
Application Designer

Custom Controls

Version 8.2 (2013-03-18)

March 2013

This document applies to Application Designer Version 8.2 (2013-03-18).

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 2005-2013 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: CIT-CUSTOMCONTROLS-82-20130318

Table of Contents

Preface .. v
1 Overview ... 1
2 Control Concept .. 3

Page Generation ... 4
Tag Handlers and Macro Tag Handlers ... 5
Library Concept ... 8
Binding Concept .. 9
Integrating Controls into the Layout Painter ... 10
Summary .. 13

3 Composing New Controls Out of Existing Controls .. 15
Concept .. 33
Programmed Macro Control - Example ... 16
Configured Macro Control - Example ... 22

4 Creating New Controls .. 25
Concept .. 26
Example 1 ... 26
JavaScript Functions ... 28
Example 2 ... 30
Example 3 (Applet) .. 33
Summary .. 39

5 Special Issues ... 41
Protocol Item .. 42
Bringing Controls into the Layout Painter ... 42
Text ID/Multi Language Controls .. 44

6 Control Library .. 45

iii

iv

Preface

This documentation provides information on how to develop your own custom controls. It is
organized under the following headings:

General information about custom controls andwhen to use them.Overview

Details about the control concept and how to create custom
controls.

Control Concept

How to create macro controls from existing controls.Composing New Controls Out of
Existing Controls

How to create completely new controls.Creating New Controls

Additional advanced topics for control creation.Special Issues

Gives information about a generally available control library in
the web.

Control Library

v

vi

1 Overview

This documentation provides information on theApplicationDesigner control concept. It is recom-
mended that youfirst become familiarwith the “normal development” of screens insideApplication
Designer.

When do you need custom controls? In general there are two cases:

1. You want to combine existing controls to form complex controls with a certain dedicated task.
Maybe you want to define an “address area” control which consists of a certain arrangement
of fields and labels that form an address. This kind of building controls is called “composing
controls” in this documentation - you take what is available and group it into certain units.

2. You want to create new controls - maybe you need some special kind of icon with a certain
behavior.

While case 1 does not require to deal with JavaScript and HTML, case 2 requires knowledge of
JavaScript and HTML and the use of the JavaScript library functions that are available via the
Application Designer framework.

Due to the usage of XML as the layout definition format and due to an open interface for integrating
control definitions into the page generation process of Application Designer, the Application De-
signer control concept is a flexible and open framework. Actually, all ApplicationDesigner controls
are following the framework - there is no “special way” or “shortcut” that is internally used.

The first concept is the definition of controls, that is, control tags with certain attributes which you
can integrate via a tag library concept into layout definitions. The second concept is the binding
of the control to server-side adapter properties. Following the strict ApplicationDesigner architec-
ture - that the GUI is a reflection of a “net data”/“model data”, dynamic controls have to transfer
their data at runtime to/from adapter properties. This binding concept is important:

■ On the one hand, youwant newly created controls to reference the adapter properties/methods.

1

■ On the other hand, you want to compose controls (for example, an address area) and want to
bind them to complex objects (e.g. an address object) on the server side - already providing for
a set of data and methods that fit to the control and provide some server side logic.

See Binding between Page and Adapter in the Special Development Topics for detailed information,
especially about the hierarchical name binding concept (access path).

Custom Controls2

Overview

2 Control Concept

■ Page Generation ... 4
■ Tag Handlers and Macro Tag Handlers .. 5
■ Library Concept .. 8
■ Binding Concept ... 9
■ Integrating Controls into the Layout Painter .. 10
■ Summary ... 13

3

Page Generation

The page generation is the process of transferring an XML layout definition into an
HTML/JavaScript page. It is automatically executed inside the Layout Painter when previewing
a layout. It can also be called from outside.

A generator program (com.softwareag.cis.gui.generate.HTMLGenerator) is receiving a string
which contains the XML layout definition. The generator program parses this string with a SAX
parser and as a consequence processes the string tag by tag.

The generation of HTML pages is done in two steps:

■ Macro Execution
First, each tag of the XML layout is checked if it is a so-called “macro tag”. A macro tag is a tag
which does not produce HTML output itself but which itself produces XML tags. Imagine a
control rendering an address input: this control is using existing controls in order to create some
defined output area representing an address. TheHTML is not produced by the address control
directly - the address control internally creates other controls (such as fields or buttons) which
themselves produce corresponding HTML code.

Custom Controls4

Control Concept

The execution of macro tags is recursively done until no macro tag is contained in the XML
layout anymore; that is, macro tags themselves can internally use macro tags.

■ HTML Generation
After having executed the macros, the rendering of HTML is started: for each tag, the renderer
creates one object of a tag handler class, that it finds via library definitions and naming conven-
tions.

Each tag handler is called via a defined interface
(com.softwareag.cis.gui.generate.ITagHandler) and is invited to take part in the generation
process. It gets all the tag data including the attributes from the layout definition and it gets the
HTML string “on the right” and is allowed to append own information into this HTML string.

A tag handler instance is called at three different points of time by the generator:

■ when the tag is starting (for example, the generator finds "<page…>"),
■ when the tag is closing (for example, the generator finds "</page>"),
■ when the generator creates a defined JavaScriptmethodwhich is called at runtime in the browser
when the page is loaded.

It is now the task of the tag handler to create HTML/JavaScript statements at the right point of
time.

Tag Handlers and Macro Tag Handlers

The following topics are covered below:

■ Macro Tag Handlers (IMacroTagHandler)
■ Tag Handlers (ITagHandler)
■ Call Sequence (IMacroTagHandler and ITagHandler)
■ Extensions of IMacroTagHandler and ITagHandler

Macro Tag Handlers (IMacroTagHandler)

The interface com.softwareag.cis.gui.generate.IMacroTagHandler contains twomethodswhich
represent the different points of time when the generator calls the tag handler during the macro
execution phase.

5Custom Controls

Control Concept

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;
import com.softwareag.cis.gui.protocol.ProtocolItem;

public interface IMacroTagHandler
{

public void generateXMLForStartTag(String tagName,
AttributeList attrlist,
StringBuffer sb,
ProtocolItem pi);

public void generateXMlForEndTag(String tagName,
StringBuffer sb);

}

Detailed information about the methods can be found inside the Javadoc documentation which
is part of your Application Designer installation. See also Developing Java Extensions in the Ajax
Developer documentation.

Tag Handlers (ITagHandler)

The interface com.softwareag.cis.gui.generate-ITagHandler contains threemethods that rep-
resent the different points of time when the generator calls a tag handler during the HTML gener-
ation phase.

package com.softwareag.cis.gui.generate;

import org.xml.sax.AttributeList;
import com.softwareag.cis.gui.protocol.*;

public interface ITagHandler
{

public void generateHTMLForStartTag(int id,
String tagName,
AttributeList attrlist,
ITagHandler[] handlersAbove,
StringBuffer sb,
ProtocolItem protocolItem);

public void generateHTMLForEndTag(String tagName,
StringBuffer sb);

public void generateJavaScriptForInit(int id,
String tagName,
StringBuffer sb);

}

Detailed information about the methods can be found inside the Javadoc documentation which
is part of your Application Designer installation. See also Developing Java Extensions in the Ajax
Developer documentation.

Custom Controls6

Control Concept

Call Sequence (IMacroTagHandler and ITagHandler)

A tag is processed by the generator in a certainway that is nowdescribed for theHTMLgeneration
phase. (The macro execution phase is processed in a similar way.)

■ The generator finds the tag, reads its properties and assigns an ID. The ID is unique inside one
page.

■ The generator creates a new instance of the tag handler which is responsible for processing the
tag.

■ The generator calls the generateHTMLForStartTagmethod. It passes the list of properties, the
string buffer which represents the HTML/JavaScript string and a protocol item in which the tag
handler can store further information.

■ The generator calls the generateJavaScriptForInitmethod. It passes as main parameter a
string representing themethod body of the initialisationmethod. You can append JavaScript
statements to this string.

■ (If the generator finds tags below the current tag, these tags are processed in the sameway now.)
■ The generator finds the end tag and calls the generateHTMLForEndTagmethod.

The following image illustrates the call sequence for tag handlers:

Be aware of the following:

■ There is one instance of a corresponding tag handler per tag. If there are three button definitions
inside a layout definition, then during generation there are three instances of the BUTTONHandler
class.

7Custom Controls

Control Concept

■ There is one instance of a protocol item which is passed as parameter per tag. Each tag has its
own protocol item. All the protocol items are collected at generation point of time to form one
generation protocol.

Extensions of IMacroTagHandler and ITagHandler

There are certain interfaces which extend the framework for specific situations:

■ com.softwareag.cis.gui.generate.IMacroHandlerWithSubTags - this is an extension of
IMacroHandler and provides the possibility to also receive subtags of a tag.

■ com.softwareag.cis.gui.generate.ITagWithSubTagsHandler - this is an extension of the
ITagHandler interface and provides the possibility to also receive the subtags of a tag.

■ com.softwareag.cis.gui.generate.IRepeatCountProvider and
com.softwareag.cis.gui.generate.IRepeatBehaviour - these interfaces are responsible for
controlling a specialmanagement for the REPEATprocessing,which you use, for example, inside
grids (ROWTABLEAREA2).

You do not need to know anything about these extensions to create your first controls. Document-
ation is provided inside the Javadoc documentation. See alsoDeveloping Java Extensions in theAjax
Developer documentation.

Library Concept

The library concept is responsible for defining the way how the generator finds a tag handler class
for a certain tag. There are two situations:

1. The generator finds a tag without a ":" character. This indicates that this is a native Application
Designer tag - the according tag handler is found inside the package
com.softwareag.cis.gui.generate, the class name is created by converting the tag name to
upper case and appending "Handler".

For example, if the generator finds the tag "header", it tries to use a tag handler class
com.softwareag.cis.gui.generate.HEADERHandler.

2. The generator finds a tag with a ":" character, for example, demo:address. This indicates that
an external control library is used. The generator looks into a certain configuration file (<in-
stalldir>/config/controllibraries.xml) and finds out the package namewhich deals with the "demo:"
library. After having found the package name, the class name is built in the same way as with
standard Application Designer controls.

For example, if the generator finds the tag demo:address and in the configuration file the demo
prefix is assigned to the package com.softwareag.cis.demolibrary, then the full class name of the
tag handler is com.softwareag.cis.demolibrary.ADDRESSHandler.

Custom Controls8

Control Concept

What happens if the generator does not find a valid class for a certain tag? In this case, it just
copies the tag of the layout definition inside the generated HTML/JavaScript string. Via this
mechanism, it is possible to define, for example, HTML tags inside the layout definition which
are just copied into the HTML/JavaScript generation result.

Control Libraries

A control library is a Java library containing ItagHandler/IMacroTagHandler implementations.
The corresponding .jar file has to be part of the Application Designer application libraries in order
to be found inside the Layout Painter and Layout Manager; i.e. it can be copied, for example, into
the <webappdir>/<projectdir>/appclasses/lib directory.

The central control file for configuring control libraries in your installation is the file <webapp-
dir>/cis/config/controllibraries.xml. An example of the file looks as follows:

<controllibraries>
<library package="com.softwareag.cis.demolibrary"

prefix="demo">
</library>
</controllibraries>

Each library is listed with its tag prefix and with the package name in which the generator looks
for tag handler classes.

Binding Concept

The normal binding concept between a page and a corresponding class is:

■ Controls refer to properties and methods.
■ Properties and methods are directly implemented as set/getmethods or as straight methods
inside the adapter class.

As youmight already have read in the part Binding between Page and Adapter of the Special Devel-
opment Topics, the binding is much more flexible. You can define hierarchical access paths for
both methods and properties.

For example, you can define a FIELD control which binds to the property address.street. As a
consequence, the adapter is first asked for an object via a getAddress()method. Then the result
of this method is asked for getStreet(). The same is true for methods: in a BUTTON control, you
can define the method address.clear - as a consequence, the adapter again is first asked for
getAddress(), then the method clear() is called in the result object.

Why is this important with controls? Well, it is especially important for composing controls: you
mightwant complex controls, e.g. an address controlwhich internally is composed out of 10 FIELD

9Custom Controls

Control Concept

controls, to be represented on the server side by a corresponding server class which matches the
property and method requirements of the control. Even more: if you add an additional FIELD
control to the address control, then youmight not want to update all adapter classes, but just want
to update the corresponding server class.

In analogy to the “Adapter”, which is the representation of a whole page, the server side classes,
which deal with certain controls, are called “Control Adapter” classes.

This all sounds a bit abstract - wait for the control adapter code example. Then you will see how
powerful and simple this binding concept is.

Integrating Controls into the Layout Painter

Once having created new controls, you want to use them inside the Layout Painter. The Layout
Painter is configured by a set of XML files, all of them located inside <webappdir>/cis/config/:

■ editor.xml
■ editor_*.xml

Have a look at the editor.xml file: all controls that comewith Application Designer are listed inside
this file. Each control defines the attributes that can be maintained and defines how it fits into
other controls. Data type definitions to provide value help for the attributes is defined aswell inside
this file.

Custom Controls10

Control Concept

In short: editor.xml controls the way in which controls are presented inside the Layout Painter.

When creating new controls, you want to integrate your controls into the Layout Painter, that is,
you want to register them inside editor.xml as well. Instead of letting you directly manipulate edit-
or.xml, there is an extension concept - in order to keep your definitions untouched by release up-
grades. There are some editor_*.xml files, each of the files containing the definitions of editor.xml
for a certain control library.

Have a look at the editor_demo.xml file:

<!-- DEMO:ADDRESSROWAREA2 -->
<tag name="demo:addressrowarea2">

<attribute name="addressprop" mandatory="true"/>
<protocolitem>
</protocolitem>

</tag>
<tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea2"/>

In this example, a new control demo:addressrowarea2 is defined:

■ It provides one property addressprop.
■ It can be placed into the existing Application Designer control pagebody.

Or have a look at the following section:

<!-- DEMO:ADDRESSROWAREA3 -->
 <tag name="demo:addressrowarea3">
 <attribute name="addressprop" mandatory="true"/>
 <taginstance>
 <rowarea name="Address">
 <itr>
 <label name="First Name" width="100">
 </label>
 <field valueprop="$addressprop$.firstName" width="150">
 </field>
 </itr>
 <itr>
 <label name="Last Name" width="100">
 </label>
 <field valueprop="$addressprop$.lastName" width="150">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <label name="Street" width="100">
 </label>
 <field valueprop="$addressprop$.street" width="300">
 </field>
 </itr>

11Custom Controls

Control Concept

 <itr>
 <label name="Town" width="100">
 </label>
 <field valueprop="$addressprop$.zipCode" width="50">
 </field>
 <hdist width="5">
 </hdist>
 <field valueprop="$addressprop$.town" width="245">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <hdist width="100">
 </hdist>
 <button name="Clear" method="$addressprop$.clearAddress">
 </button>
 </itr>
 </rowarea>
 </taginstance>
 <protocolitem>
 <addproperty name="$addressprop$" datatype="ADDRESSInfo" ↩
useincodegenerator="true"/>
 </protocolitem>
 </tag>
 <tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea3"/>

The control demo:addressarea3 has the following features:

■ It provides one property addressprop.
■ It contains the macro XML (between <taginstance> and </taginstance>) for building the
control out of existing controls.

■ It binds to an address property of type ADDRESSInfo (between <protocolitem> and
</protocolitem>).

■ It can be positioned below the pagebody control.

The editor_*.xml files should not bemaintained by yourself directly. Instead, use the Control Editor
to define the file in a comfortable way.

Custom Controls12

Control Concept

Summary

When defining new controls, there are the following resources:

■ <webapp>/cis/config/controllibraries.xml - to define control library prefixes and their binding to a
certain Java package holding control implementations.

■ <webapp>/cis/config/editor_*.xml - to define the controls and how they fit into existing controls.
■ IMacroTagHandler - implementations that transfer XML control definitions into other XML
control definitions.

■ ITagHandler - implementations that transfer XML control definitions into HTML/JavaScript.

The next section contains examples for building macro controls and new controls.

13Custom Controls

Control Concept

14

3 Composing New Controls Out of Existing Controls

■ Concept .. 33
■ Programmed Macro Control - Example .. 16
■ Configured Macro Control - Example ... 22

15

Concept

The concept is quite simple: you provide a macro control that tells how a given XML tag is trans-
ferred into an XML string representing the internally used Application Designer controls.

There are two ways to provide a macro control:

■ Either you program a control on your own,
■ or you configure the control using an XML definition.

The first way is the most flexible way - you create a piece of code translating the macro XML tag
into other controls' XML tags. The second way is the easier way by which you can use a certain
XML definition to define macro controls without having to code at all.

Programmed Macro Control - Example

Let us have a look at the following page:

Custom Controls16

Composing New Controls Out of Existing Controls

This page contains two address areas. Now let us look at the corresponding XML layout definition:

<page model="com.softwareag.cis.test14.ControlLibraryControlCompositionAdapter">
<titlebar name="Demo: Composition of controls">
</titlebar>
<header withdistance="false">

<button name="Exit" method="endProcess">
</button>

</header>
<pagebody>

<demo:addressrowarea2 addressprop="address">
</demo:addressrowarea2>
<demo:addressrowarea2 addressprop="addressWife">
</demo:addressrowarea2>

</pagebody>
<statusbar withdistance="false">
</statusbar>

</page>

17Custom Controls

Composing New Controls Out of Existing Controls

You see that there is a control demo:addressrowarea2which is used two times - once per address
area. The control is responsible for arranging all its inner controls. Each tag has an addressprop
property - we will see later how this property is treated.

Control Handler Code

Let us have a look at the corresponding control handler code:

package com.softwareag.cis.demolibrary;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.generate.IMacroTagHandler;
import com.softwareag.cis.gui.protocol.Message;
import com.softwareag.cis.gui.protocol.ProtocolItem;

public class ADDRESSROWAREA2Handler
 implements IMacroTagHandler
{
 // --
 // members
 // --

 String m_addressprop;

 // --
 // public usage
 // --

 /** */
 public void generateXMLForStartTag(String tagName,
 AttributeList attrlist,
 StringBuffer sb,
 ProtocolItem pi)
 {
 readAttributes(attrlist);
 fillProtocol(pi);
 // build XML that consists out of contained controls
 sb.append("<rowarea name='Address'>");
 sb.append("<itr>");
 sb.append("<label name='First Name' width='100'/>");
 sb.append("<field valueprop='"+m_addressprop+".firstName' width='150'/>");
 sb.append("</itr>");
 sb.append("<itr>");
 sb.append("<label name='Last Name' width='100'/>");
 sb.append("<field valueprop='"+m_addressprop+".lastName' width='150'/>");
 sb.append("</itr>");
 sb.append("<vdist height='10'/>");
 sb.append("<itr>");
 sb.append("<label name='Street' width='100'/>");
 sb.append("<field valueprop='"+m_addressprop+".street' width='300'/>");

Custom Controls18

Composing New Controls Out of Existing Controls

 sb.append("</itr>");
 sb.append("<itr>");
 sb.append("<label name='Town' width='100'/>");
 sb.append("<field valueprop='"+m_addressprop+".zipCode' width='50'/>");
 sb.append("<hdist width='5'/>");
 sb.append("<field valueprop='"+m_addressprop+".town' width='245'/>");
 sb.append("</itr>");
 sb.append("<vdist height='10'/>");
 sb.append("<itr>");
 sb.append("<hdist width='100'/>");
 sb.append("<button name='Clear' ↩
method='"+m_addressprop+".clearAddress'/>");
 sb.append("</itr>");
 sb.append("</rowarea>");
 }

 /** */
 public void generateXMlForEndTag(String tagName,
 StringBuffer sb)
 {
 }

 // --
 // private usage
 // --

 /** */
 private void readAttributes(AttributeList attrlist)
 {
 for (int i=0; i<attrlist.getLength(); i++)
 {
 if (attrlist.getName(i).equals("addressprop"))
 m_addressprop = attrlist.getValue(i);
 }
 }

 /** */
 private void fillProtocol(ProtocolItem pi)
 {
 // check
 if (m_addressprop == null)
 pi.addMessage(new Message(Message.TYPE_ERROR,"Attribute ADDRESSPROP is ↩
not set"));
 // properties
 pi.addProperty(m_addressprop,"ADDRESSInfo");
 // no further properties to be proposed in code assistant
 pi.suppressFurtherCodegenEntries();
 }

}

Let us have a look at the building blocks of the code:

19Custom Controls

Composing New Controls Out of Existing Controls

■ The class has a member m_addressprop. This member is filled directly at the beginning of the
generateHTMLForStartTagmethod - inside the readAttributes()method. The attribute list is
walked through and checked for the attribute addressprop.

■ As the next step, the protocol item is filled. On the one hand, you can put there any information
with a certain severity attribute - in the example, an error message is written to protocol if no
attribute addressprop is defined. On the other hand, you have to tell the protocol item which
properties you are accessing from your control.

Pay attention that the properties which are accessed inside the access control are a composition
out of the m_address value and some fix names which are defined by the control.

■ In the processing of the method generateXMLForStartTag(), all the XML is created that per
control instance creates the container representing an address area.

Control Adapter Code

The control adapter is not required to bewritten for a control - it is just an optionwhich is extremely
useful for structuring you server side code.

In principle, the control definition says that it refers to an address property (ADDRESSPROP value).
The inner controls take their information out of sub-properties of this control. For example, if the
ADDRESSPROP value is defined to be "wifeAddress", then the fields and buttons are bound to:

■ wifeAddress.firstName

■ wifeAddress.lastName

■ wifeAddress.street

■ wifeAddress.zipCode

■ wifeAddress.town

■ wifeAddress.clearAddress (method)

You now can provide for a server side control adapter class which provides for all this data. For
example, the implementation is:

package com.softwareag.cis.demolibrary;

import com.softwareag.cis.server.*;

/**
* This is the logic-class behind the control ADDRESSROWAREA.
*/

public class ADDRESSInfo
{

// --
// members
// --

Custom Controls20

Composing New Controls Out of Existing Controls

String m_firstName;
String m_lastName;
String m_street;
String m_zipCode;
String m_town;

// --
// public access
// --

public String getFirstName() { return m_firstName; }
public String getLastName() { return m_lastName; }

public String getStreet() { return m_street; }
public String getTown() { return m_town; }

public String getZipCode() { return m_zipCode; }
public void setFirstName(String firstName) { m_firstName = firstName; }

public void setLastName(String lastName) { m_lastName = lastName; }
public void setStreet(String street) { m_street = street; }

public void setTown(String town) { m_town = town; }
public void setZipCode(String zipCode) { m_zipCode = zipCode; }

public void clearAddress()
{
m_firstName = null;
m_lastName = null;
m_street = null;
m_zipCode = null;
m_town = null;

}
}

A page adapter class can now use this control adapter class and can automatically take over all
its contained properties and methods. For example, the page adapter of the page of this example
might look like:

package com.softwareag.cis.test14;

import com.softwareag.cis.demolibrary.*;
import com.softwareag.cis.server.Model;

public class ControlLibraryControlCompositionAdapter
extends Model

{
// --
// members
// --

21Custom Controls

Composing New Controls Out of Existing Controls

ADDRESSInfo m_address = new ADDRESSInfo();
ADDRESSInfo m_addressWife = new ADDRESSInfo();

// --
// public access
// --

public ADDRESSInfo getAddress() { return m_address; }
public ADDRESSInfo getAddressWife() { return m_addressWife; }

}

The page adapter just creates two instances of the control adapter ADDRESSInfo and publishes
them as property address and property wifeAddress.

Be aware that you can use all Java possibilities on the server side to let the control adapter interact
with your page adapter. Maybe you would like to be informed inside the page adapter every time
the clear()method is invoked? Then just build some eventing functions into the control adapter
- and the page adapter can register as event listener to its contained control adapter.

Configured Macro Control - Example

In the previous example, an explicit control handler class was written in order to transfer a short
XML statement into a long one. For simple control arrangements without any sophisticated logic,
you can do the same by just configuring the control - instead of programming it.

Let us now do the same as done with code in the previous section - this time without coding.

The configuration is done using an editor extension file (e.g. editor_demo.xml in the cis/configdirect-
ory). When generating HTML pages, Application Designer looks into its configuration directory
and searches for all .xml files starting with "editor_". Each of the files contains configuration in-
formation about controls and their usage.

Have a look at the editor_demo.xml file and you will see the following section:

<!-- DEMO:ADDRESSROWAREA3 -->
 <tag name="demo:addressrowarea3">
 <attribute name="addressprop" mandatory="true"/>
 <taginstance>
 <rowarea name="Address">
 <itr>
 <label name="First Name" width="100"/>
 <field valueprop="$addressprop$.firstName" width="150"/>
 </itr>
 <itr>
 <label name="Last Name" width="100"/>
 <field valueprop="$addressprop$.lastName" width="150"/>
 </itr>

Custom Controls22

Composing New Controls Out of Existing Controls

 <vdist height="10"/>
 <itr>
 <label name="Street" width="100"/>
 <field valueprop="$addressprop$.street" width="300"/>
 </itr>
 <itr>
 <label name="Town" width="100"/>
 <field valueprop="$addressprop$.zipCode" width="50"/>
 <hdist width="5"/>
 <field valueprop="$addressprop$.town" width="245"/>
 </itr>
 <vdist height="10"/>
 <itr>
 <hdist width="100"/>
 <button name="Clear" method="$addressprop$.clearAddress"/>
 </itr>
 </rowarea>
 </taginstance>
 <protocolitem>
 <addproperty name="$addressprop$" datatype="ADDRESSInfo" ↩
useincodegenerator="true"/>
 </protocolitem>
 </tag>
 <tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea3"/>

The following is defined in this section:

■ The new tag ADDRESSROWAREA3 is defined.
■ A property addressprop is defined to exist.
■ The XMLmacro is contained that is used for transferring the control into XML. Inside the XML
you see that the value of addressprop is referred to by using "$addressprop$".

■ The new tag is defined to be reachable below the PAGEBODY tag.

The result at the end is the same as produced with the ADDRESSROWAREA2 control of the pre-
vious section.

The XML configuration can be either done manually within the XML file or by using the Control
Editor.

23Custom Controls

Composing New Controls Out of Existing Controls

editor_* File Concept

In the example above, the macro XML definition was part of a file editor_demo.xml. If you have a
look at the /cis/config directory of your web application, then you will see some files:

■ editor.xml
■ editor_demo.xml

editor_report.xml

editor_pivot.xml

and other editor_* files
■ editorextensions_template.xml

Each file contains information about controls. When gathering the available controls, Application
Designer reads all editor_*.xml files and builds one “big internal” control model.

editor_*.xml files are also mentioned later. Since they hold information on how to arrange controls,
they are also used as control files for Application Designer's Layout Painter. For more details, see
the section Bringing Controls into the Layout Painter.

Note: If you are using an old servlet engine of version 2.2 (e.g. Tomcat 3, Websphere 4),
there is one additional file to be maintained: editorextensions.xml. For detailed information,
see the editorextensions_template.xml file.

Custom Controls24

Composing New Controls Out of Existing Controls

4 Creating New Controls

■ Concept .. 26
■ Example 1 ... 26
■ JavaScript Functions .. 28
■ Example 2 ... 30
■ Example 3 (Applet) .. 33
■ Summary ... 39

25

Concept

In the previous section, you learned how to compose complex controls out of existing controls.
Youwill now learn how to build completely new controlswhich are not yet part of theApplication
Designer control set.

The concept of building your own controls is to insert correspondingHTMLand JavaScript instruc-
tions into the HTML page which is the result of the generation process.

A JavaScript function library is available which can be directly accessed inside the HTML code
which is generated. This library contains useful methods for accessing properties and executing
methods of the "model" (“net data”) behind the page.

Example 1

The first example is a quite simple one: a tag with the name "democontrol" is introduced, which
does nothing else than writing a text which is passed via a tag attribute into the generated HTML
page:

The corresponding XML layout definition looks as follows:

<rowarea name="Demo Control">
<itr>

<demo:democontrol text="ABCDEFG">
</demo:democontrol>

</itr>
</rowarea>

You see that the text which is passed inside the text attribute of the demo:democontrol tag is
displayed inside the control in bold letters.

The Java code of the tag handler of the demo:democontrol tag looks as follows:

Custom Controls26

Creating New Controls

package com.softwareag.cis.demolibrary;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.generate.*;
import com.softwareag.cis.gui.protocol.*;

public class DEMOCONTROLHandler implements ITagHandler
{

// --
// members
// --

String m_text;

// --
// public methods
// --

/**
*/
public void generateHTMLForStartTag(

int id,
String tagName,
AttributeList attrlist,
ITagHandler[] handlersAbove,
StringBuffer sb,
ProtocolItem protocolItem)

{
readAttributes(attrlist);
fillProtocolItem(protocolItem);
sb.append("\n<!-- DEMOCONTROL begin -->\n");
sb.append("<td>The text is: "+m_text+"</td>\n");

}

/**
*/
public void generateHTMLForEndTag(String tagName, StringBuffer sb)
{

sb.append("\n<!-- DEMOCONTROL end -->\n");
}

/**
*/
public void generateJavaScriptForInit(

int id,
String tagName,
StringBuffer sb)

{
}

// --

27Custom Controls

Creating New Controls

// private methods
// --

/**
*/
public void readAttributes(AttributeList attrlist)
{

for (int i=0; i<attrlist.getLength(); i++)
{

if (attrlist.getName(i).equals("text"))
m_text = attrlist.getValue(i);

}
}

/**
*/
public void fillProtocolItem(ProtocolItem pi)
{

if (m_text == null)
pi.addMessage(new Message(Message.TYPE_ERROR,

"Attribute TEXT is not defined"));
}

}

In the tag handler, the following steps are processed:

■ In the generateHTMLForStartTag()method, the attributes which are defined with the tag are
read first and the protocol is filled.

■ Then, plain HTML information is appended to the HTML stringwhich is passed as a parameter
(StringBuffer sb). Inside the HTML information, the value of the text attribute is dynamically
inserted.

This control does not provide for any interactivity; it just writes out a certain valuewhich is defined
inside its tag definition.

JavaScript Functions

For more interactive controls - for example, which use certain data coming from the server-side
adapter - you need to access certain JavaScript functions which are available inside the client. The
generated HTML page contains an object named "csciframe". This object provides a certain set of
functions for usage from within custom controls.

It is not possible in JavaScript to arrange a set of published functions in some kind of interface in
order to only allow users a dedicated access. Therefore, the functions which are allowed to access
are listed in this section. You must not use any other functions - even if you may see additional
functions in the JavaScript sources.

Custom Controls28

Creating New Controls

DescriptionFunction

Sets a property value inside the adapter. The value is not directly sent to the
server but is buffered first in the client. If there is a synchronization event,
then the buffer is transferred.

setPropertyValue(pn,pv)

pn = name of property

pb = value

Examples:

csciframe.setPropertyValue(companyName,"Software AG");

csciframe.setPropertyValue(address.firstName,"John");

csciframe.setPropertyValue(addresses[2].firstName,"Maria");

Reads a property value from the adapter (better: the client representation of
the adapter).

getPropertyValue(pn)

pn = name of property

result = string of property value

Examples:

var vResult1 = csciframe.getPropertyValue("company");

var vResult2 =
csciframe.getPropertyValue("addresses[2].firstName");

Pay attention: the adapter value is always passed back as a string.

A boolean value, as a consequence, is returned as "true" string and not as
"true" boolean value.

Null values of the adapter, that is, where the Java adapter class on the server
side passes back "null", are returned as an empty string ("").

A JavaScript null value is passed back if the property for which you ask does
not exist.

Passes a method pointer (me value). The method is called every time when a
response of a client request is processed. In other words: every time new data

registerListener(me)

comes from the server or if themodel is updated in anotherway (for example,
by flush signals of other controls), then the correspondingmethods are called.
In themethod, you can place a corresponding reaction of your control on new
data.

Themethodwhich you passmust have a parameter model - which is not used
anymore, but which has to be defined.

Example:

29Custom Controls

Creating New Controls

DescriptionFunction

...

...
function reactOnNewData(model)
{
var vResult = csciframe.getPropertyValue("firstName");
alert(vResult);

}
...
...
csciframe.registerListener(reactOnNewData);
...
...

Invokes the calling of amethod inside the adapter. As a consequence, the data
changes which may have been buffered inside the client are flushed to the
server and the method is called.

invokeMethodInModel(mn)

mn = name of adapter method

Example:

csciframe.invokeMethodInModel("onSave");

Synchronizes the client with the server. Analogous to the
invokeMethodInModel()method from the synchronization point of view
- but now without calling an explicit method in the adapter.

submitModel(n)

n = name, must be submit

Example:

csciframe.submitModel("submit");

Example 2

The following example is an extension of the previous example. Whereas in Example 1 the text
which is output by the control was defined as an attribute of the tag definition, the text is now
dynamically derived from an adapter property.

Custom Controls30

Creating New Controls

The XML layout definition is:

<rowarea name="Demo Control">
<itr>

<label name="Text" width="100">
</label>
<field valueprop="text" width="200" flush="screen">
</field>

</itr>
<vdist height="20">
</vdist>
<itr>

<demo:democontroldyn textprop="text">
</demo:democontroldyn>

</itr>
</rowarea>

You see that the DEMOCONTROLDYN control references the same adapter property text as the
FIELD control.

Let us have a look at the tag handler class for the DEMOCONTROLDYN control:

package com.softwareag.cis.demolibrary;

import org.xml.sax.AttributeList;

import com.softwareag.cis.gui.generate.*;
import com.softwareag.cis.gui.protocol.*;

public class DEMOCONTROLDYNHandler implements ITagHandler
{

// --
// members
// --

String m_textprop;

// --
// public methods
// --

/**
*/
public void generateHTMLForStartTag(

int id,
String tagName,
AttributeList attrlist,
ITagHandler[] handlersAbove,
StringBuffer sb,
ProtocolItem protocolItem)

{

31Custom Controls

Creating New Controls

readAttributes(attrlist);
fillProtocolItem(protocolItem);
sb.append("\n<!-- DEMOCONTROL begin -->\n");
sb.append("<td>The text is: ");
sb.append("");
sb.append("</td>\n");
sb.append("<script>\n");
sb.append("function reactOnModelUpdate"+id+"(model)\n");
sb.append("{\n");
sb.append(" var vText = csciframe.getPropertyValue('"+m_textprop+"');\n");
sb.append(" var vSpan = document.getElementById('DEMOSPAN"+id+"');\n");
sb.append(" vSpan.innerHTML = vText;\n");
sb.append("}\n");
sb.append("</script>\n");

}

/**
*/
public void generateHTMLForEndTag(String tagName, StringBuffer sb)
{

sb.append("\n<!-- DEMOCONTROL end -->\n");
}

/**
*/
public void generateJavaScriptForInit(

int id,
String tagName,
StringBuffer sb)

{
sb.append("csciframe.registerListener(reactOnModelUpdate"+id+");\n");

}

// --
// private methods
// --

/**
*/
public void readAttributes(AttributeList attrlist)
{

for (int i=0; i<attrlist.getLength(); i++)
{

if (attrlist.getName(i).equals("textprop"))
m_textprop = attrlist.getValue(i);

}
}

/**
*/
public void fillProtocolItem(ProtocolItem pi)
{

Custom Controls32

Creating New Controls

// Messages
if (m_textprop == null)

pi.addMessage(new Message(Message.TYPE_ERROR,
"Attribute TEXTPROP is not defined"));

// Property Usage
pi.addProperty(m_textprop,"String");

}

}

You see:

■ Inside the generateJavaScript()method, a JavaScript function is added as a listener to adapter
model changes. The function is generated inside the generateHTMLForStartTag()method.

■ The name of the property is read via the attribute list into the member m_textprop - and is dy-
namically used when calling the JavaScript function getPropertyValue().

■ All JavaScript names (e.g. method names, IDs of controls) which are “global” inside the HTML
page are suffixes with the control IDwhich is passed via the ITagHandlermethods. The reason:
if one control is defined multiple times inside a page, then the different methods and IDs are
separated by this ID.

■ The protocol item is filled with the information about the property which is required by the
control. This is necessary at runtime because the Application Designer runtime environment
needs to find outwhich data of an adapter property to send back to the client (see Binding between
Page and Adapter in the Special Development Topics).

Example 3 (Applet)

This example shows how to embed Java applets. Unlike Example 1 and Example 2, the generated
HTML/JavaScript here just makes the applet aware of the normal data communication between
screen and page adapter. The rendering is done in Java.

This example uses a very basic “Say Hello!” applet. It shows one field input and a button. On
button click, a message is displayed on the STATUSBAR control.

33Custom Controls

Creating New Controls

The XML layout definition is:

<page model="SayHelloAdapter">
<titlebar name="Say Hello! Demo">
</titlebar>
<header>
</header>
<pagebody>

<rowarea name="Applet">
<tr>

<demo:applet code="SayHelloApplet.class"
width="400"
height="40"
valueprop="yourName"
method="onSayHello">

</demo:applet>
</tr>

</rowarea>
</pagebody>
<statusbar>
</statusbar>

</page>

The demo:applet tag shows the usual applet attributes: code, width and height.With the attribute
valueprop, the applet's field input is bound to the adapter property yourName. The attribute
method binds the button to adapter method onSayHello.

This is the page adapter for this example:

Custom Controls34

Creating New Controls

import com.softwareag.cis.server.Adapter;

public class SayHelloAdapter extends Adapter
{

// property >yourName<
String m_yourName;
public String getYourName() { return m_yourName; }
public void setYourName(String value) { m_yourName = value; }

/** called on button click */
public void onSayHello()
{
outputMessage(MT_SUCCESS, "Hello "+m_yourName+"!");

}
}

The adapter only provides for the property yourName and the method onSayHello.

The most important thing is the tag handler class. Let us have a look at APPLETHandler:

package com.softwareag.cis.demolibrary;

import org.xml.sax.*;

import com.softwareag.cis.file.CSVManager;
import com.softwareag.cis.gui.protocol.*;
import com.softwareag.cis.gui.util.*;

public class APPLETHandler implements ITagHandler
{
 // --
 // members
 // --

 String m_code;
 String m_codebase = ".";
 String m_width = "100";
 String m_height = "100";
 String m_valueprop;
 String m_method;

 // --
 // public usage
 // --

 public void generateHTMLForStartTag(int id,
 String tagName,
 AttributeList attrlist,
 ITagHandler[] handlersAbove,
 StringBuffer sb,
 ProtocolItem protocolItem)
 {

35Custom Controls

Creating New Controls

 readAttributes(attrlist);
 fillProtocol(protocolItem);

 sb.append("\n");
 sb.append("<!-- APPLET begin -->\n");
 sb.append("<td>\n");
 sb.append("<applet name=\"APPLET"+id+"\" " +
 "codebase=\".\" " +
 "code=\""+m_code+"\" " +
 "width=\""+m_width+"\" " +
 "height=\""+m_height+"\" " +
 "MAYSCRIPT>\n");
 sb.append(" <param name=\"scriptable\" value=\"true\">\n");
 sb.append(" <param name=\"id\" value=\""+id+"\">\n");
 sb.append(" <param name=\"valueprop\" value=\""+m_valueprop+"\">\n");
 sb.append(" <param name=\"method\" value=\""+m_method+"\">\n");
 sb.append("</applet>\n");

 sb.append("<script>\n");
 sb.append("function romu"+id+"(model) {");
 sb.append("try { document.APPLET"+id+".reactOnNewData(); } \n");
 sb.append("catch (exc) { alert('Error occurred when talking to applet!' ↩
+ exc); }\n");
 sb.append("} \n");
 sb.append("function getProperyValue"+id+"(propertyName) { return ↩
C.getPropertyValue(propertyName); } \n");
 sb.append("function setPropertyValue"+id+"(propertyName, value) { ↩
C.setPropertyValue(propertyName, value); } \n");
 sb.append("function invokeMethodInModel"+id+"(methodName) { ↩
C.invokeMethodInModel(methodName); } \n");
 sb.append("</script>\n");
 }

 public void generateHTMLForEndTag(String tagName,
 StringBuffer sb)
 {
 sb.append("<!-- APPLET end -->\n");
 sb.append("</td>\n");
 }

 public void generateJavaScriptForInit(int id,
 String tagName,
 StringBuffer sb)
 {
 sb.append("C.registerListener(romu"+id+");\n");
 }

 // --
 // private usage
 // --

 /** */

Custom Controls36

Creating New Controls

 private void readAttributes(AttributeList attrlist)
 {
 for (int i=0; i<attrlist.getLength(); i++)
 {
 if (attrlist.getName(i).equals("code")) m_code = attrlist.getValue(i);
 if (attrlist.getName(i).equals("codebase")) m_codebase = ↩
attrlist.getValue(i);
 if (attrlist.getName(i).equals("width")) m_width = attrlist.getValue(i);
 if (attrlist.getName(i).equals("height")) m_height = attrlist.getValue(i);
 if (attrlist.getName(i).equals("valueprop")) m_valueprop = ↩
attrlist.getValue(i);
 if (attrlist.getName(i).equals("method")) m_method = attrlist.getValue(i);
 }
 }

 /** */
 private void fillProtocol(ProtocolItem pi)
 {
 // check
 if (m_code == null) pi.addMessage(new Message(Message.TYPE_ERROR, "CODE not ↩
set"));
 if (m_valueprop == null) pi.addMessage(new Message(Message.TYPE_ERROR, ↩
"VALUEPROP not set"));
 if (m_method == null) pi.addMessage(new Message(Message.TYPE_ERROR, "METHOD ↩
not set"));
 }

}

You see:

■ readAttributes() reads all attributes from theXML. Their values are saved inmember variables.
■ fillProtocol() checks whether mandatory attributes are set. If not, an error message is shown
within the generation protocol.

■ generateHTMLForStartTag() generatesHTML code containing the applet/parameter tags. Some
JavaScript functions are added that are available inside the applet coding
(getPropertyValue/setPropertyValue/invokeMethodInModel).

■ generateJavaScriptForInit() registers function romu() as a listener to model changes. On
change, the applet is called by reactOnNewData.

The Java applet looks as follows:

37Custom Controls

Creating New Controls

import netscape.javascript.JSObject;

public class SayHelloApplet extends Applet
{

private String m_id;
private String m_valueprop;
private String m_method;
private JLabel m_label;
private JTextField m_fieldJ;
private JButton m_buttonJ;
private JSObject m_windowJ = null;

// --
// Data binding
// --

/**
* Callback method for model change events
*/

public void reactOnNewData()
{

Object[] args = new String[] { m_valueprop };
Object v = m_windowJ.call("getProperyValue"+m_id, args);
if (v == null)

v = "";
m_fieldJ.setText((String)v);

}

/**
* button action handler
*/

private void buttonAction()
{

// pass field's value into property
Object[] args = new String[] { m_valueprop , m_fieldJ.getText() };
m_windowJ.call("setPropertyValue"+m_id, args);

// call adapter method
args = new String[] { m_method };
m_windowJ.call("invokeMethodInModel"+m_id, args);

}

/**
* Is called on load
*/

public void init()
{

m_windowJ = JSObject.getWindow(this);
m_id = getParameter("id");
m_valueprop = getParameter("valueprop");
m_method = getParameter("method");

Custom Controls38

Creating New Controls

createGUI();
}

// --
// applet specific methods
// --

private void createGUI(){..}

public void destroy(){..}

private void cleanUp(){..}
}

You see:

■ JavaScriptmethods are called using JSObject. It is part of plugin.jar of Sun's JavaVirtualmachine.
■ The method reactOnNewData() accesses the fresh property value.
■ The method buttonAction() first sets the user input and then calls the adapter method.

Summary

Writing new controls requires a profound knowledge of HTML and JavaScript. In principle,
everything is simple, but there are a couple of pieces which have to be put together in order to
form a control properly:

■ You have to render the control via HTML.
■ You have to manipulate the control via JavaScript - in case you have a dynamic control.
■ You have to bind the control to adapter properties/methods.
■ You have to pay attention to the fact that all controls are living in the same page - and there
must not be any confusion with naming of IDs and method names.

■ You have to use the JavaScript initialization for registering your control inside the internal
eventing when new page content arrives inside the client.

■ You have to properly fill the protocol item.

Some topics have been mentioned here, but have not been fully explained. For more information,
see Special Issues.

39Custom Controls

Creating New Controls

40

5 Special Issues

■ Protocol Item .. 42
■ Bringing Controls into the Layout Painter .. 42
■ Text ID/Multi Language Controls ... 44

41

Protocol Item

Inside a tag handler, a protocol item is passed in the called methods. There are some mandatory
tasks that you have to do with a protocol item:

■ You must tell the protocol item every property you are referencing from your control.

This information is required because only these properties are transferred from the server to
the client at runtime which are referenced inside the page.

■ You must tell the protocol item every text ID you are referencing from your control.

Again this information is used to send the right text IDs to the client processing.

In case of using macro controls, one macro control is rendered into many normal controls. Each
normal control is treated in the way that it generates corresponding HTML/JavaScript and in the
way that it itself tells towhich properties it binds; that is, each normal control adds its properties/text
IDs itself: when your macro control contains some FIELD controls, then each FIELD control will
tell during generation the adapter properties to which it binds - there is no necessity for you to
re-tell on macro control level.

But: youmight tell onmacro control level that all the contained adapter properties are not provided
via one-by-one implementation but by implementing a server-side class already providing all sub-
properties. In this case, you can use the protocol item in the following way:

■ Call addProperty('nameOfProperty','serverSideClass'). For example:

addProperty(m_addressprop,'ADDRESSInfo')

■ Tell that all property definitions made by internally contained controls are not relevant for im-
plementation by calling the method suppressFurtherCodeGenEntries().

Bringing Controls into the Layout Painter

The Layout Painter is configured via a file editor.xml inside the <installdir>/cis/config/ directory.
This file contains information about all controls which are available inside the editor. For each
control, the list of attributes and the list of possible subnodes is listed.

Have a look at the file - the structure is self-explaining.

With early versions, you had to bring own controls into the editor.xml file by editing it accordingly.
The disadvantage was that every time Application Designer changed the editor.xml file, you had
to reapply your changes. Application Designer now offers a dynamic way of adding own controls
into the logical structure of the editor.xml.

Custom Controls42

Special Issues

Write an editor_xyz.xml file and place it into the same directory as editor.xml. "xyz" should be the
same name as the one you chose as the prefix for your control library. Each editor_xyz.xml file
holds information about the controls of the xyz control library:

■ data types of a tag
■ name of control tags
■ attributes of tags
■ subnodes a tag may have
■ subnode extensions for existingApplicationDesigner tags - thismeans, you define belowwhich
Application Designer controls your new tags should be positioned

The following definition shows the usage of the editor_xyz.xml file:

<!--
Dynamic extension of editor.xml file.
-->

<controllibrary>
<editor>

<!-- datatype TEXT -->
<datatype name="demo:count">
<value id="1st" name="First"/>
<value id="2nd" name="Second"/>
<value id="3rd" name="Third"/>
</datatype>

<!-- control DEMOCONTROL -->
<tag name="demo:democontrol">

<attribute name="text" datatype="demo:count"/>
</tag>
<tagsubnodeextension control="itr" newsubnode="demo:democontrol"/>
<tagsubnodeextension control="tr" newsubnode="demo:democontrol"/>

<!-- control DEMOCONTROLDYN -->
<tag name="demo:democontroldyn">
<attribute name="textprop"/>

</tag>
<tagsubnodeextension control="itr" newsubnode="demo:democontroldyn"/>
<tagsubnodeextension control="tr" newsubnode="demo:democontroldyn"/>

<!-- control ADDRESSROWAREA -->
<tag name="demo:addressrowsarea">

<attribute name="addressprop"/>
</tag>
<tagsubnodeextension control="pagebody" newsubnode="demo:addressrowarea"/>

43Custom Controls

Special Issues

</editor>
</controllibrary>

Note that the structure of the file directly corresponds to the structure of the original editor.xml
file. The data is an add-on that is logically added to the information from the editor.xml file.

Note also that both new data types and new control tags are named together with their prefix - in
order not to mix up with standard Application Designer controls or with controls of other control
library providers.

Text ID/Multi Language Controls

Please contact SoftwareAG in case you create new controlswith language-dependent information
- and if you want to use the same translation methods as Application Designer does for these
controls.

Custom Controls44

Special Issues

6 Control Library

You have written nice sets of controls? Why not pass these controls to others who might be inter-
ested?

Application Designer will build up a library of control libraries inside the web. If desired, we will
check the control library for being conform to the Application Designer framework - and then
publish it within our pages. Therewill be no publishingwithout your explicit agreement. Licensing
conditions - between you and the users of your control - will be defined by yourself and must be
clearly defined before publishing.

Please contact the Application Designer team at Software AG.

45

46

	Custom Controls
	Table of Contents
	Preface
	1 Overview
	2 Control Concept
	Page Generation
	Tag Handlers and Macro Tag Handlers
	Macro Tag Handlers (IMacroTagHandler)
	Tag Handlers (ITagHandler)
	Call Sequence (IMacroTagHandler and ITagHandler)
	Extensions of IMacroTagHandler and ITagHandler

	Library Concept
	Control Libraries

	Binding Concept
	Integrating Controls into the Layout Painter
	Summary

	3 Composing New Controls Out of Existing Controls
	Concept
	Programmed Macro Control - Example
	Control Handler Code
	Control Adapter Code

	Configured Macro Control - Example
	editor_* File Concept

	4 Creating New Controls
	Concept
	Example 1
	JavaScript Functions
	Example 2
	Example 3 (Applet)
	Summary

	5 Special Issues
	Protocol Item
	Bringing Controls into the Layout Painter
	Text ID/Multi Language Controls

	6 Control Library

