist.getValue(i);
 if (attrlist.getName(i).equals("width")) m_width = attrlist.getValue(i);
 if (attrlist.getName(i).equals("height")) m_height = attrlist.getValue(i);
 }
 }

 /** */
 private void fillProtocol(ProtocolItem pi)
 {
 pi.addProperty(m_valueprop);
 }

 /** */
 private void generateXSD(ProtocolItem pi)
 {
 XSDGenerationAddon xga = ↩
(XSDGenerationAddon)pi.findGenerationAddon(XSDGenerationAddon.class);
 if (xga != null)
 {
 xga.addSimpleData(pi,m_valueprop);
 }
 }

}

This is similar to SL_BUTTON. However, there is a romuxxx function generated and registered
via C.registerListener(). This function is called every time a response is processed within the
client. Inside themethod, the data thatwas updated by the response is checkedwhether it contains
a new image to be displayed in the control.

Now, let us have a look at the XAML implementation:

<Canvas
 xmlns="http://schemas.microsoft.com/client/2007"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 Loaded="loadedIMAGEOUT">

 <Canvas.Resources>
 <Storyboard x:Name="thestoryboard1"
 Completed="completedIMAGEOUT">
 <DoubleAnimation
 Storyboard.TargetName="tr"
 Storyboard.TargetProperty="Angle"

Special Development Topics368

Microsoft Silverlight Integration

 From="0.0" To="45" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="ScaleX"
 From="1" To="0" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="ScaleY"
 From="1" To="0" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="CenterY"
 From="0" To="500" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="CenterX"
 From="0" To="500" Duration="0:0:0.400" AutoReverse="False"/>
 </Storyboard>
 <Storyboard x:Name="thestoryboard2">
 <DoubleAnimation
 Storyboard.TargetName="tr"
 Storyboard.TargetProperty="Angle"
 From="45" To="0" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="ScaleX"
 From="0" To="1" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="ScaleY"
 From="0" To="1" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="CenterY"
 From="500" To="0" Duration="0:0:0.400" AutoReverse="False"/>
 <DoubleAnimation
 Storyboard.TargetName="ts"
 Storyboard.TargetProperty="CenterX"
 From="500" To="0" Duration="0:0:0.400" AutoReverse="False"/>
 </Storyboard>
 </Canvas.Resources>

 <Rectangle Canvas.Top="0"
 Canvas.Left="0"
 Width="300"
 Height="300"
 Stroke="#606060"
 StrokeThickness="1"
 RadiusX="10"
 RadiusY="10">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">

369Special Development Topics

Microsoft Silverlight Integration

 <GradientStop Color="#E0E0E0" Offset="0.0" />
 <GradientStop Color="#909090" Offset="1.0" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>

 <Canvas Canvas.Top="10"
 Canvas.Left="10"
 Width="280"
 Height="280">
 <Rectangle Canvas.Top="0"
 Canvas.Left="0"
 Width="280"
 Height="280"
 Cursor="Hand">
 <Rectangle.Fill>
 <LinearGradientBrush StartPoint="0,0" EndPoint="0,1">
 <GradientStop Color="#808080" Offset="0.0" />
 <GradientStop Color="#000000" Offset="1.0" />
 </LinearGradientBrush>
 </Rectangle.Fill>
 </Rectangle>
 <Canvas Canvas.Top="0"
 Canvas.Left="0"
 Width="280"
 Height="280">
 <Canvas.Background>
 <ImageBrush x:Name="imagebrush" ↩
ImageSource="../HTMLBasedGUI/silverlight/SL_IMAGEOUT_empty.jpg" />
 </Canvas.Background>
 <Canvas.RenderTransform>
 <TransformGroup>
 <ScaleTransform x:Name="ts" ScaleX="1" ScaleY="1" CenterY="0"/>
 <RotateTransform x:Name="tr" Angle="0"/>
 </TransformGroup>
 </Canvas.RenderTransform>
 </Canvas>
 </Canvas>

</Canvas>

There is a set of canvas definitions (see the screenshot at the very beginning of this document: the
image is embedded in some kind of frame). The most important one is located at the bottom: it
uses an "ImageBrush" in order to paint its content (this means: an image appears in the content).

There is a set of animations (two storyboards)which define that the image rolls out and in by doing
a scale transformation and a rotate transformation simultaneously.

The following is the JavaScript code which does the binding from JavaScript to Silverlight:

Special Development Topics370

Microsoft Silverlight Integration

function displayImageIMAGEOUT(cc,imageName)
{
if (imageName == null || imageName == "")
{
return;

}
cc.CASA_imageName = imageName;
if (cc.CASA_control == undefined) // not yet initialized
{
return;

}
var control = cc.CASA_control;
// start the hide storyboard

var tsb = control.content.findName("thestoryboard1");
tsb.begin();

}

function loadedIMAGEOUT(sender,args)
{

var control = sender.getHost();
var params = control.initParams;
var cc = window["C_"+params];
cc.CASA_control = control;
if (cc.CASA_imageName != null)
displayImageIMAGEOUT(cc,cc.CASA_imageName);

}

function completedIMAGEOUT(sender,args)
{

var control = sender.getHost();
var params = control.initParams;
var cc = window["C_"+params];

var ib = control.content.findName("imagebrush");
ib.imageSource = cc.CASA_imageName;
var tsb = control.content.findName("thestoryboard2");
tsb.begin();

}

When a new image needs to be displayed, the displayImageIMAGEOUTmethod is called. This is
the one which is referenced by the romuxxxmethod which itself is called when a response is pro-
cessed on the client side.

The displayImageIMAGEOUTmethod triggers the animation thestoryboard1. This animation takes
the current image out (that is: it rotates and shrinks it). At the end of the animation, an event is
raised which then calls the function completedIMAGEOUT. In the completedIMAGEOUTmethod, the
new image is defined in the brush, and the animation is started to roll the new image in.

371Special Development Topics

Microsoft Silverlight Integration

372

77 IntegratingApplicationDesigner Controls in HTMLPages

■ Example .. 374
■ Details on the Implementation .. 376
■ Invoking the Page in the Browser .. 377
■ PGHEAD Properties ... 378
■ PGCONTAINER Properties .. 378

373

ApplicationDesigner provides an “outside-in approach”which allows you to integrateApplication
Designer controls and functionality in standardHTML pages using a standardHTML editor such
as Adobe Dreamweaver or a text editor such as UltraEdit.

Important: The HTML document containing your Application Designer controls must be
XHTML-formatted. As a rule, XHTML format has to be switched on manually.

Example

The following is a standardHTMLpage that contains a registration form for a technical discussion
forum. This registration form contains Application Designer controls.

Special Development Topics374

Integrating Application Designer Controls in HTML Pages

The layout of the above page is defined in the following way:

375Special Development Topics

Integrating Application Designer Controls in HTML Pages

<html>
<head>
<pghead stylesheetfile="../cis/styles/CIS_DEFAULT.css"></pghead>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>TechForum Registration </title>
</head>
<body>
<table>...</table>

// standard HTML coding here

<pgcontainer model="RegistrationAdapter">
// normal Application Designer XML coding
<pagebody>
...

</pagebody>
<statusbar>
</statusbar>

</pgcontainer>

// standard HTML coding here

</body>
</html>

Details on the Implementation

To include Application Designer controls in an HTML page, you simply use an HTML editor or
text editor to write the HTML code and then you include the following HTML elements in this
code:

■ PGHEAD
This element is placed in the HTML header.

In the above example, the following code is used:

<pghead stylesheetfile="../cis/styles/CIS_DEFAULT.css">

The stylesheetfile attribute references the style sheet file that is to be used for theApplication
Designer controls. In this example, it references the standard CIS_DEFAULT.css file.

Make sure to specify a valid file reference. Have a close look at this reference, especially when
your web application uses one or more subdirectories (for example, when your page is placed
in <web-application>/sub1/sub2/mypage.html).

Special Development Topics376

Integrating Application Designer Controls in HTML Pages

■ PGCONTAINER
This element is placed in the HTML body. You put the Application Designer controls into this
element. The code is the same as for a standard Application Designer page.

Make sure you have valid Application Designer XML in this container element. We strongly
recommend that you use Application Designer's XSD file editor.xsd for XML validation. For in-
formation on how to get an up-to-date editor.xsd, see XML Schema (XSD) in the Development
Workplace documentation.

In the above example, the following code is used:

<pgcontainer model="RegistrationAdapter">

The model attribute references the associated adapter in which you use standard Application
Designer classes:

// This class is a generated one.
...
public class RegistrationAdapter
extends Adapter
{

/** initialisation - called when creating this instance*/
public void init()
{
...
}

}

Invoking the Page in the Browser

In the browser, an HTML page containing Application Designer controls is addressed the same
way as a normal Application Designer page. For example:

http://localhost:51000/cis/servlet/StartCISPage?PAGEURL=/cismyproject/mypage.html

377Special Development Topics

Integrating Application Designer Controls in HTML Pages

PGHEAD Properties

Basic

cssObligatoryURL of a style sheet file used for control rendering.stylesheetfile

i.e. '../cis/styles/CIS_DEFAULT.css'.

cssOptionalURL of an additional style sheet file.addstylesheetfile

You may use this additional style sheet file in order to define more
styles than are provided in the "normal" style sheet file. Typical
situations are:

(A) Some controls offer the possibility to render defined content by
style-class definitions (e.g. inside a TEXTGRID you can dynamically
define which style-class is used for a certain cell).

(B) If you define own controls by using the control extension framework
and if these controls require own style classes then these style classes
may be provided inside the additional style sheet file.

By using the additional style sheet file you are able to avoid doing
manipulations to the "normal" style sheet files that come from CIS or
that are generated inside the tool "Style Sheet Editor".

trueOptionalAdds registration code into the page that registers globally used objects
/ evets etc. to the Open AHAXHub in order to potencially synchronize

openajaxsupport

falsethe co-existance of different toolsets within one page. Only used when
being familiar with OpenAJAX aspects.

PGCONTAINER Properties

Basic

OptionalThis is the name of the Java class that is the logical counter
part of the page on server side. The name must include the
full class name e.g. including the package name.

model

Example: if you have a class DemoAdapter inside the
package com.xyz.demo, the MODEL value is:
com.xyz.demo.DemoAdapter.

The class must be a valid adapter class i.e. it must support
the interface "com.softwareag.cis.server.IModel". This is
implicitly done when deriving your adapter class from
"com.softwareag.cis.server.Model". The class source code

Special Development Topics378

Integrating Application Designer Controls in HTML Pages

may be generated by using the Code Assistant - or may be
directly coded in a development environment of your choice.

You may use the class "DummyAdapter" for testing your
layout - before specifying your "real" class.

OptionalThis is the "translation reference" that is passed to the multi
language management.

translationreference

The "tranlation reference" is a logical term representing a
group of textids together with their translation. If using the
standard file basedmulti languagemanagement that comes
with CIS as default then a "translation reference" represents
one file containing text-ids and translations in a comma
separated format.

Translation information is loaded by the multi language
management "per translation reference". I.e. if a page links
to a certain translation reference then all the translation
information that is avaible through this reference is loaded
in one step and is also buffered.

You can set up different scenarios: either each page may
address an own translation reference. E.g. if your page is
named "abc.xml" then it references to "abc" - as consequence
there is (per language) one abc.csv file holding translation
information for this page. If you have a second page
"def.xml" then youmay define "def" accordingly. In this case
each page is independent from the other. - On the other side
you are required to translate certain "common text-ids"
mulitple times.

If you on the other hand define one translation reference for
multiple pages then you can share text-ids throughout the
various pages.

Please set up a strategy for using translation referenceswhen
starting using themulti languagemanagement. The strategy
should also include a structured way of naming text-ids.
Text-ids may only be shared in an efficient way if it is clear
what they stand for. E.g. you may names of buttons in the
following way: "btn_save" and "btn_saveas".

100pxOptionalEach CIS page can be opened as a popup dialog. This
properties define the pixel width preferred for the page. -
See the property "popupheight" for more information.

popupwidth

200px

300px

400px

379Special Development Topics

Integrating Application Designer Controls in HTML Pages

100pxOptionalEach CIS page can be opened as a popup dialog. This
property defines the pixel height preferred for the page.

popupheight

200px
A popup is typically opened by calling the
"openPopup"-method in your adapter code. If no further 300px

400px
definition is done then the popup will open in the height
that is defined by this value. You can also dynamically
manipulate the size and position of the popup by using the
Model-method "setPopupFeatures" - please read
corresponding documentation inside the Java API
documentation.

dialogLeft:
200px

OptionalIn addition toPOPUPWIDTHandPOPUPHEIGHTyou can
control the appearance of the popup dialog in which the

popupfeatures

dialogTop:
100px

current page may be displayed. You define a string to
maintain different feature aspects, separated by semi-colon.

center:yes|no
edge:
sunkenedge:sunken|raised

resizable:
yes

resizable:yes|no

scroll:yes|no
status: no

status:yes|no (to display or hide a status bar)

An example string looks as follows: "dialogLeft:100px"

There is one special function built in by which you can
position a popup relative to its caller's window (the
dialogLeft and dialogTop definition normally refer to
absolute coordinates of the screen): by specifying "dialogLeft:
SCRX(100)px" you define that the position is 100 pixels right
from the left top corner of the current window. - Use
"dialogTop: SCRY(100)px" in the same way for vertical
positioning.

Please also pay attention to the methods "setPopupTitle()"
and "setPopupPageFeatures()" in the
com.casabac.server.Model class. By using thesemethod you
can define popup parameters in a dynamic way inside your
adapter implementation.

OptionalSemicolon separated list of image-URLs that are directly
preloaded in an invisible area of the page. If images are used

imagestopreload

inside a tree or a text grid then they are loaded by
dynamically generated HTML that is placed into a
corresponding area of the page. In order to optimise the
loading you can preload such images by listing them in this
property.

Special Development Topics380

Integrating Application Designer Controls in HTML Pages

The URL of the images must be relative to your generated
HTML page.

Example: if your page has a tree with certain node images
then you may define: "images/nodeopened.gif"
images/nodeclosed.gif; images/nodeendnode.gif".

OptionalURL of the image that is displayed to indicate that the screen
is just communicating to the server. This is the image that

occupiedimage

is located in the top left corner and which by default is a
flashing hour glass.

You can specify any image, e.g. also animated GIF files. If
you want your image not to be visible in the top left corner
but "somewhere" in the screen then draw an image with
some transparent area on the left and above the image that
you want to show.

OptionalWhen the screen is busy, because the client is exchanging
informationwith the server, an hour glass image is displayed

occupiedpixelheight

at the top left corner.With this property you define the pixel
height of this hour glass image.

OptionalWhen the screen is busy, because the client is exchanging
informationwith the server, an hour glass image is displayed

occupiedpixelwidth

at the top left corner.With this property you define the pixel
width of this hour glass image.

OptionalThis is the id that is passed into the help management for
the page.

helpid

If a user clicks F1 inside the page and if there is no specific
context sensitive control help available (e.g. help for field)
then the help for the page is popped up.

trueOptionalSeveral CIS controls support a VISIBLEPROP property. The
VISIBLEPROP contains the binding to an adapter property
that decides at runtime if a control is visible or not.

visiblevalueifundefined

false

This property defines how these controls behave if there is
no implementation available for the property.

Example: the VISIBLEPROP of a CHECKBOX is binding to
a property "cbvisible" but there is not corresponding
implementation "getCbvisible". If set to "true" then all
controls with undefined visibility are displayed. If set to
"false" then they are hidden.

OptionalComma separated list of URLs of additional javascript
libraries. Example: "../yourproject/js/yourlib.js". Used to

addjavascriptlibs

include non-CIS javascript. Example of Usage: with the
DATEINPUT control you can run own rules to convert and
validate user input.

381Special Development Topics

Integrating Application Designer Controls in HTML Pages

OptionalName of an adaptermethod that is invoked if the user clicks
into the page with the right mouse button and no other
control (e.g. texgrid, tree,...) handled the click so far.

contextmenumethod

OptionalComma separated list of hot keys. A hotkey consists of a list
of keys and a method name. Separate the keys by "-" and
the method name again with a comma

hotkeys

Example:

ctrl-alt-65;onCtrlAltA;13;onEnter ...defines two hot keys.
Method onCtrlAltA is invoked if the user presses Ctrl-Alt-A.
Method "onEnter" is called if the user presses the ENTER
key.

Use the popup help within the Layout Painter to input hot
keys.

trueOptionalFlag that indicates if the screen is visible within the initial
loading phase. Default is false. When using the default you

immediatedisplay

falsesee a light HTML page showing a "just loading" image. Use
property "justloadingurl" to specify a page of choice.

OptionalName of an adaptermethod that is invoked in case the page
loses the focus to another CIS page.

flushmethod

OptionalComment without any effect on rendering and behaviour.
The comment is shown in the layout editor's tree view.

comment

OptionalURL of the page that is displayed to indicate that screen is
just loading. Typically this is a light HTML page showing

justloadingurl

a loading image of choice. Use plainHTML - not a generated
CIS page.

OptionalSemicolon separated list of classes which connect to the
server side adapter processing as adapter listeners (each one
supporting the interface IAdapterListener).

adapterlisteners

Special Development Topics382

Integrating Application Designer Controls in HTML Pages

78 Automated Testing

An Application Designer application usually consists of layout pages, corresponding Java or
Natural adapters and additional server-side Java or Natural implementation. For testing the
server-side implementations that are not related to a user interface, good test coverage can be
achieved, for example, with JUnit tests. To achieve reasonable test coverage for the whole applic-
ation, however, automated tests for the parts which relate to the user interface are also required.

For testing web applications, tools such as Selenium (see http://seleniumhq.org/) are available. In
automated tests, the test cases have to locate different elements in anHTMLpage. The tests usually
use identifiers in order to locate the elements for testing. When an Application Designer layout
page is published, the identifiers are automatically generated in the corresponding HTML page
using continuous numbering. However, identifiers which are based on continuous numbers are
not suitable for automated tests. Even a small change such as rearranging fields or adding an ad-
ditional field will change the corresponding number and break the test. Therefore, it is more
suitable to use stable identifiers in the test cases. With stable identifiers, the tests will still run
correctly when small changes have been applied to the layout.

With Application Designer, you can add stable identifiers (test tool IDs) to the controls. In the
Layout Painter, theMiscellaneous tab of the properties area contains the testtoolid property.
The value for this property can be chosen freely. It is not used within the Application Designer
framework.

The value of the testtoolid is generated into the corresponding generated HTML page and the
element can thus be located by the test program in a stable way.

The following shows an extract from the generated HTML. You can see the difference between
the unstable id value and the stable testtoolid value. When the field is rearranged on the page,
the id value will change. The testtoolid value, however, will stay the same.

383

http://seleniumhq.org/

<input id="F_28" name="CC" class='FIELDInputEdit'
testtoolid='mytestid' type="text" size='15' style=" ">

With the tool Selenium, for instance, you can locate the FIELD control using a corresponding
XPATH expression which contains the testtoolid value. This XPATH will still be valid even if
you add fields to the layout.

Special Development Topics384

Automated Testing

	Special Development Topics
	Table of Contents
	Preface
	I Controls for Absolute Positioning
	1 Example
	2 Controls
	3 ABSFOLDER
	Properties

	4 ABSFIELD
	Properties

	5 ABSICON
	Properties

	6 ABSDYNICON
	Example: Moving an Icon
	Properties

	7 ABSTEXTOUT
	Properties

	8 ABSLABEL
	Properties

	9 ABSTABLE0/ABSTR
	ABSTABLE0 Properties
	ABSTR Properties

	10 ROWABSAREA
	All Controls Directly Inside the Page Tag
	All Controls Inside the Page Body
	Explicit Areas for Absolute Positioning
	Properties

	11 ABSAREA
	Example
	Properties

	II Writing Reports
	12 Introduction
	13 Writing Reports by Using the REPORT Control
	The Very Beginning - A White Report Area
	Rendering a Grid into the REPORT Control
	Using Special Styles for Cell Output
	Adding Some Text
	Adding a Second Grid
	Adding an Image
	HTML Rendering - PDF Rendering
	Reacting on Mouse Clicks
	REPORTInfo API
	REPORT Controls versus TEXTGRID Control
	Properties

	14 Creating Statistical Charts
	Structure
	Class com.softwareag.cis.chart.CHARTInfo
	Creating a Simple Chart
	Setting the Scale of the y-Axis

	15 Embedding Statistical Charts into Reports
	Creating an SVG Graphic and Embedding it into a Report
	Creating a JPEG Graphic and Embedding it into a Report
	Pay Attention when Sizing your Graphic

	16 Using the Special Chart Control QUADRANTPLOT
	Simple Example
	Properties

	17 Creating Simple Charts Quickly Using the PIVOT Control
	Simple Example
	Properties

	18 Best Practice Hints

	III Non-Visual Controls and Hot Keys
	19 TIMER
	Example
	Properties

	20 Extended Hot Key Management
	Direct Hot Key Definitions with Certain Controls
	Hot Key Definitions for Certain Controls

	IV Binding between Page and Adapter
	21 Phases of Adapter Processing
	SET/INVOKE/GET Phase - The Default Phases
	INIT Phase when Adapter is Constructed
	DESTROY Phase when Adapter is Deregistered

	22 Class Binding
	Direct Class Binding
	Generic Class Binding

	23 Types of Property Binding
	24 Java Bean Property Binding
	Class Binding
	Method Binding
	Property Binding
	Simple Properties which are Provided Directly by the Adapter
	Simple Properties which are Provided by Embedded Objects of the Adapter
	Array Properties which are Provided Directly by the Adapter
	Array Properties which are Provided by Embedded Objects of the Adapter

	Access Path Restrictions

	25 Dynamic Access Property Binding
	Interface IDynamicAccess
	Example

	26 XML Property Binding
	27 Getting Information about Access Paths
	28 Exception Management Inside an Adapter Object
	Normal Exceptions are to be Handled by the Application
	Errors and Runtime Exceptions - The Default Behavior
	Interrupting the Application Designer Request Processing - AdapterNotAvailableError
	Errors and Runtime Exceptions - The Special Behavior

	29 Additional Interfaces
	Extending the Set of Simple Data Types
	Avoid the Getting of Certain Simple Data Type Properties
	Exchanging Objects by Converter Objects

	V Details on Session Management
	30 HTTP Sessions - Application Designer Sessions
	31 Application Designer Session - Application Designer Subsessions
	32 Application Designer Subsession - Application Designer Adapter Objects
	33 How Things Start
	Starting an Application Designer Session
	Starting Additional Application Designer Subsessions

	34 How Things End
	End of an Application Designer Session
	End of an Application Designer Subsession
	End of an Application Designer Adapter

	35 Workplace Management
	36 Saving Context Data
	Different Levels of Context
	Accessing the Context
	Typical Usage Scenarios

	37 Session IDs

	VI Application Project Management
	38 What is an Application Project?
	39 Class Loading Issues
	40 Application Project Directory
	41 Application Project Context Root
	42 Creating an Application Project
	43 Tools for Application Project Management

	VII Dynamic Page Layout
	44 Introduction
	45 Scenarios
	46 Dynamic Pages - Normal Pages
	47 Programming Dynamic Pages
	48 Interface IDynamicPageMgmt
	49 Background Information
	Link to Session Management
	Performance Considerations
	URL Position of the Pages
	Dynamic Pages - Multi Language Management

	50 Dynamic Pages - Dynamic Adapters

	VIII Becoming a Member of the Startup Process
	51 Overview
	52 Startup Class
	53 Registration

	IX Adapting the Look & Feel
	54 Introduction
	55 Style Sheet File
	56 Writing a New Style Sheet File
	57 Selecting the Right Style Sheet
	58 Dynamic Selection of the Style Sheet File
	What You Can Do
	Example

	59 Static Selection of the Style Sheet File

	X Controls for Database Reporting
	60 Basics
	Two Types of DB Controls
	When to Use Which Type

	61 DBQUERY
	Example
	DBQUERY Properties
	DBFILTER Properties
	DBCOLUMN Properties
	DBPARAMSINGLEVALUE Properties
	DBPARAMDOUBLEVALUE Properties
	Variant Management
	PDF Generation

	62 DBFIELD
	Example
	Properties

	63 DBCOMBO
	Example
	Properties

	64 DBSELECTOPTION
	Example
	Properties

	65 DBCHECKBOX
	Example
	Properties

	66 DBRADIOBUTTON
	Example
	Properties

	XI Personalization of Pages
	67 Goal
	68 Customized Layout - Concepts
	Overview
	Dynamic Controls
	Using Filters
	Personalization Filter
	Personalization Scenario Sequence
	Maintaining Personalization Data
	Persisting Personalization Data

	69 Customized Layout - Example
	XML Layout
	Java Adapter Code

	70 Customized Proposals - Concepts
	Overview
	Properties Used for Proposals
	Personalization Scenario, Personalization Scenario Sequence

	71 Customized Proposals - Example
	XML Layout
	Java Adapter Code
	Directly Accessing Proposal Values

	XII
	72 SWT Client
	73 Security Aspects
	74 Portal Integration
	Integrating Pages as Portlets
	Session Management and Portlet API Support
	Portlet Integration and AJAX

	75 Using Layout Painter Extensions
	Example
	Details on the Extension
	Extension Meets Pattern

	76 Microsoft Silverlight Integration
	Example
	Implementation of the Sample Page
	Integration of Silverlight
	SL_SILVERLIGHT Control
	SL_BUTTON
	SL_IMAGEOUT

	77 Integrating Application Designer Controls in HTML Pages
	Example
	Details on the Implementation
	Invoking the Page in the Browser
	PGHEAD Properties
	PGCONTAINER Properties

	78 Automated Testing

